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tmQCD for weak matrix elements Carlos Pena

1. Introduction: Flavour Physicsvslattice systematics

During the last five years, a new generation of experimeatiliies dominated by B factories
have brought Flavour Physics to the era of precision studiggertainties on decay and mixing
amplitudes of kaonsD- and B-mesons have plummeted, setting more stringent consrtian
ever on the accuracy required for theoretical estimatesdim determining Standard Model (SM)
parameters or probing new physics. Indeed, although ardetation of CKM matrix elements
essentially free from hadronic uncertainties starts todssible [1], knowing all the relevant ma-
trix elements to the required precision is still essentiabider to check the consistency of SM
predictions and set bounds on effects beyond the SM.

The requirement of few percent accuracy demands, in patjca fully first-principles ap-
proach to the long-distance regime of strong interactionghich all the systematics is consciously
brought under control. Mandatory features include:

e Dynamical simulations with at leastl&ght) + 1 flavours of sea quarks.

e Good conceptual control over the regularisation.

e Good control of all the symmetries (especially: flavour sysines).

¢ Fully non-perturbative renormalisation of all the compesiperators involved.

¢ Elimination of cutoff dependences.

Wilson and chirally symmetric fermions are preferred oncamtual grounds. Wilson fermions
have disadvantages from the point of view of flavour symragtaind treatment of ultraviolet cutoff
dependencies, but are already able to approach the lighk gegime in dynamical simulations
[2, 3, 4, 5, 6], although recent progress with dynamicalathfiermions has proved equally im-
pressive (see [7] and references therein). Twisted mass @OGQCD) is a variant of the Wilson
regularisation that potentially allows for a better cohwbchiral symmetry breaking and cutoff
effects, which turns particularly advantageous in the aatiaion of weak matrix elements. In this
context, it may offer a convenient compromise between aqute control over chiral symme-
try and numerical affordability. Precision quenched cotapans, that properly deal with all the
systematics apart from dynamical quark effects, are am#akstep in order to understand these
issues and prepare the terrain for dynamical studies. st Importantly, they offer sound argu-
ments for the choice of regularisation both for sea quarkldanthe valence sector of mixed action
approaches.

This paper deals mainly with quenched numerical resultsviak matrix elements obtained
from tmQCD. In Section 2 the ALPHA Collaboration computatiof Bx in tmQCD [8] is dis-
cussed. Section 3 briefly reviews the extension of the glydtedeal with neutraB-meson mixing
amplitudes, and reports on the project status. Section & addth tmQCD proposals to study
K — mmramplitudes. Finally, in Section 5 some final remarks are made

Much of the work presented [8, 9, 10, 11] is part of the ALPHAll@moration research pro-
gramme. General reviews of progress in kaon Brghysics on the lattice have been provided at
this conference by W. Lee and T. Onogi [12, 13].



tmQCD for weak matrix elements Carlos Pena

2. Bk in quenched (tm)QCD

2.1 Lattice QCD and indirect CP violation in kaon decays

Indirect CP violation irK — it decays is measured by the parametgrdefined in terms of

kaon decay amplitudes as
T(KL — (7T7T)|:o)
& = , 2.1
K T(K5—> (7T7T)|:o) ( )

wherel is the total isospin of the two-pion state. Experiment \aditi]

gk = [2.2327) x 1073 % @ = (435+0.7)°. (2.2)

At leading order in an Operator Product Expansion (OPE}rtreat of electroweak interac-
tions, the Standard Model (SM) prediction f@k | can be written as [15]

|| = CeBIm{VigVis} {Re{VggVes} [M1So(%c) — N3S0(%e: %)] — ReVigVis}moSo(x)} - (2.3)

HereC, = GZF2McM3,/(6v/ 21 AMK ), S(%) andSp(Xe, %) (X = m?/M3)) parameterise the Wil-
son coefficients of the OPBj » 3 are short-distance QCD corrections to the latter (knownltON
and

s (KIGAS2KY)

Bk = ) (24)
s

whereO?5=2 s the effective four-quark interaction operator
OS2 = (Syd)(Syd), (2.5)

y}; = yu(1—), and the hat denotes renormalisation group invariant (R@ilyix elements. The
dimensionless parametBk thus provides the long-distance, non-perturbative QCDritmrtion,
and largely dominates the uncertainty on the SM valuédglr. In the standard Unitarity Triangle
(UT) analysis of CP violation in the SM, the value|ef | provides a hyperbola in thg, n) plane.
After the recent generation of experimental results f@fiactories, this is one of the least precise
UT constraints. Improving the accuracy®¥ is hence essential in order to derive stringent bounds
on the amount of non-SM CP violation in kaon decay.

