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ABSTRACT

This paper presents a simple regression test of parametric and

semiparametric index models against more general semiparametric and

nonparametric alternative models. The test is based on the regression

coefficient of the restricted model residuals on the fitted values of the more

general model. A goodness-of-fit interpretation is given to the regression

coefficient, and the test is based on the squared "t-statistic" for the

coefficient, where the variance of the coefficient is adjusted for the use of

nonparametric estimators. An asymptotic theory is developed for the situation

where kernel estimators are used to estimate unknown regression functions,

and the variance adjustment terms are given for this case. The methods are

applied to the empirical problem of characterizing environmental effects on

housing prices in the Boston Housing data, where a partial index model is

found to be preferable to a standard log-linear equation, yet not rejected

against general nonparametric regression. Various issues in the asymptotic

theory and other features of the test are discussed.





A REGRESSION TEST OF SEMIPARAMETRIC INDEX MODEL SPECIFICATION

by Diego Rodriguez and Thomas M. Stoker

1. Introduction

The purpose of this paper is to propose and illustrate a simple

specification test for index models. The test can be used to judge the

adequacy of parametric index models; such as a linear model or a probit model,

against more general semiparametric or nonparametric models. Alternatively,

the test can be used to judge the restrictions of a semiparametric

partial index model, against more general semiparametric or nonparametric

alternatives. As such, the test is intended as a diagnostic tool to be used

in conjunction with empirical estimation of index models. We apply the test

to characterize the index structure of environmental effects in the Boston

Housing data.

The test is based on the bivariate OLS coefficient of the residuals from

the restricted model regressed on the fitted values from the general model.

The test statistic is square of the "t-statistic", or the ratio of the slope

coefficient to its estimated standard error; which is compared to a X 2(1)

critical value. The value of the coefficient has a "goodness-of-fit"

interpretation, namely as the percentage of variation of the general model

that is not accounted for by the restricted model; and the restricted model

is rejected when the coefficient is significantly different from zero. The

appropriate standard error is estimated by adjusting the standard

(heteroskedasticity corrected) estimate for the presence of estimated features

of the restricted and general models.

The test is similar in spirit to the test of a linear model against



nonparametric alternatives proposed by Wooldridge (1991) and Yatchew (1988),

and related work by Hong and White (1991), Fisher-Ellison (1992) and Eubank

and Spiegelman (1990), among others. As discussed by Hong and White (1991),

this work is related to tests of moment restrictions as in Bierens (1990) and

Lewbel (1991).

Our approach differs from the earlier proposals in that a wide range of

restricted and general models are allowed, and that our test is based on an

adjustment of the familiar "t-statistic." Our development of the limiting

statistical theory of the test is based on index models, although similar

tests could be devised for situations where the restricted and general models

are nested in the way discussed below. We give the adjustment terms

appropriate when kernel regression estimators are used for the unknown

functions in estimated (semiparametric and nonparametric) models, and kernel

average derivative estimators are used for index model coefficients. While

the asymptotic theory is likely to be the same when other kinds of

nonparametric estimators are used (Newey 1991), the relevant standard error

adjustment terms would need to be derived.

The exposition proceeds as follows. We begin with a brief layout of the

models and the test in Section 2. Section 3 applies the test in an analysis

of pollution effects on housing prices using the Boston Housing data of

Harrison and Rubinfeld (1978a, 1978b) among others. Section 4 gives the

asymptotic theory for the test, with proofs placed in Appendix 1, and the

variance adjustment terms listed in Appendix 2. Section 5 contains some

concluding remarks.

Section 4 also discusses a singularity issue raised by the asymptotic

theory of our test. In strict terms, this issue suggests that an extended

analysis (beyond that we have given) would recommend using tighter critical

values than we have. This would not affect cases where our test statistic



indicates rejection of the restricted model, but could lead to rejections

where our method as given fails to reject. We discuss this issue at length at

the end of Section 4.3.

2. Basic Layout

2.1 Basic Framework and Index Models

The empirical setting we consider is an analysis of data (yi,xi), i -

1,...,N, which is assume to be an i.i.d. random sample, where yi is a response

of interest and xi is a k-vector of predictor variables. For the statistical

theory of Section 4, we assume that x is continuously distributed with density

f(x), where f(x) vanishes on the boundary of x values, and is also first

differentiable. We assume that the mean of y exists, and denote the mean

regression of y on x as m(x) - E(yJx).

Our interest is in testing index model restrictions on the structure of

m(x). To begin, m(x) is a single index model if there is a coefficient

vector B and a univariate function G such that

(2.1) m(x) - G(x T) a.e.

Familiar parametric models that are single index models include the standard

linear model; y - a + x T + e with E(ejx) - 0; giving

(2.2) m(x) - a + x T

Likewise included is the standard probit model for analyzing binary responses;

y - l[e < a + xT ] with e - N(0,1); giving

(2.3) m(x) - 0(a + xT )

with 4(.) the cumulative normal distribution function.



A semiparametric single index model is based on

(2.4) m(x) - G1 (x T)

where G is treated as an unknown, smooth univariate function. Here B can be

estimated up to scale, and G1 can be estimated given the estimate of f. A

semiparametric partial index model is based on

(2.5) m(x) - G2 (x1 l 1 ,x2)

where x - (x1 ,x2) is a partition of x into a k-k2 vector xl, and a k2 vector

x2, and G2 is an unknown, smooth function of k2 + 1 arguments. Our test is

applicable to testing a restricted index model (for instance (2.4)), against a

more general index model (for instance (2.5)).1

At the extreme end of generality, we consider the nonparametric

regression model

(2.6) m(x) - g(x)

where g(x) is an unknown smooth function of k arguments. Failure to reject a

proper index model against the general nonparametric regression constitutes

practical acceptance of the proper index model restrictions. Likewise,

failure to reject a parametric index model against the nonparametric

regression constitutes practical acceptance of the parametric regression

restrictions.

Our empirical and theoretical analysis employs kernel estimators for

unknown functions in semiparametric and nonparametric regression models, and

(kernel) average derivative estimators for index model coefficients.2 The

latter refer to (indirect) instrumental variables estimator of the vector 6 -

E(m'), where m' - 8m/8x. For model (2.4), the coefficients # are proportional

to 6, so we normalize the model by replacing P by 6, as in

£e



(2.7) m(x) - G1(xT6)

redefining G1 to reflect the scale normalization. Likewise, for the partial

index model (2.5), we have that P1 is proportional to the k - k2 subvector 61

of 6 (those components associated with xl), and so we normalize (2.5) as

(2.8) m(x) - G2(x1 T61,x2)

A A A A

We denote estimators using hats; 6, G1, G2 , g, etc. One attractive feature of

the index model framework is that a single estimate of the average derivative

vector 6 can be used for coefficients in all single and partial index models,

replacing the unknown coefficients as in (2.7), (2.8).

We give the formulae for the kernel estimators used in Section 4.1. For

clarity of the main ideas, we now give a quick introduction to the ideas of

the specification test, and follow it with an empirical application. In the

next section, we abstract from various required technical details, such as

trimming and higher-order kernel structure, which are covered in detail in

Section 4, in order to give a straightforward motivation of the basic ideas.

2.2 Quick Start: The Test and Its Motivation

We introduce the test by considering the problem of testing a

(semiparametric) single index model against general (nonparametric) regression

structure. In particular, the null hypothesis is that the true regression

takes the restricted form

(2.9) m(x) - Gl(xT6)

The alternative is represented by

(2.10) m(x) - g(x)



where g(x) obeys the smoothness conditions given in Section 4.2. The

methods for applying the test with other restricted and alternative models

will be clear from considering this case. Using the data {Yi, xi)0 i -
A

1,...,N, we assume that an estimator 6 of 6 is computed, that G is estimated
A T^

by the kernel regression G1 of yi on xi 6, and that g is estimated by the
A

kernel regression g of yi on xi . Following the results of HArdle and Stoker
A A

(1989), these procedures imply the G1(x 6) is a consistent (nonparametric)

estimator of E(yx T6) in general (i.e. with model (2.10)), so that when (2.9)

is valid, G (x T6) is a consistent nonparametric estimator of G1 (x T6).

