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1. Introduction

A dimensionally reduced effective theory is, by now, a wdtablished and powerful tool
for studying high-temperature QCD both perturbatively awoth-perturbatively. At high enough
temperatures the QCD coupling becomes small, and perivelbraethods can be safely applied to
hard (~ T) modes. The fact that high-temperature QCD can be reducgd &ffective theory can
be understood by considering an Euclidean fiffitpropagator

1
P (1.1)
wherewP = 2n7T for bosons andor = (2n+1)mT for fermions. Thus, only statio = 0 bosonic
modes remain “light” at high temperatures, and the heayy0 bosonic and all fermionic modes
can be integrated perturbatively [1, 2, 3, 4]. The resultriseffective 3d theory of full QCD,
electrostatic QCD (EQCD) [11]. An essential feature of tfiedtive theory is that it fully includes
the perturbatively problematic soft(gT) and ultrasoft £ g2T) scales of the original theory; only
perturbatively well-controlled hard scales ) are integrated over.

EQCD offers a good starting point both for perturbative akdtions [5, 6, 7] and non-perturbative
lattice simulations. In the latter case, EQCD offers anregtng alternative to standard high-
temperature lattice simulations: above all, the effectiveory is purely bosonic and only 3-
dimensional, making it much cheaper to simulate. The th&sgperrenormalizable, which ren-
ders the continuum limit particularly transparent; it aksoables simulations at arbitrarily large
temperatures. On the other hand, the effective theory ¢drnased to study the QCD phase tran-
sition: at too lowT QCD becomes strongly coupled and the perturbative desivaif EQCD fails.
Nevertheless, the theory has been found to work well dowertgperature3 ~ 1.5— 3T, depend-
ing on observable used. Lattice simulations of EQCD have lused to calculate QCD pressure
at high T [8], spatial string tension [9], and spatial sciagiengths [10]. Here we measure the
guark number susceptibility, and compare the result to petturbative and 4d lattice results.

2. Susceptibility in electrostatic QCD

EQCD is defined by the action

SE = /d3X.,%E
e = ;T [F |+ Tr[Di, Ao 24 IT%TI’ +iysTr AO] +)\3(TI’[A(2)])27 (2.1)

whereF; = dA; — 0;A +ig3[Ai,Aj] andD; = g +igsAi. Fj, A andAg are traceless 2 3 Her-
mitean matricesip = A§T,, etc). Coupling and mass parametggsmg, Y53 andAs are defined by
the physical 4d temperature, renormalization segjg, chemical potentias and the number of
massless fermions. It is convenient to use the dimensienidos

m3 A3 ¥

y:_7 XZ_a Z:_7 (22)
¢ 4§ 8
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which determine the physical properties of EQCD. Theependence of the parameters is, at 1-
loop level,

_, 3 it
pu— _— pr— —_— pu— . .
Y= Yu=0 <1+ Z s N+ Nf) . Z 3 T X0 (2.3)

whereu = pu/(niT) and theu = 0 expressions can be found in ref. [11]. The two loop coroerti
have been calculated in ref. [10], but the effects remairractice negligible.

The quantity we are interested in is the quark number sudég; which we calculate over
one flavoru only, can be defined in EQCD as

1 9?

02
Xs= a2 = d—ugln/QAkAoexp—SE (2.4)

SubstitutingSe from (2.1) we arrive at equation

6 N2
X3 = T oN N THO (TrA3) +V9—7_;2<(TrA(3))2>
ON?
g R Yo ((ToA8)%) — (Tead)) (2.5)

Thus, the quark number susceptibility is obtained by méaguhe condensated rA3), ((TrA3)?)
and ((TrA3)?) on the lattice. Due to the superrenormalizable nature ottikery, measurements
can be rigorously converted S scheme in the lattice continuum limit; becad48 was used in
in the perturbative matching to 4d QCD, this also allows usaimpare to 4d results. For example,
the continuum limit for the([TrA3]?) is

VA[TrAS/ 63 )ws = lim {V<[TrA8/g§]2]>a 15’ 5 InB+0. 0884801q>} (2.6)

wheref = 2N° is the lattice coupling constant. Continuum limits farrAZ) and ((TrA2)?) are
givenin [11] The relation betweeys and the true 4d susceptibility is

93 92

X= T3X3+ 0“2 p> (27)

whereAp = pocp — P34 is the perturbative 3é-4d matching coefficient, and can be found in [6].