Besides quenching, which is an uncontrolled source of Byaie error, the most important
source of uncertainty in lattice QCD computation8gfwith Wilson fermions arises from operator
renormalisation. In standard notation, the oper@®t=>2 is customarily split into parity-even and
parity-odd parts as

0572 = Oyv1aa — Ovasav - (2.6)

Since parity is a QCD symmetry, the only contribution to Kfe-K® matrix element comes from
Owviaa. In regularisations which respect chiral symmetry, theetabperator is multiplicatively
renormalisable. If chiral symmetry is not preserveyy . aa mixes with four other dimension-6
operators [16, 17, 18, 19, 20] with positive parity:

4
(OrR)w +aA (1) = Zvv +aa (Do, aut) [OVVJrAA (9o) + _;Ai (90)Oi (go)] (2.7)
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The operator£;(gp) belong to different chiral representations th@aa, ,aa. The mixing coeffi-
cientsAj(go) are finite functions of the bare coupling, while the renoission constanZyy aa
diverges logarithmically imu.

Two proposals have attempted to eliminate operator mixirtgey are both based on the ob-
servation [18, 20] that, even in the absence of chiral symmtite operatoOya 1 av IS protected
from finite operator mixing by discrete symmetries, and tlhosnormalises multiplicatively, viz.

(Or)va+av (M) = Zva+av (9o, alt)Ovatav (Qo) - (2.8)

The first proposal [21] consists in obtaining the physka K° matrix element oDyy .aa from

a correlation function of the renormalised operd@ys . av, related to it through axial Ward iden-
tities. The method has been put to test in ref. [22], with #mult that theBx estimate turned out
to be compatible with the result of computations that ineatyperator subtractions. Unfortunately,
the correlation function oDya . av is a four-point function, while the matrix element Gy, . aa
can be extracted from a three-point function. Thus, the losian of [22] is that this method is
successful in eliminating an important source of systerr&tiors (operator subtraction) at the cost
of increased statistical fluctuations.

In the work under consideration here, the second propo8§l pased on twisted mass QCD,
is implemented. In tmQCD the breaking pattern of flavour swtras is controlled by the value
of the twist angle; in particular, the latter can be tunedstogreserve part of the axial subgroup,
at the price of breaking vector symmetries, as well as pdtity thus possible to set up regularisa-
tions in which the renormalisation of composite operatergreatly simplified. The relevant case
for us is the renormalisetk®|Oyy . aa |[K®) matrix element, which via the tmQCD formalism can
be extracted from a three-point correlation function ofdperatorOya . av. As the tmQCD action
differs from the standard Wilson fermion action by a softrtethe renormalisation properties of
composite operators in mass independent renormalisatttenees are not modified. In particular,
Owaav remains multiplicatively renormalisable, with the samearenalisation constant and run-
ning as with Wilson fermions. Thus finite subtractions areid@d in the tmQCD determination of
Bk .

An obvious alternative to avoid renormalisation problermessists in using regularisations
with exact chiral symmetry. However, the computationateas/olved make it difficult to perform
continuum limit extrapolations and study finite volume e In the case of staggered fermions,
apart from the operator mixing (the details of which dependhe specific setup), some additional
problems are present — large scaling violations unless leigtls of Qia?) improvement are im-
plemented, uncertainties related to the choice of intetpa operator, as well as other difficulties
related to the breaking of flavour symmetries and the presehainphysical flavours. Wilson
fermions therefore offeg priori, a good compromise between good control of the field-thiadet
aspects of the problem and affordable computational costs.

1For a state-of-the-art determination® = 2 matrix elements, see [24].
2See [12] for an updated discussion of staggered quark sesult
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2.2 tmQCD setup

We will employ two different fermion actions, namely

S8 — & S [@(X) (Dusw+M +iyTH)W(X) + SX) Dwsw+ M), (29)

X

§7Y =a* Y [U0X) (Dwsw+ M)U(X) + FX)(Dwsw+m +iytu) (). (2.10)
X

The labels on the two actions refer to the values that wilh&awaly be set for the twist angle.
In Eq. (2.9)¢ = (u,d)", while in Eq. (2.10)¢ = (s,d)". In both cases, the matriz® acts on
flavour space, anBy, sw is the Wilson-Dirac operator with a Sheikholeslami-Wohterm; cs,, is
tuned to its non-perturbative value [25]. In Eq. (2.10) it leeen assumeapriori that thes andd
quarks have degenerate physical masses; while this is ness&ry as long as this action is used
in quenched QCD, all the computations carried out with it@@dormed in that limit. The action
in EQ. (2.9), on the other hand, is perfectly well suited forumquenched computation, and it has
been used to explore the effect of having non-degensrateld quark masses (see below).

The properties of tmQCD have been extensively discussedvieral publications (see [23,
26, 27] and references therein). Here we just remind somie faads. The physical renormalised
masses of twisted quarks and the twist arglare given by

Mg = \/M&+ U3, (2.11)

tana = B, (2.12)

MR

wheremg (resp. ur) are the renormalised standard (twisted) quark massestdér o tune the
twist angle to some prescribed value up t¢a) corrections, we employ the formulae for the
construction of @a) improved renormalised masses

M = Zin[Mg (L1-+ baimy ) + bmay?] (2.13)
wheremy = 1(1/k — 1/kc) is the subtracted bare standard quark mass.

