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ABSTRACT 

 
This paper explores the emergence of synchrony in cooperative inter-organizational networks.  While 
some research suggests that synchronizing organizational actions like product releases is a form of 
collective behavior that generates advantages for organizations, most existing network theory focuses 
on dyads and not the larger organizational groups where networked cooperation is relevant.  As a 
result, we know a lot about resource mobilization and information diffusion across dyads, but very 
little about how cooperation occurs in larger networks where collective behaviors like synchrony are 
important.  Using a simple computational model grounded in prior research on inter-organizational 
networks, this paper develops a theoretical framework linking temporal dynamics to network theory 
that sheds light on the emergence of synchrony, why it emerges faster in some networks than others, 
and how organizations can shape synchrony to their own advantage.  Specifically, I find that 
synchrony emerges from influence across network ties without the need for a central coordinator or 
exogenous technology cycle.  It emerges though a series of cooptation events across network ties 
wherein social influence accumulates to synchronize some organizations with others.  The magnitude 
and time to reach synchrony varies predictably with features of network structure such as network size 
(N), mean degree (K), and tie strength (e), although an unexpected finding is that clustering (CC) 
diminishes synchrony by generating coalitions with rhythms that vary too widely.  These dependencies 
can be understood with reference to three mechanisms – accelerated, coalitional, and conflicting 
influence – that shape cooptation dynamics.  Finally, intentional coordination across inter-
organizational relationships accelerates the time to synchronize the entire network, creating temporal 
spillovers to non-coordinating organizations; moreover, coordinating organizations benefit from 
increased synchrony performance – i.e., they increase the relative likelihood that network 
synchronization tips to their own underlying rhythm.  The magnitude of this performance advantage 
depends on network size (N) and mean degree (K), but not on tie strength (e) or clustering (CC). 
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How do organizations cooperate?  While most research on this question focuses on relationships 

between pairs of organizations, less has examined cooperation in larger organizational groups.  Diverse 

groups of organizations appear to cooperate in pursuit of common objectives.  Business groups lobby the 

government for preferential regulation (Ingram and Rao, 2004; Granovetter, 2005), social movement 

organizations mobilize activists to change society  (McCarthy and Zald, 1977; McAdam, 1982), and 

high-technology firms build complicated product platforms using common technology standards 

(Browning, et al., 1995; Bresnahan and Greenstein, 1999).  The focus of existing theory on dyadic 

cooperation has yielded valuable understanding of resource mobilization and information diffusion 

across various inter-organizational relationships including exchange alliances (Dyer and Singh, 1998; 

Gulati, 2007), R&D collaborations (Powell, et al., 1996; Ahuja, 2000), and endorsement arrangements 

(Baum and Oliver, 1991; Stuart, et al., 1999), but surprisingly little about the ways in which multiple 

interdependent organizations pursue common objectives in a timely fashion.   

I begin with the observation that whether in business groups, social movements, or technology 

platforms, many organizations participate in a networked organizational form that enables cooperation 

in their organizational fields (Powell, 1990; Podolny and Page, 1998; Granovetter, 2005).  This paper 

explores the temporal processes underlying networked cooperation, focusing on the synchronization of 

organizational actions as an essential aspect of collective behavior in inter-organizational networks.  

Defined as the process that enables multiple organizations to generate simultaneous actions, 

synchronization ensures that the actions are perceived as unified by relevant stakeholders in the 

organizational environment. 

To illustrate, consider the organizational networks responsible for creating information 

technology platforms.  A central insight of this literature is that competition occurs between groups of 

organizations committed to different platforms such as Wintel and Macintosh in the personal computer 

market or iPhone and Blackberry in the smartphone market (Bresnahan and Greenstein, 1999; Gawer 
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and Henderson, 2007).  As a result, organizational performance depends not only on the quality of an 

organization’s own products (Clark and Fujimoto, 1991; Brown and Eisenhardt, 1995) or their 

complementarity to other platform components (Teece, 1986; Yoffie and Kwak, 2006), but also on the 

effectiveness of group cooperation relative to other technology platform groups (Iansiti, 1995; Gawer 

and Cusumano, 2002).  Groups that quickly synchronize releases of complementary products quickly 

can create more demand for their platform than the platforms of other groups (Milgrom, et al., 1991; 

Adner and Kapoor, 2006).  Moreover, consistent synchronization across multiple generations of the 

platform creates a rhythm to which new entrants can align (Ancona and Waller, 2007; Gawer and 

Henderson, 2007).  Overall, synchronization may be an important element of networked cooperation and 

a critical capability of firms in highly interdependent environments. 

Synchrony emerges in multiple environmentsi.  Consider the computer workstation sector, an 

environment with hundreds of product introductions on several operating system platforms (Sorenson, 

2000).  Figures 1a and 1b plot the total number of new product releases per year by workstation firms on 

the SunOS and MicroVMS operating system platforms, respectively.  Over multiple years, an observed 

pattern of synchronization emerges within the expected bounds of the industry lifecycle (Abernathy and 

Utterback, 1978; Sorenson, 2003).  New products are released in at least two major cycle peaks in each 

operating system category, as indicated by the fitted oscillating cycles.  Similarly, Figure 1c plots the 

number of new product releases in the photolithography equipment sector that produces tools essential 

for circuit manufacturing (Henderson and Clark, 1990; Henderson, 1995).  In comparison to workstation 

firms, photolithography firms exhibit less, although detectable, synchronyii.  Taken together, these 

patterns of synchronous product introduction demand further explanation.  How does synchrony emerge 

and why do some networks synchronize more readily than others? 

There are multiple rationales for why organizations might prefer to synchronize.  Economic 

rationales focus on organizations that produce complementary products with cross-elasticities of demand 
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– i.e., consumers pay more for available products when they are complementary (Milgrom, et al., 1991; 

Saloner and Shepard, 1995).  Moreover, multi-sided markets involving different organizations working 

on the same platform (such as videogame consoles and software) create network externalities that can be 

captured by cooperating organizations if the products are simultaneously available (Rochet and Tirole, 

2001; Armstrong, 2006).  Social rationales focus on the perceptions of stakeholders – lobbying, 

movement, and R&D efforts that are dispersed in time or weakly supported by a critical mass of relevant 

organizations may not meet the threshold necessary to achieve common objectives such as regulatory 

change (Kock and Guillen, 2001; Khanna and Yafeh, 2007), effective protest (McAdam, 1982; Davis 

and Greve, 1997), or technology adoption (Coleman, et al., 1966; Rogers, 1980).  Yet while multiple 

rationales exist for when organizations prefer to synchronize, we lack insight into how synchrony 

actually emerges once these inducements are in place. 

The central organizational puzzle is how large but sparsely connected networks become 

synchronized.  Consider two organizations A and C that are not directly connected, but are linked 

through another n organizations, B1…Bn.  If we assume that influence across network ties takes time, 

then it is unclear how organizations communicate influence to become fully synchronized.  In this 

stylized example, the influence from A may not reach C in time to synchronize; the influence of other 

nodes such as B1…Bn could mistime alignment; and the countercyclical influence of C on A could be 

unproductive.  In these networks, influence accumulates across all network ties in multiple directions 

over time, and the endogenous influence dynamics may not guarantee synchronization even if this is the 

preferred outcome of all organizations. 

This puzzle is of interest to organization scholars because most inter-organizational network 

structures are only sparsely connected.  Yet while few industry networks are fully clustered cliques, 

many of these networks do contain some highly clustered sub-groups.  Geographically centralized 

business groups often form clusters that contain the most prominent organizations in their broader 



 

 

 

4

industrial networks (Anand and Khanna, 2000; Owen-Smith and Powell, 2003; Ozcan and Eisenhardt, 

2008).  For example, Boston and Bay Area biotechnology firms are more clustered than similar firms in 

other regions and comprise the network’s main component (Owen-Smith and Powell, 2003).  Existing 

theory suggests that densely clustered sub-networks facilitate the diffusion of information and effective 

search (McEvily and Zaheer, 1999; Sorenson, 2005; Fleming, et al., 2007).  Moreover, dense clustering 

is often thought to engender a sense of belonging, trust, and risk-sharing amongst individuals in the 

cluster (Coleman, 1988; Portes and Sensenbrenner, 1993; Vaisey, 2007).  This research has exploded 

with the discovery of small world network structures in many organizational contexts (Baum, et al., 

2003; Davis, et al., 2003; Uzzi and Spiro, 2005; Schilling and Phelps, 2007), since small world 

structures benefit from the positive effects of local clustering and the global reach of small path lengths 

(Watts and Strogatz, 1998; Zuckerman and Reagans, 2001).  Despite considerable interest in clustering, 

its effect on the temporal dynamics of influence  and synchrony is less well explored.  Other features of 

network structure – size, degree, and centrality – could have other implications for the emergence of 

synchrony. 

Additionally, the synchronization process is not necessarily uniform or stable, as illustrated by 

the varying degrees of product synchrony across different industrial networks (Ancona and Waller, 

2007).  While some fields like pharmaceuticals take a long time to synchronize and exhibit only partial 

synchrony, in other fields synchronization is faster and more complete.  For example, new IT sectors 

(such as Web2.0 and Mobile Gaming) synchronize quickly, aligning organizations in a coordinated 

network of suppliers and complementors with each new technical generation (Gawer and Henderson, 

2007; Ozcan and Eisenhardt, 2008). 

Two major explanations of how synchrony emerges can be inferred from existing organizational 

theories.  The first focuses on asymmetric resource dependence (Pfeffer and Salancik, 1978; Casciaro 

and Piskorski, 2005), suggesting that powerful firms are responsible for industrial synchrony.  It is 
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possible that single firms could use their technical influence or market power to induce other firms to 

follow a preferred, common rhythm (Gawer and Cusumano, 2002; Lenox, 2006).  For example, a 

powerful gaming console firm could pressure all videogame developers to synchronize their game 

releases with the arrival of each new generation of console hardware.  The threat of incompatibility with 

a new generation of consoles is a strong incentive for these smaller videogame developers.   

The second explanation suggests that exogenous market conditions or technology trajectories are 

the dominant drivers of synchronization (Dosi, 1982; Tushman and Anderson, 1986).  For example, 

semiconductor firm strategy is shaped by Moore’s law, which describes the observed pace of processor 

improvements over time.  These trajectories limit the rate at which new generations of microprocessors 

can be profitably released (Henderson, 1995).  This, in turn, shapes the fundamental rhythm around 

which semiconductor firms synchronize.  Collectively, these theories suggest that powerful firms or 

exogenous technology cycles are responsible for synchrony, yet provide little insight into the role of the 

network in the synchronization process. 

Despite the seeming importance of synchrony in cooperative networks, fundamental questions 

about this relatively unexplored phenomenon remain unanswered.  How does synchrony emerge when 

some organizations are not directly connected?  Taken together, the literature rests on an unexpectedly 

common assumption that synchrony, and collective behavior more generally, is purposefully 

coordinated by at least some of the member organizations (Khanna and Rivkin, 2001; Yiu, et al., 2007).  

Indeed, intentional coordination of temporal dynamics between pairs of organizations may contribute to 

synchrony, yet is intentional coordination a necessary condition of networked cooperation?  There is 

reason to believe that intentional coordination may be too difficult or too costly to fully account for 

synchrony, especially when coordination is needed across long bridges that connect otherwise 

disconnected clusters in the organizational network (Centola and Macy, 2007; Schilling and Phelps, 
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2007).  More broadly, why does synchrony emerge faster in some networks than others?  And how can 

single organizations shape emergent synchrony to their own advantage? 