The test statistic is computed as follows: for each observation i, form
A TA

the residual from the restricted model yi - G(xi 6) and the fitted value from
A

the general model g(xi), and perform the bivariate OLS regression

(2.11) yi - G(x 6) - a + 7 g(x) + u i  , i - ,...,N.

A

The test is based on the value of 7; if large (indicating a significant

difference from zero), we reject the single index model against the general

3
regression; otherwise, we fail to reject. In particular, if an estimate of

A A

the asymptotic variance of 7 is denoted a then the appropriate "t value" is

found as

A

(2.12) t-• 7 / FY

2 2 ^
Our test compares t to a X (1) critical value. We discuss the estimate a7

below, following the motivation.
A

On "omnibus" grounds, basing a test on 7 is sensible because if (2.9) is

the true model, y - G1(xT6) is uncorrelated with any function of x. Provided
A T T A TA

that G1 (x T6) is an accurate estimator of G1 (x 6), then y - G1 (x T6) should be
A

approximately uncorrelated with g(x), which is what is being checked. More



T T A TA
formally, suppose G(x 6) = E(ylx 6) denotes the consistent limit of G (x 6).

Consider the linear regression equation that holds if the true functions G and

g were known:

(2.13) Y - G(xT6) - a + 7 g(x) + u

where the parameter 7 is defined via OLS projection, as

E([g(x)-E(g)][y - G(xT6)])
(2.14) - E[g(x)-E(g)]2

Here u is uncorrelated with g(x) by definition. Equation (2.11) is just the

sample analog of the equation (2.13). Obviously, 7 - 0 when g(x) - G(xT 6),

reflecting the lack of correlation discussed above.

The value of 7 is also easy to characterize under the alternative, when

g(x) o G(x T6). In particular, from the law of iterated expectations, we have

that

(2.15) G(xT6) - E[ylxT6] - E[g(x)xT 6].

Consequently,

(2.16) g(x) - E[g(x) xT6] + (g(x) - E[g(x) xT6])

- G(x T6) + U(x)

where U(x) - g(x) - E[g(x) IxT6] has mean 0 conditional on xT6. Therefore

E[U(x)2]
(2.17) 7 - 2 > 0

E[g(x)-E(g)]

when g(x) differs from G(xT 6) on a set of positive probability. Therefore,

y is the percentage of (structural) variance of the true regression not
A

accounted for by the restricted model. The statistic 7 is an empirical



measure of this "goodness of fit" value. The key feature of this motivation

is that the restricted regression is the expectation of the general

regression conditional on the index argument(s) of the restricted model. This

"nesting" is easily verified for comparing semiparametric index models (any

coefficients in the general model must also be coefficients of the restricted

model), and is assured by using kernel estimators for unknown functions and

average derivative estimators for coefficients as above.4

We now describe how we measure the variance of 7. If the parameters
A

6 and the functions G and g were known, then the variance of 7

would be consistently measured by the standard (White) heteroskedasticity

consistent variance estimator. Our approach is to add adjustments to the

standard term, to account for the presence of the estimates
A A A A

6, G and g. In particular, a is the sample variance of

A A W A

(2.18) s -1([g(xi) - g] ui + rai  lai

A

where g and s^ are the sample average and sample variance of g(xi)g
A A TA AA

respectively, and ui - yi - Gl(xi 6) - 7 [g(x i ) - g] is the estimated

residual. The term rai is the adjustment for the estimation of g(xi)

(the "right-hand" function), and the term lai is the adjustment for the

estimation of G(xi T) (the "left-hand" function). These terms are spelled out

in Section 4 and Appendix 2, as well as their formal justification. It should

be noted that the standard (White) variance statistic is given by (2.17) with

ra(xi) and la(xi) omitted. Moreover, in the next section, we show the

difference between the properly adjusted estimates as well as the unadjusted

(White) estimates for each test performed.

With this motivation, we now turn to an empirical example.



3. Index Structure of the Boston Housing Data

We illustrate the test by studying the index structure of the Boston

Housing data of Harrison and Rubinfeld (1978a,b). The focus of this study is

on measuring environmental effects on housing prices, for the purpose of

measuring the dollar-value benefits of lower air pollution levels. The method

of analysis is to estimate a standard log-linear hedonic price equation. All

nonparametric estimation uses kernel regression estimators, and testing is

performed on a "trimmed" sample, that omits the 5% of the observations that

displayed smallest estimated density values.

This data and the log-linear price equation has been extensively studied

elsewhere, for instance, in the work of Belsley, Kuh and Welsch (1980) on

regression diagnostics, among others. There is no particularly persuasive

theoretical reason for choosing the log-linear form for the housing price

equation; however, the amount of previous study of this equation makes it a

good base case.5 Our initial expectation was that our study of the index

structure of the data would give some confirmation to the log-linear model.

We adopt the definitions of the observed variables in Harrison and

Rubinfeld (1978a, 1978b). For notation, yi denotes the log of price

of house i, and xi denotes the vector of nine predictor variables that

Harrison and Rubinfeld found to be statistically significant in their

analysis. The data consists of 506 observations on the variables depicted in

Table 3.1. As mentioned above, the earlier work produced a linear equation

between y and x; of the form

(3.1) y In p - a + x T +e

The coefficients P summarize the proportional impacts of changes in x on

housing prices. Table 3.2 contains the OLS estimates of these coefficients.

Our interest is in studying whether the linear model, or a more general



index model, is a statistically adequate representation of the true regression

m(x) - E(ylx) of log-prices on the predictor variables.6 We begin this by

looking at a direct estimate of the average proportional impacts of changes in

x on housing prices, or the average derivative 6 - E[m'(x)]. When the true

model is linear as in (3.1), then m(x) - a + xT , with 6 - 8. Moreover, as

discussed above, (the appropriate components of) the average derivative 6

represent the coefficients in semiparametric index and partial index models,

so that our estimates can be used for coefficients of all such index

specifications. In any case, we can regard the vector 6 as giving generalized

values of typical effects of the predictors on log housing prices. Our

estimates are given in Table 3.2.7

We see that the basic difference between the OLS coefficient estimates
A A

8 and the average derivative estimates 6 are minor. The Wald test that the

differences are zero is based on the statistic

(3.2)
A A T A A

W- N (6-48) V6 .8 (6 -48)

A A

where V^ ^ is the consistent estimator of the asymptotic variance of 6 - 4

given by the sample variance of its influence representation. Here W - 13.44,

which fails to reject for significance levels less that 15Z.8

The largest qualitative difference in the coefficient estimates occurs

for the coefficient of B, or the race effect. This effect is strongly

positive in the OLS estimates but negative and negligible in the average

derivative estimates. From the consistency of average derivative estimates

for coefficients of the single index model

(3.3) m(x) - G1 (xT6)

the difference in the B coefficient is interpretable as potential

nonlinearity in the function G1. We investigate this by computing and



plotting the estimate of G1 obtained by nonparametric regression of yi on

T^
x 6, shown in Figure 3.1. This function appears as two lines with a shift

(flat) in the center. Therefore, the positive OLS coefficient for B can be

interpreted as resulting from forcing these two line segments together, by

assuming that the overall model is linear.

To see whether this difference is statistically important, we apply our

regression test to the linear model versus the single index model. All of our
A

testing results are summarized in Table 3.3. Both the estimate - and the

"t-statistic" for testing the linear model against the single index model are

quite small, so the linear model is not rejected. Therefore, the linear

model (with the large race effect) and the single index model (with the

negligible race effect but nonlinear function G1 ) are statistically equivalent

descriptions. Choice between these models rests on which has the more

sensible interpretation; we would be inclined to use the single index model,

but this is a purely subjective choice.

