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Abstract

We compare a family of algorithms for the auto-
matic generation of taxonomies by adapting the Heymann-
algorithm in various ways. The core algorithm determines
the generality of terms and iteratively inserts them in a
growing taxonomy. Variants of the algorithm are created
by altering the way and the frequency, generality of terms
is calculated. We analyse the performance and the com-
plexity of the variants combined with a systematic threshold
evaluation on a set of seven manually created benchmark
sets. As a result, betweenness centrality calculated on un-
weighted similarity graphs often performs best but requires
threshold fine-tuning and is computationally more expen-
sive than closeness centrality. Finally, we show how an
entropy-based filter can lead to more precise taxonomies.

1. Introduction

Taxonomies for scientific research bodies facilitate the
organisation of knowledge. They are used in Information
Retrieval and Text Mining where it is beneficial to abstract
from plain words to hierarchical concepts, which allows
to structure document databases semantically. Immediate
applications are Ontology based searching [10], a success-
fully applied search engine for biomedical literature [4] and
emerging trend detection [3].

Manual taxonomy construction is accurate but is unsuit-
able for many resources that contain vast amounts of text
documents. Further, it is desirable to deterministically and
objectively develop taxonomies in order to provide consis-

tent maintenance, which is not guaranteed with nondeter-
ministic algorithms or subjective curators.

To extract subsumption (taxonomic) relationships from
text, there are two classes of approaches described in the
literature: syntactic patterns such as ’A’ is a ’B’ ([8]) and
statistical methods (e.g. [13]). Both classes rely on the
distributional hypothesis introduced by Harris [7], which
defines that two words which appear in many similar lin-
guistic contexts are semantically similar. A promising ap-
proach among the latter class is the algorithm developed in
[9] which is simple, fast and extensible, and hence can in-
clude ideas from various approaches. Although it was orig-
inally designed for tagging systems in social web commu-
nities, it can be adapted to general literature databases us-
ing co-occurrence of terms as the base for expressing term
similarity. In [18] it was shown that by utilising the co-
occurrence frequencies between a collection of representa-
tive keywords, it is possible to infer the overall taxonomy of
a given domain of research. A similar approach is presented
by [12], where the authors propose a subsumption criterion
for terms based on conditional probabilities for their co-
occurrences. Other term distance measures employed are
citation based, collaboration pattern based as well as more
elaborate techniques of context similarity.

The remainder of this document is organised as follows:
we elucidate several techniques originated from the Hey-
mann algorithm, including generality ordering methods,
various distance measures, weighting schemes and rerank-
ing. The algorithms are systematically compared using
seven benchmarks derived from a manually created ontol-
ogy of medical terms. Finally we show, how cautious in-
sertion into a taxonomy can improve the precision without



worsening the F-measure.

2. Systematic comparison of algorithms

2.1. Creation of MeSH benchmark sets

Quality assessment of taxonomy generation methods
is preferably carried out using gold standard taxonomies.
Medical Subject Headings (MeSH) is a man-curated ontol-
ogy for medical terms [14]. It is well suited as a benchmark
to test the ability of an algorithm to reproduce a gold stan-
dard. We focus on several diverse branches in order to avoid
over-fitting. For the automatic comparison of a manually
and automatically generated taxonomies, the input terms
are taken from the MeSH benchmarks. This poses a sim-
plification of the overall taxonomy creation, where terms
are selected using various methods (see e.g.[5, 1])

We then measure the precision by counting how many
direct links of the original taxonomy are reproduced by the
algorithm. Further we consider those links that are not only
direct parent-child related but also grandchildren or great-
grandchildren (upper part in Fig. 2) in the original bench-
mark.

Occurrences are detected in the abstracts of 18 Million
articles from Pubmed (a literature database for the life sci-
ences), using stemming and term alignment ([4]).

2.2. Heymann-Algorithm

The taxonomy creation algorithm presented in [9]
(Heymann-Algorithm) was originally intended for social
networks where users annotate documents or images with
keywords. The algorithm is fast, deterministic and easily
extensible. Each keyword or “tag” is associated with a vec-
tor that contains the frequencies of annotations for all doc-
uments. These tag vectors are then comparable, e.g. using
cosine similarity. We adapt the algorithm to general tax-
onomy creation from scientific literature using binary tag
vectors.

