
P
o
S
(
L
A
T
2
0
0
6
)
1
3
7

Quark number susceptibility of high temperature
QCD

Ari Hietanen∗

Theoretical Physics Division, Department of Physical Sciences P.O.Box 64 FI-00014 University
of Helsinki, Finland and
Helsinki Institute of Physics, P.O.Box 64, FI-00014 University of Helsinki, Finland
E-mail: ari.hietanen@helsinki.fi

Kari Rummukainen
Department of Physics, University of Oulu P.O.Box 3000, FI-90014 Oulu, Finland and
Department of Physics, Theory Division CERN CH-1211 Geneva, Switzerland
E-mail: kari.rummukainen@oulu.fi

We use three dimensional reduced effective field theory (EQCD) and lattice calculations to deter-

mine the quark number susceptibility of QCD at high temperature. We find our results to agree

well with known perturbative expansion as well as with otherlattice data.

XXIVrd International Symposium on Lattice Field Theory
25-30 July 2006
Tucson, Arizona, July 23-28, 2006

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44146327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


P
o
S
(
L
A
T
2
0
0
6
)
1
3
7

Quark number susceptibility at high temperature Ari Hietanen

1. Introduction

A dimensionally reduced effective theory is, by now, a well-established and powerful tool
for studying high-temperature QCD both perturbatively andnon-perturbatively. At high enough
temperatures the QCD coupling becomes small, and perturbative methods can be safely applied to
hard (∼ T) modes. The fact that high-temperature QCD can be reduced to3d effective theory can
be understood by considering an Euclidean finite-T propagator

1
p2 + ω2

n +m2 , (1.1)

whereωb
n = 2nπT for bosons andω f

n = (2n+1)πT for fermions. Thus, only staticn = 0 bosonic
modes remain “light” at high temperatures, and the heavyn 6= 0 bosonic and all fermionic modes
can be integrated perturbatively [1, 2, 3, 4]. The result is an effective 3d theory of full QCD,
electrostatic QCD (EQCD) [11]. An essential feature of the effective theory is that it fully includes
the perturbatively problematic soft (∼ gT) and ultrasoft (∼ g2T) scales of the original theory; only
perturbatively well-controlled hard scales (∼ T) are integrated over.

EQCD offers a good starting point both for perturbative calculations [5, 6, 7] and non-perturbative
lattice simulations. In the latter case, EQCD offers an interesting alternative to standard high-
temperature lattice simulations: above all, the effectivetheory is purely bosonic and only 3-
dimensional, making it much cheaper to simulate. The theoryis superrenormalizable, which ren-
ders the continuum limit particularly transparent; it alsoenables simulations at arbitrarily large
temperatures. On the other hand, the effective theory cannot be used to study the QCD phase tran-
sition: at too lowT QCD becomes strongly coupled and the perturbative derivation of EQCD fails.
Nevertheless, the theory has been found to work well down to temperaturesT ∼ 1.5−3Tc, depend-
ing on observable used. Lattice simulations of EQCD have been used to calculate QCD pressure
at high T [8], spatial string tension [9], and spatial screening lengths [10]. Here we measure the
quark number susceptibility, and compare the result to bothperturbative and 4d lattice results.

2. Susceptibility in electrostatic QCD

EQCD is defined by the action

SE =
∫

d3xLE

LE =
1
2

Tr[F2
i j ]+Tr[Di ,A0]

2 +m2
3Tr[A2

0]+ iγ3Tr[A3
0]+λ3(Tr[A2

0])
2, (2.1)

whereFi j = ∂iA j − ∂ jAi + ig3[Ai,A j ] andDi = ∂i + ig3Ai. Fi j , Ai andA0 are traceless 3× 3 Her-
mitean matrices (A0 = Aa

0Ta, etc). Coupling and mass parametersg3, m3, γ3 andλ3 are defined by
the physical 4d temperature, renormalization scaleΛMS, chemical potentialµ and the number of
massless fermions. It is convenient to use the dimensionless ratios

y =
m2

3

g4
3

, x =
λ3

g2
3

, z=
γ3

g3
3

, (2.2)
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which determine the physical properties of EQCD. Theµ-dependence of the parameters is, at 1-
loop level,

y = yµ=0

(

1+∑
f

µ̄2
f

3
2Nc +Nf

)

, z= ∑
f

µ̄ f

3π
, x = xµ=0 , (2.3)

whereµ̄ = µ/(πT) and theµ = 0 expressions can be found in ref. [11]. The two loop corrections
have been calculated in ref. [10], but the effects remain in practice negligible.

The quantity we are interested in is the quark number susceptibility, which we calculate over
one flavoru only, can be defined in EQCD as

χ3 =
1
V

∂ 2

∂ µ2
u

lnZ =
1
V

∂ 2

∂ µ2
u

ln
∫

DAkA0exp−SE (2.4)

SubstitutingSE from (2.1) we arrive at equation

χ3 = −
6

2Nc+Nf
yµ=0〈TrA2

0〉+V
N2

f

9π2 〈(TrA3
0)

2〉

+V
9N2

f

(2Nc +Nf )2 µ̄2y2
µ=0

(

〈(TrA2
0)

2〉− 〈TrA2
0〉

2) (2.5)

Thus, the quark number susceptibility is obtained by measuring the condensates〈TrA2
0〉, 〈(TrA2

0)
2〉

and〈(TrA3
0)