To see whether the linear model and/or the single index model stand up to

further generalization, we compute the nonparametric regression of y on x,

fitting the "model"

(3.4) m(x) - g(x)

A

The nine-dimensional curve g(x) is difficult to plot and interpret, and so we

mainly use it as the base case for the specification testing.

Again from Table 3.3, we see that the regression test rejects both the

linear model and the single index model against the general regression. The
A

estimates 7 of the percentage of variance not accounted for by these models

relative to general regression are 17.1% and 23.1%, which are each

significantly different from zero.9 Therefore, the restrictions of the single

index model are too strong, and we must look further for a model that



adequately captures the systematic variation between log price y and

predictors x.

Our approach for this is to consider partial index models of increasing

generality. In particular, we begin by estimating partial index models with

one variable excluded from the index, so that the impact of the excluded

variable is treated flexibly. This is computationally simple, since the

average derivative estimates can be used as the coefficients for the variables

remaining in the index. At any rate, the best model emerging from this

estimation is

(3.5) E(yJx) - G2 (x1, X-1'6- 1)

where x-1 - (x2,...,x 9) is the vector of all characteristics except for x -

NOXSQ, the pollution variable, and 6_1 - (62,...,69) is the vector of average

derivatives of the characteristics in the index. The function G2 is a two

dimensional function, and permits a general impact of the pollution variable

x1 . In Table 3.3, we refer to this model as PARTIAL1.

We see that the single index model is rejected against model PARTIAL1.
A

The graph of the function G2 in Figure 3.2 reveals some variation in the

pollution effect, that is not consistent with the single index model (the

"slices" of G2 for different values of xl have varying shapes). The model

PARTIAL1 is rejected against the general regression, failing to account for an

estimated 7.2% of the variation of the general regression. As such, we

proceed to a next level of generalization, namely dropping two variables from

the index.

Here, we find that the best model treating two variables flexibly is

T(3.6) E(y
(3.6) E(yjx) - G3 (yjx1 ,x9,x-19 6-)19)



which permits flexible effects of the pollution variable x1 - NOXSQ and the

"lower status" variable x9 - LSTAT. The function G3 is a three dimensional

function, with the estimated model is referred to as PARTIAL2 in in Table 3.3

From Table 3.3, we see that the model PARTIAL2 gives a fairly
A

parsimonious statistical depiction of the data. In particular, the estimate 7

of the variation of the general regression not accounted for by PARTIAL2 is

a modest 1.16%, which is not significantly different at levels of significance

lower than 3%. We likewise note that each more restricted index model we

consider is rejected against PARTIAL2.
A

The three dimensional estimated function G3 of PARTIAL2 is somewhat
A A

more difficult to depict than G1 and G2 of the more restricted index models.
A

Partial depictions are given in Figure 3.3, by plotting G3 holding

x9 constant at its mean, the lower status variable, (Figure 3.3a), and by
A A

plotting G3 holding the partial index x-196-19 constant at its mean (Figure

3.3b). The clearest difference between this model and the more restricted

ones is the strong nonlinearity in the effect of xl the pollution variable,

over ranges of x9, the lower status variable. In particular, the marginal

pollution effect is flat or slightly positive for low "lower status" values,

and strongly negative for high "lower status" values. One interpretation of

our testing results is that this nonlinearity is sufficiently strong to

dictate a completely flexible treatment of both pollution and lower status

effects on housing prices.

We close out this discussion by pointing our the effects of the

nonparametric adjustments on the variances of the test coefficient 7. In
A

Table 3.4, we include different estimates of the variance of 7 for the tests

summarized in Table 3.3. The first column gives the standard OLS variance

estimates, which neglect heteroskedasticity as well as the fact that estimated

parameters and functions are used. The second column gives the (White)



heteroskedasticity-consistent estimates, which likewise neglect that estimated

functions are employed. Finally, the third column gives the variance

estimates adjusted for the presence of estimated parameters and functions.

Except for the test of PARTIAL2 against general regression, the adjustments

for heteroskedasticity increase the variance estimates. In all cases, the

adjustment for the use of estimated coefficients and functions increase the

variance values. We will make reference to this feature when discussing

issues with the limiting distributional theory below.

4. Technical Analysis of the Test Statistics

In this section, we give the explicit formulation of the estimators and

test statistics, and summarize the theoretical results. Foundational theory

and proofs are given in the Appendix. We focus on the cases where the

restricted and general models involve nonparametric estimation, and where

kernel estimators are used for unknown regression functions. The cases where

the restricted model is parametric are straightforward to incorporate, as

addressed in the remarks of Section 4.3.

4.1 Estimation Formulae

Each of our comparisons involve nested index models, for which we enhance

our notation as follows. Suppose that vector x of predictors is partitioned

into x - (x01 ,x02,X1). In line with our treatment above, the symbol G is

associated with the restricted model, and the symbol g is associated with the

general model, as follows. The restricted model states that the regression

m(x) - E(ylx) is determined by dl arguments z1 - (x01T 01 1+x02 602 ,x1) -

(x0 T6 0,xl), namely that E(y x) - E(YIz 1) = G(Zl). The general model states

that the regression m(x) is determined by d0 arguments z0 - (x01T60 1 ,x02,x1),

do > dl, namely that E(ylx) - E(ylz 0) - g(z0). In the following, the notation



g' refers to the partial derivative of g(x01T601,x02,x1
) with respect to its

index argument x01 T601
, and G' is likewise the partial derivative of

G(x0T 60,x1 ) with regard to its index argument x0T 60.

For estimating the density f(x) of x, we use the kernel density estimator

A -1 -k x - x.
(4.1) f(x) - N hf k jE X-fkhf

j-1 f

where hf is the bandwidth value and Xf is the kernel density that gives

weights for local averages. One use of this estimator is to trim the sample

for analysis, whereby we drop the observations with low estimated density. In
A A

particular, we drop observations with Ii - l[f(xi) > b] - 0, where b is

a constant. The results of Section 3 had b set so that I. - 0 for 5% of the

observations. Our asymptotic results likewise take b as a fixed constant.

To measure the average derivatives (and therefore all index model

coefficients), we the "indirect slope" estimator of Stoker (1991,1992). This
A

estimator is based on the density estimator f(x) of (4.1) as follows. Form
A A A

the estimated "translation score" L(xi) - - f'(xi)/f(xi) for each observation
A

x.. Take 6 as the instrumental variables estimator of the coefficients of yi
A A

regressed on xi, using L(xi)Ii as the instrumental variable. Specifically,

set

A A A A A

(4.2) 6 - [Ei t(xi)li (xi - x) T] l (xi)i (Yi - Y)].

See Stoker (1992) among others for explanation and motivation of this

estimator.

The asymptotic results only require that we have an estimator

A A A

60 - (601,602) of the coefficients that obeys

(4.3) I4-(60 - 60) - N/2 r 6 0 (i,xi) + o (1)



and therefore is 43 asymptotically normal. Denote the subvector of r60
A

corresponding to 601 - 601 as r601. The components of the estimator (4.2)

have r60 (y,x) - m0'(x) - 60 + [y - m(x)]e0 (x), where mo' - am/ax0 , and e0(x) -

- 8ln f/8x 0, as derived in HArdle and Stoker (1989) and Stoker (1991).

Nonparametric estimators of unknown regression functions are

summarized as follows. The function G of the restricted model is estimated by
^ T A
G, the dl dimensional kernel regression of y on z1 (xT0 0,x), using

kernel function X1 and bandwidth hi, or

N ^
A A 1 dd

(4.4) G(z) - Fl(z) Nlhd 1 1 4 J Yh
j-l1

where

N

(4.5) F 1 (z) -N-hd 1 z ( z1j

A

The function g of the general model is estimated by g, the do dimensional
^ T^

kernel regression of y on z0 - (x01 60 1 ,x 0 2 ,x 1 ), using kernel function X0 and

bandwidth ho, or

N ^
A A z

(4.6) g(z) - FO(z) (N ½oO d0  X 0 Yj '
j=1 0

where

NA d z z0 o
(4.7) Fo(z) - N 0-z h zx 0

j-1 o

While these formulae are somewhat daunting, they are directly computed

from the data, given bandwidth values and specifications of the kernel



functions.10 The same is true of the adjustment terms required for the

variance of our t-statistic. Because of their size, we give the formulae for

these adjustment terms in Appendix 2.

