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Abstract

Basic physical concepts of structural delay and transmissibility are provided for simple
rod and beam structures. Investigations show the sensitivity of these concepts to
differing controlled-structures variables, and to rational system modeling effects.

An evolutionary controls/structures design method is developed. The basis of the
method is an accurate model formulation for dynamic compensator optimization and
Genetic Algorithm based updating of sensor/actuator placement and structural at-
tributes. One and three dimensional examples from the literature are used to validate
the method. Frequency domain interpretation of these controlled structure systems
provide physical insight as to how the objective is optimized and consequently what
is important in the objective. Several disturbance rejection type controls-structures
systems are optimized for a stellar interferometer spacecraft application. The in-
terferometric designs include closed loop tracking optics. Designs are generated for
differing structural aspect ratios, differing disturbance attributes, and differing sensor
selections. Physical limitations in achieving performance are given in terms of average
system transfer function gains and system phase loss.

A spacecraft-like optical interferometry system is investigated experimentally over
several different optimized controlled structures configurations. Configurations repre-
sent common and not-so-common approaches to mitigating pathlength errors induced
by disturbances of two different spectra. Results show that an optimized controlled
structure for low frequency broadband disturbances achieves modest performance
gains over a mass equivalent regular structure, while an optimized structure for high
frequency narrow band disturbances is four times better in terms of root-mean-square
pathlength. These results are predictable given the nature of the physical system and
the optimization design variables. Fundamental limits on controlled performance are
discussed based on the measured and fit average system transfer function gains and
system phase loss.
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Chapter 1

Introduction

By the year 2000 software will perform nearly 80 percent of aerospace systems func-

tions. Sensors and actuators that are integral to such systems have already enabled

performance beyond the mundane tasks routinely performed by passive systems. As

the reliability of such elements increases more complex algorithms are developed, em-

ploying millions of operations per second. The speed of such algorithms enable tasks

previously not possible. Such a task is the real-time control of structural flexibility

where actuator inputs to a system are amplified and phased in order to cancel un-

wanted motion or stress levels. The unwanted effects are disturbed by external or

internal sources and are inferred from sensed measurements. These controlled struc-

tures can provide improved life cycle costs through, for example, improved resource

usage. They may also enable scientific goals not previously achievable.

Space based structures that are characterized and compensated to sub micron

motion levels have found utility in the stellar observation sciences. In such structures,

control, other than that used in maintaining attitude, is typically introduced in the

preliminary and detailed design stages, after the system is found to fail specifications

passively. At this stage the structure is fixed in topology and member geometry

leaving the control designer to accept the given plant dynamics. In some cases the

actuator/sensor design is also fixed further limiting the achievable performance.

Consideration of structural control technology early in the design process of con-

trolled structures leads to possible benefit, but also to numerous design variables



and, subsequently, many criterion making the combined optimization problem very

difficult. The payoff is that that the actuators/sensors are designed into the system

and subsequently render the controls with greater influence over improving the per-

formance. The drawback is that the combined optimization problem is plagued by

large dimension in both the controls and structural eigen problems, and furthermore

becomes combinatorial with the addition of discrete choices such as sensor/actuator

location (distribution) and type (e.g. inertial or relative).

1.1 Objectives

The general objective of this thesis is to provide a method by which to investigate the

impact of topological design on eventual closed loop performance in controlled struc-

tures. Using this method fundamental insight into optimizing motion error objective

functions for controlled structures will be developed. Connections will be made to

the basic physical principles by which controlled structural systems behave.

Other design objectives such as structural mass and control effort are explored

in terms of validation examples from the literature. Such objectives exemplify typ-

ical spacecraft design goals. Besides validating the method, the solutions to these

examples show the importance of cost and modeling formulations.

Specifically, the method is used to provide designs for a controlled stellar interfer-

ometer spacecraft. The purpose of this application example is to show the possible

benefits of considering structural controls integrated into irregular structural designs.

The designs provide key information regarding the design of the actuators and sensors

with respect to the disturbances and performances.

Another objective of this thesis is to present optically and structurally compen-

sated spacecraft-like interferometry experiments. The experiments are scaled realiza-

tions of the one dimensional application example. The experimental results reiterate

where the combined system optimization is worth while in terms of improving per-

formance.



1.2 Previously Published Work

In the past 20 years various investigators have tackled the dynamic controlled-structures

optimization problem yielding a myriad of results and sparse implementation. Gener-

ally, in the 80's investigators proposed continuous methods that employed nonlinear

programming or gradient search techniques. At issue was the choice of partial and di-

rectional derivatives, and the form of the cost functionals. The results were generally

presented as follows: an optimization method, an example, and observations how the

cost function improved with some interpretation of the spatial nature of the results.

The optimization method was central to most papers and subsequently modeling ac-

curacy in the examples was foregone. Topological controlled-structures optimization

problems became more popular in the late 80's and early 90's. Implementations of

discrete methods such simulated annealing, genetic algorithms and branch bound

techniques have enabled topological searches that trade discrete variables.

In the published literature Rao, Maghami and Miller, etc. [1, 2, 3, 4] provide

approaches where controls and structures topologies are fixed and the control gains,

control bandwidth, and member cross-section variables optimized with respect to ei-

ther mass, motion error or control effort costs. For the most part the above use

nonlinear programming techniques and cover a variety of control techniques (LQR,

H 2/H, and positive real techniques respectively). They do not consider topological

variations such as actuator/sensor placement simultaneously with structural varia-

tion. Onoda [5] does consider both simultaneously in the framework of a continuous

problem, but the feedback is constant gains (LQR) and the actuation is coupled to

rigid body control while the objective is mass minimization. This published result

will serve as a validation example.

Another published example that does consider actuator/sensor placement concur-

rently with structural variations is provided by Sepulveda [6]. Sepulveda developed a

method that uses branch and bound techniques that places collocated actuators and

sensors in a truss structure while optimizing the member cross sections. The control

method is local position and rate output feedback. Using a branch and bound tech-



nique allows the integer placement problem to be solved using continuous problems

at each branch. While Sepulveda's work does consider structural and actuator/sensor

placement variations simultaneously, the optimization uses suboptimal (but robust)

output feedback and uses an intermediate variable formulation for the model. The

model formulation allows simple calculations of gradients but foregoes the accuracy

required for control.

Redesign optimization is achieved by Hanks, Smith and Skelton [7, 8, 9] by fixing

the closed loop system and minimizing the control power. This method effectively

redistributes the local position and rate feedback into the passive elements of the

system. This, again, fixes the controls/structures topology but has the advantage of

simplifying the optimization at the expense of dealing with relatively simple systems.

Further developments of the method by Skelton [10] redistribute based on minimiz-

ing mixed H 2 and He objectives with one acting as a constraint while the other is

optimized in convex fashion.

Results from the literature are various (see Table 1.1 for a summary) and are

difficult to compare due to numerous factors;

* dimensionality of the structure (e.g. spring mass, beams and trusses) and struc-

tural discretization (whether structural member dynamics are observable)

* differing disturbances and performances

* sensor/actuator choice, differing in type, e.g.. internal relative versus external

inertial, and location (only sometimes variable)

* differing control techniques

The question still remains, how does one design a structure to accept control, i.e.

what are the necessary considerations, besides choosing an optimizer, and how well

can we do in practice? The answers require a uniform investigation, in terms of

modeling effort and choice of optimizer, over typical controlled structures, and an

experimental verification.



Table 1.1: Examples from controls structures optimization literature. Motion metrics are denoted by z, strain by e, control effort by u and
structural mass by m. CL stands for Closed Loop and OL stands for Open Loop.

Invest. metric structure control sensors/actuators opt. engine Expmt.

Miller [5]
Rao [4]
Maghami [6]
Onoda [1]
Smith [7]
Sepulveda [2]
Khot [3]
Furuya [9]
Skelton [8]
Jacques [10, 11]
Keane [12, 13, 14]

beam x-sec.
beam x-sec.
truss x-sec.
beam x-sec.
spring-mn ass-dashpot
beam/truss x-sec.
truss x-sec.
truss
spring-mass-dashpot
spring-mass
truss

pos. + rate
LQR
positive real
LQR
covariance
pos. + rate
robust H 2/H,,

covariance
LQR

fixed
fixed
fixed
fixed
fixed
variable
fixed
variable
fixed
fixed
-

NL prog.
NL prog.
NL prog.
NL prog.
quad. prog.
Branch and Bound/ NL prog
NL prog.
reduced stochastic search
Linear Matrix Ineq.
exact
stochastic search

No
No
YES
No
No
No
No
No
No
No
YES

CL z'
CL z2

CL u2

CL z2

CL fixed
CL zI, Jul, mn
CL z2

OL E2
CL fixed
CL z2

OL E



Two published experimental results are considered here. The first is the result of

a NASA program at the Langley Research Center, published by Maghami et al. [2].

In this case the cost function was control effort with constrained motion errors. Ac-

tuators and sensors topology was fixed, i.e. cold gas thruster inputs with collocated

velocity measurements, and grouped cross-sectional variables and control gains op-

timized. Control design was essentially dissipative with broadband inertial distur-

bances entering at one end of the structure. Overall the optimal design was to stiffen

the main structural sections, with primary flexible modes increasing in frequency by

r 40%. This globally added stiffness attenuates the flexible response for the same

rigid body response, resulting in the actuators operating at less power to achieve a

given performance. Overall the control power was reduced by just 3 dB rms.

The second experimental result reviewed is optimization of an open loop structural

topology, performed and experimentally implemented by Keane [11] with remark-

able narrow band disturbance rejection results. Here a genetic algorithm search is

performed over structural topology (geometric location of truss joints) to minimize en-

ergy levels in a structural member at the end of a cantilevered two dimensional truss.

The disturbance enters as a point force on a structural member near the cantilever

root. Good performance, nearly 30 dB attenuation in energy at a given frequency (15

dB in generalized displacement), is achieved by adjustment of the local dynamics of

the individual members. In this work it is unclear whether broadband performance

is compromised in obtaining such narrow band performance.

1.3 Outline

The terminology in this thesis is based on interpretation of system transfer func-

tions from disturbances and actuated controls to performances and measurements.

The underlying modeling and physical interpretations of these transfer functions are

described in Chapter 2.

The method used in this thesis will be developed in Chapter 3 from a mod-

eling perspective, not the usual mathematical optimization perspective. An opti-



mization/search method is selected that enables the propagation of accurate control

models. In topological design of controlled structures there are many discrete choices

available resulting in a large combinatorial design space. The method provided effi-

ciently sorts these types of design spaces.

Before application of the method to a current aerospace systems problem, ex-

tensive validation against the literature is provided in Chapter 4. Published one

and three dimensional controlled structures examples are encoded and investigated.

These examples explore mass, motion error and control effort type objectives and

constraints.

Space-based interferometric instruments are designed with respect to structural

control in Chapter 5. The examples are based on conceptual designs performed

at MIT for the Jet Propulsion Laboratory. They investigate two types of structural

aspect ratio, beam-like versus box truss, and two types of system disturbance, residual

attitude control forces versus prescribed interface motions.

To further validate the approach taken, experiments were designed that verify the

results from the one dimensional application example. The experiments are scaled

versions of the example. Many configurations are investigated to explore the physical

limitations of the design examples.

Conclusions are drawn based on the physical limitations realized in the design and

implementation of controlled structures. The conclusions are categorized into general

systems conclusions and specific systems conclusions.
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Chapter 2

Controlled Structures Systems

Background

The primary purpose of this chapter is to outline the basic terminology, and discuss

simple examples in the language that will be used throughout the thesis. Key physical

concepts will be described in the discussion of the simple example. Transfer functions

from inputs to outputs are presented for optimized structural systems throughout this

thesis. Where possible, the Multiple-Input Multiple-Output transfer function matrix

representing systems are parsed into critical Single-Input Single-Output transfer func-

tions. Nominal and optimized structural systems transfer functions and system spatial

topologies will be interpreted in terms of underlying fundamental physics. Classically,

investigators either the transfer functions or the spatial representation of the system.

Here, both will be connected. General physical descriptions are given in this chapter.

For further details see the book by Crawley [12], publications by Miller [13] and von

Flotow [14], and the theses by MacMartin [15] and McCain [16].

Another purpose of this chapter is to show that controlled structural systems

are in fact limited by irrational structural behavior where the average system transfer

function gain stays high while the occurrence of poles with increasing frequency causes

phase loss. Nonminimum phase zeros occur but are not always primary contributors

to this effect.

The first section gives systems definitions. With these in hand fundamental struc-



tural modeling is discussed. More specific examples are next investigated to show the

second purpose of this chapter. A non dimensional parameter is introduced that is

used to describe the evolutionary design objective for noncollocated disturbances and

performances. Simple system sensitivities are given to illustrate how strongly the ba-

sic structural parameters couple into the design objectives. Exact asymptotic results

for a few collocated beam systems are provided and some numerical studies are per-

formed on a noncollocated beam example. Closed form single dof Linear Quadratic

Control solutions are next recited from the literature to show the sensitivity of mo-

tion type performance to closed loop dampening and stiffness control. Finally, zero

perturbations are given to highlight the effectual parameters for manipulating system

pole-zero structure.

2.1 Systems Definitions

The objective of this section is to provide some background in the fundamental ter-

minology and characterizations made throughout this thesis. Descriptions are given

in the context of controlled structures where, in this thesis, high authority control is

necessary to meet performance requirements. For the most part this section follows

material in a conceptual design paper by Crawley et. al. [17] and a pending book by

Crawley et. al. [12], "High Performance Structures: Dynamics and Control."

Figure 2-1 is an overview of controls-structures design. In the figure and in this

thesis in general, w are the disturbances, z are the performances, u are the control

forces and y are the measurements. Measurements and controls used in the isola-

tion stages are denoted within those subsystems. The figure is misleading in that

it represents various subsystems as independent block entities connected by signal

flow, however, note the distinctive arrows to and from various entities. These ar-

row directions indicate coupled influence in terms of overall system impedances and

are necessary in an accurate control design model. The various variables and block

interactions are described in the following with some simple illustrative examples.

In this systems approach, illustrated by Figure 2-1, the disturbances and perfor-



Performance, z

Figure 2-1: Overview of controls-structures design.

mances are modeled. The functional requirements on the dynamic performance of the

structure are set by the user, and may evolve during the design process. They can

be quantified in terms of structural performance outputs or metrics, e.g. the bending

strains at a wing root, tip displacement of a flexible robot, or jitter of a telescope

mirror. Attributes which must be defined include the location, type and frequency

bandwidth of importance of the structural outputs. The location addresses where

the structural system influences the performance and whether in a distributed or lo-

calized fashion. Types of structural performance include strain, and inertial and/or

relative displacements and angles, and their rates and accelerations. Another type

of performance variable that is often neglected is control effort, which derives from

meeting a structural performance constraint. In this case z in Fig. 2-1 is a direct

measure of u. Implicit performance variables such as flutter speed (an aeroelastic

stability based measure) may also be measured directly.

Structural performance outputs, z, are written as linear combinations of the states

Disturbance, w



in order to be compatible with linear control analysis,

z = Czxx = [Czq Cz] { (2.1)

where x are the vectorized structural states, q the degrees of freedom of the structure

as a whole, and the elements of matrix Cxz are geometric coefficients.

An example of geometric coefficients arises when the performance requires a spatial

integral over some discrete representation of the domain. Discretely defined structural

states must be weighted with integration weights before they are summed. Combining

the performance variable z in the frequency domain through a square root Power

Spectral Density (evaluated pointwise in frequency) function evaluated on the jw

axis, Iz(w), and integrating over frequency yields a scalar mean square cost, Jz,

Jz, (w) = H (w)Rzzz(w) (2.2)

Jz = 2 J, (w) dw (2.3)

where Rzz is a matrix of weights (positive semi-definite to be sufficient for modern

control purposes) which express the relative importance of the various outputs. Note

that frequency weights, which select the bandwidths of interest, can be included by

filtering the structural outputs. Adding such weights increases states of the system

model since for every weighting pole an extra state is needed.

When the performance is induced a characterization of the disturbance(s) , w,

acting on the system is necessary. Disturbances are accounted for in two basic ways:

either as forces emanating from energy/momenta sources that act on and in the

system as body forces, or as prescribed motions occurring at an interface to a host

body, or both. An example of a host driving prescribed motion in a system is seismic

induced motion in a building. Shuttle vibrations originating from such things as

vernier attitude control and crew motions cause the base of the antennae to follow

a prescribed motion since the antennae is light weight and flexible with respect to

the massive host and rigid mounting interface. External disturbances arise due to

operational environment such as temperature, acoustics, aerodynamics, noisey host-



body vibrations etc. Internal disturbances come about when functioning. Examples

include motor imbalances, pumps and temperature control elements.

Disturbances may be described in terms of three attributes, type, location and

temporal distribution. The type attribute is further delineated into action, reference

and direction. Action may be force or displacement while reference may be relative

or inertial. Location refers to the spatial occurrence of the disturbance and temporal

distribution refers to its spectrum, e.g. deterministic periodic, stochastic broadband

or band limited. Type and location are captured in a disturbance influence matrix,

F = ,ww (2.4)

where f, are the disturbability influence coefficients and w the disturbances. Tem-

poral distribution can be implemented by filtering the input w so that w can be

considered unit intensity white noise. Deterministic inputs can be bounded by filters

or simply used as time domain inputs to linear systems. The filtering approach is less

computationally intensive and will be used for optimization purposes in this thesis.

An example of how the disturbance influence matrix may couple to the system

modeling can be seen in the expression for a prescribed interface motion where the

equation of motion is partitioned,

MSS S + KS0 = , (2.5)

Mzs Mii i Kis Kii xi 3w, wi

into the interface, i, and disturbed system, s, dof. Rearranging the top equation

gives,

Mss, + Kssxs = -Msixi - Ksixi + fws , (2.6)

which yields the disturbed system driven by the interface motion {i, xi} through the

coupled mass and stiffness matrix. Disturbances that act on the system dof directly,

ws, are also present.

Structural actuators are also categorized by type and location. Examples of actu-

ators that act on angle are reaction wheels and gimbals. The reaction wheel is inertial

while the the gimbal is relative. Examples of internal actuators that act on relative



load cell

Figure 2-2: Simple spring strut actuator as an internal member to a structure.

displacements or strain are those fashioned out of piezo ceramic and electrostrictive

active materials. These may be arranged as stacks of wafers, levered stacks, plain

wafers or even fibers in a matrix. Active materials can be integrated into a structure

with desired spatial distribution. For actuators the terminology "temporal distribu-

tion" is replaced with internal dynamics. All actuators have dynamics that affect

their bandwidth to differing degrees. When in the bandwidth of structural control

these dynamics must be modeled and appended to the system model [18]. Piezo

ceramic actuators are high bandwidth as is evidenced by their usage in ultrasonic

applications so their internal dynamics are ignored.

An example of modeling and categorizing an active strut structural actuator is

shown in Fig. 2-2. The strut is assumed to have no internal dynamics therefore it is

just a spring. In the figure F and 6 are commands and F and x are resultants.

The resultant force F is simply,

F = Fa- k(x, - x), (2.7)

which is reacted by the internal forces of the structure, M,:I + K,,,.

If using piezoelectric ceramic struts, and the electrode voltage is being com-

manded, then F is ka,. The displacement 6 is desired and the displacement x realized.

Here, the control influence coefficients would include the actuator stiffness ka. The

type of actuator is relative displacement. For piezo-ceramics this ka is stiff (on the

order of an equal geometry aluminum strut) and it is for this reason that they couple

well to structural problems. If a voice coil strut arrangement is used, then F is a

force proportional to the commanded current. Since a voltage amplification is usually



used, the electrical resistance and inductance of the voice coil is needed in the model

since current is not commanded. For a voice coil the actuation stiffness ka is that of

soft flexures or may be tuned [19]. Their mass can not be neglected because they rely

on a high density magnet for reaction, nor can their internal dynamics due to power

amplifier limitations and eddy current losses be neglected.

In the evolutionary designs of the application examples in this thesis active mem-

bers are modeled as an applied force (or moment) pair, a generalized force Fa. The

active member stiffness is therefore lumped into the plant and the optimization will,

for a given force choose the actuator stiffness (which will sometimes loosely be called

impedance in this thesis). The effect of this modeling choice is important when con-

sidering internal relative sensors such as load measurements.

Similarly to disturbances and actuators, structural sensors have type and location

attributes. As with actuators their internal dynamics must also be considered for

control purposes when they are in the bandwidth of interest. Examples of widely used

structural sensors are accelerometers, strain gages and load cells. Examples of high

end structural sensors are laser metrology systems, electron tunneling devices, rate-

gyros and angle encoders. Type specification for accelerometers would be extensive

inertial as would be for rate-gyros. Rate-gyros have limited bandwidth and drift

at a very slow rate whereas accelerometers can measure to very high frequencies

but usually not below 1 Hz. A strain gage is an intensive relative measure. It is

intended as a point measure, but like most sensors they are susceptible to sensitivity

to secondary variables. Adaptation of active materials such as piezo ceramic wafers

and PVDF film as strain sensors allows spatially distributed measurements of the

second order tensor quantities.

As an example the internal relative load cell sensor used in this thesis is as pictured

in Fig. 2-2. Here, the measurement is,

YLC = -(k, + kp)(r - ) + Du, (2.8)

where if u = 6, then D = ka, and if u = kaS = Fa then D = 1. In either case the

low frequency measure of YLC is - kp(x, - xz) where kp is the surrounding structural



stiffness. For higher frequencies of inputs from the actuator u, the response Xr - x,

decreases and the measure is dominated by the Du term. This is good for control

because the flexible response becomes less observable in the sensor at high frequencies

where it is often desirable to roll off control gains.

Another example is measuring extensive inertial acceleration where,

Yacc = M]sKs + MsilCss + Mslu. (2.9)

Here, the inverse of the mass matrix comes into the measurement coefficients. Again

the presence of the feed through term is concerning but this is not the inhibiting fac-

tor for this sensor's usage as a control sensor. The problem is that the displacement

response of distributed structures does not roll off like 1/w 2 in the frequency domain

at high frequencies. The roll off rate is usually less, meaning more sensitivity at high

frequencies. Correspondingly the acceleration, which is proportional to the displace-

ment by a factor of -w 2 , continues to increase in average transfer function gain at

high frequencies. The implementation issue is the ability to roll off loop control gain

using system weights.

Understanding the relationship between the actuation inputs and sensed outputs

is necessary for visualizing the effect a controller can have on performance. An im-

portant definition is that of collocation when an actuator and sensor are in the same

location and act/measure in the same sense. When a sensor actuator pair is truly col-

located the transfer function from input to output is phase bounded. Mathematically

this has been proved to lead to interlaced complex poles and minimum phase com-

plex zeros [20]. Examples of simple collocated input output pairs on simple structures

will be shown in the following section. The significance of this pole-zero structure

is that, with simple feedback of the correct derivative/integral of the measurement

near loop gain cross-over, the controller will be phase stable. Pure collocation is a

mathematical abstraction. It can, however, be quantified over a bandwidth by the

nature of the complex zeros with respect to the structural poles. Usually at high

enough frequencies, or small enough wave numbers, the sensor is not measuring the

exact mathematical variable and the actuator is not perfectly actuating as desired.



This is a concern when placing a structural actuator/sensor pair in a highly internally

indeterminant configuration and desiring broad band damping. For example, placing

an active strut-load cell pair in an indeterminant mounting configuration leads to

actuated and sensed shear stresses and bending moments. The sensed variable is not

collocated with that actuated for all frequencies of input because of the nonuniformity

in the local stress fields due to the indeterminacy.

Collocation is necessary but not sufficient for achieving good control action over

a broad band of important flexible modes. Collocation with good modal residues

(or even pole-zero spacing near the important modes) and a transfer function that

rolls off at high frequencies, is sufficient for good control action over these modes.

Neither of the above statements mention performance, because a collocated struc-

tural actuator sensor pair may achieve high gain feedback at an amenable location

in the structure, yet stiffness control and dampening of this location does not stop

disturbances from propagating through all the structural states to the performance.

Modern control techniques use knowledge of disturbance and performance directions

to apply a collocated actuator sensor to reducing the performance. When the sensor is

the performance and the actuator is collocated (output isolation), or when the sensor

measures the disturbance and the actuator is collocated (input isolation) impressive

performance improvements are realized.

Input-output modification refers to the class of actions which serve to reduce the

energy passed into the structure, and or reduce the impact of structural motion on the

performance metric. The options include input shaping of commands, disturbance

reduction or cancellation, and isolation. Command shaping seeks to filter the input

at the frequencies of structural resonance while minimizing impact on the tracking

performance. Disturbance reduction or cancellation minimizes the disturbance by

redesign of the device, using techniques such as reactuation (ie inertially uncoupling

device motion from mount reactions) and adaptive balancing of rotating machinery.

The most common form of input output modification is passive or active isolation,

either at the site of the disturbance or the performance output. By modifying the

supporting structure or using sensors and actuators, isolation takes advantage of the



energy flow "bottleneck" present in some systems. These systems are by far the easiest

to improve because the disturbance and performance are localized on the structure,

not distributed. When localized, disturbance isolation is used to reduce the trans-

mission of disturbances above a low pass corner frequency or within a narrowband

frequency notch.

When completely collocated with the disturbance or performance, input/output

isolation can be modeled as a frequency weight on the input/output, i.e. if a true

control loop sensitivity is used. This will be described further in Chapter 3.

2.2 Simple Structural Modeling and Terminology

Simple structural models for specific inputs and outputs are parameterized in this

section. By comparison with exact continuum models of simple structures it is pro-

posed by Crawley [12] that the shape of the structural transmissibility be established

by a relatively small number of parameters. The structural transmissibility from an

input w to an output z is the transfer function,

GZ(w) = (2.10)

Exact wave domain expressions can be found for undamped simple structures. An

example of finding these solutions for a free-free beam is given in Appendix A. The

exact models are irrational transcendental functions.

In order to establish the parametric terminology a SISO collocated example is

first detailed in terms of conventional methods. Figure 2-3 shows the exact irrational

transfer function magnitude, dashdot, for an inertial force-displacement pair at the

center of an undamped free-free beam. The frequency axis has been normalized by

the fundamental flexible mode frequency. The exact transfer function appears to be

damped, albeit lightly, due to the fact that the continuous transfer function is plotted

over a finite number of frequency points.

Poles and zeros of the transfer function are parameterized by normalized natural

frequency and damping, and plotted underneath the magnitude plot. They are cal-

culated from a 52 element finite element model of the beam. This plot helps envision
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Figure 2-3: A structural transfer function magnitude with pole-zero-( plot.
Poles are x's and zeros are o's.

the phase effects of the lightly damped structural poles and zeros, where nonminimum

phase zeros would have negative damping. Viewing the compressed pole-zero map

under the transfer function is an aid in understanding control limitations and hidden

model intricacies. For example, the symmetry of the structural system in Fig. 2-3

greatly reduces the visible transfer function modal density via the jw axis pole-zero

cancellations (shown) of the antisymmetric modes.

Conventionally, a detailed finite element model is constructed, some estimate of

modal damping made, and the solid lined transfer function of Fig. 2-3 computed from

first or second order truncated modal forms. Mathematically, modal information from

the discretized system may be represented as a summation of independent modal

responses. The infinite sum depends on three modal parameters for each flexible

mode; the natural frequency, wi, the damping ratio, ij, and the modal residue, Ri,

Gzw(s) = (s )  2  iwis W2 + D z w  (2.11)

i=0 i

The order of s that premultiplies the transfer function, h, determines the temporal



nature of the output, e.g. displacement, h = 0, rate, h = 1, or acceleration, h = 2.

When the structural measurements are relative, they may be insensitive to rigid body

motion resulting in Ro = 0 for wo = 0. The Dzw term is not zero for a truncated model.

It represents a static correction term for all the high frequency truncated modes. To

ensure a finite energy norm from unit intensity white noise input to output the Dzw

term is often folded into the structural plant. When necessary, for one disturbance,

Rnmod+ 1 = W d+l Dzw, (2.12)

for a mode of arbitrary frequency, Wnmod+l > WnfLmod, and arbitrary damping ratio.

