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ABSTRACT

The theory of minimal types for representations of complex
semisimple Lie groups [K. R. Parthasarathy, R. Ranga Rao and V. S.
Varadarajan, Ann. of Math. (2) 85 (1967), 383-429, Chapters 1, 2
and 3] is reformulated so that it can be generalized, at least
partially, to real semisimple Lie groups. A rather complete
extension of the complex theory is obtained for the semisimple Lie
groups of real rank 1.

More specifically, let G=NAK be an Iwasawa decomposition of a
connected real semisimple Lie group with finite center, and let M
be the centralizer of A in K. Suppose that G has real rank 1. Let
a €G (" denotes the set of equivalence classes of continuous finite
dimensional complex irreducible representations), and let Ye¢ fl be
the class under which the highest restricted weight space of any
member of o transforms. It is proved by means of an unpublished
general formula of B. Kostant that there exists B €K such that
m(a,B) = m(B,yY) = 1 (m denotes multiplicity). Moreover, B can be
chosen so that it depends only on Y, and not on &. The correspond-
ing complex-valued homomorphism on the centralizer of K in the
complex enveloping algebra of the Lie algebra of G is computed. A
similar approach is used to study a certain series of infinite
dimensional irreducible representations of G related to a series of
representations studied by Harish-Chandra.

The computation of the above-mentioned homomorphism is embedded
in a general theory (for all real groups G) based on a certain
enveloping algebra decomposition which generalizes a decomposition
used to study the classical class 1 infinitesimal spherical functionms.
The general theory deals with arbitrary elements of M and R in the
same sense that the class 1 theory deals with the trivial elements
of M and K. Furthermore, the general theory handles arbitrary
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multiplicities, not just multiplicity 1. Partial results are
obtained concerning all possible equivalences among the infinite
dimensional representations mentioned above and concerning the
concrete realization of abstract irreducible representations of G.

By means of Kostant's formula alluded to above, an explicit
formula is obtained for m(a,B) (x€G, B €R) in two new cases:
(1) G is a symplectic group of real rank 1 and (2) G is the rank 1
real form of F, and a is of class 1. The result for the symplectic
case is expressed rather interestingly in terms of a certain
combinatorial function - the number of ways of putting s indistin-
guishable balls into k distinguishable boxes of specified finite
capacities. The following theorem is verified case-by-case: If G
is arbitrary of real rank 1 and 0.€ G is of class 1, then m(a,B) <1
for all B€K (cf. [Kostant, Bull. Amer. Math. Soc. 75 (1969),
627-642, Theorem 6]).
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‘Introduction

The main purpose of this paper is to extend to real semigimple
Lie groups some of the results of K. R. Parthasarathy, R. Ranga Rao
and V. S. Varadarajan [11, Chapters 1, 2 and 3] on representations
of complex semisimple Lie groups.

Let G be a connected real semisimple Lie group with finite
center, and let K be a maximal compact subgroup of G. We denote by
Y the complex enveloping algebra of the Lie algebra of G, and by
Q?K the centralizer of K in X/ under the natural action.

Suppose now that G is complex. Let T be an irreducible quasi-
simple representation of G (in the sense of [4]). In [11l], an
equivalence class of irreducible representations of K, called the
"minimal type'" of m, is defined by the condition that its highest
weight is a weight of all the irreducible representations of K
occurring in the restriction of T to K. If the minimal type of T
exists, it is uniquely determined. If in addition it occurs in 7
with multiplicity 1, it gives rise to a complex-valued homomorphism,
which we call n(m), of QUK. In this case, n(7) and the minimal type
of T together determine 7 up to infinitesimal equivalence, and if
the minimal type of ™ is trivial, n(w) is the classical (infinitesi-
mal) spherical function.

It is shown in [11] that if 7m is finite dimensional, the minimal
type of T exists and does in fact occur in T with multiplicity 1. It

-6-



-7~
is interesting to note that this assertion can be regarded as an
extension of Schur's lemma, which implies that the trivial repre-
sentation of K occurs in 7 with multiplicity at most 1. .

Let b be a Cartan subalgebra of the complexified Lie algebra
of G and let H¥be the algebra of polynomial functions on the dual
of b. For each system Q of positive roots of the complexified Lie
algebra of K with respect to a fixed Cartan subalgebra, a homo-
morphism n%: £7K + M is defined in [11]. It is shown that each
finite dimensional T selects at least one system Q, and for each
such Q, n(w) is given by the evaluation of hQ at a certain integral
point in the dual of b. Moreover, when the homomorphisms hQ are
evaluated at suitable nonintegral points in the dual of ‘7, the
result is of the form n(ﬁ), where ﬁiranges over a series of
irreducible quasi-simple representations of G which are related to
certain representations studied by Harish-Chandra. The images of
the homomorphisms hQ are studied in [11] in order to provide informa-
tion on all the possible equivalences among the representations .

In attempting to generalize these results of [1l] to real groups
G, we find that the notion of minimal type does not extend naturally
to representations of real semisimple Lie groups. Instead, we
exploit the fact that the highest weight of the minimal type of the
finite dimensional representation T can be obtained by restricting
the highest weight of T to a certain subalgebra of b isomorphic to

a Cartan subalgebra of the complexified Lie algebra of K. The
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mapping from m to the highest weight of its minimal type takes on a
canonical meaning for real G when we introduce the subgroup M, which
is the centralizer in K of a maximal abelian subspace ofﬂ (here
o = ﬂ,;ﬁ is the Cartan decomposition of the Lie algebra 03/0 of
G, where ’ﬁb is the Lie algebra of K). Specifically, the analogue
of this highest weight in the general context is the equivalence
class Y(m) of irreducible representations of M under which the
highest restricted weight space of 7 transforms.

There is no natural way, however, of passing from a class Y of
irreducible representations of M to a unique class of irreducible
representations of K which contains it "extremally" (cf. highest
weights). Instead, we ask only for a class €(Yy) of irreducible
representations of K which contains Yy with multiplicity 1 and which
is contained with multiplicity 1 in every finite dimensional
irreducible representation 7 of G such that y(w) = vy.

In [11], the homomorphisms hQ are constructed from homomorphisms
BQ associated with the positive systems Q (cf. Lemma 1.1 in [11]).
When we impose an analogous condition on our correspondence (3, we
are led to our notion of "system of minimal types" defined in
Chapter III, §1. (The set of positive systems Q is not appropriate
as an index set in general, so we replace it by an arbitrary finite
index set I.)

Assuming the existence of a system of minimal types for the

real group G, we generalize in §1 of Chapter III many of the above-
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mentioned results obtained in [11] for complex groups. Furthermore,
although our methods of proof are somewhat similar to those used in
[11], our axiomatization of the procedures used in [11l] enables us
to simplify some of those results. For example, by using the
Iwasawa decomposition, we redefine the homomorphisms hQ in a more
natural way than is done in [11].

By adding extra conditions to our definition of system of
minimal types - conditions which are also satisfied in the complex
case ~ we obtain the notion of "strong system of minimal types"
defined in §1 of Chapter III. Using this, we generalize more of
the above-mentioned results of [11].

The relationship between our development and that in [11] is
discussed in detail in the Appendix to §1 of Chapter III.

In §2 of Chapter III, we construct strong systems of minimal
types for the groups G of real rank 1 (i.e., of split rank 1). Thus
the results of §1 apply to such groups. Our construction depends
on Lemmas 1 - 6, which give a generalization of Lemma 1.1 in [11].
We then make use of the classification of the rank 1 groups. In
order to justify the key fact that the multiplicity of C(y(w)) in
m is 1 (in the above notation), we invoke our multiplicity formulas
of Chapter II, which we shall discuss below. It would be desirable
to have a simple direct proof of this key fact, and a generalization

of Theorem 2.1 in [11]. In a Remark at the end of Chapter III, we
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outline an alternate description of most of the systems of minimal
types which we have constructed,

The following interesting fact is an immediate corollary of the
key fact mentioned above: For every finite dimensional irreducible
representation m of G (assumed to be of real rank 1), there exists
an irreducible representation of K, depending only on Y(m), which
is contained in 7 with multiplicity 1 and which contains y(m) with
multiplicity 1.

Strong systems of minimal types are not unique as we have defined
them. We do not know whether all real groups G admit systems of
minimal types.

Let G be real. Let Jobe the complexified Lie algebra of K, and
let g=n +otkbe a complexified Iwasawa decomposition of the Lie
algebra of G. Let mbe the centralizer of oL in 4. Choose a
Cartan subalgebra \mﬁ of m, Then b = ¢L+‘hn is a Cartan subalgebra
of - Let Ol and N be the algebras of polynomial functions on
the duals of ou and b, respectively.

If a homomorphism from ZJK into ‘N is evaluated at any point
in the dual of bn&: the result is a homomorphism from £7K into OL.
It turns out that the natural way of studying the homomorphisms
hQ mentioned above, and our generalizations of them for real groups,
is by means of homomorphisms from 2/ K into Ol obtained by such
evaluation. The study of these homomorphisms can in turn be

embedded in a general theory which forms the subject of Chapter I.
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This theory is designed to handle arbitrary positive multiplicities,
not just multiplicity 1. Correspondingly, it is necessary to deal
with linear maps from ;yK into Ol which are not homomorphisms.
Chapter I contains the heart of the proofs of the theorems in §1

of Chapter III.

In §1 of Chapter 1 we first describe some basic notation. We
then define the key linear mapping ps,: £7K + Ol in terms of a simple
but crucial enveloping algebra decomposition (formula (3)). Ele-
mentary consequences of the definition are derived. § 2 1s devoted
to some important notation and to some technical lemmas based mostly
on linear algebra. The non-trivial parts of these lemmas are needed
only to handle the case of multiplicities greater than 1. In §3
we obtain the main theorem on finite dimensional representations.
The first formula in the statement of Theorem 1 may be thought of as
an analogue of the Frobenius reciprocity theorem for finite dimen-
sional representations, and is undoubtedly known. If we impose the
crucial condition that this inequality be an equality (formula (5)),
we obtain formula (6), which demonstrates the important relation
between the mapping pg} and finite dimensional representations.

$ 4 of Chapter I deals with certain infinite dimensional
representations. Following [11], we use several results and methods
of Harish-Chandra ([4] and [5]). First we prove Theorem 2, which
relates the mapping pS’ to a certain series of representations very

similar to a series defined by Harish-Chandra. We then construct a
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new series of irreducible representations by generalizing a procedure
of [11], and we show in Theorem 3 that these representations
naturally extend the finite dimensional representations satisfying
condition (5) (Theorem 1). This condition is replaced in the present
case by the important irreducibility condition stated in Theorems 2
and 3,

In §5 of Chapter I we give a simple independent proof of
Theorem 1 in the special case in which the relevant multiplicities
are 1. The resulting statement, Theorem 1', is the only part of
Theorem 1 which is needed in $1 of Chapter III. Similarly, a short
proof of Theorems 2 and 3 could also be given in the case of
multiplicity 1. In addition, we explain how the mapping p}' gen-
eralizes the infinitesimal versions of the class 1 spherical func-
tions.

In $6 of Chapter I we discuss the class 1 theory relating to
Harish-Chandra's formula for the spherical function, and we indicate
directions in which it might be generalized by means of the mapping
pg,. We prove Theorem 4 concerning Weyl group transformation
properties of the mapping pg{. The idea for this proof is due to
S. Helgason. We finally state two partial generalizations of
certain aspects of the class 1 theory.

Chapter II is devoted to multiplicity formulas for the reduction
under K of finite dimensional irreducible representations of G, when

G has real rank 1. B. Kostant has derived a multiplicity formula
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[unpublished] for the reduction of a finite dimensional irreducible
representation of an arbitrary compact connected Lie group under an
arbitrary compact connected subgroup. In §1 this theorem is
formulated and proved in the special case in which a certain
simplifying assumption holds. The result is applied case-by-case in
$§ 2a-2e to the rank 1 simple groups to derive explicit multiplicity
formulas. The proofs are highly combinatorial. A general fact about
class 1 representations is obtained as a corollary of the resulting
formulas. This fact, stated as Theorem 2 in the initial paragraphs
of $2, is essentially the same as a theorem ([10], Theorem 6)
recently obtained by Kostant in a different way.

The multiplicity formulas for the unitary and orthogonal groups
(% § 2a-2¢) are well known and classical (cf. [1]). They are
included here because it is interesting to see how easily they follow
from Kostant's formula, because they are used in the applicationms,
and because it is interesting to compare them with the results
obtained for the other groups. Since our proofs for these classical
cases are extremely similar, we give the proof for only the unitary
case.

On the other hand, our férmulas for the remaining cases - the
symplectic and exceptional cases - seem to be new (although C. G.
Hegerfeldt [7] has obtained related results on symplectic groups).
Our result for the symplectic case (§ 2d) is expressed rather

interestingly in terms of a certain combinatorial function - the
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number of ways of putting s indistinguishable balls into k  dis-
tinguishable boxes of gpecified finite capacities. This gives an
intuitive interpretation to the multiplicity formula and its appli-
cations. For example, the existence of systems of minimal types
for the symplectic groups (see above) is reduced by formula (10)
(Theorem 6) to the fact that the number of ways of putting O balls
into boxes of capacity 0 is 1l. Another interesting example is given
in the Remark following the Corollary to Theorem 6.

We have succeeded in obtaining only partial results for the
exceptional case (§ 2e), but these are sufficient for our applica-
tions. Specifically, Theorem 7 is the formula for class 1 repre-
sentations, and Theorem 8 is precisely the statement which we need
to prove the existence of a system of minimal types for the
exceptional group (see above).

The proofs for the orthogonal and unitary cases are quite easy.
The main reason is that the partition function (which is defined in
§ 1 of Chapter II) takes only the values O and 1, and the same is
true of the multiplicity function. Neither of these statements is
true, however, for the symplectic and exceptional cases. Corres-
pondingly, our proofs for these two cases are relatively complicated.
The proof of Theorem 8 continues along the lines of that of Theorem
7, but we have omitted it because it is extremely long, and because
it does not seem to lead easily to a completely general multiplicity

formula for the exceptional group. It would be desirable to have
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'such a formula, but it would be even more desirable to have a uniform
statement and proof of the multiplicity results for all the rank 1
groups (or for a more general class of real semisimple Lie groups),
as opposed to a case-by-case analysis. Our proof for the symplectic
case has some promise of pointing the way toward a general proof,
in view of the key role played by the reflections with respect to the
simple roots (see Lemma 10), but we do not see how to extend this
proof to a general one.

As we remarked above, it would be desirable to find a way to
avoid having to use our formulas of Chapter II in proving the
existence of systems of minimal types in Chapter III. In any case,
however, these formulas certainly have independent interest.

Chapters 1 and II of this paper are logically and notationally
independent, and hence can be read separately. On the other hand,
Chapters I and III form a unit in which the notation and results are
cumulative. In addition, results of Chapter II are quoted in § 2
of Chapter III. §§ 2a-2e of Chapter II are completely independent
of one another, but they all depend on §1 of Chapter II. Theorems,
Propositions, Lemmas, Definitions and formulas are numbered
independently in each chapter.

The reader is referred to [8] and [9] for background material
on semisimple Lie groups and Lie algebras.

The author would like to thank Prof. Kostant for his valuable

advice on several aspects of this work. In particular, Prof.
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Kostant suggested the original thesis question of extending the
theory of minimal types in [11] to real semisimple Lie groups. He

also provided much specific insight in the development of the ideas

in Chapter I.



Chapter I. An enveloping algebra decomposition
and some of its consequences

5 1l The decomposition

Let G be a connected real semisimple Lie group with finite center,
and let T}o be its Lie algebra. Fix a Cartan involution 6 of Do’ and
let ,ﬂb and 1’6 be its +1 and -1 eigensubspaces, respectively, so that
%o = 4Q6+{>6 is a Cartan decomposition of %,- Choose a maximal
abelian subspace O'LO of /F/o, and a system Z+ of positive restricted
roots of d}o with respect to ﬂ'o’ Let ny < Yo be the sum of the
restricted root spaces corresponding to the roots in Z+. Then we have
the Iwasawa decomposition %o = de+atd+,ﬁb (direct sum of vector
spaces) of the real semisimple Lie algebra Q}O.

Let N, A and K be the connected Lie subgroups of G corresponding
to the Lie subalgebras lio, ot and )kb, respectively, of %o Let M
be the centralizer of A in K. We have the Iwasawa decomposition
G = NAK of G, and K is a maximal compact subgroup of G. Moreover,
NAM is a closed subgroup of G, and M is compact.

We shall find it convenient to pass to the complexifications of
the Lie algebras defined above. Let € denote the field of complex
| numbers. Let } be the complexification of i}o’ so that ol is a
complex semisimple Lie algebra. Let n, oL and A be the complex
subspaces of ¢} generated by no, oL, and A%o’ respectively. Then
n, o and AE are subalgebras of %> andrwe have the complexified

Iwasawa decomposition ? =N +0P+AL.
-17-
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Let &/ be the universal enveloping algebra of % and let 1 € &
be the identity element. Let N, (1 and X denote the subalgebras
of f generated by n and 1, by ¢t and 1, and by & and 1, respec-
tively. Then N, Ol and X are isomorphic to the universal envelop-
ing algebras of n, ot and AQ, regspectively. Moreover, the map of
NOOL®K into & given by n ® a ® k > nak is a linear iso-
morphism., If \-71, J. seses ‘7_‘] are arbitrary linear subspaces of :27,
we shall denote by jl yz .o :7:1 the subspace congsisting of the sums
of the elements of the form tltz...tj where t, € Ji (1<1ix<3).

G acts in a canonical way as a group of algebra automorphisms of
& s by unique extension of the adjoint representation Ad of G on 6}0.
We shall also denote the extension by Ad. For every subset S of G
and every subset T of ;@7, let I S denote the centralizer of S in J
under Ad. Then ¥ commutes with X in .

Now N=nrN +C-1 (direct sum), so that J/ = (nN+C-1)0LX =

=LK + nNOLX (direct sum). Hence

(L Y = OIX+nd/ (direct sum).
Since AdM centralizes Ol and normalizes n, we have from (1) that

gMec otxM+ndy.

In particular,

(2) yX caxt+nt.
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Let 9, be an arbitrary linear complement of the constants in

7<M. From (2), we have the key decomposition
3) bl Ke oLy + 0t + nid/  (direct sum).

Definition 1. For every linear complement ﬂ/ of the constants

in 7(M, let p}: ol K + 0l be the linear map defined as follows:
For all u € K, p; is the (l-component of u with respect to the
decomposition (3).

The corollary to the following simple proposition points out
some of the significance of the mapping p} (more of the significance
is indicated in §§ 3, 4, 5 and 6):

Proposition 1. (cf. Harish-Chandra [5, p. 48, Lemma 10]).

Suppose we identify ALK with the algebra 0®K", For all
u€ g K, let qu denote the JI® XM-compOnent of u with respect to
the decomposition (2). Then the linear map q: )UK +OZ®7(M is an
algebra antihomomorphism.

Proof. Choose a basis {H,...,Hy} of ot. For every i-tuple

(s) = (81""32) of non-negative integers, let
1 )
so that {H(S)} is a basis of OC.
K
Let u,v € J , and let

uEZ H,..x (modn)y),
$) (s)7(s)
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v = Z H y (mod Vl)b),
PROME!

M
where X(5)* Y(s) € X". Then

uv = Z H,. vXx (mod n¥)
($) (8) " 7(s)

(since v € K)

= (Sg’(t) H(S) H(t)y(t)x(S) (mod Yl)g)

(since ot normalizes w )

qvqu (mod n¥).

