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1. Introduction.

Consider what is probably the most basic irreversible investment problem: a project can

be undertaken that requires a sunk cost C and yields a benefit V. The cost is known and

certain, but the benefit (measured as the present value at the time the cost is incurred)

fluctuates as a stationary Markov process {Vt} with continuous sample paths.' Time is

continuous, and at each point the firm must decide whether to invest or to wait and reconsider

later. The firm's objective is to maximize the expected present value of net benefits, with a

discount rate that is constant and equal to p.

At time t, all of the information about the future evolution of V is summarized in the

current value Vt. Therefore the optimal decision rule must be of the form: invest now if Vt is

in a certain subset of possible values, otherwise wait. Also, because the process is stationary

and the discount rate is constant, the optimal rule will be independent of time. So long as

the process has positive persistence - i.e., a higher current value Vt shifts the distribution

of the random value V, at any future time s to the right in the sense of first-order stochastic

dominance - the rule will be of the form: invest now if Vt is at or above a critical threshold

V', otherwise wait.2 The problem therefore boils down to determining the optimal choice

for the threshold V'.

As first shown by McDonald and Siegel (1986), the optimal V* exceeds C by a "markup,"

or premium, that reflects the value of waiting for new information. One can think of the

firm as having an option to invest that is akin to a financial call option, and, like the call

option, is optimally exercised only when "deep in the money," i.e., when the stock price is

at a premium over the exercise price. Thus one can solve the firm's investment problem

(and determine the optimal markup) by finding the value of the firm's option to invest and

the optimal exercise rule.3 Indeed, identifying and valuing the firm's option to invest has

become the standard approach to solving irreversible investment problems.

1V may itself be explained in terms of other more basic economic variables like prices of output and/or
inputs; we work simply with the end result.

2See Dixit and Pindyck (1996), pp. 104, 128-9.

3 The option is valued assuming it is exercised optimally, so the valuation of the option yields the optimal

exercise rule. See Dixit and Pindyck (1996).



However, as Baily (1995) has pointed out, an alternative way to find the optimal V* is to

examine the trade-off between larger versus later net benefits. Specifically, choosing a larger

value for V* implies that the net benefit, V* - C, will be larger, but will be received at a

more distant (but unknown) time in the future, and thus will be discounted more heavily.

The optimal choice of V" is that for which the additional net benefit from making V* larger

just balances the additional cost of discounting.

In this paper, we take this alternative perspective further by developing an intuitively

appealing analogy with the trade-off involved in the pricing decision of a firm facing a

downward-sloping demand curve - i.e., the trade-off between a higher profit margin and a

lower volume of sales. We show that V can be regarded like a price, (V - C) like a profit

margin or markup, and the discount factor like a demand curve. The optimal V* is then

given by a markup formula involving the elasticity of the discount factor with repect to

V, which has exactly the same form as the formula for a firm's optimal markup of price

over marginal cost. This suggests extensions of the basic investment problem by analogy

with the corresponding extensions of the monopolist's pricing problem. Here we develop

one, namely the optimal choice of an ancillary expenditure in advertising or R&D which can

speed up the (stochastic) passage to the threshold. The result is analogous to the formula

for a monopolist's optimal advertising-to-sales ratio.

2. The Optimal Markup.

Suppose the initial level of the benefit is V0, and consider an arbitrary threshold V > Vo.

Thus the firm will wait until the first time T at which the benefit VT has reached V, and will

then invest. (In technical terms, T is the first-passage time or hitting time from Vo to V.)

This time T is a random variable, and its distribution can be determined from the known

probability law of the evolution of Vt. Taking expectations using this distribution, the net

present value of this policy is

E[e"T] (V - C).

Note that the expectation of the discount factor in this expression depends on both the

initial value Vo and on the threshold value V of our decision rule. We therefore denote this



discount factor as:

D(Vo, V) = £[e- PT]. (1)

The optimal threshold, V*, is the value of V which maximizes

D(Vo, V) (V - C). (2)

The first-order condition for the optimal V* is

D(Vo, V') + Dv(Vo, V')V" = Dv(Vo, V')C, (3)

where Dv is the partial derivative of the discount factor D with respect to its second argu-

ment, namely the threshold value V, and we are evaluating this at V = V*. This condition

simply says that if the investment opportunity is to be optimally exercised, the expected

marginal discounted benefit from the investment should just equal the expected marginal

discounted cost.