If the model disturbances roll off in frequency, then appending a correction mode

is unnecessary, since augmenting the structural plant with disturbance weights will

ensure a finite output energy.

Another form of the s-plane SISO structural response is pole, p, zero, z, gain, g

form where,
k=kzeros

gs (s - Zk)

i=1

In this form the transfer function denominator is the product of complex pole factors,

pi = -(i i J 1 - (, and the numerator is the product of complex zero factors.

It is the absolute value of p and z that is plotted in the pole-zero-c plots. The zeros

are often investigated as an indication the achievable performance. Freudenburg

and Looze [21] provide fundamental limitations based on nonminimum phase zeros in

rational systems. Boyd and Desoer [22] extend these notions to the multivariable case.

One of the purposes of this chapter is to show that controlled structural systems are

in fact limited by irrational structural behavior, not the occurrence of nonminimum

phase zeros explicitly.

A more reasonable method of determining the underlying physics of the trans-

fer function is to smooth the response. In order to understand this, it is useful to

introduce the average transfer function (sometimes called the dereverberated trans-

fer function for collocated inputs and outputs) [16]. The average transfer function



"smoothes" out the modal characteristics by taking local averages on the Bode plot.

Alternatively, for a collocated transfer function, it can be obtained by setting the

damping ratio to critical or by assuming asymptotic frequency domain mass and

stiffness properties for each mode.

The average transfer function shown in Fig. 2-3 has an asymptotic log-log scale

slope below the fundamental frequency (wo), set at -2 by the presence of a rigid

body mode, or 0 for a constrained structure. For a rigid body mode, the system mass

(fL mdx) sets the magnitude of low frequency transmissibility, while for a constrained

structure, the stiffness (EI) influences the magnitude of the quasistatic transmissibil-

ity. The average transfer function at high frequencies also has an asymptotic slope.

This is determined by the attributes of the inputs and outputs and the nature of the

simple structural element. For a beam the log-log slope commonly ranges from -3/2

for a force input to a displacement output, to -1/2 for a moment in to an angle out.

If the output is rate or acceleration, the slope will increase by one or two depending

on the number of differentiators needed. Physically the collocated average transfer

function captures the direct displacement field response of the structure, independent

of far field boundaries.

The resonant aspect of the transfer function, however, is a result of standing wave

motion or modes within the structure and is thus dependent on the nature of the

structural boundary conditions as well as the properties of the structure itself. It can

be coarsely characterized by the modal density, p,,, and the average damping ratio,

,avg. A line drawn by a factor of 1/2(avg above average transfer function bounds

the magnitude of the resonant response. Clearly this bound is conservative for the

finite element model with constant modal damping. The reason is that for this model

the modal residues are monotonically decreasing with increasing modal frequency. In

realistic truss structures the damping ratio decreases at high frequencies [23], an effect

due to roughly stiffness proportional structural damping and the spatial localization

of the modes. This effect counters the reducing residues and the modal peaks rise to

gains that are bounded by the general amplification factor 1/(avg.

Thus with six parameters, the degree of constraint and nature of the inputs and



output (which set the slopes of the asymptotes), the frequency and mass (which set the

intercept of the asymptotes) and the damping ratio and modal density (which bound

the resonant behavior), the transfer function can be quantitatively characterized. This

insight can be used to estimate the transfer function, without any other modeling,

or to interpret the results of a coarse finite element model, and make conceptual

decisions on subsequent structural modifications.

2.3 Fundamentals of Noncollocated Simple Struc-

tures

As stated in the introduction this thesis intends to provide a method for preliminary

design of controlled structures. In preliminary design a more detailed knowledge of

system properties is required to ascertain, for example, stability. Now that a general

physical interpretation of structural transfer functions has been given, a more detailed

investigation of some simple examples is needed to define some ideas that are central

to interpretations in the thesis. It is proposed that two necessary considerations

for controls-structures optimization are average transfer function gain and structural

phase loss. These two attributes are detailed in this section for a simple rod and a

beam. These two simple elements make up the complicated truss structures studied

in this thesis and are fundamental building blocks of all complex structures.

First, an axial force u to displacement y, input-output pair is examined on a

free-free rod. The rod motion is governed by a non-dispersive second order partial

differential equation. Exact, finite element and modal residual interpretations of

resulting transfer functions are given. The exact, Laplace solution for a free-free rod

is so simple it is given here,

c cosh( (L- xy))
G, (x,) =sL (2.14)EAs sinh( )

where c is the speed of sound in the rod, V/i/p, s is the Laplace variable, L is the

length of the rod, and xy is the placement of the displacement sensor from the left

end. There are a few key characteristics of the exact definition of Eqn. 2.14 that



carry over to the complicated exact expressions for beams. The first characteristic

is that the high frequency average transfer function asymptote is defined to be EAS,

having slope of -1 when plotted on a log magnitude versus log frequency scale. The

remaining irrational transcendental function involves exponentially growing functions

that fluctuate with increasing log frequency density.

To define the usage of modal residuals before studying the noncollocated case

the collocated rod pair transfer function is plotted in Fig. 2-4. In this case the

finite element model and the exact model are compared over a much higher modal

density than the previous collocated beam example. The finite element model uses

62 elements and begins to show discrepancies with the exact modal frequencies at

about the tenth mode. The important notion is that of cumulative residual,

Up Ri (2.15)

where the static terms for all the modes above and including the ordinate wP are

summed and the magnitude of the resultant plotted. The cumulative residuals, Rcum

are plotted as *'s in Fig. 2-4. Conceptually, for a collocated input/output pair,

the complex zeros are found near the intersection of this static asymptote and the

cumulative inertial terms of the lower modes,

SRi(2.16)

to the left of each plotted point. Modal mass is included in the Ri. For a collocated

system the intersections result in complex zeros because of the sign of the cumulative

residuals with respect to the cumulative inertias.

Below the tenth mode the cumulative residuals track the high frequency average

transfer function gain. Above the tenth mode discretization and high modal density

cause the residuals to depart from the average gain. The important conclusion is that

asymptotic residual modal stiffness holds the average transfer function gain high.

The free-free rod represents an interesting case in that under a certain noncollo-

cated condition, x, = L, there are no finite frequency transmission zeros in the exact

transfer function. One use of this example is to study the effects of discretization on
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Figure 2-4: Rod collocated transfer function magnitude where a 62 element
FEM is compared to the exact solution.

zeros. The example will also be used to study the average transfer function gain of a

simple nondispersive noncollocated system. Figure 2-5 shows the example, comparing

the undamped exact model with a .5 % damped FEM. Again cumulative residuals

are shown. The pole-zero-( plot is shown with discretization zeros plotted for two

levels of damping assumed in the finite element model.

All the pole-zero structure apparent in the collocated example appears to have

fallen apart. However, the average transfer function has not changed. The exact

asymptote is unchanged, fixed with log-log slope of -1. Only the numerator of the

transcendental function has changed. The poles do not change with sensor position.

Zeros have appeared due purely to FEM discretization. When the FEM is uni-

formly damped to .5 % the zeros occur in minimum phase, and nonminimum phase,

complex pairs with decreasing damping as frequency increases. They are plotted as

o's. These nonminimum phase and minimum phase pairs do not form quadrantal

symmetry in the s plane. The nonminimum phase zeros are offset from the minimum

phase in frequency. When the FEM model damping is reduced to zero, the occur-
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Figure 2-5: Rod noncollocated transfer function magnitude where a 62 el-
ement FEM is compared to the exact solution. Zeros, o, are
computed from the FEM with .5 % damping, +'s are computed
from the FEM with no damping.

rence of the discretization zeros is delayed in frequency and quadrantal symmetry

is realized, shown by the +'s. Again, they decrease in damping with increased fre-

quency. The significance of quadrantal symmetry is that the net effect of a complex

zero quartet is purely magnitude increase with no corresponding phase. They pass

high frequencies with increasing gain.

Since these zeros are due to pure discretization effects it is natural to assume

that their location in frequency will be sensitive to spatial discretization. For the

undamped FEM the onset of the zeros was found to occur at 52, 54 and 60 Hz for

31, 62 and 124 element discretizations respectively. Apparently,

"discretization zeros are more sensitive to assumed modal damping than
to spatial refinement."

This is depicted by the o's starting near 30 Hz for the .5 % damped model compared

to 54 Hz for the undamped model.

The nature of the discretized zeros is to provide gain increase with no average

phase change. They do not, however, have a large effect on the average transfer
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Figure 2-6: Fictitious two mode example that shows the effect of closely
spaced resonance peaks with alternating residue sign.

function gain in this case. To see this note the cumulative residuals. The residual

structural stiffness no longer holds the gain high. Physically, the average gain is

high because of summing neighboring resonant peaks. This effect is illustrated for

two fictitiously generated modes in the transfer function magnitude in Fig. 2-6. In

the figure mode two has opposite sign residue to mode one. Mode two is shifted in

frequency while the summed low frequency residual for the system is maintained as a

constant. Note that when closely spaced the resonant curves interact to bolster the

average gain. This is the effect seen in the noncollocated rod example.

The important nondimensional parameter to consider, for these closely spaced

modes with opposite sign residues, is defined as,

Ij =i - r- 1) .(1(Ri,--W 
2)(2.17)

This parameter, y,,, is discretely defined for neighboring modes i and j, i > j, of

strong residue, |Ri| ~ IRj . It is derived by summing two closely spaced second order

modal responses. The magnitude of expression is expanded, in terms of a point on

the resonance curve at the algebraic mean of the two modal frequencies. The locus



of the chosen point is investigated with damping terms set to zero as the modes are

brought together. This results in the factor,

(IRi - RjJ) (2.18)

Simple inspection of a resonance curve close to resonance shows that the response

is dominated by the inverse of the damping ratio. This factor is included in terms

of the average damping ratio. Residual stiffness of the appropriate nominal transfer

function is used to nondimensionalize the quotient. The objective is to reduce the

parameter over a bandwidth of modes in order to bring down the average transfer

gain. For example, large average ( reduces the average gain since inputs propagating

from the disturbance may never make it to the performance sensitive locations, or

at least are sufficiently attenuated by the lossy medium while traveling. Another

simple observation is that increased modal spacing separates the resonance peaks

allowing the response in between to drop in magnitude, thus dropping the average

gain. However, if this modal separation requires general softening then the effect of

the factor 1/wj competes with the factor 1/(w, - wj). Note that, since Ri and Rj are

opposite in sign their individual magnitudes are summed in IRi - R,3 . Reducing the

magnitude of the residues also reduces the average gain.

Structural delay is evident in the phase of the system shown in Fig. 2-5 as the

phase-loss due to occurrence of the poles. The nearly quadrantal zeros contribute no

average net phase. Structural delay is manifested in the rate of occurrence of poles,

or once again modal density. Equation 2.14 shows how the speed of sound in the

structure and the dimension of the structure determine the rate in which the poles

occur with increased frequency. The fundamental dilemma in controlling structures

is,

"the average gain stays high while the phase rolls off."

The difficulty arises in rolling off the control and maintaining stability.

A free-free beam noncollocated example is now investigated. No new insights

would be gained from looking at the collocated case. The input is an inertial moment
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on radial lines from the origin. Zeros are found on the real axis as shown by theThere are two properties of this transfer function worth noting. The first is that

there are no apparent zeros in the solid and dashdot curves which are evaluated on

the jw axis. In the rod example it was sufficient to check the exact transfer function.

Since, the exact expression for the beam is complicated the whole complex plane must

be investigated for zeros. This is done by equating the wave number with the Laplace

variable through dispersion. Effectively a quadrant of the complex plane is spanned

on radial lines from the origin. Zeros are found on the real axis as shown by the

dashed curve in Fig. 2-7. They must occur in pairs due to the fact that the transfer

function evaluated on the jw axis is a real function. Zeros found from the FEM model

of the beam confirm this. Eventually discretization effects are inevitable as depicted



by the decrease in damping of the zeros near 100 Hz. In the FEM complex pole-zero

cancellations arise due to the unobservable/undisturbable symmetric modes.

Even though the exact expression for the beam is complicated, see Appendix A,

there still exists a simple factor representing the average transfer function gain. The

average gain has slope of -1 in the log-log plot. Again, the cumulative residuals lie

underneath the transfer function gain, showing the importance of the modal spacing

in the average gain. In this case there is help keeping the transfer gain high from

the real zero pairs, but as before it is not significant on a log scale. These zero pairs

contribute no phase loss to the system.

"The structural delay phase loss is, once again, realized by the rate at
which poles occur with increasing frequency."

The free-free beam example closely mimics the first application design example.

In the application example there are lumped masses in the center and at the tips

representing spacecraft bus and payload respectively. The lack of complex zeros in the

simple beam shows how hard this example will be to control with relative structural

actuators.

2.4 Fundamental Sensitivities

In this section simple systems are investigated to show the sensitivities to fundamental

parameters. The sensitivities are not used in the evolutionary design in this thesis.

They are given to show the returns-to-scale from performing structural optimization

on an assumed structurally controlled system.

The sensitives are broken into two objectives. The first objective is to reduce

the average transfer function gain from disturbance to performance. This objective

assumes that control action serves only to dampen the flexible modes. The second

objective is to improve pole-zero spacing in a collocated control loop. Here, the desire

is to improve the ability of a controller to dampen and, under certain conditions,

stiffen or destiffen the plant.

First analytical expressions for the average transfer function gain of simple col-

located systems are integrated to yield displacement based performance costs, Jz of
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Figure 2-8: Ideal input spectrum for average transfer.

Eqn. 2.3. These costs are investigated for their sensitivity to fundamental parameters.

Numerics are next used to show the average transfer gain sensitivity of the noncol-

located beam example from the previous section. A specific expression for structural

system zero perturbations is given which is by no means general, but is sufficient

to illustrate the important sensitivities for improving pole-zero spacing for a given

input/output pair.

Assuming dampening via control in the collocated disturbance to performance case

renders the mean square performance as the square of the area under the average

transfer function gain curve. The strategy here is to use asymptotic expressions

for the average transfer function gain computed from wave domain solutions, see

Appendix A and Ref. [16]. The squares of these asymptotic transfer functions are

integrated assuming an input disturbance with fixed intensity s,w. Assuming an ideal

broadband input with high cutoff frequency, WHF, as shown in Fig. 2-8, allows exact

computation of the upper limit in the integral of Eqn. 2.3.

Certain systems may be indefinite at the lower limit of Eqn. 2.3, i.e. systems with

observable and disturbable rigid body modes. When considered, these systems are

corrected to have finite rigid body mode frequency, WRB. The resulting performance

can be interpreted in the limit as this frequency approaches zero. Case two of Fig. 2-9

shows such a case.

Cases are shown in Fig. 2-9 that span an inertial input/output pair acting in a

single dof system to a relative input/output pair acting in a distributed system. For
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Figure 2-9: Collocated input/output cases for exact computation of Jz from

average transfer function asymptotes.

each case, an asymptote and slope are given on schematics of the system transfer

functions. Input influence coefficients are denoted as B, while output influence coef-

ficients are denoted Cz and are shown explicitly in case 1. The asymptotes intersect

at frequency w,. Specifically, the performance is integrated as,

Jz = 2 fo GH-,SwGzdw , (2.19)

where Sw, is the general disturbance intensity, which was denoted as sww for a single

input. Results for each case are listed in Table 2.1. Case three lists the performance

in two different forms. The first in terms of the intersection frequency w". The

second in terms of the low frequency asymptote. For each case an explicit expression

is shown for the intersection frequency, w, and the fundamental structural mode w,.

In case one the two frequencies are equal, in cases two and three they are close to

equal and in case four they are similar if lp, the separation between the moment pair

is approximately equal to 1/5.6.

The performance expressions listed in Table 2.1 show several interesting trends.

The first three cases have a term proportional to 1/w . The second case includes the

singular term 1/W3B which tends to infinity as the rigid body frequency nears zero.

Take case one, for example. Stiffening the spring by a factor of two improves the mean

square performance by a factor of 1/(2V2). In case two the mean square performance

is dominated by the first term in the bracketed expression. Assuming a uniform



Table 2.1: Exact expression for performance integrals of asymptotic collo-
cated systems. For the first three cases WHF = c0.
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beam rectangular cross-section, a simple doubling of the thickness, t, decreases the

performance by a factor of 1/4 since m - t. This is purely an inertia effect. In

the constrained case, case three, the performance is strongly influenced by inertia

and flexibility. Increasing cross-section thickness (again assuming rectangular) by a

factor of two improves the performance by a factor of 1/2 5 since w~z t and, as before,

m - t. Now consider the beam in case three to be a cantilevered uniform truss where,

EI - r A with A being the longeron strut cross-section area and r is half the truss

cross-section depth. In this case m - A also, so that w, does not, to first order,

depend on changes in A. Increasing the member wall thickness by a factor of two will

now only improve the performance by a factor of 1/4 through the inertia term (lm) 2.

"This shows the reduced effectiveness of a truss optimization that
changes member sizes only."

Considering topological changes such as rg improves the performance sensitivity, as

in this case w, ' rg, so that the performance - 1/r .

The last case in the table is an interesting one because its upper limit of integration

is undefined. A higher bandwidth of disturbance WHF results in worse performance

by the factor InWHF/Wx. This is because the average gain does not roll off fast

enough at high frequencies. Increasing the uniform thickness of this beam improves

the performance by a factor of 1/4, again a reduced sensitivity when compared to

the cantilevered case. The performance is dependent on the square of the separation

length of the moment pair, ,l. Reducing this parameter by a factor of two improves

the performance by a factor of 1/4. Note as 1, -* 0 the performance is driven to



zero and the natural logarithm diminishes. This is simply the input and output

sensitivities cancelling.

All of the above cases depend on the square of the disturbance intensity and

the square of the input influence coefficient. The power of disturbance isolation is

realized in this dependency, where for a given s,, the objective is to reduce B, for

modes above the isolation resonance. Similarly performance isolation reduces Cz for

modes above the isolation resonance. When the disturbance and performance act

and measure at a point, as in the cases shown, these coefficients can easily be halved

with active control systems that incur less structural mass penalty than incurred by

doubling the beam thickness.

Exact wave domain expressions for noncollocated average transfer function gains

can be calculated and are presented in Ref. [16] and [12]. Expressions like those

presented in Table 2.1 can be computed and similar sensitivities to fundamental

structural parameters found. The results show the same trends as those in Table 2.1.

However, it was stated earlier in the chapter, that these average transfers depend

on closely spaced resonance effects. Since the wave models are undamped the FEM

model of the beam in Fig. 2-7 will be used to investigate the effect of damping on the

high frequency average gain.

Figure 2-10 shows the effect of changing the FEM damping from ( = .5 to ( = 10.

At high frequencies the dashed curve asymptotes to the same slope as the cumulative

residuals that are plotted as *'s. This effect shows that for uniform damping treat-

ment (such as that obtained from cabling and thermal blanketing) the high frequency

disturbances are attenuated by the lossy medium in which they travel around the

structure.

"When poles of appropriately signed residues are closely spaced, adding
damping attenuates the average transfer function response."

The attenuation confirms the resonance effects hidden in the average gain.

Another goal for a noncollocated disturbance to performance topology might be

to reduce the cumulative residual in a bandwidth emphasized by disturbances. For

example, target the bandwidth of near the third mode in the above system. The
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difference between the average transfer gain and the cumulative residuals appears to

be 10 dB. At this point a structural distribution that is physically motivated by

results presented later in this thesis is used. The distribution is shown in Fig. 2-11.

The transfer function for the redistributed system, dashed, is compared to that of

the nominal beam, solid, in Fig. 2-12. As evidenced by the figure the objective has

been achieved. The average transfer function gain has been reduced near the nominal

third mode. Cumulative residuals for the redistributed system are plotted as +'s.

The cumulative residuals have been reduced in the region local to the third mode. In

the proposed parameter of Eqn. 2.17 the residues are included in the numerator. The
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modal spacing has indeed been increased between respective pairs, but the general

softening of the modes has compromised these improvements in the average gain.

Results like this one are expected to scale well to truss and fuselage like structures

which often exhibit pass bands and stop bands in their transfer functions due to the

regularity with which they were built.

"Manipulation of topological variables in truss structures, such as node
locations and member connectivities, is expected to do extremely well in
reducing transmissions from high frequency narrow band disturbances
to sensitive performance locations."

A good study that shows this effect for open loop two dimensional truss structures is

provided by Keane [24, 25, 11].

The task remains to provide dampening of the high frequency modes so that the

performance gains of reducing the average transfer gain can be realized.

Assumptions such as uniform damping increase are clearly an overstatement of

the ability of a structural control system to act on a complicated structure. There

are many good examples in the literature to support this assertion [26, 27, 28, 29,
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Figure 2-13: Single degree of freedom example for analytical LQR perfor-
mance computations.

30, 31]. However complicated, there is a simple example in the published literature

that enumerates the effect of closed loop parameters on the performance of a simple

single mode system. Exact analytical closed loop Linear Quadratic Regulator costs

were computed for a collocated single mode system by Jacques [32] and worked into

a more concise form by Crawley in both publications [17] and [12]. Figure 2-13

shows the system under consideration. In the figure influence coefficients B, map the

controls u onto the mass. The solution requires the exact solution of the standard

regulator Riccati equation for a two state system. Tabulated results from Ref. [12] are

repeated here in Table 2.2. It is not possible to do justice to this table in just a few

short paragraphs. However, there are some important characteristics worth noting.

This simple LQR result will show the sensitivity of the performance to limited gain

(intermediate control penalty, p) and high gain (small control penalty) closed loop

control. In Table 2.2 further parameters such as control power are represented as,

Ju= 0fo0 udT r , (2.20)

and subscripts CL placed on ( and w, refers to closed loop parameters. In the first

column limits of p are given that describe the ranges of control action.

Compare the open loop J, and the closed loop J, when considered as a function of

(CL and wCL with the integrated performance in case one of Table 2.1. The difference

is that the damping ratio is integrated into the constant in the asymptotic calculation.

For expensive control limp -+ oc the compensation gains serve to dampen the system.

The closed loop performance is inversely proportional to the closed loop damping



Table 2.2: Optimal linear
single mode

quadratic regulator performance contribution from

ratio (CL. Improving (CL by an order of magnitude is not uncommon in controlled

structures, resulting in an order of magnitude improvement in the mean square J.

High levels of control, limp -- 0, result in stiffening of the single dof system, the

damping ratio being fixed at the order two Butterworth pattern (.707). The point

here is that the performance goes like 1/w 3L.

"Stiffness control has a large effect on the closed loop performance, but
at a price, the control power required is also large."

A classic example of this result is attitude control. Structural control of realistic

systems has yet to realize good stiffness control results. The postulate is that com-

bined controlled structures optimization will yield better results for the same, or less,

control power by allowing stiffness variations to enable control.

An objective in enabling structural control of distributed systems is even pole-

transmission zero spacing over the important bandwidth in the transfer functions

from controls to sensors. It is also desirable that the transfer function be collocated

over that particular bandwidth and beyond where the control must be rolled off or up.

To study this sensitivity a simple first order sensitivity of system transmission zeros

is given. This is by no means a general expression because of the implicit sensitivities

required in order to compute that of the zeros.

There are many definitions for MIMO system zeros, one will be given here, for

others see the Control Handbook published by CRC [33]. Open loop system trans-

mission zeros of a particular MIMO transfer function, for example Gzw, are found by

Asymptote Jz (P) Jz ( J) (CL WCL
C B C z

Bwsww2

open loop 4M'2w3 4M
2  

_ o2

2 w c2 C.2w.
damps mode (limp -+ co) w2 4B + p2MwoB, 4M2w2B2Ju -f_ - _ 2

stiffens mode (limp -+ 0) p Z B 27C
2
B .707 CB +S22M 64M2BBj p M

2 MB,?2 p2M



solving the generalized eigenvalue problem,

ziI - A -B,

-Cz -Dzw
(2.21)

where the subscript i stands for the ith zero. Zero sensitivities can be found in similar

fashion to a structural eigen problem. The problem is generally no longer symmetric,

requiring the left eigenvectors, 4', where

[(4s)H (V oH] = 1.0.

Note that here the hermitian is used since the eigenvectors are

Taking perturbations of Eqn. 2.21 and premultiplying by the left

(O) oH [ cIHkA k A oki
Cz C Dzw

Since the second term in Eqn. 2.23 is zero by vector identity, th

may be expanded (dropping the subscript i) to give,

(2.22)

generally complex.

eigenvalues yields,

+

(2.23)

= 0.

e first matrix term

Az (s)HS [(s)H AA S (')HCzs ± ( 's)HABw "- ( - °H ADzwi

Aak ( (s)HS O) H Aa oH s H i 0oIH A kI

(2.24)

Terms in this last equation depend implicitly on derivatives of open loop structural

system eigenvectors. These derivatives are easy to find for distinct eigenvalues, for

example by Nelson's method [34]. Problems arise when there are multiplicity of

eigenvalues. Many good references exist which cover these cases [35, 36, 37]. Re-

cently even algorithms for nearly defective systems (multiplicity of eigenvectors) have

become available in the literature [37].

The reason for developing the expression in Eqn. 2.24 is the relative importance

of the terms. The first term shows how the zero sensitivities are directly related

to the sensitivities of the poles, AA/Aak. The last term, ADzw/Aak shows that

model truncation effects should not be ignored when taking the sensitivities. Terms



two and three show the importance of considering the mode shapes. Generally, for

a global stiffness change the first term dominates terms two and three and the zero

perturbations track that of the poles, of course they do so in differing directions, ~pS

and r .For relative inputs and outputs that act through a stiffness, like that of the

piezoelectric strut actuator shown in Eqn. 2.7, a local change in stiffness brings terms

two and three on par with the first term. By far the largest sensitivity in Eqn. 2.24

occurs when considering Aak to loosely represent an actuator/sensor location change.

In this case the first term is negligible (accept when the input/output pair is massive

or excessively stiff) and the second and third terms relatively large. That is the zeros

perturbations do not track that of the poles.

"Input output location changes therefore provide the largest sensitivity
for changing pole-zero separation in a bandwidth."

2.5 Summary

In this chapter systems definitions are presented from the perspective of controlled

structures interconnections of Fig. 2-1. A basic overview of inputs and outputs is

given in terms of performance, disturbance, actuators and sensors. Simple examples

of modeling relative and motion prescribed inputs and outputs are given that are

relevant to modeling needed for the examples in the thesis. Fundamental terminol-

ogy in structural modeling is given for a simple beam example. The terminology

encompasses a physical parameterization of structural transfer functions based on

wave model notions.

Further investigation of noncollocated systems showed the importance of the res-

onant peaks in the average flexible response. A simple rod showed the effects of FEM

discretization on model zeros. These zeros are shown to be very sensitive to the as-

sumed modal damping and weakly sensitive to spatial discretization. A simple beam

showed the occurrence of physical real zero pairs. Although the tendency of all the

zeros found was to increase the average gain while having no effect on the phase, they

do not contribute strongly to the overall average transfer gain at high frequencies.

Closely spaced resonances were found to hold the average transfer function gain high.



A nondimensional parameter was proposed which details this effect. Structural phase

loss was shown to occur because of the onset of poles in both dispersive and non

dispersive examples.

Exact expressions for the mean square performance under simple average transfer

function asymptotes were given. The expressions showed the sensitivity of the per-

formance to changes in basic structural parameters. A numerical investigation of the

sensitivity of a noncollocated beam system average gain showed that, as expected,

increasing average damping improved the performance. The improved performance

is due to the fact that emanating waves from the disturbance are attenuated by loss

before reaching the performance. Sensitivity of the average gain was also shown to

a stiffness redistribution strategy. Where the poles are separated the average gain is

seen to be reduced showing that the proposed nondimensional parameter adequately

describes the performance objective.

Closed form analytical expressions for a single dof LQR control example were

recited from the literature. From these expressions sensitivities of performance were

given to closed loop damping and stiffness control. The ability to achieve these levels

of control in realistic distributed systems was noted.