Hence quv = qvqu in O® 7‘(M, and this proves the proposition.

Corollary. Let } be a linear complement of the constants in
7(M. If } is an ideal in *M, Py 1s a homomorphism. If } con-
tains all commutators xy-yx of elements x,y€ 7'(M, then p } vanishes
on all commutators uv-vu of elements u,v € Pl K.

Proof. Let fy: %M+ C be the linear map such that
f}(gz) =0 and £y (1) = 1. Then Py -‘(1®f9, )eq, and the

corollary now follows from the proposition.

§ 2 Some lemmas

In this section, we obtain some lemmas which prepare the way for
§§ 3 and 4. The reason for the somewhat involved notation in this

section is that Lemma 1 is designed to apply to both pairs of groups
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(G,K) and (K,M), and Lemmas 1, 4 and 5 are designed to apply to both
finite and infinite dimensional representations of G (see § 3 and
§ 4, respectively). However, when we treat the special case of
multiplicity 1 in ,§5, we will see that all of the complications
of §$2 can be avoided.

We retain the notation of $1. We shall also use the following
notation: If H is a Lie group (resp., an associative algebra over
C), we let ﬁ denote the set of equivalence classes of continuous
(resp., all) finite dimensional complex irreducible representations
of H. We recall that if Il is a continuous finite dimensional com-
plex representation of a connected Lie group H, then Il may be
naturally regarded as .a representation of the complexified Lie
algebra b of H, and hence as a representation of the universal
enveloping algebra of b .

If I is a continuous finite dimensional complex representation
of a Lie group H, and Il acts on the space V, then for all o € i we
let Va denote the a-primary subspace of V, that is, the space of
vectors in V which transform under I according to a. We recall that
a representation of a group (or an algebra) may be naturally regarded
as a representation of a subgroup (or subalgebra) by restriction.
1f Hl and H2 are Lie groups such that H2 c Hl’ and if & € ﬁl is
such that the restriction to H2 of every member of & splits into a
direct sum of irreducible representations of HZ’ then for all Beﬁz

we let m(a,B) denote the multiplicity with which members of B occur
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in the restriction to Hz of any representation in a.

If (L is an associative algebra over € and 1 ed, we let Xn
denote the complex-valued linear function on (L which is the character
of any member of n.

We now come to the lemmas. Lemma 1 follows from standard linear
algebra, and we omit the proof.

Lemma 1, Let H be a group and Hl an irreducible representation
of H on the finite dimensional complex vector space X. Let o be a
representation of H on the finite dimensional complex vector space Z,
and assume that 9, is equivalent to a direct sum of r copies of Hl,
where r > 0. Let A be an associative algebra over €, and c, a
representation of (L on Z. Assume that 02(61) is precisely the
commuting ring of cl(H) in End Z. Then g, is equivalent to a direct
sum of finitely many copies of an irreducible representation Hz of A,
More specifically:

(1) There exists a unique element ryé’éi such that if H2 €
acts on the space Y, there is a unique linear isomorphism L from Z
to X®Y which intertwines the actions of H and d (H acts on X®Y

via the action of II, on the first factor, and (. acts on X®Y via

1
the action of H2 on the second factor).
(ii) If P is any subspace of Z invariant and irreducible

under 02, then the corresponding representation of (L on P is a

member of n.
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(1) 1If z€Z is a cyclic vector for O,, then r = dim Y < dim X,

and there exist bases {xi}l <i<dimX of X and {yj}l <j<r of Y

r
such that L(z) = 121 X ®y,-

In order to apply Lemma 1, we prove thé following lemma:

Lemma 2. Let £€ 12, and let [T€ £ act on the space V. Fix weM
such that m(§,w) > 0 (that is, v, # {0}), and let o, be the corres—
ponding representation of M on V,,. Regard Il as a representation of
X on V. Then V, 1s invariant under II(X M). Let 0, denote the
corresponding representation of 7{M on Vw' Then 02(7(M) is pre-
cisely the commuting ring of Gl(M) in End V.

Proof. Let & be the commuting ring of o, (M) in End V . For

all m€M and k€K, we have
(4) T(( Ad m) (k) = T(m)I()I(m) L.

Hence Vw is invariant under H('XM), and 02(% M) c R, Conversely,
let T € R. Then there exists k € X such that II(k)v = Tv for all

€
v Vw' Thus
NN((Ad m)(k))v = Tv for all m€M, ve v
by (4) and the fact that T €K . Let dm denote normalized Haar

measure on M, and let k' = 5 (Ad m) (k)dm. Then k'€ 7(M, and
M
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Tk")v = | T((ad m) (K))v dm
M

= J’ Tv dm
M

= Ty for all v€ Vw'

This proves the lemma.
By Lemmas 1 and 2, we have:

Lemma 3. In the notation of Lemma 2, let I, € act on the

1

space X. Then:
A\

(1) There exists a unique element Z(&,w) € 7<M, which depends
only on £ and w, such that if II2€ t(£,w) acts on the space Y, there
is a unique linear isomorphism from Vw to X ® Y which intertwines
the actions of M and XM.

(i1) If P is any subspace of Vw invariant and irreducible
under 02, then the corresponding representation of WM on P is a
member of Z(§,w).

As we shall see later, the next lemma is designed to handle
infinite dimensional as well as finite dimensional representations
of G.

Lemma 4. Assume the hypotheses of Lemma 1, with H=K and (= ;UK.

Fix Eéﬁ such that II1€ €. Regard 0. and Hl as representations of ¢

1

on Z and X, respectively. Assume that O, and O, agree on X n)UK.

1 2
Identify Z with X® Y via the isomorphism L. Suppose z € Z is a

T
cyclic vector for 0,5 SO that z = Z X

L ® y; vhere r, {xi} and {yj}

i
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are as in Lemma 1(iii). Assume that 62(,271()2 c Ul(%M)z. Also
assume that z € Zw where w € f{ is such that m(§,w) > 0, and where M
is regarded as acting on Z via O 1° Then:

1) r < m(,w).

(i1) If r = m(§,w), then the subspace P of X spanned by

{

xi}l <i<r is invariant and irreducible under the restriction of

I, to 'XM, and the corresponding action of XY on P is a member of
c(E,w).

Proof. Let S < Z be the linear span of {x, ® yj}l <1,§ <r
Since Hz(aUK) acts irreducibly on Y, we have that OZ(JK)Z = S, By
hypothesis, 01(7<M)z 2 S, and so P is irreducible under the sub-
algebra of XM which preserves P under II,.

r

Now Z = 11 X ®yi (direct sum). The corresponding projections
of Z onto the 0, (K)-invariant subspaces X®yi (1<1i<r) are
intertwining operators for cl(K), and hence for ol(M). Thus
xi® vy, € Z, (where M is regarded as acting on Z via 01), and so
X, €X,(1<1i<r). Hemce P < X, Let o* denote the representation
of M on xw induced by Hl. Then since P <X, is irreducible under the
subalgebra of 7<M which preserves P under Hl, we have that the

commuting ring of 0* in End Xw contains a subspace of dimension r2.

This proves statement (i).



-26-

If v = m(f,w), then P is invariant and irreducible under all
of 7KM. Indeed, if this were not true, then the commuting ring of
0% in End Xw would contain a subspace of dimension greater than
(m(E,w))Z, a contradiction. Statement (ii) now follows immediately
from Lemma 3(ii), and Lemma 4 is proved.

Lemma 5. Assume the hypotheses of Lemma 4, and suppose that
Y= m({,0). Let D be the linear form on Z which takes

r
) a,,.x,®y, (a,.€ C )to )} a,. Then
iby P13 T 7y B T

xn(u) = D(oz(u)z) for all uEﬂK
7k
(where n€J ~ is defined as in Lemma 1), and

Xz (£ ,0) (v) = D(Ul(v)z) for all vex ™M,

Proof. The first statement follows immediately from the fact

Y

that z = Z xi® y4» and the second statement follows immediately
i=1

from this fact and Lemma 4(ii).

$3 Finite dimensional representations

The purpose of this section is to prove Theorem 1, which indi-
cates the connection between the mapping p [y defined in § 1 and
finite dimensional representations. We make use of some ideas from

[11]. We retain the notation of the preceding sections.
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Let a€G, and let I€a act on the space V. Let
v = {veV|I(X)v = 0 for all X€n },

It is well known that V “, the highest restricted weight space of II,
is invariant and irreducible under II(M), and that A acts on V"
according to multiplication by a (one-dimensional) character on A.
(These facts follow from the fact that MA normalizes N, and from

the irreducibility of V" under Il(m +o.), where m is the complexified
Lie algebra of M. This irreducibility is easily proved by means of
the decomposition o} = 8n +m+oa+n and the standard enveloping-
algebra proof of the one-dimensionality of the highest weight space
of an irreducible representation of a complex semisimple Lie algebra.)
Let y(a) €M and X(a)e A denote the classes obtained in this way.

When A(a) is regarded as a linear form on 6t, it becomes the highest
restricted weight of II.

Let W be the Weyl group of %o It is well known that W acts
naturally on M and A. Let soe W be the Weyl group element which
takes the system Z+ of positive restricted roots into -E+.

The proofs of Lemmas 2 and 3 (§ 2), and hence Lemmas 2 and 3
themselves, hold without change if K, M, X and XM are replacgd by
G, K, § and )QK, respectively. If & €G and gefc are such that
m(§,£) > 0, we thus have the existence of a unique class n(G,E)ng\K
such that the action of K and ,UK on the £-primary subspace of any

representation in § factors into the tensor product of a representation
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in £ with a representation in n(38,£); n(8,£) depends only on § and
E.
Let Eéﬁ and W€ M be such that m(§,w) > 0. Then ¥ is a
¢ (€ ,w)
linear form on 7(M, and its kernel }E © is a linear complement of
H

the constants in 'KM which contains all commutators xy-yx of elements

x,y € KM,

Definition 2. For every 5612 and meﬁ such that m(§,w) > O,
).

}E,w

Thus pg w is a linear mapping from ,/ K into Jl, and pg w vanishes
] ’

let Pew ™ py,g (see Definition 1 (§ 1) for the definition of p
w
14

on all commutators uv-vu of elements u,v € K (Corollary to Proposi-
tion 1 (§1)).

We recall that Ol may be regarded as the algebra of polynomial
functions on the dual of ot.

We can now state:

Theorem 1. For all 0 €G and B Eﬁ, we have
m(a,B) < m(B,y(a)).

Suppose that o and B satisfy the condition
(5) m(a,B) = m(B,y(a)) > 0.

Then

u
(6) XH(G,B) (u) = m(B,Y(Q)) pB,So'Y(a) (sox(a))



-29-
K K
for all u€d . Moreover, the linear mapping Pg s y(' b5+ 0L
>0

vanishes on all commutators uv-vu of elements u,v €)X/ K

Proof. We note that pB,SoY(G) is defined because m(B,soy(a)) =
= m(B,y(a)) > 0, by (5). The last statement of the theorem has been
proved. For every class 666, K or ﬁ, let §' denote the contra-
gredient class.

Let I€ o act on the space V, and let II' be the contragredient
module to II, so that I'€a', and II' acts on the dual V' of V.

Let v'€ V' be a non-zero highest restricted weight vector of II'.
Let E' be the projection of V' onto V"g. with respect to the direct

sum decomposition V' = ) _ Vé. Then Vé. is invariant under II' (K)
EEK

and H'(,Z]K), and E' commutes with II' (X)) and II'(,JK).
We note that E'v' is a cyclic vector for the action of II'(K) on

Vgr+ Indeed, ZF=X0l+dn , so that

VI =" (Y)v' =T (K)v',
and so

Vi, = E'V' = I'(K)E'v'.

Also, since JKC ”XMO"(_+ X/n , we have that

1 E'V = ' (I K)v
c E'H'('?(M)v'

= 1 (XME'y'.
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] ] 1,1 ]
Moreover, v'€ V (SOY(G))" so that E'v G(VB')(SOY(a))" Now in

proving the theorem, we may assume that m(a',B') = m(a,B) > 0. Then

since E'v' is a non-zero vector in (V!,) +» we have that
B (SOY(G))

m(B,Y(G)) = m(B',(soY(a))') > 0.

We have thus verified all the hypotheses of Lemma 4, which we
apply to the case ZsVé., E=f', w = (soY(a))', z=E'v', and N and
O, are the representations of K (or K) and & K, respectively, on

V:: induced by II'. Lemma 4(i) now implies that
m(a,B8) = m(a',B') = r < m(B',(soy(a))') = m(B,y(a)),

and the first statement of Theorem 1 is proved.
Now suppose that condition (5) holds. Then Lemma 5 applies,

and so
) Xn(at,gt) @ = DA (WE'V') for all ue "
and

' 1,0 M
(8 X, (s y(@)n @) = PATWEWY  for all veXT,

where D is a linear form on Vé. such that
9) D(E'v') = m(B',(soy(a))') = m(B,y(a)).

Let u » ut denote the transpose map from ¥/ into itself, that

is, the unique (involutive) antiautomorphism of X/ which is -1 on -
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If 0 i8 a representation of )U K on the finite dimensional complex
vector space Q, and Q' is the dual of Q, then the representation of
g K contragredient to 0 is the representation ¢' defined on Q' by

the condition
] 4 t 1 K 4 1
<0(u)q,q'> = <q,0'(u)q'> for all u€ ¥y ~, q€eQ, q'€Q".

The same statement holds for 7<M in place of g K. For every class
> >
GE»UK or XM, let §' denote the contragredient class.

Since (n(a,B8))' = n(a',B'), we have that

(10) )(ut) = X (a,) W for all u eJX,

Xn(a',8"
Similarly, since (C(B,sov(a)))' = C(B',(soy(a))'), we have that
X %) = X (v) for all vexH
C@B', (s y(@))") L (8,8, () :

Hence

t
(11) <%,soy(a>’ ) aas',(sov(a))"

Let p: J K, 0l be the linear map defined as follows: For all

t
K u t K
ued ™, p, = (pB,soY(Of-)) . Then for all u€yY/ ", we have by (11)

that p_ is the ([~component of u with respect to the decomposition
u
K al
+0+ .
S Far s yiayy T+ An

Thus for all u €/ K, we have that
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D' WHE'v') = DE'T (wb)v")

D(E'Il" (Put)V') mod D(E'Il' (}Bv ,(SOY(Q))')V')

DEE' (p (-8 A(0)))v') mod DAI'( P, y)E'V")
u

, (soy(a)

(1]

P (-8 A()D(E'V")
u

- U [ ]
= pB’soY(a)(sol(a))D(E v').
Hence

t u
Xn(a' ’BI)(U ) = m(s’y(a))pB,SOY(G)(SOA(O‘))

by (7), (8), (9) and the definition of 9/3' (s y(@))'" Theorem 1
’ oY

now follows from (10).

Remark. The reasoning in § 3 could have been carried out more
simply if we had worked entirely in V, and not inbthe dual V'. We
then would have obtained an analog&e of Theorem 1 based on the
decomposition ﬂK c 7’fM07, +{/n 1instead of the decomposition
b/ Keax™ +nd . However, the latter decomposition is necessary
for the infinite dimensional case (Theorem 2, $ 4), and so our use
of the dual module shows that the ﬁinite and infinite dimensional
cases fit into the same pattern (compareATheorem 1 with Theorems 2

and 3).
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$4 Infinite dimensional representations
In this section, we shall prove analogues of Theorem 1 ( $3)
for families of infinite dimensional representations of G which
are closely related to the representations defined by Harish-Chandra
in [4, $ 12]. We shall use several results and methods from [4]) and
[5], and several ideas from [11]. We again retain the notation of
the preceding sections. ‘
Let yeﬁ, and let V€ ;‘, so that Vv is a (not necessarily
unitary) complex one-dimensional character on A. We also regard v
as a linear form on ¢i. We shall define a continuous (not necessarily
unitary) permissible (see [4]) representation HY»\’ of G on a Hilbert
space. »
First we define a representation I[,,of G on the Hilbert space
QZZ(K). For all g€ G and k€K, let
gk = kg exp H(g,k)n,
where kge K, H(g,k)€ ol,» n€N, and exp denotes the exponential
mapping. Let p be half the sum of the positive restricted roots of

%o so that p may be regarded as a linear form on ot. For all

g€C, £€L2(K) and almost all keK, define

-1
(H\)(g)f) (k) = e(V—p)(H(g ’k))f(kg—l).

Then Hv(g)f € ZZ(K), and H\) is a continuous representation of G on

L2®) (cf. [4, § 12D).
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Let Y'€ M denote the class contragredient to Y. Let ¢ be a
diagonal matrix element of a repregsentation in Y', so that ¢ is a
continuous function on M. Let dm denote normalized Haar measure on
M, let T be the left regular representation of K on JZZ(K), and let
T' be the right regular representation of K on &:Z(K). Let d be the
dimension of the representation space of any member of Y. Now the
operator F = d_f ¢(m—l)T'(m)dm is a projection in J:z(K), and F

M

commutes with Hv’ HY v is defined as the representation of G which

’

is the restriction of H\) to the invariant subspace N = FZZ(K).

Remark. Y and vV define an element OY v of ﬁXh in an obvious

’

way. If Vv is a unitary character of A, then Hy,v is unitary and is

unitarily equivalent to the representation of G induced by any member
of O ..
Y,V

For all £ €K, let 745 denote the space of vectors in N which

transform under II. _ (K) according to §&. Then 74€ is finite dimen-

Y,V
sional, it consists of C:w functions, and z “~?+E (direct sum) is
£ek
dense in M. J~ N, is well-behaved under I, . (G), and II induces
g Y,V Y,V

EEK

an "infinitesimal" representation of & on 21‘745 in a natural way
EEK

compatible with the exponential mapping (see [4]). We shall also
denote this representation by HY v Let ct.Y v denote the infinitesi-
9 b

mal equivalence class of permissible Banach space representations of

G defined by II , 80 that a depends only on Y and V.
Y,V Y,V
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For all §€ f(, let "UE; denote the subalgebra of )U which leaves
.HE invariant under H’y,\)' Suppose B€ K is such that 7‘?’8 # {0} and
NB is irreducible under )&B. Then the proof of Lemma 2 ( §$ 2) holds
in the present situation, and implies that NB is invariant under

I (;UK) and that II (JK) (restricted to A ,) is precisely the
Y,V Y,V ]

commuting ring of HY V(K) (restricted to NB) in End WB' Just as
9’
in Lemma 3, Lemma 1 now implies the existence of a unique class

2\
n( B) €4 K such that the action of K and JK on 7‘/8 factors iito

%y ,v?

the tensor product of a representation in B with a representation

in n(aY,v’B); n(aY V,B) depends only on and B.
9

o,

Y 5V

For all £ €K, let m(aY \’,E) denote the multiplicity with which
9

members of £ occur in the restriction to K of any member of aY v?
’

or, equivalently, in the representation of K on ")%LE defined by HY v
]
We can now state an analogue of Theorem 1:

Theorem 2. For all Yéfd, VEA and B€ ﬁ, we have
m(aY’v,B) = m(B,Y).
Suppose that Yy, v and B satisfy the condition
(12) m(aY,v,B) = m(B,y) >0

and suppose that 71‘6 is irreducible under \)():78) (in the notation
H

II
Y
above). Then
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u

for all ued X,

Proof. The first statement follows from the Frobenius
reciprocity theorem.