4.2 Summary of the Test and Asymptotic Results

We now formally introduce the test, in order to present the asymptotic

results as well as the ideas on which precision measurement is based. To keep

the presentation compact, subscript "i" denotes evaluation of relevant terms
A A

at (y,x) - (yi,xi); for instance, gi denotes g evaluated at z0i, Gi denotes G

A A A

evaluated at z li, and Ii is the trim indicator that is 1 if f(xi) > b, and 0

otherwise, as above.
A

With trimming incorporated, our test is based on the coefficient 7 of the

regression

(4.8)
A A A A A A A A

(Yi - Gi)I " I + 7 gill + ui

Letting

1 A X 2 A
s^ -N (g, - g) Y,g

A - A AA
g- N N gill

A A

denote the sample variance and mean of giwl, we have that the coefficient 7 is

A 1 (A A A

S---- N (g - g)(yi - Gi) iS ^(4.10)

In line with of the discussion of Section 2, this regression procedure

amounts to fitting a sample analog of the equation

(4.11) (Yi - Gi)Ii - [g - E(gI)]Ii + ui

where the parameter 7 is defined via OLS projection as

(4.9)



E([g-E(gI)][y - G]I)
(4.12) --

E([g-E(gI)]2I)

Consequently, 7 is the percentage of variation of g not accounted for by G,

over the untrimmed part of the population. Moreover, 7 - 0 if and

only if g - G a.s. for x such that f(x) > b.

We require the following basic assumptions

Assumption 1: The fourth moments of (y,x) exist.

Assumption 2R: For F0 the density of z0, we have that E(y 4z0)F0(z0) and F0

are bounded, (g - G)I is continuously bounded a.e., and [g - G]FO and

F0 are continuously differentiable of order P0 > d0'

Assumption 2L: For F1 the density of zI , we have that E(y4 1Z1)Fl(zl) and F1

are bounded, GI is continuously bounded a.e., and GF1 and

F1 are continuously differentiable of order P1 > dl"

Assumption IR: The kernel X0 has bounded support, is Lipschitz, f 0(u) du -

1, and is of order P0 > d 01

Assumption 3L: The kernel X1 has bounded support, is Lipschitz, f Xl(u) du -

1, and is of order P > dl-

Assumption 4: For f the density of x, fI is continuously bounded a.e., f

is continuously differentiable of order Pf > k. The kernel Xf has

bounded support, f Xf(u) du - 1, and is of order Pf > k.



Our approach to characterizing the limiting distribution of y is to

establish the following decomposition:

A

(4.13) fi(7 - 7) "- fi-(- 7) + RAN - LAN + Op(l)

where - is the "estimator" based on known functions;

1 1 -1
(4.14) y - -- N [gi - E(gI)](yi - Gi)li

S
g

with

(4.15) S - N I  [gi - E(gI)]2 I

2
an estimator of the (trimmed) variance a - E{[g - E(gI)]I) . The remainingg

terms are the adjustments for using estimates on both sides of the regression

equation: first,

1 -1/2 ^

(4.16) RAN - - N 2  (gi - gi)(Yi - G)I

g

is the adjustment for nonparametric estimation of the "right hand side", or

predictor variable, and second,

(4.17) LAN -- N-1/2  (Gi - Gi)[g i - E(gI)J]I
a
g

is the adjustment for nonparametric estimation of the "Left-hand-side", or

dependent variable, of the original regression. Standard limit theory applies

to the "estimator" - of (4.14); with u - (y - G)I - y[g - E(gI)], we have that



(4.18) 'l( - 7) --- N- 2  [gi - E(g)]uii + Op(1)

so our conditions imply that 7 is asymptotically normal.
A

Therefore, the characterization of the limiting distribution of 7

requires studying the adjustment terms, and establishing (4.13). The

adjustment terms are characterized through

Lemma R: Given Assumptions 1, 2R and 3R suppose (a) N 4 w, h0 4 0;

2d 2P
(b) Nh0  /(ln N) 4 c and (c) Nh0  4 0. Let

rgi [gi - Gi](y gi)Ii

rRi - rgi + B0 r60 (Yipx)Ii

where B0 - [B0 1 ,0] and

B01 - E(g'[E[(y-G)x0oz 0 ]I - (g-G)IE[x0 zl] + (g'-G')I[E[yx0 zl] - gIE[x 0 zl]).

Then we have that

1
RAN - -- N 1 /2  rRi + o (1)

g

(In the case where do - k, where g(x) - E(ylx) involves no estimated

coefficients, we set B0 - 0.)

Lemma L: Given Assumptions 1, 2L and 3L, suppose (a) N 4 0, h0 4 0;

2dl 2P

(b) Nh1  /(ln N) + a and (c) Nh1  0. Let

rGi - [Gi - E(y)](y i - Gi)Ii

rLi - rGi + B1 r60(Y ,x )Ii



where B1 - E(G' [E[(y+g)x01z I ] - 2 G E[x 0 zl]). Then we have that

LAN - -N" / 2  rLi + o (1)
o

g

The relation (4.13) is then shown as part of the proof of the Theorem 1.

Theorem 1: Suppose that Assumptions 1, 2R, 2L, 3R, 3L and 4 are valid, and

assume the bandwidth conditions of Lemmae R and L. Suppose further that

2k 2P k d d 3

(a) N 4 *, hf 4 0; Nhf /(ln N) 4 * and Nhf 2 0, (b) Nhf h  1 h /(ln N)3

k 2d k 2d 3
4 c, (c) Nhf h0  /(ln N)3 4 , (d) Nhf h1 /(ln N)3 4 and (d)

dO 2dl 2
Nh0 h /(ln N) 4 o. Define

ryi M[gi - E(gI)]u Ii + rRi - rLi

- [gi - E(gI)]uiIi + [gi - Gi](yi - gi) - [Gi - E(y)](yi - Gi)

+ [B0 - Bl]r 60(Yi,xi)

We then have that

A 1

4IN(y - y) -- N-1/ 2 1 ryi + op(1)

g
A -2

so that 4I(7 - 7) 4 A(0,a ), where a - og Var (r i). Further, the
A

estimator a given in Appendix 2 is a consistent estimator of a .

A

Consequently, Theorem 1 gives the conditions under which 7 is asymptotically

normal, so that the squared "t-statistic" has a limiting X2(1) distribution.



4.3 Related Remarks

A. Testing Parametric Regression Models

When the restricted regression model is parametric, as with our tests of

the linear model in Section 3, the test is modified in a straightforward way.

In particular, suppose that the restricted model is m(x) - r(x,f), and

that we wish to test it against a general nonparametric regression, m(x) -

g(x) above. Suppose further that we have a 4-N asymptotically normal estimator
A

P of the parameters of the restricted model, wherein

(4.19) 4i-N( - - N-1/ 2 1 r (yi,xi) + o (1)

(where B - plim B if the restricted model is not true).

The specification test is applicable as above, namely by computing the
A

OLS regression coefficient 7 of

A A A A A

(4.20) Yi - r(xi',) - a + 7 g(xi ) + ui  , i - 1,...,N.

Testing is based on whether 7 - 0, which is likewise tested by the square of

the "t-statistic." The only complication (actually simplification) is that
A A

the asymptotic variance of 7 must reflect the fact that the estimator P is

used. The only change to the above development is that the "left" adjustment
A

only contains the influence of P, with the "right" adjustment left unaffected.

