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1. INTRODUCTION

1.1 DISCRETE ELEMENT ANALYSIS

1.1.1 Discrete Systems

Problems occuring in the physical world can range from the

most simple ones to the most complex and complicated ones.

Unfortunately the human mind is limited in such a way that it

cannot grasp the behavior of its complex surroundings and

creations in one operation. Thus it resorts to other means of

solving these problems. Computers and "artificial intelligence"

contribute a big part in supporting the human intelligence. But

before being able to use those powerful tools, humans subdivide

all systems into their individual components or "elements",

whose behavior is readily understood. And, then, the original

system is rebuilt from these simple components to study its

behavior.

In many situations an adequate model is obtained using a

finite number of well-defined components. This is what is

called a discrete system. In other systems you need an infinite

number of elements to properly model the system, and the problem

can only be defined using the mathematical fiction of an

infinitesimal. Such systems are called continuous systems. But

if computers are going to be used to help the human mind, it

should be noted that the capacity of computers is finite.

Discrete problems can be solved easily using computers even if

the number of elements is very large. But exact solutions to

continuous problems can only be obtained by mathematical

manipulation.



To eliminate the unattractiveness of such manipulations,

various methods of discretization were proposed for these

continuum media. All involve an approximation which should get

closer to the true solution as the number of discrete variables

increases. This leads to a class of methods called discrete

element methods. It includes finite difference approximations,

finite element methods, and the more recently developed boundary

element methods. The solution of continuum problems using those

methods has been approached differently by mathematicians and

engineers. The first have developed general techniques

applicable directly to differential equations governing the

problem. The engineer, on the other hand, approaches the

problem more intuitively by creating an analogy between real

discrete elements and finite portions of a continuum domain.

Since the early 1960's much progress has been made, and the

purely mathematical and 'analogy' approaches are fully

reconciled.

On the other hand, in the analysis of problems of a

discrete nature, a standard methodology has been developed over

the years. The civil engineer, dealing with structures, first

calculates his force-displacement relationships for each element

of the structure and then proceeds to assemble the whole system

according to a well-defined procedure of establishing local

equilibrium at each 'node' or connecting point of the structure.

From such equations the solution of the unknown displacements

becomes possible. This sort of analysis follows a standard

pattern which is universally adaptable to discrete systems.



Basically the continuum problem is solved by using similar

techniques, by dividing it into a discrete number of elements

with a finite number of parameters. All these different

techniques can be termed approximate solution methods.

1.1.2 Approximate Solution Methods

Suppose there is a domain Q which has a boundary r as shown

in Fig. 1.1. Let the equation V2u = p be satisfied in Q. This

is equivalent to:

2 2
6u 6 u

+ = p in 2

62 S2
x 6y

in a two-dimensional space. Let there be some boundary

conditions on r. There are two different kinds of approximate

solution methods: "Domain" methods and "Boundary" methods.
A

In domain methods an approximation u is introduced which

satisfies exactly the boundary conditions, but not the

differential equation in Q. Among these methods are finite

differences, finite elements, Galerkin, and Rayleigh Ritz

methods. On the other hand in boundary methods the approxima-

tion u which is introduced, satisfies exactly the differential

equation throughout Q, but only satisfies in an approximate way

the boundary conditions on F. One example of this class of

methods is the boundary element method. In the next sections,

discussion will be focused on two major approximate solution

methods: finite element and boundary element methods.
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FIGURE 1.1 Potential problem satisfying Poisson's equation.
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1.1.3 The Finite Element Method

It is from the engineering "direct analogy" view that the

finite element has been born. Table 1.1 shows how the

mathematical point of view and the engineering ideas converged

in the early 1960's to form the finite element method.[ 1 ] From

the mathematical point of view finite differences lead to

variational principles that introduced the present day finite

element method.

From the engineering point of view one approach was to use

variational methods and weighted residuals that lead in the late

1940's to piecewise continuous trial functions that could be

applied to finite element methods. Another approach was the

structural analogue substitution that originated direct

continuum elements which found their application in finite

element analysis. The basic concept of the finite element

method is that any continuous quantity such as temperature,

pressures, or displacements, can be approximated by a discrete

model composed of a set of piecewise continuous functions

defined over a finite number of subdomains [2]. The discrete

model is constructed as follows:

(a) Choose a finite number of nodes in the domain.

(b) The value of the continuous quantity at each node is

denoted as a variable to be determined.

(c) Divide the domain into subdomains called elements. These

can be triangular, rectangular, or of other geometrical

shape. They are connected at common nodes and approximate

the shape of the domain.



ENGINEERING MATHEMATICS

Trialfunctions Finite
di/ferences

Richardson 1910
Variational Weighted Liebman 1918
meethods residuals Southwell 1940

Rayleigh 1870 Gauss 1795
Ritz 1909 Galerkin 1915

Biezeno-Koch
NN 1923

Structural Piecewise
analogue continuous

substitution trial finctions

Hrenikoff 1941 Courant 1943
McHenry 1943 Prager--Synge 1947
Newmark 1949

Direct Variational
continuum 'finite
elements differences

Argyris 1955 Varga 1962
Turner et al. 1956

PRESENT-DAY
FINITE ELEMENT METHOD

TABLE 1.1 Origin of the finite element method.



(d) The continuous quantity is approximated over each element

by a polynomial defined using the values at the nodes of

the continuous quantity.

Three main requirements should be satisfied:

(i) Equilibrium equations;

(ii) Compatibility along the element boundaries; and

(iii) Constitutive relations should be verified.

The conventional finite element formulation is simply a

Rayleigh-Ritz method using piecewise assumed shape functions

with nodal displacements q as generalized coordinates. The

final equation is of the form:

Kq = Q

where K is the assembled stiffness matrix of the structure and

Q the assembled vector of equivalent nodal forces. This is, of

course, a matrix displacement method.

The finite element method can also be looked at as a

special weak formulation obtained by integrating by parts n

times the original statement, as shown in Fig. 1.2 [9], where

the orignal statement contains a derivative of order 2n. The

finite element method starts from the balanced form of the

fundamental equation. Integrating by parts n more times, the

inverted statement is obtained. This is the start of the

boundary element method, which is going to be introduced in the

next section.



FIGURE 1.2 Classification of different approximate techniques.



1.1.4 The Boundary Element Method

Integral equations were until recently considered to be a

different type of analytical method, somewhat unrelated to

approximate methods. They became popular in Europe through the

work of a series of Russian authors such as Muskhelish and

Smirnov but were not very popular with engineers.

Considering the Laplace's type problem:

A2 u = 0 in the domain 2 with boundary conditions:

u = u : essential boundary condition on rl

6u
S= q : natural boundary condition on r2

where r = rl+ r2 is the total surface, as shown in Fig. 1.1.

When r 1 is equivalent to r, the problem is called the Divichlet

problem, with all boundary conditions being essential boundary

conditions. When r2 is equivalent to r, the problem reduces to

the Neumann problem with all boundary conditions being natural

ones; and when q = ao + (alu)*u the problem is referred to as

the Robin problem.

In 1903 Fredholm tried to define appropriate Green's

functions to solve these problems. In 1963, with the

introduction of approximation to integral equations by

Hildebrand,and later on Jaswon [4] and Symm [5], indirect

methods for solving Divichlet and Neumann problems were

developed. In 1967 Hess and Smith from aeronautical engineering

attacked the Neumann problem. And, later on in 1969, Harrington



from electrical engineering proposed solutions to the Robin

problem.

A need for a less mathematical approach was proposed by

engineers from Carnegie Mellon University in 1971. The work of

Cruse and Rizzo [6] in elastostatics was the beginning of direct

methods of solving the problem taking both u and q = 6u/6n as

variables. Significant developments were made in the early

1970's at Southampton University [7]. Pioneering work was done

there by Butterfield and Tottenham. Extensive work has been

done by Brebbia [8,9,10,11,12] as a follow-up. Last, but not

least, innovative work has been done at the Massachusetts

Institute of Technology by J. Connor, in the development and

implementation of boundary element methods.

There are two kinds of boundary element methods: direct and

indirect. Both will be discussed in detail in Chapter Two.

The basic difference with the finite element method is that

the boundary element method is based on the discretization of

the exterior boundary only. An expansion for the variables

(which are the "essential" and "natural" boundary quantities) is

introduced in terms of parameters. For N parameters, N

equations are needed, and, thus, N "source" points. These

"source" points are applied on the exterior boundary in the

boundary element method. Therefore, the exterior boundary is

discretized into straight or curved (isoparametric) elements,

with different number of "sources" (points) applied depending on

the expansion of the elements.



Clearly, the key points for obtaining accurate results in

both finite and boundary element methods are a good

discretization, and a correct interpretation of the results.

1.2 JUSTIFICATION OF THE USE OF BOUNDARY ELEMENT METHODS

1.2.1 Advantages and Disadvantages of the Discrete Element
Methods

Some of the advantages of the finite and boundary element

methods include:

(1) Irregularly shaped boundaries can be approximated using

elements with straight sides or matched exactly using

elements with curved boundaries. The methods are not

limited to "nice" shapes with easily defined boundaries.

(2) The size of the elements can be varied. This properly

allows the mesh to be expanded or refined as the need

exists.

(3) Boundary conditions, such as discontinuous surface

loadings, present no difficulties for these methods. Mixed

boundary conditions can be easily handled.

(4) The above properties can be incorporporated into one general

computer program for a particular subject area.

Finite element methods are very useful in problems

involving non-homogeneous medias, plasticity, or time dependent

problems while boundary elements are very much needed in

modeling problems in an infinite domain, taking care of

singularities at crack tips, or dealing with incompressible

materials. Those advantages and disadvantages will be discussed

in the next section.
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The user should be careful in interpreting the results of

the huge computer codes based on the discrete element analysis.

A trend exists to accept those results without questioning them

thoroughly.

As pointed out in Reference 13: "in the field of linear

elastic stress analysis, the finite element method is now used

almost indiscriminately, and the results produced are often

accepted without question". The belief in calculated results

should be tempered with caution.

There are three main areas where errors can arise in

discrete element analysis. They are:

(i) the creation of the discrete element model;

(ii) the failure to allow for the limitations of the programs

used;

(iii) the assumption of high accuracy for the results.

The creation of the discrete element model involves

assumptions about the applied loads, the boundary conditions and

the behavior of the material. So an overall understanding of

the physical behavior of the component and the limitations of

the model is crucial. Furthermore, a set of assumptions which

seem reasonable may produce a set of results consistent with the

assumptions made but which are nonetheless incorrect. Figure

1.3(a) shows a cantilever beam under concentrated loading. The

finite element method's answers are compared to Timoshenko and

Bernouilli beam theories in Fig. 1.3(c). The exact solution

gives an answer consistent with the finite element model assumed

in Fig. 1.3(b). And as the number of elements N increases, the
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answer converges to Sexact. But this solution is the correct

one for the "model" assumed and it is bigger than both

Bernouilli and Timoshenko beam theory predictions, as shown in

Fig. 1.3(c). Therefore, to have a good answer, one should have

a consistent model. And to be able to achieve this, a thorough

preknowledge of the physical behavior of the component under

analysis is needed. Therefore analysis should include some

assessment of the validity of the assumptions made. Errors from

bad assumptions combine with limitations of the different

discrete element programs used. Round off errors in

computations can give rise to very bad answers, especially if

single precision is used. Double precision is recommended for

any large size problem using discrete element analysis. Errors

can arise in solving large numbers of simultaneous equations, as

in the solution for the vector of displacements U, in KU = B.

Errors can also result from time integration, or numerical

integration. Appropriate integration rules should be used for

every kind of problem. Finally, results from the computer codes

should be checked carefully before using them. High level of

accuracy can only be achieved by very experienced analysts or if

there is considerable relaxation of time and cost constraints.

1.2.2 Comparison of Finite Element and Boundary Element
Methods

The boundary element method generally offers a series of

advantages over 'domain' type techniques such as finite

difference, or finite elements. The first one is that a

boundary element model is much easier to develop than a finite



element model. Only discretization of the boundary is needed in

boundary element methods, compared to discretization of the

whole domain in finite element methods. This results in smaller

systems of equations to be solved, which results in the

reduction of round off errors. But the boundary element methods

have a more complicated analytical formulation, which results in

the use of more numerical and time integration rules. Some

error might arise from the use of a non-appropriate rule. The

finite element method would rather be used in a certain class of

problems, like plasticity, time-dependent problems, and problems

with non-homogeneous materials, where the boundary element

method is not as powerful. The boundary element method would be

better when modelling a physical system of infinite extent. In

this case an appropriate approximation to reality by means of a

finite number of "truly" finite elements is clearly very

difficult. Another situation where the finite element method

encounters difficulties is when stress singularities are

present, such as occur at crack tips. The boundary element

method is also preferred when solving for materials with

Poisson's ratio equal to 0.5 (i.e. incompressible materials).

On the other hand, the finite element method is better

known than the boundary element method, and more computer codes

are available using finite elements. However, people are

sometimes too confident about the results of finite element

methods, and this might result in a careless use of the answers.

While boundary element methods are relatively more recent and

one is generally more conservative with respect to the results.



It may be very convenient in many applications to combine

boundary elements with finite elements. It would be very useful

to have a knowledge-based system, which would advise the user to

use one method or the other or a combination of both depending

on the kind of problem faced.

1.2.3 Problems to be Examined using Boundary Element
Techniques

Many kinds of problems can be solved using boundary element

methods. I am going to concentrate on two-dimensional problems.

The extension to three-dimensional problems can be made easily

once the procedure is established for two dimensions. Changes

in computer codes are easier if appropriate languages have been

used (the change to three dimensions is easier in the "C"

language than in FORTRAN).

The main emphasis of programming is going to be on

potential problems. The applications of Poisson's equation are

numerous, and most of them are potential problems. Heat

transfer, fluid problems, electrostatics, torsion of constant

cross-section members and magnetostatics are just a few

examples. A more complete listing is shown in Table 1.2 [14].

Elasticity problems and time-dependent problems are also

applications to be considered. Recent advances in time

dependant problems using boundary elements, make these problems

more attractive to solve using boundary elements [11,12,15].



Natural boundary condition: k n + h(u - u )
an

Primary Material Source
variable constant variable Secondary variables

au au
Field of application u k Q q,

I. Heat transfer

2. Irrotational flow
of an ideal fluid

3. Ground-water
flow

4. Torsion of
constant cross-
section members

5. Electrostatics

6. Magnetostatics

7. Transverse
deflection of
elastic
membranes

Temperature T

Stream
function

Velocity
potential

Piezometric
head 9

Conductivity k

Density p

Density p

Permeability K

Stress function 9 kG - shear modulus

G - shear modulus

Heat source Q

Mass production
a (normally zero)

Mass production
a (normally zero)

Recharge Q
(or pumping, - Q)

Q - 20,

0 - angle of
twist per
unit length

Scalar Dielectric Charge
potential - constant z density p

Magnetic Permeability L Charge
potential , density p

Transverse k - T,
deflection u T - tension in

membrane

Transversely
distributed
load

Heat flow q (comes
from conduction
k (aT/an) and convection
h(T - T)1]
velocities:
a*
a-ax
ay

a ao
ax dy

Seepage q
a9

q" Kn

velocities:

u- -K-0
ax

v - -K-
ay

ax -

x,, zy are shear
stresses

Displacement flux
density D,

Magnetic flux
density B,

Normal force q

TABLE 1.2 Examples of the Poisson equation.

- q; essential boundary condition: u - 4
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1.3 COMPUTER APPLICATIONS

1.3.1 Evolution of Computer-Based Analysis

The practical use of discrete element analysis is based on

matrix algebra and the use of the computer; because it is only

in matrix form that the complete solution process can be

expressed in a compact and elegant manner, and because it is

only with the use of the computer that solutions to large

problems can be handled practically, accurately, and quickly.

Indeed, the rapid progress in the development of discrete

element methods is owed to high-speed automatic digital

computers which have also made the most rapid advancements

during the last quarter of the century. Due to these

advancements, the direct numerical analysis approach to

engineering design is now adopted on a routine basis. Humans

are getting very used to the idea of their computer friend doing

very large and tedious computations for them. Huge systems of

equations are solved in record time. Thus, computers are a

necessity in each engineering design or research problem. But

with human minds relying more and more on the computer, larger

problems are handled every day by these artificial minds. Thus,

this leads to huge data files that are not easy to prepare.

Making a mistake in one of these files is very easy, and very

difficult to detect. Furthermore, the computer outputs are huge

lists of numbers that are not practical to look at. This is why

the need for pre- and post-processing capabilities arised. The

pre-processor's task is to help the user in creating his

problem, and especially the discretization, while the post-



processor will present the results in a more user-friendly way.

But the inexperienced user can have problems in choosing the

correct discretization, and in interpreting the results of the

analysis. The development of a "knowledge-based" accuracy

advisor is underway to perform these tasks. It will give advice

about the mesh used, and help in interpreting the results. It

can be done independently of the pre-and post-processors, or be

included within them.

1.3.2 Pre- and Post-Processing Capabilities

The main function of the pre- and post-processor is the

intelligent handling of data. Most big computer codes, at

present, have very powerful capabilities but they require an

extensive numerical input, and print out huge quanties of

numerical results. The user is very susceptible to making

mistakes in these long input files and spends too much time in

creating these big input files. Furthermore, it might be

difficult to use the enormous lists of results that the code

provides. This is where the pre- and post-processors come into

play.

The pre-processor creates the geometry and discretization

of the problem. It also allows the user to impose boundary

conditions, edit his problem, and obtain a plot or an output of

the discretization. The post-processor displays the results by

either printing them or plotting them. More options are also

available and will be discussed in Chapter 3.

The strong point of the pre- and post-processors is their

user and programmer friendly environment. To achieve this, the



main innovations with respect to other systems are:

o menu-driven processors;

o graphics at each step of the problem discretization and

of the results analysis; and

o a powerful editor that allows the user to correct

mistakes in the discretization, or to create a new

discretization without many efforts.

The menu-driven option is done in such a way that the user

does not need to refer to any manual to be able to operate the

system. Both pre- and post-processors are written in the "C"

language. They will be discussed in detail in Chapter 3, along

with some examples to show their capabilities.

Some intelligence is needed in the pre-processor. A

"knowledge-based" pre-processor will give the user good advice

about the discretization of the problem, the assumption of

material properties, and the boundary conditions used.

At the post-processor stage, some previous knowledge about

similar problems, or some intelligence about the method used,

will allow the post-processor to look at the consistency of the

answers, and to advise the user if he should refine the mesh or

not.

At a more advanced stage of programming, the system will

learn from the results of each new run. This will be discussed

in Chapter 4.



2. GENERAL OVERVIEW OF BOUNDARY ELEMENT METHODS

2.1 BASIC CONCEPTS

2.1.1 Adjoint Operators

Assume an equation can be represented by an operator L such

that:

L(u) = b in 4

where L is an operator which, when applied to the function u,

produces another function b. Q is the spatial domain

represented by coordinates xi (i=1,2,3). The concept of an

adjoint operator can be introduced using the Lagrange's

identity:

vL(u) - uL*(v) d P(u,v)
dx

where L* is defined as the adjoint of L; P is referred to as the

"bilinear concomitant". If L(u) contains derivatives of u of

order n, then P is linear in the derivatives of u,v of order up

to n-1. u and v are two artibrary functions. Given L one can

determine L* and P. To find them one multiplies L(u) by v, and

integrates them by parts until all the derivatives of u are

transferred over to derivatives of v. This is equivalent to

transforming the integral:

x

2 vL(u) dx to the following expression:
1

x x

j 2 uL (v) dx + IP(u,v)1 2
x x1



Lagrange's identity follows from there, and the relation between

L * P and L is easily seen. The inner product of two vectors a

and b can be written as:

<a,b> = ab d

If L* = L, then L is said to be self-adjoint. A self-adjoint

positive definite operator is defined as:

(<L(u), u>) 0 for u O

(<L(u), u>) = 0 for u = 0

where <L(u),u> is the inner product of L(u) with u.

2.1.2 Green's Formula

Considering the homogeneous form of the original problem:

L(u) = 0 in - ,

it can be written as:

<L(u),v> = <u,L*(v)>

+ r [G*(v)S(u) - G(u)S*(v)] d

This is Green's formula; is the exterior surface, and S and G

are differential operators due to the integration by parts. The

set G(u) represents essential boundary conditions, and S(u)

represents the natural boundary conditions. Green's formula is

equivalent to requiring:

P(u,v) = [G*(v)S(u) - G(u)S*(v)]

in Lagrange's identity.



In order for the solution to be unique the essential

boundary conditions should be satisfied. If the operator L is

self-adjoint, then G = G* and S = S*.

For self adjoint operators we can define the boundary

conditions as follows:

G(u) = a on rl would be the essential b.c. and S(u) = f on

r2 would be the natural b.c. where rl + r2 = r. In potential

problems rl would correspond to prescribed potentials, and r2 to

prescribed fluxes. In elasticity problems, rl would correspond

to prescribed displacements and r2 to prescribed forces.

2.1.3 Variational Formulation

Rewriting Green's formula as:

<L(u), v> = <u,L*(v)> + [F*(v)G(u) - F(u)G*(v)] dr
r

let's consider the problem:

L(u) + b = 0 in r

with boundary conditions:

F(u) = f on rl: Essential b.c.

G(u) = g on P2: Natural b.c.