Let ¢ E'OZZ(K) be the character of any member of B. Now
H\)(k) = T(k) for all k€K (in the above notation). Hence 8 = Fy is
a cyclic vector for the action of HY ’v(K) on "HB.

Let F' denote the projection of oZz(K) onto the subspace of
all vectors which transform under 1'(M) according to Y', so that F'
commutes with T'(M), T(K) and H\)(G)’ and F = FF'. Now Y(kk') =

= Y(k'k) for all k,k'€K. Hence for all mEM, we have

I,(F'y = T(@F'y = F'r(my =

=F'T' @Y = T (m DF'Y.
Let ( , ) denote scalar product in Z(K). Then

(I, (m)EF'Y,F'Y) = (T'(m'l)F'tP,F'IP) =

= (F'y, 7" (m)F'Y) = (T"(m)F'P,F'Y)

(where bar denotes complex conjugate), a matrix element for y. Thus
F'Yp transforms under Hv(M) according to y. But since F commutes
with [, (M), we have that @ = Fy = FF'} transforms under IIY \’(M)

]

according to Y.
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We now use a technique of Harish-Chandra [5, Lemma 11 (p. 49)].
For all g€G, uéﬂ and k€K, let gk = kgk-l and let uk = (Ad k)u.

For all £€ 2(K) and almost all k€K, we have
M, @ ) ) (k) = £(k) for all neN,
A, (&) (k) = VP8 Degy  gor al1 aea,
(I, G E) () = £k D) for all k € K,

where log denotes the inverse of the exponential mapping from or,
to A. Thus if f is a C  function on K which is well-behaved

under II v? then
(14 (@ 9D =0 for all Xen,
(15) (@, EDE) (k) = (o) (E (k) for all Heov.
In addition,

(I, kW @ = pch = el = @@k v o,
so that
16) (@I = MDY K for all z €K,

We add to Harish-Chandra's reasoning the observation that for

a1l z€X™ and a11 k€K, we have

k
an @, IO () = @, (2)0) ().
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Indeed,

(L, ,(2)0) () = (I, (2)F¥) ()

F(IL, (2)¥) (k)

FA (W () by (16))

¢ f o@HI, @™y man
M

af o@™hHu () vimdn
M

(since z €7<M)

(1L, (") F¥) (k)

k
CHNESDICE

Now ,Z]KC otxXM + n¥ . Choose a basis {Hl""’HE} of o,
For every [-tuple (s) = (81""’8)&) of non-negative integers, let

8 -]
1 L
(S) 1 e e HQ, Y

so that {H(s)} is a basis of Ol. Let ued K, and write

(18) u = (g) H(s)z(s) + § Xy, »

€n and yie;g. Now let k €K. Since u€d K,

M
where 2(8)67( » X

we have

k k k k k
u=u = (g) H(s)z(s) + E xiyi .
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Hence

k k
) (I, (B T (2

a, . (we)(k) =

k k
g))®) (k) + § (I, (T (3,)8) (k)

k
= L He (o Ay (20,0 (0

(by (14) and (15))

Thus

(49 Ty oW = L Hg) GOl (2 (q))0

by (17). In particular,

K M
IIY’v()U )8 © HY,\,(’){ )e.

We now suppose that (12) holds (see the statement of the
theorem) and that?«s is irreducible under HY’v(£7B). We have thus
verified all the hypotheses of Lemma 5 (§ 2), which we apply to
the case Z = 748, E=B, w=Y, z=0, and 01 and 02 are the
representations of K (or X) and ;UK, respectively, on WB induced

by HY v Hence Lemma 5 implies that

K
(20) Xn(aY’\)’B) (u) = D(HY,\’(“)Q) for all ué)g
and

M
(21) Xe(,y) ) = DAL, (v)0) for all v€ XM,

where D is a certain linear form on 748.
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Combining (19), (20) and (21), we have

(22) W = ] Hyvp)x (z(g))-
e, .8 (g) (s) Z(B,Y) (s)

If we rewrite (18) in the form

' u
HiyZe) * P,y * 1 K70

u= }
s i

(s)
where z'(s)é 3/ 8y’ and if we recall that Xz (8,y) (1) = m(B,Yy), then

we see that (22) implies the theorem.
We shall now give a generalization of the procedure used in
[11, § 2.4] to conmstruct a series of irreducible representations:
Assume the hypotheses of Theorem 2, so that m(aY’v,B) > 0 and
WB is irreducible under IIY’V(;@,TB). Let N ' be the smallest closed

subspace of N containing WB and invariant under _ _(¢). If &

Y,V
is any closed subspace of N' invariant under HY v(G) and such that
b
Fn aHB = {0}, then Fc g‘)s%’g (Hilbert space direct sum), and

so F J—’”B. Let N" be the closed linear span of all such ), so

that 4" 1 ‘NB' Since OHB is irreducible under HY va)’ we have
’

that %" is a maximal closed HY y{G)-invariant subspace of N'.
’

o8

I

Y,V

”)’.} = N'/N" 1is irreducible. Also, ﬁs v 18 quasi-simple (see [4]).
’

We digress to describe a general picture developed by Harish-

Hence the quotient representation of G on the Hilbert space

Chandra in [4] and [5]. Let ]T be an irreducible quasi-simple

representation of G on a Banach space &. For all F,GI?, let @E
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denote the space of vectors in B which transform under II(K) accord-

ing to £. Then BE is finite dimensional, and Z . 8& is dense in

gek
8. Z " 8€ 1s well-behaved under TI(G), and TT induces a representa-
£ek
tion of W on ] @ g 1n a natural way compatible with the

gek

exponential mapping. This infinitesimal representation is also
irreducible, and will also be denoted by II. Let o denote the
corresponding infinitesimal equivalence class of quasi-simple Banach
space representations of G.

For all Eeﬁ, let )05 denote the subalgebra of j which leaves
Bg invariant under II. Then for every B €K such that 88 # {0},
we have that BB is irreducible under II()UB) (see [5, $2,
Corollary 2]). Thus for any such B, the proofs of Lemmas 2 and 3
(8§ 2) again apply, and we again obtain a unique class n(a,B)€ ﬁ
such that the action of K and ;UK on 88 factors into the tensor
product of a representation in B with a representation in n(a,B).

The significance of n(a,B) is that if o' is a second infini-
tesimal equivalence class of irreducible quasi-simple Banach space
representations, if B also occurs with positive multiplicity in any
member of a', and if n(a',8) = n(a,8), then o' = o (see [5, 5 2,
Corollary 2]).

We now return to the special situation which we were discussing
above. Let &s’v denote the infinitesimal equivalence class of

irreducible quasi-simple Banach space representations of G defined

A

by HB . Now the action of II_ _ (X K) on W, 1is equivalent to the
Y,V Y,V B
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la)

action of ﬁ$ v(;jK) on ?JB' Hence formula (13) (Theorem 2) remains
b}
~B

valid when qy’v is replaced by v Thus we have:

Theorem 3. Let Y€ ft, VEA and BEK. Suppose that m(B,y) > 0

and that ?43 is irreducible under II QJ’B), in the notation of

Y,V
Theorem 2, Then &s v is an infinitesimal equivalence class of
2

irreducible quasi-simple Banach space representations of G such that

(23) X ng (uw) = m(s,y)p‘g,§—v+p)

n(aY,v,B)

for all u €y K.

The above remarks indicate the significance of formula (23).
Comparing Theorems 1 and 3, we see that the representations &s’v
"extend" the finite dimensional representations satisfying condition
(5) (Theorem 1), in a certain natural way.

Even if 746 is not irreducible under 276, it seems possible
that the action of iyx'on 7“# can be used to obtain information
about the "composition series'' of the (not necessarily irreducible)
representations I .

Y,V

$5 Special cases

The proofs of Theorems 1 and 2 ($ 3 and § 4, respectively) can
be greatly simplified if the relevant multiplicities are assumed to
be 1. In this section, we shall show how this can be done. We

shall also show how the enveloping algebra formalism which is used
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to describe the infinitesimal class 1 spherical functions (see
[8, Chapter X, $ 6.3]) can be regarded as a special case of our
formalism. We again retain the previous notation.

Suppose § € G and £€ K are such that m(6,£) = 1. Then by
Schur's Lemma, X/ K acts as scalars on the £-primary part of any
representation in §, and Xﬂ(ﬁ, £) is the corresponding homomorphism
of ;UK into €. Similarly, if £€K and w€M are such that
m(§,w) = 1, then the same observation shows that Xc({,w) is a
homomorphism of *M 1ato C.

We now give a simple proof of Theorem 1 in the case in which
m(a,B) = m(B,y(a)) = 1:

Theorem 1'. Let 0 EGC and Bélz be such that
m(a’B) = m(B’Y(a)) = 1.
Then

- K
o (a,8) O = P g y(a) (S for all ue K,

Moreover, the linear mapping Pg.s y(a)® Py K, Ol is a homomorphism.
b4
o
Proof. Since m(B ,soY(a)) = m(B,y(a)) = 1, and since the kernel
M
of XC(B,SOY(G)) is thus an ideal in 7{ s the last statement of the

theorem follows from the Corollary to Proposition 1 (§1). For

every class 662‘-, R or M, let §' denote the contragredient class.
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Let I€a act on the space V, and let II' be the contragredient
module to II, so that [I'€ a', and II' acts on the dual V' of V.

Let v'€ V' be a non-zero highest restricted weight vector of
II'. Let E' be the projection of V' onto V', with respect to the

B

direct sum decomposition V' = " Vé.
EE€K

As in the proof of Theorem 1, we see immediately that E'v' # 0

and that E'v' € (Vé,)(soY(a))..

Choose w€ V, such that <w,E'v'> = 1. Then for all ué:(VK, we

B

have

o,y @) 7 T@wEN
= <w,]'['(ut)E'v'>

= <w,E'T' (ub)v'>

where u > ut denotes the unique antiautomorphism of 4/ which is -1

on 0}

Now

t
(}’B,soy(a)) = }B',(soy(a))"

t
Hence for all u €Y K, P, = (p; s Y(a))t is the (Ol-component of u
?
o

with respect to the decomposition

K +0L+ .
¥ CS’B',(sOY(a))'a A
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Thus for all uEﬂK, we have

Xn(o,8) (@) = T ()v'> mod<w BT (Jgr (g yqy) V">

Puf- ("80)\.(“)) mod<w, 1T ( }ﬁv , (SOY(a)) DE'V'>

t
(B, y(@) M)

u
pB’SOY(a)(sok(a)).

But

TG ar, e y@) BV = %@, s v P8 @) B

=0

. T ' .
by the definition of }B' ,(soY(a))' his proves Theorem 1

The proof of Theorem 2 can of course also be simplified if we
agssume that m(B,yY) = 1. In this case, we can omit the hypothesis
that 8 is irreducible under Hy,v( P 6) in Theorems 2 and 3, since
this hypothesis is automatically satisfied.

Let Bo and Y, be the classes of the trivial one-dimensional

representations of K and M, respectively. Then
M
o’'o

and so for all uéﬁK, plBl ¥ is the Ol-component of u with respect
o’'o

to the decomposition
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bXc avex™n Kl + 0L+ n 4.

Thus Pg Y is essentially the same as the mapping Y defined in
o

[8, p. 430] for the study of the class 1 spherical functions. Hence
our results can be regarded as generalizations of certain aspects
of the class 1 theory. In § 6, we shall discuss the generalization

of other aspects of the class 1 theory.

$ 6 Further questions

We again retain the previous notation. As we pointed out at
the end of the last section, the mapping pBO»Y is essentially the
same as the mapping Y used in [8, Chapter X, § 6.3] to study the
class 1 spherical functions. One of the main results there is the
theorem of Harish-Chandra which can be stated in our terminology
as follows:

PRy, .
(25) 0+ Kot yX ——5 g 5 o

~

is an exact sequence. Here ¢ is the injection, and Oﬂw is the set
of elements in (U which are fixed by the translated Weyl group W,
which in turn is defined as follows: For all seW, let sA denote
the affine transformation of the dual of ou given by A + sA - sp + p;
then sA can be regarded as an algebra automorphism of CE, and

W= {g®|s ew}.
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One significance of (25) is that it yields Harish-Chandra's
formula for the class 1 spherical function (see [8, loc. cit.]), and
it also leads to a concrete realization of an abstract quasi-simple
irreducible representation of class 1. Specifically, if Il is a
quasi-simple irreducible representation of G with a K-fixed vector

v, then the corresponding action of 27K on v annihilates 27Kﬂ xg,ﬁb,

~

and so induces a homomorphism of OIW into € by (25). But since
Ol is integral over Olw, this homomorphism extends to OlL, and the

action of éfK on v is thus given by evaluation of Py at some

o*Yo
point in the dual of ouv. By Theorem 3 in the class 1 case, the

action of ;gK on v is the same as the action of Z7K'on a K-fixed
B

vector in a representation of the form II °

By Harish-Chandra's
Yor

vo

theorem stated just before Theorem 3, Il is infinitesimally equivalent
8

to a representation of the form II °

Y _,v° This yields the desired
o,

results.
Another significance of (25) is that it determines all possible
B

equivalences between representations of the form HYO v
o’
Hopefully, a similar study of the mapping Pg Y for arbitrary g
9’
andyYwill yield a formula for general spherical functions and a
theorem on the concrete realization of irreducible representations

outside the class 1 case, as well as information on the possible

. Harish-

equivalences between representations of the form ﬁs v
H

Chandra has obtained such theorems (see [5, Theorem 4 (p. 63)] and



-48-

[6]; cf. also R. Godement, A theory of spherical functioms, I,
Trans. Amer. Math. Soc. 73 (1952), 496-556), but it is hoped that
a study of the mapping szY and a generalization of (25) will lead
to a sharpening of his results.

We now briefly indicate the results which we have obtained
relating to the generalization of (25). We have:

Theorem 4. Let B€ K and Yeﬁ be such that m(B,y) > 0. Then

for all s€W and ueﬂK, we have
A u u
(26) $Pg v = Pg gyt

Moreover, if véEK and if B satisfies the usual irreducibility condi-
~8

tion (see Theorem 2) with respect to Hy,v and HsY,sV’ then %y v and
~B
asY,sv are defined and

B _ B

Q, o .
Y,V sY,sV

Proof. The second statement follows from the first and from
Theorem 3. Concerning the first statement, it follows from a
theorem of F. Bruhat [2, Theorem 7.2 (p. 193)] that if v assumes
pure imaginary values on ozb and is regular, then Hy,v and HsY,sv
are irreducible and equivalent. This gives a Zariski dense set on
which (26) (regarded as an equality of polynomials on the dual of ovr)
holds, in view of Theorem 2. Thus (26) itself holds, and Theorem 4

is proved.
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Remark. The idea for the proof of Theorem 4 is due to S.
Helgason.
By slightly modifying the proofs of Lemmas 6.12 and 6.14 in
[8, Chapter X, $6.3], and by using Theorem 4 above, we can prove
the following generalization of Lemma 6.14 [loc. cit.]:

Proposition 2. Let B(:'ﬁ and yeﬁ be such that m(8,y) > 0, and

assume that sy = Y for all s€W. Then the image of Pg.y in OUis
~ b4
precisely o,
Remark. Proposition 2 yields information on the non-equivalence

of certain pairs of representations of the form ﬁB Further

Y,V°
information of this type would follow from the following conjecture,
a generalization of the statement of Proposition 2: Let B€ K and
Y€ M be such that m(B,Y) > 0. Let W, = {seWlsy = y}. Then the
image of Pg y in Ol is {xéO’L|sAx = x for all séwy} (cf. [11,
$ 3.6]).

By applying [5, Lemma 1 (p. 28)] and Proposition 2, we can

prove:

Proposition 3. Let G be SU(1,n) (n > 1) or the universal

covering group of SOo(l,Zn) (n > 2) (see [8, Chapter IX] for the

notation). Let Il be an arbitrary quasi-simple irreducible repre-

sentation of G, and let B€ K occur in II. Then B occurs with

multiplicity exactly 1 in II, and II is infinitesimally equivalent

to ﬁs’\) for some Y€ M and vEA. Moreover, for all B€ ﬁ, yeﬁ and
B8 ~B

\),V'GK such that m(B,y) > 0, a and o,

R = are defined, and
9 bl
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they are equal if and only if V' = sAV for some s €W,

The properties of G that we have used to prove Proposition 3
are:

1) m(B,y) <1 for all BEI'E and Yeﬁ.

2) sy =y for all Yeﬁ and s €W (cf. Proposition 2).

3) For every B€ K, there exists a €G such that m(o,B) > 0.
(This hypothesis is required for the application of Harish-Chandra's

result [5, loc. cit.].)



Chapter II. Multiplicity formulasg

31 Kostant's multiplicity formula

Let U be a compact connected Lie group and K a compact connected
Lie subgroup of U. Let T and S be maximal tori of U and K, respec-
tively, such that S € T. Let U be the Lie algebra of U, and let
XQ’o’ X and S be the Lie subalgebras of u4 corresponding to K, T
and S, respectively. Then 4 and s are maximal abelian subalgebras
of U and Xq.o, respectively, and scX. Let i be a fixed complex
number whose square is -1. Then the complexifications of U, /ab’
X and S can be denoted c}au +iu, L= ’Lo +1,L_O, b = 7t+_;_7t
and \7* = § +1 G, respectively. % and ,k are complex reductive
Lie algebras, and l7 and 17* are Cartan subalgebras of % and JL,
respectively. For every linear form Vv on b, let V* denote its
restriction to b*.

Assumption. We assume that i1 S contains a regular element of‘17t.

We fix the unique Weyl chambers in _i_t and is (for 3 and Xe,
respectively) which contain such an element, which is regular for
both 0} and JL. All notions of positivity and dominance of roots
and weights will be taken with respect to these chambers.

Let wl,...wr be the positive weights of the canonical repre-
sentation of ,L, on ?/L, repeated according to multiplicity if

necessary. For every integral linear form u on b*, let P(u) be

the number of non-negative integral r-tuples LIERERL . such that

r
u= Z niwi. P is called the partition function.
i=1

-51-
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Let p be half the sum of the positive roots of % Let W be
the Weyl group of 0}, regarded as a group of linear transformations
of the dual of b For all 0 €W, let det 0 denote the determinant
of . Let DU and DK denote the sets of dominant integral linear
forms for U and K, respectively.

For all XEDU and MEDK, we define mA(u) to be the multiplicity
with which finite dimensional (continuous complex) irreducible
representations of K with highest weight 4 occur in the restriction
to K of any finite dimensional (continuous complex) irreducible
representation of U with highest weight A.

We can now state the multiplicity formula:

Theorem 1 (Kostant). In the above notatiom,

(1 m (M) = ] (det 0) P((G(Mp))* = (ihp*))
CeEW

for all A€ Dy and U €Dy.

Proof (cf. P. Cartier [3] and N. Jacobson [9, Chapter VIII,
$5] for special cases). U can be embedded as a Lie subgroup in a
(complex) Lie group U1 whose Lie algebra is %- Let K1 be the
connected Lie subgroup of Ul with Lie algebra /fz Let Il be a finite
dimensional irreducible representation of U with highest weight A.
Then ][ can be extended uniquely to a holomorphic representation I[l

of Ul’ For all H 6\7, let

x)‘(H) = Trace (Hl(exP H))
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where exp denotes the exponential mapping from % into U For all

l.
VED, and H'E ‘7*, we define X\)(H') analogously, using K, in place

of Ul’

By Weyl's character formula (cf. [9], p. 255),

] (det ) (F0) (1)
EW

Z (det O)e
cew

(2) Xy () =2 for all HE b .