The purpose of this paper is to understand how, when, and why synchrony emerges in 

cooperative inter-organizational networks.  Building on prior literature about inter-organizational 

influence and oscillating resource dynamics at the dyadic level, I build a simple computational model of 

synchronization in large groups to generate insights about collective behavior at the network level.  This 

approach enables a decoupling of cooperative effects due to repeated influence – which might 

unintentionally synchronize organizations – from coordination mechanisms which organizations use to 

intentionally synchronize their relationships.  The outcome is a theoretical framework linking temporal 

dynamics to network theory which sheds light on the emergence of collective behavior in organizational 

networks, including the role of the network in the emergence of synchrony and the advantages it 

generates for different organizations. 

The primary findings are theoretical insights about temporal dynamics in cooperative networks.  

First, in contrast to prior theory attributing synchrony either to powerful firms or exogenous technology 

trajectories, I find that synchrony can emerge without the need for intentional coordination.  Synchrony 

emerges though a series of temporal cooptation events across network ties wherein some organizations 

influence others to become synchronized.  While some features of network structure affect the 

magnitude of and time to synchrony as expected, an unexpected finding is that clustering inhibits 

synchrony by generating organizational coalitions with conflicting rhythms, suggesting that some 

aspects of networked cooperation are difficult in small world networks.  These findings can be 

understood with reference to three mechanisms – accelerated, coalitional, and conflicting influence – 

which shape the evolution of temporal cooptation across time. 

Second, while synchrony can emerge unintentionally, intentional coordination across inter-

organizational relationships accelerates the time to synchronize the network, generating temporal 
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spillovers to non-coordinating organizations.  Coordinating organizations benefit from increased 

synchrony performance, defined as a higher relative likelihood that network synchronization tips to their 

preferred underlying rhythm.  I find that the magnitude of this performance advantage depends on some 

features of network structure such as density, but, counter-intuitively, not on others such as tie strength 

and clustering. 

THEORY DEVELOPMENT 

Social Influence and Resource Dynamics in Inter-Organizational Networks 

Network Influence. Creating and maintaining synchronized action seems to depend upon the 

relationships between organizations because such relationships are a valuable source of communication 

and coordination across the network.  In fact, multiple theoretical traditions suggest that organizations 

influence each other through direct network ties.  For instance, institutional analyses often focus on 

relationships between organizations (DiMaggio and Powell, 1983; Selznick, 1996; Scott, 2001).  For 

instance, Selznick’s (1949) study of the Tennessee Valley Authority (TVA), a government agency 

created to improve economic conditions in the Tennessee Valley during the Depression era, highlights 

the importance of evolving relationships between groups.  He describes how relationships between the 

TVA and local governments enabled TVA authorities to include local leaders in the decision-making 

process and, thus, increase local support for the TVA’s objectives.  Selznick (1949) called this process 

cooptation –bringing in external stakeholders into the organizing process to influence them to support its 

objectives. 

New institutional research suggests that inter-organizational relationships can influence 

organizations to adopt new practices as well (Coleman, et al., 1966; Burt, 1987; Davis and Greve, 1997).  

For example, Davis and Greve (1997) found that, in response to a wave of hostile takeovers, most large 

American corporations adopted defensive practices that they learned from other connected 

organizations.  However, the two practices – poison pills and golden parachutes – diffused at different 
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rates because they spread across different networks.  Poison pills spread quickly through board interlock 

ties, whereas golden parachutes spread slowly across regional elite networks (Davis and Greve, 1997).  

The important point in this and other studies is that some network ties may be more influential than 

others (Keister, 2001; Owen-Smith and Powell, 2003; Khanna and Rivkin, 2006). 

The resource dependence tradition also suggests that inter-organizational relationships shape 

organizational actions by influencing the resource acquisition and development processes within 

organizations (Pfeffer and Salancik, 1978; Casciaro and Piskorski, 2005).  In this perspective, an 

organization’s resources can oscillate dramatically in response to environmental demands, and managers 

use resource acquisition processes to buffer themselves against environmental uncertainty.  These 

organizations use corporate venture capital or equity alliances with larger organizations to acquire 

needed resources to support ongoing activities (Eisenhardt and Schoonhoven, 1996; Stuart, 1998; 

Dushnitsky and Lenox, 2005; Rosenberger, et al., 2008).  That is, the flow of resources across direct 

network ties can be an important source of influence causing organizations to synchronize. 

Unlike the prior examples, social influence need not involve a diffusion of practices or flow of 

resources from one organization to another.  Merely observing another organization’s actions can 

provide a signal that influences the focal organization’s resource dynamics (Podolny, 2001).  For 

example, a product release by one organization can influence other organizations to accelerate product 

development (Eisenhardt and Tabrizi, 1995; Pacheco-de-Almeida and Zemsky, 2002) and product 

introduction into new markets (Haveman, 1993).  Moreover, product releases by other organizations can 

legitimize new markets (Baum and Oliver, 1991), enable cost and resource sharing (Miner, et al., 1990), 

and increase demand if the organization’s products are complementary (Adner and Kapoor, 2006).  The 

key point is that observable, environmental actions by some organizations can influence the internal 

dynamics of other organizations.  The magnitude of these dynamics is shaped by the degree of social 

influence that organizations have on each other – that is, the strength of these ties.   
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Resource Dynamics.  In summary, well known theories of organization and environment suggest 

that an organization’s internal dynamics are contingent on external factors such as relationships with 

other organizations (Thompson, 1967; Pfeffer and Salancik, 1978; DiMaggio and Powell, 1983; Guillen, 

2000).  In addition, resource-based views of strategic interaction suggest that organizations will act to 

reduce these dependencies by developing new resources internally or acquiring them on the market 

(Williamson, 1975; Barney, 1991).   That is, inter-organizational dependencies create incentives for 

managers to reduce those dependencies, if possible.  These lines of  argument have found broad 

empirical support (Dyer, 1997; Poppo and Zenger, 1998; Casciaro and Piskorski, 2005; Gulati and 

Sytch, 2007). 

Other studies have extended this research by exploring resource dynamics, including the 

fluctuation of resources in response to environmental turbulence (Nickerson and Zenger, 2002), or 

internal reconfigurations to pursue new opportunities (Karim and Mitchell, 2000; Siggelkow, 2002).  For 

example, in product development organizations, resources like available cash and even engineering 

talent fluctuate with the retail seasons or product development cycles (Clark and Fujimoto, 1991).  

Moreover, organizations influence each other through the flow of resources across equity alliances and 

corporate venture capital relationships (Doz, 1996; Casciaro and Piskorski, 2005; Dushnitsky and 

Lenox, 2005).  In fact, it is possible that these discrete influence events can change the behavior of 

multiple firms in the inter-organizational network, perhaps leading to synchrony, although the temporal 

dynamics of this behavior have not been well explored because of methodological difficulties (although 

see Marsden and Friedkin, 1993). 

Intentional Coordination and Network Leadership 

The discussion above implies that synchronization may be generated from the influences that 

connected organizations exert upon each other’s resource development processes.  However, other 

organizational research suggests another possibility – that pairs of organizations might use their 
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relationships to intentionally coordinate temporal processes (Im, et al., 2005; Adner and Kapoor, 2006; 

Davis, 2009).  For instance, firms use strategic alliance relationships to conduct joint R&D and align 

their technological trajectories (Powell, et al., 1996; Stuart, 2000).  In a study of eight inter-firm 

technology relationships in the computer industry, Davis (2009) finds that pairs of firms that jointly 

develop new technologies deliberately entrained important milestones like product releases and 

coordinated their resource development processes over time.  Inter-firm coordination ensures that 

external actions of partners are synchronized by intentionally aligning internal processes.  As a result, 

the two organizations can act as one in their environment, and potentially use their combined influence 

with other organizations (Ingram and Inman, 1996; Davis, 2009). 

Indeed, other research in the computer industry finds that pairs or small groups of firms 

repeatedly use their relationships to change the technical architecture to their own advantage, and usurp 

technical leadership from incumbents (Bresnahan and Greenstein, 1999; Gawer and Cusumano, 2002).  

For instance, Intel and Microsoft used the their long term symbiotic relationship to develop new 

interface technologies, create new markets for complementary products, and control the evolution of the 

computer industry: 

 “Andy Grove described the relationship…as ‘two companies joined at the hip.’  While constantly vying for 
perceived leadership of the PC industry and jealously guarding their own spheres of influence (software for 
Microsoft and hardware for Intel) most of the time the two companies were able to maintain their symbiotic 
relationship… “ Burgelman (2002: 341)  

  
Indeed, the firms coordinated effectively and developed a number of complementary technologies 

underlying the “Wintel” product platform (Bresnahan and Greenstein, 1999; Casadesus-Masanell and 

Yoffie, 2007). 

Organizational Performance in the Context of Synchrony 

Implicit in these arguments is a well known tension between cooperation and competition in 

inter-organizational relationships (Hamel, 1991; Khanna, et al., 1998; Casadesus-Masanell and Yoffie, 

2007; Rosenberger, et al., 2008), which has implications for the temporal dynamics of synchrony.  Even 
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in relationships characterized by high complementarity and significant incentives to synchronize, some 

partners may enjoy more benefits from synchrony than others.  This suggests that even organizations 

wishing to cooperate may have two important, but potentially conflicting, objectives.  On the one hand, 

organizations cooperating within the same industrial networks – for instance, complementors on the 

same platform – prefer that their network synchronize faster than competing networks.  As described 

above, this underlies the incentives to cooperate in accelerating network-wide synchrony if possible. 

On the other hand, organizations prefer their own dynamics be most influential in generating 

synchrony.  Organizations may have multiple rationales for preferring their own rhythm to their 

partners’ rhythms.  One line of economic argument focuses on the cost of changing the pace of resource 

development due to inter-organizational influence.  For instance, accelerating product development can 

be costly (Eisenhardt and Tabrizi, 1995; Pacheco de Almeida and Zemsky, 2002), and multiple studies 

of organizational inertia highlight the difficulty of changing internal structures and processes (Haveman, 

1992; Greve, 1999).  Other economic arguments suggest that organizations may forgo important revenue 

opportunities if they allow their rhythm to be shifted away from an optimal temporal segmentation of 

market demand (Tirole, 2007; Zemsky and Pacheco-de-Almeida, 2007).  All else equal, organizations 

prefer that their partners undergo the difficult scheduling changes to achieve synchrony, and become 

coopted to their own, underlying rhythm. 

For instance, in highly interdependent environments like the personal computer industry, 

controlling the rhythm of technological evolution is an important aspect of platform leadership 

(Bresnahan and Greenstein, 1999; Fine, 1999; Gawer and Cusumano, 2002).  Organizations in these 

environments prefer that synchrony tip to their own underlying rhythm to control the pace of 

development.  In support, Bresnahan and Greenstein (1999) describe how Intel, Microsoft, and IBM, 

while ostensibly cooperating in developing the PC platform, fought for technological leadership within 

the PC platform network.  By partnering with other manufacturers like Compaq, and coordinating their 
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efforts, Intel and Microsoft wrested industry leadership from IBM and controlled the pace and direction 

of platform development (Bresnahan and Greenstein, 1999). 

Indeed, while coordinating the rhythm of technological development can provide an advantage to 

some organizations over others within the winning network, the two objectives of organizations 

(synchronizing quickly and synchronizing to one’s preferred rhythm) may not be in conflict if 

intentional coordination actually accelerates synchronization for all members of the network.  In such a 

world, coordinating organizations, while ostensibly coordinating in order to enjoy the benefits of 

network leadership, could create benefits for non-coordinating organizations by accelerating 

synchronization.  Developing theory about synchronization could improve our understanding of the 

relationship between cooperation and coordination in organizational networks over time. 