If the operator L is self adjoint, the inner product <L(u),v>

can be written after the first integration phase (i.e., when

order of derivatives of u are equal to order of derivatives of

v) as:

<L(u),v> = f F(V) G(u) dr + f D(v)D(u) dQ



To interpret the equation as a stationary requirement for a

functional, we define v as the variation of u, which gives

v = Au

Thus the formal equation becomes:

<L(u),Au> = ' F(Su)G(u) dr

+ <D(u), D(6u)>

Next a functional H is defined such that:

SH(u) = D(v) D(u), i.e.,

1
<H(u) > = 1 <D(u) - D(u)>

2

Again, this is only possible because the operator L was assumed

to be self-adjoint.

Rewriting the equation gives:

<L(u) + b, 6u> - f F(6u) G(u) dr = 6 <H(u) + bu>

Requiring F(6u) = 0 on rl, and the natural boundary condition:

G(u) - = 0 on F2 to be satisfied, as well as the original

problem: L(u) + b = 0 in Q, is equivalent to requiring the

functional Il to be stationary. Where Il is given by:

<L(u) + b, Su> - f F(6u){G(u)-g} dr

r2

= 6{f[H(u) + bu] dQ + f F(u)q drI

r2

= 6({<H(u) + bu> + <F(u), g> r2}

= 611 .



Requiring Il to be stationary is equivalent to 611 = 0.

This approach is equivalent to solving the following problem:

L(u) + b = 0 in a

G(u) = on f 2

F(6u) = 0 on rl

A more general approach which is followed in the boundary

element method and mixed variational formulations is to require

the essential boundary conditions on rl to be satisfied, as well

as the natural boundary conditions on r2. This approach does

not require F(6u) to be constrained, but only F(u) and G(u) to

be constrained on rl and r2 respectively. This gives:

<L(u) + b, du> + f [F(u) -f] G(6u) dr
rl

- f F(6u)[G(u) -g] dr
r2

= 6{f [H(u) + bu] dg + f F(u)g dr + f [F(u)-f] G(u) dri
S r2  rl

= 612

where 12 is the quantity between brackets. In this case,

requiring 612 = 0 for arbitrary 6u (i.e., 12 is stationary) is

equivalent to the complete set of conditions:

L(u) + b = 0 in Q

F(u) = f on r1

G(u) = on r2



This approach satisfies both essential and natural boundary

conditions, and leads to the establishment of the general

weighted residual form. The difference is that while the above

approach is only valid for self-adjoint operators, the weighted

residual technique allows the solution of any boundary element

type statement.

2.2 GENERAL WEIGHTED RESIDUAL SCHEMES

2.2.1 Approximate Solutions

Most engineerng problems which are expressed in a

differential form can only be solved in an approximate manner

due to their complexity. The exact solution is usually

impossible to find, but it can be approximated by a set of

functions #k(x), such that:

n
u = Z ak k

k=l

where ak are undetermined parameters and 4k are linearly

independent functions taken from a complete sequence of

functions such as: cl(x), 2 (x), ... n(x); where x represents

the spatial coordinates in the domain under consideration.

These functions satisfy boundary and continuity conditions.

Considering the problem:

L(u) + b = 0 in n

F(u) = f on rl

A

G(u) = a on f2
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The introduction of the approximate solution is going to give

rise to some errors, which can be represented by error functions

called residuals. The function error is:

eI = L(u) + b

and the boundary conditions residual functions are:

el = F(u) - f

E2 = G(u) - g

These errors are zero for the exact solution but not for the

approximate one.

2.2.2 Method of Weighted Residuals

In this method the error ci or residual is forced to zero

in the average sense, by setting weighted integrals of the

residual equal to zero, i.e.:

f c wi dx = 0 i = 1,2,... n

where wi is a set of weighting functions, which are part of a

linearly independent, complete set. The solution will converge

towards the exact solution as the number of terms used

increases. The weighted residual is:

W.R. = j sI wdr + f l w dr + f E2 w2 dr
Q r 2 -

We want to achieve W.R. = 0.

If the order of the approximation function u is n, then one

should apply the above equations n times in order to determine

the n parameters of the approximating function.

The key issue is the choice of the weighting functions.

Let us first review several well-known approximate techniques:



(a) The collocation method: Instead of trying to satisfy the

differential equation in an average form, we try to satisfy

it at only a series of chosen points. Considering again

the problem: few i dx = 0 i = 1,2...n; the collocation

method assumes wi = Ai which gives feAi dx = 0 i = 1,2...n;

where Ai A A(xi) which is a Dirac function such that A(xi)

= 0 if x * x i and

x.+c
fl A(x i ) dx = 1, c + 0

x.-c
1

(b) The method of sub-regions: It is similar to the

collocation method, but instead of requiring the residual

to be zero at certain chosen points, we require it to be

zero over different regions.

Thus we obtain:

SdQ = 0 for different regions Qi i = 1, 2,... n.
1

(c) The method of moments: It consists of setting wi = x i  i =

0,1,2,... . i.e., the weighting functions are taken from

the series l,x,x2 ,x3,... for a one-dimensional problem. In

this way successive higher moments of the residual are

forced to be zero.

At this point let us recall that we are trying to find the

different coefficients a such that:

n
U = E ak k

k=l
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The methods of weighted residuals requires solving the

following system of simultaneous equations:

a = b

to find the vector of coefficients a. But all three

weighted residual methods mentioned until now give an

unsymmetric matrix a, i.e. aij # aji. Let us examine the

method of least squares that lead to a symmetric matrix a.

(d) Method of least squares: It consists of weighting the

residual function with its derivative with respect to each

of the n different a's parameters. Thus, let:

f dQ = I

Then, minimize I with respect to each of the n different

parameters:

- O j = 1,2,... n
Sa.

3

which gives:

6i dm = 0

J

This means that we are setting:

j 6aJ



But for linear problems, we can write:

E L ( J

thus ai j = f L(4i) L(pj) dQ = aji and the a matrix will be

symmetric.

(e) Method of Galerkin: This is the most popular method used.

The weighting functions are the same as the trial

functions, i.e. wj = j for j = 1,2, ...n. This gives:

aij = i L( j) * aji,

But, through manipulations, the a matrix can be turned into

a symmetric matrix, using variational formulation.

2.2.3 The Inverse Statement

Let us look at the expression for W.R. (developed in

Section 2.2.2), and to the functional 12 (developed in Section

2.1.3) whose stationary requirement is equivalent to the same

problem for which the W.R. is written. The key issue is to

choose the weighting functions, using the result obtained with

the variational approach. Comparing the expressions for W.R.

and 12, one notices that:

w 6u

wl G(w)

w2 -F(w)

With this choice, the weighted residual is identical to the

stationary requirement. Replacing w1 and w 2 by G(w) and -F(w)

the fundamental form of the problem is obtained:



f [L(u)+bl wdQ + f [F(u)-f] - G(w) dr
n r1

+ f (G(u) -g)[-F(w)] dr = 0

r2

To obtain the variational principle, one uses w = 6u. The above

equation satisfies the differential equation and both essential

and natural boundary conditions. One can generate alternate

forms by integrating wL(u) by parts. In the conventional finite

element method, one integrates until the order of differention

for u and w is balanced, i.e., equalized. By doing this we

obtain the balanced form, which is:

f (D(u) - D(w) + bw) dr

+ f {[F(u) - f] G(w) + F(w) G(u)} Sr
rl

+ f g F(w) dr = 0
r2

This is the form used in finite element analysis. Again, for

the variational formulation, w is replaced by 6u.

In the boundary element approach, the fundamental form is

transformed to a form where differentiation of u in the

interior, Q, is eliminated. This is the inverted form. It can

be obtained directly from the fundamental form, or it can be

obtained by integrating by parts the balanced form until there

is no more derivatives of u. The inverted form is found to be:
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J [uL(w) + bw] dQ +

f [F(w) - G(u) - f G(w)] dr
rl

f [E(w) - F(u) G(w)] dr = 0

The advantage of the balanced form (F.E.M.) is that the order of

the derivatives in u and w is lower than in the inverted form.

But, the superiority of the inverted form lies in the choice of

w. Suppose one uses, as weighting functions, solutions of the

homogeneous equations:

L(w) = 0

Then, the interior integral involving u vanishes and one has

only to work with expansion for u on the boundary. Interior

node points are not required. This shows very clearly the

advantage of the boundary element method. It also shows that in

some instances it would be simpler to use the finite element

method. It would be very useful to define a class of problems

to be used by each method. The inverted form shown in this

section is the basis of the boundary element method.

2.3 POTENTIAL PROBLEMS

2.3.1 General Overview

Many engineering problems such as seepage, heat conduction,

electrical problems, etc. are governed by a Laplace or Poisson

equation of the type: V2 u = b .



In most two-dimensional potential problems, two quantities

are of interest: the potential, u, and the potential derivative,

q. In heat flow problems, u and q can be taken as heat flow per

unit volume and flux respectively, or u could represent

temperature while q would be the temperature gradient. In fluid

flows u could be specified as either velocity potential: p, or

stream function: i; in which cases q would correspond to normal

flow and stream function derivative respectively.

To introduce potential problems a simple two-dimensional

heat flow is considered. A domain , R, with a surface, r, is

subjected to an input f which could be a positive heat flow.

Let u be the potential on r, and qx and qy the fluxes in the x

and y direction respectively as shown in Fig. 2.1. The fluxes:

qx and qy are related to the potential u by the Fickian law:

6u du
qx = - kxx 6x kxy

6u 6u
qy = - kx 6x kyy

These two equations are equivalent to stress-strain

relationships for solids. The problem shown in Fig. 2.1 is

governed by the following equation:

6u =f q x 6qy
6t 6x 6y

This equation is similar to the force equilibrium relations for

two-dimensional elasticity.



In steady state problems, 6u/6t = 0. The input f can be

modelled as a combination of a constant term and a function of

U.

Assume f = Q -alu, which could be a representation of a

heat quantity. Laplace's equation is obtained by setting:

(i) kxx = kyy = 1

(ii) kyx kxy = 0

(iii) al = 0

(iv) Q = 0

2 2
Introducing the operator V2  + , and considering the

2 2
dx Sy

steady state problem, Laplace's equation reduces to:

V2u = 0 .

Poisson's equation satisfies conditions (i), (ii) and (iii)

above, but Q * 0. Thus, Poisson's equation can be written as:

V2 u = Q.

Finally, Holme's equation only satisfies conditions (i) and

(ii) with Q 0 and al * 0, thus reducing to:

V2 u = Q - alu.

Laplace's, Poisson's and Holmes' equations represent the main

type of potential problems.

In general for orthotropic materials: kxy = ky, = 0 and

kyy * kxx; while kxx = kyy for isotropic media.
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The normal flux, qn, is usually the quantity of interest

rather than qx and qy. They are related through a simple

geometric relation:

qn = anx qx + any qy ,

where anx = cos(n,x) and any = cos(n,y), n being the outward

normal to the surface r. For simplicity, qn is generally

denoted by q (dropping the subscript n), and this convention

will be adopted for this section. Thus, q = Su/6n. Emphasis in

this thesis was given to the solution of Poisson's equation:

V2 u = b in a domain Q ,

with boundary conditions:

u - u = 0 on rl ,

6u
6n q = 0 on r2 .

This is shown in Fig. 2.2. As discussed in Section 2.2 the

different error's residuals can be written as:

el= v 2 u - b in Q

F(u) -u = E1 = U-u on rl

- 6u
G(u) - q = 2 = 6n q on r2q qn



Using weighted residual methods, the fundamental form of

the problem can be written:

2 (Sw
f( 2u-b) wda + j(u-) (w-) dr
n 1

6 u -
+ f (-- -q) (-w) dr = 0

r 26n

Integration by parts twice leads to the inverse statement, as

shown below:

2 Su - wf (uV w-bw) dr + r (w -n u -- ) dr
51 1

- w

+ f (wq-u -- W) dr = 0
2

This is the starting point of the boundary element method for

potential problems.

2.3.2 The direct boundary element method

The equations for the direct boundary element formulation

are generated by using Green's formula, or the method of

weighted residuals, or an equivalent procedure such as Betti's

law for solids. The variables are the "essential" and "natural"

boundary quantities such as the potential and normal flux in

potential problems, or the displacements associated with surface

tractions, rotations along with moments, and displacements

related to transverse shear in elasticity problems.



The starting idea is to find a weighting function w, that

satisfies V2w = 0. This would leave only one domain integral in

terms of b in the inverse statement developed in Section 2.3.1.

The weighting function satisfying Laplace's equation within Q is

called the fundamental solution, and is denoted by u*. It is

required to have continuous first derivatives within Q.

Assuming a concentrated change is acting at point 'i', the

Laplace's equation reduces to:

V 2u* + 6i = 0

where 6i is a Dirac delta function function.

The point of application of the concentrated charge is

called the "source" and involves a singularity in the Dirac

delta function. The fundamental solution is a function only of

the distance between the source point and the observation point

under consideration. This distance is denoted by r, and defined

as:

r Irl = Ix-xil as shown in Fig. 2.3.

For an isotropic medium the fundamental solution of the

Laplace's equation is:

* 1 1
u n(-) in a two-dimensional space, and2 r r

u in a three-dimensional space.
4r

It can be shown that the fundamental solution satisfies the

Laplace's equation for all points within the domain Q.



53

Using the fact that V2u* + 6i = 0, we can write:

f u(V 2 u * + 6i ) dQ = 0

But f u(V 2 u* + 6i) dQ = f uV2 u* dQ + u i .

Qt Q

Thus, combining both equations, we obtain:

f u(V 2 u*) dq = -u i

Replacing for this in the inverse statement obtained in Section

2.3.1 and making use of the fact that:

6u/6n = q

w =u

6w/6n = q*,

the following equation is obtained:

u i + f bu* dQ - f (u* q - uq*) dr

FP1

- f (u* q - uq*) dr = 0
r2

The source points can be placed anywhere, inside or outside the

domain 2, or on the surface r. It is more convenient to have it

placed on the boundary itself directly. Bringing the problem on

the boundary, one first considers the source as a sphere in the

three-dimensional space, as shown in Fig. 2.4. Then the

behavior of the different components of the equation above,

involving the fundamental solution, are studied as the sphere's

radius: e approaches zero. This will be shown for



dimensional problems, using an arc of circle of radius e, around

the source point 'i', as shown in Fig. 2.5.

For two-dimensional problems,

. 1
u Rn r

2 A'

and,

Su* -1
6r 2r

Thus,

f u q* =im -10u q [u( )] [(F+a) C]

S(1+ - )u. for - < a < i2 7r i

and,

Su* q dr = 0.

Thus the new coefficient of ui in the modified inverse statement

changes from:

1 to: 1 - (1 + =- ( a)2 2 7

For a smooth boundary, a = 0, and the coefficient of ui reduces

to 1/2.

Assuming that u = u on rl and that q = q on r2, and making

use of the fact that: r = rl + r2, then the general equation for

the direct boundary element method can be written as:
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cu. + r uq* dr - f qu* dr + r bu* dQ = 0

where ci = 1 for a point inside Q,

ci = 0 for a point outside Q,

ci = (1- ) for a point on a discontinuous boundary, as

shown in Fig. 2.5, and

i = for a smooth boundary point.

The next step is to introduce an expansion for u and q on

the boundary in terms of parameters. For N parameters a need

for N equations arises, and, thus, N source points should be

used. The boundray is discretized into straight or curved

elements, which can have different expansions. This introduces

a great flexibility, since there is no inter-element

constraints, or expansion constraints on u and q. Constant,

linear, quadratic or higher order expansion can be used. The

position of the nodal points on the elements is arbitrary. Both

continuous and discontinuous elements are permitted, which would

have nodes at the edge or at the interior respectively. Less

inter-element constraints exist for boundary element than for

finite element methods.

The direct formulation leads to a very well structured

matrix representation of the problem, to use in computer codes.

This will be discussed in the next section.



2.3.3 Matrix formulation of the direct boundary element method

Considering the general equation for a problem of the

Laplace's type (b=O), and specializing it for points on the

boundary, the following is obtained:

( 1 a) ui + j uq* dr- f qu* dr = 0

F r

Assume that the boundary is discretized into N elements, and

that it is two-dimensional. The points where the unknown values

are calculated are called the nodes. Depending on the expansion

used for q and u, there can be a different number of nodes per

element. As an example, one, two, or three nodes are required

with constant, linear, or quadratic expansions respectively.

The elements can be continuous or discontinuous. More details

on the different type of elements and expansions, will be given

in Section 3.2, since all of them have been implemented in the

pre-processor facility. In this section, the matrix formulation

for linear elements only is considered. Similar considerations

can be easily applied to constant or quadratic expansions. In

section 3.4.2 a general matrix formulation scheme is indicated

that would facilitate the use of different expansions for the

same problem.

Figures 2.6(a) and 2.6(b) show discontinuous and continuous

elements respectively, with linear expansions.

The "discontinuous" elements have 2 nodes each that are

generally placed at the quarter points from each end. In the

"continuous" case, the nodes are placed at the intersection

between elements.



(a) Linear "discontinuous" elements.

surface r
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FIGURE 2. 6 (b) Linear "continuous" elements.

FIGURE 2.6 Comparison of linear expansion, "dincontinuous" and
"continuous" elements.

FIGURE 2.6
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Let u, u2 and q1, q2 be the values of the potential and the

flux at the nodes. The formulation that is going to follow is

for continuous elements. This can be easily extended to

discontinuous ones. Let x be the distance along the rod, and n

an isoparametric parameter such as:

x The linear interpolation functions can be written

in terms of n and are given by:

S = I (1-n)

22= 2 (i+n)

The values of u and q can now be defined in terms of the nodal

values and the interpolations functions:

u = cl ul + 2u2

q = l 91q + 292

The general direct boundary element formulation can be written

for the N elements as:

1 N
1 (1-)ui + E f uq* dr

j=i r

N
- f qu* dr = 0,

j=1 r.

where 'i' is the point of application of the fictitious

concentrated charge, and 'j' is the segment under consideration.

Replacing for the expansion of u and q, one gets:
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f u q* dr = [ i 1 q* dr] ul + [ f 4 q* dr] U2
rj rj rj 2

1 2
h.. u + h.. u13 i 3  2

Similarly,

Sdr 1  2
qu dr = gij q1 ij q2r.

where

k u drgij F k

k k,
The coefficients h. and .. refer to the point 'i'

i3 -13

considered, and node 'k' on an element 'j'.

Assembling properly all the different contributions from

adjoining elements, the equation for node 'i' can be written

as:

N N1 N A N1 (1-) u i  + E H. .u. = ij qj,

j= 13 3 j=1

where the Hij and Gij terms are equal to the h2 term of element

'j-l' plus the hI term of element 'j'. This can be written as:

N N
E H u= G q

j=1 ij j j=1 ij j

where



H.. = H.. for i * j,

A1

H. = .. + - (1--) for i = j.
1i j 2 1I

In matrix form, this is equivalent to:

H U = G Q,

which represents a NxN system of equations, in N unknowns.

Part of the u and q values are prescribed and the other

part are unknown. Taking all the known values of u to the right

hand side, and all the unknown values of q to the left hand

side, one ends up with a modified system of equations:

A X = B,

where X is a column vector containing all the unknown values of

u and q, A is a NxN matrix, and B is a column vector resulting

from the multiplication of a NxN matrix of coefficients with a

column vector of known values of u and and q.

Next, the values of u and q on the whole boundary can be

determined, from the solution of this system of equations.

Similar considerations can be applied to other expansions such

as constant or quadratic.

2.3.4 Special comments

(a) Internal points

So far, interest was focused on the behavior of the

boundary quantities. If an interest exists in the behavior of u

and q inside the domain, then, internal points can be defined in

Q. As discussed before, the values of u and q at those internal
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points do not enter in the solution process. But, once the

values of u and q are known on the boundary, the values at the

internal points can be easily calculated.

For a point inside 0, c i = 1 in the general equation for

the direct boundary element method, reducing it to:

u + rf uq* dr - fr qu* dr = 0

A A

Using the G and H matrices developed in Section 2.2.3, one

can calculate the value of u at any interior point 'i' using:

N N A

u. = E q. G . - u.H..

S j=1 j=l

Differentiating the next to last equation, one can calculate the

fluxes, at the interior point 'i', as:

* *

(q x)i = f q s dr -f u dr

(q )i = r1 q 6u dr- u dr

(b) Different surfaces

The boundary element method can handle different surfaces.

An exterior surface is generally defined counterclockwise, and

an interior surface defined clockwise. There is no basic

difference in the formulation between a problem with one surface

or different surfaces.
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(c) Material properties

If a body is non-homogeneous it is advisable to divide it

into a series of regions each having the same properties. Then

the different regions can be added together, as long as

equilibrium and continuity conditions are satisfied.

All the cases that have been discussed involved isotropic

materials, but orthotropic properties can also be treated with

minor changes.



3. THE FIDES SYSTEM

3.1 A COMPARISON WITH OTHER SYSTEMS

3.1.1 System Structure

Pre- and post-processing capabilities for discrete element

methods, along with a solver for boundary element potential

problems, form the backbone of the FIDES system. The name FIDES

stands for Friendly Interactive Discrete Element Solver.

The field of software development is moving so quickly that

certain tools that seemed to be new ideas at the time of writing

the system might seem standard usage for people reading this

thesis. But it is interesting to expose them, since they are

the key in developing friendly interactive menu-driven software.