(op) (1)

Let A_:)’ and A_f" denote the sets of positive roots for o and L,

respectively. The denominator in (2) can be rewritten:

(3) z (det O)e(Up)(H) = ep(H) i ’ (l_e"a(H))
OEW O.GA_?'

(cf. [9], p. 252, Lemma 4). There is a bijection § from A_:_} to
k ys
a,

U {1,...r} such that for all a€ Af._a’, a*x = §£(a) 1f f(a) € A7X and

+
o = o 1if (@) =1 (1 <1<r). Thus

w L T (@) |

aeAj_)’
TT - ")
[ 1 -
= PED (1-e~BH", ]~I (e 1 7y
e

i=1
Bea,

for all H'€ h*.
Now the left-hand side of (4) represents a non-zero trigonomet-

ric polynomial on L;*. Hence (2) can be regarded as an equality of
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trigonometric polynomials on b*. Let | denote the set of integral

linear forms on b*. Then for all v GJK, P(V) is the coefficient

of e-v in the Fourier series for

Thus by (2), (3) and (4), we have

T 7 (det 0)p(w)el@O+P)I*-(vhp®)) (H')
OEW ved

X, @' = TT —3(H'
A ol Af (1-e"B ",

for all H'€ h*, so that

(5) XA(H') BTI& (1_e-B(H')) -
€
+

= T (] (det 0) P((0O+p))*-(vtp#)))e H")

VeEd oeW
for all H'e€ b*.
On the other hand,

(6) XA(H') = Z mA(V) XV(H') for all H'e L)*.

\)éDK

Let W' denote the Weyl group of Jg, and let p' be half the sum of

the positive roots of }L. Exactly as above, we get
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2{ (det ¢"') eG'(V+p')(H')
o g'ew
) XV(H ) epv(HV) T—r (l-e_B(Hv))
Benk

for all V€D, and H'€e b*. By (6) and (7), we have

X, (") Wk(l-e-e(ﬂ')) -

Beay

= Z 5_ m, (V) (det ¢') o0 (o) -p") (H")

1
VGEDK g'ewW

for all H' € \7*. The sum on the right-hand side may be taken over

all ved , 1f we define mA(v) to be 0 for all v GJL—DK. We get

] ‘B(H')
(") (1- ) =
) I om (@) wrp")-p") (det o")e’®V
o'e W' ved
= > m, @' (vhp")-p") (det anye’ (B

ved oc'ew'
= Z mA(V)e\)(H’)
ved

for all H'€ ‘7*. In view of (5), we see that (1) follows by

comparison of Fourier coefficients, and Theorem 1 is proved.
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$2 Application to the rank 1 groups
Let G be a connected real semisimple Lie group with finite

center, and let H be a maximal compact subgroup of G. It is well
known that the solution of the problem of computing the multi-
plicities with which finite dimensional irreducible representations
of H occur in the restriction to H of finite dimensional irreducible
representations of G is contained in the solution of the "dualized"
problem in which G is replaced by an appropriate simply connected
compact group U and H by an appropriate compact subgroup K of U.

In this section, we show how Kostant's multiplicity formula
($ 1) can be used to obtain explicit multiplicity formulas for the
pairs (G,H) where G is simple and of real rank 1. We do this by
means of case-by-case analysis (see [8, Chapter IX] for the nota-
tion and classification). The dualized problems correspond to the
pairs (U,K) = (SU(n+l), S(leUn)), (U,K) = (So(2n+l), S0(2n)) (or,
rather, their respective covering groups), (U,K) = (S0(2n),
S0(2n-1)) (or, rather, their respective covering groups),

(U,K) = (Sp(n), Sp(1) x Sp(n-1)), and (U,K) = (F,, Spin (9)).
These cases are treated respectively in the subsections $$2a-2e
below. As explained in the Introduction, we obtain complete
results for all but the pair (Fé’ Spin (9)), for which we obtain
partial results, and we omit certain proofs.

A finite dimensional irreducible representation of G or U is

said to be of class 1 if it contains the trivial one-dimensional
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repregsentation of H or K, respectively. Our formulas in the sub-
sections below immediately yield the following theorem for ramk 1
simple groups, and hence for rank 1 semisimple groups G:

Theorem 2 (cf. Kostant [10], Theorem 6). Let G be a connected
rank 1 real semisimple Lie group with finite center, and H a maximal
compact subgroup of G. Then the multiplicity with which an arbitrary
finite dimensional irreducible representation of H occurs in the
restriction to H of an arbitrary class 1 finite dimensional irreducible
representation of G is either 0 or 1.

In $$2a-2e, we use the notation Z for the integers, Z+
for the non-negative integers, [R for the real numbers, and  for

the complex numbers. $$ 2a-2e all depend on §1, but they are

independent of one another.

$ 2a The formula for (SU(n+l), s(U1 X Un))

Let n=1,2,... Let U= SU(nt+l), K = S(Ul X Un)’ the set of

matrices (‘8 g) where A€U(1), B€U(n) and det A det B=1, U is simply

connected,

Let T be the set of diagonal matrices in U. T is a maximal
torus of U and K, Let U be the Lie algebra of U; we identify U
with the Lie algebra of traceless skew hermitian (n+l) X (n+1)

matrices. Let /ko and £ be the subalgebras of U corresponding
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to K and T, respectively. Then l') = £+ 11’. is a Cartan subalgebra
of the complexification c}-u-»- iU, and also of /fe_= /?"’o + _;,Y.,o.

Let X, (0 < i < n) be the (n+l) X (n+l) diagonal matrix which
is 1 in the ith diagonal entry and O everywhere else. Then

A

{xi}0§i§ , 18 a basis of the complex vector space h of complex

diagonal matrices. Let {Ai}o <i<a be the dual basis. If v is

a linear functional onm g, let V denote its restriction to L) . (‘7
is the space of traceless complex diagonal matrices.)

The roots of the complex simple Lie algebra % with respect to
1) are _t(Xi-Xj) (0 <i<j<n). The roots of the complex reduc-

tive Lie algebra A with respect to L; are i(Xi—Xj) (L<i<j<n).

{)si-)\i_'_l}o <i<anl is a system of simple roots for %. The

corresponding system of positive roots is {)\i-xj }0 <1i<j<n and

the corresponding Weyl chamber in i1 1s { E aiXi|a16 IR,
i=0

n
a 28 >...2a, ) a, = 0}. The Weyl chamber for fe 1n 1 £

i=0
n
vhich contains this o-chamber is {}] aixilaie R,
i=0
n
a, >a, > ... > a_, z a, = 0}. We take these two chambers to be
1-"2~ = 2 i

the dominant chambers for (?, and /{t, respectively. The positive

system for A 1is {Xi—)\j}li 1<j<n
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Let o be a root of U or K. The root normal Haé b is defined
as usual as the unique element of [a},a, a}-a] (or-[,&,a, ,ft-a]) such
that a(Ha) = 2 (where a}ia and L‘ta denote the root spaces of Y

and A for the roots +a). The root normals for o, are:

Hi(Xi_Xj) = :".(xi"xj) (0 <1<j<n). The root normals for J are:

= _-!-_(Xi-xj) (L<1i<j<n). Hence the dominant linear

H -

+(4-1)
n ——

forms for sy are the forms 1§o ai)‘i where aie {R (0 <1i<n) and

2 ...2a . The dominant linear forms for Je are the forms

o
n —
Za)‘ whereaiélR(Ogif_n)anda >a,> ... >a. The

1 2 — -~ n

integral linear forms for the simply connected group U, and hence

n
also for K, are the forms aiAi where ai€ Z (0<1i<n). Let

i=0

DU and DK denote the sets of dominant integral linear forms for U

and K, respectively.
(We note that if ai,bié C (0<1i<n), then

n

n —
ad, = I b 4y & there exists a complex constant c such
i=0 i=0

thatai=b1+c(0_<_if_n).)

We can now state:

n _ n -
Theorem 3. Let A = 1Zo a\; € Dy and u= 150 b, € Dg. Ve
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assume a ,biéz (0<1i<mn). If Z a; F 3 Z b, (mod (n+l)) then

i 1=0 1=0

m () = 0. If Z a, = ZO b, (mod (n+l)), we may add an integral
i=0 im=

constant to the b and assume Z a, = Z b Then m}\(u) =1 <&
i=0 i=0

> L AL 2 >b

o2by2a 2 o > 3,3 otherwise, m () = 0.

Proof. Let p be half the sum of the positive roots of % -

n-1

The Weyl group W of oy is the group of transformations of the

n n
dual of 17 of the form GH: 120 ci)‘i -+ 120 cH(i))‘i’ where Il is an

arbitrary permutation of the set {0,1,...n}; distinct permutations
give distinct elements of W. We have that det Oq = sign I,
The positive weights of the canonical representation of L on

o}/L are Xo-Xi (1<1i<n). Let P be the partition function, and

let Vv be an integral linear form. Then P(V) = 1 <> Vv can be

expressed in the form Z ¢y i’ where ¢ &Z (0<4i<n), z c; =0
i=0 i=0

and ¢, <0 (1 <4< mn); P(V) = 0 otherwise. According to Kostant's

formula, m, (u) = L (det o) P(a(Mp)-(p)).
O€EW
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n n
Suppose Z a, ¥ z bi (mod(n+1l)). Then for every O €W,

i=0 i=0
n —
o (A+p)-(+p) may be expressed as X ci)‘i’ where ciEZ and
i=0
n n n
Z ¢; = Z a; - Z bi’ which is not a multiple of nt+l. Hence
i=0 i=0 i=0

P(o(A+p)-(utp)) = 0 for all 0 €W, so that m)\(u) = 0.

n n
Suppose Z a; - Z bi = d(n+l) (d€Z). Replacing b
1=0 1=0 1

n n
+d, we may assume Z a, = Z bi' Let a'! =

(0<i<n)byhb
1 1=0 1=0 1

a, + (n-1), bi = bi+(n-1) (0 <i<n). LetIl be an arbitrary

permutation of {0,1,...n}. Then P(OH()\+p)—(u+p)) = 1
S o) Sby A<icm.

> a . Then

Assumeao_{blgalzbzz...?_bn n

8' >bl

° 12 ai > bé > .02 br‘x > 31'1' P(c(A+p)-(utp)) = 0 unless ©

is the identity, in which case the value is 1. Thus m(u) = 1.

Assume b, < a, for some j=1,2,...n. Then a('J,ai,...a' > bj"

] 3 k|

Hence a] < b] for at most n-j values of i © <1 <n). Suppose Il

i-"73
is a permutation of {0,1,...n} such that a]![(i) <b; 121i<n).

lf_b

Then aﬁ(i) < b! for i=j,j+1,...n, so that aj ! for n-j+1 values

k] ]

of 1, a contradiction. Hence P(c(A+p)-(ut+p)) = O for all 0 €W, and

so ml(u) = 0.
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The only remaining case is that in which b, > a -1 for some

] 3
j=1,2,...n. We assume this. Then bj > aj 1’ j,...a . Let 4 be
the set of permutations II of {0,1,...n} such that aH(i) < bi
(1 <1i<n). We define a map ¥ from ¥ into the set of permutationms
of {0,1,...n} as follows: Let HGJ . For some i such that

- - ! 1 '
1<1<j, we have j=1 < [I(1~1) < n. Then M (1-1) —<-bj < by
\ ]
Let k be the smallest value of i (1 < i1 < n) such that a(g-1) S by Let
(M =Tt,_) » where T, _, | s the transposition of k-1 and k.

We claim that § is an involutive bijection of A onto itself.
In fact, to see that ¥ takes >3 into itself, let l'[é,J and choose

k as above. We must show that af[_[ < bi (1 <1i<n). This

k-1,k1 ~
is clear if i # k, k-1, since H€>3 . The remaining possibilities

) '
are taken care of by the fact that a T (k-1) < bk and that

L} 4 =
aﬂ(k) < b by, if k > 1. It remains to prove that £ (5(I)) = I.

But a; ! <b', and a! = ' >
M,y 1 (k1) = k) = Pk aIITk_l’k(l-l) *M(2-1)

if 1 < 2 < k. Thus k is the smallest value with the required

property, and so f( 5 (1)) = 0T 1. kTk-1.x = - This proves the
’ 9’

claim.

For all NI €. , sign § () = -gign . Thus

m, () = (det 0.) P(o,(A+p)-(tp)) = (sign II) =
A nze,é I I Hze)e?

='%' ) 3 (sign II + sign § (1)) = 0, and the theorem is proved.
INe
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$2b The formula for (S0(2m+l), SO(2n))

In order to handle the case of the simply connected covering
group Spin(2n+l) of SO(2nt+l), we deal directly with the Lie algebras.
Let n=1,2,... Let U =50 (2ntl), and let /&,0 be the sub-
algebra of 4 obtained by taking the first row and column to be
zero, so that &'o =S5O (2n). We take U to be the simply connected
group corresponding to U, and K its connected subgroup corres-
ponding to &o' Let ¢ = U+iU = 50Q2nt1,C) and L= ,&°+L/£to =
= $0(2n,C).

We shall describe the multiplicity formula for the pair (U,K).

Let Eij (1 <1i,j < 2n+1) denote the (2nt+l) X (2n+1) matrix which is 1

in the i,j entry and 0 everywhere else. Let Xj (1 < j < n) denote

the matrix 1i(E ). Let L be the real span of

25,25+1 ~ E24+1,2j
ixl,LXZ,..._j;Xn. Then ,t is a maximal abelian subalgebra of i and

X"o’ and /f7 = 764-11: is a Cartan subalgebra of % and xz Let

dual
{Ai}l f<n be the basis of the dual of lf),\to {Xi}l

fiZ<n
The roots of the complex simple Lie algebra o} with respect to

b are A, #A, (1 <1 <j <n) andi-_)\i (1 <1i<n). The roots of

J
the complex reductive Lie algebra /&. with respect to l7 are

_-l_-_Ai_-_I—_)\ (1<1i<j<n).

k|
{Al—)\z,)\z-)\y...An_l-)\n,)\n} is a system of simple roots for cj.

The corresponding positive system is {)\i +A, (1<1i<j<n),

3

)\k(l <k=< n)}. The positive system for 10. contained in this
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positive system for o) is {A, * Aj (1 <1i<n)}. We take these to

be the positive systems for % and /ft

=ix
h|

g¥(151<j§nh

The root normals for 03’ are: H+)\ Y
— i—.

H (1 <1 < n); the root normals for Je are:

), = 2K

i i

Hilii)‘j = ixi_txj (1<1<j<n). Hence the dominant linear forms

n
for o are the forms Z ai)‘i where a € IR (1 <1i<n) and
i=1

a,2a8,2...2a 2> 0; the dominant linear forms for /L. are the

n
forms izl ai)\i where a, € IR (1 <1<n) and a; > a,> ...2a ;> Ianl.

n
The integral linear forms for U and K are the forms Z ai)\ 4 Where
i=1

either aiGZ (L<i<n)orace Z+-:2]=(1_§_i_<_n).

Let DU and DK be the sets of dominant integral linear forms for

U and K, respectively. The multiplicity formula states:

n n
Theorem 4. Let A = Z ai)\i € DU and U = z bi)\i € DK' If

i=1 i=1
ai—bj §Z for somei,j=1,...n, or, equivalently, for all i,j, then

m () = 0. Ifa €Z, then m() =1<>a; >b; > azzbzg_...ganz_lbnl;

17°5
otherwise, mx(u) = 0,
The proof is extremely similar to that for the pair

(SU(n+1),S(Ul><Un)) (see § 2a), except for the slight complication
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that the Weyl group involves sign changes as well as permutations

of coefficients. We omit the proof.

$2c The formula for (S0(2n), SO(2n-1))

As in $ 2b, we deal directly with the Lie algebras, in order to
handle the simply connected covering group Spin(2n) of S0(2n).

Let n=2,3,... Let U= 50(2n), and let Xeo be the subalgebra
of U obtained by taking the first row and column to be zero, so
that ju= S¢ (Zn-l). Let U be the simply connected group corres-
ponding to U, and K its connected subgroup corresponding to /fe_o.
Let gp= U+iU = 50 (20,C) and k= h +Hhk =50 (20-1,0).

We shall describe the multiplicity formula for the pair (U,K).
Let E.. (1 <1i,} < 2n) denote the 2n X 2n matrix which is 1 in the

ij

i,j entry and 0 everywhere else. Let xj (1 £ j < n-1) be the matrix

and let X denote the matrix ;(Elz—EZI).

-1-(E23+1,23+2 - E2j+2,2j+1)’
Let t be the real span of ;xl,;xz,...;xn, and let S be the real
span of iX,,iX,,...iX ;. Then % and S are maximal abelian sub-
algebras of U and X‘o’ respectively. Also, 17 =1 +_1_t and

|r)* = G +1 S are Cartan subalgebras of } and /&, ;espectively. Let

be the basis of the dual of \7 dual to {xi}l

.

V) SR

LiZgn <i<n

If v is a linear form on lr), let v* denote its restriction to l')*.
The roots of the complex semisimple Lie algebra % with respect

to ,e) are _-l;)\i_-t)« (1 <1< 3j<n). The roots of the complex simple

3
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Lie algebra Je with respect to l)* are j-_}\i‘-_t)\; (1<1i<j<nl),
il; (1 <1i<n-1).

{Al-)tz,...An_l—)\n,kn_l-*-}\n} is a simple system for Y- The

corresponding positive system is {A i + A j} The

1<i<j<n
n

corresponding Weyl chamber in i£ is { ) aixilaiélR > 812 8y 2,02
i=1

2a 2 lanl}. The interior of this chamber intersects 1S in the

n
set {122 aixilaie R, a; >a,>...>a ;> 0}, the interior of a

Weyl chamber in 1 S. The corresponding positive system for /fv. is

{)\; ."_'A; 1<1<j<n-1), A Q<k< n-1)}. We take the above

systems to be the positive systems for 2 and XQ

The root normals for o are: H, . = ixi_-txj (L<1i<j<n);
the root normals for L are H+A* ax = _-i_-_xi_-l_-_xj (1<1i<j<nl),

Hﬂ?\f = _tZXi (1 <1i<n-1). Hence the dominant linear forms for 7

n
are: 121 aiki where a, € R «a <1 <n) and a,2a,>...28 ;> [anl;

n-1
the dominant linear forms for & are: ) a,Af where a € R
i=1

(1<i<n-1) and a, > a, > > a

22 e 28 > 0. The integral linear

1

n
forms for U are: | a A; vhere either a, €Z (1<1i<n) or
i=1 i i
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aié Z +% (1 < 1 < n); the integral linear forms for K are:

n-1
} a,\* where either a,€ Z (1 < 1 < n-1) oraEZ+-l
Ly 1 1 2

(1 <1i<n-1).

dominant
Let DU and DK denote the sets of Aintegral linear forms for U
and K, respectively. We have:
n n-1
= = *
Theorem 5. Let A ) ai)‘i € Dy, U ) b, A} € . If
i=1 i=1
- = - E =
a, bﬁ Z, then m, (W) = 0. If a by Z, then m(n) = 1 <=
a; 2 b, > a,2b, > ... 28 ;2 bn—l > Ianl; otherwise, ml(u) = 0.

As in § 2b, the proof of this theorem is extremely similar to
that for the pair (SU(n+l), S(le Un)), except that in this case, the
Weyl group involves even numbers of sign changes as well as permuta-

tions of coefficients. We omit the proof.