In particular, here we have

1
(4.21) AN - - 2  [r(x ,p) - r(xilp)J[g i - E(gI)]Ii.

g

This term is analyzed in an entirely standard fashion, namely we have



1 A

(4.22) LAN - E(ar(xi(,)/8 [ - E(gI)]Ii) 4-N(( - P) + o (1) .
a
g

A

If r (i,x i) is a (uniformly) consistent estimator of the influence r (y i,xi),

then the relevant estimate for the influence term of the left hand

adjustment is

A A A A A

(4.23) lai - (NI 8ta(xi'f)/ap [gi - g]Ii) r (Yi,xi)

A

We then estimate the asymptotic variance of 7 by the sample variance of

(2.18). This method was applied for the test statistics involving the linear

model of Section 3.

B. Issues of Practical Implementation

As is now standard, our asymptotic results above have assumed the use of

higher order kernels for nonparametric estimation. It is also well known

that such kernels, with giving positive and negative local weighting, do not

give good estimator performance in small samples. Consequently, for our

estimation of Section 3, we have used positive kernels throughout. In

particular, each kernel function is the product of biweight kernels: for

estimation of a d dimensional function, we used

(4.24) X(ul,.. .,ud) - k(uj)

where k(uj) is given as



(4.25) k(u) - (1) (1 - u2 2 l[ u 1]

We have likewise used these kernel functions in the variance adjustment

formulae.

Since there is no developed theory for optimal bandwidth choice for the

purpose of our specification test, we chose bandwidth values using Generalized

Cross Validation (GCV) of Craven and Wahba (1979). For instance, to estimate

the general regression m(x), let Y denote the vector of observations (yi) and
A

Mh denote the vector of values (m(xi)) computed with bandwidth h. Consider

the weight matrix Wh defined from

(4.26) Mh - WhY

The GCV bandwidth is the value of h that minimizes

N-•IC' Wh)Y12
(4.27) -I

[N Tr(I - Wh)]

We also standardized the predictor data for the nonparametric estimation.

This method of bandwidth choice was used for simplicity. However, it is

unlikely that this method applied in increasingly large samples will give the

bandwidth conditions of Theorem 1 above. In particular, those conditions

require pointwise bias to vanish faster than pointwise variance, which is not

implied by GCV bandwidths chosen for each sample size.

As indicated above, we have incorporated the trimming indicator, dropping

the 5% of data values with lowest estimated density values. In practical

terms, this drops observations with isolated predictor values, such as remote

outliers. Moreover, since the regression estimators involve dividing by

estimated density, dropping observations with small estimated density likely

avoids erratic behavior in the nonparametric estimates.



C. The Singularity Issue

While we have departed from the conditions for the asymptotic theory as

outlined above, there is a further issue with using Theorem 1 as a foundation

for our test procedure. In particular, the asymptotic distribution of
A

4j(7 - 7) displays a singularity under the null hypothesis that the restricted

model is valid. Formally, with reference to Theorem 1, if G - g a.e., then

the influence function ri - 0 for all i. Therefore, under the null
A A

hypothesis, Theorem 1 shows that 4N(y - 0) - o (1), or that 7 converges to the

true value 0 at rate faster than ·4. This issue seems endemic to

specification tests involving nonparametric estimation, and is discussed in

Yatchew (1988) and Wooldridge (1990), among others.

We have presented the procedure we utilized above, and so we now discuss

the implications of this issue for our method, as well as possible

justifications. One implication is that our results where rejection is

indicated should not be affected. In particular, the t-statistic (2.12)

should have the leading factor 4IN replaced by a larger power of N, or

equivalently, we should choose smaller critical values for the test. While

there is also a question of the normality of the test statistic under the null

hypothesis, the main implication for our results of Section 3 would be to

open the possibility that model PARTIAL2 should be rejected against the
A

general regression with this modification. The estimate 7 - .0116 of the

percentage of variance of the general regression not accounted for by the

model PARTIAL2 is unaffected, however it could be significantly different from

zero when the critical values are tightened.

The singularity problem appears to arise because the nonparametric

estimators "overfit" the response yi, leaving too little variation in the

limit. The peculiarity of this feature is illustrated by noting that the



OLS coefficient - of the regression (4.11), which involves the true functions,

does not exhibit the same singularity in its asymptotic normal distribution.

The variation of this regression is canceled out by the use of nonparametric

estimation.

Several (somewhat artificial) theoretical justifications for our method
A

could be devised. One would be to note that 4N asymptotic normality of 7

would hold under the null if independent noise were added to the residuals for

performing the test; namely draw ni for each i, independently of xi, and

perform the regression (4.8) with (yi - G(xi 6) + i)Ii as the dependent
A

variable. Our method of measuring the variance of 7 would be consistent in

this case as well. We have not stressed this idea because the variance of i

could be chosen to be extremely small, and therefore one would not expect that

this method would make any difference to the testing results. An alternative

method follows Yatchew (1988), whereby we could split the sample, carrying

our estimation of the parameters and functions using one part of the

data set, and carrying out the specification test using the other part. It

would be of interest to see if this method caused dramatically different

results with large data sets - the latter a necessity since equal sample

splitting drops the effective sample size in half for nonparametric estimation

and specification testing.

Our view of the most promising justification for our method would arise

from asymptotic theory that is sensitive to the amount of smoothing carried

out in the statistical analysis. In particular, such a theory would be based

on fixed or slowly shrinking bandwidth values, and would be in line with

Wooldridge's (1990) results for his test of a linear model against a

nonparametric (polynomial) alternative model. While we have not developed

such a theory, some features appear sufficiently apparent to mention them as

conjectures. For instance, such a theory would deal with variability of the



statistics, and not be fully "nonparametric". In particular, all function

estimates would centered around their consistent limits, which would be biased

representations of the true functions.12 However, such a theory could give a
A

better approximation to the distribution of 7 in samples of moderate size. In

this regard, the U-statistic structure of the basic estimators would not be

affected, and the variance adjustments we have proposed would lead to
^ 13 ^

consistent estimation of the variance of '. Consequently, since 7 is a

reasonable reflection of the sample correlation between the restricted model

residuals and the general model fitted values, one should conclude that the

restricted model is adequate if 0 is in the appropriate confidence interval.

It should also be noted that the adjustments for nonparametric estimation

exhibited in Table 3.4 are not in line with what one would expect from the

standard theory, and could be consistent with fixed bandwidth approaximation.

In particular, the singularity under the null hypothesis implies that our

adjustments for nonparametric estimation should cancel out the residual

variation (standard White term), with the estimated influence (2.18) a

uniformly consistent estimator of the zero function. However, as we pointed

out in Table 3.4 of Section 3, adjustment for nonparametric estimation does
A

not reduce the estimated variance of 7, but rather increases it over the

standard heteroskedasticity consistent estimate.

Consequently, we have taken a practical stance, applying the test without

a complete standard distributional theory under the null hypothesis.

While rejections by the statistic are valid within the context of the

singularity, more research is definitely called for to either justify or

suggest adjustments for our method of setting critical values for

our statistic under the null hypothesis.



5. Conclusion

In this paper we have presented a simple specification test for assessing

the appropriate index model in an empirical application. The index model

framework gives a generalization of linear models that may be informative for

applications where there is no theoretical reasons for specifying a 0

particular functional form. Our application to measuring environmental

effects from housing prices had this feature, and we have tried to illustrate

the index models can give an enhanced depiction of the data relationships

over standard linear modeling. We have used our test to check to the adequacy

of a parametric (linear) model versus nonparametric regression, and it seems

natural that the test will be useful in other (nested) testing problems.

We have focused on the use of nonparametric kernel estimators. While the

adjustment terms listed in Section 2 involve large formulae, they are computed

directly from the data and do not involve more complicated computation than

required for the kernel estimators themselves. We also have developed a

standard asymptotic theory for using kernel estimators; but from the results

of Newey (1991), it is natural to conjecture that the same distributional

results would be obtained when other nonparametric estimators are used, such

as truncated polynomials or other series expansions. We have raised the

singularity issue for tests using nonparametric estimators, and discuss

various ways our basic method might be further justified.