FIDES development began on the VMS operationg system, and

continued on the UNIX operating system. Both versions were

running on VAX 11-780 minicomputers. But with minor changes

(that will be discussed later) those versions can be adapted to

microcomputers or personal computers. In fact, one version of

FIDES was installed on the APOLLO machine with the AEGIS

operating system. The version of FIDES discussed in this thesis

consists roughly of a 9000 lines code mainly written in the "C"

language. The system can be divided into a pre-processor, a

solver, and a post-processor. Since parts of the solver are

written in FORTRAN, one translator is used to convert data from

the data structure form of "C" language to the array form of

FORTRAN, and another one is used to convert back the data from

arrays to data structures. Figure 3.1 shows the complete

configuration of the system.



FIGURE 3.1 FIDES' structure.

Plot



Additional work on converting the solver to the "C"

language and incorporating more element types is planned for the

future. FIDES has been used for teaching of a discrete element

course at MIT in the spring of the academic year 1984-85, and

its improved capabilities will, hopefully, make it even more

useful. The strong point of the system at present time is its

user and programmer friendly environment. This is discussed in

Sections 3.1.3 and 3.1.4.

Addition of a knowledge-based advisor to assist the user in

the discretization of the problem, and in the interpretation of

the results, is planned for the future. This will be discussed

in Chapter 4.

3.1.2 Development Tools

The main development tools for the program are:

the operating system commands;

the graphics facilities;

the different programming languages used; and

the data base management concepts.

The different programming languages with emphasis on the "C"

language will be discussed first, since this really is the key

development tool. Database management concepts are generated by

making intelligent use of the "C" language. And, finally, since

FIDES was developed on three different operating systems, it is

interesting to expose the advantages and disadvantages of each.



3.1.2.1 The "C" programming language

Both the pre-and post-processors are written in the "C"

language, which is a "low-level" general purpose programming

language. It offers many advantages over traditional

programming languages such as FORTRAN. Many programmers have

opted for the use of the "C" language, but care should be taken

in using it. Some programmers have succeeded to make the "C"

language look like FORTRAN, by always storing data in arrays, by

not using data structures or pointers, by choosing

incomprehensible variables' name, and by making the code very

difficult to read and not programmer friendly. The advantages

and disadvantages of the "C" language are discussed next. It is

compared to FORTRAN since most commercially available

engineering codes are written in FORTRAN.

(a) Capabilities offered by "C" as well as FORTRAN

1. Different data types and sizes are available (such as:

char, int, short, long, float, ... ).

2. The available arithmetic, relational and logical

operators make representation of formulas very easy

(such as: +, -, *, /, >, >=, <, <= ).

3. Conditional expressions (such as: if, if... else, ... )

often leads to succinct code.

4. Loops in "C" are similar to FORTRAN loops but more

varied. (The different kind of loops are the "while",

"for", and "do-while" loops). The "while" and "for"

loops share the desirable attribute of testing the

termination condition at the top, rather than at the



bottom. The "do-while" loop, tests at the bottom after

making each pass through the loop body. The "for" loop

is clearly superior when there is a simple initiali-

zation and re-initialization.

5. The GOTO statement exists as well in "C", but it is

seldom used in programming. It was never used in

writing the pre- and post-processors.

6. Both "external" and "internal" variables are present in

"C". "External" variables (in contrast to "internal"

variables) are defined outside any function, and are

thus potentially available to many functions.

7. Subroutines do not exist in "C"; however, functions can

be called as subroutines. Functions have been used

extensively to make the code "transparent". As an

example, the main program is shown in Fig. 3.2. Its

only task is to call the appropriate subroutines.

8. Arrays exist in "C". Their use is not always

recommended. They are not used in the pre- and post-

processors of FIDES, and the data is stored in data-

structures.

9. "C" has the same speed of execution as FORTRAN.

10. "C" and FORTRAN are both compiled as opposed to other

languages, such as LISP, that are interpreted.

(b) Advantages of "C" over FORTRAN

1. The main advantage of "C" over FORTRAN is the existence

of data-structures and pointers.
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/*******************************************************************

* START OF MAIN PROGRAM *

#include <stdio.h>
#include <math.h>
#include <ctype.h>
#include "ndatabase.h"

#define begin
#define end
#define toupper(c)

;}soec)
(islower(c)?((c)-('a'-'A')):(c))

main()
begin /*BEGIN MAIN PROGRAM*/

char command(l0];
extern FILE *master, *prompt;

master=stdin;
prompt=stdout;

n dots=0;
nsegs=0;
n nodes=0;
n elems=0;
n intpts=0;
n surfs=0;

fprintf(prompt,"\n\nYOU ENTERED THE MAIN PROGRAM");

fprintf(prompt,"\n\nCOMMANDS ARE : MESH,
fprintf(prompt,"\n\nENTER YOUR COMMAND :
fscanf(master,"%s",command);

SOLVE, POST, EXIT");
");

while(strncmp(command,"exit",2)&&strncmp(command,"EXIT",2))
begin /*BEGIN WHILE LOOP*/

switch(toupper(command[0]))
begin

case 'M':

mesh_boundary();

break;

case 'S':

/*BEGIN SWITCH*/

/* MESH */

/* SOLVE */

solve_problem();

break;

Listing of main program.FIGURE 3.2



case 'P': /* POST */

post_processor();

break;

default:
fprintf(prompt,"\n\n\nERROR , NO SUCH COMMAND !");
break;

end /*END OF SWITCH*/

fprintf(prompt,"\n\nCOMMANDS ARE : MESH, SOLVE, POST, EXIT");
fprintf(prompt,"\n\nENTER YOUR COMMAND :");
fscanf(master,"%s",command);

end /*END OF WHILE LOOP*/

end /*END OF MAIN PROGRAM*/

/***********************************************************************
* END OF MAIN PROGRAM *
************************************************************************/

FIGURE 3.2 Listing of main program.

(Continued)



The intelligent use of those leads to excellent data-

base management tools, such as linked lists, to be discussed in

Section 3.1.2.2. A structure is a collection of one or more

variables, possibly of different types, grouped together under a

single name for convenient handling [16]. Structures help to

organize complicated data, particularly in large programs,

because they permit a group of related variables to be treated

as a unit instead of as separate entities.

A pointer is a variable that contains the address of

another variable. Pointers are very much used in "C". If they

are used carelessly, they are a marvelous way to create

impossible-to-understand programs [16]. However, with

discipline, they can be used to achieve clarity and simplicity.

As an example, the data structure for a segment representation

is shown in Fig. 3.3. A segment's structure contains short

integers for the segment number and the number of dots in the

segment, double precision real number for the segment's length,

and a single character byte to distinguish between straight,

circular, or polynomial segments. It also contains pointers to

the next segments, and to a list of dots. Thus, this structure

contains very diverse variables that are treated as an entity,

and that are all necessary to define a segment. The list of

dots is part of the linked lists concept to be discussed in

Section 3.1.2.2.

Since only the first 8 letters in a name are considered,

segment has been given the type definition "seg". Suppose we

are interested in a certain segment: seg a. Its number is



/*------------------------------*/
struct segment_struct /* GEOMETRICAL SEGMENT */

I /*------------------------------*/
short number, /* SEGMENT NUMBER

dots; /* NUMBER OF DOTS IN SEGMENT */
double length; /* ORIGINAL LENGTH OF SEGMENT */
char type; /* TYPE OF SEGMENT (S,C,P) */

struct dot list struct *dot list;/* POINTER TO LIST OF DOTS */
struct segment struct *segnext;/* POINTER TO NEXT SEGMENT */

/* ------------------------------ */
}; /* END OF SEGMENT DEFINITION */
/*------------------------------*/

typedef struct segment_struct seg;
seg *seg_head, *seg_tail;
int n segs;

Segment's data structure.FIGURE 3.3



stored in seg a -> number. If we are interested in the type of

the next segment after seg a, then it is found in:

seg a -> seg next -> type. These concepts make the

programmer's life easier, and will be discussed in detail in

Section 3.2.

2. Another important advantage of the "C" language is the

transportability. FIDES' solver is written in FORTRAN.

While transporting the working version of FIDES from

the VMS operating system to the UNIX operating system,

and later on to the AEGIS operating system, the author

had more problems with the FORTRAN part of the code

than the "C" part of the code. Details will be given in

Section 3.1.2.3.

3. "C" can call subroutines written in other languages

very easily. This was one of the reasons to write the

solver in FORTRAN. The author wanted to prove that

pre- and post-processing capabilities in the "C"

language can be added very easily to the large existing

FORTRAN codes. The FORTRAN code does not even need to

be recompiled. The only requirement is that the main

program should be in the "C" language. It will be

similar in structure to the one shown in Fig. 3.2.

The switch statement in "C" is a special multi-way

decision maker that tests whether an expression matches

one of a number of constant values, and branches

accordingly. The break statement causes an immediate

exit from the switch. The switch statement allows a



very good structured programming style. An example is

given in the main program of Fig. 3.2.

5. Another very important advantage of "C" is recursion,

which means that a function may call itself either

directly or indirectly. This can be used to write

"search" subroutines through a tree. Recursive codes

are not faster, but they are more compact and easier to

write and understand [16],

6. "C" is very strong in character and bit manipulation

[17]. Different examples are: the unary operator -

which yields the one's complement of an integer, the

shift operators << and >> that perform left and right

shifts of their left operand by the number of bit

positions given by the right operand, & which is a

bitwise AND, and others such as: E and

7. "C" provides very useful language extensions by means

of a simple macro pre-processor [16]. The # define

capability is the most common of these extensions. It

is shown in Fig. 3.2, where:

# define begin {

calls for a macro substitution of a simple kind: it

replaces the left curly bracket ( by the name begin.

Similarly, the right curly bracket } is replaced by the

name end. The author finds this notation much more

programmer friendly.

The # include statement is also very commonly used. In

Fig. 3.2, the line:



# include < stdio.h>

is replaced by the contents of the file "stdio", which

in this case is the standard input/output library.

8. "C" has excellent debugging tools [17].

9. "C" provides additional operators such as the increment

"++" and decrement "--" operators. These help in

achieving shorter codes.

10. "C" is relatively small and can be described in a small

space and learned quickly.

11. A compiler for "C" can be simple, compact, and easily

written [16].

12. The arguments to functions are passed by copying the

value of the argument and not the address, and it is

impossible for the called function to change the

actual argument in the caller. When it is desired to

achieve "call by address", a pointer may be passed

explicitly and the function may change the object to

which the pointer points.

13. "C" is not a strongly typed language in the sense of

PASCAL.

(c) Disadvantages of the "C" language

1. "C" being a "low-level" language does not have many

high-level mechanisms. "C" does not provide operations

to deal directly with composite objects such as sets,

and lists of arrays considered as a whole. These must

be provided by explicitly-called functions. To remedy

this, several special purpose



libraries have been developed such as the math,

input/output, and type's functions libraries. To be

able to use a library function the library itself

should be included in the code, by using the

statement:

# include <library name>

As an example, the functions getchar and putchar have

been developed to read and write a character at a time.

To use them one should have the following statement in

the code:

# include stdio, on VMS, or

# include <stdio.h>, on UNIX.

2. "C" is not a block structured language, in that

functions may not be defined within other functions.

3. Some of the "C" operators have the wrong precedence.

4. Being a relatively new language, only few commercially

available codes are written in "C".

3.1.2.2 Database management concepts

The efficient use of data-structures can lead to very

structured and easily understood programs. The same

manipulations could be done using arrays, but it is much more

tedious and can be very misleading if somebody wants to make any

additions to the code. Furthermore, as outlined before,

the arrays are restricted to homogeneous data and do not allow

convenient handling of dynamic storage allocation for data

management. The data structures' concept have been introduced

in Section 3.1.2.1.



Let us consider the example of the segment data-structure

shown in Fig. 3.3. It contains an integer that indicates the

number of dots that have been used to define a segment. But

suppose we are interested in knowing which dots are connected to

a particular segment; how do we go about it? Figure 3.4 shows

the dot's data structure. It is noticed that it only contains

an integer for the dot's number, two double precision real

numbers for the dot's coordinates, and a pointer to the next

dot. The data structure for a dot is, therefore, very

simplified and contains no reference to segments. Thus, the

segment cannot be accessed through the dot data structure.

Looking back at Fig. 3.3 one notices a pointer to a dot-list

structure, which is shown in Fig. 3.5. This concept of list of

data structures is one of the key elements used in developing

the pre-and post-processors. It is used in the context of the

segment data structure to point to a list of dots attached to

this segment. The straight line, circular, and polynomial

segments have 2,3 and n dots respectively. These will be

discussed in detail in Section 3.2. The list of dots only

contains a pointer to the dot and another pointer to the next

dot. Thus the dots can be accessed through the segment, and

this makes it very easy to keep track of the connectivity

between dots and segments. Dots and segments are given as an

example in here. The same procedure is used between surfaces,

segments, and internal points. Surfaces have pointers to list

of segments and lists of internal points as shown in the data-

base in Appendix A. Similarly, elements used for discretization



struct dot struct
{
short
double
struct dot

number;
x, y;

struct *dot next;

/* ------------------------------ */
GEOMETRICAL DOT

/*------------------------------*
/* DOT NUMBER
/* ORIGINAL COORDINATES
/* POINTER TO THE NEXT DOT
/*------------------------------*

END OF DOT DEFINITION */
/* ------------------------------ */

typedef
dot
int

struct dot struct dot;
*dot head, *dot tail;
n dots;

co
FIGURE 3.4 Dot data structure.

/* ------------------------------
struct dot list struct /* LIST OF DOTS

S- /* ------------------------------ */
struct dot struct *dot; /* POINTER TO THE DOT */

struct dot_list_struct *next; /* POINTER TO THE NEXT DOT LIST */
/*------------------------------*

1; /* END OF DOT LIST DEFINITION */
/* ------------------------------ /

typedef struct dot list struct dot list;

FIGURE 3.5 Dot-list data structure.



have pointers to lists of nodes. This concept of lists of

structures is not restricted to the discretization of a

geometry, but can be used in design of structures, where truss

bars would point to lists of joints, beams would point to lists

of nodes, frames would point to lists of beams, etc. It can

also be used in material science for materials classification,

and even in business or accounting. The main point is to

differentiate between the pointers in the structure itself that

point to properties, and the pointers in these lists that point

to other structures. Looking back at Fig. 3.5 it is emphasized

that the dot-list structure only contains pointers to other

structures of type dot. Using this artifact, the code is much

easier to write and much more organized. The whole picture is

given in Fig. 3.6. As an example a segment #a is considered

which is attached to two dots: #b and #c. Dots #b and #c can

be accessed directly through the main list of dots by searching

for their number. But if one is at the segment's level, and is

interested to access the different dots connected to the

segment, he can do so by using the dot-list data structure as

shown in Fig. 3.6. Thus to find a dot with number "b", one can

use:

dot b = find dot(b);

where find dot is a function, shown in Fig. 3.7, that takes the

dot's numbers as an argument, and returns a pointer to the dot

if it exists. Supposing we want to access dot #b through

segment #a, then we would use:
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structures.



* START OF find dot FUNCTION *

dot *find dot(i)
int i;

begin

extern int n dots;
extern dot *d
dot *d
int j;

dot b = dot head;
forTj=0; j<n dots;

begin
if (dot b->numbe

ot head;
ot b;

j++)

r == i)
dot b = dot b->dot next;

end
return(0);

return(dot b);

/************************************************************************
* END OF find dot FUNCTION *

Listing of function "find dot".

end

FIGURE 3.7



seg a = find seg(a);

dot b = seg a + dot-list + dot;

the first statement will find the segment which has a number

equal to "a", and the second statement will return for dot b a

pointer to the desired dot-structure. This clearly is superior

when we are not searching for a particular dot, but rather for

the dots attached to a particular segment. These concepts will

be explained in more detail in Section 3.2.

3.1.2.3 Different Operating systems facilities

(a) Systems' Facilities

FIDES' development began on the VMS operating system using

a VAX 11-780 computer. The supported graphics package on the

system was PENPLOT2. The graphics are displayed on TEKTRONIX

4025 terminals. Editing is very difficult on these terminals,

since only line editing is provided. Most of the editing was

done on VT 100 terminals where screen editing is possible. Due

to several reasons, FIDES' development continued on the UNIX

operating system using VAX 11-750 computers. The graphics used

were a modified version of PENPLOT 2. Three main types of

terminals were available: Digital's VT 100, VT 125, and PR0350

terminals. Screen editing is possible on all three, but only

the VT 125 and the PR0350 support graphics. When used on the

PR0350, FIDES shows color graphics. As an example, in plotting

the mesh discretization, the geometry plot is shown in red, the

discretization in green, and the internal points in blue. VT 125

terminals do not support colored graphics, but have different



shades of gray. A very powerful editor (EMACS) was provided,

which offers a wider range of options than the VMS's EDT editor.

Digital VAX station 100 terminals have been installed recently

with UNIX operating systems. They support multi-windowing

capabilities with high resolution graphics, contributing to a

friendly environment. In the spring of the academic year

1984-85, FIDES was used for teaching of a discrete element

course at MIT. For this purpose, it was installed on APOLLO

computers, running on the AEGIS operating system. This was the

ultimate as far as the user and programmer friendly environment

is concerned. APOLLO supports a powerful window manager that

allows multiple windowing, and provides a nice editing

capability. Editing a file on APOLLO is as easy as writing on a

very large paper with a pencil and an eraser. The AEGIS

operating system offers very powerful programming development

tools, such as multi-processing that allows the user to run

several jobs in the foreground, virtual memory addressing, and

efficient networking. The APOLLO's graphics are based on a

primitive graphics package enhanced with a 2-D transformation

module. The advantage of APOLLO is that it is intended to be a

full power work station, in contrast to VAX 11-780 and VAX

11-750 which are intended to be time-sharing facilities.

(b) Transportability Issues

The "C" language's compiler on VMS is more flexible than on

other operating systems. This is good for the programmer, but

bad for transportability issues. While transporting FIDES from

VMS to UNIX, substantial changes had to be made. The "C"



version of UNIX is more strict than the VMS one. For example,

attach dot is a function that returns a pointer to a data

structure of type dot. On VMS it is enough to declare it as:

attach dot(c). On UNIX, since it is returning a pointer to a

dot data structure it should be declared as:

dot * attach dot().

In FIDES' code many simplifications have been made, and dot

refers to a data structure due to the statement in the database

(shown in Appendix A) that reads:

typedef struct dot struct dot;

This sort of statement among others made changes much easier.

Another difference was in the include statement. On the

VMS system the declarations:

# include stdio

# include "ndatabase.dat"

include the standard input/output library, and the main database

respectively, in the desired file. On UNIX these declarations

are changed to:

# include <stdio.h>

# include "ndatabase.h"

Although the changes are relatively simple, the debugging

of the code to find them and correct them is time consuminq.

Using the "lint" program verifier on VMS would have made those



changes much easier, since type errors are outlined. This

deficiency was realized, and "lint" used consistently

afterwards. Many other differences existed, but won't be

discussed in detail since it is not the object of this thesis.

The transportability of the "C" code from UNIX to AEGIS did not

present any problems, because of the strict UNIX compiler, and

of the consistent use of the "lint" program verifier.

As far as transportability is concerned, the FORTRAN part

of the code did not require major changes from VMS to UNIX.

But, upon switching from UNIX to AEGIS, many problems were

encountered.

In general it is believed that "C", used along with the

"lint" program verifier, gives less trouble than FORTRAN as far

as transportability is concerned.

(c) Conclusions

The APOLLO computer offers a nicer environment than time

sharing facilties. The use of the UNIX operating system is

suggested, along with the use of the "C" language. It is

recommended to debug the "C" code with the "lint" program

verifier, to achieve easily transportable programs. It is

believed that the combination of the "C" language, along with

the "lint" program verifier, the UNIX operating system, and the

APOLLO computers, forms an excellent user and programmer

friendly environment. Specific attention is going to be given

to these environments in Sections 3.1.3 and 3.1.4.



3.1.3 The user-friendly environment

User-friendly has become a key word in the world of

software development nowadays. To achieve user-friendliness,

one needs:

* Good graphics;

* A menu-driven system; and

o An interactive editor.

FIDES has all these features that will be discussed in

detail in Sections 3.2 and 3.3 of this chapter relative to the

pre- and post-processors.

The pre-processor's graphics allow the user to examine the

geometry and the discretization of the problem, as it is being

created. The post-processor's graphics allow the user to plot

the results in the form of X-Y graphs, or to plot them directly

on the discretization. He can, for example, plot normal fluxes

on the boundary, or potential contour lines inside the domain.

The user is given many options as far as choosing the different

parts to be plotted. The plots can be redirected to other

terminal screens on the VAX 11-750 computer, or to special files

on APOLLO computers. A stack of plots can be kept on the

APOLLO, showing the different stages in solving the problem.

Color graphics can be obtained on PR0350 terminals connected to

VAX 11-750 computers. More details will be given about the

graphics capabilities, as well as examples of the different

plots, in Sections 3.2 and 3.3 relative to the pre-and

post-processors.



FIDES has been developed as a menu-driven system, so that

the user does not need to refer to any manual to be able to run

the program. This has been achieved through extensive testing

of the program at the development stage by fellow graduate

students. Any question or comment about the procedure to be

used in running FIDES, gave rise to modifications in the

existing menu. At this point it is claimed that the user does

not need to read a user's manual, or go through a tutorial

session to be able to use the program. Different menus were

implemented for the VAX and APOLLO computers. A typical menu is

the one for the discretization stage, that allows the user to

create nodes and internal points, impose boundary conditions,

display the discretization as printed output or in graphics

form, edit what has been created, or exit. The menu used on the

VAX computers is shown in Fig. 3.8. On the APOLLO, already

developed menu facilities were used to lead the menu shown in

Fig. 3.9.