$2d The formula for (Sp(m),Sp(l) xSp(n-1))

Let n=2,3,... Let U be Sp(n), the group of unitary matrices
in GL(2n,C ) which leave invariant the exterior form

zZ.ANZ

12 241 + 2)A2Z Lo + oo + z Azy ((zl,...ZZn) is a variable

point in (Dzn). U is simply connected. Let K be the subgroup of

U consisting of those matrices (a1 ) € Sp(n) which are 0 in the 18t

3

and (n+1)8t row and column, except perhaps for the entries

3190 33 41 an+l,1’ an-l-l,rrrl’ Then K = Sp(1) x Sp(n-1).



-68-

Let T be the subgroup of U consisting of the diagonal matrices
in U. T is a maximal torus for both U and K. We identify the Lie
algebra U of U with §4(n), the Lie algebra of complex 2n X 2n
matrices of the form (_g g ) where C = (cij) is an nxn skew-~

hermitian matrix and D = (d,.) is an nXn complex symmetric matrix.

1]
The Lie subalgebra ,feo of U corresponding to K is the set of

matrices in U such that 'c12 = 013 = .. = cln = d12 = dl3 =

£ » the Lie subalgebra of U corresponding to T,

= ,,, =d

In 0.
is the set of diagonal matrices in U. We have that b= 7t+it is

a Cartan subalgebra of the complexification g = U+iut of U4, and
also of &- 'l‘o"'-i-'&o’

Let X, (1 <1 < n) be the 2n X2n diagonal matrix (akl) such
that Gy = 1 for k=1, ay = -1 for k = nti, and 4 = 0 for all

other k. {Xi}l <i<n is a basis of the real space ;L_t, and hence

of the complex space h. Let {Ai}l < i < q D€ the basis of the

dual of L) dual to {X,}

1’1 <41i<n’

The roots of the complex simple Lie algebra o} with respect to

L) are A, *\ (1<i<j<n)and _-tZAi (1 <i<n). The roots of

3

the complex semisimple Lie algebra ,&. with respect to '7 are

R 2 (2<4<j<n) and #2), (1 <1 < n).

3

A-2,, A

1" Ags AmA A1 A 2An} is a simple system for .

300 Mp-1

The corresponding positive system is {li +, (1 <1i<3<n),

3
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2, (1 <k < n)}, and the corresponding Weyl chamber in 1X is

n
{] aixilaielR, a; > a,>...>a >0} The Je-chamber in 1t

i=1 n

n
which contains this o},-chamber s { ] aixilaie R, a; 20, a,>a;> ...
i=1

oo 2 a > 0} We take these chambers to be the dominant chambers for

2 and /&., respectively. The positive system for /&, is

{Aiilj (221<3<n), 22, QA<k<nml

The root normals for o) are: Hi)\iﬂ‘j = XX, 1<1i<j<n),
Hizli= j-_xi (1 <1 <n). The root normals for /Lare: Hikii)‘j =
= ix

iixj (2<1i<j<nm), Hiz’\i =#X, (1 <41 <n). Thus the

n
dominant linear forms for o} are: ) a A, where a,€R and
i=1

a; 22 2 ...2a > 0; the dominant linear forms for Je are:

n

n
Z ai)\i where aielR and a; > 0, a, > a3 > ... >2a > 0. The

i=1 n

n
integral linear forms for U, and also for K, are: Z aiAi where
i=1

a, € (1<1i<n).

Let DU and DK denote the sets of dominant integral linear forms
for U and K, respectively.
Before stating the multiplicity formula, we discuss the

combinatorial function Fk defined as follows:
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Definition 1. Let k,s€Z, k > 1, and let t;,t,,...t, € Z,.

Define Fk(s;tl,tz,...tk) to be the number of ways of putting s
indistinguishable balls into k distinguishable boxes with capacities
t1styseeaty, respectively. (We note that s can be less than 0.)

We prove two simple lemmas about the function Fk:

Lemma 1. Fk(s;tl,tz,...tk) -

t
k-1 1€ L ) » where IL] denotes

m (k-l—ILl+s -]
- ) (-1)
Lc{l’Z’QOOk}

the number of elements in |L], and (;) denotes the binomial
coefficient, which is defined to be 0 if x-y f Zl+.

Proof. The number of ways of putting s indistinguishable balls

into k distinguishable boxes of infinite capacity is (k;fzs). Let

L<{1,2,...k}. The number of ways of putting s indistinguishable

balls into k distinguishable boxes of infinite capacity in such a

way that for all i€L, the ith

(k—l—|L|+s -7

t
ie L f) . The lemma follows easily.
k-1

box has at least t£+1 balls, is

k
Lemma 2. F, (s;t;,ty,...t,) = Fk((igl t)=85 ty,ty,..ety).

Proof. Fk(s;tl,tz,...tk) is clearly equal to the number of

k
ways of putting s indistinguishable white balls and ( X ti)-s
i=1

indistinguishable black balls into k distinguishable boxes with

capacities tl,tz,...tk, respectively. The lemma follows easily.
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Kostant's formula is expressed as a sum over the Weyl group of
i}, which has order 2™n! in the present case, as we shall see below.
By means of a series of combinatorial arguments, we shall reduce
this sum to a sum over a 2"-element set, the set of subsets of
{1,2,...n} (see formula (8) below). We split this sum into the
sum over those subsets which do not contain 1 and the sum over those
subsets which do contain 1. Applying Lemmas 1 and 2 to the result,
we immediately obtain fhe interesting expressions (9) and (10) below

for the multiplicities. The multiplicity theorem states:

n n
Theorem 6. Let A = ) aiki € D; and let u = ) bili € D.

i=1 i=1
Define
A1 = a) - max (az,bz)
A, = min (az,bz) - max (a3,b3)
A3 = min (a3,b3) - max (84’b4)
Ay =min (8 _;,b ) - max (a,b )
A = min (an,bn).
n n
Then my (M) = O unless b, + )} A ,€27Z (that is, | (a +b,()€27Z)
) 1T L Ly BT

and Aj,A,,..04 4 >0 (A.n 2> 0 automatically). If these conditionms

hold, then m, (u) =
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1 n
n-2-|L] + 3C-b+ J A) - ] A

i
ILI i=1 i€L
(8) = ) (-1) =
L<{1,2,...n} n-2
1 n
(9) =F _ G (b, + 1=Z-1 A3 Ayshg,..iA) -

n
1 , i}
-F G (b + 121 A) = (A+1); AyAy,...A)

1 v .

-F & (b, -a

n

i=2

The following corollary follows easily from (10):
n n
Corollary. Let A = [ aA €Dy, U= ) biA; € Dy. Then A
i=1 i=]1
is the highest weight of a class 1 finite dimensional irreducible

representation of U < aj-a, = a;=a = ...=2a =0. Inthis
case, my (u) = 1 o’ b=(byby) = b, = by = ...=b =0 and
b2 < a, (if n=2, the condition is b1 = ’b2 < a2); otherwise, mA(u) = 0.

Remark. Suppose A€ DU is the highest weight of a class 1 finite
dimensional irreducible representation of U, so that A has the form
indicated in the corollary. In view of (10), the fact that mk(u) <1

for all uéDK is a consequence of the intuitive fact that the number
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of ways of putting finitely many balls into one box of finite
capacity is <l.

Proof of Theorem 6. By the above remarks, it suffices to prove

formula (8). We shall apply Kostant's formula to the pair (U,K).
Let p be half the sum of the positive roots of °}. Then

We shall now describe the partition function P by means of
three lemmas. The positive weights of the canonical representation

of Jo on ey/fe are A, + A, (2 <1< n). We have:

n
Lemma 3. Let & = Z xiki be an integral linear form. Then
i=]

n
P(E) = P((x, - 22 Ix;)A)).

i=

Proof. For each i (2 <1 < n), let <

;= max(xi,O) and let

X

.= max(—xi,O). Then

] oA ]« P olx,l
£ = x, (A, +A,) + x, (A,-A,) + (x, - X, Ay .
{=2 iv1l i {=2 i*71 i 1 {=2 i 1

For every integral linear form v, let S(v) be the set of non-negative
integral 2(n-1)-tuples (yz,y3,...yn, zz,z3,...zn) such that

n n
v = 122 yi(ll+li) + 122 zi(ll-ki). We define a map from

n
) |x1|)ll) to S(£) as follows: (yz,...yn,zz,...zn) -

S((x, -
1 4=

(y2+i;,...yn+x;, zz+x;,...zd+x;). This map is a bijection. Indeed,
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+

+
if (d2’0¢odn, ez,n'nen) e S(E.;), then d2 _>_ xz”"dn .2. xn’

e, > x;,.. .en > x;, so that (d2~x;,. . .dn-x:, ez-x;, .o .en-x;) €

n
S((x1 - Z ]x I)A ). This proves the lemma.
1=2 i'771

n-2 + 2

Lemma 4. Let a € Z. Then P(all) = ( 2). (We recall that

13 2

Proof. Clearly P(a’\l) = 0 unless aGZZ_._, 80 we assume
a€21+. The elements of s(a)\l) (S is defined as in the proof of
the last lemma) are exactly the 2(n-1)-tuples (yz,...yn, zz,...zn)

n
such that y, = zié Z+ (L<i<n) and | vy = -g-. Thus P(a)\l) is
i=2
a

the number of ways of inserting 2 indistinguishable balls into n-1
distinguishable boxes of infinite capacity. Hence P(aAl) =

n-2 + 2

= ( 2.

n-2

Thus we have:

n an
Lemma 5. Let & = Z xi)\i be,integral linear form. Define
i=1

1=2

n
x - 1 x|
> n-t?:g(t:) ). (In particular,

2(E) = . Then P(§) = (

P(E) = 0 unless L(§) € Z_|_.)
The Weyl group W of %> regarded as a group of linear trans-
formations of the dual of 17, is the semidirect product of a normal

subgroup U and a subgroup V, where U and V are described as
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follows: WU is the 2"-element group of transformations u:

Zx)\-*Z(l) i,where€i=€i(u)=00rl(1§i_<_n);
i=1 i=1

the € i(u) are uniquely determined by u. V is the n!-element group

of transformations Vv: Z x Ay Z xII(i))‘i’ where II = [I(v) is a
i=1

permutation of the set {1,2,...n}; II(v) is uniquely determined by v.
Every 0 € W can be uniquely written 0 = uv, = vcu('J where
1 E

uo,uce‘u, and VGE"V. We define 81(6) ei(uc) (1<1i<n),

ei(o) = ei(u&) (1 <1i<n) and lI(0) = H(vo). Then det ¢ =

n
2 €, (0) ) €l (o)
i=1 g=1 1
= (-1) sign II(0) = (-1) sign NI(0). We note that if

0,0'€W, then ll(oo') = N(c')I(c). For all i,j such that 1 < i,j < n,

we define v, ,€Y/ by the condition that II(v:L j) is the transposition
b

i,]

ni,j of 1 and j, which is defined to be the identity if i=j. For all
i=1,2,...n, we define uiéu by the condition that ej (u ) =4 13

(1 <j <n). Hence vi,j is the Weyl group element which transposes
the 1th and jth coordinates, and u, is the Weyl group element which

th

changes the sign of the i~ coordinate.

Now let ai = a + (n-i+1), and bi = b, + (n~-i+1) (1 < i < n),

so that ai and bj'_ are the ith components of A+p and 1Hp, respectively.

For all €W, let v = g (x+p)-(utp). We define Q,U = R.(vo) and
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Po = P(\)o). Now

1 ' ¥ '
(11) 85 = 5(@O+p) b)) - 122 loO+e) -b1 D)

where 0()\+p)i is the ith component of o(A+p) (1 < 1 < n). Since

0=uv_=vu', we have

gco o0
a2 e, (@) '
G(A+p)i = (-1) a'10) (1) (1<1<n)
and
€' (o)
12 o), = () TOWT g @i,
n—2+£o ‘
Also, P, = ( -2 ) by Lemma 5, and ml(u) = Z (det CI)I’0 by

O€EW

Kostant's formula. We shall use the following fact several times:
1f 0,0' € W, 9‘0 = 2.0, and det 0 = -det ¢', then (det G)Pc +
+ (det cr')Po. = 0, so that 0 and 0' can be canceled out of the

formula for m)\(u). In order to check that 2,0 = £ we shall use

0'"
formula (11) and either formula (12) or formula (12') above.

We now prove two lemmas which state that m)\(u) = (0 under the
conditions listed in the statement of the theorem.

n
Lemma 6. mx(u) = 0 unless b, + Z A, € 27 (that is, unless

4=1 1

n
121 (a;+b,) € 27).
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Proof. 1If Z(a1.+b RK.- 2Z, then by (11) and (12) we have that

206 Z + -;—' for all 0 €W, and so P0 = 0. This shows that mA(u) = 0.

Lemma 7. mk(u) = 0 unless Al’AZ""An-l > 0 (that is, unless

a, > bi+l (1 <1i<n-1) and bi > a1 (2 <1<n-1).

Proof. Suppose aj < bj+l for some j (1 < j < n-1). Then

(13) bé’b3""bj j j+l’ ..a .

For all €W, at least two elements of the set

{ll@) (1), N(0)(2),...I(0) (j*1)} 1ie in the set {j,j+1,...n}. Let
k(o) and 2(o) denoté the smallest two distinct numbers such that

1 < k(g), 2(0) < j+1 and j < II(0) (k(0)), N(0)(R(0)) < n. We define

a function §: W + W as follows: $() = Vk(o),ﬂ,(o)c' $ is an
involution since II( § (0)) = H(o)nk(c),k(c)'

Also, lf(o) = 2,0. To see this, we show that expression (11)
] = ] :
has the same value for %  and o) Now ei(f(o)) €;(@) (1< 1 < n).

Hence by (12') we have

e’ ($(0))
M($(0)) (1) '
£(0) (p); = (-1) NN T

®1 (o) W@
M@ ,0@0 ",

(14) = (-1)
TOL (5),2(0)

for all 1 (1 <1i <n). If 1 ¥ k(o),2(0), (14) becomes
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oy @) 9,

- ]
(-1 ') () which is G(A+p)i, by (12'). Similarly,

for i=k(0) and 2£(0), we get
5@ (+0)p gy = OOH0) g () and
J}(G)(Mp)um = 0(+0) 5y

Hence the expressiomns (11) for 20 and 2&(0) differ only by the

transposition of the terms 0(A+p)k(c) and 0(A+p)£(o). Thus in order

to show that %XO) = lo’ it suffices to show that (11) has the same

value when o(A+p)k(0) and G(A+p)£(o) are permuted. What has to be
checked is that the absolute value in (11) behaves correctly.

Since k(o) or 2(0) can equal 1, it suffices to show that o(x+p)k(o)
and O(A+p)£(o) are both equal to or less than each of the quantities

4 [ -
bk(o) and b 2(0) whose subscript is greater than 1. By the defini

tion of k(o) and 2(0), it suffices to show that 0(A+p)k(0),

0(A+p)£(o)»§.bé, bg,... bj+1' But we have
o()\"'p)k(o.) _<_ aﬁ(U)(k(O’)) (b}' (12) or (12'))
< byubYenebly

by the definition of k(o) and by (13). The corresponding inequality

holds for 2(0). This shows that Ef(a) = 20.
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Since det §(0) = -det 0 for all 0€ W, we have that m () = 0 if

aj <bj+1

for some j (1 < j < n-1). This completes the proof of
the first half of the lemma.

The situation is similar if b, < a for some j (2 < j < n-1).

j j+1
In this case,
(15) a]'_,aé,...a:;_'_l > b:; ’b3+l""br.'1'

For all €W, at least two elements of the set {II(0) (i), II(0)(j+1),...
...I(o)n} 1ie in the set {1,2,...j+1}. Let k'(0) and &'(0) denote
the largest two distinct numbers such that j < k'(0),2'(0) < n and
1 <N(o)(k' (o)), M(@)(R'(0)) < j+1. We define a function £': W+ W

as follows: §'(0) = UV (6),4" (o) Vo 4#' 1s an involution since
H(‘f' (U)) = H(O')Hkv (0)’21(0,).

Now £ To see this, we show that expression (11) has

'@ " Ly
! =

the same value for 2.0 and IL;. @) Now ei(f ©)) ei(c) (1 <1ix<nm).

Exactly as above, we have by (12) that the expressions (11) for 2.0

and 25.(0) differ only by the substitution of §'(0) (A+p) for

k' (0)
o()\+p)k,(d), and of £'(0) ()\+p)2,(0) for 0(A+p)2,(o,). Hence it

suffices to show that
001 gy = Prr (@] + 19001 () = e gy | =

= lf'(o)(k"p)k'(c) - bl'c'(O')I + If'(c)()\"'p)z' (0.) - bit(o-)!.
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By (12), this is equivalent to:

€ (o) €44 (o)
k' @), L A R " -
| -1) 3 o) (k' (@) "2k (o) [F1 D) 1 6) (&' (0)) "2 ()
€ (o) €51 (o)
k' (o) ' R _1y L' (@) ' R
= |¢D a0y @' () Px" (o) [F D 21 (0) (k' (0)) P20

But this follows immediately from (15), the definition of k'(0) and

£'(0), and a trivial check of the four possibilities for the pair
(ek.(c)(o), 52,'(0)(0))' Thus zf.(o) = 20.

Since det $(0) = -det o for all G €W, we have that mA(u) = 0

if bj < 3541 for some j (2 < j < n-1). This proves the lemma.

n
By Lemmas 6 and 7, we may, and do, assume that b, + )| A ,€2Z

1 =1 i

and that Al’AZ”"An—i > 0. The first of these assumptions is not

important and not necessary, since formula (8) in the statement of
the theorem holds without it. The second assumption, however, is

esgsential, and will be used after the statement of Lemma 10 below.

Now ml(u) - Z (det 0)P_. For an arbitrary subset W' of W,
CEW o

1
let m‘; W= ] (det 0)P_. By means of the next three lemmas,
cEW °

we shall construct inductively a 2"-element subset W of W such that

-~

mA(u) = m;J(u). W will be defined in terms of the set of simple roots

of %-
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el(o) 82(0')

We recall that for all 0€W, we have 0 = ul u,
e,(@) ei(c) €5(0) e! (o)
cee U Vo = VoUp u, cee , by the above definitiomns.
If Sl’SZ’”'Sp are subsets of W, let 8182"’Sp denote the get of

products {slsz...splsi (= S1 11 p)}. Let e €W be the identity
element.
Lemma 8. Let A € W be the two-element subset {e,un}. If

A,
a >b_, thenm () =m G). If a <b_, then m (1) = m>(u).
Proof. Suppose a > b . Now AV = {06W|€l(c) = e,(0) = ...
ces = en_l(c) = 0}. Let )8 = W-AVY". We define a map §: )J + W as

follows: For all 06)5 , let j(0) denote the lowest index i such

that 1 <1 < n-1 and €,(0) = 1. Let (o) = Y55 (o) ,n%0" f 1s

clearly an involutive bijection of )Z onto itself. We show that
2,5(0) = R.o: As above, we have by (12) that the expressions (11) for

%, and 25(0,) differ only by the substitution of £ (o) (A+p)j ©) =

=~ ') (m) £OF TNy 5y = = af(g) (5 (07 W4 Of SO (k) =

sn(o) e (o)

' n v
= (-1) 2 (o) (3 ©)) for c()&p)n = (~1) a(0) () * Hence it

suffices to show that
(o)

L "b" - “
(o) (n) °n

1 ' En(O) 1 '
*“oym " Y@ " DT gy G Palk

€
' ' -] (- n
_aII(o) Gw) - bj (o) I( b
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But this is trivial if en(c) =1, If en(O) = 0, it is true because

' ' ' < :
a; 2a >b’ forall i (1 <1 <n), by our assumption that a_ > b .