Taken together, I wish to explore the impact of influence and coordination mechanisms on 

synchrony in cooperative networks.  I turn now to the simple model I use to address these issues. 

METHODS 

The prior discussion suggests that the emergence of synchrony in inter-organizational networks 

has important implications for understanding how organizations cooperate.  Despite the importance of 

this phenomenon, however, it has not been well explored because of the difficulty of studying temporal 

dynamics in networks.  To explore this issue, I employ an inductive approach using simulation methods 

(Davis, et al., 2007).  Specifically, I seek to develop a simple computational model grounded in existing 

research on inter-organizational network dynamics which can be used to explore the emergence of 

synchrony in a controlled, virtual environment (Burton and Obel, 1995; Davis, et al., 2007). 

Simulation is a particularly effective method for research such as this where some of the basic 

elements of the theory are understood, but its underlying theoretical logic is limited (Davis, et al., 2007).  

As Rudolph and Repenning (2002: 4) note, simulation “facilitates the identification of structures 

common to different narratives.”  Given its computational precision, simulation is useful for internal 
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validation of theoretical logic as well as the elaboration of theory through experimentation (March, 

1991; Zott, 2003).  Simulation is also an especially useful method when the phenomenon is non-linear 

(Lennox, et al., 2006; Davis, et al., 2007).  While case and statistical methods may indicate non-

linearities, they are less precise than simulation in elucidating complex temporal effects such as tipping 

points, entrainment, and synchrony.  Additionally, simulation is a useful method for research such as 

this in which empirical data are unavailable (Davis, et al., 2007).  For example, simulation enables me to 

study inter-organizational influence on intra-organizational resource dynamics over time, a network-

based phenomenon where longitudinal data may be difficult to obtain (Watts and Strogatz, 1998; Albert, 

et al., 2000). 

Modeling Precedents: From Diffusion and Interdependence to the Network Dynamics of Influence 

This research builds upon a trend towards utilizing endogenous and/or network models to 

understand social and organizational phenomena (Strang and Macy, 2001; Repenning and Sterman, 

2002; Zott, 2003; Centola and Macy, 2007; Lenox, et al., 2007).  Such models are often more realistic 

and can reveal potentially surprising behaviors that are difficult to discern in exogenous or cross-

sectional models that do not involve interdependencies (Davis, et al., 2007).  Many researchers are 

considering the impact of endogenous dynamics that are generated by the simultaneous interactions of 

multiple variables or agents over time (Sastry, 1997; Strang and Macy, 2001; Repenning and Sterman, 

2002; Zott, 2003).  For instance, Strang and Macy (2001) model the abandonment and adoption of 

innovations based on the perception of other organizations’ similar decisions, generating faddish cycles 

of innovation use that are only moderately related to outcomes.  DiMaggio and Garip (2008) model 

stratification as depending on the adoption of services with network externalities where the value of 

adoption depends upon the extent of adoption by other agents.  Rudolph and Repenning (2002) use an 

interrelated model of stress and interruptions to model the emergence of tipping points leading to 

organizational collapse. 
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In addition, diverse network models have made inroads into organization studies.  The NK model 

has been particularly successful in advancing our understanding of interdependence and adaptation 

(Levinthal, 1997; Gavetti and Levinthal, 2000; Rivkin, 2001; Rivkin and Siggelkow, 2003).  In a recent 

advance, Lennox and colleagues (2006) combined the NK structure with a well known model of 

(Cournot) competition to explore the evolution of firm choices about product interdependencies and 

production levels that lead to industry lifecycle dynamics.  Other network models explore diffusion 

across social network structures (Strang and Soule, 1998; Centola and Macy, 2007; Jackson and Yariv, 

2009).  For example, Centola and Macy (2007) found that complex contagions requiring multiple 

sources of exposure diffuse more readily across networks with multiple paths between nodes.  

Moreover, Reagans and Zuckerman (2008) show that in small world networks with short paths 

connecting distant clusters, diffusion that requires costly exchange is less efficient than costless 

exchange because middlemen become information bottlenecks. 

This study differs from the emerging work on diffusion and interdependence by seeking to 

understand the temporal dynamics of accumulated influence and its link to collective behavior.  As in 

other threshold models (Granovetter, 1978; Schelling, 1978), we seek a model where influence 

accumulates across network ties over time until “enough” influence causes an agent’s behavior to 

change.  However, unlike many contagion models, which only require one diffusion event to cause 

“infection,” we seek a more general model where zero, one, or many influence events can generate 

behavior depending on the dynamics of accumulated influence.  In seeking generality, I assume that 

behaviors can emerge from the influence of one or many actors and, thus, can be either simple or 

complex, and that transmission only occurs through network ties.  Consistent with extant theory about 

social influence (c.f. Zajonc, 1965; Freedman and Fraser, 1966; Cialdini, et al., 1975), the exact timing 

of influence arrival is critical since the likelihood of behavior depends on the organization’s current 

distance to the threshold.  Finally, to study the temporal dynamics of collective influence, we seek a 
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model of multiple behaviors, as opposed to models where organizations act only once.  In the language 

of system dynamics, this implies that the delay between behaviors will be endogenously determined by 

the influence dynamics across agents in the network (Sastry, 1997; Repenning, 2003). 

Modeling Oscillating Organizations: Time Varying Resource Dependence and Organizational 

Actions 

To explore cooperation in organizational networks, the analysis here develops a simple analytical 

structure to model the oscillation of an organization’s resources, the occasional generation of actions by 

these organizations, and the influence of these actions on other organizations in a network.  In doing so, 

it builds upon the work of Mirollo and Strogatz (1990) and Peskin (1975).  These researchers developed 

a simple but powerful analytic structure to represent a network of oscillating agents called the pulse-

coupled oscillator model.  This model is adapted to the organizational context as follows.  Each agent i, 

an organization for our purposes, is characterized by Xi, a state variable representing the amount of 

resources at a given time.  These resources oscillate between minimum and maximum values which are 

normalized to 0 and 1 with period T and frequency of 1/T.  The oscillation dynamics are described by a 

simple differential equation of the form below where S is the constant growth and -b generates 

diminishing marginal growth, resulting in a slowing upward curve of resources over time. 

dXi/dt =  S – b*Xi 

Organizational actions are generated in what biologists call an “integrate-and-fire” fashion: resources 

rise steadily until they reach the threshold of 1, when an action is generated.  In practice, these dynamics 

are instantiated in a discrete time simulation and the resource state is updated every time period 

according to ∆Xi =  (S – b*Xi)* ∆t, as is standard in stochastic process modeling (Law and Kelton, 

1991).  Actions are discontinuous pulses lasting a single time period.  The organization’s resources are 

utilized during the action pulse, and reset to zero in the next time period.  Figure 2a depicts the resources 

and actions of one such organization: left alone, a single organization’s resource stock will increase at 
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the diminishing rate until it reaches the threshold of 1.  At the threshold, an action is generated, 

resources are reset to zero, and the organization begins the cycle again.  Overall, this model captures the 

important insight that an organization’s resources (like free cash flow or engineering talent) can oscillate 

over time and, thus, influence the timing of actions in the environment (like product releases).  It makes 

the critical assumption that managers prefer to increase their resources, but that these resources are 

utilized with each new action. 

Pulse Coupled Inter-Organizational Networks 

In a network of multiple organizations, each organization is assumed to influence the others 

through its actions alone.  An action by any organization, i, influences all other organizations to which it 

is linked; specifically, each j-th organization that is linked to i will increase its resources Xj by an 

amount equal to the tie strength, e.  By convention, this influence is modeled as occurring in the next 

time period before the state changes. That is, if organization i generates an action in time t, then for all 

organizations j that are linked to organization i: 

Xj(t+1) = Xj(t) + e  

In this way, organizations are repeatedly influencing each other’s resources Xj and subsequent distance 

to the threshold, so that the time of action generation for any organization in the network is endogenous 

to the overall system dynamics.  In this model, the ties between organizations have equal tie strength, e, 

although this assumption can be relaxed in future research.  The model can be depicted with a simple 

system dynamics diagram as in Figure 2b, which is described below. 

System Dynamics and Initial Conditions 

The pulse-coupled oscillator model has been used to successfully model biological systems such 

as cardiac pacemakers, the wake/sleep cycle, and the rhythmic flashing of fireflies.  The model has 

become prominent in mathematical biology because of the emergent property of synchrony.  Synchrony 

is often observed in nature, as in the case of fireflies that congregate in the Mangrove trees of Southeast 
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Asia.  Fireflies begin their flashing in chaotic patterns that are out-of-sync, but over time their flashes 

become synchronized.  The dramatic result is a bright, synchronous flashing of the entire population that 

can be seen for miles. 

As Peskin (1975) first showed for the two oscillator case, and Mirollo and Strogatz (1990) 

showed for arbitrarily many oscillators, under most conditions a network of pulse coupled oscillators 

will eventually synchronize its actions even if each other started with different resource states.  What is 

remarkable about this model is that influence occurs only through the pulse-like interactions.  There is 

no central “clock” that coordinates synchrony – synchrony emerges from the interactions in the system.  

Central to their proof is the notion of temporal cooptation – what Mirollo and Strogatz (1990) term 

“absorption” – that is, the idea that over time the influence of some oscillators on others through the 

discrete jumps, e, would cause them to share the same frequency.  Mirollo and Strogatz (1990) showed 

that once temporal cooptation occurs, these oscillators share the same rhythm indefinitely.  In this 

manner, all oscillators eventually become coopted and remain synchronized.  The proof assumes that the 

resources of each oscillator are monotonically increasing and concave down, as in dXi/dt above, and that 

each is linked to each otheriii.   

The emergence of synchrony in these systems is surprising from an organizational perspective 

because it is not necessarily the intended outcome of any single agent.  That is, it may or may not be a 

deliberate strategy.  Instead, systems come to be synchronized through a series of cooptation events, 

such as those depicted in Figure 3.  In the organizations literature, the notion of cooptation begins with 

Selznick (1949), who described how allowing local leaders to participate in the TVA program in 

exchange for agreement with its objectives accelerated support for the program among the local 

population.  In general, cooptation is a process whereby external elements are incorporated into the 

processes of a broader coalition (Scott, 2003: 71), whether a single organization or a group of 

organizations.  From the perspective of temporal dynamics and synchrony, it will be instructive to 
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examine temporal cooptation events defined as occurring when an action by one organization influences 

another organization to increase its resources to threshold and, therefore, become synchronized with the 

other organization. 

What is unexplored in this model is the impact of network structure on synchrony, the impact of 

inter-organizational coordination on synchrony, and the differential performance of organizations in a 

temporal sense as the network approaches synchrony.  How does intentional coordination by two 

organizations of the sort found in the field study by Davis (2009) affect broader network 

synchronization?  Furthermore, it is unclear how long it takes to synchronize and engage in temporal 

cooptation in networks with different structures.  To explore these questions, the analysis below adapts 

this model to the organizational context, and systematically explores the questions using simulation 

experiments.  By manipulating the initial conditions and experimental parameters of the model, we can 

better understand synchrony in cooperative inter-organizational networks. 