Finally, the interactive editor allows the user to correct

any mistake that he made at most of the development stages. It

also allows him to create a problem, solve it, look at the

results, and go back to the editor to change the discretization

and run the problem again. All of this is done without exiting

the system. This way one can solve many problems in a very

short time.

These different features lead to a system that combines

advanced display and editing capabilities with simplicity of
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execution. This will be clearer by examining the examples of

Sections 3.2 and 3.3.

3.1.4 The programmer-friendly environment

The term programmer-friendly environment refers tc two main

desirable properties:

(i) Transparency of the code which allows a new programmer

to be able to read it and understand it easily and

quickly;

(ii) possibility of expansion which makes any additions or

changes straightforward.

The "C" language contributes in making the FIDES system

very easy to read and understand. Moreover, FIDES is written in

a very modular form that allows changes to be made very easily,

and very quickly. It also allows additions to be made as well.

One can expand on the already existing modules without knowing

what they contain. For expansion one only needs to take a look

at the main data-structure shown in Appendix A. This is the

strong point of the system, since all the useful information is

stored in one place accessible to all users.

The code itself is very well documented. The programmer

can know very quickly what the program is meant to do at any

stage. This makes it very easy to find any mistakes, and also

allows any additions to be made without any problem. This is

the only way that big codes can be developed without confusion.

The beginning and end of all "for" and "while" loops, "if" and

"if-else" statements, "switch" statements, ... , are indicated.



Futhermore, spaces are left in between each important section of

a function, and different titles are given to each of these

sections. This will, hopefully, facilitate future work to be

done in modifying and expanding FIDES.

3.2 PRE-PROCESSING PHASE

3.2.1 Summary of the Different Capabilities

At the main level of FIDES, the user has four different

alternatives:

* Enter the pre-processor to create the geometry,

discretization, and impose boundary conditions; or

o run the solver if the problem is already- made; or

o access the post-processor to interpret the results; or

o exit FIDES.

These are shown in Fig. 3.1, and the APOLLO's menu for

these options is shown in Fig. 3.10.

After entering the pre-processor the following choices are

possible:

* create the geometry; or

o discretize the problem (imposing boundary conditions is

included in the discretization) for boundary element

methods; or

o mesh the problem for finite element methods; or

o exit the pre-processor.
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These options are shown in Fig. 3.11. The option to call a

finite element mesh generator returns, at the present stage, a

message informing the user that this is not developed yet. But

it is included in FIDES to allow for an easier expansion in the

future. As FIDES' name indicates, the program is thought of as

a discrete element system, and not only as a boundary element

system. Future expansion is planned to incorporate a finite

element mesh generator, as well as a knowledge-based advisor for

discretization. This advisor would, at the pre-processor level,

recommend the best mesh to be used, or give a set of rules to

guide in the creation of a good mesh, or at a more advanced

stage of programming remesh the whole problem if the answers are

not satisfactory. Some very simple accuracy advisors have

already been designed, and will be discussed in Chapter 4. The

pre-processor is completely menu-driven, with powerful editing

and graphics display capabilities. It is claimed that no manual

or tutorial what-so-ever is needed to run the pre-processor.

The only point that is worth clarifying is the terminology used

for the definition of the geometry and discretization, since

there isn't one adopted convention for these. The geometrical

boundary is defined by "segments" that can be straight lines,

circles, or polynomials. "Dots" are points used to indicate the

beginning and end of each "segment". Both "dots" and "segments"

are created by the pre-processor for the geometry definition,

and are shown in Fig. 3.12(a). The geometrical "segments" are

discretized into boundary "elements". Then, depending on the

type of expansion used for the "element", different number of
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"nodes" will be created, at which the boundary conditions will

be specified. "Nodes" and "elements" used for discretization

are shown in Fig. 3.12(b). The two main functions of the

pre-processor are creating the geometry and discretizing the

problem, and will be discussed next.

3.2.2 Creating the Geometry

The first step in defining any problem is the geometrical

aspect. The user can input his boundary in the form of

segments, display the current stage of the problem by either

printing it on the screen or plot it interactively, or edit what

has already been created. These options are shown in Fig. 3.13,

and are discussed in Sections 3.2.2.1 through 3.2.2.3. It is

noted that the three elements needed for user friendliness

(graphics, editor capabilities, and menu-driven system) are

present for the geometry definition.

3.2.2.1 Creation of segments and dots

Different types of segments are available. These include:

o straight lines;

o circular arcs; or

o polynomials.

The pre-processor creates surfaces by itself, and keeps track of

the connectivity between surfaces and segments by using segment

lists. If the segment to be created is the first one for a

particular surface, then both the beginning and end dots are

needed. Otherwise, only the end dot is required, since the

starting dot of the segment under consideration is the same as
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the end dot of the previous segment. The concept of segment

lists is similar to the concept of dot lists introduced in

Section 3.1. The data structures for segments, dots, and

dot-lists are shown in Figs. 3.3, 3.4, and 3.5 respectively.

The way they all relate together is shown in Fig. 3.6. A

schematic diagram of the hierarchy of all these different

components is shown in Fig. 3.14.

Let us briefly describe the input needed for the creation

of segments before examining the procedure used in the code

itself.

To create a straight line segment one needs to input the

beginning and end dot, or only the end dot, depending on whether

the segment is the first one of a surface or not.

For circular segments the user needs to input the center on

top of what is required for the straight line segment. Among

other checks the system makes sure that the distance from the

center to any of the two dots is the same. The user is also

asked if his circle is counter-clockwise with respect to its

center or not, as shown in Fig. 3.15. This introduces

flexibility in the input, since the user does not have to worry

about which point to enter first, as long as the direction of

his circle is specified correctly. The circle's center is

treated as a dot in the dot-list attached to the individual

segment. But the center is not included in the overall list of

dots. This is shown in Fig. 3.16.
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A straight line segment followed by a circular arc are

defined in Fig. 3.16(a). The user has to input the coordinates

of dot 1 and dot 2 to generate the straight line. Then,

assuming he is still on the same surface, he will only need to

specify the coordinates of dot 3 and of the center of the

circular arc. In this case the circle's direction is counter-

clockwise with respect to its center. The center dot is not a

critical one for the discretization. Thus it is not included in

the main list of dots, as shown in Fig. 3.16(b). But it is

needed to calculate the circle's radius, and might be useful for

later reference. Thus, it is included in the internal dot-list

as shown in Fig. 3.16(c). Part of the module used for

generating the dots and segments is shown in Appendix B . To

access a particular dot two approaches are possible. It can be

reached through the segment's internal dot-list, or by searching

the main external list of dots. Thus to access dot 3 in Fig.

3.16(a), one can search through the main list of dots shown in

Fig. 3.16(b), using:

dot 3 = find dot (3);

where find_dot is a function that takes an integer as an

argument, and returns a pointer to the dot which number it has

been given. Or, one can make use

of the fact that:

dot 3 = dot head + next + next;
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where dot head is a pointer to the first dot in the list. This

can only be done if the dots are assumed to be in the order

shown in Fig. 3.16(b). The other way would be to access dot 3

through segment 2. Assuming seg 2 represents segment 2, then

dot 3 can be reached by:

dot_3 = seg 2 -> dot_list -> dot -> next;

This is shown in Fig. 3.16(c). The pointer to segment 2 is

found by searching through the external list of segments shown

in Fig. 3.16(c).

A closer look at the different details involved in the

creation of the circular arc segment of Fig. 3.16(a) is going to

be taken. The code listing can be found in Appendix B .

Assume the user has already created the straight line

segment, and that he specifies a circular arc to be created

next. The program notices that this segment is not the first

one on the surface, and thus, only asks for the coordinates of

dot 3 and the center of the circle. After checking that the

radius of the circle is correct, the system will allocate space

for dot 3 and the circle's center, using the function malloc:

dot a = (dot *) malloc [sizeof (dot)].

The function "sizeof" yields an integer equal to the size of

the data structure dot. This size is given in unspecified units

called "bytes", which are the same size as a char. The function

"malloc" allocates space in memory for dota, equal to the
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integer returned by "sizeof". Then, once the dot is created,

its coordinates are assigned using:

dot b->x=x2

dot b->y=y2

where x2 and y2 are specified by the user. The center dot does

not have a number, but it is set to +1 or -1, depending on

whether the circle is counterclockwise or clockwise with respect

to its center. This is shown in the code by

if {toupper(counterclockwise [0]) == 'N'}

dot c->number = -1;

else

dot c->number = 1;

Dot 3 is going to be attached to the main list of dots using the

following:

if (n dots == 0)

begin

dot head = dot a;

dot tail = dot a;

dot a->number = i;

end
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if (n dots != 0)

begin

dot tail->dot next = dot a;

dot a->dot next = dot a;

dot a->number = i:

dot tail = dot a;

end

Where the following macro substitutions for "begin" and "end

have been used:

#define begin {

#define end ;}

These substitutions are used most of the time in the code.

Their advantage is to facilitate the understanding of the

program by achieving a better transparancy, and their

disadvantage is that the programmer cannot use the UNIX feature

that checks for missing brackets.

As already mentioned, the circle's center is not going to

be attached to the main external list of dots.

The segment is created next along with its different

properties. Its type is referred to as 'C' standing for circle,

compared to 'S' for straight line. To be able to use a common

data-structure, the double precision floating point for length

is used to store the radius in the circle case. A note

explaining this is found in the code to help the programmer

realize it. The segment creation is shown below:
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/* CREATE SEGMENT */

seg_w=attach_seg(ns++);

segw->dots=3;

segw->length = r;

seg_w->type = 'C';

Finally, the dot-list is created and attached to the segment as

follows:

/*POINT TO THE THREE DOTS */

dot list a = attach dot list();

seg w->dot list = dot list a;

dot list b = attach dot list();

dot list a->next = dot list b;

dot list c = attach dot list();

dot list b->next = dot list c;

dot list a->dot = dot a;

dot list b->dot = dot b;

dot list c->dot = dot c;

In the case of the circular segment shown in Fig. 3.16(a),

dot a, dot b, and dot c refer to dot 2, dot 3 and the circle's

center respectively, while segw refers to segment 2.

This covers in enough detail the creation of segments and

dots.

The last type of segment is the polynomial one. It is

being implemented but is not complete yet. Ideally the user can

create any segment of the form:
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yn + alyn-l + ... + an-lY = blxP + b2xP-1 + ...

+ bx + c,

where n and p are the highest exponents of y and x respectively.

There is (n+p) unknown coefficients in general. The user should

specify all the zero coefficients as well as the beginning and

end points of the segment. The pre-processor will then require.

the coordinates of q points to solve for the q remaining unknown

coefficients where:

q = n+p-2-number of zero coefficients.

Creating the boundary geometry is useful, but would not be

user-friendly without the graphics and editing capabilities that

will be discussed in the next sections.

3.2.2.2 Display of geometric input

The geometric input can be plotted on the screen, printed

on the screen, or in a file. A graphic display gives the user a

general idea of what has been created, and allows him to check

quickly if the input is correct. The printed display provides

more precise details about dot's and segment's properties and

connectivity between them.

(a) Graphics display

The same module is used to plot the geometry and

discretization. It is also employed at the post-processor stage

to display the mesh. Different flags that refer to various

objects and can be turned "on" or "off" exist. The different

objects that can be plotted are:
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o dots,

o segments,

o nodes,

o elements, and

o internal points.

Dots, nodes, and internal points are plotted as diamonds,

squares, and X respectively. Segments and elements are

represented by straight or curved lines. Dots and segments are

used to plot the geometry; nodes and elements represent the

discretization and lie on the boundary; while internal points

are situated inside the domain.

The graphics menu is shown in Fig. 3.17(a). To plot the

geometry the flags for dots and segments should be both "on", as

shown in Fig. 3.17(b). A flag keeps its last state (i.e., "on"

or "off") until it is changed again. Thus, if the user wants to

plot all that has been created, the five different flags are

left "on".

Examples of the pre-processor graphics are shown in Fig.

3.18 and 3.19. Both geometries are created using straight lines

and circular segments. The graphics shown in Fig. 3.18 might

not represent any practical situation, but is used to illustrate

the different type of geometries that can be created, while the

plot of Fig. 3.19 can represent a pipe's elbow. The dots' and

segments' numbers are not drawn yet by the pre-processor

graphics, and have been printed on the figures for clarity.

Options are being developed to allow the user to plot dot's
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FIGURE 3.17 Graphics options.



108

t i

/

/' \

FIGURE 3.18 Pre-processor graphics' display of first geometry

example. i,,

',

FIGUE 318 Pe-pocesor rapics dislayof irstgeoe,|

exampl%



109

FIGURE 3.19 Pre-processor graphics display of second geometry
example.
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numbers only, segments' numbers only, both, or neither on the

geometry.

The graphics shown look much nicer on the screen because

the hard copy printer used did not give as good a resolution as

expected. Furthermore, color graphics exist on the PRO-350,

where the dots and segments representing the geometry are

plotted in red, the nodes and elements used for discretization

are drawn in green, and the internal points plotted in blue.

These plots help the user in tracking errors very quickly. In

order to obtain detailed information about the geometry, the

printing option can be used.

(b) Printing dots' and segments' properties

The user can print what has been created directly on the

screen. If no dots or segments have been created, the

system returns the following error message:

"SORRY! NO DOTS DEFINED YET!!"

Otherwise, it starts by printing the total number of dots

created, followed by the list of. dots, along with the numbers

and coordinates.

The segment's output is divided into straight lines and

circular arcs. For both types of segments, their dot

connectivity is shown by printing the starting and ending dots.

The segment's length is printed for straight lines, while the

center's coordinates along with the radius are printed for

circular arcs. Examples of printed output for the graphics

plotted in Fig. 3.18, 3.19 are shown in Figs. 3.20, 3.21.
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LIST OF DOTS

NUMBER OF DOTS = 6

DOT
No.

1
2
3
4
5
6

COORDINATES
X Y

0.00 0.00
15.00 0.00
10.00 5.00
5.00 15.00
0.00 10.00
0.00 0.00

NUMBER OF SEGS = 5

LIST OF STRAIGHT LINE SEGMENTS

SEG DOTI
No. No.

DOT2 LENGTH
No.

15.000000
11.180340
10.000000

LIST OF CIRCULAR SEGMENTS

SEG DOTI
No. No.

DOT2 CENTER CENTER RADIUS
No. X Y

2 2 3 15.000000 5.000000 5.000000
4 4 5 5.000000 10.000000 5.000000

FIGURE 3.20 Printed output of geometry shown in Fig. 3.18.
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NUMBER OF DOTS = 6

DOT
No.

COORDINATES
X

1.00
3.00

0.00
0.00
0.71
1.00

0.00
0.00
3.00
1.00
0.71
0.00

NUMBER OF SEGS = 5

LIST OF STRAIGHT LINE SEGMENTS

SEG DOTi
No. No.

DOT2
No.

LENGTH

2.000000
2.000000

LIST OF CIRCULAR SEGMENTS

SEG
No.

DOT1 DOT2 CENTER
No. No. X

CENTER RADIUS
Y

3.00000
1.000000
1.000000

FIGURE 3.21 Printed output of geometry shown in Fig. 3.19.



113

3.2.2.3 Editing capabilities

A powerful editor that allows the user to modify the

geometry and correct mistakes is available. Its main tasks are:

* add dots or segments;

* delete dots or segments;

o get informaton about dots or segments, or

* modify existing data for dots or segments.

A similar editor, using the same basic modules, is used for

nodes and elements. More variables are involved in the

definition of the discretization, and, thus, the editor for

nodes and elements is more complex. To avoid redundancy, the

reader interested in editing capabilities is referred to Section

3.2.3.5.

3.2.3 Discretization of the problem

After creating the geometry, the need to discretize it and

impose boundary conditions arises. Upon entering the boundary

element mesh generator the following options are available:

o create elements and nodes;

o create internal points;

o impose boundary conditions;

o plot the discretization;

* print the current stage;

o edit what has been created; and

o exit the mesh generator.

These are shown in Fig. 3.8, and details about each of them are

discussed in the following sub-sections.
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3.2.3.1 Generation of elements and nodes

Different types of elements and nodes are available. Each

segment can be divided into elements of:

o equal length;

o graded increasing or decreasing size; and

o arbitrary length.

Two basic types of elements are available:

* discontinuous; or

o continuous.

At the present time three possible choices for elements'

expansion exist:

o constant;

o linear; or

o quadratic.

All these different types of elements and nodes are available

for both:

o straight lines, and

o circular segments.

The first step is to specify the different elements' length.

To discretize a segment into equal elements, the number of

elements: n should be specified, and the program will create n

elements of length equal to: (segment length/n). On the other

hand, if graded elements are needed, the ratio of the last

element length to the first element length should be specified.

Depending on whether this ratio is greater or smaller than one,
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the elements length will be increasing or decreasing

respectively. Given the number of elements and the ratio of the

last to first element length, the program calculates the length

of each element, and creates all the elements by itself. The

"arbitrary length" option can also be used, where the size of

each element is specified separately. This option is not

expected to be used very often, because it would defeat the

purpose of the pre-processor.

Once the element's length is chosen, the type of element,

as well as the expansion for the different boundary variables

have to be specified. The continuous elements are going to be

discussed first.

The use of continuous elements implies that two adjacent

elements have the same values for the boundary variables at

their intersection. For linear and quadratic expansion, this

means that adjacent elements have one node in common at their

intersection. When a linear expansion is employed, there exists

one node at the beginning and another one at the end of the

element, as shown in Fig. 3.22(a). A quadratic expansion would

need one more node in the middle of the element as in Fig.

3.22(b).

Discontinuous elements can have jumps (i.e. different

values) in the boundary quantities at the ends. The advantage

of using them is that nodes are created on the interior of the

elements, avoiding corner problems. If a constant expansion is

specified, one node would be created at the middle of each

element as shown in Fig. 3.23(a). Linear expansion implies
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two nodes at a distance of L/4 from each end of the element

(where L is the length of the element), as shown in Fig.

3.23(b). While for quadratic expansion two nodes at a distance

of L/6 from the element's ends and one node in the middle are

created, as shown in Fig. 3.23(c).

It is interesting to show examples of adjacent elements to

illustrate these concepts. Table 3.1 shows the different

possible discretization of two adjacent equal elements, while

Table 3.2 involves two and three graded adjacent elements. All

the different elements and nodes have been shown for straight

lines, but the same elements exist for circular curves.

As an example, the geometry shown in Fig. 3.18 has been

discretized according to Table 3.3. The result outputted by the

pre-processor is shown in Fig. 3.24. In this graphic both the

dots and nodes are plotted. For continuous elements it is

noticed that the dots and nodes overlap at the corners, while

for discontinuous elements they do not.

A discretization of the geometry of Fig. 3.19 is shown in

Fig. 3.25, with three internal points. The arc of circle

between dots 4 and 6 has been divided into two segments: 4 and

5, so that both segments can be graded decreasingly from dot 5

to dots 4 and 6 respectively.

A summary of the discretization for Fig. 3.25 is shown in

Table 3.4. A very important remark is that the discretization

should be done in the counter-clockwise direction for exterior

surfaces, and in the clockwise direction for interior surfaces.

This is outputted every time the discretization module is
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. .. . . . ..

0 == DOTS; 0 == NODES.

Equal elements' discretization.TABLE 3.1



ELEMENT'S NUMBER RATIO OF CONTINUOUS EXPANSION GRAPHICS
OF LAST ELEMENT OR

SIZE ELEMENTS _ENGTH TO DISCONTI- USED
IRST ONE -NUOUS

GRADED 2.0 DISCONTI- CONSTANT vO _ _ _O_

INCREASING -NUOUS

GRADED 2 0.5 DISCONTI-
DECREASING -NUOUS LINEAR v c0 E v

GRADED 2 0.5 CONTINUOUS QUADRATIC C__
DECREASING

GRADED 3 2.0 CONTINUOUS LINEAR
INCREASING E EO

v == DOTS; o== NODES.

TABLE 3.2 Graded element's discretization.
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FIGURE 3.24 Discretization of geometry of Fig. 3.18 according
to Table 3.3.



SEGMENT'S NUMBER SIZE OF CONTINUOUS OR EXPANSION
OF

NUMBER ELEMENTS THE ELEMENTS DISCONTINUOUS USED

1 4 Equal Continuous Linear

2 3 Equal Continuous Quadratic

3 5 Equal Discontinuous Constant

4 4 Equal Discontinuous Linear

5 3 Equal Discontinuous Quadratic

TABLE 3.3 Discretization outline for Fig. 3.24.
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FIGURE 3.25 Discretization of geometry of Fig. 3.19 according
to Table 3.4.



SEGMENT'S NUMBER SIZE OF CONTINUOUS OR EXPANSION
OF

NUMBER ELEMENTS THE ELEMENTS DISCONTINUOUS USED

1 8 Graded increasing Discontinuous Constant
Ratio = 2.0

2 8 Equal Discontinuous Constant

3 8 Graded decreasing Discontinuous Constant
Ratio = 0.5

4 4 Graded increasing Discontinuous Constant
Ratio = 2.0

5 4 Graded decreasing Discontinuous., .Consta,nt
Ratio = 0.5

TABLE 3.4 Discretization outline for Fig. 3.25.
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entered, and is shown in Fig. 3.26. This is another example of

a friendly feature since the user is not required to remember

this kind of detail. More details about the graphics will be

discussed in Section 3.2.3.4.

