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Abstract

This paper gives the results of a semiparametric analysis of pollution

effects on housing prices using the Boston Housing Data. The exposition

introduces the basic ideas of modeling pollution impacts with hedonic price

methods, discusses the standard log-linear model, and then introduces

nonparametric estimation and semiparametric index models. We focus on the

intuitive content and substantive results of the semiparametric analysis. We

find that the impact of pollution is smaller than that previously estimated,

and varies dramatically depending on the status level of the community. We

give various interpretations of the findings, and contrast our methods with

those used in previous analysis of the Boston Housing Data.





SEMIPARAMETRIC MEASUREMENT OF ENVIRONMENTAL EFFECTS

1. Introduction

Policy measures designed to affect the environment involve complex

interactions between consumption and production technology and economic

behavior. Policy evaluation requires benefit-cost comparisons that are

somewhat elusive, because of difficulties in measuring overall benefit or cost

components. An economic approach to evaluating environmental conditions makes

use of implicit valuations revealed by individual actions, or explicit

valuations when variations in condition levels are adequately priced in a

market. Such an approach is most suitable when the variation in environmental

conditions is observed directly, such as a comparison of housing prices

before and after the discovery of a nearby toxic waste dump, or of the cost

structure of a plant before and after the use of an environmentally cleaner

technology.1

The purpose of this paper is to present the results of a semiparametric

analysis of air pollution effects on housing prices. The semiparametric

analysis involves flexible econometric methods, that are designed to give as

realistic a depiction as possible of pollution effects. The focus of our

analysis is the Boston Housing Data of Harrison and Rubinfeld (1978a,b). This

is a well known data set used in a seminal study of the economic evaluation of

auto emission abatement policies.

The exposition begins with a general discussion of the economic approach

to evaluating environmental effects, including the hedonic approach to

explaining differences in housing prices. We then discuss issues in the

specification of the equations used to measure pollution effects, introducing

our semiparametric method.2 This sets the stage for the empirical depiction

of pollution effects from the Boston Housing Data.



Our results indicate that traditional methods missed substantial

nonlinearity in the pollution effect. While a systematic pollution effect can

be found for lower status communities, no such effect occurs for higher status

communities. The overall impact of changes in pollution levels is

considerably smaller than that measured in earlier studies. We give graphical

depictions of these features, as well as some interpretation of the findings.

2. Issues in the Economic Analysis of Pollution Effects

To fix ideas, consider evaluating air pollution differences through their

impact on housing prices. Suppose that a given house is priced at p(a) when

the air pollution level is a. Suppose further, that the pollution level is

increased by Aa to a + Aa. Since the house is now less desirable to live in, 0

its price falls to p(a + Aa). The economic value (to homeowners) of the

pollution change Aa is the change in the housing price

p(a + Aa) - p(a) - Pa a ,

where pa is the per unit value (or cost, since it is negative) of the change

in the pollution level

p(a + Aa) - p(a)
Pa - Aa

A measure of the "pollution price" pa therefore gives the economic value of

the environmental change Aa in air pollution level. To the extent that the

change in the level of pollution occurs for many houses in an area, the total

impact is the total change in all prices. This impact can be summarized

through the values of the pollution price pa measured for each house in the

affected area.

While simple in concept, the empirical measurement of pollution prices

involves at least two well known blocks of issues. The first concerns the



comparability of "before" and "after" pollution situations as discussed above.

In particular, to attribute the entire change in observed house price to

pollution neglects other market features that impinge on demand and supply, an

omission which becomes more problematic as the time interval between "before"

and "after" increases. For instance, suppose the group of home buyers

increases in size, or that tastes change to increase the overall

attractiveness of the location of the house under consideration. In that case

the observed price difference has two components, one based on the pollution

difference and the other based on the increase in demand. Alternatively, the

supply of housing could have increased in a fashion to depress overall house

prices, so that the observed price decrease is again comprised of the

pollution effect and the supply effect. With supply influences taken into

account, many outcomes are possible, ranging from the competitive situation

where observed house prices reflect construction costs plus capitalized value

of the land (which would reflect the pollution difference), to situations of

over or under adjustment due to time lags in construction. At any rate, many

outcomes are possible, and to properly isolate the pollution effect involves

explicit modeling of the supply response. Unfortunately, no well accepted

econometric methods have been developed for this, and so it is standard to

measure pollution effects under the assumption of no supply response in the

stock of housing, and we do so here.
4

The second block of issues, which are more germane to our study, concern

when "before" and "after" assessments are made by comparing different houses

at the same point in time. In particular, suppose that one could view two

houses as entirely identical (including locational aspects), except that one

exists in an area with pollution level a and the other in an area with

pollution level a + Aa. In this context, the price difference between these

houses could be attributed to the only thing that differed between them,



namely the pollution difference Aa, and the pollution price pa could be

measured as above from the price difference.