2〉 on the lattice. Due to the superrenormalizable nature of thetheory, measurements
can be rigorously converted toMS scheme in the lattice continuum limit; becauseMS was used in
in the perturbative matching to 4d QCD, this also allows us tocompare to 4d results. For example,
the continuum limit for the〈[TrA3

0]
2〉 is

V〈[TrA3
0/g3

3]
2〉MS = lim

β→∞

{

V〈[TrA3
0/g3

3]
2]〉a−

5
16π2 [lnβ +0.08848010]

}

, (2.6)

whereβ ≡ 2Nc
ag2

3
is the lattice coupling constant. Continuum limits for〈TrA2

0〉 and 〈(TrA2
0)

2〉 are
given in [11]. The relation betweenχ3 and the true 4d susceptibility is

χ =
g6

3

T3 χ3 +
∂ 2

∂ µ2
u

∆p, (2.7)

where∆p = pQCD− p3d is the perturbative 3d→4d matching coefficient, and can be found in [6].

3. Lattice measurements

Lattice simulations were carried out forNf = 2. We used large lattice sizesV = 1403,2003 and
values ofβ =32, 40, 67, 80, 120. The volumes are large enough so that the remaining (exponential)
finite volume effects are safely below our statistical accuracy; for a detailed analysis in a related
theory see [12].

For each value ofβ we did simulations with values ofy = 6.62, 5.31, 4.00, 3,09, 2.02, 1.18,
0.71, and 0.45. The simulations have been carried out forµ = 0, and to obtain the susceptibility,
one needs measurements of〈TrA2

0〉 and〈(TrA3
0)

2〉.
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Figure 1: Difference of continuum extrapolations with and without the log-term. The solid line is a fit

c1 + c2
β + c3

β 2 and the dashed linec1 + c2
β +

c′2
β log(β )+ c3

β 2 .

The standard procedure of doing continuum extrapolation isto fit a polynomial to the diver-
gence subtracted lattice data. However, in EQCD the divergent lattice contributions contain also
terms of the formβ log(β ) and such terms could also arise in terms∼ a∼ 1/β . Therefore, we do
continuum extrapolation in two ways; we use a second order polynomial

c1 +
c2

β
+

c3

β 2 , (3.1)

and a fitting function of the form

c1 +
c2

β
+

c′2
β

log(β )+
c3

β 2 . (3.2)

The Fig. 1 demonstrates the differences between different continuum extrapolations for〈TrA2
0〉.

The extrapolations done using (3.2) have excellentχ2/dof, and we shall use this form henceforth.
The full continuum extrapolations are shown in Fig. 2. We note that the detailed form of the
fitting function is significant for our results; thus, knowledge of the true 1/β coefficient is highly
desirable. There is an ongoing calculation of this term using stochastic perturbation theory [13],
which will hopefully confirm our result.

The contributions of〈(TrA3
0)

2〉 to susceptibility are numerically much smaller than that of
〈TrA2

0〉. The measurements of〈(TrA3
0)

2〉 are not accurate enough to distinguish between extrapola-
tions (3.1) and (3.2), and the choice is not significant for the final results. Hence we use the second
order function in Fig. 2.

The continuum extrapolated results are shown in Fig. 3, as a function of the parametery(T).
The result agrees very well with the perturbative susceptibility derived in ref. [14]. The perturbative
result has the form:

χpert = a1y3/2 +a2y+a3y1/2 +a4 (3.3)
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Figure 2: Continuum limits of〈TrA2
0〉 and〈(TrA3

0)
2〉 at different values ofy.
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Figure 3: Left: the susceptibility as a function ofy andT/ΛMS. The solid line is the perturbative prediction.
Right: the difference between the perturbation theory and latticeresults. Points denoted by squares are
obtained from logarithmic continuum extrapolation and diamonds from polynomial extrapolation; the former
one has expected behavior asy→ ∞.

whereai are functions ofx andz. On the right panel we show the difference between the per-
turbative result and the lattice measurement. Because the lattice measurement (in the continuum
limit) fully includes perturbative contributions, we expect the difference to behave asO(y−1/2).
This is the case when continuum extrapolation is performed using Eq. (3.2); the extrapolation (3.1)
diverges from perturbative result asy → ∞, which is inconsistent. This also motivates the use of
(3.2) as continuum extrapolation.

In Fig. 4 we show the susceptibility in 4d units, transformedusing Eq. (2.7), and compare the
result to 4dNf = 2 staggered fermion lattice simulations [16, 17]. Here we use the ratioTc/ΛMS =

0.49 [18]. We can observe that our results agree very well with 4d simulations and with perturbation
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Figure 4: The quark number susceptibility in 4d units. Our results areshown with diamonds, only 3 points
fit in the temperature range shown. The results agree very well with 4d lattice simulation results [16, 17].

theory. Indeed, the difference between EQCD measurements and perturbative results are all but
invisible on the scale of the plot, possibly excluding the lowest temperature data.

4. Conclusions and Outlook

We have measured the quark number susceptibility in dimensionally reduced effective theory
of high-T QCD. The results show a good agreement with the perturbationtheory and 4d lattice
simulations, down to temperatures∼ 3Tc. Currently we are expanding our simulations for finite
chemical potential. In order to avoid the sign problem at finite µ we do the simulations using
imaginary chemical potential and then continue analytically to real values.
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