The procedures to create elements and nodes are very

similar to the ones discussed for segments and dots. The

elements' and nodes' data structures are shown in Fig. 3.27 and

3.28 respectively. The element's data structure contains

integers for its number, and the quantity of nodes that exist as

well as double precision floating point for the original and

final length and the coordinates of its ends. In potential

problems, only the original quantities are used, but the final

variables are added for possible use in elasticity problems, so

that the same database can be used for both problems. In fact,

the pre-processor is used to create a discretization for both

types of problems. It is only at the solver stage that an

expansion is needed. Also found in the element's data-structure

are single byte characters referring to the type and expansion

used. The type can either be a "S" for a straight lines or a

"C" for a curved isoparametric element. The expansion can take

the letters "C", "L" or "Q" to represent constant, linear, or

quadratic respectively. Similarly to the segment's data

structure, the element's one contains pointers to the next

element and to a node list data structure. Connectivity between

elements and nodes is established using this node list, which

only has pointers to the node and to the next node list. Data

structure for the node list is shown in Appendix A. ks shown in



EXTERIOR BOUNDARY SHOULD BE COUNTERCLOCKWISE.
INTERIOR BOUNDARY SHOULD BE CLOCKWISE.

FIGURE 3.26 Pre-processor warning for discretization
direction.

struct element struct
I
short number,

nodes;
double length,

Inew,
xl,yl,
x2,y2,
xlnew,ylnew,
x2new,y2new;

char type,
expansion;

struct node list struct *node list;
struct element struct *next;

/* ------------------------------ /
/* ELEMENT FOR DISCRETIZATION */
/* ------------------------------ */
/*

/*/*
/*
/*/*
/*
/*
/*

ELEMENT NUMBER
NUMBER OF NODES
ORIGINAL LENGTH
FINAL LENGTH OF
ORIGINAL COORD.
ORIGINAL COORD.
FINAL COORD. OF
FINAL COORD. OF
TYPE OF ELEMENT

*/
IN ELEMENT */
OF ELEMENT */
ELEMENT */
OF ELEM. START*/
OF ELEM. END*/
ELEM. START */
ELEM. END */
(S,C,P)

/* EXPANSION OF ELEMENT (C,L,Q) */
/* POINTER TO LIST OF NODES
/* POINTER TO NEXT ELEMENT
/*------------------------------*/
/* END OF ELEMENT DEFINITION */
/*------------------------------*/

typedef struct element struct elem;
elem *elem head, *elem tail;
int n elems;

FIGURE 3.27 Element's data structure.
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Fig. 3.28, the node's data-structure is more complex than the

dot's data structure. It contains an integer for the node's

number, as well as double precision real numbers for the

original and deformed coordinates, and the values of the

different boundary conditions. Character bytes exist to

indicate the kind of boundary conditions used. For potential

problems these character bytes have not been used. They are

added for a possible expansion to elasticity problems. They

have not been used yet in the code, and their names will

probably be changed to make them more programmer-friendly (i.e.

more meaningful) upon utilization. Finally, a pointer to the

next node is provided as well.

The code for discretization of the segments is too big to

be included in this thesis. It is similar to the one shown for

the creation of nodes and elements.

3.2.3.2 Addition of internal points

The internal point concept is a simple one. Its data

structure, shown in Appendix A, only contains a short integer

for its number, and double precision real numbers for its

coordinates, potential, and flux. It also has a pointer to the

next internal point. To create internal points, the user only

needs to specify the number of internal points desired, and

their coordinates. No boundary conditions are applied at the

internal points, but the potential and flux are automatically

calculated at those locations. Three internal points are shown

in the discretization of Fig. 3.25.



struct node struct
{ -
short number;
double x, y,

dx, dy,
xnew,ynew,
bcl,
bc2,

char kbc1l,
kbc2;

struct nodestruct *next;

1;

/*------------------------------*/
/* NODE FOR DISCRETIZATION
/*------------------------------*/
/* NODE NUMBER
/* ORIGINAL COORDINATES
/*, DISPLACEMENTS */
/* DEFORMED SHAPE COORDINATES */
/* BOUNDARY CONDITION 1
/* BONDARY CONDITION 2 */
/* POTENTIAL IN POTENTIAL PROBS.*/
/* FLUX IN POTENTIAL PROBS. */
/* KIND OF BOUND. COND. 1 */
/* KIND OF BOUND. COND. 2
/* POINTER TO THE NEXT NODE */
/* ------------------------------

END OF NODE DEFINITION
/*------------------------------*/

FIGURE 3.28 Node's data structure.

Potential
/ or Flux

B.C.

Range of
elements

FIGURE 3.29 Imposing boundary conditions.

Node Segment
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3.2.3.3 Introduction of boundary conditions

The next step is to impose boundary conditions. Presently

the solver is programmed for potential problems only. The data

structure is designed for elasticity problems as well, and the

system has all the different functions set up for both potential

and elasticity problems. One would only need to plug in the

solver module for elasticity problems. If the user tries to

access the elasticity module at the present time, the program

will return a message saying that "the elasticity solver has not

been developed yet".

For potential problems potential or potential derivative

boundary conditions can be imposed. In fact, the term

"potential" is used in a broad sense: in fluid flow that

conforms with the Laplace's equation the user can also specify

streamline and streamline derivative boundary conditions.

The boundary conditions can be specified for a node, an

element, a range of elements or a segment, as shown in Fig.

3.29. Only the kind and value of the boundary conditions

desired for the selected option need to be specified. The

program will automatically assign those to all the nodes

specified.

As long as the kind and value of the boundary conditions

are not known, they will be taken as "?" and 0.0 value that

will appear for the kind and value of boundary conditions in the

output.
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Printing of these boundary conditions at the nodes is

discussed in Section 3.2.3.4 relative to the discretization

display.

Notice that a positive flux means a flux inwards into the

surface, and a negative flux means a flux outwards going out of

the surface.

3.2.3.4 Display of discretization

The discretization can be either plotted on the screen, or

printed on the screen or in a file.

(a) Graphics display

The same module is used for plotting both geometry and

discretization. The reader is referred to Section 3.2.2.2 for a

detailed description of the different available options. To be

able to plot the discretization, the flags relative to the

elements, nodes, and internal points shall be turned "on".

The flags corresponding to the segments and dots can either

be "on" or "off". They can be turned "on" to check if the

discretization is close enough to the geometry. As an example,

Fig. 3.24 shows the discretization of the geometry of Fig. 3.18,

according to Table 3.3. The segments' and dots' flags, as well

as the elements' and nodes' flags are "on". This plots both

geometry and discretization, and shows how the circular segments

2 and 4 are approximated by the continuous quadratic and

discontinuous linear elements respectively. On the other hand,

only the discretization of Fig. 3.19 is shown on Fig. 3.26. The

different kinds of elements and nodes used are summarized in
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Table 3.4. The segments and nodes are not drawn in this case,

and this achieves a better clarity by putting more emphasis on

the discretization.

As a last example of the graphics versatility, FIDES' name

is plotted by the pre-processor, and the result is shown in Fig.

3.30. Only the exterior rectangle is discretized, and both

segments' and nodes' flags are "on", while elements' and dots'

flags are "off".

(b) Printed output

A printed output of the discretization can be obtained on

the screen. After checking that nodes and elements exist, the

system starts by listing nodes' properties. The total number of

created nodes is printed first, followed by nodes' number,

coordinates and boundary conditions. Then the total number of

elements is shown along with elements' number, type, expansion,

length and nodal connectivities. The user has the option to

print elements' ends as well. Then if any internal points have

been created, they are printed along with their coordinates.

The printed output for the discretizations of Fig. 3.24 and

3.25, with the applied boundary conditions of Table 3.5 and 3.6

respectively, are shown in Fig. 3.31 and 3.32.

3.2.3.5 Editing Options

Last, but not least, the user can edit the problem he just

created. The editor is one of the most powerful features of

FIDES. It allows mistake correction, and fast remeshing. The

following options are available:
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FIGURE 3.30 Pre-processor graphics' display of system's name.
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SEGMENT'S KIND OF VALUE OF

NUMBER BOUNDARY CONDITION B.C.

1 Potential 700.0

2 Potential 200.0

4 Potential 50.0
derivative

5 Potential -30.0
derivative

TABLE 3.5 Boundary conditions imposed on the discretization of

Fig. 3.24.
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LIST OF ELEMENTS

ELEM.
No.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29
30
31
32

TYPE EXPANSION

S C
C

S C
S C
3 C
S C

S C
S C

S C
S C
S C
S C
S C
S C
S C
S C
S C
S C:
S C
S C
S C
3 C

S C
3 C

S C
S C
S C
S C
S C
S C

S C
S C

NODE
1

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

NODE
2

CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.

NUMBER OF INTERNAL POINTS=3

COORDINATES

1.41
1.06
1.77

1.41
1.06
1.77

FIGURE 3.31 Pre-processor output for the discretization of Fig.

3.24 and boundary conditions of Table 3.5.

NODE LENGTH
3

CONS. 0.17
CONS. 0.19
CONS. 0.21
CONS. 0.23
CONS. 0.26
CONS. 0.28
CONS. 0.31
CONS. 0.34
CONS. 0.59
CONS. 0.59
CONS. 0.59
CONS. 0.59
CONS. 0.59
CONS. 0.59
CONS. 0.59
CONS. 0.59
CONS. 0.34
CONS. 0.31
CONS. 0.28
CONS. 0.26
CONS. 0.23
CONS. 0.21
CONS. 0.19
CONS. 0.17
CONS. 0.13
CONS. 0.17
CONS. 0.21
CONS. 0.27
CONS. 0.27
CONS. 0.21
CONS. 0.17
CONS. 0.13

POINT
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NUMBER OF NODES=32

NODE COORDINATES B.C.'S

No. X Y B.C. 1 KIND
--------- ------- ------- -------

1
2.

4
5
6

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
2T

:9
30

:31
:32

1.09
1.27
1.47
1.69
1.93
2.20
2.50
2.83
2.97

2.86
2.63
2.31
1.89
1.41
0.87

0.29
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.07
0.22
0.40
0.60
0.79
0.91
0.97
1.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.29
0.87
1.41
1.89
2.31
2.63
2.86
297

2.83

2.50
2.20

1.69
1.47
1.27
1.09
1.00
0.97
0.91
0.79
0.60
0.40
0.22
0.07

1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

FIGURE 3.31 Pre-processor output for the
3.24 and boundary conditions

discretization of Fig.
of Table 3.5.

(Continued)
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TABLE 3.6 Boundary conditions imposed on the discretization of
Fig. 3.25.
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NUMBER OF NODES=39

NODE COORDINATES

No. X Y

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

23

2425
376
27
38
29
30
31
32

34
35
36
37

39

0.94
2.81
4.69
6.56
8.44

10.31
12.19
14.06
14.58
13.75
12.92
12.19
11.58
10.97
10.56
10.33
10.11
9.50
8.50
7.50
6.50
5.50
4.52
3.56
2.68
1.87
1.19
0.65
0.29
0.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.0
0.00
0.00
0.00
0.00
0.11
0.33
0.56
0.97
1.58
2.19
2.92
3.75
4.58
6.00
8.00

10.00
12.00
14.00
14.90
14.71
14.35
13.81
13.13
12. 32
11.44
10.48
9.44

7.22
6.11
5.00
3.89
2.78
1.67
0.56

B.C.'S

B.C. 1 KIND

700.00
700.00
700.00
700.00
700.00
700.00
700.00
700.00
200.00
200.00
200.00
200.00
200.00
200.00
200.00

0.00
200.00

0.00
0.00
0.00
0.00
0.00

50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00

-30.00
-30.00
-30.00
-30.00
-30.00
-30.00
-30.00-30.00-30.00

FIGURE 3.32 Pre-processor output for the discretization of Fig.
3.25 and boundary conditions of Table 3.6.
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NUMBER OF ELEMENTS=19

LIST OF ELEMENTS

TYPE EXPANSION NODE NODE NODE LENGTH
1 2 3

2
4
6
8
10
13
16

CONS.
CONS.
CONS.
CONS.
CONS.

24
26
28

35
38

LIN.
LIN.
LIN.
LIN.
11
14
17
CONS.
CONS.
CONS.
CONS.
CONS.
LIN.
LIN.
LIN.
LIN.
33
36
39

3.75
3.75
3.75
3.75

2.59
59

42.592.24
2.24
.24

1.95
1.95
1.95
1.95

3.33

FIGURE 3.32 Pre-processor output for the
3.25 and boundary conditions

discretization of Fig.
of Table 3.6.

(Continued)

ELEM.
No.
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* get information about elements or nodes;

e modify existing information about elements or nodes;

o add elements or nodes;

o delete elements or nodes;

* weld two adjacent nodes; and

* exit the discretization editor.

This is shown in Fig. 3.33.

Let us discuss the different options available for the

elements first.

(a) Elements' editor

Using the command "get information", one can examine the

elements' properties. The user needs to give the element's

number, and can ask the program to output different element's

properties, such as:

* its number;

* its nodal connectivity (the nodes' numbers to which the

element is connected will be outputted).

o its type (straight line or curved arc);

o its expansion (constant, linear, or quadratic);

o its length; or

a the coordinates of its start and end.

These can be seen in the total output as well, but this is

more practical if one is interested in one particular value.

As far as changes are concerned, the following quantities

can be modified for an element:
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BEM EDITOR

Modify Nodes/Eems

Get Information

Delete Nodes/Elems

Add Nodes/Elems

Weld Two Nodes

Exit

Discretization editor's menu.
FIGURE 3.33
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o its number;

o its nodes' number; or

* its expansion.

To modify the number of an element, its new number is needed,

which should be different from any of the existing elements'

numbers. Similar procedure is used to change the nodes' numbers

to which the element is connected. Requiring a change of

expansion, deletes the dot lists associated to the element. The

dots, to which the dot lists point to, are deleted if and only

if they are not connected to any other element. Then, a new

expansion is specified, and new nodes are connected to the

element accordingly. This last option is very useful. If the

user is not satisfied by the results obtained, he can use a

higher expansion where needed. This means that he can either

specify a change in expansion in the region where higher

accuracy is desired, or at all the elements. This is very

useful for accuracy studies where different expansions are

tried.

Another very powerful capability is the possibility of

deleting and adding elements and nodes. Elements should always

be deleted before the nodes. If a mistake is made in creating

the discretization, then this option allows to delete all the

"undesirable" elements. Their space in memory will be made

empty, by using the function "free". Since deleting elements is

an important step, the system checks again that this is the

user's real intention before proceeding. The nodes are not

automatically deleted, since they might belong to another
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element. Future development focuses on automatically deleting

nodes belonging to discontinuous elements, upon deletion of the

corresponding elements; since in the discontinuous case no

single node is shared by two elements. Figure 3.34 shows the

discretization of Fig. 3.25 with elements 1 through 4 that have

been deleted. The associated nodes have not been deleted yet.

The user is also allowed to add elemlents; but this option is

not expected to be used frequently, since the mesh generator can

do this as easily, if not better.

(b) Nodes' editor

Similarly to the elements' editor, any information can be

obtained about the nodes, such as:

* their number;

* their coordinates; and

o the kind and value of the applied boundary conditions.

All of the above properties can be modified. As an example

of a change of coordinates, node 1 in Fig. 3.25 has been moved

to the middle of the domain, as shown in Fig. 3.35. This option

can also be used to move nodes along the element, and to check

how the node's position affects the result. The most useful

option in the "modify-element" module is the alteration of the

boundary conditions. This allows the user to run several

problems, involving the same discretization but different

boundary conditions in a minimal amount of time. This can be

done without ever exiting the system. This capability also

allows the user to correct any mistakes made while imposing
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FIGURE 3.34 Deleting elements using the editor.
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FIGURE 3.35 Modifying node's coordinates using the editor.
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boundary conditions.

The choice of deleting and adding nodes is also given.

Figure 3.36 is the result of deleting nodes 1 through 4 in Fig.

3.34. The corresponding elements had already been deleted.

The last option is to "weld" two nodes. This means that

two nodes having the same coordinates can be turned into one

node. The elements pointing to the two nodes will, therefore,

be pointing to the same single node. Situations where the two

nodes can be located near each other arise when continuous

elements are used to discretize two different segments on both

sides of a corner. This is shown in Fig. 3.27.

Thus, the editor's capabilities are quite numerous and can

be used to achieve efficient remeshing and fast correction of

mistakes.

Along with graphics and menu-driven capabilities, the

editor is the third element of the triad needed for user-

friendliness.

3.3 POST-PROCESSING PHASE

The post-processor allows the user to examine the results

by either plotting them or printing them. Different print

options are available, such as printing the:

o geometry,

o discretization, or

o results.

These are shown in Fig. 3.38.

The graphics are more elaborate, and the various

capabilities available include plotting:
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o the original or final shape of the geometry and

discretization;

* X-Y graphs to show the results for potential and

potential derivative, at both the nodes and internal

points;

" the normal flux on the boundary by arrows showing its

magnitude and direction; and

a contour lines of equal potential values in the domain.

The menu for these different options is shown in Fig. 3.39.

3.3.1 Print Options

The print options for geometry and discretization are

similar to the one used by the pre-processor. They are

discussed in Sections 3.2.2.2 and 3.2.3.4 respectively.

The results of the analysis can be outputted on the screen

for both nodes and internal points. The node or internal point

number is printed along with the coordinates, the potential, and

the flux. The results can be printed for a node, an element, a

range of elements, a segment, or for the whole problem. The

results for the discretization shown in Fig. 3.25, with the

applied boundary conditions of Table 3.6 are shown in Fig. 3.40

for the whole problem. The advantage of the post-processor is

that it allows the user to examine specific values without

having to look at the complete stack of results.

But the real power of the post-processor is in the graphics

capabilities to be discussed next.
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FIGURE 3.38 Post-processor's printing options.

Post-processor's plotting options.

OUTPUT PRINTING

Geometry Printing

Discretization Printing

Results Printing

Exit

FIGURE 3.39
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NUMBER OF NODES=32

NODE COORDINATES RESULTS

No. X Y POTENTIAL
--------------------------------

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32

1.09
1.27
1.47
1.69
1.93
2.20
2.50
2.83
2.97
2.86
2.63
2.31
1.89
1.41
0.87
0.29
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.07
0.22
0.40
0.60
0.79
0.91
0.97
1.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.29
0.87
1.41
1.89
2.31
2.63
2.86
2.97
2.83
2.50
2.20
1.93
1.69
1.47
1.27
1.09
1.00
0.97
0.91
0.79
0.60
0.40
0.22
0.07

1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
942.58
815.13
688.91
563.06
437.29
311.43
185.23
57.92
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

40.51
137.76
260.03
414.10
586.08
740.16

862.39
959.35

RESULTS AT INTERNAL POINTS FOLLOW :

NUMBER OF INTERNAL POINTS=3

POINT COORDINATES

No. X Y

RESULTS

POTENTIAL

1.41 1.41 500.11
1.06 1.06 500.09
1.77 1.77 500.15

FIGURE 3.40 Post-processor's output
Fig. 3.25 and Table 3.6.

of analysis' results for

FLUX

611 .68
498.82
433.01
375.67
327.19
285.44
242.17
254.86

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-252.06
-244.83
-286.08
-327.71
-376.13
-433.46
-499.39
-611.95

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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3.3.2 X-Y plots

A large flexibility is available for x-y graphs. The user

can create about any plot he needs by combining the different

options available. The y-abscissa can represent the potential

or potential derivative, at the nodes or internal points. The

x-abscissa shows the numbers of the nodes or internal points at

which the desired variable is plotted.

For the nodes the results can be plotted at:

o a range of nodes,

o an element, or

o a range of elements

The "range of nodes" option is very practical, since the nodes

do not need to be in order. The "-" is used to define ranges

which are separated by spaces or commas. Typing the word "end"

terminates the input. As an example, the following

specification: "1,5-8 9,12,18-21 END" defines a range which

consists of nodes 1, 5 through 8, 9,12 and 18 through 21. This

is very useful since focus on the variation of a certain

quantity at different nodes is made easier by looking at this

type of x-y graph. Figure 3.41 represents a post-processor

graph of the variation of flux at nodes 1 through 8 and 17

through 24. On the other hand, it is possible to examine the

variation of q or u for a single element, as well as a range of

elements. Figure 3.42 has been generatd by asking for a plot of

the temperature for the range of elements 9 through 16. The

user specifies the x and y labels himself.
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FIGURE 3.41 Post-processor's X-Y plot of flux at a range of
nodes.
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X-AXIS: NODE NUMBERS

Y-AXIS: TEMPERTURE

FIGURE 3.42 Post-processor's X-Y plot of temperature at a range
of elements.
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Similar options are available for internal points. This is

shown in Fig. 3.43 where the temperature for the "range of

internal points" 1 through 3 is plotted. On the VAX 11-750

computers running on the UNIX operating system, color plots are

available. The frame is plotted in red, the x and y abscissas

in blue, and the graph itself in green.

3.3.3 Graphics display of normal flux

Although x-y graphs are useful, it is much nicer to examine

the results plotted directly on the boundary. This option is

available for normal fluxes. They are plotted by arrows

pointing in the direction of the flux, and having a magnitude

proportional to the flux value. This allows an easier inter-

pretation of the results. An arrow pointing inwards into the

surface represents a positive flux, while the outward direction

going away from the boundary stands for a negative flux. To

illustrate this option the results of Fig. 3.41 for the fluxes

are plotted directly on the discretization, as shown in Fig.

3.44.

3.3.4 Other features

The same module used to plot the geometry and

discretization in the pre-processor is used again for the same

purpose in the post-processor. It can plot both the original

and final shapes. But, since the problem solved is of the

potential type, the geometry and discretization are not going to

change. This option will be very useful in elasticity problems,

since displacements are one of the variables. It will allow the
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FIGURE 3.43 Post-processor's X-Y Plot of temperature at a range
of internal points.
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user to examine the deformed configuration. With minor

modifications this module can be changed to plot the

deformations at different times, for time-dependent problems.