The algorithm consists of two stages: the first creates a
similarity graph of tags, from which an order of centrality
for the tags is derived. Obeying this order and starting from
the most general tag, the tags are inserted to a growing tax-
onomy by attaching tags to either the most similar tag or to
the taxonomy root.

Two thresholds are used in the algorithm: first, the value
above which an edge is permitted to the similarity graph
(τS) filters very small similarities that might have occurred
by chance during the generality calculation. Second, the
similarity above which a node is attached to its most similar
non-root node rather than the root (τR) influences the topol-
ogy of the taxonomy. An example of a generated taxonomy
is shown in Figure 1.

2.3. Algorithm modifications

2.3.1 Term generality derived from centrality in simi-
larity graphs

A set of n terms gives rise to a similarity graph G = (V,E)
where the nodes V represent terms and the edgesE are sim-
ilarities as provided by the similarity measure, see section
2.3.2. Generality can be deducted from a terms’ centrality
in such a similarity graph. A variety of centrality measures
exists. Amongst them betweenness and closeness central-
ity are elaborate, global measures and therefore subject to
further scrutiny.

Betweenness centrality cB for a node v is defined as:

cB(v) =
∑

v∈V \{s,t}
s 6=t

σst(v)
σst

(1)

where σst is the number of shortest paths from s to t, and
σst(v) is the number of shortest paths from s to t that pass
through a vertex v. The complexity of the betweenness cen-
trality is O(n3). A fast algorithm for unweighted graphs of
complexity O(ne) (e is the number of edges, which could
be O(n2) in fully connected graphs, but can be less in other
graph types) is given in [2] and implemented e.g. in [6],
which we use in our benchmark system.

Closeness centrality cC for a node v is given as :

cC(v) =
1∑

t∈V \{v} 1− sim(v, t)
. (2)

with sim(v, t) being the similarity between nodes t and v.
The complexity is O(n2).

Considering graph-theoretical aspects: Edge weights
and disconnected graphs Betweenness and closeness
centrality can be calculated using weighted or unweighted
graphs. We investigate both types.

Figure 2 compares the precision of the Heymann-
Algorithm variants with several centrality calculations in
dependence of τS . Various values for τR are probed (see
Supplementary Material) but are of less influence.

2.3.2 Vector based term similarity

Originally Heymann et. al used vectors xt = [x1, . . . , xN ]
of length equal to the number of documents N , where xi
describes, how many times a numbered document i in a
user community has been annotated with term t. We adapt
this to binary term-vectors (or set representations) indicat-
ing whether a term occurs in a document (1) or not (0).
Standard cosine vector similarity is therefore applicable.



Figure 1. A generated taxonomy for “Blood”. The fat links are correct wrt. the MeSH benchmark,
semi-fat links are in grand- or great-grandchild relation in MeSH.

2.3.3 Reranking

A further modification to the Heymann algorithm is the in-
termediate reranking of the remaining terms wrt. their cen-
trality after inserting a term to the taxonomy. Note, that this
step increases the algorithm complexity since the centrality
calculation is run for every inserted term (O(n3) andO(n4)
for closeness and betweenness centrality, resp.).

2.3.4 Entropy of similarities

The basic Heymann algorithm attaches nodes to the most
similar node in the growing taxonomy. Often terms, in par-
ticular non-specific or ambiguous terms, exhibit similarities
to many subjects. The Entropy ES , given in equation 3, is
an information theoretical concept that can be used to quan-
tify that intuition and hence accounts for the uncertainty of
adding a node. This edge annotation can later be used for
quality assessment and semi-automatic curation.

ES(j) = −
n∑
i∈T

sij logb sij for sij > 0 (3)

where sij are the similarities of the node to be inserted j and
the nodes i that are already in the taxonomy T . Similarities
are normalised such that their sum yields 1. Thus a node j0
being similar to exactly one node but having 0 similarity to

all other nodes leads to a minimal entropy of 0, whereas a
maximal entropy of 1 is reached when all nodes are equally
similar to the node to be inserted.

3. Results

3.1. Term generality and systematic thresh-
old evaluation

The benchmark sets were scrutinised with respect to al-
gorithm variants (centrality, rooting threshold τR, similarity
graph threshold τS). One example is given in Figure 2. It
shows that unweighted closeness and betweenness central-
ity yield the best results for 0 < τS ≤ 0.1. This finding
was consistent with most benchmarks. Exceptions occurred
for the “Blood” and “Cardiovascular system” benchmarks,
where single peaks of weighted closeness scored highest
(Supplementary material).