The system dynamics of a network of oscillating organizations is depicted in Figure 2a and 2b; it 

can be summarized as follows:  Each organization begins with resources, Xi.  In each time period, t, 

each organization increases its resources Xi by an amount given by dXi/dt.  If an organization’s 

resources reach a threshold of 1, the organization generates an action and resets its resources to 0.  This 

action influences all other organizations to which the focal organization is linked, causing them to 

increase their resources by an amount equal to the tie strength, e, in the next time period, t +1.  This 

system generates a time series of continuous resource states Xi(t), and a time series of discrete action 

events Ai(t) for each organization i like those depicted in Figure 1. 

Assumptions and Model Boundaries 

 Like all research, this model involves a few important assumptions.  Focusing on influence and 

resource dynamics, the model operationalizes these temporal processes with oscillating resources and 

discontinuous action pulses.  While organizations no doubt have multiple rhythms and types of actions, 
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this model presents one such combination for the sake of simplicity and tractability (although future 

research could relax these assumptions).  Future research could explore multiple, heterogeneous features 

of organizations.  Moreover, social influence and resource processes are conspicuously at the macro-

organizational level, although future research could detail the individual demographics and networks 

that no doubt underpin these organizational mechanisms. 

Like all models, this one is a simplified picture of the world that represents “some but not all 

features of that world”  in order to address a focused set of research questions (e.g., the impact of 

various network structures on the amount of sync and time to sync) (Lave and March, 1975).  The 

research strategy investigates the emergence of synchrony as an important, but certainly not exclusive, 

element of networked cooperation.  Indeed, generating collective behaviors in networks no doubt 

involves other important processes such as possessing mutual incentives to act jointly, agreement on 

means and ends, and acquisition of adequate resources to act in concert.  In this research, I make the 

critical assumption that organizations wish to cooperate, have adequate incentives to do so (when 

possible), can agree on the appropriate actions (since there is only one type), and can gain resources to 

(eventually) cooperate.  Making these assumptions allows me to focus on less well-explored issues 

related to the temporal dynamics of networked cooperation.  While reasonable, future research could 

explore these assumptions as well. 

Operationalizing Regular and Random Networks 

 Each simulation run used in the experiments presented below uses a newly generated network.  

Thus, each experiment may require 1000 or more networks to be generated.  To quickly generate these 

networks, I rely on three standard models in the literature on network dynamics and computation (Watts 

and Strogatz, 1998; Barabasi and Albert, 1999).  As a baseline model, I sometimes generate regular ring 

lattice networks defined by parameters N and K.  These networks are simply N nodes connected in a 

ring to each of their closest K neighbors.  Ring lattice networks are said to be “regular” because they 
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repeat a pattern for all nodes and ties – that is, a ring.  These networks provide an easy manipulation 

check on the role that N and K play in network models since they are deterministic; consequently, 

known network statistics (density, centralization, etc.) are analytically computable for any choices of N 

and K.  However, it is well known that the regularity of ring lattices can produce artifactual results that 

do not reflect the full range of dynamical behaviors.  To explore the fuller parameter space of network 

dynamics and make appropriate inferences, random network models are needed.  As a result, I only 

report the results of random network models.  However, I should note that I ran both major analyses 

below – the time-to-sync and performance analyses – on ring lattices as a manipulation check and found 

that they displayed similar behavior to those of the second network generating model (see below).   

 The second network generating model is the Erdös-Renyi (ER) random network model.  This 

model is very simple to operationalize.  The network begins with N unconnected nodes.  The parameter 

PER is the uniform probability ranging between 0 and 1 that a tie exists between any two nodes.  In 

simulations, a random number can be compared to PER in order to determine whether any two nodes i 

and j have a tie.  Since the expected number of ties is the same for each node, the PER that generates ER 

random networks with mean degree equal to K can be determined.  (Note: For convenience, I use “K” as 

the label for mean degree in the analyses that follow, and d(ni) for the exact degree of node i – i.e., the 

actual number of ties emanating from node i.)  Thus, network size (N) and mean degree (K) can be 

independently varied with these models.  It should be noted, though, that ER networks sometimes 

produce disconnected networks where no paths exist between some stranded “islands” of nodes.  The 

synchronization process can not work across islands.  Thus, I make one important modification to the 

ER random network model.  To ensure that networks are connected, I seed the ER network generator 

with a ring lattice with K=2 where every node is connected to at least two others, and make the 

appropriate correction to PER that ensures mean degree (K) is correct.  This guarantees that all networks 

are connected – every node has at least two ties to its neighbors.  I use this ER random network model to 
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conduct all experiments involving N and K, which are parameters in the model, as well as tie strength 

(e). 

 Finally, to explore clustering (CC), I utilize the Watts-Strogatz (WS) small world model, a 

random network model of growing popularity.  The algorithm to generate a WS network is also simple 

(Watts and Strogatz, 1998).  Let N be the number of nodes, K be the desired mean degree, and Beta be 

the probability of rewiring.  Then the model begins with a regular ring lattice of N nodes connected to K 

neighbors.  For every focal node i, the probability Beta determines if each of i’s ties will be rewired to a 

different node.  Each other possible node is equally probable within the set of nodes that wouldn’t 

generate self-ties or duplicate ties.  Similar to the ER network algorithm, whether a tie is rewired can be 

determined by comparing Beta to a random number generated by the computer.  After the algorithm is 

has examined each node’s ties, the program is finished generating the new network.  N and K can be 

varied by varying the N and K in the original ring lattice since the algorithm eliminates no nodes or ties.  

More significantly, Watts and Strogatz (1998) showed empirically that Beta in an intermediate region of 

.01 and .1 generates high clustering coefficients (CC) but relatively short path lengths.  Figure 2 in their 

paper shows that clustering increases dramatically in this region, but that path lengths remain almost as 

short as they were with Beta=1 (Watts and Strogatz, 1998).  As a result, this is key region in which to 

explore clustering. 

Population and Organization-Level Measures: Synchrony, Cooptation, and Performance 

To explore the behavior of the system, it is helpful to define a number of measures.  The 

mathematical model suggests that synchrony of the population to a common rhythm is a possible system 

outcome, so it is useful to have a continuous measure that describes the amount of synchrony in the 

system as a whole and can be tracked over time.  To enable a fine-grained tracking of synchrony across 

time, it is instructive to analyze the alignment of resources as the measure of synchrony since (1) it is 

defined for all organizations at all time points and (2) directly determines the generation of actions, 
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which are more occasional.  Fortunately, simulation methods enable us to track these resource states at 

all times. 

While multiple such measures of synchrony can be defined, perhaps the most basic definition of 

synchrony is simply the number of agents whose resource states are the same in that time period.  Of 

course, different coalitions of organizations acting at different times can emerge.  For example, in a 

network of 10 organizations at a given time period t=100, two organizations may be synchronized with 

X1=X2=.16, while three other organizations may be synchronized with X8=X9=X10=.49. That is, two 

different synchronized groups have emerged.  To accommodate this difference, we simply take the 

maximum proportion of organizations with equal resources in that time period as our measure of 

synchrony: 

Sync(t) = maxi (∑ij orgs with Xi=Xj) / total # of orgs 

In the example above, the network of 10 organizations has Sync(100)=3/10=.3 at time t=100.  Generally, 

this measure of synchrony will grow over time as some coalitions of organizations acting with one 

rhythm coopt those acting with other rhythms.  That is, this measure of synchrony has the advantage of 

capturing the process of temporal cooptation – as the entire network nears synchrony this measure will 

grow until all the organizations are acting in unison.  It should be noted, though, that the results in the 

analysis that follow are robust to multiple other measures of synchronization in the mathematical 

literature iv.   

To examine the synchronization process more directly and reveal the causal mechanisms at 

work, it is helpful to define the cooptation rate, λc.  A cooptation event occurs when the generation of an 

action by organization i causes the resources of another organization j that is not synchronized in time 

period t to become synchronized in time period t+1.  Formally, a cooptation event in t+1, Kj(t+1), 

requires that Xi(t)≠ Xj(t) and Xi(t+1)= Xj(t+1).  Kj(t) takes only the values 1 (cooptation of j in time t) or 

0 (no cooptation of j in time t).  Doing so allows us to perform event history analyses and plot hazard 
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rates of these events, a common technique in population-level organizational analysis.  The hazard rate 

of cooptation, λc, is defined as: 

λc =  lim   P(t≤T<t+∆t | t≤T) 
  ∆t 0  ∆t 
where T is a positive and continuous random variable denoting the time of event transition from “non-

cooptation of j” to “cooptation of j” and P(·) is simply the probability of cooptation between time t and 

t+∆t v.  Together with the synchrony measure above, this measure of the cooptation rate will be helpful 

in understanding how network synchronization unfolds over time. 

Finally, it is useful to measure the performance of individual organizations in the context of 

synchronization.  As described above, our intuition is that organizations might prefer to have the 

network synchrony tip to their own, underlying rhythm.  Thus, a high-performing organization in a 

temporal sense is one that seeds the emergent synchronous cycle with its own underlying rhythm; 

conversely, low-performing organizations are those who are more likely to synchronize to other 

organization’s rhythmic impulses. 

While many such measures are possible, in this context it is natural to contrast organizations that 

are coopted to those that do the coopting.  Synchronization occurs in a step-by-step fashion in this 

model: early on, one or more organizations are coopted to the rhythm of another focal organization, w.  

As the model progresses, more organizations may be coopted to the coalition that contains this original 

organization w until some time when all organizations are synchronized to this rhythm.  Of course, the 

actions of other organizations may change the exact rhythm of organization w and its growing coalition 

of synchronized organizations but, nonetheless, it is possible to find this original organization w – the 

temporal “winner” – which ultimately coopts all other organizations.  Simulation analysis enables 

detailed tracking of the exact timecourse of cooptation so that the winning organization w can be found 

by backtracking through the simulation output.  For each simulation run, I record Wsync(i) for each 

organization i.  It is defined by the following piecewise equation: 
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Wsync(i)  =  {   1 if i=w           
0      if i≠w } 

 
That is, Wsync(i) is 1 if i is the winning organization w and 0 otherwise.  When averaged over multiple 

simulation runs the mean of wins and losses, <Wsync(i)>, represents the likelihood of winning for 

organization i, and ranges from 0 to 1.   

While informative, <Wsync(i)> does not conform to our notion of  performance.  In the analyses 

that follow, the objective will be to manipulate some characteristic of organization i – e.g., whether i 

coordinates – in a controlled experiment and observe direct effects of that characteristic on performance.  

Thus, we desire a performance metric that compares organization i’s likelihood of winning with this 

characteristic relative to its likelihood of winning without this characteristic – i.e., in treatment vs. 

control experimental conditions holding all other variables constantvi.  That is, to draw inferences about 

the effect of the treatment conditions on the likelihood of winning we need to adjust for the baseline 

likelihood of winning in the environment.  To do so, we simply subtract this baseline likelihood of 

winning from the likelihood of winning with the treatment condition to give us the performance 

advantage of those conditions, labeled Psync(i): 

Psync(i) =  <Wsync(i)> treatment – <Wsync(i)> control  

The i’th organization’s likelihood of winning for treatment and control must be calculated from separate 

simulation runs because, as will be seen in the analysis, the introduction of a treatment condition for 

even one organization i can have a profound effect on statistics for other organizations j in the network.  

Control simulations have all the same conditions as treatment simulations including the same values of 

N, K, e, and other constructs, except for the introduction of the treatment condition. 

 This measure of performance captures the intuition that an organization’s performance in the 

context of synchrony depends upon their relative capacity to coopt the network of other organizations to 

their own preferred rhythm.  The measure provides an objective metric in which to compare the efficacy 

of different strategies (e.g., dyadic vs. triadic coordination) in different structures (e.g., less vs. more 
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clustered) at the organization level.  Since the analysis relies upon average results over multiple runs of 

the simulation, the sync performance of an organization ranges between -1 and 1. 