For more details about the capabilities of this graphic module

the reader is refered to Sections 3.2.2.2 and 3.2.3.4.

A capability under development is going to plot equi-

potential contour lines inside the domain. This option along

with the existing graphic display of normal flux, will allow the

user to interpret his results very easily. The same module can

be used to plot the variation of stresses and strains on the

discretization. The only objective against drawing these

contour lines in boundary element methods is that to achieve a

good accuracy, values at many internal points are needed. These

internal points will not be specified by the user, but created

by the program itself. If a large number of internal points is

used, then this would defeat the purpose of the boundary element

method which tries to minimize the points inside the domain.

Color graphics are also available for these options on

PRO-350 terminals.

3.4 SOLUTION PHASE

The present solver is written in FORTRAN. It reads its

input from a translator that converts the data from the pre-

processor's data structures of "C" to the array form of FORTRAN.

A second module is used to translate the results from arrays and

fill the corresponding post-processor's data structures. The

solver evaluates the different matrices corresponding to the

boundary unknowns u and q, introduces the boundary conditions
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for u and q, solves the system of equations for boundary values

of u and q, and evaluates u, qx, qy at selected internal points.

The solver is based on the boundary element theory presented in

Chapter 2. The solver presents the options of different

integration rules, continuous or discontinuous elements, and

different expansions. But it is very rigid and difficult to

expand in comparison with the "C" code. It is planned to

rewrite the solver in "C", and create a new data base. It will

contain data structures for integration rules, expansion types,

and discontinuous elements. Continuous elements are not going

to be given too much emphasis. The user will be able to mix

different expansions and different integration rules. This will

allow more flexibility. The code will also be more homogeneous,

since it will be all written in "C". The translator modules

will not be used anymore, and fastest execution will be

achieved. It would also be interesting to add data structures

for different fundamental solutions. This will allow the

elasticity problem to be added without too many changes.

A rule-based advisor could also be used to choose the

different integration rules and expansions, depending on the

accuracy desired. This will be discussed in Chapter 4.
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CHAPTER 4 - ACCURACY STUDIES

4.1 SYSTEM VERIFICATION

4.1.1 Potential Flow

A two-dimensional potential flow around a cylinder between

parallel walls is considered as shown in Fig. 4.1[18]. A short

review of the basic theory is presented first.

The potential value to be specified on the boundary

(denotedrby u in preceding chapters) can be taken as either the

velocity potential, , or the stream function, i. Both depend

on the coordinates x and y.

Let VxVy represent the velocity components in the two-

dimensional flow. They can be expressed as:

v " v =
x 6x y 6y

or

v = , v =-
x Sy y 6x

In potential flow both d and q satisfy the Laplace's equation.

FIDES can be used efficiently to solve for this kind of

problem. Two different options are possible for the choice of

the unknown boundary quantities:

o the potential 4 with the associated normal flow 6 /6n,

or

o the stream function p along with its derivative 6/6n.
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On solid boundaries, * can be specified. At other points the

velocity is known and is given in terms of a derivative of .

In the case of , it is not known on solid walls or other bodies

in the flow; however, the flow 6/6n normal to such surfaces is

zero. It is thus more difficult to treat the problem in terms

of j.

Different meshes are tried, and as an illustration one of

them is shown in Fig. 4.2. Only quarter of the geometry needs to

be solved for because of symmetry considerations about axes

a-a' and d-d' of Fig. 4.1. The stream function * is chosen as

the main variable. Due to symmetry the boundary conditions:

S= 0 on lines a-b and b-c

can be imposed. Then, using the definition of the stream

function gives:

9 = 2 on d-e.

Along a-e, the nodal values of * vary linearly from = 0 at a,

to i = 2 at e. Finally, on c-d the vertical components of

velocity must vanish. Thus:

v = - 1 = 0Y 6x

But, since c-d is a vertical line, the normal n is parallel to

the x-axis. Then,

= = 0.
6x 6n

Once the boundary conditions for * and 6 are applied, the
6n

problem can be solved. Results of the analysis for the stream

function 9 on line c-d are compared to finite element analysis'
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runs[ 1 8], in Fig. 4.3. Different boundary element meshes were

tried. The results of selected ones only are shown. The

agreement between the two methods is very good. It is

interesting to compare the boundary element discretization of

Fig. 4.2 to the finite element one shown in Fig. 4.4 [18]. The

same order of accuracy is obtained by both, although the

boundary element mesh is much simpler to create and visualize.

Generally, boundary element methods are preferred in linear

static problems, and when the quantity of interest lies on the

boundary. But they also give excellent results for complex

problems as well. This will be the subject of the next

section.

4.1.2 Thermal Conduction

The problem shown in Fig. 4.5 illustrates an infinitely

long solid rod of radius, R, subjected to a surface temperature

T(R,e). This is a pathological problem since the boundary

points represented by 6 = 0 and e = r are singular points; the

flux at these locations is theoretically infinite. One of the

discretizations used in FIDES is shown in Fig. 4.6. The upper

half of the rod is subjected to a temperature To = 100, and the

lower half to a temperature of zero. The variation of

temperature at the interior is of interest. The analytical

solution gives:

* n
1 1 r1

T(r,) = T [ + 2 z ( r) sin n e]
o 2 n= R
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FIDES' results at seven horizontal and vertical internal points,

shown in Fig. 4.6, are compared to the exact solution in Figs.

4.7, 4.8. The accuracy of the boundary element method results

is excellent. For a mesh of only 4 constant elements per

quarter of circle, the largest error is smaller than 2%.

This proves that boundary element methods can be very efficient

in solving for complex problems, as well as studying the

behavior of a variable inside the considered domain. One also

notices that using 30 elements per quarter circle is not really

needed, since convergence can be achieved by a smaller number of

elements. A set of rules to help the user in selecting the

optimum number of elements is, therefore, needed. It is always

better to try a coarse mesh first to get a feel for the problem.

The variation of the fluxes is drawn in Fig. 4.9 by the post-

processor. It is noticed that the fluxes' magnitude gets very

large near the singular points.

4.2 ACCURACY ADVISOR

4.2.1 Rule-Based Systems

FIDES' name stands for Friendly Interactive Discrete

Element Solver. The words "friendly" and "interactive" might

seem redundant, since the interactiveness is really a part of

the friendly attributes. But the name was chosen this way so

that in the future it could be changed to: Friendly Intelligent

Discrete Element System. As already discussed, the main task of

this "intelligence" would be to play the role of an accuracy

advisor. The user would have access throuqh FIDES' pre-

processor to this rule-based advisor.
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FIGURE 4.9 Graphic display of normal flux for heat conduction
problem.
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In rule-based systems, knowledge is represented using

rules. These rules consist of small independent chunks of

knowledge. Rule-based systems have been successfully used in

practical situations, such as medical diagnosis, and computer

configuration for VAX systems. One of the recent applications

of these systems was as a finite element advisor: SACON.

Two issues are important in the operation of these

systems:

* the knowledge representation, and

o the inferencing mechanism.

While the knowledge representation depends on the domain of

application, the inferring mechanisms are more general and

usually less important.

There are two types of knowledge:

o static (represented by facts), and

a procedural (consisting of rules).

The facts describe the domain under consideration. This might

be the geometry definition in the pre-processor of FIDES. On

the other hand, rules describe relations between facts. The

rules used for knowledge representation can be generally divided

into:

o rules of thumb, that express the "expert's" general

feeling for the problem; and

a pattern matching where comparison with previous results

may yield needed information.
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There are two ways in which this rule-based system can be

linked to FIDES. It can either control FIDES and drive it; or

FIDES can send it information and expect feedback from it.

FIDES' structures can be very easily modified to adopt an

accuracy advisor. At the pre-processor stage, FIDES would send

information about the geometry and boundary conditions, and the

rule-based system would return informed opinions about the

discretization. Of if the user of the boundary element system

is more familiar with the method, he would create the

discretization and get some feedback on how good it is. At the

solver's level, the rule-based system might choose the order of

the integration rule to be used. And finally, at the post-

processor stage, results can be examined by the rule-based

system and compared to previous runs to decide if they make

sense.

The final goal, common to all cases, is to obtain "informed

opinions" about accuracy issues. At the present time the

preliminary advisor is independent of FIDES, and will be

discussed in the next section.

4.4.2 A preliminary system

The development of this system is very preliminary. Its

main purpose is to help the user in creating the mesh and

interpreting the results. Thus, it addresses the same issues as

pre- and post-processing techniques, namely, how to optimize the

discretization and the accuracy, minimize the amount of time

needed to solve a problem, and clarify ambiguities in the

results. This requires different goals. If the static knowledge
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consists of the geometry description and boundary conditions,

then the corresponding goal would be to define the discreti-

zation. Similarly, if the facts are computed results, then

the goal would be to assess their validity and accuracy. At this

stage, concern is focused on outlining different possible

discretization schemes for a geometry and its associated

boundary conditions. The rules needed for this task can be

developed through interviews with various experts in boundary

element methods and review of results for a broad range of

probl ems.

Particular issues where rules are appropriate are:

(a) Geometric considerations

Care should be taken in the discretization of odd geometric

shapes.

o In the case of the rectangle shown in Fig. 4.10(a), the

width to depth ratio is larger than 10. This is not

advisable. It is better to split this long rectangle

into different surfaces, with side's ratio smaller than

10, as shown in Fig. 4.10(b).

o It is not recommended to have two segments that are

nearly parallel very close to each other. The notched

specimen shown in Fig. 4.11(a) presents this problem.

Due to symmetry only half of it needs to be analysed.

Furthermore, it is split into two surfaces in order not

to have the two sides of the notch belonging to the same

surface, as shown in Fig. 4.11(b).
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o Try not to locate any nodes at the corners. Continuous

elements near the corners can disturb the accuracy. The

use of discontinuous elements at the corners is

preferred. This is illustrated in Figs. 4.12(a) and

(b).

(b) Special boundary conditions

Care should be taken not to locate any node where a

singularity in one of the variables is expected. Nodes can be

placed on both sides of the singular point, and the accuracy

diminishes as the node gets closer to the singular point. This

is illustrated in Fig. 4.13, where only potential boundary

conditions are applied. The two points that experience a jump

in potential are also singular points for fluxes.

(c) Run number

It is always advisable to use a coarse mesh in the first

run to get a feel for the problem, unless the user is very well

experienced. Finer meshes can be used in the next runs.

These different rules have been used to generate a

preliminary accuracy advisor. They have been implemented into

GARFIELD, which is a knowledge-based system for the simulation

of engineering problems using a rule format. It is being

devloped at MIT. One of the powerful features of GARFIELD is

the capability of easily interfacing with external programs.

This makes it very attractice to use with general purpose

programs like FIDES. GARFIELD is written in "C", and is an

interactive, menu driven system. The GARFIELD environment
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consists of a user interface, an object base, a rule base, meta

level rules, a goal stack, an inference engine, as well as a

calculator and an object base language. Only few of the

impressive capabilities of GARFIELD have been used. Objects and

facts have been defined, as well as the coal to be reached. The

rules shown above have been represented in GARFIELD's format.

They are very general and can be adapted to any kind of geometry

or discretization.

Particular rules concerning the problem at hand should,

then, be specified. The inference engine can analyze all these

facts and rules, and give advice about the discretization.

These procedures are not explained in detail, since it is not

the object of this thesis. Few examples of the objects and

rules are going to be shown, but the reader is referred to

Appendix E for more extensive information.

A fact is described by the triplet:

(attribute object value).

The different kind of objects used are: geometry, dot, problem,

segment, etc. A description of the object dot is shown in Fig.

4.14. An object named dot is created first. It can either be a

corner dot or not. The values of its attributes segment left

and segmentright are objects of the type segment. And,

finally, each dot has a number. Further examples can be found

in Appendix E. Rules consist of a name, an IF part, and a THEN

part. Both IF and THEN parts are pointers to statements. If

the statement in the IF part is correct, then the statement of

the THEN part is executed.
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(create dot)

(add corner dot yes_no)

(add segmentleft dot segment)

(add segment_right dot segment)

(add number dot value)

FIGURE 4.14 Description of object dot.

FIGURE 4.15 Recognizing a rectangle.

FIGURE 4.16 Advice for rectangle with 10 < width/depth < 20.
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The rule to recognize a rectangle is shown in Fig. 4.15.

If the system notices that the geometry has four corners, and

that the segments to the left and right of each corner are

perpendicular, then the geometry shape is a rectangle.

Furthermore, if the geometry is a rectangle, and the ratio of

width to depth is larger than 10 but smaller than 20, then it is

advised to break the rectangle into two surfaces for

discretization. This last rule is shown in Fig. 4.16. More

details about the preliminary accuracy advisor are given in

Appendix E.
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CHAPTER 5 - CONCLUSIONS

5.1 SUMMARY

Discrete element methods are a practical way of solving

continuum problems. The boundary element method is advantageous

for problems with highly irregular boundaries, domain of

infinite extent, linear elastic static behavior, incompressible

material, and where the quantities of interest are on the

boundary itself. The finite element method is very useful in

problems involving non-homogeneous media, plasticity, time

dependent analysis, and where the quantities of interest are in

the interior of the domain. A review of boundary element

methods, with emphasis on potential problems, is presented in

Chapter 2.

Large discrete element codes exist that require long and

time-consuming input, and print huge output files. Pre-and

post-processing capabilities are needed to help in discretizing

the problems, and presenting results in a readable form. A

friendlier environment is necessary, as well, for the programmer

concerned with maintaining the program.

An excellent computer environment is provided by the APOLLO

system, together with the UNIX operation system, the "C"

language, and the "lint" program verifier. Pre-and

post-processors form the backbone of the FIDES system. They

have been developed in the "C" language. The concept of lists

of data structures has been used extensively. A user-friendly

environment has been created due to menu-driven processors,

graphics capabilities, and a powerful editor. Possibility of
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easy additions or changes to the system, along with transparency

of the code lead to a programmer-friendly environment.

FIDES, at the present time, is an interactive system for

discretization, solution, and presentation of results for

potential problems using boundary elements.

5.2 RECOMMENDATIONS FOR FUTURE RESEARCH

The developed pre-and post-processing capabilities are

designed to allow for flexible changes or additions. The

boundary element numerical module for potential problems needs

to be rewritten in the "C" language. Addition of higher order

expansions, as well as different integration rules, would be

useful. A solver module for elasticity problems would add

flexibility to the system. The pre- and post-processors already

contain developed facilities for elasticity problems, and thus

would not require major changes.

A knowledge-based advisor is needed to help the engineer in

choosing the discrete element method to be used (mainly boundary

element vs. finite element). A rule-based advisor for accuracy

issues should be developed, to help in the discretization of the

problem and interpretation of the results. Rules can be

generated by solving a large number of problems and considering

the effect of different integration rules, various expansions,

and different element sizes. Rules of thumb can also be

collected and included in the system.
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APPENDIX A

FIDES' DATABASE

This appendix contains the main data base of the FIDES'

system. Most of the different data structures, as well as the

concept of list of structures, are explained in Chapter 3.
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/***********************************************************************
* START OF THE CENTRAL DATABASE OF FIDES *

************************************** ****************** ***********

struct dot struct
{
short
double
struct dot

number;
x, y;

struct *dot next;

/*------------------------------*/
/* GEOMETRICAL DOT */
/* ------------------------------ *
/* DOT NUMBER */
/* ORIGINAL COORDINATES */
/* POINTER TO THE NEXT DOT */
/*------------------------------*/
/* END OF DOT DEFINITION */
/**------------------------------

struct dot struct dot;
*dot head, *dot tail;
n dots;

struct dot list struct
struct dot
struct dot struct *dot; ;

struct dotliststruct *next;

1;

typedef struct dot list struct dotlist;

struct segment_struct
{
short number,

dots;
double length;
char type;

struct dot list struct *dot li
struct segmentstruct *seg_nE

];

/*------------------------------*/

/* LIST OF DOTS */
/* ------------------------------ *
/* POINTER TO THE DOT */
/* POINTER TO THE NEXT DOT LIST */
/*------------------------------*/
/* END OF DOT LIST DEFINITION */
/* ------------------------------ *

/*------------------------------*/

/* GEOMETRICAL SEGMENT
/*------------------------------*/
/* SEGMENT NUMBER
/* NUMBER OF DOTS IN SEGMENT */
/* ORIGINAL LENGTH OF SEGMENT */
/* TYPE OF SEGMENT (S,C,P) */

ist;/* POINTER TO LIST OF DOTS */
!xt;/* POINTER TO NEXT SEGMENT */

/*------------------------------*/
/* END OF SEGMENT DEFINITION */
/*------------------------------*/

typedef struct segment struct seg;
seg *seg head, *seg_tail;
int n segs;

/*------------------------------*/
struct seg_list_struct /* LIST OF SEGMENTS */

I /*------------------------------*/
struct segment struct *seg; /* POINTER TO THE SEGMENT */
struct seq_list_ struct *next /* POINTER TO THE NEXT SEG LIST */

typedef
dot
int
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/* ---------------struct se-lis-------struct s---_list;

typedef struct seg list struct seg list;

struct intptstruct
{
short number;
double x, y,

xnew,ynew,
U,
q;

struct intptstruct *next;

1;

typedef
intpt
int

/*------------------------------*/
/* INTERNAL POINT */
/* ----------------------------- */
/* INTERNAL POINT NUMBER */
/* COORDINATES */
/* NEW COORDINATES */
/* POTENTIAL */
/* FLUX=du/dn */
/* POINTER TO THE NEXT INT. PT. */
/*------------------------------*/
/* END OF INT. PT. DEFINITION */
/* ------------------------------ */

struct intptstruct intpt;
*intpt head, *intpt tail;
n _intpts;

struct intptlist_struct
{
struct intpt struct *intpt;

struct intpt_list struct *next;

};

/*----------------------------- */
/* LIST OF INT. PTS. */
/*-----------------------------*/
/* POINTER TO THE INT. PT. */
/* POINTER TO NEXT INTPT LIST */
/* ------------------------------ */
/* END INTPT LIST DEFINITION */
/*----------------------------*/

typedef struct intpt_list struct intpt_list;

/*------------------------------*/
struct surface struct /* GEOMETRICAL SURFACE */

S/*------------------------------*/
short number, /* SURFACE NUMBER */

segs ; /* NUMBER OF SEGMENTS IN SURFACE*/
struct seg_list struct *seg list; /* POINTER TO LIST OF SEGMENTS */
struct intptlist struct *intptlist;/* POINTER TO INT. PT. LIST */
struct surface struct *next; /* POINTER TO NEXT SURFACE */

/*-----------------------------*/
}; . /* END OF SURFACE DEFINITION */

/* ------------------------------ */

typedef struct surface struct surf;
surf *surf head, *surf tail;
int n surfs;
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struct node struct
[ -
short number;
double x, y,

dx, dy,
xnew,ynew,
bcl,
bc2,

typedef
node
int

char kbcl,
kbc2;

struct node struct *next;

};

struct node struct node;
*node head, *node tail;
n nodes;

struct node list struct
{ -
struct node struct *node;

struct node lTst struct *next;

};

/* NODE FOR DISCRETIZATION */
/*------------------------------*/
/* NODE NUMBER
/* ORIGINAL COORDINATES */
/* DISPLACEMENTS */
/* DEFORMED SHAPE COORDINATES */
/* BOUNDARY CONDITION 1 */
/* BONDARY CONDITION 2
/* POTENTIAL IN POTENTIAL PROBS.*/
/* FLUX IN POTENTIAL PROBS. */
/* KIND OF BOUND. COND. 1
/* KIND OF BOUND. COND. 2 */
/* POINTER TO THE NEXT NODE */
/*------------------------------*
/* END OF NODE DEFINITION */
/* ------------------------------ *

/------------------------------*/

/* LIST OF NODES */
/* ------------------------------ */
/* POINTER TO THE NODE */
/* POINTER TO THE NEXT NODE LIST*/
/* ----------------------------- *
/* END OF NODE LIST DEFINITION */
/*------------------------------*/

typedef struct node_list struct node list;

struct element struct
{
short number,

nodes;
double length,

!new,
xl,yl,
x2,y2,
xlnew,ylnew,
x2new,y2new;--

char type,
expansion;

struct node list struct *node list;
struct element struct *next;

};

typedef struct element struct elem;
elem *elem head, *elem tail;
int n elems;

/*------------------------------*/

/* ELEMENT FOR DISCRETIZATION */
/*------------------------------*/
/* ELEMENT NUMBER */
/* NUMBER OF NODES IN ELEMENT */
/* ORIGINAL LENGTH OF ELEMENT */
/* FINAL LENGTH OF ELEMENT
/* ORIGINAL COORD. OF ELEM. START*/
/* ORIGINAL COORD. OF ELEM. END*/
/* FINAL COORD. OF ELEM. START */
/* FINAL COORD. OF ELEM. END */
/* TYPE OF ELEMENT (S,C,P) */
/* EXPANSION OF ELEMENT (C,L,Q) */
/* POINTER TO LIST OF NODES */
/* POINTER TO NEXT ELEMENT */
/*-----------------------------*/

/* END OF ELEMENT DEFINITION */
/*------------------------------*
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struct plot_struct

short

} plot_options;

dots: 1,
nodes: 1,
segments: 1,
elements:1,
int_pts:l;