Hence 25_(0) = % . Since det £ (o) = - det 0, we have proved the

first half of the lemma.

= ' = ! = = ' =
Suppose a < bn' VA= {oe Wlel(o) 82(0) sn_l(o) 0}.

Let ' = W-UA. We define amap £': ,§ ' > W as follows: For all
0 €Y', let j'(0) denote the lowest index i such that 1 < i < n-1

and €(0) = 1. Let $'(0) = §' is clearly an

|}
vo‘vj'(o),nuc .
involutive bijection of ,3' onto itself. Also, 2,:;,(0) = 20. Indeed,
as above we have by (12') that the expressions (11) for 2,0 and
2,_5.(0) differ only by the substitution of ¥ (o) (M'p)ﬂ(c)'l(j'(o)) =

€' (o)
= (-1) ay for 0(}‘+p)ﬂ(c)'l(j'(c)) = -aj'(c)’ and of

e’ (0)
W - ' = - n
E@OOI6)-1(m) = 251 o) FoF IMP(y-1(y = ¢1 7 &y The
result that 2’.,_(0) = 20 now follows as above by a trivial check of the

two possibilities for 81'1(0), and by the assumption that a <b .

Also, det £'(0) = -det 0. This proves the lemma.
We make two more definitions. For all k (1 < k < n), let

'U'k = {veV| (v) is a permutation of {1,2,...k}}, and let
W, = {oe | €;(0) = 0 for all i=1,2,...k-1, NI(0) is a permutation

of {k,k+1,...n}}.
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The next lemma is designed to handle the inductive step.
Lemma 9. Let 2 < i < n-1. Let A and B be subsets of Wotpo and

suppogse that every element 0 € A.Vi-b-l B can be expressei“l;nig;elz
as O=avb where a€A, ve"lfi+l, b€ B. Suppose mx(u) =m i+l w.

Let C € W be the two-element subset {e,v }. Then we have the

i,i+1

ACY%,B
following: If a; > bi’ then mA(U) = m, i , and if a, -<-bi’ then
A‘ViC B
m, (W) = my .

Proof. Suppose a; > b,. Every element cE€E Vi'*-l may be

uniquely written 0 = Vi v where vé'\fi and 1 < k < i+l (we

,itl

recall that vi,g = e (L<j<n)). Let 4 = {oe€ A'lfi+1

= avk,i+IVb where a€ A, b€ B, V€ Vi and 1 < k < i-1}. We define

Blo =

amap §: ;é + W as follows: Let 0 = av vb 6)3 . Define
f(0) = avi,i+1vk,i+IVb' ¥ 1is well defined by our uniqueness

assumption. Also, F(@)€4 since v Hence

1,1+1k,1+1 = Vk,1+17k,1°
§ 1s an involutive bije\ction of 4 onto itself.

We show that 9}(0) = 2.0. Let 0 = avk,i+1vb as above, write
€41 (B) €, (b) e, (b) €142 (D) e (b)
b= u1+1 u:H_2 un vb, let wb = ui+2 un and

€, .()
¢ i+l
o= (uawbuk )(vavk,i-i-lwb)'



~84-

Similarly,

. Eq(®)
F©@) = (uwpuw YVVy 141%, 141V

Applying (12), we see that the expressions (11) for 2,0 and 2':9(0)

differ only by the substitution of (o) ()\“'p)i = aI'[(v) (k) for

O(+p), = af .y (s)s and of £(0) (A"'O)H(va)'l(:&l) = 1 2T (v) (1)

for o(A+p)

= (—l)e a]'I (where €=0 or 1). The fact
- (v) (k)
H(va)

Li+1)

that 2§ ©) = 2,0 now follows immediatély from (11) and the fact that

M) () = 2wy 1) 2 21 2 P12 v )Ly

Since det §(0) = -det 0, we have the first half of the lemma.
Suppose a; <b i° Every element O G'Vi+l may be uniquely written

o where vEYY, and 1 <k < 1+1. Let ' = {c€AV], Blo =

= Yk, 141 i+

= av vk,i+1b where a€A, b €B, ve'lfi and 1 < k < i-1}. We define a

map ¥': ,& ' > W as follows: Let g = av Vk,i+lbe ,8 '. Define

£'(0) = av Ve 44174 i-l-lb' As above, §' is a well defined involutive
’ ’

bijection of >5 onto itself since vk,i+lvi,i+l = vk,:l.vk,i+1'

Also, 24_,(0) = R,o. Indeed, let 0 = av vk,i+1b as above and let

vy and wl; be as above. Then

€

= ]
o (uawbu

(b)
1

i+l
nw)~

(v wv

w8 k,:l+1vb)
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and

' si+1(b)

£'() = (uw'u = ) (v vv v v, ).
ab n(v) l(i) a k,i+l1'i,i+1'b

As above, we see by (12) that the expressions (11) for 20 and

L differ only by the substitution of {'(0)(A+p) _ = a;

$'(0) nw e 1

for c(A+p)H( y la) = (—1)€i+l(b) a'n( ) (4+1) and of

v v,
€,.,(b)
i+l
' (0) (\+p) = (-1) a' for
o (A+p) = 3!, We now have by (11) that % = £ _since

(v, ) (141) < 81 S by < by for each of the indices s = T(v) 1(x) and
b

H(v)-l(i) which is greater than 1.
Also, det f'(0) = -det 0. This completes the proof of the
legma.

We define Tl = v1,2’ 12 = v2,3,...Tn_1 = vn-l,n and Tn =u,
so that 11,12,... and Tn are the Weyl reflections with respect to
the simple roots Al-kz, AZ-A3,... An—l-xn and 2An, respectively.

We define the subset W € W as follows: W is the set of products of

Tl,...Tn, each T, taken at most once, in the order determined by the

i

following conditions: For each i such that 2 < i < n, if a; Z_bi,

then T, must occur to the left of Ti—l’ and if a

{ < bi’ then T

i i
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must occur to the right of T, , (we note that T, and T, commute if

|k-2| > 1). By Lemmas 8 and 9 and induction, we have:

~

Lemma 10. my u) = m‘;(u). ﬁ has exactly 2" elements, indexed
naturally by the 2" subsets of the set {Tl,...‘l’n}. (ty; @ <4i<n)
are the Weyl reflections with respect to the simple roots of ?.)

Now by (11) and (12), we have:
(16) Lo=%5 (-b] + +oa; + ) o+ b)

for all geW.

Suppose a, 2 bn' Then all the elements o of W are of the form
‘riy where €=0 or 1 and vE€V". If =0, then bt'l occurs with a plus
sign in (16), since 0(>\+p)n > ar" > br'x by (12). 1f e=1, then bt'1
occurs with a minus sign in (16), since 0()\+p)u < 0 by (12).
Suppose a < bn' All the elements O of ;I are of the form v ‘ri where
€ and v are as above. If €=0, then ar'1 occurs with a plus sign in

(16), since ar'x occurs as 0(A+p), for some j, by (12'), and al'1 < bt" < b:;

3

if § > 2. If e=1, then ar'x occurs with a minus sign in (16), since

at'l occurs as -0(A+p), for some j, by (12'). Thus in any case, if T

3

does not occur in 06;1, then An+l - min(al'l,b!'t) occurs with a plus
sign in (16) (see the statement of the theorem for the definition of
Ai)’ and 1if Tn does occur in O, then An+1 occurs with a minus sign

in (16).
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Let 2 < i < n-1. Suppose a, > b, and a >b Then all

i-"1i i+1

S+1

the elements oew are of the form aTi-l-l Ti vb where the €'s are 0

i+1°

or 1, v e'lfi, and a,b€W,_,. If € =0, then b; occurs with a plus
sign in (16), since o()\+p) > ai > bi by (12); also, a:'L+1 occurs

with a minus sign in (16) since ai+1 occurs as -_|-_0()\+p)j where j > 1,

] = = ' 1
by (12), and ai+1 i+1 bj If e,=1, then 0(M+p), = aj , < by

]

by (12) and our assumption that Ay 2 0 (see above), and so bi - ai_'_l
occurs with a minus sign in (16). Thuas if a, >2b, and a; ., > b,

= ' ' -
we have that Ai+1 min(ai,bi) max(ai+l,bi+l) occurs with a plus

sign in (16) if Ty does not occur in déﬁ, and Ai+l occurs with a

minus sign in (16) if T does occur in O.

With i as above, suppose a; > bi and a4q < b1+1. Then every

~ € €
element 0e W is of the form a'l'ii v 1+11b (same notation as in the
last paragraph). If eiso, then bi occurs with a plus sign in (16)

since U(A+p)i > a; occurs with a minus sign

{2 bi ky (12'); also, b

'
i+l

<b!

in (16) since O(A+p)i+1 < a +1 by

by (12'). If e,=1, then b}

occurs with a minus sign in (16) since 00\+p) < ai+1 b! 141 2 bj'_ by

(12'); also, b!,, occurs with a plus sign in (16) since (5()\+p)i_’_l

i+l

)
> b by (12'). Thus if a; > b, and a, .,

'
_>_ ai o~ i +1 < hi"‘l’ we again

have that A,+1 occurs with a plus sign in (16) if Ty does not occur in

i
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+1 occurs with a minus sign in (16) if T, does occur

OEW, and Ai 5

in O.

Next suppose a, < bi and a1 > bi+1' Then every element

:ll

1V Yy i’b (same notation as above). If

0€W is of the form aT

ei=0, then a'

§ occurs with a plus sign in (16) since ai = cr()\+p)j

where j < i, by (12), and a; < b} < b if j > 2; also, a

g S by < by occurs

'
i+l

with a minus sign in (16) since ai+1 = ic!Od-p)j where j > 1 by (12),

and ai+1 b:;.+1 > bj 1f 81-1, then a:'l occurs with a minus sign in
(16) since a:l = +U(l+p)j where j > 1 by (12), and a > a' 1+1 >

> b;.+1 > bj’ also, a i+1 occurs with a plus sign in (16) since

ai_._1 0(A+p)j where j < 1, by (12), and a:H_1 < a < b' < b:; if § > 2.
Thus 1if a, < bi and ai+l > bi+1’ we again have that Ai+1 occurs with

a plus sign in (16) if Ti does not occur in 06‘71, and Ai+l occurs
with a minus sign in (16) if T, occurs in 0.

Finally, suppose ay < b and a1

€1 Fi+
1 Ti4l

<b Then every element

i+1°

CEW is of the form av T 1b (same notation as above). If

Ei=0, then a:'L occurs with a plus sign in (16) since ai occurs as

o(A+p), where j < i, by (12'), and a] < b < b; if j > 2; also,

3 1i—-"1-73

] 1 L
bi+l occurs with a minus sign in (16) since G()\+p)i+1 < ajq < bi+1

= = ' '
by (12'). 1If €,=1, then O()‘+p)i+l ag > b'+1 by (12') and our
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assumption that Ai > 0, and so ai'.—b;&l occurs with a minus sign in

(16).

Thus the last four paragraphs have shown that if 2 < i < n-1,

and if A, > 0 (as we have assumed), then A+l occurs with a plus

i

sign in (16) if T, does not occur in 06‘3, and A,+1 occurs with a

i i

minus sign in (16) if T, occurs in 0.

€
1f a, > b2, all the elements C€W are of the form a‘r:z'tl LD

where the £'s are 0 or 1, and a,b €W3. If €1=0, then ay occurs with
a plus sign in (16), since U(A+p)l = ai by (12); also, aé occurs
with a minus sign in (16), since aé occurs as _-tc(l+p)j where j > 2,

by (12), and a‘.',_ > bé > b:i. 1f el-l, ai occurs with a minus sign in

(16), since ai occurs as _-1;0()\+p)j where j > 2, by (12), and

ai > aé > bé > b}l; also, aé occurs with a plus sign in (16), since

0()\+p)l = aé by (12).

- €, €
If a, < bz, all the elements 0€ W are of the form atllrzzb

2

(same notation as above). If €,=0, then ai occurs with a plus sign

in (16), since O(X-i-p)l = ai by (12'); also, bé occurs with a minus

sign in (16) since cr(>\+p)2 < aé < bé by (12'). If €,=1, a; occurs
with a minus sign in (16), since ai occurs as _-l_-o(kﬂ))j where j > 2

> 0; also, b,

by (12'), and a} > b) > b by our assumption that A 2

1="°220y 1
occurs with a plus sign in (16) since G(A+p)2 = a]'_ > b), by (12")
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and our assumption that Al.Z 0. Hence under this assumption, we have

that A, + 1= ai - max(aé,bi) occurs with a plus sign in (16) if 3

does not occur in ct?ﬁ, and A1+1 occurs with a minus sign in (16) if
T, occurs in 0.

The conclusion is that in view of the preceding paragraphs, and
by virtue of the assumptions A, >0 (1 <1i<n-1), we have that (16)
can be rewritten as:

1 n
(17) ;=3 (b - n+ 121 8 (A;+1))

where 51-1 if and only if Ty does not occur in 0, and Gi = -1
otherwise. If O contains exactly r of the reflections TysTgseesTos

the numerical summand in (17) is exactly -r and det O = (-l)r. But
n-2+IL0

P, = ( n-2 ) and mk(u) = oéfﬁ (det O)PG' Thus we have precisely

the expression (8) for ml(u) (see the statement of the theorem), and

Theorem 6 is proved.

§ 2e Formulas for (F4, Spin (9))

Let U = F,, K = Spin (9), Let b be a Cartan subalgebra of the
complexified Lie algebra Jk of K, so that b is also a Cartan sub-
algebra of the complexified Lie algebra 1} of U. We shall describe
the root structure of the complex simple Lie algebras % and A& with

respect to b.
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We may choose a basis {AI’AZ’)‘B’)\A} of the dual of b satisfying
the following conditions: The A 4 are orthogonal and of the same
length, with respect to the bilinear form on the dual of 17 induced
by the Killing form of op. The roots of oy with Zespect to b are

1
(1<1<3<4), and5 ) €4);» vhere

A, (1 <1<4), +\, £
By Q18,0 N L

€ = +1 (1 < i < 4); we shall denote this last root by )\(81,82,63,84).

The roots of/fe.with respect to b are _t)\i +A, (1 <1< 3 <4) and the

3

roots A(el,€2,83,t—:4) such that an odd number of €, 's are +1.

{A,=X A=A, ,A,, A(1,-1,-1,-1)} is a simple system for % . The

274322370

corresponding positive system is {ki (1<1i<4)), )tj j_Ak (1 <3j<k<a4),

)\(1,62,83,64) (62,83,64 = + 1)}. The unique positive system for fe

contained in this positive system for a} is {)‘i j_lj (1<1<j<db),
a(1,1,1,-1), x(1,1,-1,1), A(1,-1,1,1), A(1,-1,-1,-1)}. We take
these to be the positive systems for 03, and ,&, respectively.

4

) aixi where

The dominant linear forms for o} are the forms
=1

aiéfR ’ a1332_>_a3_>_a4_>_0 and a; > a,+aj;+a,. The dominant

4
linear forms for L_ are the forms z aili where aié IR,
i=]1

a; 2 a, > az > |a4| and a; 2 a,+ ag + a,. The integral linear

forms for the simply connected adjoint group U, and hence also for

K, are the integral linear combinations of the roots of a),‘ that is,
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4
the linear forms ) ai)‘i such that either a € Z (1<1i<4)or
i=1

a € /4 +% (1<1i<4). Let D; and Dy denote the sets of dominant

integral linear forms for U and K, respectively.

It is not hard to show, using a (complexified) Iwasawa
decomposition of a}, that the highest weight of any class 1 finite
dimensional irreducible representation of U is of the form akl for
some a € Z+. We can now state two multiplicity theorems for the
pair (U, K). Theorem 7 deals with the class 1 representations, and
Theorem 8 will be used in Chapter III. We only give the proof of
Theorem 7, however, for reasons mentioned in the Introduction.

Theorem 7. Let A€ DU’ u = 121 bi)‘i € Dl(‘ Suppose A is the
highest weight of a class 1 finite dimensional irreducible repre-
sentation of U, so that A = a}; (a€Z+). Then my (u) = 1 <
b, = by = -b, and b, + b, < a; otherwise, m, (u) = 0.

4
Theorem 8. Let A = 121 ai)‘ié Dy- Then Y = a2)‘1 + a3>\2 +

+ a4l3 - a4k4 € D, and mx(u) = 1.

Proof of Theorem 7. We shall apply Kostant's formula to the

pair (U,K).
Let p be half the sum of the positive roots of % . Then

11 3 3 1
P=3 TN+t T A,
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If x and y are two real numbers, we shall write x@y or y@x
for the relation y-x £ Z+, and we shall write x@y or yQ® x for
the relation x # y and x(:)y. The following lemma gives a description
of the partition function P:
4

Lemma ]11. Let Vv = Z x

Ai be an integral linear form. Then
i=1

i

P(v) is the number of real quadruples (pl,pz,p3,p4) satisfying the

conditions
pptp,+tpytp, 20
Py ¥ Py~ P3-p,20
(18)
P~ Py tpP3-p,20
Pl'Pz"P3+p4?—Og
4
(19) ! p € 2Z,
i=1
(20) 1:01@)x1 (1<1<4).

Proof. Let &, = A(1,1,1,1), &, = A(1,1,-1,-1), o, =

1
= A(1,-1,1,-1), a, = A(1,-1,-1,1). The positive weights of the
canonical representation of j@ on ?/j" are )\i (1 <1< 4) and
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Let (L be the matrix

i1 1 1
2 2 2 2
i 1 1 _1
2 2 2 2
i 1 1 _1
2 2 2 2
i _1 _1 1
2 2 2 2

Now since A is orthogonal, det AL # 0. Also, (Al,kz,k3,k4)a, =
= (al,az,a3,a4). Hence G5 Oy, Of and a, are linearly independent,

and so P(v) is the number of non-negative integral linear combina-
4

tions 121 pi)‘i of Qys Gy, ) and o, such that pi@xi (1 <1<4).

Hence it suffices to show that the non-negative integral linear

combinations of Ops Oy Qg and o, are precisely the linear forms

4
Z pi}«i such that the Py satisfy conditions (18) and (19), and such
i=1

that either piGZ (1<i<4)orp € Z+% (1 <1ic<4).
4
We note that if p., q,€ R (1 < i < 4), then Z P.A, =
109 =2 L) P

4
2
= z qiai @ (919P2)P39P4) = (ql,qz»qua)a,. But since A is
i=1 !

the identity, this is equivalent to the condition that

(pl,pz,p3,p4)a, = (ql’qZ’q3’q4)' Hence the non-negative integral
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linear combinations of al, az, a3 and a4 are the linear forms

4
z p;A, such that
i=1 ii

This proves the lemma.

We now describe the Weyl group W of 0}, regarded as a group of
linear transformations of the dual of l? It is not hard to show
that each Weyl chamber for /Yc splits into exactly 3 Weyl chambers
for cg, Hence W is the disjoint union of 3 right cosets of the
Weyl group of Xq.; in particular, W has 3:384 = 1152 elements. Let
e denote its identity element.