We can rewrite eqn. (3) in the following equivalent form:

V* - C [ V Dv(Vo, V*) - 1

V* D(Vo, V-) =

where ED denotes the elasticity of the discount factor D with respect to V*, i.e., ED

-V*Dv/D. The form of this expression should be very familiar: it is just like the markup

pricing rule that follows from equating marginal revenue with marginal cost:

p- c - 1/6P,
p

where p is the price, c is marginal cost, and ep is the magnitude of the price elasticity of the

firm's demand.

There is indeed a close connection between equation (4) for the investment markup and

the markup pricing rule. To see this, compare the expression for the present value, (2), to

that for the firm's profit in the usual pricing problem when marginal cost is constant, namely

(p - c) q(p). A higher p implies a higher profit margin (p - c), but a lower volume of sales

q(p). The trade-off that determines the optimal price is governed by the rate at which q(p)

declines as p is increased, i.e., by the price elasticity of demand. In our investment problem,



a higher threshold V* yields a higher margin (V* - C) of benefits over costs, but a smaller

discount factor D(Vo, V*) because the process is expected to take longer to reach the higher

threshold. The investment trade-off depends on the elasticity of the discount factor with

respect to the threshold.

We can put this analogy in graphical terms by considering an arbitrary threshold V, and

re-writing eqn. (3) as

V + D(Vo, V)/Dv(Vo, V) = C. (5)

We can think of the first term in this equation, V = V(D, Vo), as the inverse of the discount

factor; it is analogous to the inverse demand, or average revenue function, p(q), for the price-

setting firm. Likewise, the discount factor D(V, Vo) is analogous to quantity for the price-

setting firm, so the left-hand side of eqn. (5) - the marginal benefit from an increase in D -

is analogous to the marginal revenue function.4 These two functions of the discount factor D

are plotted in Figure 1. The optimal threshold V*, and the corresponding optimal discount

factor D'(Vo, V*), are found at the point where the marginal benefit D(Vo, V) + D/Dv is

equal to the cost, C. Note that V* > C; this is the markup that incorporates the option

premium, or value of waiting. If the firm instead used a simple Net Present Value rule to

decide when to invest, it would invest sooner, when V = C, so its discount factor, denoted

by D", would be larger. (Note that in Figure 1, the current value of the benefit, Vo, happens

to be below the cost of the investment. C, so the firm would not invest immediately even if

it followed a simple NPV rule, and DN < 1.)

It remains to sort out one potential difficulty. It would be unfortunate if the elasticity

CD depended on the initial value Vo, as that would imply that if we reconsidered the choice

after some intermediate value V1 had been reached, we would get a different answer for the

optimal V'. To examine this, consider any three values V0 < V1 < V. Suppose that, along

4To see this, obtain the first-order condition for the investment problem by the discounted net payoff (2)
with respect to D instead of V, recognizing that V = V(D, Vo):

dV
V+D- -C= 0.dD

This can be re-written as eqn. (5) above.
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Figure 1: The Optimal Investment Markup.
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any path of the process {Vt}, starting at I' the first time the value reaches V, is T1 , and

starting at V1 the first time it reaches V* is T2. Then the first time the value reaches V*

starting at 1Vo is just T = T + T2. (In the second interval of time T2 we have already supposed

that the process does not reach V', and in the first interval of time T1 the process could not

have reached V* without hitting V, earlier. which would contradict our definition of T1 as

the first time to V1.) Now
-pT -pTi -PT 2e =e e

and because of the Markov property of the process {Vt}, the random variables T1 and T2 are

independent. Therefore we can take expectations of the two factors on the right-hand side

to get

D(T•. V) = D(Vo, V1) D(VI, V).

Then

Dv(Vo, V) = D(Vo, VI) Dv(Vi, V),

and
V Dv(Vo, V) V Dv(V1 , V)=(6)D(Vo, V) D(V, V)

A similar argument can be constructed for V2 < V0, by considering paths where the process

starting at Vo first falls to V2 before rising again and eventually reaching V*.