This type of comparison is the most widely used method of assessing

pollution differences, and is the only available method when the observed data

consists of prices for different houses in a single time period. The overall

approach of regarding a house as a bundle of attributes, with the pollution

level as one, is known as the hedonic price approach.5 The attributes that

rationalize housing prices include number of rooms and other characteristics

of the structure, as well as aspects of location, such as lot size and

proximity to schools, etc. If we denote all relevant (non-pollution)

attributes of a given house as h, then the housing price is determined as

p(a,h), and the pollution price is determined as

p(a + Aa,h) - p(a,h)
Pa aa

This formulation reflects how the actual "house" is held constant through h,

with the pollution price reflecting the change in value associated with the

pollution change Aa.

The main ingredient to a "hedonic" study of pollution effects is a

statistical characterization of the house price function p - p(a,h).

Differences in the distribution of housing prices under alternative

pollution scenarios can be calculated from this function, as well as the

distribution of pollution prices across different kinds of houses. For small

changes in pollution levels, pollution prices are given as the

partial derivative

8p(a,h)
Pa "S aa

where again, other housing attributes h are held constant.



3. Specification of the Hedonic House Price Eauation

We have spelled out the basic issues above to retain focus on what is

being measured in empirical studies of pollution effects. The results depend

intrinsically on the hedonic equation representing housing prices, which is

characterized statistically. In this section, we discuss standard issues in

specifying the hedonic equation, in order to introduce nonparametric and

semiparametric methods. In the following section, we give the results of

analyzing the Boston Housing Data.

The logic of the hedonic approach - house prices determined by

housing characteristics - is hardly controversial, provided that all relevant

(valued) housing characteristics could be included in the analysis. In

practice, however, the observed characteristics are but a fraction of what one

could sensibly regard as an exhaustive list. As such, unobserved

characteristics are modeled as stochastic elements, and the treatment of such

attributes is an integral part of a housing price model. Including the

pollution level, we denote the observed attributes by x - (a,x0 ) and a

stochastic disturbance that represents unobserved attributes by c, so that the

full list of housing characteristics is (a,h) - (a,x0 ,e) - (x,e). The overall

object of the statistical analysis is the estimation of the connection between

housing price p and observed attributes x, as well as the hedonic price of

pollution pa'

The simplest form of hedonic price equation p(a,h) - p(x,e) is the

standard linear model in price levels:

p - x P + E

- Ba a + x0T 0 +



where the unobserved characteristics have mean a - E(EIx). Here, the

coefficients (Pfa, ) are directly interpreted as hedonic prices, with the

pollution price above given as pa - #a, which is constant regardless of the

level of pollution or other housing characteristics. The relative importance

to housing price of any two housing characteristics is given by the ratio of

their respective coefficients. This model is dictated if arbitrage exists

under competition, when houses can be easily repackaged (or their

characteristics unbundled, with an effective market for each characteristic).

In particular, if one house has half the attribute values of another, then it

is priced at half as much. To the extent that a house representing any

"bundle" of housing attributes can be purchased, competition will result in

each attribute being uniquely priced, and housing prices will necessarily

follow the linear model above.

While giving easily interpreted results, it is well known that the linear

model does not perform well statistically (in terms of goodness-of-fit) in

hedonic price applications, including studies of housing prices. Moreover,

the kind of unbundling that dictates a linear model is especially unreasonable

for housing (for any small number of characteristics), even approximately.

Because different locations of houses are associated with persistent

differences in prices, it is natural to question whether a house could be

"unbundled" from the location on which it sits. On statistical grounds, the

linear model takes all unobserved house price differences to be additive,

which implies that unobserved differences in comparable house prices should be

the same as one moves from one locale to another, which does not even hold up

under casual observation. The practical consequence of this has been to make

the characterization of hedonic price equations a purely statistical problem,

with the proper form to be decided on the basis of goodness of fit to the

data.



The most commonly used hedonic price equation is the log-linear model,

that relates log-price variations to characteristics as

y In p - x T + E

where again, E(cIx) - a. Here, the coefficients are interpreted as the

proportional changes in prices associated by changes in characteristics,

holding specific location features constant. The proportional impact on

house price of a characteristic x. relative to xk is summarized compactly as

P /pk. This model dictates that when the location value e is changed, the

same proportional configuration of housing prices exists along the lines of

the observed characteristics.

It should be noted that because arbitrage is not relied on in the

specification of the log-linear model, the characteristic vector "x" can

include transformations of basic attribute values: for example, the model

does not rely on a unique "price per room," so that polynomial terms in

"number of rooms" could be included as part of the statistical investigation.

This flexibility makes the log-linear model a considerably richer framework

for empirical analysis than the linear model based on competition.