For every root o of % let Ra € W be the Weyl reflection with

respect to a. Then

4

(21) R @)
MEpEy3084) 4y

4
1
XA) =3 ) (x,-€, )} x,.,) A
U R

for all e, = +1 and xiG C . 1Indeed, the transformation defined by

4
the right-hand side of (21) reverses z ei)\i and leaves fixed any
i=1
4 4

linear form 121 xiki such that 121 xiai = 0., It is easy to see from
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(21) that R takes the set of roots S = {#A\, (1 <1 < 4),

A(1,1,1,1)

R <<k 4)} onto the set of roots of . Hence W is

A
the disjoint union of 3 right cosets of the group W' generated by
{Ralaés}.

Now W' is the semidirect product of a normal subgroup L and a

subgroup V, where U and " are described as follows: A is the

i

4 4 $
l6-element group of transformatiomns o: ) XAy * ] -1 1 %A

b ]
4=1 ¢ i=1 1

where Gi = 61(0) =0orl (1<1<4); the 6i(o) are uniquely

8, (o)
determined by 0, and det 0 = (-1) 1 . V 1s the 24-element group
4 4 ;
of transformations T: 1§1 xiAi -+ 121 xH(i)Ai’ where Il = JI(T) is a

permutation of the set {1,2,3,4}; II(T) is uniquely determined by T,
and det T = sign lI(t). In particular, (21) shows that the 3 cosets

1] ! *
w', and W Rk(l,—l,—l,l) of W' are distinct, and so

]
'Ry (1,-1,-1,-1)

W=W'UWR

A(1,-1,-1,-1) Y W'R

A(l,'ly'l’l)

(disjoint union).

It will be convenient to write this decomposition in the form

(22) W=W VUWR

1
A(L,-1,-1,-1) Y "R

AaRA(l,-l,-l,l)

(disjoint union).
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Now m)\(u) = z (det o) P(o(Mp) - (u+p)), by Kostant's
cEW

formula. The next two lemmas will be used to simplify this sum of

1152 terms. For all integral linear forms vV and §, and all subsets

X of W, let }(‘,(E) = ) (det 0)P(c(V)-E).

o eX
4 4 :
Lemma 12. Let v = }: xi}‘i and & = Z yi}‘i be integral linear
i=1 i=1

forms, and assume that x, > 0 (1 <1i<4). Then PQ“(E) is the number

of real quadruples (pl,pz,p3,p4) satisfying (18), (19) and the

conditions
(23) -y, @p; Oxmyy 12124,

Proof. For all o e’bL, let G denote the set of real quadruples
(pl,pz,p3,p4) satisfying (18), (19) and the conditionms
pi©(—1) X, <Yy (1 <1< 4); then P(0(vV)-£) is the number of
elements in ;8 G* by Lemma 11. If (pl,pz,p3,p4) satisfies (18), (19)

and (23), then it lies in )!e’ but not in )go for any O €U with

% e. If (pl,pz,p3,p4) does not satisfy (18), (19) and (23), then
it either lies in no )Jo (0€WU), or else {oeU| (pl,pz,pB,p4)€JG}

has the same number of elements with determinant +1 as with

s
determinant -1. The lemma now follows from the definition of b\,(&).
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Let Tl’ TZ’ T, and 'I’4 be finite sets of real numbers, and let

3
4 T
£ = Z yiki be an integral linear form. For all T €V, let {TT(E)
i=1

denote the set of real quadruples (pl,pz,p3,p4) satisfying (18),

(19) and the conditions
(24) Py € Tnoyqpy ~ Y1 P21z,

and let Qi(&) denote the number of elements in €7$(E). Define

Np(E) = 2 (det T) QL(E).
TEV

4 4
Lemma 13, Let v = ) xiAi and £ = ) y )\, be integral linear
1=1 g=1 11

forms, and assume that Xy > Xy > X3 > X, > 0. Define

T(V), = {te)Rl—xl©t@-x2 or x,® t@xl}
TV, = {tER|-x, O tR)-x; or x,OtR)x,}

25 TV, = {teR |-, @t R)-x, or x, Ot R)x,}
T(W), = {te|R I—x4 Ot Rx,}.

Then MK'(E) = NT(v)(E)'

Proof. We have
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0 € = V@)

=] (det o) (det T)P(0T(V)-E)

ceU
TEV

U
= Tév (det‘. T)MT(V) (E).

For all T €U/, let RT denote the set of real quadruples

(pl’pz’pS’p4) satisfying (18), (19) and the conditiomns

=1ty @) Y1 @ Py OFiery (1) ¥ @ <1< 45 then W' () 1s the

number of elements in & - by Lemma 12. Hence we must show that the

alternating sum of the numbers of elements in the sets KT is the
alternating sum of the numbers of elements in the sets Jr =J ,]r"(v) &).
But if (pl,pz,pe),pl‘)ég',ro for some Toé'lf, then (pl,pz,p3,p4) lies

in &‘r , but not in RT for any T€V with T # Tye If
o

(pl,pz,p3,p4)¢ j‘r for any T €YY, then either

{Te'\fl(pl,pz,pypl')ea,r} is empty, or else it has the same number

of elements with determinant +1 as with determinant -1. This proves
the lemma.

Now

11 5 3 1
(26) A+p=(a+2))\l+zxz+-i-)‘3+.:2.)‘4

and
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11 5 3 1
(27) W = (bl + —Z—)Al + (b2 + 2))‘2 + (b3 + 2))\3 + (b, + 2))\4.
From (21), we have

a a a
28) Ry g gy = G+ G0, + G+ DA+
a
+ G+,

and

a,9 a_ 7 a ., 3
(29) RA4R>\(1,-1,-1,1)O‘+°) = (2 + 2)}‘1 + (2 + 2))\2 + (2 + 2)A3 +
a, 1l
+ ('f + —2-))\4.

Let (Mp)* = R )(k+p) and (A+p)** = RA4RA(1,-1,-1,1)(A+Q)'

A(1,-1,-1,-1

Then

() m ) =M. (ko) - ML (o) + M ()
A Ao (p) * TP (tp) *% (HTP7

from (22). By (30) and Lemma 13, we have

(L my () = Ny ) (0D = Np(y 0y () + Np (atp) s (HHO) -

Lemma 14. If (pl,pz,p3,p4) is a real quadruple satisfying (18),
then p; > |pyl, p; 2 |5l and p; > |p,|.

Proof. We have p, + p, > |p3 + p4| io, and
Py~ Py 2 |py - Pyl 20, so that p, > |p,|. Similarly, p, > |p,]

and Py 2 |P4|°
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Lemma 15. We have

m) = I et QL o).
TE
I(t)(1)=1

*
Proof. By (31), it suffices to show that Qi "0 *(utp)

T (A+p) **
T

= Q (u+p) = 0 for all T €1, and that Qz(l+p)(u+p) = (0 for

all T€ such that II(t)(1) # 1. Hence it suffices to show that the

corresponding sets €7$(u+0) are empty. Suppose (pl,pz,p3,p4) lies

in one of these sets. In view of (24) and (25), and the explicit
expressions (26), (27), (28) and (29), we have the following: In

the case T = T(A+p), P < 0. In the cases T = T(A+p)* and

T = T(Ap)**, we have that p, < £ _ b, that lp | >2 - b, if
1 2 1 -1 2 1
n(r) ~(1)

m(t)"1(1) > 1, and that |p U EE TR NETE (¢!
1) 1)

Hence in all cases, pl< ijl for some j=2,3,4. This contradicts
Lemma 14, and so Lemma 15 is proved.

We shall use the notation Tl’ TZ’ 13, 14, T5 to denote the
elements T#e of U such that II(T)(1) = 1, in the order determined
by the following conditions:

H(Tl) is the transposition of 3 and 4; H(Tz)(Z) = 4, H(TZ)(3) = 2,
H(TZ)(A) = 3; H(T3) is the transposition of 2 and 4; H(Ta)(Z) = 3,

H(TA)(3) = 4, H(TA)(é) = 2; H(TS) is the transposition of 2 and 3.
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For every real triple (pz,p3,p4), let
7”-(9) = max('Pz'P3'P4’ "P2+P3+P49 P2_P3+P4, P2+P3"P4)s
and let
%(P) = P2+p3+P4'
Then (pl,pz,ps,p4) satisfies (18) if and only if P; Z?’h(p), and it

satisfies (19) if and only if p; + Np)€E2Z; here M and Y are

regarded as functions of the last 3 variables.
Now QTTO‘-"p) (u+p) = Qiod’p) (u+p). To prove this, it suffices
2 -3
to show that jz - J:Od’p) (ut+p) and J3 = J "f(kf-p) (u+p) are in 1 - 1
2 3

correspondence. For a quadruple (pl,pz,p3,p4) € 32, (24) and (25)

give 4 possible choices for (p2,p3,p4) (see (26) and (27)), namely,

(-2-b,, -3-b,, -1-b,),

(-Z-bz, —3—b3, 1-b4),

(-2-b 1-b3, —l-blo) ’

2’

(-2-b 1-b 1-b

2’ 3’ 4)‘

The respective values of M (p) are:



-103-

6+b,+b,+Db

2 3 4°

4+b2+b3+b4,

(32)

2+b,+b,+b

2 3 4’

max(b2 + by + b,» 4 + b2 - by - b4),
and the respective values of ¥(p) are:

(6 +b

s * b3 + ba),

(4+ b, +by+b,),

(33)
(2+0b

2+b3+b4),

(b2 + b, + ba)’

3
For a quadruple (pl,pz,p3,p4)€ 33, (24) and (25) also give 4

possible choices for (pz,p3,p4), namely,

(-2—b2, ~2-b,, —2—b4),

(-2-b,, -bg, -2-b,),

(-2-b,, -2-b,, 2-b 4) ’

2° 3

(-2-b,, -b,, 2-b

20 ~P3» 27b,).

The respective values of 7(p) and M (p) are exactly the same as in
(32) and (33). Since the values of p, determined by (24) and (25)

TO40) (urp) =

are exactly the same for Jz and 73, we have that Q'r
2

= Q£;A+p)(u+p).
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The same argument shows that Qi()&p) (t+p) = Q'_llj (A+0) (u+p).
4 5

+
Indeed, for a quadruple (pl,pz,p3,p4)€JT(>‘ p) (u+p), (24) and (25)
T
4

give the following choices for (pz,p3,p4)=

(-3-b -2~b

2’ 4)’

(-1-b "2"b4) ’

2’

(—3—b2, -1-b Z-ba),

(-1-b 2-b

2’ 4)'

The choices for Ji(H‘p)(u‘Pp) are:
5

2’

(-1i-b.,,, -3-b,, -b

29 3? 4)a
("3"b23 1’b3 ’ “b4) ’

("1"b2, 1-b3, -b4)'

The respective values of 'WL(p) in both cases are:

6+b,+by+b,,

4+ b, +by+b,

max(2 + b, + by +b,, 4+ b, - by - b,),
max(b2+b3+b4, 2+b2-b3-b4).
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Since the respective values of 7N (p) are also the same in the two

cases, we have that Qi()&p) (utp) = Qi(k’.p) (u+p).
4 5

From Lemma 15 and the last two paragraphs, we have

(34) m ) = QL M o) - QTN (),
1

Let ge = y:(M—p) (u+p) and \71 - Ji(}d-p)(lﬂ'p). For a
1l

quadruple (pl,pz,p3,p4)€Je, (24) and (25) give the following

choices for (pz,p3,p4) :

(-4‘b -2-b3, ’ba)’

2’

(—4—b2, —b3, -bl‘),

(35)
(-bz, -2-b3, —b4),
(-bz, ‘b3’ -ba)o
The choices for :7 1 are:
(-lo-bz, —1—b3, -1-b4),
(36) (-4-b2, -1"b3, i"b4)’
(-b2, "l-b3, -l-b")’

(-bz, —l-b3' 1-b4)0

The respective values of '}%(p) for U’e are:
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6+b,+b,+bDb

2 3 4’

4+b2+b +b

3 4

2+b,+b,+b

2 3 4

b, +b,+b

2 3 4’

and the respective values of 7n(p) for J 1 are

6+b,+b

2 3+b

4?

4+b,+b,+bDb

2 3 4

2+b,+b

2 3+b

4°
max(b2 + b3 + b4’ 2 - b2 + b3 - b4).
The respective values of Y (p) are the same for T o and v7 1+ The

values of Py determined by (24) and (25) constitute the set

T(A+p)1 - (bl + %). Let IAI be the number of elements in the set

11
A= {p€TOp), - (b, + 2)| p2b,+by+b,,
p-b,=-by-b, €21},
and let IBI be the number of elements in the set
11
B={peT(Mp); - (b, + —§)| p > max(b, + by + b,

2-b,+by-b),p-b,-by-b,€ 2Z}.

The first 3 rows of (35) and (36) give equal contributions to
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QT(M'Q) (u+p) and Qi()“'p) (1+p), respectively, and so (34) reduces to:

e 1

.

37 m, (n) = |la] - |B

If b,+b

otb, 2 1, then A=B, so that mx(u) = 0 by (37). Suppose

now that b +b

otb, < 1, so that b2+b4 = (Q, and b2 = b3 = —b4. Then

A= {pé’l‘()d‘p)l - (bl+%)| p:bz, p-b,€E 2Z}

and

B={peTOip), - (b +3| p>b, + 2, p - b€ 2T

1

Now B € A, and the complement of B in A is the get

C = {pe'r(;\+p)1- (b1+—1%)| by<p<b,+2,p-b,€ 2},

2 2

= {peTOip), - (b, + l—;)| p = b,k

Hence C has exactly one element if and only if b,€ T()\+D)1 - (bl + ‘:%”);

otherwise, C is empty. But b2€ T()\+p)l - (b1 + %) if and only if

b, + bz@a, that is, if and only if b, + b, < a. Since by (37)

1 2

ml(u) is the number of elements in C, m)‘(u) = 0 unless b, + b, < a,

in which case mk(u) = 1, This completes the proof of Theorem 7.



Chapter III. Systems of minimal types and rank 1 groups

§1 Systems of minimal types

In this chapter, we use the notation of Chapter I, not
Chapter II, In particular, G is a connected real semisimple Lie
group with finite center.

Let m be the Lie subalgebra of %o corresponding to M, and
let m be the complex subspace of %Y generated by m. Let bm be
a Cartan subalgebra of the complex reductive Lie algebra m, and
fix a system Ar of positive roots of m with respect to l')m- Let
'H’m denote the subalgeb_ra of ¥/ generated by bm and 1, so that
W’m may be regarded as the algebra of polynomial functions on the
dual of bm . For all ‘Yéfl, let u(y) denote the highest weight
(with respect to AI') of the representation of M induced by any
member of Y. We recall (cf. Chapter I, §5) that if BEK and Y€ M

are such that m(B,Y) = 1, then X (8 is a homomorphism from ‘7‘(M

»Y)
into €. We recall the definition of y(a)€ M (ae a) and of soe W
from Chapter I, §3.

Definition 1 (see the Introduction for motivation). A system

of minimal types for G is a family (Ci’fi) where I is a finite

i€l
set, each Ci is a map of a subset of M into ﬁ, and each fi is a

homomorphism from 7(M into ')\Lm, such that the following conditions

hold:

-108-
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(1) U  (domain Ci) = ;I,
1i€1

(2) for all i€ I and Y € domain Ci, m( Ci(y) Y =1,

(3) for all 1€I, vy € domain Ci and xe'}(M,

Xc(ci(ﬂ ) & = £ wm),

(4) for all aea, m(a,Ci(sgy(a))) = ] for all i €1 such that

s,Y(®) € domain Cc .

Let b -cn_+|7m » so that b is a Cartan subalgebra of .
Let A+ be the system of positive roots of o} with respect to b
determined by the following conditions: The set of non-zero
restrictions to oL, of the elements of A+ is the set -Z+ (we recall
the definition of Z+ from Chapter I, $1), and the set of restric-
tions to \')m of the elements of A+ vanishing on o'Lo is the set A_T .
If 0 €C and A is the highest weight of any member of o with respect

to A+, then

(1) A

oL = so)\(a) and M")m = u(soY(a)).

Let ¥ denote the subalgebra of & generated by l’) and 1. Then
N may be regarded as the algebra of polynomial functions on the
dual of h. Also, ‘N 1s naturally isomorphic to 01@74,“.

Suppose G has a system )3 = (C of minimal types.

i’fi)i el
Then

1® £: OL® KM > Ol®Hy = N
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. N g
is a homomorphism for all i€ I. Let Fi : -*’H be the linear map

(1 @fi)°q for all i€1 (we recall the definition of q from
Proposition 1 of Chapter I ($1)).

is defined, and if in addition

BE€K is such that m(B,Y) = 1, then &5

If YeM and ve A, then a,Y,v

y 1s defined (Chapter I, §4).

We can now state:

Theorem 1. Suppose G has a system ,X = (Ci’fi)iél of minimal
types. Then Ff ‘ ;Zj K -*N* is a homomorphism for all i€ 1I.

Let aea, and let )\ be the highest weight (with respect to A+)
of any member of a. Choose 1i€1I such that soy(a) € domain C’i'
Then m(a, Ci(soy(a))) = 1 and

4 K
(2) Xn(a’ ci(soy(a)))(u) = Fi (u)()) for all uex/ ™.

Let Yéﬁ and VEA. Let A be the linear form on b such that
A|,,-b = -y+p and Albm = u(y). Choose iE1I such that y € domain

C,- Then m(a, s Cy(1) = 1 and

3 K
3 Xﬂ(aY v’ Ci(v))(“) = Fi (u) (A) for all u&xy .
A04 (V)

‘Moreover, aY v is defined, and is an infinitesimal equivalence
?

class of irreducible quasi-simple Banach space representations of G

such that

(4) X :
na i1, Ciom

Yy V

Proof. The first statement follows from the above remarks and

(u) = Fi’g (u)(A)  for all uG)J.K.

from Proposition 1 of Chapter 1 ($1), together with the fact that

‘4 is commutative. To prove (2), we note that
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P e s 1(@),s (@ T T BX(C, (s v (@),8,y(@) "

Hence from Theorem 1' of Chapter I (§5), and from Definition 1(3),

we get

Xn(a, ci(soY(a)))(u) = {[1®fi(-)(u(so‘v(a)))]q(u)} (sok(a))

(¢! ®fi)q(u))(>\)

(by (1))

P4 () )

for all uE;ffK, and (2) is proved. (3) follows in exactly the same

way from Theorem 2 of Chapter I (§4). =Binally—Ci—follows—Erom
Finally,

(4) follows from (3) in the same way that Theorem 3 of Chapter I
(§ 4) follows from Theorem 2 of Chapter I ($4). This establishes
the theorem.

Remark. As explained in the Appendix to § 1, Theorem 1 can be
viewed as a generalization of Theorem 2.2 and Lemma 2.5 of [11].

Definition 2 (see the Introduction for motivation). A strong

system of minimal types for G is a system (ci’fi)iéI of minimal

types for G satisfying the following conditions:
W C,m = Cj(sy) for all 1,J€ I, Y€M and s€ W such that
y € domain C 4 and sy € domain C ] (this allows us to define C(y)

(ye M) as Ci(Y), where Y € domain Ci),
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(2) for all Yl,Yzeﬁ such that Y, and Y, are not conjugate
under W, either m(C (Yl) ’YZ) = 0 or m(C(Yz) ,Yl) = 0.
Definition 2 leads to the following theorem:
Theorem 2. Suppose G has a strong system ,3 = (Ci’fi)ie I of
minimal types. Let i,j€I, yeﬁ and s €W be such that Y € domain

Ci and sy € domain Cj‘ Then

(5) FJ(u)(v,u(y)) = FJ

h 2 @ 6™, uen)

for all ué’UK and all linear forms v on ot (in (5), elements of
N =0L®N,, are evaluated at ordered pairs of forms on ou and

bm ). Moreover,

~Cy)_ ~Cy)
(6) % v T %y,sv

for all ve ﬁ, VEA and s EW. Finally, if yl,Yzefi are not

conjugate under W, then

AChrp) LClrp

@) a, # o
Y1V YooYy

for any \)1,\)26 A.

