
P
o
S
(
L
A
T
2
0
0
6
)
1
5
2

New baryon matter in the lattice Gross-Neveu model

Philippe de Forcranda,b and Urs Wenger∗b
aCERN, Physics Department, TH Unit, CH–1211 Geneva 23, Switzerland
bETH Zurich, Institute for Theoretical Physics, CH–8093 Zurich, Switzerland
E-mail: forcrand@phys.ethz.ch,wenger@phys.ethz.ch

We investigate the Gross-Neveu model on the lattice at finitetemperature and chemical potential

in the limit of an infinite number of fermion flavours. We checkthe universality of the continuum

limit of staggered and overlap fermions at finite temperature and chemical potential. We show

that at finite density a recently discovered phase of cold baryonic matter emerges as a baryon

crystal from a spatially inhomogeneous fermion condensate. However, we also demonstrate that

on the lattice, this new phase disappears at large coupling or in small volumes. Furthermore, we

investigate unusual finite size effects that appear at finitechemical potential. Finally, we speculate

on the implications of our findings for QCD.
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1. Introduction

In order to understand the phases of matter at finite temperature and density it is necessary to
understand the properties of the non-perturbative vacuum of QCD or related models. The Gross-
Neveu model [1] resembles QCD in many respects and can be solved analytically in the limit of
an infinite number of fermion flavoursN. Here we report on our investigation of this model on a
discrete space-time lattice at finite temperature and density in the large-N limit.

2. The Gross-Neveu model

Let us start with writing the Euclidean lagrangian density of the Gross-Neveu (GN) model [1]
in 1+1 dimensions,

L =
N

∑
α=1

ψ̄α(x)∂/ψα (x)− g2

2

(

N

∑
α=1

ψ̄α(x)ψα (x)

)2

, (2.1)

whereψα(x) are 2-component Dirac spinors andα is a flavour index. Usually, one introduces a
scalar fieldσ(x) conjugate to∑N

α=1ψ̄α(x)ψα (x) in order to transform away the 4-fermion coupling,

L =
N

∑
α=1

ψ̄α(x)∂/ψα (x)+
1

2g2 σ(x)2 + σ(x)
N

∑
α=1

ψ̄α(x)ψα (x). (2.2)

The GN model shares many interesting properties with QCD. Inparticular, it is renormalisable
and asymptotically free, with theβ -function given to lowest order byβ (g) = −N−1

2π g3 + O(g5).
Moreover it enjoys aO(2N)×Γ global symmetry, whereΓ is the discrete chiral symmetry

Γ : ψ → γ5ψ , ψ̄ →−ψ̄γ5, σ →−σ , (2.3)

and it exhibits spontaneous breaking of this discrete chiral symmetry which in turn leads to the
fermions acquiring a non-vanishing massσ0 = 〈σ〉 (dimensional transmutation)1.

In the large-N limit where the number of fermion flavoursN is taken to infinity while keeping
λ = g2N fixed, the model can be solved analytically. One can integrate out the fermions to obtain
Z =

∫

[dσ ]exp{−Seff} with

Seff = N

{

∫

dx
σ(x)2

2λ
−Trlog[∂/ + σ ]

}

. (2.4)

The minimum of the effective potential is given by a set of equations,

∂σ(x)Seff/N =
σ(x)

λ
−∂σ(x)Tr log[∂/ + σ ] = 0, ∀x, (2.5)

and for a homogeneous condensateσ(x) = σ this set reduces to a single equation

σ
λ

= ∂σ Trlog[∂/ + σ ] , (2.6)

1Note that there is no Goldstone boson sinceΓ is a discrete symmetry.
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Figure 1: Revised phase diagram of the GN model in the continuum from [4] (left) and on the lattice
(right). Full lines correspond to second order phase boundaries, dotted lines denote the (incorrect) first order
phase boundaries from the translationally invariant calculation. PL is a multicritical Lifshitz point andC is
the Euler constant. The dashed lines in the right figure illustrate the finite size artefacts, in particular the
incommensurability effects at the right phase boundary of the crystal phase.

or in momentum space

σ = 0 or
1
λ

=

∫

d2k
(2π)2

2
k2 + σ2 (2.7)

which is a self consistency equation for the fermion condensate or simply thegap equation. Equiv-
alent equations can be derived via Hartree-Fock, Schwinger-Dyson or Bethe-Salpeter approaches.
With the help of these equations one can derive the spectrum of the GN model [2] – it contains
fermions with massm= σ0, n-fermion bound states, and baryons with massmB = σ0 · 2N