ANALYSIS 

I use this analytical structure of a network of oscillating organizations and influence through 

action pulses to engage in two sets of analyses.  The first examines the emergence of synchrony – 

including the magnitude and timecourse of synchrony, the evolution of cooptation, and the time to reach 

synchrony – and its dependence on features of network structure such as size (N), degree (K), tie 

strength (e), and clustering coefficient (CC).  This analysis begins by examining the emergence of 

synchrony in a network where no organization necessarily intends to synchronize, showing that 

unintentional influence dynamics alone can generate synchronized actions in a population of connected 

organizations.  I then analyze the impact of intentional coordination across dyads or triads on 

synchronization, investigating the existence of temporal spillovers from the coordinated efforts of some 

organizations to other organizations in the network.   

The second analysis examines the performance of different organizations under different 

conditions. The impact of intentional coordination on performance is examined, including its 

dependence on features of network structure such as size (N), degree (K), tie strength (e), and clustering 

coefficient (CC).  Taken together, these two analyses investigate synchrony at the both the network and 

organizational levels. 

To ensure that the results reflect the underlying synchronization process and not merely 

particular outputs of stochastically generated initial conditions, the results are based on the average 

behavior of at least 1000 independent runs of the simulation.  For each of these runs, a distinct set of 

initial resource conditions for each organization are generated using multiple draws from uniform 

random variables between 0 and 1.  Thus, to explore the impact of increasing one parameter – for 

example, network size N – on system behavior the simulation is run 1000 times at multiple values of this 



 

 

 

26

parameter and the outputs are averaged while all other parameters (e.g., tie strength e, oscillation 

frequency 1/T, resource growth rate S, etc.) are held constant.  In this manner, the impact of varying 

multiple parameters on model behavior can be systematically explored.  Unless stated otherwise, the 

parameters conform to standard parameter settings used by Mirollo and Strogatz (1990) in their 

simulations.  The standard parameter settings include a resource growth rate S=2, resource growth 

dissipation rate b=1, frequency of oscillation 1/T = 1/10, tie strength e=.3, and time=50, and resources 

Xi normalized to a range of 0 to 1.  Further sensitivity analyses where multiple parameters are 

simultaneously varied are conducted to confirm the robustness of the simulation results. 

Emergence of Synchrony from Network Influence 

Since this model is used to explore the conditions affecting synchrony emergence, it is important 

to verify the computational model for this purpose since all further experiments (e.g., various network 

structures, coordination, etc.) depend on this model (Davis, et al., 2007: 491).  Thus, it is helpful to 

examine the outputs of a single representative run of the simulation, depicted in Figure 4, to examine 

how synchrony emerges.  Ten fully connected organizations begin with randomly determined resource 

states between 0 and 1.  Some organizations begin with resources closer to others, while others are 

farther apart.  As the simulation progresses, some organizations reach threshold, produce an action, and 

thereby influence all other linked organizations.  This influence increases the resources of other 

organizations, causing some of them to reach threshold and come into synchrony in the next time period.  

Over time, groups of organizations quickly form coalitions that act in unison, as can be observed in the 

lower graph in Figure 4.  By t=13 five organizations are acting in unison; by t=22 eight organizations are 

acting in unison.  The resources of all ten organizations are synchronized by t=24, causing them to act in 

unison forever.  That is, the network is synchronized. 

Dependence of Synchronization on Network Size (N).  Changing the features of the network 

engenders dramatic differences in the dynamics of synchrony emergence.  To quantify these effects and 
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discover the underlying factors that shape synchrony, this first experiment systematically varies network 

size, N.  To isolate only the effect of varying N, all other parameters are held constant including the 

mean degree (K), tie strength (e), and cluster coefficient (CC).  It will be the standard practice in these 

experiments to hold all else constant while varying only one experimental parameter.  As described in 

the Methods section, I use an ER model to generate a new random network with randomly distributed 

resource states on each simulation runvii.  The upper graph in Figure 5 plots the evolution of synchrony 

in networks with eight, twelve, and twenty organizations for 100 time periods.  As described in the 

methods, the amount of synchrony, Sync(t), is defined as maximum proportion of agents whose resource 

states are the same at time period t.  Each point on the graph is the average synchrony over 1000 

simulation runs. 

The results indicate that networks of all sizes eventually converge to complete synchrony 

(Sync=1).  As long as the network is connected, synchrony increases steadily until all organizations are 

ultimately synchronized to a common rhythm.  While all are ultimately convergent, the results indicate 

important differences for the three different sized networks.  As network size increases, the magnitude 

of synchrony decreasesviii.   Put another way, synchrony grows more slowly in large networks than small 

networks.  Why does synchronization depend on network size? 

To understand the size dependence of synchrony, I conduct an event history analysis of 

cooptation events.  The cooptation rate, λc, measures the degree of influence of some organizations on 

others over time.  This analysis is plotted in the lower graph of Figure 5.  While the rate of cooptation 

peaks around t=8 for all network sizes, this rate is actually lower in larger networks.  To understand this, 

recall that the cooptation rate is normalized by network size in order to make appropriate inferences 

about the likelihood of cooptation for each organization across variations (see endnote iv for details).  In 

larger networks, there are more organizations to be coopted and, thus, a lower cooptation rate.  Indeed, 

multiple competing rhythms may coexist in large networks for a long time before one dominant rhythm 
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emerges, which is reflected in the weaker synchronization in large networks.  Overall, synchrony (the 

upper graph) is weaker and slower in larger networks than smaller networks because of the weaker 

relative effect of cooptation (the lower graph). 

Dependence of Synchronization on Mean Degree (K).  The second experiment explores the 

dependence of synchrony on the number of ties per node – i.e., called “degree” in social network 

terminology.  Again, I draw random networks from an ER random network model, but now vary the 

mean degree (K) while holding all other parameters (N, e, etc.) constant ix.  The upper graph in Figure 6 

plots the evolution of synchrony in a moderately sized network (N=20) with low, medium, and high 

mean degree – that is, K=2, K=10, and K=14, respectively.  What is clear from this graph is that the 

amount of synchrony increases as the number of ties increases.  The event history analysis indicates that 

the rate of cooptation is higher in networks with more ties since these organizations possess more ties 

across which influence can occur.    While all networks eventually reach synchrony, networks with 

fewer ties per organization take much longer to synchronize than those with more ties per organization 

because of these diminished opportunities for direct cooptation.  I explore this mechanism in more depth 

below. 

Dependence of Synchronization on Tie Strength (e).  The next experiment explores the 

dependence of synchrony on the strength of ties.  The upper graph in Figure 7 plots the evolution of 

synchrony in networks with low, medium, and high tie strength – that is, e=.05, e=.1, and e=.25, 

respectively.  What is clear from the graph is that, much like increasing mean degree (K), increasing tie 

strength (e) increases the amount of synchrony.  In fact, the differences are so stark that simulations with 

low tie strength (e=.05 and e=.1) may appear to oscillate or never fully synchronize.  The oscillations are 

an artifact of the very low tie strength: a few organizations are repeatedly coopted into different sized 

coalitions until the influence dynamics cause one coalition to gradually coopt another entire coalition 
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and the oscillations disappear.  Of course, these and other networks in this experiment do eventually 

synchronize. 

To understand these dynamics, 40 time periods of this analysis have been plotted on both the 

lower and upper graphs of Figure 7.  At this level of granularity, important differences in the cooptation 

rates on the lower graph can be observed.  While the peak cooptation rate is the same for all three 

variations, these curves are offset across time.  Higher tie strength accelerates cooptation because fewer 

attempts at influence are needed to push an organization’s resources over threshold and, thus, generate a 

cooptation event.  In contrast, cooptation is a weaker force in networks with lower tie strength: influence 

accumulates slowly and cooptation is delayed relative to higher tie strength networks.  As tie strength 

approaches 1, cooptation becomes more certain, occurring even within a single time period, in contrast 

to the slower accumulation of influence over many time periods when tie strength is low. 

Dependence of Synchronization on Clustering (CC).  The next experiment explores the impact 

of clustering on the evolution of synchrony.  Clustering is the degree to which the set of organizations 

that are tied to each organization are themselves tied to each other – i.e., “friends of friends are 

themselves friends.”  Networks with high clustering may have subgroups which are fully connected 

cliques.  To explore clustering, I utilize the WS small world model to generate random networks with 

different cluster coefficients by varying a key parameter (Beta, the likelihood of rewiring) in the model.  

Watts and Strogatz (1998) showed that decreasing Beta increases clustering but decreases the length of 

paths between nodes.  With intermediate Beta valuesx, the model generates networks with high 

clustering but relatively short path lengths, often called “small world” networks (Watts and Strogatz, 

1998).  To focus on clustering, I examine moderately sized networks (N=100) with a high mean degree 

(K=60) where the path lengths between pairs of organizations are relatively short. 

To interpret the top graph in Figure 8, recall that the cluster coefficient declines as Beta 

increases; average values of CC are noted in the legend.  With this in mind, the upper plot reveals that 
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increasing clustering decreases the magnitude and speed of synchronization.  Zooming in on a small 

segment – from t=350 to 400 – is clarifying.  Of course, it should be noted that this effect is rather weak 

compared to synchrony’s dependence on N, K, and e.  The effect of clustering on synchrony can only be 

observed over very long time periods when the accumulated differences in synchrony are visible, and in 

very large networks where differences in clustering can be greater (Watts and Strogatz, 1998). 

However, this effect, while weaker and limited to larger networks, can be explained by 

examining the simulation output over time.  In even slightly clustered networks, cooptation works very 

quickly to create synchronized coalitions within clustered regions.  A closer inspection of the cooptation 

rate in the lower graph – for example, zooming in between time periods 0 and 25 – tells us very little: 

because most of the cooptation occurs quickly, these graphs are almost perfectly superimposed over 

each other.  While cooptation within clusters is quick, the rhythms across clusters are more variable, 

leading to longer times for coalitions to coopt each other and generate network-wide synchrony.  By 

contrast, less clustered networks have more evenly distributed ties, which enable organizations to coopt 

each other more uniformly such that network-wide synchrony can emerge more quickly.  This intriguing 

result is explored below. 

Identifying Three Theoretical Mechanisms: Accelerated, Coalitional and Conflicting Influence.   

One advantage of simulation methods is that they can be used to understand the theoretical 

mechanisms that generate important findings (Davis, et al., 2007).  Social mechanisms are causal logics 

that, while not always true, are at work when the conditions in the system are appropriate (Hedstrom and 

Swedberg, 1998; Davis and Marquis, 2005).  The experiments above found that synchrony depends 

upon network size, mean degree, tie strength, and clustering coefficient.  Taking this analysis a step 

further, the event history analysis sheds further light on these dependencies by linking differences in the 

cooptation rate to synchronization outcomes.  By examining the simulation over time – including 
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differences in temporal cooptation – we can better understand the specific mechanisms that generate 

these findings.  Three important mechanisms emerge.  They are depicted in Figure 9. 

Accelerated Influence.  Consider the dependence of synchrony on the strength of ties.  

Examining the event history analysis in the lower graph of Figure 7 revealed a very simple finding: 

increasing tie strength shifted the cooptation rate curve forward in time.  Comparing multiple time series 

of cooptation events reveals the very simple mechanism at the heart of this finding.  When tie strength is 

low, cooptation is generated by many cycles of accumulated influence that push the coopted 

organization closer to synchrony with the coopting organization.  As tie strength increases the likelihood 

of accelerated influence increases, which reduces the number of cycles necessary for cooptation.  The 

net effect is to accelerate cooptation between connected organizations and shift the cooptation rate 

curves forward in time.  At the limit of maximum tie strength (e=1), a single influence attempt will 

coopt a given organization, as depicted in Figure 9. 