Despite these advantages, the log-linear model has also been recently

questioned as to its statistical adequacy in various hedonic price contexts,

for instance it is rejected for several data bases in Berndt, Showalter and

Wooldridge (1990).6 The most common parametric method of assessing the log-

linear model is to estimate a model based on a more general transformation of

prices than the logarithm, and check if the logarithm is suggested by the

results. In particular, one estimates

(X) T



where y is the "Box-Cox" transformation of prices

A( P0) - 1

- In p , A - 0,

and then does a statistical test of whether the value of A is different from

zero. While this estimation involves some delicate econometric issues, the

basic point is that a value of A different from zero rejects the log-linear

model, giving y(A) as the transformation of prices that is suggested by the

data. In this context, the interpretation of the values of the coefficients B

becomes somewhat obscure, as they translate changes in x to changes in y ;

i.e. the only situations of easy interpretation of P are for A - 0

(proportional changes) or A - 1 (level changes).

The linear, log-linear and transformation models discussed above

constitute the primary parametric models of hedonic prices, such as housing

prices, where "parametric" refers to the fact that the model is determined

by the few parameter values, namely P, a and A. Because of focusing attention

on a few parameters, each of these approaches can potentially miss important

variations in the price data, and therefore give mismeasurements of hedonic

prices for attributes, or in our case, for pollution levels. For example, it

is easy to verify that the "Box-Cox" transformation model always implies that

prices are monotonically increasing in x P (or characteristics with positive

coefficients). Moreover, the connection between price and x T is convex if A

< 1, implying that all characteristics x have larger impacts (hedonic prices)

on expensive houses than less expensive houses. When A > 1, the opposite is

true.

To the extent that the empirical investigator is lucky, in that the

impositions of the parametric model used adequately hold in the data, there



will not be any systematic mismeasurement of the price equation or

mismeasurement of the hedonic prices. The only way to be certain of this,

however, is to use methods that are more flexible still, by permitting quite

general patterns between house prices and characteristics. Nonparametric and

semiparametric methods are designed to permit this kind of "imposition free"

determination of the pricing equation.

The nonparametric approach to determining the hedonic price equation is

based on an unstructured model connecting prices to characteristics; in log

form, one could write this "model" as

y - In p(x,) .

Statistical analysis can be based on characterizing the mean of log-price for

different characteristic values, or the "regression" function

E(ylx) - E[p(x,E)jx] - m(x)

Nonparametric methods measure the function m(x) directly, without restricting

it to take on a linear or log-linear form as above. The main requirement is

that the function m(x) is suitably smooth, so that small changes in

characteristics x are associated with small (continuous, possibly

differentiable) changes the mean log-price m(x).

Regression functions can be estimated with any method that permits

arbitrarily fine approximation with a large amount of data. For instance,

m(x) could be measured with series approximation, such as polynomials or

Fourier series, or with local averages, such as so-called "nearest neighbor"

or kernel regression estimators.7 In the next section we present kernel

estimators, so here we explain the local average method of measuring the

log-price equation. This discussion reveals the advantages and the drawbacks

to fully general nonparametric regression, as well as the role of



semiparametric methods.

Local averages measure the mean log-price m(x) by averaging log-price

values of houses that have characteristics close to the value x. A useful way

to consider these statistical tools is to consider the familiar method of

"market analysis" used by realtors in appraising homes. When putting one's

home up for sale, the realtor will find "comparable" homes in the locale, look

up their selling prices, and estimate the "market value" of the home using an

average selling price of the comparables. Local averages (such as kernel

estimators) implement this idea with data - namely "comparables" are defined

by similar x values, and observations with virtually identical characteristic

values are given higher weight in the estimation than observations with

similar, but not as close, characteristic values.

With a bit more formality, suppose that one has observations for N homes,

with log-price and observed attributes for the ith house denoted as (Yi,xi),

for i - 1,...,N. A local average estimator of the mean of log-price y given

the values of attributes x takes the form

A -- 1
m(x - N wi(x) Yi

where w (x) denotes the local weight applied to Yi, which is larger for

observations with x. close to the evaluation point x, and smaller (possibly
1

zero) for observations with x. far from x. The results presented below are
1

based on kernel regression estimators, where the local weight wi(x) is

specified as

X[(x-xi)/h]
w.(x) -
1 X[(x-x.)/h]

where X(.) is a prespecified density function giving the shape of the local

weights, and h is the bandwidth parameter that gauges the "proximity" of x. to
1



x. Figure 0 illustrates local average estimation, depicting it as an

enhanced method of curve or surface fitting; or as a flexible method of

indicating the structure of the basic data. This amounts to "market analysis"

with a systematic method of determining "comparables," given by the

formulation of local weights.

The advantages of local averages are obvious - estimating house values

using similar houses is a quite natural method of evaluation. The statistical

drawbacks are also fairly clear. In particular, if only a few approximately

comparable houses can be found, the resulting estimate of house price will be

quite imprecise. This kind of problem is exacerbated when there are many

characteristics to take into account in the analysis, wherein it becomes

increasingly difficult to find comparable matches to all observations. In a

different light, this issue says that a fully general nonparametric approach

will yield precise log-price mean values only when there is a great deal of

data, so that a fair number of comparables can be found for any given

observation. This issue is referred to in technical parlance as the "curse of

dimensionality" for nonparametric estimation. For our application, there are

nine characteristics and 506 census tract observations. In this context one

faces the additional problem of how to display the results of nonparametric

estimation, because m(x) is a function of nine arguments.