Perturbations for system transmission zeros was given. The equation was used

to point out the relative effects of structural changes on the ability to change the

pole-zero structure. Input/output location changes were shown to strongly affect the

pole-zero separations.

With these insights a method is now developed that evolves a general controlled

structural system with all the necessary considerations for model based control.



Chapter 3

Method Formulation

A method was developed that can handle controlled structures with many dof, topo-

logical variations, and dynamic compensation techniques. The method originated

from a modeling for control perspective. Only zeroth order objective/fitness evalu-

ations are used with a Genetic Algorithm (G.A.) search. The search is performed

over possible structural components, which may include internal member properties,

nodal locations and member connectivities, and actuator/sensor locations. Dynamic

controllers are solved for as an inner, closed form, solution for each design. Figure 3-1

outlines the method flow.

The method can be separated into two procedures. The first is objective function,

or cost, evaluation. This occurs for every model in each generation of designs. The

second procedure is the propagation of information from one generation to the next.

In the following two sections the first addresses modeling and cost evaluation and the

second presents design propagation. Several discrete processes arise when modeling

a realistically dimensioned structural system for control. These discrete processes

require that only zeroth order information be used to compare designs.

3.1 Objective Function Evaluations

Since only zeroth order information is necessary for the genetic search, full attention

may be devoted to an accurate representation of the system response. Within each
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Figure 3-1: Method overview

cost evaluation a process of condensation, model reduction and weighting is performed

to ready the model for dynamic controller computation. Taking derivatives of such a

process is a very difficult task, since in fact they may not exist, e.g. differing modes

may enter and leave the model basis or the model order may naturally vary based on

a singular value threshold.

In the following section modeling and cost evaluation are first addressed. The

discussion on modeling begins with structural models generated from component

formulation, condensation and synthesis. Eigen solutions are then found for the syn-

thesized models and state-space models formed for control design. In the application

examples the proposed method for finding dynamic controllers is H 2 optimal design.

A brief mention is made of the validation example control techniques which differ

from H 2 design. The motion error part of the Linear Quadratic H 2 cost serves as the

performance used for design ranking in the application design examples. A solution

60



procedure for the motion error part is given as well as explicit derivatives with respect

to structural parameters. The derivatives are shown to be too expensive to use during

G.A. runs.

3.1.1 Modeling for control

For most structures, of realistic dimension, a full model would be too large to compute

during each evaluation step. To address this problem the structure is first discretized

into component models. These discretized component models are condensed and syn-

thesized into a global model of much lower order. Typically for realistic G.A. run

times, global models on the order of 200 dof were sought. An example of compo-

nent wise discretization is selecting repeated structural units consisting of an integer

number of bays in a truss boom.

Given each new set of structural parameters (attributes), component models, enu-

merated by subscript i, are assembled using finite elements [38],

Mziii + Ci1i + Kpi = Ow,wi + Oui (3.1)

Yi = cyPi + cy ,ji (3.2)

zi = Czp,pi + CzPi (3.3)

where p are the component structural dof, w are the disturbances, u the actuation,

z the local performances and y the measurements. Within the components enough

fidelity is included to capture variation in local dynamics with changes in grid point lo-

cation, member cross-section and actuator/sensor location. If the component doesn't

include active variables (disturbances,performances, sensors or actuators) and if the in-

ternal dynamics are above the bandwidth of important performance, then quasistatic

information is enough.

To reduce and synthesize component models into a manageable global model Com-

ponent Mode Synthesis is used [39]. Active locations within the components, i.e.

those actuated, disturbed, sensed and performing, are treated as interface dof. This

extends an observability/controlability notion proposed by Triller and Kammer [40].

Constraint modes are used for integral structural actuators such as piezo-electric



struts in a truss where as attachment modes are better suited to inertial force actua-

tors. It is necessary to treat the active dof with care in order to preserve the integrity

of the system transfer functions which in turn will determine the ability of the sys-

tem to be controlled. Treatment of active dof as interface dof preserves their static

response which is important for preserving the system zero locations, that enable or

inhibit control.

The CMS routine (given for constraint modes only) is as follows:

* Partition ith component matrices into interior "Po", and interface "Pa", dof

* Fix interface dof and solve interior eigenvalue problem for normal modes, ON,

ignoring local damping elements

* Find constraint modes, c , via static solutions to normalized loads

* Assemble and use transformation matrix , Ti, to reduce component system

Ti Ti

Ki T o TiL koa koo

i (3.4)

moa moo i

zu orwi = TT u or w ,

Cz or y. = Cz or yiTi

* Synthesize i = 1,..., n system using constraint equations that govern the inter-

face/active dynamics. Note that the active dof may simply include concentrated

dampers.

To incorporate attachment modes for the active dof appropriate interface dof would

be left free during the computation of I0, and the transformation matrix built accord-

ingly. The component wise condensations are ideally suited to parallel computation.



Ideally each component would be condensed by dedicated floating point processors,

and the global model synthesized by a master processor.

An eigen solution is now found for the synthesized high fidelity model (we have

local flexibility in the form of the kept internal modes),

(Ksyn -wMZyn)Od = 0 (3.5)

with mass normalization

V/Msnl d = I (3.6)

For control purposes the model is now further reduced using only modal infor-

mation. This is accomplished using approximate balanced singular value reduction

developed by Gregory [41]. In this work approximate solutions to the appropriate

products of performance, observability, disturbance and controllability grammians

are found. The basic assumption is that two modes are decoupled (for the purposes

of balancing) if their settling times are long compared to the time it takes for the

motion of the modes to move in and out of phase. This will be true if

max((i, ,(3)max(wi, wj) Tbeat= < 1 (3.7)

IWi - Wjl Tsettling

Given that the above is approximately true the ensuing relations are used for the

approximate singular values,

2 i ___ C f z'COZWi (4)iWi)2 2 -+C Rzzc

2 u, u C c zzC
Uzu (4(iwi) 2  w 2 + Q zzCzj

W r4wc 2  C w c1'3T } (3.8)

Yu1, (4(iwi) 2  W + Ryy

ryui = (4(iwi)2 W2i + C Z RyyC.9

2 2 yuyu
a i YZW oizw , + azuLZU+ YW 1 YW+ Yi y (3.9)



where the subscript i refers to the mode number or corresponding row and column of

the 3 and c matrices respectively. The matrices R and E have been included to weight

the disturbances, controls, performances and sensors relatively. Weighting of these

inputs and outputs with respect to each other is included in the a's. Here, system

transfer function weights, evaluated at every modal frequency, as well as maximum

singular value normalizations are used. The a's are ranked and the highest modes

kept, or a threshold may be set and the model order may naturally vary.

The assumption is that removing small residue modes will not degrade the ability

to do control on a given plant (matrix of transfer functions),

f z(s) Gzw(s) Gz.(s) w(s) (3.10)
y(s) G,,,(s) G, (s) u(s)

u(s) = -K(s)y(s), (3.11)

where K is the dynamic compensation and (s) represents the Laplace variable. If

there were a destabilizing mode with small residue, the optimal dynamic compensator

would, generally speaking, invert this pole, limiting the stability robustness of the

controller design to this pole. This leads to the conclusion that this mode should be

more disturbable and observable in the performance, i.e. have larger azw,, which is

exactly what most robust techniques will do for a given sensor/actuator suite.

There is still work to do to retain the integrity of the plant model for the purposes

of control. When accurately predicting the ability to damp a mode, or invert a plant,

in closed loop it is necessary to preserve the system transmission zeros [21]. To do

this static modes are found for every disturbance and actuator,

s = Ksyn , u] , (3.12)

and are orthogonalized with respect to the kept dynamic modes,

= - 'dkept4dept, Msyns . (3.13)

The static modes are then decoupled using eigen solution decomposition,

( , , - A2I) 0 0, (3.14)



yielding correction modes, A = diag(A) and 0 = column(O), that are appended when

forming the state space system:

x; = Ax + Bw + Buu

z = Cz +Dzww + Dzuu (3.15)

y = C, + Dw + Du,

where x represents the combined dynamic and static correction mode states of the

system. Initially, the system can be formed in Hessenberg form with appended cor-

rection modes, 0  1

[B ] = [ [B , , by fee (3.16)
-2 I ()T

C, cz

where incorporated in Q are the correction mode frequencies, QS, which are chosen

to be higher than the bandwidth of interest. Approximate modal damping is used,

C = .5%, and concentrated dampers are added through rate feedback. Rigid body

control is now incorporated, if needed, by feeding back the appropriate position,

integral (appended integrator) and rate sensors.

Weights are incorporated in the system that emulate disturbance frequency con-

tent and possible disturbance/performance isolation. Further weights provide loop

shaping capability, on u and y, that must reflect realistic capability of the actua-



tor/sensor topology. The complete system in the notation of Doyle [42] is

sys =

A

0

0

BjCz

BGCy

DjCz

0

BdC

Ad

0

B DzdCj

BDydCd

D~ DzdCd

0

D DydCj

0

0

A f

0

0

0

Dz0 Cf

0

0

0

0

Aj

0

0

0

0

0

0

0

A9

0

0

C,

BdDd

Bd

0

BDzdDd

BgDydDd

DjDzdDj

0

DDDydDd

B,

0

Bj

BjDzu

B DyuB,-D,

DB Dzu

Dz, De

DaDi

D Dyu

(3.17)

where the (-) variables represent the respective weighting dynamics, and an auxiliary

performance row za is appended for the control penalty. The corresponding system

state vector is,

xsys = [I Xd Xj XX x ], (3.18)

which includes all the weighting states augmented to the original state vector x. For

H2 performance calculations Dzd = 0. Typically disturbances roll off as do sensors

dynamics Djor9 = 0 whereas performance and control weights do not, Djorf # 0.

For conditioning purposes the system is next transformed to real modal form, with

block second order terms as follows,

-(iwi Wi 1 -

-wi 1 i- -iwi

R,1
J 

~

I ,

(3.19)

where Ri is the complex modal residue for the ith mode and the B and C are formed

assuming forcing input and displacement measurement with the system originally in

Hessenberg form.

Ai

Bi =

Ci =



3.1.2 Control design and objective computation

In the application examples presented in this thesis standard H 2 control design is

implemented to minimize the Linear Quadratic cost,

JLQ = limT-oo E {f T  dt

(G-fl12) 2 . (3.20)

subject to constraints

V = B D T =[
D,, VuT

CT RTz
R = Cz Dzu T

zu XU.

VYV

RXU

Ruu

> 0 , V > 0,

> 0 , Ru > 0,

where E is the expectation operator and () is used to denote performances that are

augmented with penalized controls and disturbances that are augmented with sensor

noise as shown in the constraint Eqn.s 3.21 and 3.22. The solution for the dynamic

compensator (K) is,

32c = Acxc + Bcy

U = - Ccc , (3.23)

with

AC = A - B, F - H C, + B, D, Cy

Bc = H

Cc --= F,

(3.24)

where

F = R- 1 [R + B P]

H = [QC + Vy] Vy~ ,

(3.21)

(3.22)

(3.25)

(3.26)



and P and Q solve the following Riccati equations [43]

o = PA + ATP + Rz, - [PB, + R,,] R- [R T + B P] (3.27)

0 = AQ + QAT + Vz - [QCxT + Vy] VY" [VT + CyQ] . (3.28)

These Riccati equations are solved using eigen decomposition of the Hamiltonian

matrices, which are randomly perturbed if non distinct eigenvalues exist.

The controller is only guaranteed stable on the model it is given. Resulting closed

loop performance is consistently limited by phase loss in the modeled system. In-

the-bandwidth unmodeled (truncated or poorly discretized) dynamics may still limit

actual implementation and it is this threat that requires the method be validated on

a design model experiment.

Use of the H 2 control design technique allows consideration of parameter robust-

ness through noise modeling [29, 44, 45] and unmodeled dynamics via frequency

weights. At this stage in a design it is unnecessary to deal with absolute guarantees

of stability or performance robustness. For the application examples in Chapter 5

extra performances and disturbances were added to the system that penalize and

disturb distributed structural motion. In the actual implementations in Chapter 6

sensitivity weighted designs were used to robustify the controllers.

A good account of sensitivity weighting is given by Grocott [29]. When sensitivity

weighting, derivatives of the state trajectories are taken (shown for regulation),

O± Ox OA Ou OB
= A +  + B + -- u . (3.29)

Oai Oai O ao uai c a

with respect to certain parameters, ai. Static condensation, o-= 0, and assumptionsOck

on dimension, . = 0, render an expression that is substituted in the regulator part

of the cost to give,

n.a OAT OA
Rx = Rzz + A-TRoA-

i= 1

R'U UA A-TR, 1 A- B (3.30)
=1 azi T

na S T ABu
RU RU A+ T R -  A R, A - 1

i=1



which implicitly requires that A be invertible. These are weighting matrices for a

modified LQR problem. A dual derivation results in modified estimator noises.

Control techniques for the validation examples in Chapter 4 differ from the H 2

method presented here. In the first validation example [5](1-D beam) LQR was

used for control design (the optimization cost is discussed later) assuming full state

feedback. The static feedback gains, u = -Fx,, required for implementation were

computed using Eqn. 3.25. For the second validation example (3-D truss) the control

was static gain output feedback with constraints on closed loop damping. Since

vibration control was desired only at a single frequency the inner loop controls solution

was obtained using gradient search. The closed loop system is simply

Ac = As - BLC,, (3.31)

where L are the control gains.

Performances in the application examples are not considered the LQ cost JLQ,

but rather the integral of the modified disturbance to the motion error performance

transfer function.

G~l,(s) = Go (s) - Gzu(s)K(s)(I + Gu(s)K(s))-IG,(s) . (3.32)

The superscript cl refers to the closed loop transfer function and superscript ol

refers to the open loop transfer function. The subscript zw refers to the effect on the

motion error structural performance from both the structural disturbance and the

sensor noise. Computation of this fitness/cost only requires the solution of one more

Lyapunov equation of O(As) (as opposed to the complete LQ cost which requires the

solution of an 2 x O(A,) Lyapunov equation). With

Qs = [QCT + VXy] V- 1 [VT + , Q] , (3.33)

and

Areg = A- BuF , (3.34)

solve

S= Are + QA +Qs, (3.35)



for Q, giving the desired performance measure as

Jz = tr Cz(Q +Q)CT}. (3.36)

Sensitivities of this objective with respect to structural perturbations are given

here. These are not used in the examples in this thesis. The reason for showing the

sensitivity derivation is to show the computational cost involved with using them.

Sensitivities to structural perturbation may be scaled and incorporated in the objec-

tive function and are computed for fixed actuator and sensor locations. Following a

Lagrangian approach yields,

J* = tr{CCz(Q+Q)

+ tr {H(AQ+QAT + VY- [QCT +Vy] Vl [V T +CyQ])} (3.37)

+ tr H 2(AregQ + QAreg + Vxx - [QC + Vy] V1 [V + CyQ]) ,

where H 1 and H2 are matrix Lagrange multipliers, and J represents the Lagrangian.

Note that the regulator solution is implicit in Areg. Taking derivatives with respect

to Q and Q yields equations for H 1 and H 2,

JQ = HiAest + AestHi + C -Cz + H 2 [Qy + Vy] Vy 1 [Vy + CyQ] = 0,

aJ, = H 2Areg AT H2 + CC = 0 ,

(3.38)

where,

Aest - A - [QC T + Vxy] V,-ICy. (3.39)

The solutions of these simply coupled Lyapunov equations are then used to compute

the sensitivity of the objective function,
ail tr{OCTCZ }

z = (Q +  ))

+ tr~ H( aQ +Q + -Q V - _ ([QC T + V V [v + CQ]))

+ tr H 2, Y+ + C V a, V 1 [YV + CYQ]))

(3.40)



The major expense of using the above expression appears to be the computational

cost of the two Lyapunov equations. Fortunately, both the regulator and estimator

systems are already decomposed when Eqn.s 3.27 and 3.28 are solved using Hamil-

tonian decomposition. However, inverses of the closed loop regulator and estimator

eigenvectors are also required for solutions to the Lyapunov equations. The inverse

of the regulator closed loop eigenvectors is generated when solving Eqn. 3.35, so only

one extra inverse of O(n) is required. The real expense of computing these sensitives

occurs in the computation of the derivatives such as "and (C-'V,-1C) which

involves structural eigenvalue and eigenvector derivatives [35, 36, 37].

Loosely speaking, the a's in the above expressions may in fact represent local

actuator and sensor location changes. Since these are usually discrete changes (e.g. for

struts in trusses) we may replace the partial derivatives with neighborhood operators.

That is, define a sensitivity as a change in objective function divided by a local change

in location, say centroid of a strut location to centroid of a neighboring location. In

some sense, near optima, these neighborhood derivatives should be small.

The exorbitant expense of computing these derivatives precluded their usage. Sen-

sitivities of the design solutions in Chapter 5 are explored numerically.

3.2 Outer Loop Model Propagation

For the outer loop optimization, or search, the G.A. appeals [46, 47, 48] because of

its robust handling of systems that change order and its ability to handle topological

changes easily. The method also has the advantage of being inherently parallel in

that many independent function evaluations are required. In his experiences with

optimizers and open loop structural topology problems, Keane [24], finds the G.A. to

work best. The key to the G.A. is effective encoding of the system properties in the

design space, eg. nodal locations, member cross-sections, connectivity arrangements,

sensor/actuator placement. In this thesis a non simple implementation of a G.A. is

used.

The method proceeds by a propagation of a discrete sample space of systems.



Initial sets of designs are usually chosen randomly, so as to populate the design space,

and may require some projection in order to be feasible. Bounding the design space

is often necessary as a multitude of options exist in the larger domain of topological

variation. A simple representation of the design space is,

Q2 = XP , yO, . .. } , (3.41)

Xi Xj ... Xj EX)

{YJ j.2.. YM}EY,

where X and Y represent particular attribute types, e.g. nodal locations and

member cross sections, with superscripts, ()P and ()Q, that represent the order of

variation within the type. For example, for 50 structural members each with 3 bit

representation for cross section yields a variation order of 850. A particular element

of an attribute of the jth design is denoted xi, where xz represents the phenotypical

values of this selection. For example, x i may represent beam properties that are the

result of static condensation of particular arrangements of trusswork.

Propagation follows selection according to fitness (or scaled cost), fj, whereby

the best designs are given higher chance of proceeding. This is usually performed by

implementing a biased roulette wheel approach [46]. Let r be a generated random

variable with uniform distribution between 0 and 1. To run the roulette wheel,

i-=ngen

initialize C = rE S fj

j=1 (3.42)
P= 0

j, = 1,

then run a while loop,

while P < C

j, = j +l (3.43)

P = P +f,

end



the end of which yields the selected parent as the j, design.

Attributes from the randomly selected designs are transposed to yield new designs

in a process called crossover. A standard crossover operation for attributes of type x

is

c(i ... c) e {0,1} , (3.44)

1 1 1 1
X. Xj X n  X

-3 , (3.45)
1 1 ^1 1

Xk k n+ 1  n+ 1

P if cP = 1

X otherwise

{1 x if cP = 1

n+ otherwise

The crossover mask c is typically two uniform concatenated strings of ones and

zeros, e.g. c = (1,1, 1,1,..., 1,1, 0, 0, 0,..., 0, 0, 0). In more complex G.A.'s rules

are applied during crossover to emulate biological functions such as dominance and

learning by altering the regularity of c. In this thesis crossover is performed in each

individual chromosome. It is proposed but not shown in this thesis that this encoding

allows faster convergence of the solutions. This crossover is not considered simple since

it is information exchange in multiple chromosomes. Before the new children designs

are evaluated, a small amount of mutation introduces random allowable changes to

the system attributes.

In the motion error performance based G.A.'s implemented in this thesis, fitness

for each design is logarithmically scaled as,

fj = M - 10 log Jz , (3.46)

where M ensures that fj is positive. Calculated fitness values of the new designs

generated from propagating attributes are compared to the population from which



they came and the best half of the total pool propagated. Identical designs are

eliminated from the best half in favor of the next best performers so that the next

generation designs maintain some diversity.

Constraints are usually dealt with using penalty functions and projection methods

that find the closest design in the feasible design space [49].

Operation of the G.A. can be understood by a growth equation for good schemes

of attributes. Let a scheme of good attributes be H where

H = {zP, zP+, ... , zf} , (3.47)

then let m(H, j) be the number of this scheme present in generation j. Growth of

this number can be represented as,

m(H, j + 1) > m(H, j) 1 -p(H) - (H)pm , (3.48)
f 1-1

where f(H) is the average fitness of designs representing H at generation j, f is

the average fitness of the entire generation, p, is the probability of crossover, 6(H)

is the string length of scheme H, 1 is the total string length of the attribute string

z, O(H) is the order or number of important attributes in H (e.g. if z p+4 and zp +5

do not effect the influence of H then O(H) = n - 1 ), and pm is the probability

of mutation. The equation shows the number m grows with the improvement, from

being H inclusive, to the average fitness, and deteriorates with finite probability of the

scheme string being broken by a crossover operation. The number m also deteriorates

with finite probability of the important attributes within the scheme mutating. A

conclusion is that short, low-order, above average schema propagate exponentially

and increase in number.

The growth equation shows that the G.A. is inefficient and converges slowly, like

a power law, yet it is the inefficiency that allows a number of diverse solvable options

to result when the design space is combinatorially hard. Typically the G.A. will

appear to converge quickly in the early generations. This is because the underlying

population is generated from a random seed, the average fitness of which is easy to

improve upon. It is the very foundation of random information that allows the final

designs to surpass common solutions in performance.



3.3 Summary

A simple modular method has been presented which allows search over many topo-

logical variants. The method involves current techniques for condensation, model

reduction, Ritz mode correction and control computation. A modification of compo-

nent mode synthesis is made to include active degrees of freedom in the interface set.

Disturbance and performance weights are added to the reduction process.

The novelty in the method is that, in the frame-work of the zeroth order search

technique, discrete choices can be made that allow formulation of accurate low order

models for control. This frame-work allows sensor actuator placement and structural

optimization to occur simultaneously while not compromising the basis of the model.

Structural topology choices such as truss work arrangement and variations in nodal

location may also be incorporated. Traditional sensitivities do not exist for these

quantities.

The Genetic Algorithm has been adapted for topological controlled structures

search using phenotype encoding of system attributes into multiple chromosomes

per design. A non simple crossover operation is employed that accelerates the model

mixing process. The method relies on slow exponential growth. Success of the method

requires that good schemes of attributes propagate. Results from the method are not

intended to be the "global optimum", that would require a tighter definition of some

of the design variables and runs that take too long. The solutions are used to bring

about fundamental physical insights into the best designs.

Before making use of the method to solve an application example validation

against published results in the literature is required. Examples were found that

test the modeling accuracy and algorithmic optimization capability of the method.
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Chapter 4

Validation

Validation examples were sought to test the capability of the method against pub-

lished results. The first example given in this chapter was published by Onoda [5]

and represents a one dimensional high aspect ratio, low model dimension, structure

with relatively simple control and useful design metric. The second example, pub-

lished by Sepulveda [6], tests the ability to deal with three-dimensional structures

(one of the few examples in the current literature because of the complicated nature

of the results) with simplified output feedback control. Sepulveda covers motion er-

ror, control effort and structural weight design metrics. When considered together

the validation examples cover two different structural dimensions, four different types

of design metric and two differing control techniques.

Both validation examples will begin with statements of the optimization problem.

Published results for each problem are directly compared with results from Genetic

searches. Where published models are available they are compared, otherwise the

models used by the G.A.'s are presented to illustrate the objectives. Presenting only

the optimized costs, as is often done in the literature, gives no indication of the model

accuracy of the solutions.

In both cases the proposed H 2 control design method described in Chapter 3

is replaced by the control method used by the respective authors. This shows the

versatility of the proposed method in that modular blocks such as the control design

technique can be replaced easily.
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Figure 4-1: Onoda's beam example

4.1 One Dimensional Flexible Spacecraft

Onoda [5] poses a flexible spacecraft problem as a ten element beam. The beam is

subject to an external distributed disturbance force where the applied forces are inde-

pendent of the local mass density, as shown in Fig. 4-1. The designs are constrained

to be symmetric and optimized over the cross section variable and a paired actuator

location. In this case the actuator provides rigid body control as well as being capable

of controlling the flexible dynamics.

The optimization problem is posed as,

min Jdesign - (ms (4.1)
mN

where m, is the structural mass,

Ou = uTu dt (4.2)

is the LQR control power, which is converted to units of mass via a e 10 [kg/(N.m) 2],

and mN is a normalized mass set to twice the structural mass of the nominal system

(there is nonstructural distributed mass). The optimization is subject to,

J, < VAL m2 , (4.3)

where,

Jz, = I z dtdx. (4.4)
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Optimal designs, expensive control: J z < 8.e-6

3
RHS element number

Figure 4-2: Material distribution for expensive control optimization

Note that in this case Jdesign is not Jz, the later being constrained. The chosen VAL

depends on whether a cheap or expensive control solution is sought. The regulator

variable z is the integrated lateral displacements along the beam. In order to meet the

constraint of Eqn. 4.3 bisection of the control penalty is used. This is possible because

the regulator state cost decreases monotonically as control penalty is reduced. There

exists an implicit problem in the design of the regulator,

u = -R, -1 B Px,

but,

P = P(M(aac)), (4.5)

where P is the regulator Ricatti solution and M is the system mass. This implicit

dependence is solved by adapting the G.A. with a continuation method in the initial

generations, starting with an initial guess for aau and improving it as the design con-
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Figure 4-3: Disturbance to performance and control to performance (regula-
tor) transfer functions for the expensive control optimization

verged (N.B. convergence was achieved). This particular implicit statement poses a

problem for Onoda in that there exists implicit derivatives of the structural eigenval-

ues with respect to the control gains. These gradients are often not well conditioned,

especially when poles and zeros cross in the regulator transfer functions. In his work,

Onoda does not mention how this problem was overcome.

The G.A. ran with 50 designs propagated over 100 generations with crossover

probability 0.8 and mutation probability 0.05. These parameters were found to work

best over several trial initial populations.



Optimal designs, cheap control: J < 8.e-9
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Figure 4-4: Material distribution for cheap control optimization

Results for expensive control are shown in Fig. 4-2. For this design VAL = 8 x 10- 6

or approximately 3 mm rms. The results are clearly similar in shape with the same

actuator location. The G.A. design is somewhat lighter weight (seen by comparing

ms) and more control is exerted to achieve the required vibration constraint. Re-

sulting cost, Jpt, which is the optimized design cost, is marginally less than that

of Onoda's. Note that Onoda's objective function value for the published optimal

design was returned by the proposed cost evaluation code.

Results in transfer function form, see Fig. 4-3, show that the expensive control is

predominantly rigid body control with some dampening of the fundamental structural

mode. The dashed dot line rides just below the solid showing that Onoda's design is

slightly more massive. The extra mass in Onoda's structure results in flexible modes

than are stiffer than the G.A. design. For a fixed desired performance, Jz, a stiffer

system generally means less control effort is required to meet a given performance.

There is notable difference in the dynamics shown in Gz,, and G,, for the competing
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Figure 4-5: Disturbance to performance and control to performance (regula-
tor) transfer functions for the cheap control optimization

designs, e.g. double lightly damped zeros in contrasting designs and loops. For the

most part the solution remains relatively independent of these variations since they

contribute little to the constrained performance.

In the cheap control optimization VAL = 8 x 10- 9, or approximately 0.1 mm rms.

The compared designs are shown in Fig. 4-4 and again the G.A. result exhibits similar

shape, the same actuator location, and is lighter weight. Comparing to the expensive

control designs, the system is 5 and 7 times as heavy respectively. The mass of the

structure has increased aiding in achieving the desired performance constraint.



The transfer functions of Fig. 4-5 show similar trends to the expensive control with

a few notable differences. The first difference is that some of the dynamics has been

localized as seen by a small residue pole at relatively low frequencies. The second

difference is that the G.A. design now includes control over an increased bandwidth,

dampening several modes and therefore requiring more control power, but yet again

with improved cost because of the gains in structural weight. Note that the modes of

the regulator transfer are clearly dampened by the actuator u but the performance

when excited by the disturbance source is worse near the flexible modes.