Coalitional Influence.  Consider the dependence of synchrony on the number of ties per node – 

that is, the mean degree (K).  The event history analysis in the lower graph of Figure 6 indicated that the 

cooptation rate increases when the number of ties increases.  Examining the simulation output reveals 

that this effect occurs because possessing more ties increases the number of organizations that can coopt 

any other organization.  As a result, multiple coalitions of organizations that share the same rhythm are 

more likely to emerge, and these coalitions use their combined influence to quickly coopt single 

organizations or smaller coalitions, as depicted in Figure 9.  This coalitional influence is often observed 

as K increases – the outputs of simulations with high K begin with single organizations acting 

asynchronously, but these individual organizations quickly form small coalitions which combine with 

other coalitions until all are synchronized.  Finally, it should be noted that the combined influence of 

these larger groups accelerates influence as well.  Multiple organizations acting as one can substitute for 

a single organization with strong influence, as can readily be seen from the forward shifting cooptation 
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rate in the lower graph of Figure 6.  That is, increasing K increases the likelihood of both accelerated 

and coalitional influence mechanisms. 

Conflicting Influence. A third mechanism lies beneath the two negative dependencies of 

synchrony.  Clustering has an intriguing effect on cooptation.  When N and K are held constant, 

increasing clustering regularizes the pattern of ties – i.e., in a highly clustered network, some groups of 

may resemble fully connected cliques.  While synchrony emerges quickly within clusters, this creates a 

higher variance of rhythms across clusters, decreasing the magnitude and speed of network-wide 

synchrony.  The underlying cause is that clustered networks increase the likelihood that conflicting 

rhythms emerge across coalitions.  These conflicting rhythms require greater influence across bridging 

ties that connect coalitions to generate a cooptation event and, thus, decelerate synchrony.   

As described above, increasing network size (N) leads to a weaker relative force of cooptation 

since more organizations must be coopeted for full synchrony.  In addition, as the number of 

organizations increases, so too does the likelihood that conflicting rhythms will emerge.  Indeed, while 

increasing K when N is large will generate more coalitions, as described above, some of these coalitions 

will generate conflicting rhythms, which partially counterbalances the positive effect of the coalitional 

influence on synchrony.  Moreover, it should be noted that, all else equal, increasing N has little effect 

on acceleration as the basic size of influence is unchanged (e is held constant) and the likely size of 

coalitions does not change (K is held constant).  Overall, the relative likelihood of accelerating 

influence, coalitional influence, and conflicting influence shape the magnitude and time to synchronize 

networks. 

Time to Synchrony.  The amount of time it takes to reach synchrony – “time-to-sync” – is a 

simple summary statistic that allows us to compare the relative direction and magnitude of these 

dependencies. Each of the four graphs in Figure 10 plots the results of multiple experiments to explore 

these dependencies and better understand the synchronization process.  The four experiments test the 
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impact of varying a key parameter (N, K, e, or Beta) on the average time-to-sync.  Each point in these 

graphs is the time-to-sync averaged over 1000 simulation runs.  The upper left graph demonstrates the 

strong dependence of time-to-sync on network size, N.  Time-to-sync grows strongly with network size 

because each additional node dilutes the relative impact of cooptation since more coalitions must be 

coopted for network-wide synchrony to emerge.  By contrast, the upper right graph plots the strong 

negative dependence of time-to-sync on mean degree (K).  As the number of ties increases, time-to-sync 

declines because of the increasing likelihood of coalitional and accelerated influence.  It should be noted 

that the apparent asymptotes in the N and K analyses at time-to-sync=1000 are artifacts of setting the 

maximum number of iterations to 1000; time-to-sync for high N and low K are very large but finite 

numbers.   

Time-to-sync’s dependence on tie strength (e) is also negative with a sharp decline from 0 to .5 

becoming a more gradual decline thereafter (see lower left graph).  Recall that resource states are 

normalized between 0 and 1 with an intrinsic expected value of .5.  As e increases accelerated influence 

reduces the time to synchrony by reducing the number of time periods required to coopt another 

organization.  In networks with e>.5, some organizations that remain uncoopted are most likely 

experiencing influence when their resources are below the mean, perhaps by multiple coalitions that are 

gradually pulling these organizations towards cooptation over many cycles.  While increasing e above .5 

does accelerate this process, it is slower than in those organizations in which resource states happen to 

be high when influence occurs. 

Finally, the lower right graph plots the dependence of time-to-sync on Beta on a log scale.  

While weaker than the prior dependencies, the negative impact of increasing Beta is observed in the 

range .01 to 1.  Recall again that increasing Beta strongly decreases clustering in this range (Watts and 

Strogatz, 1998).  As a result, we conclude that increasing clustering actually increases the time-to-sync 

in these networks because, as described above, it creates clustered coalitions with conflicting rhythms 
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that require more time to synchronize than more random networks.  At the limit of Beta=0, clustering is 

maximized and the WS small world model generates perfectly regular ring lattice networks with time-to-

sync values that plateau.  Time-to-sync will remain an important summary statistic for studying 

collective behavior in these networks. 

Impact of Dyadic and Triadic Coordination on Time-to-Sync and Performance 

To this point, we have explored the temporal consequences of inter-organizational influence.  

What is surprising is that intentional coordination is not necessary for synchrony to emerge.  

Organizations influence each other through their actions, but no organization is purposefully aligning its 

resources with another organization or with an exogenous rhythm such as a technological or economic 

cycle.  Instead, synchrony emerges through the local interactions of connected organizations without the 

need for a deliberate synchronization strategy. 

The next set of experiments returns to the coordination processes discovered in field: Davis 

(2009) found that organizations purposefully synchronized themselves using various temporal 

structuring mechanisms.  Not only did organizations entrain basic actions like product releases across 

time, but they also synchronized their basic resource oscillations through mechanisms such as aligning 

their pace of development and rescheduling phases of work (Davis, 2009).  What are the consequences 

of such coordination strategies for these focal organizations and the network as a whole? 

Coordination and Time-to-Sync. The upper graph in Figure 11 compares the results of two 

variations – dyadic and triadic coordination – on time-to-sync.  To explore the impact of intentional 

coordination on synchronization, simulations in the “dyadic” variation operationalize coordination by 

choosing two organizations at random and setting their initial resource states equal to the same randomly 

generated value.  That is, I operationalize coordination as the intentional pre-synchronization of 

resources, an intuitive and easy-to-implement form of coordination.  Similarly, in simulations with 

“triadic” coordination, the simulation chooses three organizations at random and sets their initial 
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resource conditions equal to the same randomly generated value.  Perhaps the most well-documented 

triadic relationship is between Intel, Microsoft, and Cisco which together control various markets in the 

computing and communications industries (Gawer and Cusumano, 2002; Yoffie and Kwak, 2006).  

While triadic relationships are probably less common than dyadic relationships, comparing the outcomes 

of dyadic to triadic coordination will illustrate the mechanisms underlying the results. 

To understand coordination’s impact on synchronization, the upper graph compares the change 

in time-to-sync for dyadic and triadic coordination cases.  The time-to-sync “improvement ratio” due to 

dyadic coordination is defined as the difference between the time-to-sync without dyadic coordination 

(TtSwithout) and time-to-sync with dyadic coordination (TtSdyadic) over the time-to-sync without dyadic 

coordination or (TtSwithout – TtSdyadic) / TtSwithout  The time-to-sync improvement ratio due to triadic 

coordination is computed similarly: (TtSwithout – TtStriadic) / TtSwithout.  To increase the precision of these 

estimates and illustrate the central logic of the finding, each variation – (1) without coordination, (2) 

dyadic coordination, and (3) triadic coordination – is run and metrics are averaged over 5000 simulation 

runs using small ER random networks (N=10) that are highly connected (K=8).  Of course, sensitivity 

analyses with various other network topologies show that these effects are quite robust, as will be seen 

in the next analysis (Figure 12). 

The central result depicted in the upper graph of Figure 11 is that the time-to-sync decreases (i.e., 

improves) when some organizations are coordinating.  The time-to-sync improvement ratio for dyadic 

coordination is -.01, while for triadic coordination it is -.04xi.    With resources intentionally pre-

synchronized by dyadic and triadic coordination, cooptation can immediately proceed through coalitions 

of two and three, respectively.  As we learned in prior experiments, increasing the likelihood that 

cooptation occurs through coalitions increases both the average amount of synchrony and time to 

synchrony.  This effect will be substantial if the initial resource positions of the pre-synchronized dyad 

or triad were already close to coopting other organizations.  Moreover, it should be noted that the time-
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to-sync improvement ratio is less negative with dyadic coordination than with triadic coordination – i.e., 

there is more improvement in the triadic case .  Simply adding another organization to the coordinated 

group greatly increases the power of coalitional and accelerated influence that will unfold.  Overall, the 

important point is that the entire population benefits from quicker synchronization due to the purposeful 

synchronization strategies of two or three organizations.  That is, while modest, non-coordinating 

organizations experience the temporal spillovers of coordination by other organizations. 

In fact, we should expect these effects to be modest.  In networks with coordination, only 2 of 10 

(dyadic) organizations or 3 of 10 (triadic) organizations are pre-synchronized: the system still requires 

that 80% (dyadic) or 70% (triadic) of the organizations (the other agents) be coopted as well.  Indeed, it 

is not guaranteed that pre-synchronization efforts always help network synchronization.  It is possible 

that the pre-synchronized organizations begin with initial conditions very different from the other 

organizations, thus, impeding synchrony, as I observed in a few simulation runs.  On average, though, 

the upside of cooptation with intentionally coordinated coalitions outweighs this possible downside.  

Other organizations benefit from these temporal spillovers by reaching synchrony sooner than they 

otherwise would. 

Coordination and Sync Performance.  The prior experiment focuses on the time-to-sync and 

temporal spillovers to the entire population when a few organizations coordinate.  But do these 

coordinating organizations receive additional benefits from these strategies?  As described in the 

background, perhaps the most important benefit that organizations can enjoy in the context of 

synchronization is to have network synchronization tip to their own preferred rhythm.  Organization(s) 

that coopt all other organizations to their own dynamics could enjoy important cost and revenue 

advantages.  For example, technology focused organizations like Intel which cooperate to build product 

platforms naturally prefer to have other complementor firms bear the cost of adjustment to match their 

preferred development cycles (Adner and Kapoor, 2006; Gawer and Henderson, 2007).  Doing so would 
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increase demand for complementary products and allow firms like Intel to maintain their preferred pace 

of technology exploration.  As a result, these organizations might prefer the network to synchronize to 

their own rhythm or one that closely approximates it. 

The experiments depicted in the lower graph of Figure 11 explore the average synchronization 

performance of organizations using dyadic and triadic coordination.  As described in the Methods 

section, the synchronization performance, Psync(i), measures the likelihood that an organization coopts 

all other organizations to its own underlying rhythm in some treatment condition (either dyadic or triadic 

coordination) relative to the likelihood of doing so in a control condition (without coordination).  The 

results indicate that dyadic and triadic coordination do generate performance advantages for focal 

organizations undertaking these strategies – the performance of dyadic coordination is .12 while the 

performance of triadic coordination is .27 xii.  Coordination with its partners amplifies an organization’s 

influence relative to non-coordinating organizations: the two (or three) organizations work as pair (or 

trio) to coopt others to their rhythm.  While not always successful, the increased influence of 

coordinating organizations does convey a significantly higher likelihood that they will be the winner 

and, thus, increases their average performance.  Does this performance advantage depend on features of 

network structure? 