Semiparametric methods combine features of parametric and nonparametric

methods, to retain simple interpretability of the results, and to avoid

arbitrary mismeasurement by an incorrect parametric formulation of the hedonic

price model. In particular, the hedonic price equation has some parametric

structure, utilizing parameters to summarize key features of attribute-price

connections, but also permits other parts of the hedonic relationship to be

measured flexibly, with nonparametric estimators. With reference to the

log-linear model, one semiparametric generalization is to assume that the mean



log price y is determined by an "index" x P of characteristics, but that the

connection may be nonlinear

E(ylx) - G0 (xT4)

or a so-called "single index" model. Here, the coefficients P can be

estimated directly, and then the (univariate) function GO estimated with a

kernel regression estimator. With regard to our motivation above, the

problem of finding "comparables" is substantially reduced (via "dimension

reduction"), because comparability here means similarity in the value of the

index xT , and the univariate function GO(.) can generally be estimated with

greater precision than a relation with more than one argument. This

specification gives nonparametric treatment to a similar kind of

transformation as the "Box-Cox" model above.

While a substantial generalization over the log-linear model, the single

index model is still a restrictive specification relative to a fully general
A

regression model, such as the one estimated by m(x) above. If the single

index model is statistically rejected against a general regression, one needs

to consider more general semiparametric specifications, and many can be

devised. For instance, partial index models employ an "index" specification

for certain characteristics, but a fully general structure for other

variables. For instance, suppose that the impact of pollution level was not

adequately represented by the "index" formulation. A partial index model

could be constructed as

E(ylx) - Gl(a,x 0 0•

which permits a much more flexible pollution structure. In this model, the

coefficients 80 are estimated,10 and the two-dimensional function G1 is

estimated nonparametrically. "Comparables" are determined via close values of



a and x0 0, and the impact of pollution a on mean log house price is not

necessarily connected to the impact of any of the other characteristics.

In a related paper, Rodriguez and Stoker (1992), we devise a testing

procedure for assessing what degree of functional structure is called for in

data sets on log prices and characteristics, along the lines above. For the

Boston Housing Data, we found that the log-linear and single index models gave

statistically equivalent depictions of the data, but both were rejected

against a general kernel regression estimator. We concluded that a certain

partial index model gave a statistically adequate description, in that it was

not rejected against nonparametric regression. We now turn to a discussion of

the specifics of the data and model, and a description of the basic results on

log housing prices and the hedonic price of pollution. The reader is referred

to the above reference for the details of our testing procedure, and our aim

in this paper is to illustrate how one can interpret our final model, in terms

of house price - attribute relationships as well as the associate hedonic

price of pollution.

4. Environmental Effects in the Boston Housing Data

4.1 Some Preliminaries

The Boston Housing Data consists of 506 observations on the average value

of housing in census tracts in the Boston area in 1970. This data was first

used in the analysis of pollution abatement policy by Harrison and Rubinfeld

(1978a, hereafter HR, and 1978b), and the structure of their hedonic house

price equation has received considerable attention since then. For instance,

Belsley, Kuh and Welsch (1980, hereafter BKW) analyze the basic log-linear

equation for robustness, including identifying various influential

observations and other outliers. The variables in the data set are listed in

Table 1, where we have focused our analysis on the nine predictors found



11
significant in the Harrison-Rubinfeld and Belsley-Kuh-Welsch work. Likewise,

we have retained the transformations of the basic observed variables as used

by these authors. 12 The ordinary least squares (OLS) estimates of the

coefficients of the log linear model are given in Table 2.

The coefficient estimates used for index models are also given in Table 2

under the heading of "average derivatives." These coefficients are measures

of the average of the effects (slopes) of the attributes on log-prices,

treating the regression as arbitrarily general. If m(x) - E(ylx) denotes the

true statistical relationship, then the average derivatives are 6 - E(am/ax),

and these parameters can be measured more precisely than the attribute

specific effects am(x)/ax for any given value x of attributes. Stoker (1992)

gives a lengthy treatment of average derivatives, their estimation, and how

they provide consistent estimates of the coefficient parameters of single and

partial index models.13 If the log-linear model were, in fact, statistically

adequate, the average derivatives would measure the same values as the OLS

coefficients.

The average derivative estimates have the same qualitative pattern as the

OLS coefficients, save for the race effect, with a negligible average

derivative estimate.14 The average derivatives indicate weaker effects than

OLS for pollution, distance to employment and access to radial highways,

pupil-teacher ratio and lower status, and stronger effects for crime rate,

number of rooms and taxes. Despite these difference in magnitudes, it is not

possible to reject the hypothesis that the OLS coefficients and the average

derivatives are measuring the same values, as indicated by the Wald statistic

at the bottom of Table 2. In other words, from just looking at coefficient

estimates, there are no grounds for rejecting the basic log-linear model.