In general the expensive control trend was to design a less massive structure

than nominal, and in the G.A. design trade some structural weight for less expensive

control authority. The cheap control trend was to design a more massive structure

than nominal, and, again, in the G.A. design, trade structural weight for control

authority. Here we can see how the results were dominated by the somewhat arbitrary

parametric weighting in the design cost function, a. This shows the value of choosing

the coefficients in a scalar multi-objective optimization, see the paper by Rao [1] that

details game thoeretic approaches to optimizing structures.

4.2 Precision Truss

Further validation was sought against a three-dimensional example presented by

Sepulveda [6], shown in Fig. 4-6. This example is one that tests the ability of the

method to handle three dimensional structures. The objective is to place a number

piezoelectric actuators, that have local displacement and rate feedback to minimize

several cases of objective function. Objective functions in this work include motion

error, control effort and structural weight minimizations. Specifically they are,

(i) summed y and z dynamic displacements of the outriggers subject to:

fixed member cross sections

compression constraints on the actuators: Fa < 0

voltage constraints on the actuators: -Vo > Va V



feedback gain constraints: -2 x 105 > hdisp > 106 V/in, 0 > hvel 106

V.s/in

first and second mode damping constraints: 11% > (1 > 90%, 4% >

(2 _ 90%

(ii) control effort subject to similar constraints as above and:

dynamic displacements of the outriggers < 1.0 in

(iii) structural weight with similar actuator constraints as in 1) and:

member cross sections bounded: 0.001 > A, > 0.8 in 2

dynamic displacements bounded: IqyJ < 0.01 in. and IqzJ < 0.03 in.

relaxed damping constraints: (1 2 11%, (2 > 4%, and (3 > 1%

control effort < 20 lb.

Responses are optimized under a 7.07 lb., 12 Hz, sinusoidal disturbance from the

shown location. Piezo-electric strut actuators were constrained to be in locations

below the mid plate (around twenty possible) with further constraints that no two

actuators could adjoin. Each actuator weighed 0.556 lb. adding significantly to the

2.13 lb. passive nominal structural weight of the truss. The nominal truss exhibited

three global modes below the disturbance frequency, . 7.6 Hz bending in z axis, - 9.9

Hz bending in y axis, and I 11.2 Hz torsion about x axis. Higher modes occurred at

35 Hz and above and were truncated and replaced with a static feed thru mode.

Sepulveda's method used branch and bound techniques to solve a {0, 1} problem

for screened actuator placement. With the screened actuators fixed a gradient search

on intermediate response quantities and feed back gains was used to hone the design.

When using the proposed method of this thesis, the G.A. searched over actua-

tor placement and structural member variation while control gains were optimized

simultaneously using standard constrained optimization gradient search code. Actu-

ator stiffness and mass was included in each design in appropriate locations. Genetic

Algorithm crossover and mutation probabilities were set as in the first validation ex-

ample with 30 designs propagated over 50 generations found to be sufficient. Dynamic
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Figure 4-6: JPL precision truss.

displacements were minimized, or constrained as,

Jdisp = (-YHY)

'7 = Cz (jWdistI - A + BuLC) - 1 Bw ,

where L are the local displacement and velocity gains. Similarly, the control effort

expression minimized, or constrained was,

Jiont = (6 6) -

6 = LCy (jWdistI - A + BLCy) - 1 B, .

(4.6)

(4.7)



Damping constraints were enforced using the real part of the closed loop poles effec-

tively weighting the constraint by its frequency,

0> ±R (Ai) ± (cons IAi . (4.8)

The ± refers to respective lower or upper damping bounds, (cons. Further stability

constraints were found necessary in order to stabilize and maintain realistic authority

over modeled higher modes. These constraints were not used in Sepulveda's work

as only the lowest three modes were kept in his model. However, this type of sen-

sor/actuator plant transfer function (piezo stack to displacement and displacement

rate sensors) does not roll off in response at high frequencies. Poor model truncation

will yield large pole-zero spacing error at lower frequencies. This leads to over pre-

diction of dampening ability. A model of this type with correct static feed through

from the actuator to the sensors will have high authority stability problems unless

the rate gain is rolled off. In the proposed method high frequency roll off was added

to both the position and rate feedback channels using an added mode well above

the disturbance frequency. This mode was lightly damped to emulate truncated high

frequency dynamics. Since no transfer functions were presented in Sepulveda's work

it is not clear how well the plant was modeled.

Two runs were made for the dynamic displacement minimization objective. Run

one uses fixed locations of the actuators derived from another reference and run two

allows a fixed number of actuators while the locations varied. Figure 4-7 shows that

the solutions for run one, i.e. fixed actuator locations, agree. Both in Sepulveda's

method and in the gradient search (inner in the proposed method) the solution ini-

tially gets worse in order to satisfy damping constraints on the first two modes. Note

that the actuator selection is fairly obvious, two longerons and a diagonal near the

root providing authority over the first three modes. Comparing the gains in Ta-

bles 4.1and 4.2 shows good agreement for the fixed actuator run.

Position gains are constraint limited. The tendency for the displacement mini-

mization case is to soften and damp the structure using the actuators. This can be

seen in Fig. 4-8 where the G,, transfer function shows the contribution from the



Table 4.1: Sepulveda's final gains for precision truss dynamics c

minimization.

Run 1 Run 2

Element hd x 10
3  

h, x 10
3  

Element h d x 10
3  

h, x 10
3

number V/in. V.s/in. number V/in. V.s/in.

11-12 -200 1.1507 11-12 -200 3.5612

21-2 -200 0.1758 21-22 -200 0.0727

22-23 -200 1.1610 31-32 -200 0.0823

lisplacement

Object.

func. in. 0.0717 0.0632

Number of

analyses 7 16

three modes at 12 Hz (dotted vertical line). Note how the truncation and static

mode correction of the higher modes shown in the dashed-dot does not affect the

performance at 12 Hz. Also note the damping constraints are met with the second

constraint almost active and how the global modes have been softened to reduce the

performance at 12 Hz. Transfer functions for the three independent actuators are

also shown, G,,, where the 45 Hz static correction, or control gain roll off, mode is

apparent. The important features of these transfer functions is the narrow pole-zero

spacing typical of these actuator sensor pairs. Only the diagonal strut, 21-2, has

noticeable residue of the torsion mode.

The second run in the displacement minimization case shows some differences. The

first two actuators found in either method compare well, they are both root longerons,

however, Sepulveda's branch and bound method comes up with a third root longeron

where as the G.A. chooses a root diagonal. Some control of the torsion mode (mode

3) seems desirable (see Fig. 4-8), requiring a diagonal actuator. Tables 4.1 and 4.2

show a large difference in rate gains (again the position gains are constraint limited).

Sepulveda's design essentially uses the first actuator only for damping with the other

two root longerons providing very little. In contrast, the G.A. design uses two root

longerons evenly and the diagonal strut lightly. Transfer functions, G,, and G,,

shown in Fig. 4-9, for the design achieved by the G.A. are essentially the same as

that shown in Fig. 4-8 with some added benefit from choosing the second longeron



Table 4.2: G.A. plus gradient search final gains for precision truss displace-
ment minimization.

Run 1 Run 2

Element hd x 103 h, x 103  Element hd x 103  h, x 103

number V/in. V.s/in. number V/in. V.s/in.

11-12 -200 0.9890 11-12 -200 0.5814

21-2 -200 0.2743 21-2 -200 0.0028

22-23 -200 1.1380 31-32 -200 0.3809

Object.

func. in. 0.0716 0.0654

Number of

analyses 14 14

Number of

generations 25

actuator as 31-32 over 22-23.

Convergence of the G.A. is shown in Fig. 4-10. In this case the search domain

is rather small (24 possible locations with no actuators conjoining) and the initial

population was seeded with the fixed location of run 1. Only a few improvements

were made to the run 1 set as shown by four jumps in the best of generation results

while the average cost showed the usual monotonic improvement.

Case two involved control effort minimization with the displacements constrained

to be less than 1.0 in. Evaluation of the control effort is made at 12 Hz which is con-

sistent with Sepulveda's method. Results for the two methods (final gradient search

for the proposed method only) are compared in Fig. 4-11. Again the fixed actuator

run solutions came out similar, see Tables 4.3 and 4.4, with the diagonal location

21-2 being lightly used and the longeron actuators enforcing damping constraints.

The displacement constraint is met passively so that actuation is applied to meet

damping constraints only.

In Gzw of Fig. 4-12 it can be seen that the poles are softened less drastically than

the displacement minimization case and that the damping constraints are met. Note

that for a fixed rate feedback gain damping coefficient is increased by decreasing the

natural frequency, seen most obviously in the first mode.



Sepulveda's final gains for precision truss control effort minimization.

Run 1 Run 2

Element hd x 10
3  h, x 10

3  Element hd x 10
3  

h, x 10
3

number V/in. V.s/in. number V/in. V.s/in.

11-12 -200 1.9424 31-32 -188 1.5873

21-2 -13.6 0.2434 2-3 -30.0 2.6943

22-23 -106 1.1435

Object.

func. lb. 25.11 19.14

Number of

analyses 16 15

Table 4.4: G.A. plus gradient search
effort minimization.

Run 1

Element hd x 10
3  h, x 10

3

number V/in. V.s/in.

11-12 -167 1.8676

21-2 -32 0.0003

22-23 -37 0.3510

final gains for precision truss control

Element

number

2-3

21-22

33-34

Run 2

hd x 10
3

V/in.

-198

-4.4

-1.5

h, x 103

V.s/in.

0.9182

0.0234

0.0068

Object.

func. lb. 20.10 1.10

Number of

analyses 15 15

Number of

generations - 20

In the second run the results are drastically different. Sepulveda's method came

up with two actuators, one longeron at the root, 31-32, and one longeron one-bay-

removed from the root, 2-3. The G.A. also converged to longeron 2-3 but came

up with a different root longeron, 21 - 22. Also the G.A. method came up with

lightly used longeron 33-34 with virtually ignorable added control effort. The gains

shown in Tables 4.3 and 4.4 are different in that Sepulveda's method uses the root

actuator for the majority of control where as the G.A. result uses longeron 2 - 3

resulting in far less total control effort. This result reemphasizes the differences be-

tween Sepulveda's intermediate variables and the G.A.'s completely modeled actuator

Table 4.3:



impedances. Transfer functions GY of Fig. 4-13 show the improved authority of the

selected actuator locations over that shown in Fig. 4-8 for the previous case. Actuator

location 2-3 provides good authority over mode 1 and the root longeron, 21-22 (with

noticeably less static gain), aides dampening of the second mode.

Convergence for the G.A. is again rapid, with the best actuators almost found by

random seed, i.e. the location 2-3 came up in the seeding round with a root longeron

actuator and dominated the best of generation results. With this sort of domination

the average fitness of each generation converged in approximately 10 generations.

The structural mass minimization, of case three, involved structural member vari-

ation as well as actuator placement. Here displacements were constrained to be less

than .01 in. and .03 in. for the y and z directions respectively, with control ef-

fort constrained to be less than 20 lb. Passive cross section areas were bounded as

0.001 < A, < 0.8 in 2 .. When using the proposed method a feasibility projection

was performed at the initial seeding stage of each run, i.e. combinations of member

geometries and actuator locations were randomly supplied until a fully feasible pop-

ulation of 30 was found. Infeasible solutions that resulted from model propagation

were penalized in the fitness function.

The first two runs were for fixed locations, {11-12, 21-2, 22-23} and

{11-12, 21-2, 31-32}. Figure 4-14 shows the comparison between Sepulveda's re-

sults and those achieved by the G.A., however, in this plot the G.A. convergence plot

is shown rather than the inner loop gradient search. The inner loop is only being

used to check that motion error and control effort constraints are satisfied.

For locations {11-12, 21-2, 22-23} approximately the same optimum mass is

achieved, 2.2 lb. Sepulveda introduced the second fixed set of locations

{11-12, 21-2, 31-32}, two root longerons and one root diagonal because he thought

this set would achieve a better optimum mass. In his method he did not achieve this

result but the G.A. did, arriving at - 2.07 lb. optimum.

Transfer functions for the first run are shown in Fig. 4-15. The disturbance to

performance plot shows how drastic structural softening has been used to achieve the

stringent displacement requirements. Under closed loop the structure is further soft-



ened and dampened to meet the damping constraints. Comparing with Fig. 4-8 the

dashed-dot transfer that includes higher modes shows how the structural variations

compromise the high frequency dynamics to achieve performance. This shows that

that further structural discretization may be needed to bring out the local dynamic

effects on the closed loop optimization problem (possible with the proposed method).

Exaggerated structural softening resulted in improved authority of the fixed lo-

cations, shown in GyU of Fig. 4-15, with the torsional mode now almost completely

un-observable/disturbable/controllable.

Sepulveda's best set of three actuators was found to be {11 -12, 31-32, 33-34}.

These three locations gave a marginally better result than the fixed location of run

1. In contrast, the G.A. achieved a better result than its run 2 yielding locations

{11-12, 21-32, 33-34}, where the locations compare except for the root diagonal

21-32 in contrast to the root longeron 31-32. Figure 4-16 shows yet more softening

over the fixed actuator case and closer modal spacing. The damping constraint on

mode two is only barely met due to reduced authority over that mode seen in G,,

transfer functions.

Run four allowed a minimum of two actuators allowing the design to cast out

an actuator if two were sufficient to meet constraints and thus save structural mass

(0.556 lb. per actuator). Sepulveda's method yielded two actuators located at 11-12

and 31-32 with optimal weight of 1.59 lb., while the G.A. came up with two actuators

located at 11-12 and 2-3 and optimal weight 1.83 lb.. Viewing G,, in Fig. 4-17 we

can see that the torsion mode is, as in the fixed location mass minimization, again

barely noticeable. Two actuators with good authority (see GY,) are all that is needed

to meet constraints.

A further run was produced by Sepulveda that showed in his method he could

meet all constraints with just a single root longeron actuator at 11 - 12. After a

long feasibility search this was not the case with the G.A., again highlighting the

differences between the accurate modeling of the proposed method and the simplified

modeling presented by Sepulveda.



4.3 Summary

In whole the G.A. outer loop was found to perform well and even though it is criticized

as being inefficient it was found to be fairly robust in application.

The G.A. was adapted to solve implicit problems where the structural eigenvalues

depend implicitly on control gains. Results for Onoda's example were generally the

same shape and actuator location. Onoda's results are dominated by rigid body con-

trol. The G.A. designs use more control of flexibility in order to reduce the system

mass objective. In general the G.A. designs out performed their published counter-

parts.

Validation on a three dimensional example such as Sepulveda's showed the impor-

tance of sensor actuator modeling in realizing good solutions. In these cases actuator

stiffness was incorporated directly into each design. The displacement minimization

(pure placement) solutions compared well, while the control effort minimization solu-

tions differed in distribution and authority of the actuators. The G.A. was found to

do better than Sepulveda's method when minimizing control effort. Mass minimiza-

tion solutions compared well, with structural softening and root actuator authority

figuring strongly in the solutions. In the mass minimization case the actuator mass

dominated the total structural mass so that the minimum number of actuators re-

quired to fulfill constraints was desirable.

Now that the method has been shown to solve both one and three dimensional

examples from the literature it will be exercised on a design application current in

aerospace technical needs.
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Figure 4-8: Displacement minimization disturbance to performance and con-
trol to sensor transfer functions for fixed actuator locations. The
vertical dotted line at 12 Hz is the harmonic disturbance fre-
quency, the frequency at which the optimization is performed.
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Displacement minimization run 2, G.

Figure 4-9: Displacement minimization disturbance to performance and con-
trol to sensor transfer functions for optimized actuator locations.
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Figure 4-10: Displacement minimization genetic convergence for two trials
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Figure 4-13: Control effort disturbance to performance and control to sensor
transfer functions for optimized actuator locations.
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Structural mass minimization run 1, C,

Figure 4-15: Structural mass minimization disturbance to performance
and control to sensor transfer functions for fixed locations
{11-12, 21-2, 22-23}.
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Structural mass minimization run 3, G

Figure 4-16: Structural mass minimization disturbance to performance and
control to sensor transfer functions for optimized locations
{11-12, 21-32, 33-34}.

102



Structural mass minimization run 4, G.
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Chapter 5

Application

Both of the validation example cases shown in Chapter 4 minimized structural mass,

one with an appended control effort penalty function and motion error constraint,

the other with constraints on motion error and control effort. In this chapter an

application was found to test the method on a structure with true motion error

objective. The design application is a separated aperture, space based telescope.

Here, structural mass and control effort are to be treated as weak constraints, i.e.

mass is constrained through member sizing and control effort through control penalty

weighting in the H 2 dynamic controller design.

Two examples will be investigated in this chapter. The first example explores

designs of a one-dimensional beam-like structure under two different spectra of inertial

forcing disturbance. A brief background of stellar interferometry is given with the

setup of the one-dimensional problem. Results from the G.A. searches are given for

the two different cases of disturbance spectrum. These results are investigated via

scaled truss experiments in Chapter 6. The second example is a three dimensional

box truss that is disturbed by a single spectrum of prescribed motions. The three

dimensional example is posed and solved to show the power of the proposed method

when dealing with topological variations and to show that the solutions are similar

to the beam case.

Traditional mathematical-like statements specifying the search problems are given

at the end of each setup section after the ground-work. In each example a description
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of performances, disturbances, structural discretization, actuators and sensors will be

given before the statements.

5.1 Interferometry Background & One-Dimensional

Example

Next generation orbiting stellar observatories require high angular resolution to meet

their objectives; extra-solar planet detection, resolution of close binaries, imaging

cores of galaxies, and direct measurement of parallax of extra-galactic stars. Current

earth orbiting telescopes operating in the ultraviolet to near infrared band employ

passive monolithic primary mirrors and secondary optics. These optics need be man-

ufactured to accuracies on the order of fractions of the measured wavelength. Align-

ment of passive measurement systems need also be on the order of fractions of the

measured wavelength.

Orbiting filled aperture telescopes larger than Hubble Space Telescope would be

prohibitively expensive. Monetary costs is realizing such a telescope would be incurred

obtaining surface accuracy, integrating to a sizable launch vehicle, and maintaining

passive alignment throughout ground handling and launch. As a result space based

interferometers were conceptualized that used several discrete apertures for improved

resolution at lower cost. In one concept the discrete apertures are structurally con-

nected with active collecting optics at the spacecraft hub.

A representation of a structure to host such an interferometer is shown in Fig. 5-1.

This structure is simplified to a beam and will serve as the first precision structures de-

sign example. The interferometer concept shown is the result of a systems design per-

formed at MIT for NASA's Jet Propulsion Laboratory interferometry group [50, 51].

The structure is a long truss boom mounted on a spacecraft bus hub. Collectors are

located at the tips of the boom and are relatively massive compared to the struc-

ture, mo,,l 3ms. The hub houses attitude control actuators and sensors as well as

collecting optics, mhub a 50ms.
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A Stellar Interferometer Configuration
starlight 24 meter baseline

collector

combiner

pointing control starlight

spacecraft hub collector

Figure 5-1: Line drawing of an interferometric spacecraft

The essence of operation of these interferometers is the pairwise combination of

light paths, from a common wavefront, incident on the separated apertures. The left

schematic in Fig. 5-2 shows incident light steered from separated apertures through

compensation optics onto detectors. Target star light from the combined apertures

need be held spatially correlated, over a coherent integration time, to yield interference

fringes (right schematic) that provide intensity and spatial phase information relative

to a guide star. This information collected from a number of different baselines

(resolutions), through a rotated orientation, measures a spatial Fourier transform in

what is known as the image plane. Inversion of the transform information yields

a reconstructed image. In a fixed orientation, a line in the image plane, accurate

parallax is measured between two stars by measuring the spatial phase between fringes

to within fractions of a wavelength. Referenced to many starlight fringes, a single

star may be observed for inertial motion, indicating orbiting celestial bodies.

Coherent fringe integration time is set roughly by the magnitude of the target

star and the spatial correlation is usually over a few wavelengths. Desired accuracy

requires that each star light path be controlled to the same length within nanometer

levels. Pathlengths are equilibrated using optical delay lines (ODL) that are integral

to the light paths. Figure 5-2 shows an ODL in one path only, where in actuality

an optically equivalent ODL should be in the other path for good fringe visibility.
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Figure 5-2: Schematic of interferometric stellar light combination

Under dynamic control action the ODL's induce pathlength to compensate for mea-

sured system pathlength error [52]. An ODL consists of staged actuators, position

table-voice coil-piezo stack, that maneuver focal and reflecting optics based metered

position error commands. Angular error between incident paths may also be metered

and compensated for using steering optics, shown in Fig. 5-2 as tilt detector error

that would drive the Siderostats and Fast Steering Mirrors.

When all the optical loops are closed, and the interferometer is in a fixed ori-

entation, the pathlength error performance is approximately the high pass filtered,

differential, tip displacement. The high pass filter comes about by assuming that

for fringe feedback the optics u is collocated with the measure y of z (the external

pathlength). This analogy between the inputs and outputs yields,

Ge = SptG (5.1)

where SOt is the sensitivity of the optical control loop and cl and ol refer to the

closed loop and open loop respectively. This optical control approximation ignores

the second order effects of steering misalignment. In the application example the

performance is measured as the difference of collector vertical displacements and is

weighted with a high pass filter that represents the fringe tracking closed loop delay

line compensation 1

1The high pass filter is depicted as the dashed curve in Fig. 5-3
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Ground based interferometers mitigate wind and seismic pathlength disturbances

by affixing to massive concrete pilings and compensate for earth's rotation using the

ODL's. In the space environment disturbances are more prevalent due to the flexible

structure on which the interferometer is mounted. Disturbances emanate from such

sources as the spacecraft attitude control, diurnal heating and cooling, and reactions

from the optical compensation system. Structural control is sought to enhance the

image taking capability of a space based interferometer that uses relatively bright

guide stars. When using dim guide stars structural control may enable operation.

In some cases the resonance dampening structural control may also enable extended

bandwidth of the optical control.

Dynamic disturbances that cause pathlength jitter may come from a variety

of sources such as coarse pointing at the target sky, diurnal heating and cooling

cycles and reaction forces from optical compensation devices. For the design problem

disturbances will enter as torques about the sensitive axis, shown as the x-axis in

Fig. 5-1, acting on the hub.

These disturbances may be classified roughly as low frequency or high frequency in

content. For example, cold gas attitude control thrusters generate fairly low frequency

step-like pulsed inputs, whereas reaction wheels generate high frequency harmonics

set by the wheel size and speed. Both low and high frequency disturbance cases

are investigated as bounded disturbance weights, or filtered white noise. The low

frequency shaping filter is a constant gain that rolls off at 1/w above a 1 Hz corner

frequency, see the solid curve in Fig. 5-3. The gain is set so that the rms disturbance

input is equivalent to that of a 0.1 Hz bandwidth attitude control system. The high

frequency disturbance, dashed dot in Fig. 5-3, rolls up like w2, corners to a constant

gain at 30 Hz and rolls off like 1/w4 beyond 50 Hz. For this filter the gain is set by

expected energy from reaction wheel harmonics for a 600 rpm Hubble sized wheel.

The structure shown in Fig. 5-1 was statically condensed into twelve elements a

side. Fifteen different types of beam elements resulted that represented 3 different

truss work topologies (varying bay depths) each with five different member designs.

Nonstructural mass varied with the topology. Static condensation illuminated the
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Figure 5-3: Design example disturbance weights.

necessity of component mode synthesis during the G.A. runs in this example. The

two center most elements of the model structure were constrained to have very stiff

properties. Fixed concentrated masses and inertias were added for the spacecraft hub

and optical payload.

Structural actuators are included to improve pathlength compensation beyond

that of the optical loops. The actuators are symmetrically placed local moment pairs

that act differentially, and may be placed in elements 3-11 in the available 12 counted

from the center. Note that a fixed stiffness actuator was not chosen. The optimal

designs will imply the desired stiffness.

Sensor suites used for low frequency disturbances all use a hub angle sensor plus

a structural sensor. The hub sensor nearly spatially collocated with the disturbance.

Structural sensor choices are differential tip motion (performance feedback), collo-

cated differential angle, and collocated differential load, where in the later two collo-

cation refers to the structural actuation. A series of runs was made for each structural

sensor choice. The collocated load sensor represents an interesting choice because the
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sensed signal depends on the stiffness of the local cross-section (see Section 2.1 in

Chapter 2).

In the case of high frequency disturbances the sensor suite is limited to be the

hub angle sensor and the collocated load sensor. The hub angle sensor is weighted so

that it is barely used in the important bandwidth.

With the disturbance and the performance completely specified, the free parame-

ters in an H 2 control design are control penalty weighting and sensor noise specifica-

tion. For this design example control weightings were designed to limit the actuator

authority and roll off the control at high frequencies (examples of which will be shown

with the design solutions), where unmodeled dynamics are suspected in an actual in-

terferometer instrument. Sensor noise specification is broadband with magnitude set

at 1/30 th the magnitude of the control penalty. This allows the estimator dynamics

to be sufficiently above the regulation dynamics. In practice this is a reasonable as-

sumption for control design, but the reality is that poor sensor quality will cause the

true performance to be swamped by sensor noise.

The sensors specified for this application are assumed to be extremely good quality.

For example, the measured fringe information that is used to track a guide star is of

nanometer quality 2. Another pertinent sensor quality to mention is that of a hub

angle measurement. A couple of references that publish Hubble Space Telescope Rate

Gyro Assembly measurement data are by Vadlamudi et al. and Sharkey et al. [53, 54].

In science mode the RGA's resolution is a 0.00012 arc-sec which translates to 10

nm resolution for a 20 m baseline interferometer instrument.

2depending on the visibility of the fringe, with well fabricated optics this nanometer quality is

possible
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Formally, the discrete evolutionary design problem can be stated as,

minJ = GI 2,

subj. to variables propi E {possible beams}

uloc E {possible locations}

implicit H 2 constraint equations

specified frequency weightings (5.2)

disturbance

performance (active optics)

sensor dynamics

control penalty

specified sensor suite.

where z is the pathlength motion error, w is a selected spectrum of disturbance

augmented with broadband sensor noises, propi is the property attributes of a selected

beam element i and uloc is the selected actuator locations (symmetric).

Genetic algorithm parameters were set for propagation of 30 designs over 80 gen-

erations. Separate design information strings of beam type and actuator location

were used. This has the effect of splitting up the design into schemata according

to attribute. The splitting is detrimental to convergence if a good scheme includes

the two different attributes, see Eqn. 3.48, since crossover now has two chances of

separating the string. However, unnecessary "hitchhiking" of bad values within an

attribute to the good values within the other attribute has been eliminated. Crossover

occurred with probability pc - 0.8 and mutation occurred with probability Pm = 0.05.

Diversity was enforced during propagation so that no two copies of the same design

proceeded. For each sensor suite and disturbance type several runs were made using

purely random selection of initial designs. In each respective case a final run (seeded)

was made that used the best designs found in earlier runs along with random initial

designs. This final run represents a punctuated equilibrium where the best results

from random seeds are compared and propagated with further random information.
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5.2 One Dimensional Low Frequency Disturbance

Results

Results from several different G.A. runs for three different low frequency disturbance

cases are shown in Fig. 5-4 with the actuator location denoted by x's. The nominal

structure, with best actuator location, is shown for each case in the first column of the

figure. The middle two columns are samples of G.A. runs for each case that started

from a random initial population. Rightmost is the final seeded G.A. run. Rows

are cases for the performance z, collocated angle 01 and collocated load f structural

sensors respectively. All use the hub angle sensor 0 h. Performance improvements over

the nominal open loop, i.e. structural controller off, are listed in dB in the bottom

right hand corner of each design. Control efforts are listed in the bottom right hand

corners of the nominal and seeded designs.