Proof. (5) follows easily from Theorem 4 of Chapter I (§6)
and Definition 2(1), and (6) is contained in Theorem 4 of Chapter I.
(7) follows immediately from Definition 2(2), and Theorem 2 is

established.
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Remark. Strong systems of minimal types exist for complex
groups G (see the Appendix to $1) and for rank 1 real groups (see
$2), Hence Theorems 1 and 2 apply to these groups. As explained
in the Appendix to $ 1, Theorem 2 can be regarded as a generaliza-
tion of Theorem 2.3 of [11].

Remark. We conjecture that (6) gives all possible infinitesi-

~C(y)
LV

has a strong system of minimal types as in Theorem 2. (As explained

mal equivalences between representations of the form when G
in the Appendix to §1, this would generalize Theorem 3.2 of [11].)
We have proved this conjecture for many of the rank 1 real groups G.
Specifically, whenever 0}0 is full rank (cf. §2), sy = Y for all
yeﬁ and s €W, Proposition 2 of Chapter I ($6) then implies the
desired result. The only rank 1 groups G for which c;’o is not full
rank are those for which the ideal of a]’o generated by a, is one
of the Lorentz algebras 50(1,2n-1) where n > 2 (cf. $2), and it
may be easy to verify our conjecture directly in this case by
computing the image of the mapping p Co) .y (cf. the Remark follow-

ing Proposition 2 of Chapter I (§$6)).

Remark. Suppose G has a system J = (Ci’fi)ié ; of minimal
types. Then Ci(Yo) = Bo for all i €I such that YOE domain Ci
(where Bo and Y, are defined as in Chapter I, $ 5), in view of
Definition 1(4), applied to the class of the trivial one-dimensional

representation of G. Thus if Yoe domain C {s ve have
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4
Py o (W) = Fy(w(,0)
Bo Yo 1

for all ué)ﬂK and linear forms V on ot; here 0 denotes the zero
linear form on \')m. Hence our mappings Ff can be regarded as

extensions of the classical mapping p8 Y (cf. Chapter I, $5).
o’'o

Appendix to $ 1: The complex case

Theorem 1 may be regarded as a generalization of Theorem 2.2
and Lemma 2.5 of [11], which deals with the case of complex G. When
applied to the complex case, Theorem 1 and its proof also provide a
clarification and simplification of these two results of [11].

Specifically, we first note that the example G = SU(1,1), as
well as other examples of rank 1 real simple groups, show that the
definition of "minimal type" given in [11, p. 390] is not appro-
priate for real semisimple Lie groups. Even if ''weight'" is replaced
by "element of M" in this definition (these two concepts essentially
coincide if G is complex), the same examples show that we still have
no unique notion of minimal type. Hence we have not attempted to
define "minimal type' in general.

On the other hand, Definition 1 above includes the complex case,
in the following sense: Let G be complex. Then Lemma 1.1 of [11]
shows that » = (CQ’fQ)QGI satisfies the third part of Definition

1, where I is the set of systems of positive roots, = BQ (in the

f
Q
terminology of [11]), and CQ is the map which associates to each
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integral linear form 1! in the Weyl chamber defined by Q the element
of K such that any of its members has Il as an extremal weight.
Also, Corollary 1 to Theorem 2.1 of [11] shows that the last part
of Definition 1 is satisfied, so that ;g is a system of minimal
types for G.

If a€G (G is still complex) and Il €a, then the minimal type
of II in the sense of [1l] can be described in our terminology as
the element of K such that any of its members contains y(a) as an
extremal weight. This shows that the minimal type of II is
precisely CQ(Y(a)) (or CQ(soy(a))) for all Q€I such that y(a)€
domain CQ “(or soy(a) € domain CQ). Moreover, if Yéﬁ and VEA,

Co (V)

then for all Q€I such that Y € domain Cy, ﬁva is defined,
9

LM
and CQ(Y) is the minimal type of II and of . ¢ . We note that
’

Y5V Y,V
NG

the representations Il Q

Y,V are precisely the representations denoted
b

i

A,V in [11].

Now the homomorphisms I-‘QJ are almost the same as the homomor-
phisms hQ of [11]. The difference is as follows: The F’! are

Q
defined by means of the Iwasawa decomposition ;U='n0'l_°){, in place
of the decomposition [ =) oU'9 (our terminology) used in [11] to
define the hQ; here OU' is the enveloping algebra of a subalgebra
of Y which is defined in the complex case, but which has no

natural meaning in the general case. With this understanding, and
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in view of the above remarks, we now see that Theorem 1 is a
generalization of Theorem 2.2 and Lemma 2.5 of [11].

We also see that Theorem 1 and its proof yield a clarification
and simplification of these two results. Indeed, the use of the
Iwasawa decomposition gives the right-hand sides of formulas (2),
(3) and (4) more natural form than those of their counterparts
(2.34) and (2.49) in [11]; for example, the linear form A in the
right-hand side of (2) is the highest weight of the representation
in question. Also, we have avoided the difficulties in passing
from the finite to infinite dimensional case encountered in § 2.4
of [11], by using the "opposite" Iwasawa decomposition Pl =NOX
and by using the contragredient module to prove formula (2) for the
finite dimensional case (see the proof of Theorem 1' of Chapter I
($5) and the Remark following Theorem 1 of Chapter I ($3)). More-

over, by using Proposition 1 of Chapter 1 ($1), we have proved

4
F
Q
on formula (2) and the fact that the highest weights A are Zariski

directly that the are homomorphisms, instead of having to rely
dense in the dual of b.

Finally, we note that J is a strong system of minimal types
for G, that Theorem 2 is a generalization of Theorem 2.3 of [11],
and that the second Remark following Theorem 2 indicates a partial

generalization of Theorem 3.2 of [11].
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$2 Systems of minimal types for ramk 1 groups

In this section, we shall show that strong systems of minimal
types exist for connected real semisimple Lie groups with finite
center and real rank 1. We use the notation of $1 and of Chapter I.

Let Mo be the identity component of M. Let £ be a Cartan
subalgebra of ,& containing ")m- The Lie algebra %o is called
full rank if L contains a Cartan subalgebra of OJ/, and °3’o is
called split rank if m contains a Cartan subalgebra of /&

We agsume that %o has real rank 1. Then %o is either full
rank or split rank.

Lemma 1. No root of /L with respect to X vanishes on L)m.

Proof. 1If %o is split rank, then j’,=l«)m , and so the lemma
is clear. Hence we may assume that 03/0 is full rank. In this case,
there is a root & of ¢ with respect to \7 (=a 'H’)m ) which
vanishes on bm . Let Xa be a non-zero root vector for o, and let
0 denote the Cartan involution corresponding to the complexified
Cartan decomposition o}s}e +é¢/ of o)« Now the centralizer of lf)m

in oy is
h+Cx, +Cex = cv+h,, + C(X +6x) + C (X-6X ).

But o+ (L‘(xa-exa)c,r, and ")m“' C(xawxa)C,&,, so that the central-
izer £' of b in Jeis b, +C(x +6%). Since tc ', we must

have )(’,= /t' by dimensionality, and this proves the lemma.
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Lemma 1 implies the existence of an element H, € b”\ such that
a(d,) > 0 for all aéAr, and such that all the roots of e with
respect to L are real and non-zero on H,. Let Af(ﬂ*) denote the
set of roots of )& with respect to X which are positive on H,, so
that A&(H*) is a system of positive roots for JL.

We recall that for all ye€ M, u(Y) denotes the highest weight
(with respect to S:) of the representation of m induced by any
member of y. For all Yoe ﬁb’ let uo(Yo) denote the highest weight
(with respect to A‘:) of any member of Y, For all BE€ ﬁ, let K(B)
denote the highest weight (with respect to A&KH*)) of any member of
B. For evefy linear form v on X, let v denote its restriction
to by

Lemma 2. Let Y€ ﬁb and BE€ K be such that K(B)h = “0(76)'
Then m(B,Yo) = ], Moreover, uo(Yo) occurs with multiplicity exactly
1 as a weight of the representation of m induced by any member of RB.

Proof. uo(yo) clearly occurs with multiplicity > 1 as such a
weight. If it occurs with multiplicity > 1, or if m(B,Yo) > 1,
then any member of B has a weight v # K (8) such that (K(8)-v)? =o.
But K(B)-V is a non-zero non-negative integral linear combination
of the members of Af(ﬂ*), and so (K(B)-v)(H,) > 0, a contradiction.

Suppose m(B,y_) = 0. Then there exists Yée&ﬁo such that
m(B,Yé) > 1 and uo(Yo) is a weight of any member of Yé' In particu-
lar, any member of B has a weight V' such that (v')h = uo(yé). Now

uo(y;)-uo(yo) is a non-zero non-negative integral linear combination
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m ty_
of the members of A+, so that (uo(Yo) uo(Yo))(H*) > 0. On the other
hand, K(B)-V' is a non-negative integral linear combination of the

members of A_{f“(H*), so that
(uo(Yo)-uo(Yé))(H*) = (K@®)-v')H,) >0,

a contradiction. Thus m(B .Yo) > 1, and the lemma is proved.
Let {Hl”"’Hr} be a basis of L. Let $1s--+s0, be the
elements of A%(H*). For all i=1l,...,s, let Xi be a non-zero root

vector for fe for the root ¢i, and let Yi be a non-zero root vector

for,lt for the root -¢i. Then
{Yl,‘.QYS’Hl".'Hr, Xl’.‘.Xs}

is a basis of k. For all s-tuples (q) = (ql,...qs) and (p) =
(pl,...ps), and all r-tuples (L) = (£1,...2r), of non-negative

integers, let

9 ;. % L. Py

pS
2@, . = 1 oHTx YL xS € X.

Then {Z(q),(z),(p)} is a basis of K. For all x €X, let

€
a(q),(l),(p) (x) € C be determined by the condition

X =

(q>,(§).<p> 20,0, %@, 0, m"

Lemma 3. Let x €7°<M°. Then a(q),(R,),(p) (x) # 0 = (q) and

(p) are simultaneously zero or non-zero.
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Proof. Let ad denote the representation of oy by derivations
of ij which uniquely extends the adjoint representation of ay on

itself. Then

(o]
[]

(ad H)) (x)

@ (é) ) 20), (%), () (x) (ad H*)Z(q),(l),(p)

S
(@) (g) ) (121 (pi—qiwi(ﬂ*)) 2@, W, ® @%@, 0, m"

Thus

s
Z (pi-qi)¢i(H*) = 0,

)(x) $0 =
i=1

a(q) » (), (p

and this proves the lemma since ¢1(H*) > 0 for all i=1,...s.
Let J be the subalgebra of J generated by L and 1.
Lemma 4. For every x € X ©. there is a unique element g(x)€£7

s
such that x-g(x) € | K X,.
i=1

Proof. The existence is clear from Lemma 3, and the uniqueness

s
follows immediately from the fact that J T X X, = {o}.
‘ i=1

M
Lemma 5. The linear map g: ’K ° -*=7 defined by Lemma 4 is a
homomorphism.

Proof. Let x, y€ NM Then

xy - g(x)g(y) = x(y-g(y)) + (x-g(x))g(y).
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Thus

S x %7

]
xy-g(x)g(y) € ] KX +
i=1 i=1

c 1 ¥x,

i=1

and the lemma is proved.

For all y € M  and BEK such that m(B,YO) =1, let XCO(B’YO)

denote the homomorphism from X © into C associated with the
Yo-primaty part of any member of B. If M is connected, so that

M= Mo’ then XC ® is the same as the previously defined
o

»Yg)
XC(B ) We regard J as the algebra of polynomial functions on
Yo

the dual of t

Lemma 6. Let Y € ﬁo and BEK be such that K(B)b = UO(YO)-

Then XCO(B’YO) is defined, and XCQ(B’YO)(X) = g(x) (K (B)) for all
M

x€K °,
Proof. m(B,y ) = 1 by Lemma 2, so that X is defiﬁed.
—_— >To e{B,v,)

Let w be a non-zero highest weight vector for any member of B.
Lemma 2 implies that w transforms under Mo according to Yo Lemma
6 now follows immediately from Lemma 4.

Remark. Lemmas 2, 3, 4, 5 and 6 hold for all G (rank 1 or not)
for which Lemma 1 holds - for example, whenever Yo is complex, or,
more generally, split rank. For G complex, Lemmas 3, 4, 5 and 6

correspond to Lemma 1.1 of [11], due to Harish-Chandra.
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We continue to assume that %o has rank 1. We now assume in
addition that A is split rank. Then it is known that M is
connected.

Let I be the set of systems A_%(H*) of positive roots of Jv., as
H, varies. Thus I is the set of systems of positive roots of f
containing A_:f For all Q€ I, let DQ denote the set of dominant
linear forms for k with respect to Q. Let CQ be the map which
associates to each element Y€ fd such that u(y)€ DQ the element Béﬁ
defined by the condition that K(B) = u(y) (where K is defined with
respect to Q). Let £ = g (where g is defined with respect to Q).

Q

Then Lemmas 2 and 6 show that )X = (Cq,f ) satisfies the first

QQ€eIl

three parts of Definition 1 ( §1).

At this point we invoke the classification of the rank 1 real
semisimple Lie groups (see [8, Chapter IX]). The ideal of To
generated by o is a rank 1 split rank real simple Lie algebra,
and so must be isomorphic to one of the Lorentz algebras so(l,2n-1)
(n > 2). Direct computation using Theorem 5 of Chapter II (§ 2c)
shows easily that J satigfies the fourth part of Definition 1.
Also, ;X is a strong system of minimal types for G (see Definition
2 (31).

Suppose now that %o is full rank (and rank 1). Then the
ideal ‘?'o of %o generated by oL is a rank 1 full rank real simple

Lie algebra.
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Let us assume that g,") #s5Uu(l,1). It is known then that M is
connected, and that oJ,(" must be isomorphic to one of the following:
su(l,n) (n > 2), so(1,2n) (n > 2), sp(l,n-1) (n > 2), or the
rank 1 real form of fz.‘

Case-by~-case computation shows that there is a system Af(H*)
of positive roots for J and a wall W of the corresponding Weyl
chamber for /&, in the dual of 7(3, such that if G is simply comnected
(without necessarily having finite center), then (")"\Y)l:1 = f)M; here
'1’/‘\( is the set of integral elements of W, and ﬁM is the set of
dominant integral linear forms for M with respect to A:_n. It
follows that (')”‘\()q = BM even if G is not necessarily simply con-
nected. Moreover, the inverse of the restriction map from "W to
SM extends to a linear map L from the dual of ‘f)m into the dual of
£, and L(ﬁM) ='};\\/. L gives rise to a homomorphism g': J - N’m
such that g'(y) (V) = y(L(v)) for all y€& and all linear forms v
on HM‘ Let £: ’)‘(M > 74,-,, be the homomorphism g'o g (where g is
defined with respect to Af’(H*)) and let C: M + K be determined by
the condition that for all Y€ i‘\i, C(y) is that element 8612 such
that L(u(y)) = K(B) (where K is defined with respect to A’f’(H*)).
Then Lemmas 2 and 6 show that )Zg = (C,f) satisfies the first three
parts of Definition 1. The fact that )8 satisfies the fourth part
of Definition 1 follows from Theorems 3, 4, 6 and 8 of Chapter II

(55 2a, 2b, 2d and 2e, respectively).
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£ is in fact a strong system of minimal types for G. Indeed,
the first part of Definition 2 is trivially satisfied, and the
second part follows easily by the method of proof of Lemma 2.
Finally, let us assume that gé = SU(1,1). First suppose
that 0},0 is simple (so that ?o = o}(')) and that G is simply connected
(G has infinite center in this case). Then G is isomorphic to the
simply connected covering group of SU(1l,1), K is isomorphic to. the
additive group IR of real numbers, and M is isomorphic to the
additive group Z of integers. For all z€ C, 1let O (z)e lﬁ be
the class defined by the homomorphism t -+ e'? from JR into the
multiplicative group C* of non-zero complex numbers, so that we
may identify K with H/%= {og(2)|z€C}. Also, for all z*e C *,
let az(z*)ei be the class defined by the homomorphism n + (z*)"
from Z into C*, so that we may identify M with 2= {az(z*)lz*ec*}.
Now for all z*e C*, let CZ* be the map from {az(z*)} < M
into K which takes az(z*) into a lR(log z*), where log denotes any
single-valued inverse of the exponential function such that
log 1 = 0 and log -1 = +ill (here i and Il have their usual meanings
as complex numbers). Also, let fz* be the homomorphism from ;7'= 7(“
into € = 7+hﬁ which takes any polynomial function on the dual of
)t=/L into its value at the differential of alR(log z*), where this
differential is regarded as a linear form on }L. Then except for
the fact that C* is infinite, we have that ,J = (cz*’fz*)z*e T

is a system of minimal types for G. Indeed, the first three parts
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of Definition 1 are clear; the fourth part follows from the case n=1
of Theorem 3 of Chapter II (§ 2a), together with our choice of the
log function (we note that every finite dimensional irreducible
representation of G factors through SU(1,1)). It is also clear
that J is a strong system of minimal types for G (except for the
fact that C* is infinite).

Using a similar method, it is now easy to construct a strong
system of minimal types (except for a finite index set) for G when
G is simply connected but q}b is not necessarily simple. Finally,
it is easy to see that such a system jmmediately yields a strong
system of minimal types (with finite index set) for G, if the
simple connectivity assumption is replaced by the assumption that
G have finite center.

Summarizing, we have:

Theorem 3. Every connected real semisimple Lie group which
has real rank 1 and finite center admits a strong system of minimal
types.

It would be interesting to determine whether all connected
real semisimple Lie groups with finite center admit strong systems
of minimal types.

Remark. The case dealt with above in which G is the simply
connected covering group of SU(1,1) shows that the finite center
hypothesis in Theorem 3 is needed if we want I to be finite in

Definition 1.
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Remark. We have obtained an alternate description of the
elements (C(Y(®))€ K (aéa) when G has real rank 1 and 7’:) # suU(l,1),
or when G is complex. Specifically, there is a system SE? of
positive roots for 9% and a system S_f_" of positive roots for e

determined naturally by s7, such that for all aea, the element

+’
BE IE whose highest weight u is the lowest such that m(a,B) # 0

actually satisfies the condition m(a,B) = 1, and in fact coincides

with C(y(a)) (here M is the highest weight of B with respect to

sk

+’
Moreover, if u' is the highest weight of any B'E K such that

and "lowest'" refers to an ordering defined in terms of S:_}).

m(a,8') # 0, then u'-py lies in a certain "positive cone'' determined
naturally by S_?f Hence C(Y(a)) is characterized by a property
closely analogous to that of highest weight. If %o is full rank,
the abové holds for all possible choices of the wall ‘W used in
the description of the family of minimal types, and the positive
systems S:_}’ for %G which correspond to all such choices can be
characterized among all positive systems for o) by a natural geo-
metric property.

Remark. If G is rank 1 split rank, then the element
C(Y(@) €K (ax€G) satisfies the definition of "minimal type'" given
in [11, p. 390], and the notion of minimal type is appropriate for
these groups. However, as was noted in the Appendix to § 1, this

notion is not appropriate in general.
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