However, Rodriguez and Stoker (1992) note that the log-linear model is

indeed rejected against a general regression model, so that apart from the



coefficients, there are systematic departures from the log-linear model in the

data. The same is true of the strict single index model (with average

derivative estimates as coefficients), so that using a single index to

summarize the effects of all the attributes likewise misses some nonlinear

structure. Our testing procedure concluded with a partial index model that

omitted the pollution variable, and the lower status variable, from the index

summarizing the remaining attributes. In particular, our procedure failed to

reject such a partial index model against general regression, so that the

nonlinearity not accounted for by the log-linear model arises from the

treatment of pollution and lower status effects. Since the pollution impact

is a primary concern, we focus on the hedonic price of pollution after

describing the basic model below.

The partial index model that passes our criteria gives the mean log

housing price as
A

(*) E(ylx) - G2(NOXSQ, LSTAT, INDEX)

where the index variable is constructed from the remaining seven predictors as

INDEX - (-.0256 CRIM) + (.0106 RMSQ) + (-.0746 DIS) + (.0669 RAD)

+ (-.0009 TAX) + (-.0175 PTRATIO) + (-.0526 B)

The INDEX variable can be regarded as a linear representation of log house

prices, omitting the influence of air quality (NOXSQ) and the (lower) status
A

position of the communities. The function G2 () gives a nonparametric

description of the impact of pollution and lower status, with remaining

housing attributes controlled for via the index representation. We now give a

graphical description of the pollution impacts.



4.2 Graphical Analysis of the Boston Housing Data
A

The estimated log-price function G2 (.) is a function of three variables,

so we cannot depict it entirely on one diagram. Since our focus is on the

pollution effect, we first give three-dimensional diagrams of mean
A

log-price G2(.) over values of pollution and lower status, for various values
A

of the index of other housing attributes. We then give diagrams of G2 (.) over

values of pollution and the index, for various values of lower status. For

interpretability, we detransform the pollution-squared and log-lower status
A

variables as used in estimation, plotting G2 (.) over values of pollution

15 A

and lower status. As discussed above, G2(.) represents the mean of log

house prices for given values of its arguments: twists, bumps and other kinds

of curvature indicate nonlinearity in the hedonic house price relationship.
16

Figure la graphs the relation between log house prices and pollution and

lower status with INDEX set to its mean value. For lower status communities,

we see that the pollution effect is negative as expected, or that lower house

prices are associated with higher pollution levels. However, for higher

status (low LSTAT) communities, the opposite is true, namely that higher

pollution levels are associated with higher house prices. This counter

intuitive finding indicates immediately how the log-linear model fails to

adequately account for the empirical features of higher status communities.

Before interpreting this feature, it could be that there are just a few

high price - high pollution - high status communities observed at the mean

index level; in other words, there may be a few outliers that arise from a

unfortunate choice of plotting at the average value for INDEX. To consider

this, Figure lb gives an analogous plot with the index value set to a higher

value (mean plus 1.5 standard deviation) and Figure lc gives an analogous plot

with the index variable set to a lower value (mean minus 1.5 standard

deviation). These figures illustrate the same phenomena, namely a negative



pollution effect for lower status communities and a somewhat positive effect

for higher status communities. As such, the misspecification of pollution

effects for higher status communities is a robust feature regardless of the

overall level of house prices (omitting pollution and status effects).

There are some subtle differences in Figures la-c worth noting. Figure

Ic depicts a relatively smaller upturn in prices for pollution values in high

status communities than Figures la and lb. This is quite natural, as the

level of house prices can be regarded as an alternative measure of a "status"

phenomena, so that the counter intuitive pollution effect with high status

would be less for low price communities. These subtle differences give

further indications that the generality of model (*) is important for an

adequate data description.

An alternative depiction of these results is given from the implied

hedonic price of pollution for the model (*) versus the log-linear model.

For a given value of the observed attributes x, the hedonic price of pollution

is obtained by differentiating (*), giving

A

A A aG 2 (x) A

PNOX - G2(x) 
6NSQ NOXSQ

aNOXSQ

where 6NSQ is the estimated average derivative for NOXSQ from Table 2. For

the log-linear model, the implied hedonic price of pollution is

A A

pNOX - L(x) PNSQ NOXSQ

A A

where L(x) is the fitted value from the log-linear model, and PNSQ is the OLS

coefficient of NOXSQ.

Figure 2 depicts the hedonic price as implied by model (*) (for INDEX set

to its mean value). It shows a smoothly increasing cost (negative price) of

higher pollution levels in lower status communities. As the status of the



community is increased, the prices become positive, as we would expect from

the relations in Figures la-c. For further illustration of this, Figures 3a-c

illustrate the pollution price as a function of pollution level, and include

the pollution price that is implied by the log-linear model. Here INDEX is

set to its mean value, and Figures 3a, 3b, 3c depict the pollution price for

high, middle and low status communities respectively.17 This figures

illustrate more clearly the sensitivity of the pollution effect to the status

of the community, as well as the substantial differences between

semiparametric and log linear estimates of the hedonic price of pollution.
18

Reliance on a log linear model amounts to asserting serious impositions on the

pollution price that are in conflict with the observed data patterns. The

hedonic price of pollution has a considerably more complicated structure than

that given by the standard log linear model.