Network Structure, Coordination, and Performance.  The next analysis explores whether the 

performance advantage that coordination provides is dependent on these features of network structure 

that we have explored above – network size (N), mean degree (K), tie strength (e), and clustering (CC).  

Is coordination a better strategy in some networks than others?  As done in the time-to-sync analysis 

depicted in Figure 10, in this analysis I systematically vary these parameters to explore the dependence 

of coordination’s performance advantage on various features of network structure.  All experiments use 

the ER random network except the lower right graph exploring clustering (CC), which uses the WS 

small world network model.  I focus on dyadic coordination as the treatment condition in these graphs; 
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triadic coordination has higher values, but similarly-shaped dependencies.  Like the values computed in 

the lower graph of Figure 11, each point in the graphs in Figure 12 is the likelihood of winning across 

1000 simulations with the treatment condition (dyadic coordination) less the likelihood of winning 

across 1000 simulations in the control condition (no coordination) – i.e., our definition of performance.   

The upper left graph illustrates the strong negative dependency of performance on network size 

(N).  This graph explores N from 2 to 100 xiii.  The following results are robust for all K<N. When N is 

low, performance is high because the pairs of organizations engaged in dyadic coordination have a 

higher likelihood of sequentially coopting all the organizations in the population.  Performance is 

particularly high when N is between 2 and 10 because the network is fully connected in this range (see 

endnote above for treatment of networks where N<K).  As N increases, the likelihood that pairs of 

organizations engaged in dyadic coordination coopt all organizations declines.  Instead, other 

synchronized coalitions may emerge, some of which are larger than the coordinated coalition.  These 

other coalitions decrease the likelihood that the coordinating organizations will win.  Performance is 

notably lower in the region of N>K, but nonetheless declines as N increases.   

This suggests an important interaction between N and K.  Recall that the total number of ties in 

these networks – often called the network density – is well estimated by NK/2.  Thus, in cases where N 

and K are close together, the density is significantly greater than N alone – i.e.,  NK >> N when N and K 

are not small.  For example, if N=K=10, then NK=100 >> N.  Thus, the magnitude of any dependencies 

that rely upon the coordinating organizations reaching other organizations in the broader network are 

expected to increase greatly as N and K become more similar due to the greatly increasing network 

density relative to N. 

Indeed, analyzing the dependency of performance on mean degree (K) bears this out.  The upper 

right graph illustrates that performance increases as the mean number of ties per node (K) increases.  

One should begin by noting that the dependency on N is an order of magnitude greater (ranging from 0 
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to .5) than the dependency on K (ranging from 0 to .05).  This difference in ranges accounts for the more 

jagged curve in the upper right graph since it “zooms in” and magnifies the stochastic output at this 

level.  Nonetheless, this graph illustrates an increasing performance advantage to coordination, which 

becomes particularly high as K nears N.  This is the converse of the prior finding: as K nears N, the total 

number of ties is large relative to the number of nodes.  Thus, coordinating organizations are more likely 

to be connected to other organizations that they can quickly coopt.  This builds a growing coalition over 

time, which increases their likelihood of winning.  This advantage is particularly acute in very dense 

networks (with high K relative to N), at least within the bounds of this experiment. 

The next two experiments illustrate non-dependencies that nonetheless solidify our intuition 

about coordination and performance.  The lower left graph varies tie strength (e) from 0 to 1, generating 

a flat performance curve.  Yet, this flat curve is greater than zero, reflecting the positive effect of 

coordination versus the baseline, our measure of performance.   Overall, performance does not vary with 

tie strength.  While increasing tie strength accelerates influence, acceleration’s effect on cooptation is 

similar for coordinating and non-coordinating organizations.  This generates no variation in 

performance. 

The lower right graph varies Beta between .0001 and 1. Again, the performance is a flat curve 

that is greater than zero.  Overall, performance does not vary with clustering.  Recall that clustering 

creates coalitions with widely varying rhythms.  While network-wide measures like the amount of 

synchrony and time-to-sync have a clear dependence on clustering, performance does not because the 

coordinating organization is not more or less likely to be in or out of any given cluster than any other 

organization.  Thus, the performance advantage due to coordination does not vary with clustering.  

Instead, our intuition should be that the performance advantages due to coordination depends, instead, 

on the number of nodes (N) and the number of ties (K) because network density magnifies the combined 
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influence of coordinating coalitions.  An implication is that coordination strategies are more effective in 

smaller networks that are more connected. 

DISCUSSION 

I began by noting that despite extensive research on resource mobilization and information 

diffusion across various inter-organizational relationships, we know very little about how organizations 

cooperate to achieve common objectives in larger groups. Whether these organizations are involved in 

business groups, social movements, or technology platforms, they each appear to share a common 

networked organizational form that enables collective behavior such as synchronized actions.  While 

other aspects of collective behavior are no doubt important, this paper focused on synchronization 

because of the importance of generating simultaneous actions in multiple important domains.  While 

most explanations of synchrony focus on intentional coordination mechanisms and do not explicitly 

consider synchrony’s sensitivity to social influence across network ties, this study used an inductive 

approach and simulation methods to develop new insights about the role of the network and influence 

mechanisms in synchronization and collective behavior more generally. 

The main results are theoretical insights about temporal dynamics in cooperative networks.  

First, in contrast to prior theory attributing synchrony to either powerful firms or exogenous technology 

trajectories, I find that synchrony can emerge from local interactions without the need for intentional 

coordination.  Synchrony emerges though a series of temporal cooptation events across network ties 

through which some organizations influence others to become synchronized.  The magnitude of and 

time to synchrony varies predictably with features of network structure, which can be understood with 

reference to three mechanisms (depicted in Figure 9) that shape cooptation: accelerated, coalitional, and 

conflicting influence. 

The time-to-synchrony analysis summarizes these effects: while time-to-synchrony varies 

negatively (i.e., is quicker) with mean degree (K) and tie strength (e), it varies positively (i.e., is slower) 
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with network size (N) and clustering (CC).  As tie strength (e) increases, accelerated influence 

mechanisms pull cooptation events forward in time.  Increasing the mean number of ties (K) amplifies 

coalitional and accelerated influence mechanisms, which increase the magnitude and pace of the 

cooptation events that lead to synchrony.  By contrast, increasing clustering (CC) increases the 

likelihood of conflicting influence which involves multiple coalitions with widely varying rhythms and, 

thus, decelerates cooptation.  Finally, increasing network size (N) decreases the relative impact of 

cooptation since more organizations require extensive coalitional influence or re-influence to 

synchronize the network as the likelihood of conflicting influence increases.  Taken together, these 

influence mechanisms increase our understanding of the synchronization process in differently 

structured networks. 

While networks can synchronize through uncoordinated influence mechanisms alone, intentional 

coordination across inter-organizational relationships accelerates the time to synchronize the network, 

creating temporal spillovers to non-coordinating organizations.  Coordinating organizations benefit from 

amplified synchrony performance – that is, they increase the relative likelihood that network 

synchronization tips to their own underlying rhythm.  Organizations with high synchrony performance 

enjoy the cost and revenue benefits of minimizing their own resource adjustments and, instead, influence 

others to join their own rhythm.  The magnitude of this coordination performance advantage depends 

predictably on specific features of network structure, but not others. 

Precisely, the performance advantages of coordinating decreases as network size (N) increases, 

but increases as mean degree (K) increases.  The logic in both cases is that more ties relative to nodes 

enables coordinating organizations to coopt others more fully and increases the likelihood that 

synchrony tips to their own rhythm.  This is illustrated in an observable interaction effect between N and 

K.  When N nears K, performance improves sharply as N decreases because the higher network density 

relative to network size increases the likelihood that the coordinating organizations will coopt all other 
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organizations.  Similarly, when K nears N, performance increases sharply as K increases because the 

higher network density relative to network size increases the likelihood that the coordinating 

organizations will coopt all other organizations.  Overall, temporal coordination strategies are more 

effective in smaller networks with more ties. 

Theoretical Contributions  

This study contributes to the body of theoretical research about inter-organizational networks.  

While most research in this area has focused on dyadic processes and outcomes, at least three major 

phenomena – business groups, social movements, and technology platform ecosystems – attest to the 

possibility that cooperation and coordination may be relevant in larger organizational groups.  The 

central mystery is how collective behaviors like synchrony could emerge in sparsely connected networks 

given the challenge of synchronizing temporal dynamics across multiple network ties.  While multiple 

theories imply that intentional coordination must be at the heart of collective behavior, this explanation 

is suspicious because of the high costs of coordinating all relationships in the network.   

Multiple researchers have suggested that collective behaviors can emerge from these networks, 

but this has been difficult to explore empirically because of the lack of longitudinal network data.  This 

theory has also been difficult to explore in existing network models, which mostly focus on either static 

interdependencies or on simple diffusion dynamics where organizations are “infected” by information in 

an all-or-none fashion or where organizations are modeled as acting only once.  In essence, it has been 

difficult to model collective behavior where influence dynamics can accumulate slowly (or quickly) and 

repeated organizational actions are endogenously dependent on all the other actions in the system.  The 

pulse-coupled oscillator model I extend in this paper is in a unique class of models that enable 

systematic exploration of influence dynamics and collective behavior in such networks.  Further 

research with these models could advance our understanding of other aspects of networked cooperation 

in the mandate of organizational scholarship. 
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Using this model of influence dynamics, this study illustrates that cooperation in larger 

organizational groups can be better understood by considering the possibility of collective behaviors like 

synchronization.  Synchrony can emerge in these networks without intentional coordination mechanisms 

related to asymmetric resource dependence or an exogenous technology rhythm, although intentional 

coordination does generate benefits for coordinating organizations.  The study shows that these effects 

depend predictably on features of network structure.  Perhaps more importantly, this study contributes 

by identifying three theoretical mechanisms – accelerated, coalitional, and conflicting influence – that 

explain these dependencies and are broadly applicable to other studies of collective behavior in 

networks. 

The theoretical contributions from this study may generate important insights for specific 

streams of research about inter-organizational networks (Podolny and Page, 1998; Powell, et al., 2005; 

Schilling and Phelps, 2007).  For instance, research on business groups repeatedly suggests that their 

network structure could influence how effectively they cooperate (Granovetter, 2005; Khanna and 

Yafeh, 2007; Yiu, et al., 2007), although this hasn’t been well explored.  This literature also suggests 

that central coordination is an essential aspect of business groups (Yiu, et al., 2007).  The study at hand 

sheds light on both phenomena. While not strictly necessary, intentional coordination could accelerate 

cooperation.  In fact, coordination by a small subset of firms – a few banks or leading diversified firms – 

could effectively influence a larger business group if the network is densely connected.  In fact, if 

generating the rhythm to which firms synchronize is valuable, coordinating firms could enjoy more 

benefits when groups are more densely connected.  If leading firms withdraw overt coordination, 

synchrony may still emerge if the network isn’t too big, although clustering may be lead to delay if it is 

allowed to persist. 

Social movement groups, such as the multiple organizations leading the environmental 

movement, are particularly threatened by clustering if it leads to conflict (Lenox, 2006).  In contexts 
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where movement aims are unclear and new local movement organizations can emerge quickly, local 

movement groups will enjoy the benefits of coordination but suffer from clustering.  This may explain 

why most successful social movement groups rely on other network features – small network size and 

high density – to ensure collective behaviors (McCarthy and Zald, 1977; McAdam, 1982).  For instance, 

McAdam (1982) describes the tight linkages between church groups in the south that effectively 

opposed segregation.  The network structure of social movement organizations deserves further study 

because it can shape their capacity to generate collective behaviors. 