The threshold for attaching a term to the root τR has been
systematically probed in the range of 0 − 0.06 with step-
size 0.005 and best results were consistently achieved with a
very small value, i.e. avoiding node-attachments to the root
as much as possible. Note that a histogram of all similarities
revealed that most similarities are below 0.01.



Figure 2. Precision curves for centrality vari-
ants for the MeSH-benchmark “Carbohy-
drates”.

3.2. Intermediate reranking of term gener-
ality

Depending on the similarity graph threshold τS , the
intermediate reranking improves precision in 46% of the
cases, decreases precision in 23% and achieves equal pre-
cision in 30% of the cases.

3.3. Entropy based filtering improves preci-
sion

According to [17], taxonomy generation algorithms usu-
ally achieve only 40-50% precision on general benchmarks.
Velardi et al. therefore suggests in [16] to follow a semi-
automatic approach including systematic human validation
steps. As a basis for hand-curated taxonomies, precision be-
comes paramount when automatically generating draft tax-
onomies. We therefore monitor the F-measure, which trades
off precision vs. recall and is frequently used in information
theory to evaluate performance based on a single number
[15].

Fβ = (1 + β2) · (precision · recall)
β2 · precision + recall

(4)

In order to appreciate precision, the F0.5-measure for ex-
ample values precision twice as important as recall. Omit-

Figure 3. Benchmark: Sense Organs, with
and without generality reranking

ting links comes to the expense of decreasing the recall. Yet,
we argue that the omissions are justified as long as the F-
measure improves.

By filtering high entropy links with ES > 0.7, precision
increases most notably for benchmark “Blood” (from 60%
to 81%), “Carbohydrates” (from 38% to 43%) and “Fungi”
(from 31% to 39%), see Figure 4.

The precision of all other benchmarks improves as well,
but to a smaller extend. Larger margins are possible with
other thresholds but might yield in over-fitting to the given
benchmarks.

4. Conclusion

Unweighted betweenness centrality generally performs
best but often only marginally better than the faster un-
weighted closeness centrality. Neither method strictly dom-
inates the other and both are dependent on fine-tuning of
the similarity graph threshold. A good choice for τS is not
obvious but should be a value between 0 and 0.1. Both
methods are complementary in the sense that their highest
scoring taxonomies are not identical. A consensus-based
meta-algorithm can benefit from this fact by only including
the links both methods agree on.

Using weighted similarity graphs rarely improved the
performance and hence did not justify the higher compu-



tational cost. Moreover, they fluctuate stronger wrt. τS .
Reranking the centrality often improves the algorithm

performance but increases the computational expense. Fi-
nally the proposed entropy-based filter for edges allows to
shift focus towards more precise (but less complete) tax-
onomies which arguably facilitates manual post-processing.

Co-occurrence based similarity measures of terms are
easily extractable from literature databases and can provide
a scaffold for taxonomy creation. However, they also limit
the success of taxonomy creation when dealing with seman-
tically related terms that can not be ordered by generality:
High-level terms such as “wind power” or “solar energy”,
or terms that somehow interact (e.g., “hammer” and “nail”)
frequently co-occur and hence exhibit a misleadingly high
co-occurrence similarity. Yet neither are subsumable in
the strict sense (“is-a” or “part-of” relations) of standard
taxonomies. As a result, the semantics of taxonomy sub-
and superconcepts merely allows the interpretation as “is-
related-to” relation. Such a property is not transitive and
hence less useful for purposes, where complete semantic
subtrees of the taxonomy are required. As a remedy, it
would be beneficial to incorporate more sophisticated simi-
larity and generality measures using Natural language pro-
cessing techniques as proposed in [11]. To this end it seems
most promising to device a meta-algorithm, for which the
Heymann algorithm is a suitable platform.
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Figure 4. The figure shows the F0.5-measure (solid) and the precision (dashed lines) for three MeSH
benchmarks. Higher entropy of similarities expresses lower confidence in a taxonomy-link. Not
filtering by entropy at all yield in precision and F-measure equal to the rightmost data point of each
curve, indicated by horizontal dotted lines. The figure shows that indeed high entropy links are often
wrong and precision decreases for all benchmark sets. Therefore, by filtering these low confidence
links, the algorithm improves in terms of precision, while maintaining or slightly improving the F-
measure. Any threshold above 0.7 increases precision without worsening the F-measure.
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