π .
What makes the GN model particularly interesting for our purpose is its rich phase structure

in the(µ ,T)–plane whereµ represents the fermion chemical potential andT the temperature2. In
the homogeneous mean field approximation this was studied byWolff [3] who found two phases, a
massive and a massless Fermi gas, separated by a line of first and second order transitions meeting
in a tri-critical point, cf. Figure 1. Recently the phase structure has been further clarified by Thies
and Urlichs [4, 5] who relaxed the tacit assumption of translational invariance of the condensate.
Motivated by the fact that matter at low density forms isolated baryons they analytically found an
inhomogeneous solutionσ(x) to eq.(2.5). Indeed, they discovered that there exists a newbaryonic
matter phase at low temperature where baryons form a crystalstructure. The transitions from the
massive to the crystal phase and further to the massless phase are all second order.

3. Lattice formulations of the Gross-Neveu model

Let us now consider the GN model on a two-dimensional lattice,

S= N∑
x

σ(x)2

2λ
+∑

x,y

N

∑
α=1

χ̄α(x) [Dxy+ Σxy]χα(y) (3.1)

where the staggered Dirac operator

Dxy =
1
2

[

δx,y+1̂−δx,y−1̂

]

+
1
2
(−1)x1

[

e+µδx,y+2̂−e−µδx,y−2̂

]

(3.2)

2In the large-N limit, a discrete symmetry can break spontaneously in(1+1)d even at finite temperature.
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describes 2 flavours and

Σxy =
1
4

δxy
(

σ(x)+ σ(x− 1̂)+ σ(x− 2̂)+ σ(x− 1̂− 2̂)
)

. (3.3)

The modification of the naive discretisationσ(x)δxy → Σxy is necessary to ensure the correct con-
tinuum limit [6]. With the staggered discretisation the following discrete chiral symmetry is pre-
served,

χ(x) → (−1)x1+x2χ(x), χ̄(x) →−(−1)x1+x2χ̄(x), σ(x) →−σ(x). (3.4)

Alternatively we consider a discretisation respecting exact chiral symmetry by employing the over-
lap Dirac operator

D = m

{

1+DW(−m)
[

D†
W(−m)DW(−m)

]−1/2
}

(3.5)

satisfying the Ginsparg-Wilson relationD† + D = 1
mD†D. The coupling of the fermionic fields to

the scalar field is introduced according to

L = ψ̄(x)

[

Dx,y−
σ(x)
4m

Dx,y−Dx,y
σ(y)
4m

+ σ(x)δx,y

]

ψ(y) (3.6)

which is consistent with a scalar density transforming covariantly under a lattice chiral symmetry
transformation. For a homogeneous condensateσ → const. it is just the usual mass term of the
overlap operator.

The large-N limit of the lattice theory is obtained by minimising the free energy. Using a
homogeneous mean field, we obtainσ as a function ofλ from the the gap equation. In Figure 2
we show these scaling functions for various lattice sizes. The dashed red curve describes the
asymptotic scaling curve 23/2e−π/2λ for staggered and 1.5539...e−π/λ for overlap fermions. As
expected, the staggered fermion formulation exhibits an additional factor of 2 in the exponent of
the scaling curve due to the doubling of the number of flavours.

To start our investigation of the(µ ,T)–phase diagram we first determine the chiral transition
temperatureTc at µ = 0 where the chiral condensateσ(T) vanishes. The results are shown in
Figure 3 where we plot the scaling ofTc/σ0 versus(aσ0)

2 on various lattice sizes for the staggered
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Figure 2: Scaling of the condensateσ as a function of the couplingλ for staggered (left) and overlap
fermions (right) for various lattice sizes. The dashed red lines are the asymptotic scaling curves.
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Figure 3: Scaling ofTc/σ0 vs(aσ0)
2 on various lattice sizes for the staggered (left) and the overlap operator

(right).

operator on the left and the overlap operator on the right. Both formulations exhibit lattice artefacts
of similar size, but with a different sign, and nicely approach the analytically known valueTc/σ0 =

0.5669... in the continuum [3], thereby confirming the universality ofthe continuum limit.