We do want to stress one feature of our method that we find appealing

relative to alternative testing procedures. In particular, focusing on the
A

single coefficient 7 is valuable because of its goodness of fit

interpretation. This likely led to overly complicated technical analysis,

such as the precise analysis of the adjustments required to account for

nonparametric estimation. But in our view, the value of focusing on an



interpretable statistic is the immediate practical sense it gives for which

models "fit" the data and which do not. For instance, the model PARTIAL2
A

accounts for an estimated 1-7 - .9884 of the variation of the general

regression, which is strong support for the notion that the model PARTIAL2

captures the systematic features of the the log housing price regression in

the Boston Housing data, especially relative to the more restricted models.

As such, we find our method more appealing on practical grounds than

specification tests that just take on an uninterpretable "accept or reject"

posture without further giving useful information.



Appendix 1I Impact of Estimated Regression and Proofs of Results

The structure of the terms that adjust for estimated functions and

parameters are quite similar, so we present generic results which specialize

to Lemmas L and R above. For this section, refine the notation slightly for

any partial index model: suppose that x is partitioned as x - (x0 ,X1 ), with xl

a d-l vector, d < k, and z denotes the the d vector of predictors for a

partial index model, namely z - (x0T60, x1 ). Thus, the notation can range

from the case of a single index model, where d - 1 and z - xT 6, to the general

regression case where d - k, where without loss of generality we set z - x

(and ignore the adjustment term for the estimation of 60 below).

Further, let x2 denote a k - d subvector of x0 , where the remaining

component of x0 has a positive coefficient 61. The transformation

(z,x2 ) - r(x)

is linear and nonsingular with (constant) Jacobian 61, so that the Jacobian of
-I

S-1 is 1/61. Below, we need to consider several functions of x as functions

of (z,x2). To keep this compact, we use a "*" to signify this simply: for

a function a(y,x), we have

a (y,z,x2 ) - a(y,r l(z,x2))

We will mention this explicitly when necessary for clarity.

We will focus on adjustment terms that arise from the estimation of the

regression function M(z) - E(ylz). Recall that the marginal density of x is

f(x), and the joint density of y and x is q(ylx)f(x). The regression of y on

z is written explicitly as

M(z) - C(z)/F(z)



where C(z) is

C(z) - 61 f yq (zx2(z,x2 )(z,x 2 ) dx2 - 61 f m *(z,x 2 )f (z,x 2 ) dx2

and F(z) is the marginal distribution of z; namely

F(z) - 61-1 f*(z,x2) dx2

All the adjustment terms that we consider are based on kernel estimation
A A th

of M(z) - E(ylz). Let zi - (x0iT 60, xli) denote the ithobservation of the

predictor based on estimated index coefficients, and zi - (x0iT60, xli) denote

the analogous vector based on the true coefficient values. The kernel
A A

estimator used in estimation is M(z), computed using zi , yi, namely

A A A

M(z) - C(z)/F(z)

where

N 
A

C(z) - Nlh-d yj

j-1

where X is a kernel function, h is a bandwidth parameter that must be set for

estimation, and

N 
A

F(z) - N lh-d z

j-l

Finally we will need to make reference to the kernel estimator that would be

computed if the coefficients 60 were known, namely

4(z) - e(z)/F(z)

where



C(z) - N lhd h Yj

and

F(z) - N-lh-d E z

j-1 h

Each adjustment term takes the following form:

(A.1) A - N-1/2 Z [M(zi) - M(zi)] a(yi,xi) I i

where a(y,x) has mean 0 and finite variance. We first split this

into variation due to the estimation of 60, and due to the estimation of M:

A - A6 + AM

where

-1/2 
A A

A6 - N 1/2 N [M(zi) - M(z i)] a(y,,xi) I,

AM - N 1 /2  [M(zi) - M(zi)] a(yi,xi) 1i

Again, recall that for k - d, we set A6 - 0.

First, consider the adjustment for nonparametric estimation, or AM . This

is analyzed by linearizing M in terms of its numerator and denominator,

analyzing its U-statistic structure to show asymptotic normality, and

analyzing its bias separately, along the lines of HArdle and Stoker (1989).

Fortunately, some recent unifying theory is applicable. Let

d(z) - E[a(y,x)I z] .



Begin with the following generic assumption:

Assumption Al: We assume that

1) E(y4 ) < 0,

2) E(y41z)F(z) and F(z) are bounded,

3) E[a(y,x)21] < C

4) The kernel X has bounded support, is Lipschitz, f K(u) du - i,

and is of order P > d.

5) 9(z)F(z) and F(z) are continuously differentiable of order at

least P,

6) There exists a compact set 9 such that d(z) - 0

for z E Rd/a

7) 4(z) is continuously bounded a.e.

The adjustment for nonparametric estimation, AM , is characterized by applying

Theorem 3.4 of Newey (1992).

Lemma 1: Given Assumption Al, if Nh2d/(ln N) - w and N h2P 4 0, then

AM - N-1 / 2  rAMi + op(1),

where rAMi - 4(z i ) [Yi - M(zi)], and AM 4 [0O, E(rAMirAMi )

The adjustment for using estimated coefficients is characterized directly

as follows. Recall that

A

4-(60 60) - N-1/ 2  r60 (Yxi) + o (1)

Let



S - E( aM/azl(z)[E(axolz) - A(z)E(xolz)] + a8/azl(z)[E(yxolz) - M(z)E(x0oz)]})

then we have

d+2
Lemma 2: Given Assumption Al, if Nh /(ln N) 4 o and h 4 0, then

A6 - B 43N(6 0 - 60 ) + o (1),

- N"1 / 2 1 r6 0(Yi,xi) + Op (1)

Proof: Denote the kernel regression as a function of xi and 6 as

M+ (xi;6) L (xoi- x0)T6;

SSx(xi;6)-1
-S X (x i ; 6)

N

J.1
S(x 0ihx0) 6 x1i Yx1 i

(x -x ) 6 x -x

h h
j-1

By the Mean Value Theorem, we have that

A6 -(N1 [8M+(xi: ;)/86] a(yi,x ) li 4N(6-0 0- )
A

where i' i-l,,..,N lies on the line segment between 60 and 60 . Therefore, if

BN - N-1 [a+(x ;-6)/a6] a(yi,x i ) I i

and we can characterize plim SN 0 B, then we will have

A

A B6 -
4-N(60 - 60) + 0 (1)6 P

We have



+-1 xi h8M(x ;6)/86 - S (x; 6) 1 XOiXOJ (x0j-j 6; XI- y4S 0h h hj-1

- M+ (xi; 6)  S (x ;6)1 oi- 0 XOI-X , li
-ih h h

x i 01 (x 1; 6)

N 1 (x -x )T6 x x
- S (xi; 6) E --X x0 j

J-1

+ m (x-;6) S (xi; 6) 1 E - XJ(1X0 0 Oj)TO xij X ]h h h
1j-

where denotes differentiation with regard to the index, or first

argument. Under our conditions, as h - 0 and 6 - 60, these terms estimate

8M(x ;6)/860 - x0i Ml '(zi) - [F(zi)]-1 [8[E(xylzi )F(zi)]/a8z-1-

+ M(zi)[F(zi)]l [8[E(xolzi)F(z )]/8z I]

- x0i M1 '(zi) - [E1'(XoYlzi) - M(zi)El '(x0 1zi)]

-[E(xYlz i) - M(zi)E(xolZi)][F(zi) ] F1l (zi)

Since x can be regarded as bounded because of

trimming on small positive density, then uniform convergence follows as in

d+2 A

Newey (1992), since Nh d+2/(ln N) 4 = as h - 0 and 60 - 6 - o (1). Therefore

s - E(a(y,x)[x 0 Ml'(z) - [E1'(x0Ylz) - M(z)E 1'(x0O z)]

- [E(xo0yz) - M(z)E(x0oZ)][F(z)]- 1Fl '(z )])

- E( M1'(z)[E(ax0oz) -d(z)E(xolz)]



+ I1'(z)[E(yxolz) - M(z)E(xolZ)])

giving the characterization of A6 above. QED

Consequently, we conclude that

Lemma 3: If Nh2d/(ln N) 4 w and N h 2 P  0 O, then

A - 4iN(60 - 60 ) + N-I/2 rAMi + op(1)M

- N-1/ 2  B r 6 (yi,xi) + N-1/ 2  rAMi + o (1)

- N 1/ 2  rAi + o (1)

where rAi - B r6(Yi,xi) + rAMi

Applying Theorem 1 to RAN and LAN yields Lemmae R and L.