The same basic lesson arises when we consider the interrelationship

between log house price, pollution level, the index of other housing

attributes. Figure 4 depicts this structure at the mean value of lower

status. While somewhat accentuated by the orientation of the graph, the

increase in housing prices at quite high pollution levels is evident,

especially for high values of the index.

A more vivid depiction of the intrinsic nonlinearity of the basic hedonic

relationship is found by considering the hedonic price of pollution as

compared to the index, at different levels of community status. Figure 5a,

5b and 5c depict the hedonic price at high, middle and low status levels as

indicated by the value of LSTAT. Most evident is how the lower status

communities give a strongly negative impact of increases in pollution on

housing prices, especially for high pollution ranges. This effect is

mollified for middle status communities, and apparently reversed for high

status communities. While yet just another method of isolating the



substantial nonlinearity in the log house price - pollution relationship, the

differences between the estimated prices over status ranges are quite

striking. Finally, for comparison, Figure 6 presents the hedonic prices

implied by the log-linear model at the mean status level. Noting differences

in the plotting range of hedonic prices, one can see how the log linear model

predicts smooth pollution impacts in a fairly narrow range as compared to

those seen in Figures 5a, 5b and 5c.

4.2 Interpretation

One of the more powerful features of the semiparametric methods we have

used is the ability to clearly depict the structure of the data, giving a

visual indication as to where a standard model can fail. In this regard, it

is worth noting some findings from previous analysis of this data which are

consistent with our findings above.

First, the original Harrison and Rubinfeld study found that their

estimates of pollution effects were not robust to perturbations of the basic

model, and their estimates of aggregate benefits of air quality improvements

could be decreased by 60% by considering alternative specifications (HR,

p.78). From Table 2, the average derivative estimate for NOXSQ is

considerably below the OLS estimate, and considerably less precise, reflecting

this feature. The substantial nonlinearities evidenced from our graphical

depiction of model (*) would lead to very sensitive estimates based on varying

specifications of a log-linear model. In essence, different log-linear

specifications amount to different weightings of the observed pollution effect

over different ranges of the data. Therefore, the substantial differences in

the hedonic price of pollution noted above would lead to wide variation in

summary estimates such as OLS coefficients from differing specifications.

The analysis of Belsley, Kuh and Welsch carried out careful



diagnostic analysis on the residuals of the basic log-linear model, and found

strong evidence of outliers, or particularly influential observations. In

particular, they note a correlation between the size of the residuals and the

census tract to which they belong, concluding that misspecification has

occurred with respect to a factor that is correlated with the geographic

district assignments of the data. More specifically, they note

The influential data tend to be quite heavily concentrated in a few

neighborhoods and these are, for the most part, the central city of

Boston, which leads us to believe that the housing price equation is not

as well specified as it might be (BKW, p. 243)

These authors do not pursue model variations that isolate these influential

observations.19

Our results find systematic departures from the model in terms of

nonlinearity of the pollution - status relationship. While we have not

included "Boston" as an explanatory factor, we have noted how the pollution -

status effect is basically robust to the levels of the other variables in the

data. Since there are high status census tracts other than those in Boston,

we consider what further interpretation can be given to model inadequacy

beyond the fact that "Boston may be special."

The covariation of pollution and housing prices could arise because of

genuine disutility associated with breathing poorer air, but it could also

arise from various locational features that are associated with air quality.

For example, the air quality in a community could be poor because of the

presence of high density traffic areas. Another example concerns proximity to

factories or other pollution-emitting sources. Moreover, the possibility that

pollution is a proxy for other locational effects is consistent with our



semipatametric findings. The fact is that lower status communities are likely

to be those in which high density traffic areas or industrial sources are to

be found. Consequently, the lower status communities would display a

systematic negative pollution effect as we have found. Alternatively, if the

higher status communities were relatively free of traffic and other problems,

the measured pollution level may not be systematically associated with lower

prices, also as we have found.

The possibility of pollution acting as a proxy for other kinds of

locational effects also places a proviso on the applications of hedonic

results to the assessment of pollution abatement policies. Suppose, for

instance, that laws were passed that severely limited automobile emissions.

Over a period of time, housing prices in previously polluted areas would

adjust upward to the extent that the improved air quality improved living

conditions. This impact would likely be most relevant for communities where

the pollution effect were highly associated with traffic and congested

downtown areas. But such an effect would not be so pronounced for areas where

pollution arose from an industrial site, or other area that was not affected

by the law to limit automobile emissions.

Moreover, even in areas where the major polluters are automobiles, the

emissions law would not mollify other factors associated with traffic density

that impact on housing prices. For instance, the noise level of close busy

roadways, or issues of child safety near busy roadways would go unchanged, and

their implicit valuation in observed housing prices would remain. As in many

contexts where there is the potential for important omitted variables, the

measured pollution effect may overstate the true benefits of environmental

policies.