3. Lattice measurements

Lattice simulations were carried out fid = 2. We used large lattice siz¥s= 14%%, 200° and
values off3 =32, 40, 67, 80, 120. The volumes are large enough so thatrtiemang (exponential)
finite volume effects are safely below our statistical aacyr for a detailed analysis in a related
theory see [12].

For each value o we did simulations with values gf= 6.62, 5.31, 4.00, 3,09, 2.02, 1.18,
0.71, and 045. The simulations have been carried outfioe 0, and to obtain the susceptibility,
one needs measurements(BfAZ) and ((TrA3)?).
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Figure 1: Difference of continuum extrapolations With and withoueé tleg-term. The solid line is a fit
and the dashed Ilma+ +2 Iog(B)

Cl+i;2+

The standard procedure of doing continuum extrapolatido fit a polynomial to the diver-
gence subtracted lattice data. However, in EQCD the diverigdtice contributions contain also
terms of the formBlog(f) and such terms could also arise in terma ~ 1/3. Therefore, we do
continuum extrapolation in two ways; we use a second ordgnpmial

and a fitting function of the form

01+B+B

C

1

C3

+B Bz

C3

log(B) + ik

(3.1)

(3.2)

The Fig. 1 demonstrates the differences between differentimuum extrapolations fofTrA3).
The extrapolations done using (3.2) have exceljghtdof, and we shall use this form henceforth.
The full continuum extrapolations are shown in Fig. 2. Weenthtat the detailed form of the
fitting function is significant for our results; thus, knowfge of the true 13 coefficient is highly
desirable. There is an ongoing calculation of this term gisitochastic perturbation theory [13],
which will hopefully confirm our result.
The contributions of((TrA3)?) to susceptibility are numerically much smaller than that of
(TrA3). The measurements ofTrA3)?) are not accurate enough to distinguish between extrapola-
tions (3.1) and (3.2), and the choice is not significant ferfthal results. Hence we use the second
order function in Fig. 2.
The continuum extrapolated results are shown in Fig. 3, ametibn of the parametex(T).
The result agrees very well with the perturbative suscéiilderived in ref. [14]. The perturbative
result has the form:

Xpert= a1y”/? + agy + agy”2 + ay

(3.3)
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Figure 2: Continuum limits of(TrA3) and((TrA3)?) at different values of.
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Figure3: Left: the susceptibility as a function gfandT /Ay;s. The solid line is the perturbative prediction.
Right: the difference between the perturbation theory and latéselts. Points denoted by squares are
obtained from logarithmic continuum extrapolation anchaiends from polynomial extrapolation; the former
one has expected behavionas» c.

whereg; are functions ofx andz. On the right panel we show the difference between the per-
turbative result and the lattice measurement. Becausattieel measurement (in the continuum
limit) fully includes perturbative contributions, we exgiethe difference to behave &y %/2).
This is the case when continuum extrapolation is perfornseaguEqg. (3.2); the extrapolation (3.1)
diverges from perturbative result §s— c, which is inconsistent. This also motivates the use of
(3.2) as continuum extrapolation.

In Fig. 4 we show the susceptibility in 4d units, transformesthg Eq. (2.7), and compare the
result to 4d\r = 2 staggered fermion lattice simulations [16, 17]. Here wethe ratioTc/Ays =
0.49 [18]. We can observe that our results agree very well wdthithulations and with perturbation
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Figure 4: The quark number susceptibility in 4d units. Our resultssirewn with diamonds, only 3 points
fit in the temperature range shown. The results agree verywithl 4d lattice simulation results [16, 17].

theory. Indeed, the difference between EQCD measuremandtperturbative results are all but
invisible on the scale of the plot, possibly excluding thedst temperature data.

4. Conclusions and Outlook

We have measured the quark number susceptibility in diroeafliy reduced effective theory
of high-T QCD. The results show a good agreement with the perturbatieary and 4d lattice
simulations, down to temperatures3T.. Currently we are expanding our simulations for finite
chemical potential. In order to avoid the sign problem attdini we do the simulations using
imaginary chemical potential and then continue analyidal real values.
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