Estimation of asymptotic variance is accomplished by using an estimate of

the influence terms for the adjustment factors, with the consistency of this

procedure verified by an argument similar to that in Hardle and Stoker (1989).

With regard to the generic adjustment term (A.1), the matrix 1 is consistently
A

estimated by evaluating the expression for 1N above at 6 and the bandwidth

used for estimation. The influence term rAMi is estimated from the

U-statistic structure of AM, which would be used in a direct proof of Lemma 1

above. In particular, we have that

AM - N1/2 [U1 - U2 ] + o (1)

where



S ( 1 N  N
U1 2 1 Plij

i-i j-i+l

with

Plij - 1/2 hd X a(y Ii +
ih F(z i )  F(zj)

and

-1 N N
2 P2ij

i-1 j-i+l

where

-d z - z i a(Yi ,xi)M(zi ) i  a(yj ,x J)M(zj )Ij
P -ij " 1/2 hd +

h F(zi) F(zj)

A A A A A A

If plij and p 2 ij denote the above expressions evaluated at 6, M, F, I and the

bandwidth used for estimation, then the influence term r AMi is estimated
A A A A

-1by rAMi - N1 (Plij _ 2ij) i* Carrying out these manipulations for

the "right" adjustment RAN and and the "left" adjustment LAN give the

estimators presented in Appendix 2.

Therefore, the remainder of the proof of Theorem 1 rests on the validity

of

A

4i y (7- - - RAN - LAN + o (1)

This equation is demonstrated by verifying two features: namely that trimming

with regard to the estimated density gives the same results as trimming with

regard to the true density; and that the equation can be linearized into the

adjustment terms above.
A

The first piece requires showing that the estimated trimming index I. -



A

l[f(xi) > b] can be replaced by Ii - l[f(xi) > b] in the terms

N -1/2 (gi - g)(i - Gi)Ii

S A A AA

N (g - g) Ii

A

that comprise -, without affecting their asymptotic distribution. This

feature follows from a term-by-term analysis which we highlight below. In

particular, we have that

A A A A A A

N/2 (gi g)(y - Gi)(Ii-I) - N/2 (g - gi)(yi - G i)(Ii-I i

1/2 A A A 1/2 A A

N (gi " gi)(Gi G i)(li-) " NI (gi- E(gl))(Gi-Gi)(Ii-Ii)

-1/2 )A - A

+ N (gi- E(gl))(y - G )(II- ) - N (g- E(gI))(y i - G )(I -Ii)

- 1/ 2  A A

+ N (g- E(gl))(Gi-Gi)(i-Ii )

and

- A 2 -A A A 1 A A
N1 1 (gi - g) (Ii-i) - N'  (gi - gi) (-i'1) + N' 1 (g - E(gl))2 (i-I )

A1 2A A
+ N (gi - E(gI)) (li i) - 2 N (g- E(gl))(g- - E(gI))(i-I i)

1 A A A A A
- 2N (gi gi)(g - E(gl))(lii) + 2 N 1 (gi gi) (g - E(gl))(li'i)

Each of the terms in these expression can be shown to be o (1) by a similar

method, which we outline as follows. Begin by noting that that our
A

assumptions implies uniform convergence of f(x) to f(x) (when f(x) > e > 0),

so that with high probability
A

f(x) - cN < f(x) < f(x) + cN

where cN - # [(Nhf k/n N)-1/2], 2 a constant. If I - l[b-cN < f(x) 5 b+cN],



note that

A 2 k N-1/2
Prob( I - I nonzero) - E[(I - I) ] 5 E(l) - [((Nh n N)-1/2

Further, let NI - (i - 2 denote the number of nonzero terms in each of

the terms above.

To illustrate how the terms are analyzed, consider the first term of

the first expression, for which we have

1 ^ A 2
N E[j (g, - gi)(Yi - Gi)(iq-i ) ] 2

A ^ A

* N [Prob(iiIi nonzero)] (sup Ig-gl) 2 i( (yi- Gi)(I i - Ii) I/N] 2 + 0(1)

* O[ N (Nhfk/ln N)-1 / 2 (Nh 0dO/n N)-1 ] - O([N hkh02d0 ] -1/2 (ln N)3/2

- o(l)

given our bandwidth conditions. Similarly, the third term of the second

expression is

N2  2 A 2 2 2A 2
N 2 E[(g i - E(gl))2 (Ii- i2 - (N /N) E[Z(gi - E(gI)) (i- i)/N ]2

- O[(Nhf k/ln N) -1 - o(l)

and so forth. All the other terms are treated similarly.

Finally, with trimming based on the true density, the linearization is

shown by uniformity arguments analogous to those used above. Denote the

sample variance based on trimming with the true density as

S - N- 1 9 (g .21 It is easy to show that plim S - "ag so
gI



A 1 ( A A A

4N (7-y - V) - - N (gi - g) (Yi - Gi)Ii - [gi - E(g)](yi - Gi)Ii

gI

+ 9 IN- 1/2  (gi - E(g)](yi - Gi)Ii

g gI

-1'2 (i _ A
N -N' i - G i)I i

+ 0 (1)

+ o (1)

so we focus on the overall adjustment term

S/2A (gADJ N - N-1/2 gi - i

- Z [gi - E(g)](yi - Gi))I

A
- Gi)i - [g - E(g)](yi - G')i

Some tedious arithmetic gives that

ADJN - N-1/2 g (g- gi)(Y - Gi)Ii - N-1/ 2  [gi - E(g)](Gi - G )I

-TN + T2n + T3N

where

T1N - [g - E(g)] N 1 / 2 1 (yi - Gi)Ii

-1/2 ET2N - N [g - E(g)] (G - G) Ii

T3N (i i)(Gi Gi

T3N ' N-I/2 -(gi - gi)(Gi - Gi)Ii



Moreover, by the methods used above, if is easy to verify that each T is

o (1). For instance, for T3N, we have

S- N1/2 
sup

IT3NI - N/ 2 sup(l(g i - gi)II) sup(I(Gi - Gi)IiI)

-d0/2 -d 1/2
hi

1
- 0 [N 1 / 2 h0 (In N)] - o p(1)p

since Nh0 h 1 /(ln N)2 - o. The other terms follow similarly. Thus, we

have that

- RAN - LA + o (1)

which completes the proof of the Theorem. QED



Appendix 2. Variance Adjustment Terms

Recall that we use subscript "i" to compactly denote evaluation of

relevant terms at (y,x) - (yi,xi); for instance, gi denotes g evaluated at
A A A A

z0i, Gi denotes G evaluated at zli, and Ii is the trim indicator
A

that is 1 if f(xi) > b, and 0 otherwise, as above.

To account for the estimation of 6 (or a subvector), we use the

"slope" influence estimator discussed in Stoker (1992), namely

A A A-1 J -T 1r6(y,xi) - [N . i I. (xi - x)S1. 13. i

A A

Si Ai +-1 N lh N 1 x - x x -x . A 1.X.t h IX - X f hf)
j-1 hf f fj I

A A

where vi - (i-y) - (xi-x) 6 is an estimated residual. The asymptotic
A A

covariance matrix of 6 is estimated as the sample variance of r6(yi,xi).