5. Conclusion

The purpose of this paper is to introduce many of the ideas of

semiparametric modeling in the context of measuring the implicit value of

changes in air quality. We have illustrated these ideas with an application

to the Boston Housing data, where we have graphically depicted the inadequacy

of a standard log-linear model of housing prices. While our results are

reflective of findings of previous analysis of this data, we have isolated

more systematic features of where the pollution effect is stable and where it

is not. In particular, a quite different pollution-house price structure

exists for low status housing as for high status housing areas.

Our application of flexible nonparametric methods involves more

complicated issues and computational methods than standard log-linear

modeling. Moreover, since our application involved nine predictor variables,

there was the possibility that no simplified semiparametric model would give a

statistically adequate fit. In such a case, we would have been hard pressed

to give a very conclusive description of the true empirical relationship,

because of the difficulties of describing a nine dimensional function.

Our discovery of a statistically adequate partial index model permitted

graphical analysis and interpretation, but even our basic model involved

estimation of a function of three arguments (NOXSQ, LSTAT and INDEX). The

analysis of our final model was considerably more complicated than familiar

analysis of log-linear regression estimates. With this in mind, one might

think that it is in some ways better to use a log-linear model, relying on the

estimated OLS coefficient of a pollution variable as an "average effect"

applicable across the entire data sample.

We would argue strongly against such an approach, which amounts to

ignoring model specification issues on the grounds of expediency. It is clear

that "back of the envelope" policy evaluation is aided greatly by the use of a



single summary effect, but there is no systematic reason to believe that OLS

estimation of a log-linear model will give anything like an adequate summary

effect. For instance, in Table 2, the OLS coefficient of NOXSQ was almost

twice as large as our measure of the average derivative, or average effect of

NOXSQ (measured using flexible methods). Moreover, the apparent precision of

the OLS coefficient masks the fact that the empirical effect of pollution

varies quite widely across the data, with a systematic negative effect for low

status communities combined with a rather unstable measured effect for high

status communities. If one is to use a summary statistic of the basic effect,

it is important to utilize statistics whose connections to the empirical

effects are well understood. One possibility, among many, is the average

derivative, or average effect across the sample. Unless the data relationship

is demonstrably consistent with a log-linear model, there is no clear way to

trace the connection between OLS coefficient estimates and the underlying

empirical effects.

As such, a major conclusion of our empirical analysis is that reliance on

a log-linear framework, even when augmented with the standard tools of

inference for linear models, can miss systematic nonlinear structure in the

basic data. The only way to allow for a more complete range of possibilities

is to adopt a framework that is sufficiently flexible to account for such a

complete range, and permits methods of interpretation of the basic findings.

Our use of kernel estimators permitted examination of the nonlinear house

price - pollution relation on diagrams, which make clear what features are not

captured by the log-linear model. While our analysis is definitely more

complicated than what is available from familiar, more standard methods, the

result is a much richer understanding of the house price - pollution

relationship in the Boston Housing data.



Notes

Environmental impacts that have not been observed can also be valued with an

economic approach, to the extent that the relevant futures markets accurately

price differing environmental situations. Such applications are necessarily

somewhat problematic, as many aspects of future situations need to be given

explicit attention. A good discussion of the issues of measuring the effects

of future global warming is given in the 1991 Economic Report of the

President.

As described later, our semiparametric model is the final result of a

detailed study of model specification given in Rodriguez and Stoker (1992).

This paper introduces the model, and then focuses on the intuitive content and

substantive implications of the results. Related literature includes Stock

(1989), who uses another kind of semiparametric approach to measure the

average costs associated with toxic waste sites, and Palmquist (1988), who

discusses the use of nonparametric price estimates in environmental analysis.

One could take the evaluation a further step, relating the change in house

value to "constant utility" income differences (as was carried out in the

original study of Harrison and Rubinfeld (1978a,b). Here, we just focus on

the house price equations, in part because of difficulties in obtaining the

original income data required for this latter step.

For interesting discussion of how the price mechanism matches consumer

tastes and product attributes, see Tinbergen (1956), and for a useful

discussion of competition in supply in differentiated product markets, see

Rosen (1974).



Palmquist (1989) surveys the use of hedonic price methods in studies of

environmental effects.

The recent surveys by Case, Pollakowski and Wachter (1991) and Smith and

Huang (1991) each stress how the functional form of hedonic equations remains

a major issue in environmental and other types of studies.

Nonparametric regression methods are surveyed by HArdle (1991).

8 Our empirical analysis used product kernels R(u) - Hk(u ), with k(u ) -

15/16 (1 - u. 2)2, and set bandwidths via generalized cross-validation (c.f.

Rodriguez and Stoker 1992 and Stoker 1992 for details on the estimation).