4. Baryonic matter in the Gross-Neveu model

In both formulations a finite chemical potential can be introduced by weighting the temporal
derivatives with factors exp(±µ) [7]. We can then check the universality of the continuum limit
of µc at T ≃ 0 and look at the discretisation artefacts for the two lattice formulations. In Figure
4 we show the scaling ofµc/σ0 versus(aσ0)

2 for the staggered Dirac operator on the left and the
overlap on the right, still using only the homogeneous ansatz for the solution of the gap equation.
Again, the two formulations show discretisation artefactsof similar size, but with a different sign,
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Figure 4: Scaling ofµc/σ0 vs(aσ0)
2 on various lattice sizes for the staggered (left) and the overlap operator

(right) using the homogeneous ansatz for the solution of thegap equation.

and nicely scale to the analytically known valueµc = 1/
√

2 from the homogeneous ansatz of the
condensate [3]. However, in both cases the continuum value is approached non-monotonically –
this is caused by the fact that the Fermi momentum changes continuously withµ while the lattice
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momentum is quantised by the finite lattice size. This finite volume effect would be most striking at
exactlyT = 0 where one would expect a sawtooth behaviour; atT > 0, however, it is smoothened
due to the softening of the Fermi surface.

In Figure 5 we show the full phase diagram for the staggered operator at weak (Lt = 80) and
strong coupling (Lt = 4), still using the homogeneous ansatz for the condensate. We note that both
the region of metastability and that of the chirally broken phase shrink considerably towards strong
coupling.
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Figure 5: Phase diagram at weak (Lt = 80) and strong (Lt = 4) coupling using the homogeneous ansatz
for the condensate. The full line above the tricritical point marked by the dot denotes the second order
transition, the dashed line below denotes the first order transitions while the two full lines to the left and
right of it bound the region of metastability associated with the first order transition.

Let us now relax the assumption of translation invariance. In order to determine the phase
boundaries related to the transitions into the new baryonicmatter phase, we perform on the one
hand a brute force minimisation of the free energy and on the other hand check for instabilities
of the homogeneous vacuum. The latter is achieved by monitoring the eigenvalues of the Hessian
matrix in the homogeneous vacuum – a negative eigenvalue indicates that the free energy can be
lowered further by an inhomogeneous perturbation. This is illustrated in Figure 6 where we show
the lowest eigenvalue of the Hessian matrix associated withspatial variations of the condensate as
a function ofµ for a fixed temperature. It is clearly seen that forµ & 0.075, where the preferred
homogeneous condensate isσ = 0, an inhomogeneous one is favoured. In fact, a brute force
free energy minimisation shows that this is also true for some rangeµ . 0.075, however finite-
size effects cause a small free energy barrier between the two vacua. We also note that the non-
monotonic behaviour of the lowest eigenvalue is an artefactof the non-commensurability of the
spatial lattice size with the intrinsic length scale of the inhomogeneous condensate (compare the
two unit cell volumes in Figure 6). In Figure 1 right we show the new phase diagram in the
thermodynamic limit, at fixedLt = 80, to be compared with the continuum phase diagram on the
left. The dashed lines show the effects from finite volume. Inparticular we point to the fringes at
the right phase boundary of the crystal phase which are the reflection of the incommensurability
effects discussed above. In the thermodynamic limit these effects disappear.
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Figure 6: The lowest eigenvalue of the Hessian matrix associated withspatial variations of the condensate
as a function ofµ for a fixed temperature and two unit cell volumes.

5. Summary and Outlook

We have investigated the phase structure of the GN model in the(µ ,T)–plane. The breakdown
of translational invariance of the chiral condensate requires a revision of the GN model phase
diagram. Besides the massive and massless Fermi gas phase, anew phase of baryonic matter
emerges which forms a baryon crystal. The transition to the new phase is always second order
for any temperature. Our investigation of the phase structure on the lattice indicates that the new
crystal phase disappears at strong coupling, because the topological excitations associated with the
forming of the crystal fall through the lattice. Furthermore, large volumes are needed to detect the
baryon crystal phase and to avoid or reduce complicated artefacts due to the incommensurability
of the intrinsic length scale of the inhomogeneous condensate and the lattice volume, which distort
both the phase boundary and the order of the phase transition.

In this exactly solvable model, the crystal is formed by topological defects, the kinks and
antikinks, which carry the baryon number. This crystal becomes stable for a sufficiently large
chemical potential. One may wonder how general this phenomenon is. A similar topological
crystal may occur in the(2+1)d Nambu-Jona-Lasinio model. If it does, perhaps it also occurs in
QCD.
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