A couple of key characteristics are evident in the solutions of Fig. 5-4. All runs

have tended to the maximum stiffness constraint increasing the overall structural mass

by just 12 %. Local stiffness at each actuator location has been reduced resulting in

an active hinge. Intuitively, if the trusswork either side of the hub is considered as

arms, then the actuation can be considered as elbows or wrists that have fine control

over the tip positioning. It is natural that there is a trade between the leverage that

the actuation has over the tips and the delay that exists because of the flexible links

that connect the tips to the actuators. A particular characteristic of the performance

and local angle structural sensor solutions is softening near the root. The solutions

are not particularly sensitive to this softening, however, the added softening near the

root has the effect of isolating the disturbance forces from the sensitive payloads.

Rows of G.A. designs show the perils of the design space. On close inspection,

different designs show similar performance. Exploration of the sensitivity of the

optimal designs to minor structural changes revealed that the design space was shallow

and bumpy near these solutions. Sensitivity to local variations in the location of

the active hinge was also found to be small, until the hinges neared the end of the

structure. Hinge authority was seen to vary greatly with location when near the truss
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Figure 5-4: Optimized structures stiffness distributions for low frequency dis-
turbances; columns are differing runs; rows are differing struc-
tural sensor choice; paired x's mark actuator locations. Perfor-
mance/open loop nominal in bottom right-hand corner of de-
signs. Root-mean-square control effort in bottom left hand cor-
ner of nominal and seeded designs.

tips.

For the performance sensor the optimal actuator location is near the tips so as to

locate the actuator near the performance, yet removed from the tips so as to allow

authority over them. Solutions similar to that using the performance sensor are found

using the local angle sensor. The best local angle solution has more softening at the

root and the active hinge is further inboard. The total performance is slightly worse

than that of the performance sensor. The collocated load sensor apparently does

worse than the performance and angle sensors in the relative numbers. This is due

to load sensor impedance trade off. The optimal design is driving towards a hinge,

while reducing the local stiffness reduces the overall sensor gain relative to it's noise
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Figure 5-5: Nominal structure block transfer functions for low frequency dis-
turbances using the performance structural sensor; x's are open
loop system poles, o's are zeros to the structural sensor c z, and
*'s are zeros to the hub sensor Oh.

quality. Note that the load sensor designs in Fig. 5-4 are slightly thicker at the hinge.

In general the active hinging isolates and allows authority over the performance.

Just how this is done can be seen by viewing the optimized system block transfer

functions versus that of the nominal system using the same sensor suite.

The nominal system transfer function matrix is shown in Fig. 5-5. Modes that

are visible in the response are antisymmetric modes of the system. Note how the

plant transfer functions Gzw and GzU, solid curves, are affected by the closed loop

optics weighting. Without the weighting the low frequency response in Gzw would roll

down at 1/w2 and would dominate the motion error cost. Low frequency disturbance

weighting contributes to the roll off seen in Gzw and G,,. Dashdot curves in G,, and
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Gy, represent the hub sensor transfer functions. Control weights are plotted on the

regulator transfer function, Gzu. They show that the control is rolled off near 100 Hz

and that more control is available at low frequencies.

On each transfer function a pole-zero frequency vs damping plot (p/z-() is pro-

vided where the x's are system poles, the o's are zeros to the structural sensor, and

the *'s are zeros to the hub sensor. On the p/z-( plots the lower most dotted line

represents real right half s-plane (RHP) and the upper most dotted line represents

real left half s-plane (LHP). Poles and zeros not on the I = 1 or ( = -1 lines are

duplicate, i.e. they at least occur in conjugate pairs.

The slightly stiffened pseudo rigid body mode is evident at 0.01 Hz. Stable weight-

ing poles can be seen on the ( = 1 line. The disturbance weighting pole is at 1 Hz.

Performance weighting poles appear to be cancelled by zeros. These poles are du-

plicated, since the performance is used as a sensor. Therefore in transfer functions

involving z, or y as a measure of z, one set of zeros cancels one set of these weighting

poles with the duplicate set of poles remaining. Symmetric mode pole-zero cancella-

tions are depicted on the ( = 0 line with increasing high frequency density.

As is characteristic in beam problems, real minimum-nonminimum phase zero

pairs occur in transfer functions with noncollocated inputs and outputs. The pairs

become less damped and gradually misaligned in frequency as their frequency in-

creases due to discretization. When in effect it is the nonminimum phase zero of

these pairs that limits the controller performance [21]. These pairs of zeros tend to

raise the average transfer function gain for no phase increase. This impedes compen-

sator roll off since the plant continues to lose phase with the occurrence of modes.

Closed loop Gz,, is plotted as dashed in Fig. 5-5. The first antisymmetric mode

is heavily damped and the second only slightly. Modes from the second onward

contribute little to the total closed loop performance. Loop and sensitivity transfer

functions are illustrated for the structural control in Fig. 5-6. From this figure it is

clear that the hub sensor is predominantly used to control the first antisymmetric

mode with the performance sensor lightly mixed in.

The control design can be thought of as separate regulator and estimator steps
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Figure 5-6: Sensitivity and loop transfer functions for structural control of

the nominal system with performance structural sensor.

with the combined compensator acting on the G, transfer. In the nominal design

the regulator is clearly limited by the irrational structural behavior indicated by the

nonminimum phase zero at 10 Hz. The estimator primarily uses the hub sensor which

is close to collocated with the disturbance in the necessary bandwidth. There are no

*'s below the ( = 0 line in the bandwidth shown. The performance sensor is mixed in

near the zeros of the hub sensor transfer function. Even though u is near the root, it

is not collocated with the hub sensor beyond the second antisymmetric mode, shown

by the zero (*) at 25 Hz in the Gu loop. Since the control is focussed on the first

antisymmetric mode it is really the regulator that limits performance when combined

with GY loop nonminimum phase behavior.

Weighted cumulative residuals are plotted in Gz,, of Fig. 5-5 under each pole, wp.

They are computed as,

M(w) E Rilw/ wi 2 p , (5.3)

where the weights are M(w,), the modal frequency of the ith mode is wi, and the

modal residue of the ith mode is Ri. The weights M(w) scale the structural residuals

by the disturbance and performance spectral filters. These residuals indicate where

the open loop transfer function is held up by residual static stiffness and where it is

held up by the close spacing of the modes. For example, the average G,, transfer

function gain follows just above the first two +'s and well above the last three. The
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result is that the average response near the first two modes is dominated by asymptotic

inertia and stiffness. Here the asymptotic effects of the real nonminimum phase zeros

is important. Near the last three modes plotted the average response is dominated by

the resonant nature of the modes and how closely they are spaced. See Chapter 2 for

more details on simpler systems. For this spectrum of disturbance the performance

is not sensitive to these closely spaced modes until extremely high bandwidth control

is attempted.

When optimizing this system the objective is to lower the dashed curve in Gzw.

This means lowering the average transfer function gain in a controllable fashion. Since

the area under the curve is primarily at low frequencies, and is scaled by the total

system inertia, moving the average transfer function gain via structural change alone

is a difficult task.

Block transfer functions for the optimized structure shown in the right most col-

umn of the first row in Fig. 5-4 are depicted in Fig. 5-7. Comparing the Gzw transfer

functions of the nominal and the optimized structures shows softening of the first and

second modes and stiffening of the higher modes. The hinging has improved the av-

erage gain in the Gzu transfer function through the softening. Locating the actuator

near the tip yields good pole-zero structure out to near 100 Hz in G,, (alternating

poles and zeros until the real zero pair near 100 Hz). Moving the hinged actuator

towards the tip hasn't compromised estimator phase since again the hub sensor is pri-

marily used. Estimator pole-zero structure to the performance sensor is worse. This

sensor is lightly used. Important nonminimum phase behavior for the optimized sys-

tem is now in the Gy transfer function. In general, the improved authority over the

first two modes can be seen by comparing the closed loop disturbance to performance

plots.

The optimized design shows mass dominated transfer functions, i.e. zeros oc-

curring close to the left of the poles in GzQ and GyU, suggesting that trend is to

structurally isolate the tip payloads. This isolation type solution is further aided

by the high pass nature of the performance weights and the low pass nature of the

disturbance weights.
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Figure 5-8: Sensitivity and loop transfer functions for structural control of

the optimized system with performance structural sensor.
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Authority of the controller is seen to be quite different than the nominal when

comparing Fig.s 5-8 and 5-6. The sensitivity of the optimized system shows regions of

strong amplification in order to achieve performance in the 1-7 Hz band. Again the

performance sensor is only lightly used, and is seen to make the performance worse

in the 1-7 band at the expense of dampening the modes.

The cumulative residuals in Fig. 5-7 show how the average transfer function gain

is improved by softening the fundamental mode. A corner of the performance transfer

function is shaved off. The higher frequency modes have been stiffened so that the

average gain in this region is no longer dominated by the modal spacing. These

improvements are minor compared to that incurred through increased authority over

the fundamental.

Results from optimizing the system are limited. Improvement over the nominal

system is just 4 dB in the closed loop. The reason is that performance is dominated

by the system rigid body inertia, as can be seen in the low frequency region of the Gz,

transfer functions. Optimizing the structural system for a given payload mass can

only have limited effect on this response. However, it is possible to demand higher

gain from the closed loop optical systems at these low frequencies (if the guide star is

bright enough) attenuating more response. This effect would further emphasize the

G.A. design results and will be shown in the experimental results in Chapter 6.

Of the two collocated structural sensors the load sensor will be presented here

because of sensor impedance effects. The block transfer function for low frequency

disturbances using the structural load sensor is shown in Fig. 5-9. The optimal design

for the load sensor shows similar trends to the performance sensor. However, the fun-

damental antisymmetric mode is actually stiffened when compared to the nominal,

even with the passive softening of the hinge. The global stiffening of the system has

countered the softening due to the hinge, because the hinge is not completely destiff-

ened. The second mode has remained unchanged while higher modes are stiffened.

Outward placement of the actuator/sensor again results in good pole-zero struc-

ture from actuator to performance, as seen by no real RHP zeros in the Gzu p/z-(

plot. Again the structural sensor G,, transfer function shows the effect of structural
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Figure 5-9: Optimized structure block transfer functions for low frequency

disturbances using the collocated load sensor.

delay with real zero pairs occurring at relatively low frequencies in the bandwidth.

Unique features of the load sensor transfer functions, are a strong feed through term

and disappearing residues of high frequency modes in the Gy transfer functions, and

that the first nonminumum phase zero occurs near the second mode in the G,, loop.

The best load sensor design, as with the other designs shown in the last row in Fig. 5-4

shows less structural variation than the other two sensor types yet the trend is again

to globally stiffen and structurally isolate the payload.

The control loop sensitivity and loop transfer functions are similar to the opti-

mized performance sensor design in that they show a band of attenuation with some

amplification at the band edges. Overall the controller is narrower in its rejection

band and generally shows less authority.
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Figure 5-10: Sensitivity and loop transfer functions for structural control of
the optimized system with collocated load structural sensor.

When comparing the controllers from the optimized solutions to that of the nom-

inal it appears that they are working much harder to achieve better performance and

that not allowing the nominal designs a lessor control penalty has biased the results.

This is not the case. Control efforts are compared in the lower left hand corners of

the nominal and best designs in Fig. 5-4. In every case the optimized designs use

less control effort because of the effect hinging has on the influence coefficients. On

average the reduction in control effort from this impedance effect is . 8 dB rms, while

the performance is also improved. This shows that for the same control effort the

motion error performance improvement would be more dramatic, mainly because of

undamped resonances in the nominal designs.

5.3 One Dimensional High Frequency Disturbance

Results

Under high frequency disturbances, see Fig. 5-3 for the shape of the assumed filter, the

search finds designs that are structurally discontinuous, illustrated in Fig. 5-11. In this

case the collocated load sensor is predominantly used. The hub sensor is included

but is rolled off at low frequencies so that its influence is small in the controlled

bandwidth. Disturbance emphasis on the higher frequency modes has resulted in
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Figure 5-11: Optimized structures for high frequency disturbances and struc-

tural load sensor. Performance/open loop nominal in bottom
right-hand corner of designs. Root-mean-square control effort
in bottom left hand corner of nominal and seeded designs.

a complicated structural filter producing a design with actuator/sensor pair at the

midspan, reduced cross section inboard and stiffened cross section outboard. The best

nominal actuator location is also at the midspan, see the first column in Fig. 5-11.

Again in the optimized designs the cross section at the actuator/sensor location is

soft but, again, not so soft as to overly reduce the sensor gain. Overall the optimized

solutions are - 83 % of the nominal structural weight.

Physically the optimized designs shown in Fig. 5-11 are localizing the disturbance

energy inboard of the actuator locations at frequencies below the peak disturbance

frequency. The outboard sections have been stiffened so as to provide good leverage

over the performance sensitive tips. The stiffened sections act like softly restrained

pseudo rigid bodies at low frequencies. At frequencies above these pseudo rigid body

modes the actuators react against the outboard section inertias to damp the localized

flexible section modes that are observable in the performance.

The disturbance now serves to excite a higher frequency range of the Gz" trans-

fer function. Figure 5-12 shows this as an incorporated weighting for the nominal

structure. The nominal system shows that moving the actuator from the root to the

midspan has improved the pole-zero structure in the regulator transfer function Gz,,,

where the first nonminimum phase zero is real and occurs at _ 40 Hz. The first

nonminimum phase zero in the estimator, to the structural sensor, is real and occurs

near 12 Hz. The pole spacing is good near these nonminimum phase zeros so that

their effect on the average gain is important. Reasonable control is achieved over
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Figure 5-12: Nominal structure block transfer functions for high frequency
disturbances using the collocated load structural sensor; x's are
open loop system poles, o's are zeros to the structural sensor
e f, and *'s are zeros to the hub sensor Oh.

the first two modes with some dampening of the later three modes realized. As in

the low frequency case the Gz,, cumulative residuals show that the average transfer

function tracks the cumulative stiffness for the first two modes and rides on near

resonance effects beyond the second mode. Close pole spacing of the third and fourth

antisymmetric modes is now an important contributor to the performance.

Controller sensitivity and loop transfer functions, see Fig. 5-13, show that the

primary sensor used is the collocated load sensor. Narrow bands of attenuation that

encompass the modes are seen in the sensitivity, with fairly good authority over the

higher frequency modes. Note that because the load cell measurement has a strong

feed through term the controller barely rolls off within the plotted 200 Hz band.
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disturbances using the collocated load structural sensor.
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The system block transfer functions for the best design under high frequency dis-

turbances are shown in Fig. 5-14. Disturbance emphasis, seen in the average gain

of Gzw, has resulted in tailoring of the dynamics to achieve yet further improved

regulator pole-zero structure. There is good authority over the emphasized band-

width, shown in the gain and the pole zero spacing in GyU. Poor estimator pole-zero

structure, real zero pairs in the load G,,, has resulted from the very flexible inboard

portion of the structure. This limits the control to dampening of the first, second and

third modes. The dampening is enough to improve performance.

Major improvements over the closed loop nominal system are realized because

the overall average transfer function gain in the important frequency band has been

reduced by 10-15 dB. The effect of the structural tailoring has been to stretch out

the modal spacing so that beyond the second mode the average transfer function gain

follows the asymptotic cumulative residues for a few more modes. The control merely

dampens the system to this average gain. At these high frequencies the average gain

is dominated by the flexible properties of the system. Evidently structural system

optimization has greater impact here where the assumed optical control has less.

Further evidence that the control has less to do with this solution than the struc-

tural tailoring is seen in Fig. 5-15. The attenuation shown in the sensitivity plot is

on the same order as that in the nominal design, however, control effort, compared

in Fig. 5-11, is an order of magnitude less for the optimized system.

5.4 Three Dimensional Box Truss Example

A three dimensional example was generated that serves the same interferometry ap-

plication with a low aspect ratio structure. Rather than being a free flyer spacecraft,

this design is intended to be mounted to the Multi-Payload Experiment Support

Structure (MPESS) in the Shuttle cargo bay. This interferometer has a much shorter

baseline, due to cargo bay and MPESS geometric constraints, and is therefore limited

in its scientific resolution.

A schematic of this design example is shown in Fig. 5-16 as the instrument. The

126



50 3I

0

-50

- c. load sensor
-. hub sensor

-50 -100
10-2  100 10 10-2  100 102

Hz Hz

Figure 5-15: Sensitivity and loop transfer functions for structural control of

the optimized high frequency disturbance system with collo-
cated load structural sensor.

instrument was realized as a truss, see the nominal design in Fig. 5-17. The topology of

this truss was searched over along with actuator/sensor placement and member cross-

sections. Structural topology variables were truss bay node locations and diagonal

member connectivities. Each member of the truss work was represented by two beams

joined at the midpoint. Including midpoint dof increased the fidelity of the model,

since for this aspect ratio local dynamics were more likely to factor in the optimized

designs.

The truss was discretized into six components, each bay being a component. Com-

ponents were condensed and assembled using the suggested Component Mode Synthe-

sis since a full truss model consisted of - 700 dof, which was too large to decompose

for each design during the Genetic search. The interface dof used were three transla-

tional dof at each of the truss corner nodes that join two neighboring bays. Twelve

internal modes were kept for each component along with the constraint modes.

Performance in this example is similar to the previous application example in that

the pathlength error is modeled as the difference in vertical motions of the end bay

optics (the left most and right most spheres in Fig. 5-17). Again a high pass filter is

used that represents closed loop optics. For this example the target star is assumed

brighter resulting in a higher bandwidth filter. The filter is depicted in Fig. 5-18.
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Figure 5-16: Schematic of the payload bay configuration for the three dimen-
sional box example.

Disturbance enters as a broadband prescribed motion of the mounting interface.

In reality the MPESS has flexibility which would couple to the dynamics of the box

near 80 Hz. This is not modeled here. The sense of the disturbance is shown by the

arrows in the bottom right of Fig. 5-17. Specifics of how the motion mathematically

enters the system is given as an example in Eqn.s 2.5 and 2.6 of Chapter 2. The

spectral bound on the disturbing motion is shown in Fig. 5-18. The motion is seen to

roll down at 1/w 2 at low frequencies, representing the shuttle deadband in pointing

control. At a 10 Hz the motion filter decreases the roll off rate to 1/w representing

added motion due to the shuttle flexibility disturbed by the vernier attitude control

and onboard noisey mechanisms.

Two independent actuators are placed in the structure. Possible locations are the

longerons and diagonals of the truss structure, the left and right end optics mounting

struts and the semi-vertical interface mounting struts. The actuators are assumed to

be active struts. Again, the active strut stiffness is variable. In the nominal design the
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spheres = lumped optics mass

Plan uniform shade = uniform members

Figure 5-17: Four view of the nominal box truss structure.

active struts are both in the semi-vertical mounting positions, see the thick struts in

Fig. 5-17. Control penalty frequency weighting for each of the actuators, in all designs,

is assumed to be the same and is shown in Fig. 5-18. This weight again favors more

actuation at low frequencies (for softer modes) and rolls off the compensator at high

frequencies where unmodeled dynamics are inevitable.

The sensor suite used for structural control is comprised of a measurement of the

filtered performance and two relative load measurements. Relative load measurements

are collocated with the active struts and, as before, depend on the local stiffnesses of

the struts.
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Disturbance, performance and control penalty weights used in
the box truss design example.

Formally, this discrete evolutionary design problem can be stated as,

min J

subj. to variables propi E (possible beams}

gridj E {allowable locations}

connk E (0, 1}

uzoc E (possible locations}

implicit H 2 constraint equations

specified frequency weightings

disturbance

performance (active optics)

sensor dynamics

control penalty

specified sensor suite,

(5.4)

where z is the pathlength motion error, w is a prescribed motion disturbance aug-

mented with sensor noises, propi is the property attributes of a selected truss strut i,
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gridj is the perturbation to the nominal grid point location for the jth grid, connk is

the connectivity selection of the kth diagonal, and uloc is the selected actuator loca-

tions (two independent selections). The grid perturbation set represents 512 choices

bounded to be ±.15 meters in all directions. The choice of connectivity of a diagonal

is posed as a {0, 1} problem where 1 is the nominal orientation and 0 is its complement

within the same truss bay face.

Genetic algorithm parameters were set for propagation of 40 designs over 80 gen-

erations. The separate design information strings were strut properties, grid point

locations, diagonal connectivities and actuator locations. Crossover occurred with

probability Pc = 0.8 and mutation occurred with probability Pm = 0.05. Diversity

was enforced during propagation so that no two copies of the same design proceeded.

Several runs were made to explore the design space and the best presented here.

5.5 Nominal Three Dimensional System

The nominal truss shown in Fig. 5-17 has uniform member properties. They are the

stiffest allowable and are therefore black (softer struts will be grey shaded). Block

transfer functions for the nominal system are plotted in Fig. 5-19. This system rep-

resents the condensed, reduced model.

Since the actuators replace the interface mounting struts, which are symmetrically

placed with respect to the performance and each load sensor, see Fig. 5-17, the transfer

functions involving both actuators overlay. That is, in Gzu both transfer functions

to the single performance z are equivalent to numerical precision. Transfer functions

from disturbance to individual load sensors also overlay due to symmetry. Here,

G,, is meant to be a 3 x 1 set of transfer functions. Since there are three sensors

and two actuators the singular values of GY, should really be presented. However,

often in the singular values directional information is lost, so here, individual transfer

functions from each strut to its collocated load sensor are shown. Transfer functions

from the actuators to the performance sensor are the same as those shown in Gzu.
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Figure 5-19: Nominal condensed system block transfer functions. The closed
loop rms performance is 110 nm with 68 N rms control effort.

Cross transfer functions from each actuator to the other actuator's load sensor are

not plotted.

As with the beam example, the effect of the performance filter is seen to flatten

out the low frequency gain of the weighted G,, transfer function. In this example the

low frequency response is dominated by the interface stiffness, unlike the beam exam-

ple where the inertia dominated. The responses look similar in the frequency domain

because in this case the disturbance rolls down at low frequency like 1/w2 . The col-

located load sensor shows measurement of the low frequency prescribed displacement

disturbance. This is because the mounting struts do not form a determinant mount,

they are slightly indeterminant shown by the sensitivity of the load sensor to low

frequency motion. Again, the collocated load sensor impedance can be seen in the

Gy,, transfer functions with the zeros (*) cancelling the weighting poles.
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Figure 5-20: Nominal full system block transfer functions.

Pole/zero-( plots show the system is collocated in the bandwidth plotted. In

this case performance is limited by the allowed authority of the actuators since they

have to be rolled off before high frequency unmodeled dynamics. The closed loop

Gzw,, shows that the performance is dominated by the rocking mode of the truss on

the mounting struts. The truss appears excessively stiff as other modes appear as

excursions on the transfer function. An order of magnitude of closed loop performance

improvement comes about due to the dampening of the fundamental mode. The open

loop performance is 1000 nm rms and the closed loop performance is 110 nm rms.

To show that the CMS condensed structure is sufficient to predict the dynamics

the full 700 dof model is assembled. One hundred modes of this model are kept and

transfer functions computed. The full nominal model block transfer functions are

shown in Fig. 5-20. They compare extremely well with Fig. 5-19 showing that the kept
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internal modes are sufficient to describe this system. The full and condensed nominal

models should compare since the system is very stiff, so that localized dynamics have

small effect on the solutions. The G.A. solutions will be more flexible and more

susceptible to condensation error.

5.6 Evolutionary Three Dimensional Design

Typically the G.A. searches took on the order of three days to run. The best result

from one of the searches is presented in this section. Results from the others are sim-

ilar. Performance in the nominal design is limited by structural actuation authority.

For the same level of authority the G.A. design is expected to make the system more

flexible to improve regulation and estimation gain at the expense of collocation.

Unusual geometries result from the G.A. search. The best result is illustrated in

Fig. 5-21. Member properties are denoted by grey shading where darker shades are

stiffer members. This truss is lighter weight than the nominal which is comprised

of all stiff members. Note that the spheres are in constrained locations, the optics

mounting bars do change length in keeping with the truss node positions. Through

varying nodal locations and diagonal connectivities the G.A. has arrived at a truly

unusual geometry.

The actuators are in the left hand end semi-vertical interface mounting strut and

the right hand end bay outermost face diagonal. They are softer than those of the

nominal and are not symmetrically placed. One is located near the disturbance entry

points while the other is near a sensitive performance point.

Diagonal connectivities are such that the bottom-most truss nodes that are mounted

to the interface have been destiffened. Mounting struts to the performance points have

remained relatively stiff. In general, the structure appears to have been softened.

The transfer functions in Fig 5-22 confirm the softening. The fundamental mode

has been softened from 36 Hz to near 22 Hz. Considerably more gain is evident

in the Gzu loops. Note since the actuators are no longer symmetrically placed in a

symmetric structure, separate transfer functions are plotted for each. Strut 1 is the
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G.A. Box Truss Interferometer

Elevation Side

w = prescribed mount motion (arrows)
z = differential vertical end motion
thick struts = actuators & load cells

spheres = lumped optics mass
Plan darker members are stiffer

Figure 5-21: Four view of the optimized box truss structure.

actuator in the right hand end bay and strut 2 is the actuator in the left hand end

interface mounting. Strut 1 has more gain in its Gy transfer function to its load cell

since the surrounding structure is stiffer than the interface mounting arrangement.

Both load sensors measure more disturbance (see GY,) since the topological variations

have reduced the freedom of the interface mounting.

Subtle differences between this result and that of the nominal truss are in the

existence of lightly damped nonminimum phase zeros. For example, there exists a

lightly damped nominimum phase zero in the Gu transfer function for strut 1 near

30 Hz. Strut 2 doesn't show this behavior in G,,. The collocated load measure in

strut 1 also shows nonminimum phase behavior in G,, where in this case there is a

zero on the real axis at near 30 Hz. The load measure in strut 2 remains collocated in

GY. Evolutionary manipulation of the truss topology has not destroyed the pole-zero

structure of the interface mounted active strut.
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Figure 5-22: Condensed model block transfer functions for the best G.A.
design. The closed loop rms performance is 33 nm with 75 N
rms control effort.

Performance of the closed loop system appears much improved over the nominal

system, e 9 dB rms. The dashed curve shown in the G.A. Gz, achieves more atten-

uation primarily because there is more relative spacing between the control weights

and the regulation transfer functions. This would occur even if the control weights

were level at low frequencies. The rms control effort in the optimized case is 10 %

larger than that of the nominal. The result is coupled disturbance and performance

isolation. Strut 1 provides the performance isolation while strut 2 provides the dis-

turbance isolation. The fundamental mode is softened by a decade in the closed loop

and is easier to control for a given actuator forcing capability because it is passively

soft. In practice this solution will be limited by the actuator stroke capability at low

frequencies.
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It is worth comparing this three dimensional interferometer design to the low

frequency disturbance solution of the one dimensional beam example. Both tend to

isolate by softening and dampening the fundamental mode. In the beam design the

beam generally stiffened while the payload was isolated via active hinging. Overall

the performance was difficult to improve because the low frequency response was

dominated by system inertia. The three dimensional box truss case has showed similar

softening and dampening effects where the right hand end is pinned at the mounting

node and at the left hand end an actuator acts on the disturbing interface. A second

actuator in this case allows compensation of the left hand end performance point

through the end bay structural frame. The controlled truss result is more effective

because the low frequency response depends on the stiffness which is being directly

manipulated by the search algorithm.

5.7 Summary

An application was explored that clearly shows the benefit of considering controls

and structural topology changes simultaneously when optimizing motion error per-

formances. Both one dimensional and three dimensional structures were designed

that included assumed optical control of the performance through frequency weights.

Differing types of disturbance were investigated that ranged from low frequency broad

band to high frequency narrow band bounds on input spectra. Structural actuators

were included as active units within the structures and a variety of sensors were

included for feedback to the model based compensators. In the one dimensional de-

signs punctuated equilibrium was used to further compare the best of each run while

allowing more randomized genetic information to be incorporated.

The results are topologically complex, there would be no hope of finding these

solutions through gradient search techniques. Inspection of the designs in terms of

system transfer functions shows, for a fixed control penalty, that the trend is to

structurally isolate the performance from the disturbance. For low frequency broad-

band disturbances this occurs by softening and dampening the fundamental structural
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modes. Softening the mode coupled with good actuator/sensor placement renders the

actuator with more authority over it, i.e. there is more relative gain in the regulation

loop.