This proves that the elasticity is independent of the starting value. In particular, using

eqn. (6) we can write the elasticity as

V*Dv(V*', V')
ED - D(V ) = -VD(V', V) , (7)D(V*, V*)

since D(V*, V*) = 1. Hence the optimal markup rule given by eqn. (4) is independent of

the starting value Vo. This can also be seen in Figure 1; although the discount factors D*

and DN depend on Vo, the optimal markup V* - C does not.

Finally, note that the elasticity of the discount factor, ED, can be equivalently expressed

in terms of the value of the firm's option to invest. Let F(V) denote the value of the firm's

investment option. At the optimal exercise point, F(V') must satisfy the value matching



condition,

F(V') = V* - C,

and the smooth pasting condition,

Fv(V) = 1.

Combining these two conditions, we have:

V* V*Fv(V*)
V* -C F(V*) (8)

The right-hand side of (8), denoted by 6F, is the elasticity of the value of the investment

option with respect to the value of the underlying project. Since V'/(V* - C) = ED, at an

optimum the elasticity of the discount factor coincides with the elasticity of the value of the

investment option.

3. Examples.

To use this approach to finding optimal investment rules, one must find the discount

factor D, given the stochastic process for Vt. This can be done as follows.

Suppose that Vt follows a general Ito process of the form

dV = f(V)dt + g(V)dz. (9)

We want to find D(V, V*) = E[e-PT], where T is the hitting time to V*, starting at V <

V*. Over a small time interval dt, V will change by a small random amount, dV. Hence

(suppressing V* for simplicity):

D(V) = e-pd'"[D(V + dV)].

Expanding D(V + dV) using Ito's Lemma, noting that e-pdt = 1 - pdt for small dt, and

substituting eqn. (9) for dV, we obtain the following differential equation for the discount

factor:

g2'(V)Dvv + f(V)Dv - pD = 0. (10)

This equation must be solved subject to two boundary conditions: (1) D(V*, V*) = 1, and

(2) D(V, V*) -- 0 as V* - V becomes large.



To illustrate, we will obtain solutions using this approach for several different stochastic

processes, and draw further analogies to the profit-maximizing decisions of a price-setting

firm.

Geometric Brownian Motion.

First, suppose that Vt follows the geometric Brownian motion

dV = a V dV + a V dz, (11)

with a < p. Then f(V) = aV and g(V) = oV, and it is easily seen that the solution to eqn.

(10) is

D(Vo, V) = (Vo/V) ' , (12)

where 31 is the positive root (exceeding unity) of the following quadratic equation in 3:

S2( - 1) + ao - p = 0; (13)

see Dixit and Pindyck (1996, p. 316).

In this case the elasticity of the discount factor is constant and equal to B1. The markup

formula (4) thus implies a constant proportional mark-up,

(V* - C)/V* = 1/A ,

or

V* C.
•1 -1

This well-known result is analogous to the price-cost markup rule for a firm facing an isoe-

lastic demand curve. A geometric Brownian motion for Vt implies an isoelastic discount

factor because the probability distribution for percentage changes in V is independent of

V, so changes in the discount factor resulting from a percentage change in V will also be

independent of V.

Arithmetic Brownian Motion.

Next, suppose V follows the arithmetic Brownian motion

dV = a dt + a dz. (14)

8



Then the solution to eqn. (10) is

D(Vo, V) = exp[-yi (V - Vo)],

where "-y is the positive root of the quadratic

2 2

see Harrison (1985, p. 42). In this case, the elasticity of the discount factor is Yi V. Hence

(V* - C)IV* = 1/y71V*, and we get a constant additive mark-up:

V*= C + (1/ 1).

This is analogous to the markup formula for a firm facing an exponential demand curve.

(For the demand curve q(p) = a exp[-bp], the elasticity of demand is bp, and the profit-

maximizing price is p* = c + 1/b.)

Mean-Reverting Process.

Finally, suppose that Vt follows the mean-reverting process:

dV = ,(V - V)Vdt + oVdz. (15)

The value, V, might follow such a process if, for example, the firm's output was a durable

good so that its demand was subject to a stock adjustment process.