Finally, synchrony has perhaps been most explored in technology platform ecosystems because 

of their multiple product releases (Henderson and Clark, 1990; Adner and Kapoor, 2006).  These 

platform groups may be the fruitflies of research on inter-organizational collective behavior (Bresnahan 

and Greenstein, 1999; Gawer and Henderson, 2007).  Despite extensive documentation of these 

simultaneous product releases, and the cooperative incentives that underlie them, the role of network 

structure in this context has been unclear.  New research on the emergence of alliance networks 

dedicated to the joint production of technology platforms suggests that entrepreneurial organizations 

purposefully bring together disconnected organizations in a tertius iungens or “joining together three” 

fashion (Obstfeld, 2005; Ozcan and Eisenhardt, 2008).  This study offers a new rationale for this 

phenomenon: rewiring organizations is an intervention that, when applied correctly, can mitigate 

clustering.  Since clustering can delay the emergence of synchrony, reorganizing network structure to 

mitigate it is an intervention upon which competing platform groups might be particularly focused.  

In conclusion, while synchronized action is a critical aspect of collective behavior for many 

organizational groups, the network process that generates synchrony has not been well explored.  Using 

a model of influence dynamics in cooperative networks, I explored this process and its dependence on 

network structure and inter-organizational coordination.  I found that synchrony emerges faster in 

smaller networks with more strong ties that are less clustered; moreover, the coordination strategy that 
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some organizations employ is more effective in smaller networks with more ties, while tie strength and 

clustering do not affect these advantages.  These findings can be understood with reference to three 

rather general network mechanisms – accelerated influence, coalitional influence, and conflicting 

influence – that shape the likelihood of cooptation over time.  Overall, I conclude with an optimistic 

view that this research will lead to further empirical study of the temporal dynamics of influence, 

collective behavior, and the emergence of synchrony in cooperative networks.  If the insights developed 

here survive empirical test, they could extend our understanding of organizational networks beyond 

perspectives focused on static interdependence structures and simple diffusion processes to a view that 

emphasizes collective behavior and influence dynamics which is a more realistic description of how 

many organizations actually cooperate. 
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Figure 1 depicts the number of new product introductions per year for the (a) SunOS workstation, (b) 
MicroVMS workstation, and (c) photolithography sectors.  Special thanks to Olav Sorsenson and Rebecca 
Henderson for generously supplying their datasets and to Constance Helfat and Steven Klepper for 
organizing the FIVE Project on Firm and Industry Evolution and Entrepreneurship (Helfat and Klepper, 
2007) which houses these datasets at http://five.dartmouth.edu/  
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i Figure 1 depicts the number of new product introductions per year for the (a) SunOS workstation, (b) MicroVMS 
workstation, and (c) photolithography sectors.  Special thanks to Olav Sorsenson and Rebecca Henderson for generously 
supplying their datasets and to Constance Helfat and Steven Klepper for organizing the FIVE Project on Firm and Industry 
Evolution and Entrepreneurship (Helfat and Klepper, 2007) which houses these datasets at http://five.dartmouth.edu/  
 
To compute the year of new product introduction for Sorenson’s workstation data, I selected two important subsets of his 
FIVE dataset: new product introductions on the SunOS platform (Column “OS”=”1”), a Unix based OS (Figure 1a), and the 
MicroVMS platform (Column “OS”=”14”), a non-Unix OS (Figure 1b), because these two groups had the most firms, 57 and 
18 respectively.  Since each entry of Sorenson’s FIVE product dataset is by product model (Column “YEAR”) and year of 
product observation (Column “PRODUCTID”), I defined the product introduction year for each product model as the first 
year on record in this dataset.  By comparison, I examined the data for all 18 firms in Henderson’s photolithography database 
to construct new product introductions per year (Figure 1c) since they are not separated by platform.  Since Henderson’s 
dataset contains an entry for all product models (Column “model”) and ALL possible sales years (Column “salesyear” ranges 
from 1960-1986), even if the product was not sold and did not yet exist in these years, I defined the product introduction year 
for each product model as the first year with non-zero sales (Column “salesrevenue”).  Each bar in the graphs in Figures 1a, 
1b, & 1c is simply the sum of the new product introductions in that year.  Finally, I fit a sine function to each timeseries of 
this data with yearly endpoints that had two or greater product introductions in order to illustrate the cyclical nature of these 
product releases. 
 
Of course, it is important to note that these analyses are, by necessity, incomplete since product releases are only a subset of 
these firm’s strategically relevant actions, and neither analysis includes the complete set of competing and complementing 
firms in the industrial network.  Despite these issues, observed patterns of synchronous product introduction demand further 
explanation. 
 
ii While competition is not an explicit focus of this paper, it is interesting to note that cooperative synchronization is a 
powerful enough process to sometimes overwhelm the expected effects of competition on timing.  On the one hand, assuming 
that the cost of changing a consumer’s preferred buying time is sufficiently low, well known economic theories on “R&D 
races” predict that firms might competitively synchronize their product releases as early as possible to capture the most value 
from customer (Hoteling, 1929; Tirole, 2007).  In the real world, however, these costs are often significant; additionally, the 
cost to build a product more quickly can change firms’ preferences (Pacheco de Almeida and Zemsky, 2002).  Indeed, if we 
simply assume that customers buy products at times that are evenly distributed on a timeline (and these preferences are too 
costly to mitigate), then economic theories predict that competitors might chose to release substituting products at different 
times to jointly maximize the amount of value captured from customers over time (although see Tirole (2007) for a number 
of exceptions and other considerations).  Indeed, significant evidence supports the idea that competitors benefit from 
desynchronizing product releases (Katila and Chen, 2009).   
 
However, in interdependent industries, the existence of other firms producing complementary products can create incentives 
to cooperatively synchronize which may make it appear that rivals are synchronizing with each other.  In reality, multiple 
competing firms may be synchronizing with other complementor firms such that apparent synchronization between rivals is 
an artifact.  Taken together with the competitive synchronization due to R&D racing (described above), both effects can 
produce the illusion of intended cooperative synchronization where there is none.  These two effects (sync with unobserved 
complementors & sync due to R&D racing) should be important considerations in any future empirical analyses of 
cooperative synchronization.  The workstation firms in Sorenson’s data no doubt mix both cooperative and competitive 
intentions; firms releasing workstations using the same operating system are rivals, but may also cooperate to promote one 
common platform (SunOS) over another (MicroVMS).  Again, the observed synchronization may emerge from this direct 
cooperation between firms sharing a common platform or synchronization with unobserved complementor firms.  Another 
example is the synchronization of product releases by photolithography firms.  In a reanalysis of Henderson’s data, I find that 
some synchronization emerges between competing photolithography firms as well.  As expected, photolithography 
synchronization is less intense than workstation synchronization – that is, we should expect greater incentives to cooperate 
across more open workstation platforms than photolithography platforms where interface technologies are often trade secrets.  
Indeed, apparent photolithography firm synchronization may be due to unobserved synchronization with firms producing 
complementary “mask” and “resist” products that not included in Henderson’s FIVE dataset.  In support, Adner & Kapoor’s 
(2006) analysis of the same firms finds that photolithography firms that are temporally aligned with mask and resist firms 
enjoy greater market share than those that do not.  This study highlights the differential impact of (“mask” and “resist”) 
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complementary firms versus (“lens” and “source”) component firms on the profitability of innovations produced in 
interdependent ecosystems (Adner and Kapoor, 2006).   
 
Overall, it is important to note that I restrict my analysis in this paper to developing insights about networked synchronization 
between cooperating firms; future models could explore the mix of competition and cooperation in networked 
synchronization.  For now, I refer the reader to the work cited above for a more extended discussion of competitive timing in 
the product innovation context. 
 
iii It should be noted that Mirrollo and Strogatz’s (1990) proof assumes an all-to-all connected network.  It has been 
particularly difficult to make analytic progress outside of the domain of “mean field approximations” which assume all-to-all 
connected networks.  Simulation studies, however, can produce consistent empirical, if not analytical, solutions to various 
problems. (c.f, Watts  and Strogatz (1998)). 
 
iv Some of these more complicated metrics include the correlation of resource waveforms, and the proportion of any 
synchonrized actions, however temporary.  The simple metric presented in the analyses that follow is useful because it 
illustrates the convergent nature of synchronization to a common rhythm, and allows us to investigate firm-level synchrony 
performance. 
 
v It is important to note one complication.  Since the cooptation rate is based on the possible organizations that could be 
coopted, an make an adjustment for network size is required in order to make inferences about the likely magnitude of 
cooptation affecting each organization in different sized networks.  To do so, we simply normalize by dividing λc by 
N/<N>variations, the number of organizations in a given variation over the mean number across variations.  This convenient 
rescaling allows us make inferences about cooptation in variations where N is varied (Figure 5), but does not affect our 
estimate of λc where N is not varied (Figures 6-8) since N/<N>variations=1 in those cases. 
 
vi For instance, in an example that will be relevant later, we wish to compare the performance of organizations that coordinate 
versus those that do not.  However, the baseline likelihood of winning for a non-coordinating organization will depend upon 
the number or organizations, N – specifically, the likelihood of winning declines by 1/N, due to chance.  Thus, to make 
appropriate inferences, we need to compare to this baseline. 
 
vii However, these results are robust to other network generating models where network parameters can be systematically 
varied such as ring lattices and small world networks. 
 
viii For illustration, only the first 100 iterations are plotted in this graph.  However, readers can rest assured that even very 
large networks do eventually converge to complete synchrony (sync=1), although this can take a very long time.   
 
ix For those familiar with network metrics, the results of this experiment can be read as an investigation Density  ~ N*K/2 
since mean degree (K) is the same for all nodes and N is held constant.  Density is the total number of ties in a network.  
Additionally, it should be noted that the following results are robust to other network generating models where parameters 
can be systematically varied such as ring lattices and small world networks.  Also, these results are robust to network size – 
the same effects of increasing K can be observed in networks with smaller and larger N. 
 
x Watts and Strogatz (1998) show empirically that Beta in an intermediate region of .01 and .1 have high clustering but 
relatively short path lengths.  Figure 2 in their paper shows that clustering is increasing dramatically in this region, but that 
path lengths remain almost as short as they are with Beta=1.  As a result, this is a key region in which to explore clustering. 
 
xi The dyadic coordination time-to-sync improvement ratio is computed as follows: (TtSwithout – TtSdyadic) / TtSwithout  = 
(72.3340-73.1580)/73.1580= -.01, while the triadic coordination time-to-sync improvement ratio is computed like this: 
(TtSwithout – TtStriadic) / TtSwithout.  = (70.4786-73.1580)/73.1580=-.04 
 
xii Recall that the baseline performance of a randomly selected organization is 1/N or 1/10=.1 when N=10.  The computation 
of performance follows from the simulation results for the likelihood of winning with dyadic and triadic coordination.  For 
dyadic coordination, Psync(i) =  <Wsync(i)> dyadic – <Wsync(i)> control = 22-.1=.12, while for triadic coordination  Psync(i) =  
<Wsync(i)> triadic – <Wsync(i)> control =.37-.1=.27 
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xiii It is important to note that K=10 except for when N≤10 where this is impossible.  In these cases K is reset to Knew=N-1 so 
that all pairs are linked.  Doing so enables illustration of the inflection point of this dependency at N=K. 