High frequency narrow band disturbance designs for the beam example have pri-

marily improved performance by manipulating the average transfer function gain.

In these high frequency ranges system collocation is difficult to achieve. The best

one can expect from model based control design in these ranges is dampening of key

structural modes.

Results form the motion disturbed three dimensional box truss are similar to the

one dimensional beam in that structural regulation has been improved. This occurs

at the expense of estimation, since good sensors were assumed. In this example

larger performance improvements for a broadband input were realized because the

system low frequency response is dominated by the system stiffness. Here, topological

structural variations have more influence over the response.

These analytical results need to be verified experimentally before systems level

conclusions are drawn about their effectiveness. Since the method was developed

with an eye to implementation it is expected that these results will be verified by a

scaled experiment.
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Chapter 6

Experimental Results

Experiments were constructed that validate and explore the limits of the interferom-

eter one dimensional design example. The experiments are a scaled version of the

one dimensional example. Through these experiments insight into the quantitative

effects of a system redesign of a closed loop system is provided. Simple arguments

are given in terms of the fundamental physics of the designed structural filtering.

The arguments describe how the average structural transfer gain and structural delay

limit the closed loop performance.

In this chapter five different configurations are used (four of which are shown in

Figures 6-1 and 6-2) when comparing six cases of closed loop performance. Both

low and high frequency disturbance solutions are investigated over several sensor

choices. Further cases are presented in Appendix C. As in the design example, the

low frequency disturbance was assumed impulsive/step-like and broadband in nature.

This disturbance serves mainly to excite the system rigid body behavior which is

partially compensated by the active optics. Structurally and optically controlled

performance improvements of the optimized system are expected to be limited. The

high frequency disturbances are harmonic-like and narrow band in nature. They tend

to excite both the structural stiffness and distributed mass. Impressive performance

improvements over a simple regular truss design are expected.

The chapter is initiated with description of the hardware followed by an in-

put/output system description and discussion of the data taking procedure. Within
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the input/output description a subsection on closed loop optics is given that details

how the optical outputs of the system, both metrology and stellar, are implemented

and emulated. A section on data realizations and control design technique provides

the necessary background to the cases that follow. Selected results from the low and

high frequency disturbance cases are presented.

6.1 Testbed Description

Three major constituents make up the spacecraft-like testbed; the hub, the truss boom

and the optics benches. Physical properties for the testbed are listed in Table 6.1.

The truss is 24 bays of square-based pyramids connected at the apex by longerons,

as shown in Figures 6-1 and 6-3 with square faces up. At any given cross section the

truss is internally determinant, which is a good architectural choice for incorporating

active struts as base longerons. This allows the structural actuators to have a direct

effect on the sensitive axis of the interferometer. Indeterminant truss work is used to

mount the truss to a mount plate that is inset in the hub concrete block shown in

Fig. 6-4. The hub block is mounted on soft air-pucks to the floor that are near-under

the CG of the block.

Optics benches are mounted at the tips and at the center of the truss on the upper

face. The outer benches are 0.5 in. thick aluminum plate and are mounted on 1/4

in. standoffs to a slightly enlarged truss bay. The middle bench is 0.75 in. thick

aluminum plate and is mounted directly (with some shimming) to the truss face.

Mass is added to the tip benches to simulate the appropriate mass distribution for

this scale truss.

Suspension springs are used to offload the truss tips so that the structurally soft-

ened design solutions were implementable in the gravity field, and also, to prevent

piezo strut actuators from being crushed (due to stack imperfection) when inserted

at the hub root.

In whole the system is a 1/4 the design space craft length, with e 1/5 the tip

and hub mass, and - 1/3 the EI. These scalings render the natural frequencies a
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Low frequency disturbance configurations

Z

. -

Regular stiff design

combiner
/ z

structural actuator + load cell

disturbance/inertial
actuator

collector

Hinged design

Figure 6-1: Regular and Hinged design configurations for low frequency dis-
turbances.

High frequency disturbance configurations

Regular design

combiner
/ z

/ -

disturbance/inertial
actuator

collector

Hinged flexible design

Figure 6-2: Regular and Hinged Flexible design configurations for high fre-
quency disturbances.
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Table 6.1: Physical properties for the imaging interferometer testbed.

decade higher with compressed modal spacing in the ensuing decade, 10 - 100 Hz.

With the correct disturbance scaling, quantitative results can be projected for the 25

m baseline design example. The suspended pseudo rigid body rocking mode of this

system is at around 1 Hz and the vertical bounce pseudo rigid body mode is at e 5

Hz. Other pseudo rigid body modes fall in the 1 - 5 Hz band and are not coupled to

the design performance.

A heterodyne He-Ne laser optical system is used to measure the internal truss

motions as well as emulate collected starlight. Both legs originate from the cen-

tral combiner and operate as differential Michelson interferometers. In a differential

Michelson interferometer both target and reference polarizations are used. A rough
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Aspect Property

Hub total mass

size

mount plate

Truss total mass

size

geometry

members

node mass

Benches

collector total mass

size

lump mass

optics mass

combiner total mass

size

laser mass

laser size

voice coil mass

voice coil size

optics mass

Value

146.6 kg

0.69 x 0.69 x 0.22 m

0.41 m sq. inset

3/4" hole spacing

8.68 kg

.25 x 6.0 x .18 m

.25 m sq. base pyramid

(sq. face up)

long. connect apex

(triangular x-section)

3/8 in. OD, 0.058 in. wall

35.5 g + 11.2 g/strut

6.37 kg

0.3 x 0.3 x 0.013 m

2.68 kg

0.61 kg

17.58 kg

0.3 x 0.61 x 0.019 m

3.4 kg

0.11 x 0.33 x 0.13 m

1.1 kg

0.09 x .11 x .11 m

approx. 1.5 kg



Figure 6-3: Left side oblique view of the testbed with collector optics
mounted at the tip on the upper face of the truss.

Figure 6-4: Front view of the testbed hub with combining optics mounted on
the top plane of the truss.
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Table 6.2: Description of optics used in the imaging interferometer testbed.

Quantity Description

1 power splitter, 1.0 in. cube

2 polarizing splitter, 0.5 in. cube

7 fold mirrors, 1.0 in. 4
2 fold mirrors, 2.0 in. 4
8 1/4 wave plates, 0.5 in. 0

(paired for 1/2 wave)

2 fiber fed HP receivers

2 retro-reflectors, 1.0 in.

1 custom cats-eye optic, 120 deg. fov,

hemispherical focusing retro.

sketch of the legs can be seen in the upper configuration in Fig. 6-1 where the dashed

line represents the internal measure and the dashed dot line represents the external

measure. In the figure the z labeled external legs are reflected from the collectors

upwards to a cats-eye optic "retro-reflector" directly above the combiner.

Figure 6-5 shows a plan view of the optical layout. A listing of the optical elements

is given in Tables 6.2 and 6.4. The laser beam that originates from the top left of

the combiner is power split into two legs. Each leg is split by polarization and each

polarization is directed to the right and left ends respectively. The leftward legs pass

through a zig-zag of delay line optics and fold mirrors before traversing the truss to

the collector. On returning from the collectors the leftward legs rebound through

the delay line optics before being combined with the rightward legs on receivers.

The receivers are fed to the modulating transducers via fiber optics. Signals from the

transducers are sampled and made available as digital output in the control computer

VME setup. This is somewhat restrictive as the available laser output will have delay

proportional to the system sampling rate (that may be limited by the size of the

system required for structural control).

At each collector, shown in Fig. 6-6, the internal leg is retro-reflected while the

external leg is reflected from a fold mirror towards a custom built cats-eye optic. The

cats-eye optic is mounted in the ceiling - 3 m directly above the combiner. Light
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, retroreflector

Figure 6-6: Right hand end collector. One leg is retro-reflected while the
other is reflected to and received from the cats-eye optic.

incident on the cats-eye optic, shown in Fig. 6-7, from any direction in the field-of-

view, is focussed through a central point and reflected back in the direction of the

incident beam. This allows the emulation of a star by referencing the left and right

ends of the truss through a common point in space. The effective measure obtained

at the receiver is a differential pathlength proportional to the internal measure plus

the laboratory referenced differential tip motion of the structure.

Hardware on the combination bench consists of a fold mirror mounted on a voice

coil and a fold mirror mounted on a reactuated piezo stack. Reactuation involves

an equivalent mass loaded piezo stack that is mounted on the back of the active

optic. The voice coil provides large stroke capability while the piezo provides fine

positioning and phase stabilization of the voice coil. A discussion of the optical

control loops is deferred to the input/output description section. This delay line

emulates an imaging spacecraft delay line in that it provides optical compensation of

pathlength; however, an actual delay line design [52], has sizable focusing optics (f#

of . 3) for starlight pathlength compensation. In the actual device efforts are made
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Figure 6-7: Cats-eye optic mounted in the ceiling f 3 meters above the
testbed hub. The cats-eye has a 120 degree field of view, note
the camera flash visible in the glass.

to render the metrology beam coaxial with the starlight. Notice in Fig. 6-5 that the

laser legs are nearly coaxial. It is sufficient to be nearly coaxial for coherent light.

This will become evident in the discussion of the optical loops.

6.2 Input/output description

Detailed knowledge of the system inputs and outputs is required since the system

that was optimized includes fixed bandwidth optical control. Signals are listed in

Table 6.3. In general the system is four-in four-out with the optical and structural

control acting independently. Figure 6-8 shows the wiring of the control computer

to the hardware and the connect points of the data acquisition system to the setup.

This section will outline the connectivity in Fig. 6-8 by discussing the disturbance,

performance, actuators and sensors respectively. Throughout the discussion reference

will be made to equipment listed in Table 6.4. A description of the data acquisition

procedure will also be given.
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Table 6.3: Description of effective 4 input and 9 output signals of the testbed.

Inputs hub shaker

delay line voice coil

reactuated delay line piezo

diff. PI piezo struts, left and right ends

Outputs hub accelerometers

strut load cells (collocated)

internal laser leg

external laser leg (starlight)

Description
testbed.

of equipment used in the imaging interferometer

Equipment

Sensors:

Laser

receiver

Accelerometers

Load cells

Actuators:

Hub shaker

amp.

Optic voice coil

amp.

Optic piezo

amp.

Piezo strut

amp.

Type Gain/capability

HP5517B

HP10780F

Sundstrand QA-1400

PCB 208B

B&K Type 4809

Crown DC300A II

B&K Type 4810

Crown DC300A II

TS18-H5-202

Crown DC150A II

P-843.60

in-house

Data acq.:

Control comp:

Tektronix 2630

VME based

dual TIc40's

heterodyne, A = 632 nm

1 mWatt, 6mm beam ¢

range .163 mm

13.6 V/g

0.5 V/lb

10 lb

300 W

2 lb

300 W

10 t m (free)

150 W

90 A m (free)

130 N (blocked force)

0-100 V offset

+ gain of 10

4 sensors, 1 source

4 in 4 out, 4 kHz 60 states

2 in 2 out, 2 kHz 200 states
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System Diagram

asu t broadband input

measurements I

differenced load cells F
/ (collocated with actuators)

Figure 6-8: System schematic showing origination and destination of mea-
surement and control signals. Note that data is primarily taken
through the real time computer incorporating sampling delay in
the measurements.

Disturbances are injected at the hub of the testbed using shakers. The distur-

bances are broadband, for the sake of experimentation, and are generated by the

data acquisition system. Typically these inputs are generated over three broad-

band bandwidths, {0 - 20, 0 - 100, 0 - 500} for the intended low frequency shape,

and {0 - 50, 0 - 200, 0 - 500} for the intended high frequency shape. Data are then

appropriately concatenated. The disturbance input levels were noted for each band-

width and input voltage level and roughly correspond to 0.25 N rms on average. This

information is combined with measurements of the performance rms values in order to
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apply the correct magnitude shaped disturbance to the measured closed loop transfer

functions.

Experiments performed involve closing sequential control loops. The first set

of loops closed are the optical system, requiring measurements from the metrology

system and control signals to the delay line actuators. These loops are closed in a

specific order to mimic the operation of an imaging interferometric device. The actual

imaging device involves some feedback of the measured performance, (spatial phase

information from the interfered guide star fringe) so it is important to do this within

the constraints of operation of the actual device.

Optical loops are closed sequentially. First the measured internal motions are

compensated for in a 350 Hz bandwidth loop, well into the high modal density region

of the structural response. A block diagram of the manner in which the delay line

piezo and voice coil actuators are used together is shown in the dashed box in Fig. 6-9.

Since the piezo stack transfer function is essentially a constant, with sampling delay,

out to beyond 1 kHz, the piezo controller is designed as a high bandwidth loop with

mediocre gain at low frequencies. The voice coil loop with appropriate controller

is added to desaturate the piezo and provide large motion at low frequencies. This

can be seen in the individual transfer functions and loop transfer functions plotted

in Appendix B. The net result is shown in the combined loop transfer function in

Fig. 6-10. Without the piezo in the loop, G,(s) = 0, the voice coil alone is unstable

with high gain out to beyond 100 Hz. An alternate interpretation of the piezo is as

a fine positioner that phase stabilizes the high gain voice coil loop.

Closing the internal laser loop nullifies the internal contribution to the external

measure. In this setup this is not exact nullification because the internal and external

legs are not coaxial. However, since in this setup the external signal is to be fed

back (tracked by the delay line), and is now a coherent measure of the differential

tip displacement plus some small internal residual, this is not an issue. In the actual

device, where starlight is combined, coaxial alignment is needed when imaging a

target star.

The closed loop complimentary sensitivity of the delay line is shown in Fig. 6-11.

150



Optical control diagram
,---------------------------------------- -----

internal laser/piezo stack disturbance
piezo controller transfer function

+ laser
Kpathlength

internal

internal laser/voice coil measure

controller transfer

external
measure

emulated starlight fringe feedback

Figure 6-9: Optical control block diagram. The dashed box represents inter-
nal control that is closed first. The outer loop is the emulated
fringe feedback using the external laser signal.

Internal loop transfer function

-200

-300

-400
100 10 102 1

Figure 6-10: Internal loop transfer function. Also shown is the loop as if
G (s) = 0.
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External feedback loop transfer function
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60- Solid: external feedback loop
Dashdot: internal complimentary sensitivity
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Figure 6-11: External loop transfer function, CodlKf solid, where Codl is the
complimentary sensitivity of the closed internal loop.

As a servo on the external feedback command the delay line is e 1 to beyond 100 Hz.

Loop gain on the emulated fringe rolls down at a slope of -2 at low frequencies and

crosses over with a slope of -1 at 40 Hz. Choice of crossover frequency was determined

by the scale of modal frequencies in the experiment vs. the design example and is

consistent with a magnitude 8 guide star fringe information rate for this scale. The

shown loop is the feedback used for all structural closed loop experimental results.

No modifications to the optical loops were necessary when changing the structural

configuration.

Experimental transfer functions from a broadband hub disturbance to the optical

outputs from the upper regular truss in Fig. 6-1 are shown in Fig. 6-12. The figure

shows the transfer functions under three different conditions, open loop, closed in-

ternal loop and closed external loop (with internal already closed). The solid curve

in the external measure shows the predominant pseudo rigid body motion (testbed
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rocking 0.9 Hz mode). Considerably less internal motion, G,,, is evidenced since

the internal measure is insensitive to pseudo rigid body motion. Under 0.23 N rms

input level the external output is .064 mm rms. Strong flexible beam-like modes are

evident at 15, 48 and 76 Hz in both outputs. These represent the first three anti-

symmetric modes of the beam like truss. Modes occurring above 100 Hz are coupled

three dimensional modes and become very dense and local in nature. A mode that

appears in the internal transfer functions at 5 Hz is a rigid body/first symmetric mode

coupling. Pole-zero excursions that appear in the transfer functions below 70 Hz are

either slightly disturbable/observable symmetric modes or suspension modes.

When the internal loop is closed the internal motion drops to less than 20 nm rms

as shown by the dashed curve in Gy,. The external transfer function with the internal

loop closed overlays the open loop at frequencies below the first antisymmetric mode.

At frequencies above there is notable difference between the curves showing that a

portion of the high frequency pathlength error is due to internal motion. Closing the

external loop reduces the external pathlength to about 430 nm shown by the dashed

dot curve in Gz,. The servo nature of the delay line can be seen in G,, which is

now a good approximate of the open loop external motion at frequencies below the

external loop bandwidth.

It is possible to provide more gain at low frequencies in the external feedback loop,

i.e. roll down with a slope of -3 before crossing over with a slope of -1, compensating

for more external motion by cancelling it with delay line stroke. Results for this

higher loop gain are shown for the regular truss in Fig. 6-13. The difference is further

rejection at frequencies below the fundamental antisymmetric mode. This higher

gain compensator is not implemented with the structural controllers. Performance

weighting is used to project the effect of the higher loop gain onto the experimental

results. Note that this is not entirely a good measure because closing the loop on the

performance essentially modifies its impedance when being measured, and, some of

the structural closed loop results use the performance as a sensor. It will be shown

that the performance sensor is not the primary sensor in the low frequency disturbance

control configurations so that the performance weighting approach is a fair indicator.
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Gzw, root disturbance to external pathlength

Hz

Gyw, root disturbance to internal pathlength

Figure 6-12: Transfer functions from the hub disturbance to internal and
external laser outputs for the regular truss configuration.
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Gzw, root disturbance to external pathlength
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Figure 6-13: Transfer functions from the hub disturbance to external laser
output for the regular truss configuration with high gain fringe
feedback.

Structural actuators are placed symmetrically by the design algorithm and act

differentially when in the structure. Configuration line drawings in Figures 6-1 and 6-

2 show the actuators as thick longerons placed in the truss. Electronic images of the

actuators in the actual hardware are provided at the beginning of each experiment

configuration result.

The strut actuators are (repaired) Physic Instruments P-843.6 with more than

enough bandwidth, blocked force and stroke necessary for this application. Their

axial stiffness is comparable to that of an aluminum longeron, 15N/pm vs. 13N//m.

When placed in the truss along the bottom stringer (see Fig. 6-15) the result is close

to that in the nominal design example where the actuator stiffness is modeled as

matched to the structure.

Two different realizations of the active hinge designs are made. The first uses the

extra stoke capability of the actuators by placing them in series with a soft flexure.

Effectively the truss is passively hinged and higher levels of voltage are used to force
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across the hinge. The second uses high gain collocated integral force feedback to

realize the hinge and damp the structural modes at the same time. Note that neither

of these are the passively very-soft hinge with differential moment actuator that the

optimized results showed, however they are both reasonable approximations. The

high gain active hinge is limited by ability to achieve high gain and still roll off the

control in a modally dense region. The passively hinged strut is limited by coupling

to the pseudo rigid body mode of the testbed at 5 Hz.

Figure 6-8 shows that the structural control signal is filtered before being split,

amplified and then passed to the structure. The filter rolls off the control signal to

the actuator attenuating the 4 kHz zero-order-hold through-put to the piezo. When

being split the individual strut gains are adjusted so that the transfer functions from

each strut to the performance match at r 55 Hz.

Four sensors were available for the structural control designs, both the internal

and external laser measurements under closed loop optical control, integrated and

differenced accelerometers located on the hub, and differenced load cells collocated

with the strut actuators (see Fig. 6-1). In each model-based control design a pair of

sensors were used that included the hub sensor, and, for the low frequency disturbance

cases presented in this chapter, the performance sensor. In the non-model-based

controllers the differenced collocated load sensor was used. Sensitivities for the various

sensors are listed in Table 6.4.

Closing loops on an actual imager will require careful consideration of the noise

in the sensor signals used. Structural control that improves the pathlength error

will pump sensor noise directly into the structure. This is the cost of high gain

dampening and stiffness control of the resonances. However, these broadband noises

are just shaped disturbances and are also compensated for by the optical control loops

to at least the closed loop optical levels of performance.

By far, the most sensitive, and lowest noise floor sensors are the laser measure-

ments. The laser noise floor can be as low as 5 nm for the HP5517B. In these

experiments variable laser output gain was used so that, under closed loop optics,

both the large commanded internal signal and the much smaller controlled external
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signal could be sampled by the data acquisition computer. The differenced QA-1400

accelerometers have a noise floor of 1 lpg rms which corresponds to about 50 nm

rms over the observed experimental bandwidth. Better quality accelerometers such

as QA-3000's are available commercially. Note that use of such a hub sensor will be

an issue in the actual imager design, because, even a mix of good quality available

sensors have a noise floor of _ 20 nm over the observation bandwidth [55]. Collocated

PCB 208B load cells have broadband noise of 0.04 N, which is over 20 % of the

expected low frequency disturbance level. The use of collocated load in an imager

will require extremely sensitive and noise free load cells.

Data acquisition used a Tektronix 2630 system over bandwidths consistent with

the disturbance. Measurements were taken in transfer function form at the output of

the control computer so that the sampling delay was included.

Measured autospectrum rms values of the closed loop performance are not re-

ported because they are dominated by laboratory disturbances on the order of 150

nm. Projected values of the closed loop performance based on the measured input

autospectrum and the closed loop disturbance to performance transfer functions are

presented. The experiment was particularly sensitive because of the lab reference

sensing provided by the external laser leg. This sensitivity is evident in the presented

transfer function data.

The maximal level of allowable broadband input was used when measuring closed

loop transfer functions. Upwards of 50 averages per bandwidth were performed.

The maximal level of broadband input was set by the laser range since, even in the

closed loop, the system optics have to track the low frequency rigid rocking motion.

Poor coherence was noted in the performance and load cell transfer functions in the

bandwidth of the "rigid body" modes of the system. This was attributed to large

signal cancellation in the differential sensors.
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Model fitting flow
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model mix in low freq.model
fit

Figure 6-14: Example procedure for fitting state-space models to closed loop
optical transfer function data.

6.3 Model Fitting and Control Design

Linear state-space models are fit to the closed loop optics transfer function data using

Frequency Domain Observability Range Space Extraction (FORSE) for an initial

guess, and logarithmic least squares tuning [56]. Equation 6.1 shows the cost that is

minimized in the logarithmic tuning,

kmax nout nzn 2

J(0) - E E E l g((, (Wk, )) 1 og(G,q) (6.1)
k=ko p=l q=l1

where 0 is a vector representing the model parameters, Gpq(jwk, 9)) is the model

evaluated at discrete frequency points jwk, and p and q are indices that enumerate

the outputs and inputs respectively.

Many iterations were performed in achieving a model of control design quality. A

bootstrapping technique was used that mixed data and approximate models from low

to high bandwidths. A flow diagram of an example procedure is shown in Fig. 6-14.

The procedure was found to eradicate unnecessary non minimum phase behavior in

the fit model that often occurred in bandwidths of low coherence.

Structural control design is performed on the closed loop optics system. Weighted

H2 designs, that follow the design procedure presented in Chapter 3, were used for

model-based control. Frequency weights were used that shaped the disturbance, con-

trols and in some cases the sensors. Performance weights were not used since the
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system included optical control and the performance variable is directly measured.

Control weights were used to roll off the structural controller before attempting to

control regions of increasing modal density and increasingly poor model quality. They

were also used to allow band limited dampening of the low frequency pseudo rigid

body rocking mode through use of the inertial actuator at the hub. Low frequency

sensor weights were used to ensure the rigid body control used only the hub sen-

sor. Sensor weighting was not an issue in the high frequency disturbance cases since

dampening of the rigid body mode was not necessary.

Robustness was introduced into the control design in two ways. The first is by

using sensitivity weighting described in Chapter 3. When using sensitivity weight-

ing under static and invariant input assumptions, extra performance and disturbance

weights are added to problem modes. Using this technique works well for transfer

functions that roll off as the modal residues tend to decrease on average as their modal

frequency increases; however, in the closed loop this may not be the case, as shown

by the weighted Gzu transfer functions in the design example chapter. Here, sensi-

tivity weighting of high frequency modes renders the low frequency transfer function

inaccurate. This can result in undesirable controller behavior at low frequencies.

The second method of adding robustness to the controllers was via direct manip-

ulation of the controller parameters. In many cases, especially when the controllers

were independently unstable, it was found that dampening sensitive controller modes

resulted in robust designs.

In a few cases local control design was performed (non parametric model based) by

integrating and appropriately notching the differential load cell sensor signal. These

controllers are single-input single-output. They were designed using measured actua-

tor to sensor transfer functions, Gy,. Notches were appended when instabilities were

found upon implementation.
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Table 6.5: Cases presented for low frequency disturbance spectrum. "rpni"
abbreviates "reduced penalties, no improvement".

Configuration Type of control sensors limit

regular H 2  hub + z rpni/margin

Opt: flexured hinge H 2  hub + z rpni/margin

Opt: feedback hinge f F load roll-off gain stab.

6.4 Low frequency disturbances

Design solutions were sought that implemented the results of the design example

within the limitations of the gravity environment. The two primary configurations

presented in this section are shown in Fig. 6-1 for low frequency disturbance envi-

ronments. The upper configuration represents a regular design of maximal allowable

stiffness. This is the optimized design without the active hinge, not the nominal

design which was considerably less stiff. Performance improvement from a global

stiffening of a truss is well understood and is predicted to be r 1 dB rms for this

system. The regular design implementation has approximately the same structural

mass as the optimized design implementation.

The optimized design required a moment actuator across a soft local stiffness.

Realization of the active hinge design was achieved in two ways. In the configuration

shown in Fig. 6-1 the piezo strut actuators were raised towards the truss elastic

axis via bending flexures. This effectively lowered the mechanical impedance of the

displacement actuator by using their large stroke capability against a soft spring.

Collocated designs were compromised by this flexuring since internal strain (for load

measurement) at the hinge is divided into the flexures.

Active hinging was also accomplished via high gain collocated load feedback in

the upper configuration shown in Fig. 6-2. This configuration also turns out to be

the optimal placement for the regular configuration high frequency disturbance case.

For the low frequency disturbance case a high gain feedback non parametric control

design was used to achieve hinging using midspan non flexured piezo struts.

Cases presented in this section are enumerated in Table 6.5. Further cases that
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Figure 6-15: Digital image of the root active strut implementation.

investigate other sensor choices are presented in Appendix C. Results from these

extra cases bring no new insight into the physics of what is happening in terms of

performance, although the underlying dynamic controllers are quite different.

Implementation of the root structural actuator in the regular configuration is

shown in Fig. 6-15. As in the nominal case in the design example, the root location

was found to be the best by exhaustive search of the available locations. Placement

at the root represents a location that would be chosen via an open loop controlla-

bility/observability metric. The root location provides a high strain location for the

primary antisymmetric modes and good static leverage over tip displacement.

Transfer function data with the optics loops closed are shown in Fig. 6-16. A

59 state model was fit to the data. Modes in Fig. 6-16 can be divided into three

regions, 0-10 Hz, 10-100 Hz, 100-500 Hz. Below 10 Hz the modes are predominantly

pseudo rigid body modes of the hub truss system. The mode at - 1 Hz is the

rocking mode of the hub truss system. At 5 Hz there appears a coupled rigid bounce,

1st symmetric mode that appears strongly in the hub and collocated sensors and

is apparently excited by the differential structural actuator. For this configuration
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the antisymmetric beam-like modes occur in the 10-100 Hz band. The fundamental

antisymmetric mode occurs at e 15 Hz, second antisymmetric at r 48 Hz and third at

" 76 Hz. Close pole-zero pairs in the 10-100 Hz range are primarily due to suspension,

out-of plane antisymmetric modes, and in-plane symmetric modes. In the 100-500 Hz

range the modes rapidly become three dimensional and local in nature. Data above

250 Hz are purposefully smoothed to give a model that fits an average measure of the

transfer function magnitude. Controllers are gain stabilized in this range.

Several notable features can be seen in the data. The first is the lack of coherent

measurement in the 2-8 Hz range. This is attributed to taking data with the optics

loops closed where the pseudo rigid body modes are contributing large signals that are

approximately cancelling in the differential outputs. These modes are being excited

through laboratory floor disturbances so that the inputs are incoherent with the

provided disturbance signal.