/* PLOTTING OPTIONS */
/*------------------------------/
/* PLOT DOTS */
/* PLOT NODES */
/* PLOT SEGEMENTS */
/* PLOT ELEMENTS */
/* PLOT INTERNAL POINTS */
/***********************

/*************************************************************
* END OF FIDES' CENTRAL DATABASE DEFINITION. *
********************************************************* */* *
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APPENDIX B

EXTRACTS FROM FIDES' CODE

This appendix contains some of FIDES' functions. The

system consists of roughly 9000 lines of code (about 150 pages

of program listings), and is too large to be included in this

thesis. For any information about the FIDES's system, or about

some specific functions, please contact the author.
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/******************************************

* START of create boundary FUNCTION
**** ******************************************************************** /

#include <stdio.h>
#include <math.h>
#include <ctype.h>
#include "ndatabase.h"

#define begin
#define end
#define toupper(c) (islower(c)?((c)-('a'-'A')):(c))

/* DEFINE MASTER I/O FILES */
FILE *master, *prompt;

create_boundary()
begin

int
extern int
double
char
char
dot
dot list
seg
extern FILE
extern dot
extern seg
extern int

answer[0]='Y';
checklO0]='N';
check2(01='Y';

/*BEGIN CREATE BOUNDARY*/

i, j, nd, ns;
n surfs;
xl, yl, x2, y2, x3, y3, 12, rl, r2, r;
modulel9],checkl(9],check2([9,answer(9],segtypel91;
direction10]; '
*dot a, *dot b, *dot c, *attach dot();
*dot-list a,*dot list b,*dot list c,*attach dot list();
*seg w, *segb, *attach_seg(; - -
*master, *prompt;
*dot head;
*seg head;
n dots, nsegs;

while(strcmp(answer,"n",l)&&strcmp(answer,"N",l))
begin /*BEGIN WHILE LOOP*/

nd = n dots + 1;
ns = n_segs + 1;

fprintf(prompt,"\nTO CREATE A SEGMENT, TYPE: S");
fprintf(prompt,"\nTO OUTPUT , TYPE: O");
fprintf(prompt,"\nTO EDIT , TYPE: E");
fprintf(prompt,"\nTO PLOT THE GEOMETRY,TYPE: P");
fprintf(prompt,"\nENTER YOUR COMMAND :");
fscanf(master,"%s",module);

switch'toupper(module([0))
begin

case 'S':

/*BEGIN FIRST SWITCH LOOP*/

/*BEGIN CASE S IN FIRST SWITCH*/

if(n surfs == 0)
n surfs = 1;

while(strcmp(check2,"n",l)&&strcmp(check2,"N",l))
beoin i*SEGTN wHILE LOP*
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forintf(prompt,"\nTO CREATE: -A STRAIGHT
fprintf(prompt," -A CIRCLE
fprintf(prompt," -A POLYNOMIAL
fprintf(prompt,"ENTER YOUR COMMAND: ');

fscanf(master,"%s",segtype);

switch(toupper(segtype[0O))
begin

case 'S':

LINE, TYPE: S\n");
C\n");
P\n");

/*BEGIN SECOND SWITCH*/

fprintf(prompt,"\n\nTO CREATE A STRAIGHT LINE YOU NEED TO INPUT :");
fprintf(prompt,"\n TWO POINTS FOR THE FIRST SEGMENT OF A SURFACE,"):
fprintf(prompt,"\n ONE POINT-FOR EACH SUBSEQUENT SEGMENT.");

/* IN CASE IT IS THE FIRST DOT OF THE SURFACE*/
if (checkllOl=='N' II checkl(01=='n')
begin /*BEGIN IF*/

/* CREATE FIRST DOT OF SEGMENT */
dot a = attach dot(nd++);
fprTntf(prompt,"\n\nGIVE COORDINATES
fscanf(master,"%f %f",&xl,&yl);
dot a->x = xl;
dota->y = yl;

/* CREATE SECOND DOT OF SEGMENT */
dot b = attach dot(nd++);
fprTntf(prompt,"\n\nGIVE COORDINATES
fscanf(master,"%f %f",&x2,&y2);
dot b->x=x2;
dot_b->y=y2;

end

/* IN CASE IT IS NOT THE FIRST DOT */
else
begin

/* FIRST DOT = PREVIOUS SECOND DOT */
dot a = dot b;
xl = dot a->x;
yl = dota->y;

/* CREATE SECOND DOT OF SEGMENT */
dot b = attach dot(nd++);
fprTntf(prompt,"\n\nGIVE COORDINATES OF
fscanf(master,"%f %f",&x2,&y2);
dot b->x=x2;
dot b->y=y2;

end

OF FIRST POINT : xl,yl\n");

OF SECOND POINT : x2,y2\n");

/*END IF*/

/*BEGIN ELSE*/

SECOND POINT : x2,y2\n");

-/*END OF ELSE*/

/* CREATE SEGMENT */
seg_w=attach seg(ns+);
seg w->dots=2;
12=Txl-x2)*(xl-x2)+(yl-y2)*(yl-y2);
seg_w->length = sqrt(12);
seg w->type = 'S';

/* POINT TO THE TWO DOTS */
dot list a = attach dot list();
seg w->dot list = dot list a;
dot list b = attach dot list();
dot list a->next = dot list b:
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-dot list b->dot = dot b;

break;

case 'C':

fprintf(prompt,"\n\nTO CREATE A CIRCULAR SEGMENT YOU NEED TO INPUT :");
fprintf(prompt,"\n2 POINTS AND A CENTER, FOR THE FIRST SEGMENT OF A SURF
fprintf(prompt,"\nl POINT AND A CENTER, FOR EACH SUBSEQUENT SEGMENT.");

/* IN CASE IT IS THE FIRST DOT OF THE SURFACE*/
if (checkl(O0=='N' II checkl01=='n')
begin /*BEGIN IF*/

/*ASK FOR DATA*/
fprintf(prompt,"\n\nGIVE COORDINATES OF FIRST POINT : xl,yl\n");
fscanf(master,"%f %f",&xl,&yl);
fprintf(prompt,"\n\nGIVE COORDINATES OF SECOND POINT : x2,y2\n");
fscanf(master,"%f %f",&x2,&y2);
fprintf(prompt,"\n\nGIVE COORDINATES OF THE CENTER : x3,y3\n");
fscanf(master,"%f %f",&x3,&y3);
fprintf(prompt,"\nIS YOUR CIRCLE COUNTERCLOCKWISE W.R.T. ITS CENTER (Y/
fscanf(master,"%s",direction);

/*CHECK RADIUS*/
rl=(xl-x3)*(xl-x3)+(yl-y3)*(yl-y3);
r2=(x3-x2)*(x3-x2)+(y3-y2)*(y3-y2);
if (fabs(rl-r2)>0.00001)
begin /*BEGIN IF*/

fprintf(prompt,"Pt.1 AND Pt.2 ARE NOT AT SAME DISTANCE FROM CENTER.")
fprintf(prompt,"YOUR RADIUS IS WRONG. CHECK DATA AND TRY AGAIN.");
break;

end /*END IF*/
r = sqrt(rl);

/* CREATE FIRST DOT OF SEGMENT */
dot a = attach dot(nd++);
dot a->x = xl;
dot a->y = yl;

/* CREATE SECOND DOT OF SEGMENT */
dot b = attach dot(nd++);
dot b->x=x2;
dotb->y=y2;

/* CREATE CENTER OF SEGMENT */
dot c = (dot.*) malloc(sizeof(dot));
dot c->x=x3;
dot c->y=y3;
if Ttoupper(direction[0])=='N')

dot c->number = -1;
else

dot c->number = 1;

end /*END IF'/

/* IN CASE IT IS NOT THE FIRST DOT */
else
begin /*BEGIN ELSE*/ -

/* FIRST DOT = PREVIOUS SECOND DOT */
dot a = dot b;
xl = dot a->x;
vl = dota- v
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/*ASK FOR DATA*/
fprintf(prompt,"\n\nGIVE COORDINATES OF SECOND POINT : x2,y2\n");
fscanf(master,"%f %f",&x2,&y2);
Eprintf(prompt,"\n\nGIVE COORDINATES OF THE CENTER : x3,y3\n");
fscanf(master,"%f %f",&x3,&y3);
fprintf(prompt,"\nIS YOUR CIRCLE COUNTERCLOCKWISE W.R.T. ITS CENTER (Y/
fscanf(master,"%s",direction);

/*CHECK RADIUS*/
rl=(xl-x3)*(xl-x3)+(yl-y3)*(yl-y3);
r2=(x3-x2)*(x3-x2)+(y3-y2)*(y3-y2);
if (fabs(rl-r2)>0.00001)
begin /*BEGIN IF*/

fprintf(prompt,"Pt.l AND Pt.2 ARE NOT AT SAME DISTANCE FROM CENTER.")
fprintf(prompt,"YOUR RADIUS IS WRONG. CHECK DATA AND TRY AGAIN.");
break;

end /*END IF*/
r = sqrt(rl);

/* CREATE SECOND DOT OF SEGMENT */
dot b = attach dot(nd++);
dot b->x=x2;
dot_b->y=y2;

/* CREATE CENTER OF SEGMENT */
dot c = (dot *) malloc(sizeof(dot));
dotc->x=x3;
dot c->y=y3;
if Ttoupper(directionl0])=-'N')
dot c->number = -1;

else
dot c->number = 1;

end /*END OF ELSE*/

/* CREATE SEGMENT */
seg_w=attach seg(ns++);
segw->dots=3;
seg_w->length = r;
seg_w->type = 'C';

/* POINT TO THE THREE DOTS */
dot list a = attach dot list();
seg w->dot list = dot ist a;
dot list b = attach dot list();
dot list a->next = dot list b;
dot list-c = attach dot list();
dot list b->next = dot list c;
dot list a->dot = dot a;
dot list b->dot = dot b;
dot list c->dot = dot c;

break;

case 'P':
fprintf(prompt,"\n POLYNOMIAL BEING IMPLEMENTED !\n");
break;

default:
fprintf(prompt,"NO SUCH SEGMENT TYPE.");
break;

end /*END SECOND SWITCH*/
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fprintf(prompt,"\nARE YOU STILL ON THE SAME SURFACE (Y/N)?\n");
fscanf(master,"%s",checkl);

check2[10 = checkl(0];

if(checkll[0 == 'N' II check(0) == 'n')
n surfs++;

end /*END WHILE LOOP*/

break; /*END S CASE IN FIRST SWITCH*/

case '0':

outputgeometry();
break;

case 'P':

be_plot();
break;

case 'E':

edit create();
break;

default:

/*BEGIN CASE O IN FIRST SWITCH*/

/*END CASE 0 IN FIRST SWITCH*/

/*BEGIN CASE P IN FIRST SWITCH*/

/*END CASE P IN FIRST SWITCH*/

/*BEGIN CASE E IN FIRST SWITCH*/

/*END CASE E IN FIRST SWITCH*/

fprintf(prompt,"\n\nUNRECOGNIZED COMMAND!...\n\n\n");
break;

end /*END FIRST SWITCH LCOP*/

check2(0]='Y';

fprintf(prompt,"\nDO YOU WANT TO CONTINUE CREATING ?");
fprintf(prompt,"\nENTER YES OR NO :");
fscanf(master,"%s",answer);

/*END OF WHILE LOOP*/

/*END OF CREATE BOUNDARY*/

/END of create ****************************oundary ****************************************
* END of create boundary FUNCTION *
***************************************

end

return;

end
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APPENDIX C

DISCRETIZATION RUN ON UNIX/VAX-750 SYSTEM

This appendix contains an example of the discretization of

the problem shown in Fig. C.1, using the UNIX/VAX-750's version

of FIDES. It will be limited to a mesh generation, to avoid

redundancy with Appendix D which contains a complete

illustration of the system. In this appendix the editor

facility will be domonstrated as well as the graphics

capabilities. The menu driven option is illustrated better by

the AEGIS/APOLLO's version of FIDES.

To obtain a copy of FIDES executable file, please contact

the author.
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EEEEEE L L
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EEEE L L
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YOU ENTERED THE MAIN PROGRAM

COMMANDS ARE : MESH, SOLVE, POST,

ENTER YOUR COMMAND : m

YOU ENTERED THE DISCRETE ELEMENT MESH GENERATOR

COMMANDS ARE : CREATE, BEMESH, FEMESH,

ENTER YOUR COMMAND : c

11111I111! 11!1111 1 11 1tlltl . .!11!.11!l

EXTERIOR BOUNDARY SHOULD BE COUNTERCLOCKWISE.
INTERIOR BOUNDARY SHOULD BE CLOCKWISE.

tilt11. 11 1 1111 1.111! 11lli t 1111 1111t

TO CREATE A SEGMENT, TYPE:
TO OUTPUT , TYPE:
TO EDIT TYPE:
TO PLOT THE GEOMETRY,TYPE:
ENTER YOUR COMMAND :s

TO CREATE:

ENTER YOUR

-A STRAIGHT LINE,
-A CIRCLE
-A POLYNOMIAL
COMMAND: s

TO CREATE A STRAIGHT
TWO POINTS FOR THE
ONE POINT FOR EACH

TYPE: S
C
P

LINE YOU NEED TO INPUT :
FIRST SEGMENT OF A SURFACE,
SUBSEQUENT SEGMENT.

H H
H H
H H
H H
HHHHHHH
H H
H H
H H
H H

0000000
0 0
O 0
O 
0 0
O 0
O 0

0000000ci c
nflciOciic

EXIT

EXIT
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GIVE COORDINATES OF FIRST POINT : xl,yl
0 0

GIVE COORDINATES OF SECOND POINT : x2,y2
5 0

ARE YOU STILL ON THE SAME SURFACE (Y/N)? y

TO CREATE: -A STRAIGHT LINE, TYPE: S
-A CIRCLE , C
-A POLYNOMIAL , P

ENTER YOUR COMMAND: c

TO CREATE A CIRCULAR SEGMENT YOU NEED TO INPUT :
2 POINTS AND A CENTER, FOR THE FIRST SEGMENT OF A SURFACE,
1 POINT AND A CENTER, FOR EACH SUBSEQUENT SEGMENT.

GIVE COORDINATES OF SECOND POINT : x2,y2
7 2

GIVE COORDINATES OF THE CENTER : x3,y3
5 2

IS YOUR CIRCLE COUNTERCLOCKWISE W.R.T. ITS CENTER (Y/N)? y

ARE YOU STILL ON THE SAME SURFACE (Y/N)? y

TO CREATE: -A STRAIGHT LINE, TYPE: S
-A CIRCLE , C
-A POLYNOMIAL , P

ENTER YOUR COMMAND: s

TO CREATE A STRAIGHT LINE YOU NEED TO INPUT :
TWO POINTS FOR THE FIRST SEGMENT OF A SURFACE,
ONE POINT FOR EACH SUBSEQUENT SEGMENT.

GIVE COORDINATES OF SECOND POINT : x2,y2
0 0

ARE YOU STILL ON THE SAME SURFACE (Y/N)? n

DO YOU WANT TO CONTINUE CREATING ?y

ENTER YES OR NO :
TO CREATE A SEGMENT, TYPE: S
TO OUTPUT , TYPE: 0
TO EDIT , TYPE: E
TO PLOT THE GEOMETRY,TYPE: P
ENTER YOUR COMMAND : q
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NUMBER OF DOTS = 4

DOT COORDINATES
No. X Y

0.00
5.00
7.00
0.00

0.00
0.00
2.00
0.00

NUMBER OF SEGS = 3

LIST OF STRAIGHT LINE SEGMENTS

SEG DOT1
No. No.

DOT2
No.

LENGTH

1 2 5.000000
3 4 7.280110

LIST OF CIRCULAR

SEG
No.

DOT1
No.

SEGMENTS

DOT2 CENTER CENTER RADIUS
No. X Y

2 3 5.000 2.000 2.000

TO CREATE NODES , TYPE :NODE

TO INPUT LOADS , TYPE :LOAD

FOR INTERNAL POINTS, TYPE:INT

TO OUTPUT INFORMATION , TYPE :OUT

TO EDIT INFORMATION , TYPE

TO PLOT THE PROBLEM , TYPE

:EDIT

:PLOT

TO EXIT THE MESH GENERATOR , TYPE :EX

ENTER YOUR COMMAND : p



197

-----"

DO YOU WANT TO CONTINUE CREATING ?
FNTPR YS 1R NnO n

COMMANDS ARE : CREATE, BEMESH, FEMESH, EXIT

ENTER YOUR COMMAND : b

ARE YOU SOLVING A 2D POTENTIAL
OR 2D ELASTICITY PROBLEM (E)?

p

DO YOU WANT CONTINUOUS (C) OR
DISCONTINUOUS (D) NODES ?
d

TO CREATE NODES , TYPE :NODE

TO INPUT LOADS , TYPE

(P)

:LOAD

FOR INTERNAL POINTS, TYPE:INT

TO OUTPUT INFORMATION , TYPE :OUT

TO EDIT INFORMATION , TYPE :EDIT

TO PLOT THE PROBLEM , TYPE :PLOT

TO EXIT THE MESH GENERATOR , TYPE :EX

ENTER YOUR COMMAND : n
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ENTER THE SEGMENT NUMBER : 1

YOU CAN DIVIDE YOUR SEGMENT INTO :
EQUAL SIZE ELEMENTS BY TYPING :EQ
GRADED SIZE ELEMENTS BY TYPING :GR
ARBITRARY SIZE ELEMENTS BY TYPING :AR
ENTER THE DIVISION DESIRED : e

ENTER THE NUMBER OF ELEMENTS
4

ENTER THE TYPE OF EXPANSION DESIRED
FOR CONSTANT DISPLACEMENT EXPANSION TYPE : C
FOR LINEAR DISPLACEMENT EXPANSION TYPE : L
FOR QUADRATIC DISPLACEMENT EXPANSION TYPE : Q
c

TO CREATE NODES , TYPE :NODE

TO INPUT LOADS , TYPE :LOAD

FOR INTERNAL POINTS, TYPE:INT

TO OUTPUT INFORMATION , TYPE :OUT

TO EDIT INFORMATION , TYPE :EDIT

TO PLOT THE PROBLEM , TYPE :PLOT

TO EXIT THE MESH GENERATOR , TYPE :EX

ENTER YOUR COMMAND : n

ENTER THE SEGMENT NUMBER : 2

YOU CAN DIVIDE YOUR SEGMENT INTO :
EQUAL SIZE ELEMENTS BY TYPING :EQ
GRADED SIZE ELEMENTS BY TYPING :GR
ARBITRARY SIZE ELEMENTS BY TYPING :AR
ENTER THE DIVISION DESIRED : g

ENTER THE NUMBER OF ELEMENTS : 4

ENTER RATIO OF LAST ELEMENT TO FIRST ELEMENT : 3

ENTER THE TYPE OF EXPANSION DESIRED .
FOR CONSTANT DISPLACEMENT EXPANSION TYPE : C
FOR LINEAR DISPLACEMENT EXPANSION TYPE : L
FOR QUADRATIC DISPLACEMENT EXPANSION TYPE : Q
1
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TO CREATE NODES , TYPE

TO INPUT LOADS , TYPE

:NODE

:LOAD

FOR INTERNAL POINTS, TYPE:INT

TO OUTPUT INFORMATION , TYPE :OUT

TO EDIT INFORMATION , TYPE

TO PLOT THE PROBLEM , TYPE

TO EXIT THE MESH GENERATOR ,

:EDIT

:PLOT

TYPE :EX

ENTER YOUR COMMAND : n

ENTER THE SEGMENT NUMBER : 3

YOU CAN DIVIDE YOUR SEGMENT INTO
EQUAL SIZE ELEMENTS BY TYPING :EQ
GRADED SIZE ELEMENTS BY TYPING :GR
ARBITRARY SIZE ELEMENTS BY TYPING :AR
ENTER THE DIVISION DESIRED : g

ENTER THE NUMBER OF ELEMENTS : 2

ENTER RATIO OF LAST ELEMENT. TO FIRST ELEMENT : 2

ENTER THE TYPE OF EXPANSION DESIRED .
FOR CONSTANT DISPLACEMENT EXPANSION TYPE : C
FOR LINEAR DISPLACEMENT EXPANSION TYPE : L
FOR QUADRATIC DISPLACEMENT EXPANSION TYPE : Q
q

TO CREATE NODES , TYPE :NODE

TO INPUT LOADS , TYPE :LOAD

FOR INTERNAL POINTS, TYPE:INT

TO OUTPUT INFORMATION , TYPE :OUT

TO EDIT INFORMATION , TYPE

TO PLOT THE PROBLEM , TYPE

:EDIT

:PLOT

TO EXIT THE MESH GENERATOR , TYPE :EX

ENTER YOUR COMMAND : p



200

HOW MANY INTERNAL POINTS DO YOU WANT?