Then eqn. (10) for D(V, V1) becomes:

1 2V 2Dvv(V, Vi) + q(V - V)VDv(V, VI) - pD(V, V1) = 0.

This equation has the following solution (see Dixit and Pindyck, pp. 162-163):

F(V, V) = AVH ( V, 0, b) ,

where A depends on V1, 0 is the positive solution to the quadratic equation

~20(o - 1) + •70 - p = 0,



and

b=2 0+ .

Here H(x, 0, b) is the confluent hypergeometric function, which has the following series rep-

resentation:

H(x, 0, b) = + ( + + +1 )X3
b b(b+ 1)2! b(b + 1)(b + 2)3!

The limiting behavior of the solution is used to determine A. When V approaches V1,

the first hitting time T must approach zero, which means that F(V, V1) -+ 1. Thus,

1

V1 H( V , 0,b)

Hence the discount factor becomes:

O( oH( V.• ,0, b)
D(Vo, V) = H ( , b) (16)

H(I V, 0, b)

From the series representation, we obtain the following relationship between H and its deriva-

tive with respect to the first argument:

0
H,(x, 0, b) = -H(x, + 1, b+ 1).

Using this, we can determine that the elasticity of the discount factor at the optimum V* is:

2'D V (17)

Thus, CD is equal to a constant 0 - which represents pure geometric growth - plus a term

which corrects for the mean reversion effect. As the mean reversion speed r approaches zero,

the second term also goes to zero, and 0 approaches fi, as in the case of geometric Brownian

motion. As r7 increases, mean reversion dominates.

The implications of mean reversion are easiest to see from some numerical calculations.

Mean reversion implies that V is expected to stay close to V. Hence when V - V is small,

the discount factor must be larger for the mean-reverting process than for the corresponding

geometric Brownian motion. Likewise if V -V is large, it can be expected to decline, so that

the discount factor will be relatively small. Figure 2 illustrates this; it shows the discount
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Figure 2: Discount Factor for Mean-Reverting Process and Geometric Brownian Motion
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factor as a function of V for a mean-reverting process (r = 0.2) and a geometric Brownian

motion (q = 0). (In both cases, p = .05, cr = 0.2, V = 1, and Vo = 1.) This effect of mean

reversion is also reflected in the elasticity of the discount factor, which is increasing in V.

For example, eD(V = 1) = 1.4 and CD(V = 2) = 8.54; while the corresponding constant

elasticity for the geometric Brownian motion (7 = 0) is l1 = 2.16. Figure 3 shows how the

elasticity depends on the speed of mean reversion, 7. When V - V is small (V = 1.0), CD

decreases with 77, but when it is large (V = 2.0), it increases with 7.

4. Ancillary Investments in Advertising or R&D.

The close connection between investment decisions and pricing decisions has pedagogi-

cal value, but also provides insight into investment-related decisions more broadly. As an

example, consider a price-setting firm that must also decide how much money, A, to spend

on advertising, given its demand q = q(p, A), with Oq/OA > 0. As students are taught

in intermediate microeconomics courses, the profit-maximizing advertising-to-sales ratio is

given by:
A- = CA/p , (18)
pq

where CA = (A/q)aq/aA is the firm's advertising elasticity of demand, and Cp is the price

elasticity of demand.5

Now let us return to our investment problem. Suppose that the firm, prior to making the

sunk expenditure C in return for the benefit V, can make an ancillary investment, costing

A, in advertising, marketing, or R&D activities. The exact nature of these activities is

unimportant; what matters is that they lead to more rapid increases in V, and hence to an

increase in the discount factor D(Vo, V). We can then re-state our investment problem as:

max [(V - C)D(Vo, V, A) - A]. (19)
V,A

The two first-order conditions for this problem are

D(Vo, V, A) + (V - C)Dv(Vo, V, A) = 0, (20)

5Eqn. (18) follows from maximizing profit with respect to p and A, and is sometimes referred to as the
Dorfman-Steiner (1954) theorem.



and

(V - C)DA(Vo, V, A) - 1 = 0. (21)

Now define the elasticities of the discount factor with respect to V and A, respectively, as

e - -VDv/D and e= -= ADA/D. Then by combining the first-order conditions (20) and

(21), it is easy to see that
A D= D (22)

Eqn. (22) is a condition for the optimal ratio of expenditures on advertising (or market-

ing, or R&D) to the expected discounted value of the benefit. (Remember that the actual

discounted value of the benefit is unknown because the time until V reaches the threshold

V* is stochastic: DV is the expected discounted value of the threshold V'.) It is exactly

analogous to condition (18) for the advertising-to-sales ratio of a price-setting firm.