The adjustment terms are given as follows. The "right-hand" adjustment

is

A A A

rai - rgi + B r60(Yi,xi)

A A

where r60 1 refers to the subvector of r60 corresponding to the coefficients of

the more general (right hand) regression function, and where
A

r gi

N A AA A A A

h -d0  N y -(y Gi )yjIi (Yr Gj)YIij

( o O



Recall B0 - 0 if m does not have an index variable as an argument, otherwise

Bo- N' N DO (Yi - Gi) 1i

where X0' denotes the derivative of X0 with regard to its index argument, and

DO - Sox(xi)
N 01 TxA

Xo01.-x0J  ((xOi-x0I) 6 x1-x1)

J- hO ho ho

N r Tx
A -1 0 -x0 (x0-x0) 6 x-x
gi SOX(xi) XOiOJ (XOiEXOI)T; _0Xlil

j-1 hO ho ho

SOR(xi) - [I' h
-1 ho ho

Finally, the "left hand" adjustment is

la i - rGi + B1 r601(Yi,Xi )

where

A h-drGi - 1 1

N ; ^Ez - z
. (i hi

j-I

(gi - g)yji
^

(g - g)yI
l1j

Si z (gi - g)G(zi)I - g)G(z )I
hl F Fij

A A A A
-1

B1 " N " D1 (gi - g ) i

and where X1' denotes the derivative of X1 with regard to its index argument



01 0 ( 0_ _oi.o
j  i_ yjD - S (x 1) -1 L0 Oi ; ]

j-1 h1 1 hl

- Gi S x(x i )  X I (xoxo) ; i

J-1 1 1

N X(x 0i -x 0) T6S1 (xi) 1 - , '

With these assignments, the asymptotic variance of 7 is estimated as the
A

sample covariance a of

A AA X A A

rT - sg (g -[g g ] u + rai lai)Ii

A A

and so the variance of 7 is estimated by a I/N.



Notes

We could likewise apply our test using other kinds of index models as

either the restricted model (null) or the general model (alternative), such

as the multiple index model m(x) - G(x1 T 1 ,x2 T2). The key requirement for

our development is that the restricted model is nested in the more general

model, as discussed in Section 4.2.

See Stoker (1992) for a discussion of average derivatives, kernel estimation

and the connection to index models, and HArdle (1991) for a thorough

development of nonparametric regression estimation.

We include the constant term to permit minor differences in the mean of the

fitted values of the restricted and general models.

This "goodness of fit" interpretation may not apply for parametric

model-semiparametric model comparisons where estimation methods are used for

the restricted and unrestricted models. For example, when the null hypothesis

is a linear model, the mean of y conditional on the index x T will be

nonlinear under general alternatives, so that the relevant analog of (2.15)

will not hold.

A brief description of the issues is given in Stoker(1992), as well as a

brief discussion of the results discussed below.

We do not take account of the jointness of the hypotheses to be tested. It

would be useful to develop Bonferoni critical values or a Scheffe S-method for

the tests involved with characterizing index structure.

These are "indirect slope" estimates in the parlance of Stoker (1992).

Details on estimation are discussed in Section 4.



Strictly speaking, this is a test of the equality of the average derivative

6 - E(m') and the limit of the OLS coefficient a - [Var(x)]- Cov(x,y), which

must coincide when the model is linear.

In terms of the fact that the linear model appears to explain more
A

variation than the single index model, it is worth noting that the y

values are estimates that are not constrained to decrease for less

restrictive models, and, as noted before, that the variance interpretation of
A

7 is not strictly correct for testing the linear model against a general

alterative.

10
The specifications used in Section 3 are discussed in Section 4.3 below.

11 A kernel X is of order P if f X(u)du - 1, and "moments" f HuJ X(u)du- 0

when a < P; f luj X(u)du # 0 when a - P.

12 However, convergence to these consistent limits (under fixed bandwidths) is

at rate 4N, with uniformity following from standard results, so much of this a

kind of theory would be simpler than the shrinking bandwidth theory of Section

4.2.

13 As discussed in Appendix 1, our variance adjustments are directly suggested

by the U-statistic structure of RAN and LAN. It is likely that these

adjustments also arise from the general variance estimation formulae of Newey

(1992), however we have not verified this.
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TABLE 3.1: VARIABLE SPECIFICATION IN THE BOSTON HOUSING DATA

y - In p LMV log of home value

x1 NOXSQ nitrogen oxide concentration

x2  CRIM crime rate

x3  RMSQ number of rooms squared

x4  DIS distance to employment centers

x5  RAD accessibility to radial highways

x6  TAX tax rate

x7  PTRATIO pupil teacher ratio

x8  B (Bk - .63)2, where Bk is proportion of black

residents in neighborhood

x9 LSTAT log of proportion of residents of lower status



TABLE 3.2: COEFFICIENT ESTIMATES FOR THE HOUSING PRICE EQUATION

Average

Derivatives

NOXSQ

CRIM

RMSQ

DIS

RAD

TAX

PTRATIO

LSTAT

(Standard Errors in Parentheses)

WALD TEST OF 6 - f: W - 13.44,

y - In p LMV OLS
A

-.0034

(.0035)

-.0256

(.0056)

.0106

(.0025)

-.0746

(.0504)

.0669

(.0468)

- . 0009

(.0003)

-.0175

(.0152)

-.0526

(7.514)

- .2583

(.0370)

- .0060

(.0011)

-.0120

(.0012)

.0068

(.0012)

-.1995

(.0265)

.0977

(.0183)

- .00045

(.00011)

- .0320

(.0047)

.3770

(.1033)

- . 3650

(.0225)

Prob( X2(9) > 13.44 ) - .143



TABLE 3.3: REGRESSION TESTS OF FUNCTIONAL FORM

TESTS AGAINST GENERAL REGRESSION

Restricted

LINEAR

INDEX

PARTIAL1

PARTIAL2

Unrestricted

GENERAL

GENERAL

GENERAL

GENERAL

A

.1712

.2314

.0718

.0116

t value Prob [X2(1) > t2]

3.41

5.96

4.52

2.19

.0006

0.0

0.0

.0291

PARTIAL INDEX MODEL TESTS

Restricted

LINEAR

LINEAR

INDEX

PARTIAL1

Unrestricted

INDEX

PARTIAL2

PARTIAL1

PARTIAL2

^

.0276

.1862

.1975

.0893

t value Prob [X2(1) > t2 ]

.52

4.51

4.59

3.72

.602

0.0

0.0

.0002



TABLE 3.4: ADJUSTED AND UNADJUSTED STANDARD ERROR ESTIMATES

TESTS AGAINST GENERAL REGRESSION

Restricted

LINEAR

INDEX

PARTIAL1

PARTIAL2

Unrestricted

GENERAL

GENERAL

GENERAL

GENERAL

A

7

.1712

.2314

.0718

.0116

Standard
OLS

.0211

.0224

.0131

.0053

Hetero.
Consist.
(White)

.0268

.0311

.0149

.0047

Corrected
for NP

Estimation

.0500

.0388

.0157

.0053

PARTIAL INDEX MODEL TESTS

Restricted

LINEAR

LINEAR

INDEX

PARTIAL1

Unrestricted

INDEX

PARTIAL2

PARTIAL1

PARTIAL2

A

.0276

.1862

.1975

.0893

Hetero.
Standard Consist.

OLS (White)

.0252

.0186

.0232

.0122

.0279

.0255

.0301

.0146

Corrected
for NP

Estimation

.0530

.0413

.043

.0240
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Figure 3.1
Single Index Function for Housing Data
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Effects of NOXSQ and Index Variable; Model PARTIAL1
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Effects of NOXSQ and Index Variable; Model PARTIAL2
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Figure 3.3b
Effects of NOXSQ and LSTAT; Model PARTIAL2
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