3

ENTER THE COORDINATES (X,Y) OF POINT: 1

5.00 0.50

ENTER THE COORDINATES (X,Y) OF POINT: 2

5.00 0.75

ENTER THE COORDINATES (X,Y) OF POINT: 3

4.00 0.50
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TO CREATE NODES , TYPE :NODE

TO INPUT LOADS , TYPE :LOAD

FOR INTERNAL POINTS, TYPE:INT

TO OUTPUT INFORMATION , TYPE :OUT

TO EDIT INFORMATION , TYPE :EDIT

TO PLOT THE PROBLEM , TYPE :PLOT

TO EXIT THE MESH GENERATOR , TYPE :EX

ENTER YOUR COMMAND : p

x z
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TO CREATE NODES , TYPE :NODE

TO INPUT LOADS , TYPE :LOAD

FOR INTERNAL POINTS, TYPE:INT

TO OUTPUT INFORMATION , TYPE :OUT

TO EDIT INFORMATION , TYPE

TO PLOT THE PROBLEM , TYPE

:EDIT

:PLOT

TO EXIT THE MESH GENERATOR , TYPE :EX

ENTER YOUR COMMAND : ex

DO YOU WANT TO STAY IN BEMESH ?
ENTER YES or NO: n

COMMANDS ARE : CREATE, BEMESH, FEMESH, EXIT

ENTER YOUR COMMAND :ex
end of mesh in demg
DO YOU WANT TO STAY IN DEMG
ENTER YES or NO: n
MESH END

COMMANDS ARE : MESH,

ENTER YOUR COMMAND :

BBBBBBB

B

B R
BBBBBBB
B B
B
B

BBBBBBBI-

SOLVE, POST, EXIT

ex

Y Y

Y Y

EEEEEEEE
E
E

E
E
E

EEEEEEEE
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APPENDIX D

COMPLETE RUN ON AEGIS/APOLLO SYSTEM

This appendix contains an example run using the AEGIS/

APOLLO's version of FIDES for the problem outlined in Fig. D.I.

The three different stages of the system:

* pre-processor,

o solver, and

* post-processor

are used in illustrating this problem.

The different menus on APOLLO are shown for each stage.

The dark option indicates the mouse's selection. For similar

steps, menus are not shown again to avoid repetition. As the

reader can notice, no explanation is necessary to be able to use

the program. Although this gives a taste of the system's

capabilities, it is not as impressive as a real demonstration.

To obtain a copy of the executable file, please contact the

author.
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******************** HELLO **************************

WELCOME TO :

* FIDES *

* *t

* * .

* The Friendly Interactive Discrete Element Solver .*
*c *

*c *

Developed by : FOUAD G. TAMER

* Under the guidance of : Prof. JEROME J. CONNOR

TYPE <RETURN> TO CONTINUE

NOTE : Thanks are due to :

FADI A. CHEHAYEB
for his help with graphics, and the menus on Apollo*

and ROBERT B. PETROSSIAN
for transfering this program on Apollo.

TYPE <RETURN> TO CONTINUE
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YOU ENTERED THE DISCRETE ELEMENT MESH GENERATOR

EXTERIOR BOUNDARY SHOULD BE COUNTERCLOCKWISE.
INTERIOR BOUNDARY SHOULD BE CLOCKWISE.

11111111 111111 H11111111111111111 1111 1111

4x

MAIN MENU

Solver

Post Processor

Exit

MESH GENERATOR

Boundary Elements

Finite Elements

Exit

SEGMENT TYPE

Circle

Polynomial
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TO CREATE A STRAIGHT LINE YOU NEED TO INPUT :
TWO POINTS FOR THE FIRST SEGMENT OF A SURFACE,
ONE POINT FOR EACH SUBSEQUENT SEGMENT.

GIVE COORDINATES OF FIRST POINT : xl yl

SPACE COORDINATES BY SPACES OR <RETURN>
0 0

GIVE COORDINATES OF SECOND POINT : x2 yZ

SPACE COORDINATES BY SPACES OR <RETURN>
5 0

ARE YOU STILL ON THE SAME SURFACE (Y/N)?

Y

TO CREATE A STRAIGHT LINE YOU NEED TO INPUT :
TWO POINTS FOR THE FIRST SEGMENT OF A SURFACE,
ONE POINT FOR EACH SUBSEQUENT SEGMENT.

GIVE COORDINATES OF SECOND POINT : x2 yZ

SPACE COORDINATES BY SPACES OR <RETURN>
55

ARE YOU STILL ON THE SAME SURFACE (Y/N)?

Y

TO CREATE A STRAIGHT LINE YOU NEED TO INPUT :
TWO POINTS FOR THE FIRST SEGMENT OF A SURFACE,
ONE POINT FOR EACH SUBSEQUENT SEGMENT.

GIVE COORDINATES OF SECOND POINT : x2 y2

SPACE COORDINATES BY SPACES OR <RETURN>
0 5

ARE YOU STILL ON THE SAME SURFACE (Y/N)?

Y
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TO CREATE A STRAIGHT LINE YOU NEED TO INPUT :

TWO POINTS FOR THE FIRST SEGMENT OF A SURFACE,
ONE POINT FOR EACH SUBSEQUENT SEGMENT.

GIVE COORDINATES OF SECOND POINT : x2 y2

SPACE COORDINATES BY SPACES OR <RETURN>

0 0

ARE YOU STILL ON THE SAME SURFACE (Y/N)?

CREATE GEOMETRY

Add New Segnent

Editor

Plot Geometu I

Exit

NUMBER OF DOTS = 5

DOT COORDINATES
No. X Y

1 . 00 0.00
5.00 0.00

3 5.00 5.00
4 0.00 5.00
5 0.00 0.00
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NUMBER OF SEGS = 4

LIST OF STRAIGHT LINE SEGMENTS

SEG DOTI DOT2 LENGTH
No. No. No.

5.000000
5.000000
5.000000
5.000000

PLOT OPTIONS:

INT PTS DOTS SEGMENTS
OFF OFF OFF

NODES ELEMENTS
OFF OFF

PLOTTING OPTIONS

Geometric Dots

Elements

Nodes

Internal Points

Plot

Quit

PLOTTING OPTIONS

Segments

Elements

Nodes

Internal Points

Plot

Quit
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PLOT OPTIONS:

INT PTS DOTS SEGMENTS
OFF OFF ON

NODES ELEMENTS
OFF OFF

PLOT OPTIONS:

INT PTS DOTS SEGMENTS
OFF ON ON

NODES ELEMENTS
OFF OFF

PLOTTING OPTIONS

Segments

Geometric Dots

Elements

Nodes

Internal Points

Quit

P T. O0
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PLOTTING OPTIONS

Segments

Geometric Dots

Elements

Nodes

Internal Points

Plot

,CREATE GEOMETRY

Add New Segnent

Output Current State

Editor

Plot Geometry

ii / 1

i



MESH GENERATOR

Create Geometry

Finite Elements

Exit

PROBLEM TYPE ELEMENT EDGES

a - Continuous

Elasticity

211

BOUNDARY ELEMENTS

Load

Internal Points

Output

Editor

Plot

Exit

-EXPANSION-

Linear

Quadratic

DISCRETIZATION

Graded

Arbitrary
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ENTER THE SEGMENT NUMBER :
1
YOU CAN DIVIDE YOUR SEGMENT INTO :
EQUAL SIZE ELEMENTS
GRADED SIZE ELEMENTS
ARBITRARY SIZE ELEMENTS

ENTER THE NUMBER OF ELEMENTS
5
ENTER THE TYPE OF EXPANSION DESIRED
CONSTANT DISPLACEMENT EXPANSION
OR LINEAR DISPLACEMENT EXPANSION
OR QUADRATIC DISPLACEMENT EXPANSION

ENTER THE SEGMENT NUMBER :

YOU CAN DIVIDE YOUR SEGMENT INTO :
EQUAL SIZE ELEMENTS
GRADED SIZE ELEMENTS
ARBITRARY SIZE ELEMENTS

ENTER THE NUMBER OF ELEMENTS
5
ENTER THE TYPE OF EXPANSION DESIRED
CONSTANT DISPLACEMENT EXPANSION
OR LINEAR DISPLACEMENT EXPANSION
OR QUADRATIC DISPLACEMENT EXPANSION

ENTER THE SEGMENT NUMBER :

YOU CAN DIVIDE YOUR SEGMENT INTO :
EQUAL SIZE ELEMENTS
GRADED SIZE ELEMENTS
ARBITRARY SIZE ELEMENTS

ENTER THE NUMBER OF ELEMENTS
5
ENTER THE TYPE OF EXPANSION DESIRED
CONSTANT DISPLACEMENT EXPANSION
OR LINEAR DISPLACEMENT EXPANSION
OR QUADRATIC DISPLACEMENT EXPANSION

ENTER THE SEGMENT NUMBER :
4
YOU CAN DIVIDE YOUR SEGMENT INTO :
EQUAL SIZE ELEMENTS
GRADED SIZE ELEMENTS
ARBITRARY SIZE ELEMENTS

ENTER THE NUMBER OF ELEMENTS
5

ENTER THE TYPE OF EXPANSION DESIRED

CONSTANT DISPLACEMENT EXPANSION
OR LINEAR DISPLACEMENT EXPANSION
OR QUADRATIC DISPLACEMENT EXPANSION
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HOW MANY INTERNAL POINTS DO YOU WANT?4

ENTER THE COORDINATES (X,Y) OF POINT: I
1 2.5

ENTER THE COORDINATES (X, Y) OF POINT: 2

ENTER THE COORDINATES (X,Y) OF POINT: 3
3 2.5

ENTER THE COORDINATES
4 2.5

(X,Y) OF POINT: 4

BOUNDARY ELEMENTS

Discretize

Load

Output

Editor

Plot

Exit
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LOAD TYPE

Potential

BOUNDARY ELEMENTS

Discretize

Internal Points

Output

Editor

Plot

Exit



THE

THE

THE

THE

THE

THE
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FIRST ELEMENT NUMBER:1

SECOND ELEMENT NUMBER:5

FLUX VALUE FROM ELEMENT 1 TO ELEMENT5 :0.0

FIRST ELEMENT NUMBER:6

SECOND ELEMENT NUMBER:10

POTENTIAL VALUE FROM ELEMENT6 :TO ELEMENT10 :0.0

ENTER THE FIRST ELEMENT NUMBER:11

ENTER THE SECOND ELEMENT NUMBER:15

ENTER THE FLUX VALUE FROM ELEMENT 11 TO ELEMENT15 :0.0

ENTER THE FIRST ELEMENT NUMBER:!6

ENTER THE SECOND ELEMENT NUMBER:20

ENTER THE POTENTIAL VALUE FROM ELEMENT16 :TO ELEMENT20 :500.0

ENTER

ENTER

ENTER

ENTER

ENTER

ENTER
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NUMBER OF NODES=20

NODE

No.

1 0.50
S 1.50

"3 2.50
4 3.50
,5 4.50
6 5.00
7 5.00
:= 5.00
? 5.00
0 5.00
1 4.50

COORDINATES

Y

0.00
0.00
0.00
0.00
0.00
0.50
1.50
2.50
3.50
4.50
5.00
5.00

B.C.'S

B.C. 1 KIND

0.00 Q
0.00 Q
0.00 Q
0.00 Q
0.00 Q
0.00 U
0.00 U
0.00 U
0.00 U
0.00 U
0o. oo
0.0co Q

BOUNDARY ELEMENTS

Discretize

Load

Internal Points

Editor

Plot

Exit
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NODE

No.

COORDINATES

2.50
1.50
0.50
0.00
0.00
0.00
0.00
0.00

5.00
5.00
5.00
4.50
3.50
2.50
1.50
0.50

B.C.'S

B.C. 1 KIND

0.00
0.00
0.00

500.00
500.00
500.00
500.00
500.00

NUMBER OF ELEMENTS=20

LIST OF ELEMENTS

TYPE EXPANSION NODE NODE NODE
1 2 3

CONS.
CONS.
CONS.
CONS.
CONS.

CONS.

CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.

DO YOU ALSO WANT TO OUTPUT ELEMENT ENDS (Y/N)?

ELEM.
No.

LENGTH

CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.
CONS.

1. 00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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ELEMENT ENDS ARE:

ELEM.
No.

1

3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20)

START
X1

0.00
1.00
2.00
3.00
4.00
5.00
5.00
5.00
5.00

5.00
5.00
4.00
3.00
2.00
1.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
1.00
2.00
3.00

4.00
5.00
5.00
5.00
5.00
5.00
5.00
4.00
3.00
.00

1.00

NUMBER OF INTERNAL POINTS=4

POINT COORDINATES

No.

4-34

1.00
2.00
3.00
4.00

2.50

2.50

2.50
50.

END

1 .00
2.00
3.00
4.00
5.00
5.00
5.00
5.00
5.00

5.00
4.00
3.00
2.00
1.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
1.00
2.00
3.00
4.00
5.00
5.00
5.00
5.00
5.00
5.00
4.00
3.00
2.00
1.00
0.00
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BOUNDARY ELEMENTS

Discretize

Load

Internal Points

Output

Editor

Exit

PLOTTING OPTIONS

Segments

Geometric Dots

Elements

Internal Points

Plot

Ouit

PLOTTING OPTIONS

Segments

Geometric Dots

Nodes

Internal Points

Plot

Quit

PLOTTING OPTIONS

Segments

Geometric Dots

Elements

Nodes

Plot

Ouit
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PLOT OPTIONS:

INT PTS DOTS SEGMENTS NODES ELEMENTS
OFF ON ON OFF OFF

PLOT OPTIONS:

INT PTS DOTS
OFF ON

SEGMENTS NODES ELEMENTS
ON OFF ON

PLOT OPTIONS:

INT PTS DOTS SEGMENTS NODES ELEMENTS

OFF ON ON ON ON

PLOT OPTIONS:

INT PTS DOTS SEGMENTS NODES ELEMENTS

ON ON ON ON ON

v v ~ L
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ENTER NODE NUMBER : 16

GET ONE OF THE FOLLOWING : NUMBER, COORD, TYPE OF_BC, VALUE OFBC
(GET NODE 16

type _ fbc

CURRENT TYPE OF BC IS POTENTIAL

BEM EDITOR

IModify Nodes/Elens

Delete Nodes/Elems

Add Nodes/Elems

Weld Two Nodes

Exit

EDITOR TYPE

Elements
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ENTER NODE NUMBER : 16

GET ONE OF THE FOLLOWING : NUMBER, COORD, TYPE_OF_BC, VALUEOF_BC
GET NODE 16 >

value of bc

CURRENT VALUE OF BC = 500.000000

BEM EDITOR

Modify Nodes/Elems

Get Information

Delete Nodes/Elems

Add Nodes/Elems

Weld Two Nodes

BOUNDARY ELEMENTS

Discretize

Load

Internal Points

Output

Editor

Plot

U-ia~~b~sp6[
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I AM SOLVING: PLEASE WAIT !
TRANSLATEI: Number of nodes = 20

I AM NEARLY DONE: PLEASE WAIT !

SOLUTION PHASE COMPLETED SUCCESSFULLY !!

MAIN MENU

Mesh Generator

So lver

Exit

POST PROCESSOR

Plot Resu lts

Exit 
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RESULTS AT THE NODES ARE :

NUMBER OF NODES=20

NODE COORDINATES

No. X Y POTENTIAL FLUX

1

3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0.50
1.50
2.50
3.50
4.50
5.00
5.00
5.00
5.00
5.00
4.50
3.50
2.50
1.50
0.50
0). 00

0.00
0.00
0.00
0 .00

0.00
0.00
0.00
0.00
0.00
0.50
1.50
2.50
3.50
4.50
5.00
5.00
5.00
5.00
5.00
4.50
3.50
2.50
1.50
). 50

OUTPUT PRINTING

Geometry Printing

Discretization Printing

Exit

RESULTS

452.59
351.10
250.02
148.95
47.40
0.00
0.00
0.00
0.00
0.00

47.40
1438.95
250.02
3451.10
452.59
500.00

500.00
500. 00
500.00
500.00

0.00
0.00
0.00
0.00
0.00

-105.33
-98.39
-99.50
-98.39

-105.33
0.00
0.00
0.00
0.00

0.00
105.39
98. 33
99.47
805.33

105.39
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RESULTS AT INTERNAL POINTS FOLLOW :

NUMBER OF INTERNAL POINTS=4

POINT

No.

COORDINATES

1.00
2.00
3.00
4.00

RESULTS

Y POTENTIAL

2.50 400.17
2.50 300.11
2.50
2.50

199.91
99.84

OUTPUT PRINTING

Geometry Printing

Discretization Printing

Results Printing

POST PROCESSOR

Output Results

Exit



226

'V v v V :

X X X

~_ 12 r

;.j kat -, . L

OUTPUT PLOTTING

Mesh Plot

X-Y Plot

Potential Contours

Exit
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OUTPUT PLOTTING

Mesh Plot

Flow Plot

Potential Contours

Exit

V -V V----~ -----

' ''

/"~

%i

--- 3
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SEPARATE NODE NUMBERS BY COMMAS OR SPACES

TYPE END TO TERMINATE INPUT

AS AN EXAMPLE : 1 2,3,8 14,20 END IS O.K.

ENTER YOUR RANGE : 2 3 4 14 13 12 END

ENTER X-AXIS LABEL: NODES NUMBER

ENTER Y-AXIS LABEL: FLUX VALUES

XY PLOT

Potential

PLOT LOCATION

Element

Range of EleMs (Disc)
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2 3 4 14
X-AXIS: NODE NUMBERS

Y-AXIS: POTENTIAL VALUES

563.32621

463.32621

363.32621

263.32621

163.32621

63.326208:

-36.6737

-136.673

-236.673

13 12
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ENTER

ENTER

PLOT LOCATION

Node Range

Elenent

i ,,,1

THE FIRST ELEMENT NUMBER: 6

THE SECOND ELEMENT NUMBER:10

ENTER X-AXIS LABEL: NODE NUMBERS

ENTER Y-AXIS LABEL: POTENTIAL VALUES

XY PLOT

Flux

EXTERIOR/INTERIOR

Integration Pts Plot
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I I

7 8
NODES NUMBER

FLUX VALUES

247.33358.

147.33358-

47.333588_

-52.88864L

-152.8664

-252.6664

-352.88668

-452.8884-

-552.8864J

9 16

L i "
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EXTERIOR/INTERIOR

Nodes Plot

YOU CAN SPECIFY ANY INTERIOR POINT RANGE

SEPARATE NUMBERS BY COMMAS OR SPACES

TYPE END TO TERMINATE INPUT

AS AN EXAMPLE : 1 3,3 14 20,30 END IS O.K.

ENTER YOUR RANGE : I 2 3 4 END

ENTER X-AXIS LABEL: INTERNAL POINTS NUMBER

ENTER Y-AXIS LABEL: POTENTIAL VALUE

XY PLOT

Flux

PLOT LOCATION

Element

Range of Elems (Disc)
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600.1305958800.1305

208.1305?

100.13852

0.130527

-99.8694L

-199.8694

1 2 3 4 X
X-AXIS: INTERNAL POINTS NUMBER

Y-AXIS: POTENTIAL VALUE
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POST PROCESSOR

Output Results

Plot Resultsu-Il

MAIN MENU

Mesh Generator

Solver

Post Processor
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APPENDIX E

PRESENTATION OF ACCURACY ADVISOR IMPLEMENTED ON GARFIELD

This appendix contains the general objects and rules for

the discretization advisor implemented on GARFIELD. Particular

rules for a special problem are also shown.
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(create geometry)

(add shape geometry description)

(add corners geometry number)

(create rectangle)

(add width rectangle value)

(add depth rectangle value)

(create dot)

(add corner dot yesno)

(add segmentleft dot segment)

(add segmentright dot segment)

(add number dot value)

(create problem)

(add run problem number) ,

(create segment)

(add boundary_condition segment kind),

(add value_bc segment value)
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RULE "Recognize rectangle"

IF (and (corners
(FOR ALL

(or

geometry 4)
?x

(is? corner ?x no)
(and (is? corner ?x

(perpendicular
yes)
(get segment_ left ?x)
(get segment right ?x))))))

THEN (shape geometry rectangle)

RULE " 10 < width/depth < 20

IF (and (shape geometry rectangle)
(>= (/ (get width (get shape

(get depth (get shape

THEN (and

RULE

10)
(< (/ (get width (get shape

(get depth (get shape
20))

(print "Divide your rectang
(print "\n two surfaces for
(print "\n discretization

geometry))
geometry)))

geometry))
geometry)))

le into ")
your ")

" width/depth > 20 "

IF (and (shape geometry rectangle)
(>= (/ (get width (get shape

(get depth
20))

THEN (and

geometry))
(get shape geometry)))

(print "Divide your rectangle into")
(print "\n different surfaces with")
(print."\n width/depth ratios")
(print "\n smaller than 10 !!"))

RULE "First run"

IF (is? run problem 1)

THEN (and (print " Do not use a fine mesh ")
(print "\n for the first run. Try a")
(print "\n coarse one first to coarse")
(print "\n a feel for the results. "))
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RULE "corner node"

IF (corner ?x yes)

THEN (and (print " Try not to locate nodes at ")
(print "\n corner #")
(print (get number ?x))
(print "\n use discontinuous elements"))

RULE "Singular point"

IF (and (is? boundary_condition (get segment_left ?x) potential)
(is? boundary_condition (get segment right ?x) potential)
(!= (get valuebc (get segment_left ?x))

(get value_bc (get segment_right ?x))))

THEN (and (print "Do not locate nodes at dot #")
(print (get number ?x)))
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(create dot 1)

(create dot 2)

(create dot 3)

(create dot 4)

(create dot 5)

(corner dot_1 yes)

(corner dot_2 yes)

(corner dot_3 yes)

(corner dot 4 no)

(corner dot_5 yes)

(number dot 1 1)

(number dot 2 2)

(number dot 3 3)

(number dot 4 4)

(number dot 5 5)

(run problem 1)

(corners geometry 4)

(width rectangle 15)

(depth rectangle 1) a

(create segment_1)

(create segment_2)

(segment_left dot_4 segment_1)

(segment_right dot_4 segment_2)

(boundary_condition segment_ potential)

(boundary_condition segment_2 potential)

(value_bc segment_1 4)

(value_bc segment_ 2 4)