As an example, suppose a pharmaceutical firm is deciding whether to invest in a plant

to produce a new drug. Suppose the benefit from this investment, Vt, follows the geometric

Brownian motion of eqn. (11), and will grow over time (at expected rate a) even before the

plant is built as doctors and patients learn about the drug. However, the expected growth

rate a can be increased via expenditures A on advertising and marketing.6

To determine the optimal level of A for this example, note that the discount factor is

again given by eqn. (12), with 31 again the solution to the quadratic eqn. (13). Hence

the elasticity fy is again equal to 31. But now 31 is a function of A, since a depends on

A. Differentiating the quadratic eqn. (13) with respect to A and rearranging yields the

following expression for the elasticity eD:

D Alog D(da/dA) (23)
CA - 1 2C2#1 + a - a

Defining the elasticity eg = (A/a)da/dA, the optimal ratio of A to the discounted benefit

is thus given by:
A ae log(V*/Vo) (24)

DV .o201 + a - 224)

6We treat A as a lump-sum expenditure. If the advertising and marketing expenses must be spread out
over time, then A is just the present value of those expenses.



This ratio will be larger the larger is &g - the more productive is advertising and mar-

keting, the more that should be done. But note that this ratio is also larger the larger is the

threshold V*. A larger V* implies that the option to invest is more valuable (the expected

net payoff (V* - C) is larger), which increases the expected return from advertising and

marketing expenditures. Hence this ratio is larger if there is greater uncertainty over the

evolution of V; an increase in <o increases V*, and (with some algebra) can be shown to

reduce the denominator of (24). Finally, note that A --+ 0 as V'/Vo --+ 1; when V* = Vo

there is no option premium, and thus no benefit to increasing a.

5. Conclusions.

Framing the optimal investment decision as a trade-off between larger versus later net

benefits has allowed us to interpret the investment rule as a simple markup formula involving

an elasticity. We have seen that the markup is exactly analogous to a firm's optimal markup

of price over marginal cost. For economists, this may be more intuitively appealing than the

standard approach to irreversible investment problems in which one values the firm's option

to invest and finds the optimal exercise rule.

If the benefit, V, follows a geometric Brownian motion - as is typically assumed in

applications - then the markup formula is particularly simple, since the elasticity of the

discount factor is constant and equal to i1, the solution to the fundamental quadratic equa-

tion (13). In this case the discount factor is isoelastic with respect to V, so the investment

problem is analogous to the pricing problem for a firm facing an isoelastic demand curve.

Even if V does not follow a geometric Brownian motion, this markup formulation provides

a rule of thumb that can be of value to practitioners. Compared to equating marginal cost

with marginal revenue, it can be easier for a manager to think about pricing in terms of

a markup based on the elasticity of demand, estimates of which can be based on statistics

or on judgment. Likewise, it can be easier to think about investment hurdles as a markup

based on the elasticity of the discount factor, "estimates" of which can be found analytically

or judgmentally.



References

Baily, Walter Toshi, "Essays in Finance," unpublished Ph.D. dissertation, M.I.T., 1995.

Dixit, Avinash and Robert Pindyck. 1996. Investment Under Uncertainty. Second printing.

Princeton, NJ: Princeton University Press.

Dorfman, Robert, and Peter O. Steiner. 1954. "Optimal Advertising and Optimal Quality."

American Economic Review. 44: 826-836.

Harrison, J. Michael. 1985. Brownian IMfotion and Stochastic Flow Systems. New York:

John Wiley.

McDonald, Robert, and Daniel Siegel. 1986. "'The Value of Waiting to Invest." Quarterly

Journal of Economics. 101: 707-728.