An interesting difference between the stiffer Gz,, shown in the data and the design

model nominal case is the deep zero between the first and second antisymmetric

modes (rather than between the second and third). The difference is attributable to

the dynamic scaling of the experiment with respect to the design model. By itself

this zero provides , 30 dB of narrow band disturbance rejection over a bandwidth of

10 Hz.

The transfer function from the structural actuator to the performance sensor, Gz,
shows the impedance effects of the closed loop optical system. Phase loss in the 10-60

Hz range is over and above that of the time delay, shown in the phase of the GY

hub sensor. The phase loss is due to a real pole that is introduced by the optical

compensator.

Transfer functions, G,, disturbance actuator to hub angle sensor (for inertial con-

trol), and Gy structural actuator to load cell, appear collocated. The G,, transfer

exhibits some low frequency phase wrap due to the integral filtering of differenced

accelerometer signals. Phase loss at high frequency is the characteristic 3T/2 digital

processing delay. The structural actuator to load cell transfer function shows noncol-

located excursions at 50, 90 and 200 Hz. These are due to imperfect differencing.
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Various control design weights
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Figure 6-17: Control design weights for regular configuration, hub plus z sen-
sors, low frequency disturbance weight.

Design weights used in the model-based control design are depicted in Fig. 6-

17. There is no performance weight. Control weights are divided into weights on

the inertial actuator and weights on the structural actuator. The inertial actuator

weights restrict the inertial actuator (disturbance input voice coil) to dampening the

fundamental rocking mode. Structural actuator weighting appears narrow band yet

their effect is determined by contrast with the G,, transfer function, which rolls up

considerably as shown in the model block transfer functions of Fig. 6-18.

In the control design model, shown in Fig. 6-18, hub and performance sensors are

used. Control designs that use the hub with collocated load sensors are in Appendix C.

Disturbance and sensor weights are integrated into the control design model in Fig. 6-

18 where appropriate.

Included in Fig. 6-18 are pole/zero-damping plots for each transfer function. The

three dotted lines from top to bottom represent damping of 1, the jw axis, and
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Figure 6-18: Model transfer functions with pole-zero map, hub plus z sensors,
low frequency disturbance weight. 'o's correspond to the solid
curve zeros, '*'s correspond to the dashed curve zeros.

damping of -1 in similar fashion to the design example and that presented for simple

structures in Chapter 2. Some of the well damped and real poles and zeros shown

correspond to the weights used, for example the real pole at 15 Hz in all the transfer

functions involving the disturbance w. Acceleration filter poles can be found at 0 0.7

Hz and are cancelled by zeros in all transfer functions that do not involve the hub

sensor measure.

Further well damped poles and zeros are a result of several effects. Internal com-

pensator states add to the shaping of these transfer functions as does irrational struc-

tural delay, digital computer time delay, and discrete modeling effects. All can result

in well damped zeros, or poles, or both. The later three effects are the cause of the

damped nonminimum phase zeros that appear.
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Sensor transfer functions for the performance sensor are plotted independent of

Gzw and Gz,,. Close inspection of the real nonminimum phase zeros for this sensor

shows that they differ from Gz, to G,, and from Gz, to GY. This is due to sen-

sitivity weights added to the performance and disturbance which do not weight the

performance sensor.

When investigating Fig. 6-18 it is instructive to refer back to the cost,

= 0Gz r 2  (6.2)

= 2fo GZWGzwdw .

where,

G = Gz° - GzuK(I + GK)- 1G,,. (6.3)

dropping the explicit dependence on s. The compensator, K, may be any stable

design. Clearly, from the expansion of the closed loop transfer function, G& , the

desire is to make,

GzuK(I+ GK)- 1Gy = G OL . (6.4)

The ability of a controller to do this depends on sensor-actuator selection, placement

and impedance. For example, inertial control is used to damp the rocking "rigid

body" mode by using the hub sensor (it has the best signal to noise at low frequency)

and the disturbance input voice coil as the actuator, u w. Around this mode the

left hand side of Eqn. 6.4 is very close to

GzW(K(I + GYK)-1 G,,) . (6.5)

which is GL multiplied by the complimentary sensitivity of a collocated plant that

easily approximates 1 given the pole-zero structure shown. Higher bandwidth struc-

tural control design is a more convoluted task due to the relative nature of the actuator

vs. the inertial disturbances and the nature of the performance vs. the sensors used.

Usually, limiting structural delay occurs in the various loops in the expression.

Table 6.6 shows relevant nonminimum phase behavior extracted from the model.

From the table it is clear that the hub sensor, has good G,, transfer gain over the

first 11 decades allows a relatively high gain estimator, however, spatial separation2
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Table 6.6: Regular truss occurrence of important nonminimum phase behav-
ior, low frequency disturbances. Low frequency behavior due to
filters is not limiting.

Transfer Function Freq. Hz damping %

Gz, 31 -0.1

Gzu 20 -1.0

Gyw (z) 31 -0.1

Gy (hub) > 400 na

Gy (z) 19 -1.0

Gy u (hub) 100 -0.7

in the Gzu loop limits the ability of the regulator to achieve compensator gain. The

expression in Eqn. 6.4 is therefore limited from equaling Gf L over a wide bandwidth.

The multivariable Nichols plot for the best compensator designed on the plant

given in Fig. 6-18 is depicted in Fig. 6-19. Good gain is noted over the first three an-

tisymmetric modes. Phase loss between the inertial and structural control in the plot

is a result of optimal concatenation of the two independent SISO controls. Further

phase loss is seen in the loop design and is attributed to compensator poles being

placed near the mirror images (about the jw axis) of the real nonminimum phase

zeros, primarily seen in the regulator. As a minimum phase, non minimum phase

pair the zeros hold the average transfer gain high while ensuing modes cause phase

loss. This unraveling is the limit on performance in that the overall curve cannot be

raised without encircling critical points. Structural control weights eventually enforce

roll off.

Singular values of the sensitivity transfer function matrix are plotted in Fig. 6-19

on both the model and the data. The singular values are disparate due to the ill

conditioning of the transfer function matrix. Apparent huge attenuation and amplifi-

cation of disturbances at the plant output are in fact not possible due to the direction

of the real disturbances. The plot does indicate that the compensator performance is

sensitive to the direction of the incoming disturbances. It also serves as notice of sta-

bility problems where there are large (on the order of 20 dB) narrowband excursions

between the model and data predictions. The only excursions visible in Fig. 6-19
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Figure 6-19: Multivariable Nichols plot and sensitivity singular values. Both
plots are made on the data and the model, and are indicators
of controller gain, loop phase loss, and performance limits. In
the Nichols plot frequencies in Hz are marked along the curve
by o's and critical points are shown as x's.

168



IGzwl*IGdistl, root actuator, hub plus z sensors
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Figure 6-20: Regular truss with root actuator performance for several levels
of closed loop control. OL stands for open loop, OC stands
for optics loops closed, and SC stands for structural controller
closed.

are near 60 Hz where the data is corrupted by electrical noise and is not particularly

coherent.

Performance of the various levels of control is shown in Fig. 6-20 as the shaped dis-

turbance multiplied by the measured closed loop transfer function. Numbers quoted

for performance in the figure do not therefore include sensor noise contributions. The

open loop performance is .06 mm rms (v-z), near the maximum range of the laser.

Over 40 dB of improvement is achieved from the optical control most of which comes

from tracking the rigid body mode. A further 10 dB of rms improvement comes from

the structural control where dampening of the first, second and third antisymmet-

ric modes is evident. Structural results seem under stated given the level of control

achieved. The reason is that the first antisymmetric mode is already significantly

dampened by the hub air puck mounts to 1.3 %. Typically this mode would have

damping on the order of .5 % and the structural improvement would be on the order
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of 15 dB rms. The total closed loop result is dominated by the sub 7 Hz response.

In this case level gain at low frequency is inertia dominated, as opposed to the usual

stiffness dominated structural response. This is why the extra low frequency gain was

sought in the optical loops.

Closed loop performance shown is the result of allowing the compensator increas-

ing authority until the performance did not improve and inevitable instability was

found. The level of control shown is not as impressive as that predicted in Gzw of

Fig. 6-18 hinting that the limit on performance is in the fit model directional infor-

mation.

An important number for comparison will be in the middle band indicated by

the vertical dotted lines. This is nearly all the performance assuming the extra gain

optical compensator. For the controller shown about 121 nm was achieved. This is 9.5

dB improvement over the optical control. Using collocated load along with the hub

sensor achieved 117 nm closed loop performance (similar figures are in Appendix C).

A root damper design that used only integral feedback on the measured differential

load achieved 130 nm. The later design was not pushed further as the intent was to

emulate a good damper design.

The point to note is that the above three control architectures resulted in about

the same level of performance. This shows that the system behavior was limited by

the underlying physics not necessarily the control architecture. A hidden caveat in

using the load cell sensor is the sensor noise through put, which for these load cells

corresponded to about 100 nm of broadband performance that is uncorrelated with

the disturbance.

Two ways implement the hinged solution were identified. Hinging via flexuring

the active struts will be shown first. Since the optimized design captures the strain

of the first antisymmetric mode across the structural actuator, it is thought that

the authority over this mode will be more impressive than the regular root actuator

design. A digital image of one of the piezo struts in place is shown in Fig. 6-21.

Location of the hinge is shown in the bottom configuration of Fig. 6-1.

A 58 state model was fit to optical closed loop transfer function data for this
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Figure 6-21: Passively hinged implementation of optimized active hinge so-
lution.

configuration. The model vs. the data is shown in Fig. 6-22. Similar trends are seen

in this data as in the regular configuration data. Once again a high frequency model

has been mixed in to reduce the order of the overall fit. Less effort is applied to correct

modeling at high frequency since the controller will be rolled off at a relatively low

bandwidth. Coherence problems are again evident in the 2 - 7 Hz range.

By hinging the actuators on flexures the first antisymmetric mode has dropped

to around 8 Hz, almost a factor of 2 in frequency, or 4 in stiffness. The optimized

solution actually called for this mode to be almost a decade below the fundamental

nominal antisymmetric mode. It was impractical to implement this in the gravity

field. Already, at 8 Hz, there is significant mode coupling with the pseudo rigid body

vertical bounce mode at 5 Hz.

Flexuring the actuators has restricted the use of the collocated load sensors. Ex-

amine how the magnitude of the G,, and G,, load transfer function is reduced - 20

dB over that in Fig. 6-16. Here, signal to noise in the data is compromised. Further

restriction in using this sensor is brought about by the feed through term evident in
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the Gyu transfer function. A large feed through term buries the modal information

in the transfer function limiting the ability to control the modes.

For reference, the design model block transfer functions are shown in Fig. 6-23.

The design weights are essentially the same as shown in Fig. 6-17 (see Appendix C

Fig. C-8) with some modification to the structural control weights to allow control

over a lower frequency range, since the fundamental antisymmetric mode has dropped

in frequency. For comparison to the regular implementation the hub and performance

sensors are shown here with other cases presented in Appendix C.

An unexpected, but reasonable, feature of Fig. 6-23 is the low overall gain of the

Gu transfer function. In the design example this transfer function gain was increased
Gzu transfer function. In the design example this transfer function gain was increased
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Table 6.7: Flexured hinge occurrence of important nonminimum phase be-
havior, low frequency disturbances.

Transfer Function Freq. (Hz) damping (%)

Gzw 15 -0.1

Gz, 80 -0.6

Gyu (z) 15 -0.1

Gyw (hub) 250 -0.7

Gyu (z) 78 -0.1

Gyu (hub) 40 -0.9

due to the hinging. The experimental implementation has reduced this effect through

flexuring the piezo active struts. Gain is needed in the flexured actuator to displace

the soft flexures.

The most notable feature of Fig. 6-23 is the collocated like pole-zero structure

of the structural actuator with the performance. This is fundamentally different to

the regular design. Table 6.7 lists the nonminimum phase behavior for the hinged

configuration. The later occurrence of nonminimum behavior in the regulator Gzu

loop allows more gain at low frequencies in the regulator. Again the estimator does

the best with the hub sensor, although some nonminimum phase behavior occurs at

250 Hz possibly due to realization error. In general, as in the regular configuration

control designs, the hub sensor is predominantly used with the performance sensor

mixed in near the jw axis zeros.

Similarly to the regular truss case, the Nichols plot shows the loop gain unraveling

with increasing frequency. In this case, appreciable gain is noted in the first two

antisymmetric modes only. Again the phase loss between the inertial and structural

control is due to the optimal concatenation of the two controllers. Further phase

unraveling now occurs through a different mechanism due to the actuators/sensors

topology. Here, both the regulator, Gz, and the estimator, using the primary hub

sensor, G,,, are approximately collocated in terms of pole-zero structure in the needed

bandwidth. The structural delay comes about when interconnecting the system, since

G, is not collocated in the needed bandwidth, y is located with the disturbance and
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Figure 6-24: Multivariable Nichols plot and sensitivity singular values for
optimized configuration with flexured active hinge.
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Figure 6-25: Optimized configuration with flexured active hinge performance
for several levels of closed loop control.

u with the performance. The sensitivity singular values show the same ill conditioning

as shown in the regular configuration case. Compensator roll off characteristics are

apparently improved since no appreciable sensitivity attenuation or amplification is

seen beyond 50 Hz.

Closed loop performance is shown in Fig. 6-25. Evidently, approximately the same

level of improvement from optical control is realized in the hinged design as in the

regular truss. Performance under optical control is reduced to 426 nm rms, showing

greater than 40 dB rms improvement. Again, the structural control is responsible for

over 10 dB of rms improvement, provided, for the most part, by dampening the first

and second antisymmetric modes. In this case the damping of the first antisymmetric

mode is 1.6 % with the optical loops closed. In the middle band the performance is

reduced to 69 nm rms where the fundamental mode has been softened and dampened

with more authority than in the regular truss configuration. The result using hub

and collocated load sensors is similar, 68 nm rms achieved.
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Figure 6-26 illustrates the comparison between fully closed loop regular vs. hinged

designs. In general the optimized design yields 3 dB improvement over the regular

with nearly 5 dB realized in the middle band. Given that the GA required a very

soft active hinge in the truss this is an encouraging result. The result is extremely

similar to isolation where the softening and dampening of the fundamental mode is

isolating the performance from the disturbance.

A major portion of the performance improvement is in the 7-15 Hz region where

the hinging has introduced a singularity into the Gz,, average gain. The inertia

of the softened fundamental mode causes an increase in the system inertia beyond

this frequency until the second predominantly truss-like mode is reached. Here the

response resumes with beam-like average gain, and it is not surprising that the roll

off of the stiff regular truss and that of the hinged design are almost equal on average.

After the hinge mode is pinned inertially, the roll off is dominated by the beam-like

properties of the truss independent of the length and boundaries [16]. The hinge

effectively shortens the length of the beam delaying the uniform beam-like roll off

until near the second mode at which point the regular truss has already achieved a

similar rate.

The active isolation behavior of the hinged design, with respect to the regular

design, is evident in Fig. 6-26. Another way to achieve the hinging result experimen-

tally is high gain integral load cell feedback to unflexured active struts. This was

implemented, for low frequency disturbances, on the upper configuration in Fig. 6-2,

which was also the optimal placement of structural actuators for the regular design

with high frequency narrowband disturbances.

Only knowledge of the measured (non parametric) Gy transfer function is needed

to perform this local controller design. The ensuing design from differential actuators

to differential load measurement is shown in the loop gain given in Fig. 6-27. Loga-

rithmically even pole-zero spacing, in the region of the first and second antisymmetric

modes, is an important characteristic of this loop.

Although the compensator is a basic integrator (1 state) there are six notches used

to stabilize the roll off from 200 - 400 Hz. These notches provide gain stability where
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IGzwl*IGdistl, regular vs hinge comparison

Figure 6-26: Comparison of regular vs. optimized (flexured structural ac-
tuator) configurations for low frequency disturbances. Perfor-
mances including extra gain in the optical loops as a z weight
are included.

GyuK, integral load cell feedback (on data)

10' 102

Figure 6-27: Loop gain for high gain softening of structural actuators in the
regular truss midspan. Eight notches were added from 200-500
Hz.

178



IGzwl*lGdistl, hub plus z sensors

Dashed Open Loop, (nm RMS):

Dashdot. Optics Closed, (nm RMS):

Solid: Struct Closed, (nm RMS):
Dotted" with z weight.

Figure 6-28: Performance for the optimized high gain hinged actuator con-
figuration, low frequency disturbances.

the sampling delay and noncollocation effects incur phase delay.

Closed loop performance is illustrated in Fig. 6-28. No attempt has been made to

apply inertial control to dampen the pseudo rigid body mode. Middle band perfor-

mance is almost as good as that of the flexured hinge configuration and a net overall

performance (with z weight) is 10 nm better, even with the rigid body rocking mode

undampened. Most of this net gain can be seen in the second and third antisymmet-

ric modes where good dampening has been achieved. The high band performance is

improved more than 5 dB to 34 nm. Realize though, that these performance numbers

exclude sensor noise and that actually the load cell sensors are too noisey to achieve

this absolute level of performance.

Once again, the major achievement has been to soften and dampen the fundamen-

tal antisymmetric mode in much the same fashion as an input isolation loop would

work.
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6.5 High frequency disturbances

With the results from the low frequency configurations in hand the focus is now

placed on high frequency disturbances. This spectrum represents that similar to

reaction wheel type disturbances for the lower earth orbit imaging interferometer

design example. Disturbances from such a source are harmonic in nature. Here, the

harmonics are assumed to be smeared over a frequency range to represent design

uncertainty in both the location of system modes as well as wheel speed and size.

The high frequency disturbances are narrowband in spectral emphasis and this

leads to the postulate that a structurally redesigned system should have greater im-

pact than in the broader-band low frequency designs. A number of implementation

issues were overcome in realizing the design example solution and are fully described

in the cases that follow.

In this section closed loop results of three cases are presented. For reference,

a regular design was tested, as shown in the top of Fig. 6-2. Again, this design

is uniformly stiffer than the equivalent nominal case, as was the case in the low

frequency disturbance section. In this case the actuators are placed in the middle of

the truss arms from the hub. Several experimental iterations were needed to realize

the optimized result, the final of which is shown in the bottom of Fig. 6-2. Two of these

iterations, the initial and the final, are presented here under structural compensation.

Experimental iteration leading to the final realization is interpreted from the optics

closed loop transfer function data. The initial optimized design implementation is

denoted as hinged partially flexible and final optimized design implementation is

denoted as hinged fully flexible. These two configurations represent differing levels of

flexibility in the inboard sections of truss.

Cases for this disturbance spectrum are described in Table 6.8 by type of control

design, sensor used and limits found on achievable performance. Further cases studied

are presented in Appendix C. In all the cases presented the differential load cell sensor

is used. When model-based control is used the hub sensor is included. The load cells

are used as a collocated measure, even though they have poor noise quality, because
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Table 6.8: Cases presented for high frequency disturbance spectrum. "rpni"
abbreviates "reduced penalties, no improvement".

Configuration Type of control sensors limit

regular H 2  load rpni/margin

(hub, inertial)

hinged partially H 2  load rpni/limited

flexible authority

hinged fully f F load damps necessary

flexible (root + hinge) modes

the emphasis on higher frequencies requires controller roll off through modes that are

local in nature, and it was found that a more centralized sensor selection, such as hub

plus performance sensors, were severely limited by structural delays.

Implementation of the regular configuration active struts is similar to that shown

at the root in Fig. 6-15. They are placed in the midspans of the truss work (see the

upper configuration of Fig. 6-2). This configuration also has symmetrically placed

passive damping struts [57], one bay from the root, in the upper face diagonals of

the truss. These provide some dampening of the antisymmetric torsional modes that

occur near the bandwidth of the model based controllers and have little effect on the

one-dimensional beam-like behavior of the system.

Design weights for this configuration are shown in Fig. 6-29. Disturbance weights

consist of a second order roll up and fourth order roll off. Amplification by the

disturbance occurs in the 20 - 150 Hz bandwidth. The inertial control weight is

shown but is unimportant because the disturbance is attenuated by three orders of

magnitude in this range. Weights on the structural control render it effective over a

bandwidth from 3 - 110 Hz with compensator roll off emphasized in the higher range.

Transfer function data vs. the 61 state model can be found in Fig. C-14 in Ap-

pendix C. Emphasis has been placed on the model fidelity in the 100 - 150 Hz

range as the controller will have to roll off here. Key characteristics of the (weighted)

model are exhibited in Fig. 6-30. Examination of the pole-zero spacing in the GY

load sensor transfer results in good spacing for the first few modes and collocation
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out beyond 300 Hz. The hub sensor transfer functions show the sensor weights that

enforce roll off. This ensures that the model-based compensator relies predominantly

on the collocated sensor. Nonminimum phase behavior listed in Table 6.9 validates

the reliance on the collocated sensor.

Control design on the given model resulted in an unstable, but implementable,

compensator. The Nichols plot in Fig. 6-31 shows this as the curve passing over the

top of the critical point at 900 degrees. The single compensator unstable mode is at

133 Hz, well into the roll off. In a similar fashion to the compensators in the low

frequency disturbance cases, the compensator shown initially unravels. When rolling

off the compensator the phase is rescued by the unstable mode, which is stabilized in

the closed loop by the plant.

Tighter singular values are shown in the sensitivity plot in Fig. 6-31 than in the

previous cases. The nature of the plot between 40 and 200 Hz shows impetus in the
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Figure 6-30:

50 - hub sensor
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Model transfer functions with pole-zero map, hub plus load sen-
sors, high frequency disturbance weight. 'o's correspond to the
solid curve zeros, '*'s correspond to the dashed curve zeros.

Table 6.9: Regular truss occurrence of important nonminimum phase behav-
ior, high frequency disturbances.

Transfer Function Freq. (Hz) damping (%)

Gz, 23 -0.06

Gzu 69 -0.8

Gy, (load) 35 -1.0

Gyw (hub) 160 -1.0

Gyu (load) > 300 na

Gy,, (hub) 31 -1.0
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Figure 6-31: Multivariable Nichols plot and sensitivity singular values for
regular configuration high frequency disturbances.
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IGzwl*lGdistl, hub plus z sensors

Dashed: Open Loop, (nm RMS): 656.5

Dashdot: Optics Closed, (nm RMS): 276.8 (

Solid: Struct Closed, (nm RMS): 102.5 (.
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Figure 6-32: Performance for the regular configuration, high frequency dis-
turbances.

dominant performance modes at 47, 78, and around 130 Hz. Impetus does not come

without amplification which appears strong. Amplification does not happen to the

shown extreme due to the measured direction of the real disturbance. Confirmation

of this can be seen in the measured closed loop performance depicted in Fig. 6-32.

Now that the emphasis of the disturbances have shifted to a higher frequency

range the performance can be captured, almost wholly, within the 30 - 200 Hz band.

Overall the optical control is far less impressive than it was in the low frequency

disturbance case achieving only 7.5 dB improvement over the open loop. Structural

control improves the performance another 8.5 dB to yield a total 16 dB over the open

loop. The final performance result is - 103 nm rms and is achieved mainly through

dampening of the second and third antisymmetric modes. With more authority (less

control penalty) the modeled result appeared to improve but the experimental did

not, reaching a fundamental limit.

The high gain damper that was applied for low frequency disturbances, in this

configuration, was also applied for high frequency disturbances (since the compensator
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design was independent of disturbance direction knowledge) resulting in a 98 nm

rms, see Appendix C. This result shows that the model-based compensator is being

limited by model breakdown, since beyond high gain damping not much more can be

achieved. The performance was reduced to the average structural filter gain but not

beyond.

Experimental performance results are a lot higher than would actually be incurred

for reaction wheel disturbances. For this spectrum the disturbance was increased

in magnitude so that the closed loop transfer functions were measured above the

uncorrelated laboratory disturbances. At a 100 nm rms the measured response is

about an order of magnitude greater than that expected in the design example for a

much softer system.

Figure 6-32 is important evidence that beyond 130 Hz, what looked like noise on

the low frequency performance plots is actually increasing modal density. Compen-

sator roll off is evidenced by the bunch of dampened modes underneath a dominant

spike near 130 Hz. Some robustness was introduced into this compensator by in-

creasing the damping on the unstable compensator mode, i.e. moving the pole closer

to the jw axis without crossing it. This enabled a larger encirclement of the critical

point providing more robustness to model error while reducing performance near that

particular mode.

Initially, it was thought that the optimized design solution could be implemented

by one dimensional softening of the inboard sections (relative to the middle of the

truss arms) of the truss, as shown in the digital image of Fig. 6-33 and upper line

sketch in Fig. 6-34. Here, the structural actuators replace longerons in the midspan

and are not yet flexured. Transfer function data vs. the 98 state model for this

configuration can be found in Fig. C-17 in Appendix C. The data shows interesting

coupling of the low frequency rigid modes with the softened flexible dynamics. The

low frequency modes do not significantly contribute to the performance due to the

limited bandwidth of the disturbances, so no effort is made to control them. In fact

no further use of the hub sensor for control design is made. The hub sensor, however,

does provide useful information about the softened dynamics, and will be used as
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Figure 6-33: Digital image of the initial destiffened implementation. Soften-
ing in the primary bending axis is brought about by the flexured
and thinned bottom longerons.

such.

Encouraging results of the structural softening are shown in the optics closed loop

transfer functions in Fig. 6-35. The Gz,, transfer function appears to have a reduced

average gain when compared to the regular configuration transfer function in Fig. 6-

30 over the 70 - 150 Hz range. The overall average gain reduction is offset by a strong

mode at 60 Hz. This mode has a reasonable residue in the G,, transfer function, but

controlling it is limited by the regulator and estimator dynamics.

Customary plots of the Nichols and sensitivity singular values are given in Fig. 6-

36. The controller shown required full capacity usage of the control computer, using

46 structural controller states and 12 optical controller states at a sampling rate of

4 kHz. Design weights for this structural controller are essentially the same as those

shown in Fig. 6-29 with the exception that the inertial weights were set arbitrarily

high resulting in no inertial control. Two unstable poles that occur in the compensator

at 112 and 133 Hz are robustified by increasing the compensator damping, resulting

in clear encirclements of the critical point at 540 degrees. A marginally unstable
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High frequency disturbance configurations

Opt. design: partially destiffened

. stractive hinge
7 " " structural actuator

hinged plus thinned
bottom longerons

.MN active hinge
structural actuator

Opt. design: further destiffened removed
bottom longerons

Figure 6-34: Genetic Algorithm partially flexible configurations for high fre-
quency disturbances.

compensator pole at 86 Hz was stabilized since no clear encirclements occur near this

frequency.

The sensitivity plot is, in this case, representative of a single input single output

system, structural actuator to load cell. No major excursions of model from data

are exhibited in this plot so no effort to sensitivity weight this controller design was

made.

Performance results are shown in Fig. 6-37. In the closed loop the result is remark-

ably close to that of the regular truss. Apportionment of the final result has changed,

due to the softened nature of the plant. The open loop performance is larger than

in the regular truss case, and the optical control achieves about the same relative

level of improvement, but the structural controller acquires nearer 13 dB improve-

ment overtaking the regular truss result. Authority over the 60 Hz dominant mode

is limited as predicted by decreasing the control penalty when designing controllers

on the model.