It is possible to estimate P and GO(.) simultaneously, but that involves

delicate computational issues. We normalize P to be the "average derivative"

E[am/ax] and estimate it directly using an instrumental variables estimator

(with nonparametric instruments). The function GO(.) is then estimated by

TA
nonparametric regression of y on x P, the estimated index. This approach and

related references are detailed in Stoker (1992). While the use of an average

derivative estimator for P may be less efficient than in simultaneous

estimation (c.f. Newey and Stoker (1993)), it greatly facilitates single- and

partial-index model estimation, as well as avoids many of the computational

issues.

10 With reference to the last note, f0 is estimated by the subvector of the

average derivatives associated with x0.

11 The data as listed in BKW (p. 245-261), and we want to acknowledge some

useful conversations with D. Rubinfeld on the data set.



12 The variable LSTAT is very important in the analysis that follows. It is

the log of "proportion of residents of lower status," which is defined as the

percentage of adults who are laborers and who do not have a high school

education.

13
We have used IV estimators of the average derivatives, that use score

estimates as instruments for linear coefficients of y on x.

14 The curious transformation used by HR and BKW for the race percentage means

that a positive coefficient indicates a negative impact of the presence of

minorities; B - (Bk - .63)2 - Bk2 - 1.26 Bk + (.63)2 , so that for small

proportions of black residents Bk, B will vary as -1.26 Bk. Consequently, the

OLS coefficient indicates a substantial negative race effect, with the average

derivative indicating no effect of race.

15 ^
It is worthwhile noting that since G2(.) is a nonparametric estimate with

NOXSQ and LSTAT as free arguments, the (invertible) transformations used in

their construction do not affect the estimate of mean log house price. In

other words, G2(.) is sufficiently flexible to "undo" the transformations if

that were dictated by the data.

16 For comparison, it should be noted that the log-linear model would be

depicted as smooth planar surfaces on the diagrams that follow. It would not

result in flat planes per se, as our detransformation would add some minimal

curvature due to removing the "square" from NOXSQ and the "log" from LSTAT.

This comparison is also not exact, because of the difference between INDEX and

the weighted sum of the other attributes (OLS coefficients) of the log-linear

model.



17 "Middle Status" is defined by setting LSTAT equal to its mean value, "High

Status" by setting LSTAT to its mean value minus 1.5 its standard deviation,

and "Low Status" by setting LSTAT to its mean value plus 1.5 its standard

deviation.

18 Stoker (1993b) argues how kernel regression estimators can under estimate

derivatives. We have not studied this phenomena here, but it would not

affect the qualitative features of these diagrams, but could imply an

exacerbation of the basic differences noted. This issue of derivative bias

is not relevant for our method of estimating the average derivatives (Stoker

1993a), and so has not caused the difference between the average derivative of

NOXSQ and its OLS regression coefficient.

19 It is worth remarking how the BKW "bounded influence" methods represent a

different conceptual approach to the misspecification of the log house price

equation. In particular, influential observations such as outliers are likely

to be associated with departures from the basic log-linear model. BKW

downweight such observations, to obtain a more "representative" set of

coefficient estimates. Our approach is to describe the data configuration as

it exists with a semiparametric model, instead of considering reweighted

versions of a linear equation.
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TABLE 1: VARIABLE SPECIFICATION IN THE BOSTON HOUSING DATA

y - In p LMV log of home value

x1 NOXSQ nitrogen oxide concentration

x2  CRIM crime rate

x3  RMSQ number of rooms squared

x4  DIS distance to employment centers

x5  RAD accessibility to radial highways

x6  TAX tax rate

x7  PTRATIO pupil teacher ratio

x8  B (Bk - .63)2, where Bk is proportion of black

residents in neighborhood

x9 LSTAT log of proportion of residents of lower status



TABLE 2: COEFFICIENT ESTIMATES FOR THE HOUSING PRICE EQUATION

Dependent Variable: y - LMV (in p)

Average

Derivatives
A

6

NOXSQ

CRIM

RMSQ

DIS

RAD

TAX

PTRATIO

(Standard Errors in Parentheses)

WALD TEST OF 6 - #: W - 13.44,

xl

x
2

x
3

x4

x
5

x 6

x 7

x
8

x
9

-.0034

(.0035)

-.0256

(.0056)

.0106

(.0025)

-.0746

(.0504)

.0669

(.0468)

-.0009

(.0003)

-.0175

(.0152)

-.0526

(7.514)

-.2583

(.0370)

LSTAT

OLS
A

-.0060

(.0011)

- .0120

(.0012)

.0068

(.0012)

-.1995

(.0265)

.0977

(.0183)

-.00045

(.00011)

-.0320

(.0047)

.3770

(.1033)

-.3650

(.0225)

Prob( X2(9) > 13.44 ) - .143
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FIGURE 3a: HEDONIC PRICE OF POLLUTION: HIGH STATUS COMMUNITIES

(Middle INDEX Value; --- Semiparametric Model; - Log Linear Model)
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(Middle INDEX Value; --- Semiparametric Model; - Log Linear Model)
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