Perplexed by the inability to do any better than the regular configuration in
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Figure 6-35: Model transfer functions with pole-zero map, load sensor only,
high frequency disturbance weight.

the closed loop, but heartened by the indication that the backbone was somewhat

reduced (the desired result), further measures were taken to destiffen the truss. Truss

softening, in discrete steps of severity, is shown in the lower of Fig. 6-34 and the lower

of Fig. 6-2 respectively. Transfer function data, with optics loops closed, are depicted

for the regular, further destiffened, and fully destiffened designs respectively in Fig. 6-

38. Data from disturbance to performance, hub and collocated sensors are shown.

Removing only the bottom longerons does little to reduce the Fzw with respect to the

Ezw transfer function average gain. A considerable number of modes with significant

residue appear in the 50 - 150 Hz band. The strongest appears to be a mode at

a 70 Hz. This mode is strongly apparent in the hub sensor transfer function while

less so in the collocated sensor. Structural modes corresponding to modes of the
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Figure 6-36: Multivariable Nichols plot and sensitivity singular values for
partially destiffened configuration high frequency disturbances.
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IGzwl*lGdistl, collocated load sensor

Dashed Open Loop, (nm RMS). 1066

Dashdot: Optics Closed, (nm RMS): 406 4 (-8 376 dB, OC/OL)

Solid Struct Closed, (nm RMS): 95.96 (-20 91 dB, SC/OL)

., ., hill

10' 102

Figure 6-37: Performance for the partially destiffened configuration, high fre-
quency disturbances.

softened section of the truss occur as pole-zero excursions in the Fzw and Fy (hub)

transfer functions. These structural modes are evident in the collocated transfer and

the overall gain of this transfer function is reduced.

Removal of supporting truss work in the optimized full destiffened implementation

results in - 10 - 15 dB reduction in average gain, GI/Ez,. A strong mode is still

apparent in the important bandwidth at 90 Hz. The mode is a stiffened version of

the 70 Hz mode of the second destiffened configuration (60 Hz in the initial configu-

ration), which is now spatially decoupled from the truss ends. Strong evidence of the

mode in the hub sensor and not the collocated sensor confirms that it is the primary

antisymmetric mode of the shortened middle truss section. Large residue of the mode

in the performance transfer function shows the sensitivity of the optics design to local

combiner angle. The one-sided delay line design adds small amounts of local combiner

angle sensitivity which is now apparent under severe structural variations.

Another feature of the fully destiffened optimized design is the reduced complexity

of the modal structure in the 100- 200 Hz range. These modes, depicted in Gz, are in
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Figure 6-39: Implementation of soft inboard section of the G.A. final design.
Longerons and cross members have been removed.

neither the hub nor collocated sensor transfer functions. Again the collocated sensor

has reduced gain with only a few of the inboard flexural modes apparent when excited

by the disturbance.

In order to study the extremely flexible final configuration (lower in Fig. 6-2)

extra suspension was added at the truss tips to enable alignment. The suspension

took the form of barely resting the truss tips on a highly elastic rubber pad, and

served to reduce lateral truss motion while allowing alignment of the optics. Even

with this modification alignment still required on the order of 30 minutes. Adding

the tip constraint did not affect the dynamics above 5 Hz, where the disturbance is

important. Below 5 Hz the system response is not indicative of free end conditions.

Implementation in one side of the fully flexible configuration is shown in Fig. 6-39.

Bottom and upper plane longerons were removed from the truss. Connecting zig-

zaged struts deform in bending when excited. Lowering the inboard truss stiffness, as

such, resulted in significant static sag due to the fact that the tip suspension points

were not at the CG of the remainder lengths of truss. The optics were aligned and
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system controlled regardless of this static sag.

No model was fit to the fully destiffened configuration data illustrated in Fig. 6-40.

Only non parametric control design was used for the differential structural actuator

to collocated load cell pair. Transfer functions from the actuator show the softened

beam-like flexural modes at _ 18, 23 and 37 Hz, a substantially stiffer beam-like

flexural mode at 0 60 Hz, and outer truss local dynamics occurring beyond x 130Hz.

Hinging the actuator on flexures resulted in good coupling to the softened modes

and significant separation from the localized modes, as can be seen in the load sensor

GY. Such separation allowed easy implementation of an integral compensator as

shown in the loop transfer function in Fig. 6-41. The modal separation allowed

dampening of the first three modes without incurring roll off problems due to the

local modes.

The combiner 90 Hz mode was also dampened by use of a local loop. Extra

structural actuators were placed at the hub in the locations illustrated in the lower

configuration in Fig. 6-2. As before, integral (differential) load feedback was used

and the loop gain shown in Fig. 6-42. As much as 20 dB of gain is attained near the

problem mode, while high gain is also achieved on modes from 130 - 150 Hz, were

they to be disturbed.

With the two SISO compensators closed the performance is greatly improved

over the regular truss, and over the partially destiffened design, see Fig. 6-43. Open

loop rms performance is a 8 dB less than that of the regular truss, and _ 12 dB

less than that of the partially destiffened truss. Closed loop optics now achieves 11

dB improvement with structural control adding a further 9 dB to yield an overall

performance of 25 nm rms. The structural performance improvement is nearly all

attained by dampening of the 90 Hz mode by the root actuator.

Comparison of the closed loop results for the regular and final GA configurations

is shown in Fig. 6-44. The GA final design provides 12 dB of overall improvement.

This result is consistent with the design example. They are almost entirely due to

average gain reduction. In the 5 - 10 Hz range the GA result shows singularity in

the average transfer function gain where the end structure rigid modes are providing
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Midspan damper loop transfer function
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Figure 6-41: Loop gain on data for integral load feedback to the midspan
flexured actuators in the fully flexible design implementation.

isolation from the hub disturbance. That these modes cause more response below 10

Hz is of no concern for this disturbance spectrum under closed loop optics. The only

concern is that the optical actuators have enough stroke to cancel the disturbed low

frequency motion.

6.6 Summary

A testbed was designed and implemented that allowed investigation and validation

of the (scaled) imaging interferometer design example. Closed loop optical control

was used to emulate the complicated output isolation stage of such a device and thus

provide the correct performance sensor impedance.

Six cases, three low frequency disturbances, three high frequency disturbances,

have been presented under closed loop optical and structural control. In the case of
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Root damper loop transfer function
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Figure 6-42: Loop gain on data for integral load feedback to the
root/combiner actuators in the fully flexible design implemen-
tation.

low frequency broadband disturbances the performance was dominated by the system

inertia. Higher optical loop gains at low frequency alleviated some of this dominance.

Implementation of the optimized hinge design was realized in two parts, a regular

stiffened truss was compared to the stiffened truss including an active hinge. The

active hinge (to the extent implemented) improved closed loop rms performance by

3 dB. This is significant when compared to a mere 1 dB improvement predicted for

global stiffening of the nominal design. Even though the optimized design required

further softening of the active hinge this result shows the difficulty in maneuvering

the low frequency average gain which is dominated by the system inertia.

Examination of the high frequency, narrow band, disturbance results shows dra-

matic improvements through the implemented structural softening. This is because

the disturbance emphasizes a flexibility dominated region of the G,, transfer func-
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IGzwl*IGdistl, combiner plus midspan damper

Dashed: Open Loop, (nm RMS): 252.4

Dashdot: Optics Closed, (nm RMS): 70.46 (-11.08 dB, OC/OL)

Solid: Struct Closed, (nm RMS): 25.6 (-19.88 dB, SC/OL)
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Figure 6-43: Performance for the
disturbances.

fully flexible configuration, high frequency

IGzwl*IGdistl, regular vs flexible comparison
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Figure 6-44: Comparison of regular vs. fully flexible configurations for high
frequency disturbances.
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tion. Several experimental iterations were required to achieve the GA design goal,

each showing the impact on the Gzw average transfer function gain of various extremes

of structural softening. Again results from a regular stiffened truss are compared to

an implementation of the optimized design with the fully destiffened optimized design

achieving e 12 dB rms improvement over the regular truss. Implementation of the

active structural hinge enabled dampening of the captured inboard flexural modes

while a root damper reduced the combiner sensitivity to asymmetries.
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Chapter 7

Conclusions, Contributions and

Recommendations

The purpose of this chapter is to provide general and detailed conclusions pertinent

to this thesis. Conclusions are first given that are general to controlled structures

systems. Specific conclusions are then given that are based on the specific valida-

tion and application examples studied. Contributions to the controlled structures

optimization field are given and recommendations for further work detailed.

The approach provided in this thesis has been from an accurate modeling per-

spective. Therefore the conclusions will be based on interpretation and development

of structures for control.

7.1 General Systems Level Conclusions

The fundamental behavior that causes difficulty in controlling irrational structural

systems is the fact that the average frequency domain system response stays high

while the system phase decreases due to the occurrence of poles. This effect is the

manifestation of structural delay and is realized between noncollocated input/output

pairs. Discretization of noncollocated systems results in nonminimum phase zeros.

These zeros are more sensitive to assumed model damping than spatial refinement.

Sensitivities of asymptotic approximations to simple collocated systems show that
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for truss structures topological variations affect motion-based performance more than

simple member cross-section variations. For constrained structures the motion per-

formance goes like 1/(12m 2w3) where for unconstrained structures the performance

is dominated by the upper or lower limit of the frequency domain performance in-

tegral. Narrow band average structural filtering from noncollocated disturbances to

performances is very sensitive to damping, modal spacing and modal residues.

Good pole-zero structure is necessary for high bandwidth, high authority control.

System transmission zeros are more sensitive to placement changes than to struc-

tural variations unless the later are local to relative input/output pairs. Structural

variations tend to cause the zeros to track changes in the modes.

This thesis provides a general method by which to design structures for control.

The method, utilizing the Genetic Algorithm, is admittedly computationally expen-

sive in that it uses zeroth order stochastic propagation of a parallel model space,

however, the method is not specialized to any one modeling or control technique and

allows simultaneous discrete update of topological variables without sacrificing model

accuracy. A good representative model for control is provided in the proposed method

via a consistent effort that employs condensation, reduction, static mode correction

and design frequency weights. The inherently discrete decisions that are integral in

such a process require that a discrete search method be used. Sensitizing the method

with derivatives of the performance with respect to structural parameters is too com-

putationally intensive for realistically sized structures. The method was found to

work well and provide results comparable to those published in the literature.

Physical insight, as to the capability of an active system optimization to yield

useful improvements, has been provided through study of an application example.

The active solutions are limited by the average transfer function gain combined with

system loss of phase. Within the limits of the allowable controls topology variations,

centralized controllers can only be as effective as the system noncollocation allows.

Usually, for relative structural actuation compensating an externally disturbed sys-

tem with inertial type performance, this means active dampening only. Combined

structural optimization and actuator/sensor placement provides good direction in
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manipulating the average transfer gain and system loss of phase to yield performance

improvements.

Under the assumption of aerospace-like sensors, which have low sensor noise speci-

fications, optimized controls-structures topologies improve the regulation of the struc-

ture. Improving regulation entails improving the average controls to performance

transfer function gain while maintaining good pole-zero structure in the important

bandwidth. Delays in the estimator and the controls to sensors transfer functions

are compromised in order to achieve this result which enables improved performance

through regulation gain.

7.2 Specific Systems Conclusions

Adaptation can be successfully added to a Genetic Algorithm to enable the solution

of problems with implicit dependencies of the variables, for example, where increased

control effort requires a more massive actuator. When minimizing structural weight

of a controlled free-free beam, flexibility is traded for mass when the control effort

required to meet specified performance does not necessitate heavy actuators. In the

three dimensional cantilevered truss example heavy actuators were removed from the

design and performance constraints met through passive isolation and active damping

of fundamental modes. This later example showed that accurate modeling of sensors

and actuators as pairs is imperative to the ability to predict closed loop performance.

Analytical and experimental investigations of an optimized, structurally and opti-

cally controlled, space-based interferometer show the benefits of active technologies in

enhancing pathlength compensation. System transfer function representations clearly

show the important frequency band components of the disturbance to performance,

and how the relationship with integral structural actuators and commonly available

sensors affects performance.

The fundamental contribution to performance response, when disturbed by low

frequency impulsive/step-like hub sources, was found to be dictated by the system in-

ertia. For these spectra of disturbances genetically designed structural-isolation yields
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mild improvements over a closed loop regular system design. The active design calls

for fundamental antisymmetric mode softening and dampening. This was realized

under some restrictions in the experiments. A regular isolation design that separates

the hub from the truss-optics system would bare better results here. However, this

would require more optical capability.

A genetically optimized, active structural-isolation, design for high frequency

harmonic-like disturbances was found have good performance improvements over a

regular truss implementation. In the important bandwidth the average transfer func-

tion gain is reduced while the active system provides dampening of the softened

beam-like flexible modes. The price of this improved performance is realized in the

difficulty of the quasi-static optical alignment problem. Genetic manipulation of the

stiffness under closed loop considerations has more effect where the flexibility is im-

portant in the performance.

In the later case, experimental sensitivity to the optics arrangement was found.

This shows that the design of a symmetric optical layout is important in achieving

low levels of pathlength error.

7.3 Contributions

* A simple representation of structural transfer functions is provided with pole-

zero frequency versus damping plotted directly on the Bode magnitude plot.

This plot allows interpretation of the model structure by allowing visualization

of damped zeros, pole-zero cancellations and modal density characteristic in

structural systems.

* Interpretation of physical limitations in basic noncollocated structural systems

is developed. Structural delay is detailed in terms of system phase loss due to

the occurrence of poles. Structural transmissibility is detailed in terms of high

average transfer function gain. Simple structural systems are investigated from

three points of view: the exact irrational transcendental transfer function, a

FEM generated rational transfer function and cumulative residuals generated
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from a finite modal summation form of the transfer function. The noncollo-

cated free-free rod example is given to detail the sensitivity of discretization

zeros. These zeros were found to be more sensitive to assumed model damping

than spatial refinement and were found not to contribute strongly to the aver-

age transfer function gain. The free-free beam example is given to show how

physical nonminimum phase zeros eventually couple into discretization effects.

Fundamental sensitivities of motion error performance integrated under average

transfer function gain asymptotes is given for collocated input/outputs in sim-

ple structures. Noncollocated average structural transfer function magnitudes

were numerically shown to be sensitive to damping, modal spacing and modal

residues.

* A general method that optimizes controlled structures allowing topological vari-

ations is developed. The method is derived from a modeling perspective where

accurate models were desired for controls analysis. Specifically in the method,

control variables were incorporated into the condensation technique as inter-

face dof. Performance and disturbance weights were included as weights in the

model reduction step. Multiple chromosome phenotype encoding was developed

for genetic algorithms that optimize controlled structures. Non simple crossover

operations that act within each attribute chromosome were implemented. The

Genetic Algorithm was also specialized to include adaptation for the first valida-

tion example. The adaptation allowed the solution of an optimization problem

that had an implicit dependency.

* Optimizing several structures under motion error objective showed that, gener-

ally, the solution is generally to improve the regulation of the structure, where

good quality sensors are assumed. To support this conclusion an imaging in-

terferometer spacecraft application was encoded into a one dimensional design

example. Punctuated equilibrium was added to the search optimization, that

restarted the method with the best designs from several runs and propagated

them with random designs. This enabled the best designs to be compared with
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each other while improving their attributes. Further support of the general

conclusion is found by encoding and optimizing a true topological three dimen-

sional problem. The results found were similar to the beam-like example. In

this example variables such as nodal locations, diagonal connectivities, member

properties and actuator locations were searched over simultaneously.

Experimental investigations of topologically optimized controlled structures are

provided. Experiments were scaled and designed from the systems perspective

to include closed loop optical control and structural control. The broadband

disturbance, active hinge solution to the application example was implemented

two ways, the first using passive flexures and the second using high gain local

feedback. Both were found to improve the closed loop performance, yet be lim-

ited by the overall system inertia. Experimental iteration was used to realize

the narrow band disturbance result showing the effects of multiple load paths

in truss structure transmissibility. Results confirm that manipulating the av-

erage disturbance to performance transfer function gain provides the expected

improvements.

7.4 Recommendations

* Analytical interpretations of structural filtering of noncollocated input/output

pairs is needed. With further understanding of these systems a more rigorous

(non numerically based) understanding of how to effect the structural transmis-

sion paths from disturbance to performance can be found.

* Smart crossover operations that adapt to the available information provided

by a generation of designs need be developed. Within each generation there

is plenty of inexpensive (computationally) information in terms of statistics of

the objective function with respect to specific attributes that could be used to

accelerate the method, even towards multi modal solutions.

* The method should be further developed to bridge conceptual and preliminary

206



design stages. That is, more radical topological changes enabled in a geometri-

cally free design space. This is where the big systems pay-off lies.

* Highly distributed damping systems should be investigated for the application

example presented. Under very high frequency disturbances the system response

is dominated by the packed local modes and it is here that damping was found

to have a large influence in the simple examples.

* In panel-like structures such as fuselage enclosures, non geometric rib spacing

should be investigated to reduce coupling to an acoustic field. As in truss struc-

tures the band pass nature of these structures can be affected by redistributing

the highly packed panel modes.
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Appendix A

Exact Wave Domain Solutions

The appendix gives the proceedure used to generate the exact transfer functions used

for the beam example in Chapter 2. In this example the beam of length I is free-free

and acted on by a moment at the center span, x = 0. The sensed output is the

differenced tip vertical motions at x = -1/2 and x = 1/2. The proceedure assumes

a complex wave solution for the fourth order beam equation in uniform sections of

a given beam in between singularities. For the given example this means separate

solutions for the left half and right half of the beam,

wl = A, exp(ikx + iwt) + B1 exp(kx + iwt)

+ C, exp(-ikx + iwt) + D, exp(-kx + iwt) ,
(A.1)

Wr = Ar exp(ikx + iwt) + Br exp(kx + iwt)

SCr exp(-ikx + iwt) + D, exp(-kx + iwt),

where the subscript I stands for the left half of the beam while subscript r stands for

the right half. The coefficents A, B, C, and D are complex. The singularities represent

crossections of the beam where there are jumps in the internal moment and shear

distributions due to forcing inputs. The complex coefficients of the displacements

are solved for by applying the boundary conditions and solving the resulting set of

symbolic equations. For example, at the left beam tip, x = -1/2,

0,
a2 W 11x92 (A.2)

= 
0.

ax 3
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In the center,

Wl - W r  = 0,

Ow Ow 0,
Ox Ox
a2w a2Wr (A.3)

- M exp(iwt)/E = 0,Ox2  Ox2

O3wl O3 Wr 0.
Ox 3  X3

The input is assumed to be a complex exponential of positive frequency and amplitude

M. The right end boundary conditions are the same as the left end but act on r-.

Given that the coefficients are found, the general solution for the displacement

everywhere along the beam is known. The sensed variables are now exactly computed

from the known displacements or spatial derivatives thereof. In the example case the

sensor z is,

z = w()- Wr( ), (A.4)

and the exact transfer function, TF, is evaluated as,

z
TF (A.5)

TM exp(iwt) (A.5)

The exact transfer function is generated by assuming a one-sided exponential input

with amplitude equal to that of the applied singularity. This transfer function repre-

sents the repsonse for positive frequency and it is easy to show that since the function

is purely real the negative frequency result is entirely equivalent.
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Appendix B

Optical Control Transfer Functions

This appendix provides plant and control loop transfer functions for the optical control

used in experiments for this thesis. All loop transfer functions are contollers evaluated

on the plant data.
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Piezo to internal laser transfer function
40

20 -

0

-20

100 10' 102

Figure B-1: Optical piezo plant transfer function, G,. The low coherence at
low frequencies is due to pole-zero cancellation of system modes
and low density of data points. Note that the transfer function
is of constant gain out to 1 kHz and the phase roll down is due
to 4 kHz sampling delay.
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Piezo loop transfer function

10

Figure B-2:

101 102 10o
Hz

Optical piezo loop transfer function, KpGp solid, controller, K,
dashed dot. The loop has moderate gain at low frequencies and
is reduced at very low frequencies to avoid stack saturation due
to laser drift.
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Voice coil to internal laser transfer function
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Optical voice coil plant transfer function, G,. Second order roll-
off of the transfer function ocurrs after the fundamental mode
of the mirror plus head mass on the flexural stiffness.
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Voice coil loop transfer function

-100
-200

-00oo

Figure B-4: Optical voice coil loop transfer function, K,G, solid, controller,
K, dashed dot. The loop has high gain at low frequencies to
desaturate the piezo when used as a servo.
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Internal loop transfer function

Solid: piezo plus voice coil loop
Dashdot: voice coil only loop

-. .

-3001

-20

1(

0

-100

S-200

Figure B-5: Internal loop transfer function.
G, = 0. Stable crossover occurs

Also shown is the loop as
near 350 Hz.

Internal loop nichols chart

-250 -200 -150 -100 -50

Figure B-6: Internal loop nichols chart showing about 4 dB of gain stability
and about 30 degress of phase margin.
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External feedback loop transfer function

80

60- Solid: external feedback loop
Dashdot: internal complimentary sensitivity

40-
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-200-

Figure B-7: External loop transfer function, CodlKf solid, where Codl is the
complimentary sensitivity of the closed internal loop. This shows
why the actuators are ganged in the internal loop in order to
track the external fringe.
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Appendix C

Experimental Cases

For both low and high frequency disturbance spectrum designs were implimented

experimentally that spanned the usage of available sensors and local controller test

matrix space. This appendix suppliments the results in Chapter 6 by presenting

supporting experimental cases studied.

Presentation for each case will follow that of Chapter 6. that is, model fits, design

weights, model block transfer functions, and performance results. Comparitive results

are also tabulated and projected to the imaging interferometer example.

C.1 Low Frequency Disturbances

The following figures are for the straight design with root structural actuator.

C.1.1 Regular truss, H2 design, hub and load sensors

Model versus measured transfer function data for the following controller design are

shown in Fig. 6-16.

C.1.2 Regular truss, integral force design, load sensors

This section presents the control design for a damper in the straight truss located at

the root of the truss. The loop gain is plotted for the structural actuator in Fig. C-5.
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Various control design weights
60

.0 0-"
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40 ------ ---- ----- --- --
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-200
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-40- - relative control

o inertial control

- - disturbance

-60
10 100 10 10/ 10

Hz

Figure C-1: Control design weights for straight configuration, hub plus load

50 and 90 Hz. The gain on this controller was therefor limited, although it was only

intended as a damper.

C.1.3 G.A. flexured active hinge, H2 design, hub and load

Model versus measured transfer function data for the following controller design are

shown in Fig. 6-22.

Note that the transfer function for the collocated sensor in Fig. C-9 shows a well

damped pair of zeros near 6 Hz, one of them nonminimum phase. These occur becuase

of the attempt to improve the modal residues of the first and second antisymmetric
of the attempt to improve the modal residues of the first and second antisymmetric
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Figure C-2: Model transfer functions with pole zero map, hub plus load sen-
sors, low frequency disturbance weight. 'o's correspond to the
solid curve zeros, '*'s correspond to the dashed curve zeros.

modes by cancelling the feed through term electronically. The improved residues do

not come without this cost, i.e. the transfer function average gain stays high with no

apparent gain in phase.

C.1.4 Regular truss, stiff pivot isolator design, load sensors

A root isolator design was investigated by raising the truss connection to the hub to

a three point semi-determinant connection. Piezo strut actuators were then placed

in the mounting struts to the truss and acted differentially on the pivoted truss.

Loop gain on the integral compensator is shown in Fig. C-12. The compensator

is still dampening modes out beyond 100 Hz.

The performance in the middle band is near that of the GA designs at 86 nm.
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-1 + det(I+GK)

-1400 -1200 -1000 -800 -600 -400 -200 0 200
phase, degrees

I/(I+GK) singular values

Figure C-3: Multivariable nichols plot and sensitivity singular values for hub
and load sensors. In the Nichols plot frequencies in Hz are
marked along the curve by o's and critical points are shown
as x's.
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IGzwl*lGdistl, root actuator, hub plus collocated sensors
•-- - "

I\
I

/ \

i -- Open Loop, (nm RMS):
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20
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-20
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434.6 (-43.35 dB, OC/OL)

163.9 (-51.82 dB, SC/OL) -

:126.1 (-54.1 dB, SCIOL)

t

Figure C-4: Regular
sensors.

truss with root actuator performance for hub and load

GK, integral load cell feedback (on data)

0

Figure C- Loop transfer function for structural actuator to differential load
cell. Vertical dotted lines in the phase plot are spaced 180 de-
grees apart.
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Integral load compensator

-100 -

Figure C-6:

10 10' 10 10'
Hz

Compensator for structural actuator to differential load cell.
Note notching of low frequency dynamics.

IGzwl*IGdistl, root damper
|

10 10'
Hz

Figure C-7: Regular truss with
controller was also

root damper performance. Note the inertial
on dampening the rigid body mode.
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Various control design weights
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Figure C-8: Control design weights for the GA flexured active hinge config-
uration, low frequency disturbance weight.

Interesting behavior is depicted near the first antisymmetric mode where ther appears

to be a roll down before a dampened stiffened mode. Stiffening of the antisymmetric

mode is due to the active release of the mount boundary condition by the controller.

C.2 High Frequency Disturbances

Several design configurations were implimented in the case of high frequency distur-

bances. Each design contributed to the understanding of the average transfer function

gain.

C.2.1 Regular truss with actuators as longerons in the midspan

Figure C-15 is the same figure as that presented for low frequency disturbances in

Chapter 6. It is reiterated here because the same design was applied for high frequency
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Figure C-9: Model transfer functions with pole zero map, hub plus load sen-
sors, low frequency disturbance weight. 'o's correspond to the
solid curve zeros, '*'s correspond to the dashed curve zeros.

disturbances since this design is independent of knowledge of the disturbances.

Performance achieved in Fig. C-16 is similar to that achieved by the H 2 control

design. Impressive levels of dampening the first, second and third antisymmetric

modes are realized in achieving z 98 nm rms preformance. Modes near 120 Hz are

also well dampened, while modes near 130 Hz again show resistance to control.

C.2.2 G.A. partially destiffened truss with actuators as longerons

in the midspan

This configuration is shown in the upper of Fig. 6-34. This configuration is the first

tried in a sequence of experimental iterations needed to realize the G.A. solution.

The model shown in Fig. C-17 represents a 98 state model. This model was the
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-1 + det(I+GK)

phase, degrees

I/(I+GK) singular values

10- 100 10' 102

Figure C-10: Multivariable nichols plot and sensitivity singular values for
hub and load sensors.
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-20

IGzwl*IGdisti, active hinge, hub plus collocated sensors

-- Open Loop, (nm RMS): '6.292e+04

-. Optics Closed, (nm RMS): :426.4 (-43.38 dB, OC/OL)

-Struct Closed, (nm RMS): 139.6 (-53.08 dB, SC/OL)-
: with z weight: 97.56 (-56.19 dB, SC/OL)

A

I ,l

. 4.I2j

%,i

SC 67.85 (-14.07 dB, SC/OCSC 106.2 (-7.232 dB, SC/OC)

Figure C-11: GA flexured active hinge performance for hub and load sensors.

largest used to design a model based compensator. The compensator was reduced to

42 states before being appended to the 14 state optical compensator.
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Root isolator loop transfer function

100 101 102 10'

-200'
10°  10'

Hz

Figure C-12: Loop transfer function for the
cell. Vertical dotted lines in
degrees apart.

102 10
3

root isolator to differential load
the phase plot are spaced 180
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IGzwl*KGdistl, root isolator/damper design

-- Open Loop, (nm RMS): :6.355e+04

-. Optics Closed, (nm RMS): 258.3 (-47.82 dB, OC/OL)

- Struct Closed, (nm RMS): :168.9 (-51.51 dB, SC/OL)-
: with z weight::105 (-55.64 dB, SC/OL)

f4 I•

10O 10, 10'
Hz

Figure C-13: Regular truss with stiff pivot isolator performance.
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Gzw

Gyw, hub sensor Gyu, hub sensor

Gyw, collocated sensor Gyu, collocated sensor

10o 101 102

Figure C-14: Data (dashed dot) versus fit model (solid) for the regular con-
figuration, high frequency disturbances. Structural actuators
replace longerons at the midspan span.
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GyuK, integral load cell feedback (on data)

200.

0

-200

Figure C-15:

Figure C-16:

Loop gain for high gain softening of structural actuators in the
regular truss midspan.

Performance for the regular truss design, high frequency dis-
turbances, high gain integral force feedback on midpsan struts.

238



Gzw

Gyw, hub sensor Gyu, hub sensor

Gyw, collocated sensor Gyu, collocated sensor

to 10' to'

Figure C-17: Data (dashed dot) versus fit model (solid) for the opti-
mized partially destiffened configuration, high frequency dis-
turbances. Structural actuators replace longerons at the
midspan span.
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