In the case of ther/2 regularisation, in order to have= 11/2 it is enough to setr to zero,
which is achieved by setting

amy) = —bm(aw ). (2.15)

The 11/4 case is somewhat less trivial. Setting= 11/4 requiresyr| = mg;, which via Egs.
(2.13,2.14) translates into

1 1 N
amy = oo a {1+ [Z—ZA(bu — bm) — ZZab | apy } (2.16)

with Z = Z\y/(ZuZa). For a given choice ofiy, K is tuned so thaam satisfies one of the two
above relations, taking the valuesigfand all the renormalisation constants and improvement co-
efficients involved as input. The precision to which theda#tre known poses an implicit constraint
on the accuracy of the tuning of the twist angle.
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Contact with QCD is made via the change of fermion variables

Y— LIJ/ = R(a)wv ‘l_/—> LIJ/ = l,UR(Cf) ’ (217)

whereR(a) = exp{}ya 13} and ¢ is the twisted quark doublet. This axial rotation induces a
mapping between composite operators in tmQCD and QCD, whiaralised at the level of renor-
malised correlation functions (or, alternatively, renalised matrix elements). The relation we are
most interested in is

(K% (Or)wv1aa [K®ocp = —i(K°| (ORr)vatav |K®)tmoc, (2.18)

which holds in the continuum limit for the two versions of tt8Q under consideration. From this
identity, Bk can be extracted from K°—K© matrix element of the multiplicatively renormalisable
operatorOya 1 ay -

It is important to stress that none of the above setups lesalsamputation 0By that involves
fully twisted quarks only. Hence, the automati¢aDimprovement argument of Frezzotti and Rossi
[28] does not apply, and in order to have ful{&@ improvement of the matrix element it would be
necessary to subtract a number of dimension-seven coemerfrom the four-fermion operator.
Such a procedure is highly impractical, and has not beerupdrsHence, leading cutoff effects in
Bk are expected to be linear &

2.3 Renormalisation

The non-perturbative renormalisation of the oper&igt_ v has been addressed in [9, 10] us-
ing standard Schrddinger Functional (SF) techniques (spg29]). After having defined suitable
SF intermediate renormalisation schemes, a recursivesseding procedure allows to compute to
high accuracy the renormalisation group (RG) running ofsferator in quenched QCD in the con-
tinuum limit from a low-energy reference scdRi yay) ~* close toAqcp to scales 0D(100 GeV,
where reliable contact with perturbation theory can be makteyether with the renormalisation
constants at2Lmax) "1, this provides RGI renormalisation factors free from anganirolled sys-
tematic uncertainty.

In the particular case @ 1 av, Nine different SF schemes were defined and found to provide
consistent results for RGI renormalisation factors. Thetiooum limit of the RG running was
controlled by performing independent simulations with tdifierent fermion actions (plain and
O(a) improved Wilson fermions). The quality of the result is gttated by Figure 1. This approach
is currently being pursued in order to extend the non-pleative renormalisation 0Dy ay t0
N =2 QCD [30]. It is also worth mentioning that the scope of [9] d6es well beyond the case
of theAS= 2 effective Hamiltonian. For instance, [31] made use of #wailts in [9] to address the
renormalisation of th&S= 1 effective Hamiltonian with an active charm quark congedowith
overlap fermions. To that purpose, the logarithmicallyetjent renormalisation constants required
have been computed through a matching of non-perturbgatreglormalised RGI tmQCD matrix
elements to bare overlap matrix elements at a reference mggss mg. This procedure is similar
to the one employed in [32] for the renormalisation of thergumndensate.
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Figure 1: RG runningOya v in quenched QCD in the SF scheme. Non-perturbative valuedgs) are
compared to perturbation theory predictions.

2.4 Simulationsfor bare matrix elements and systematics

The bare value 0Bk can be extracted from the ratio of SF correlation functions

3 —ifuatav (Xo)
- 16 [Za(fa(X0) + Ca@do fo(X0)) —iZ, fy (X0)][Za(f}(X0) + Caddo fL(X0)) —iZy 1 (X0)] ’
(2.19)

R(%o)

where fya - av IS the correlation function 0Dya 1 ay With two pseudoscalar SF boundary sources
and fy (X = Ag,P,\p) is a two-point function of the bilinear operatér with a pseudoscalar SF
boundary source. Precise definitions can be found in [8]. ddmabination of currents in the
denominator corresponds to the physicalafdmproved, renormalised axial current via the chiral
rotation in Eq. (2.17).

Quenched simulations have been performefl at6.0,6.1,6.2,6.3 for the /2 regularisation
andf3 =6.0,6.1,6.2,6.3,6.45 for rt/4. The physical masses of teandd quarks have always been
kept degenerate, save for a subset of simulations mearthe @3) flavour breaking effects (see
below). In thert/2 case, since thequark is untwisted, it is impossible to reach pseudoscatesses
in the region ofmy, due to the presence of exceptional configurations. Therefiseudoscalar
masses larger thamy are simulated, and the results are hence extrapolated fghirsical kaon
mass. In therr/4 case, on the contrary, valuesrag can be obtained by interpolatién.The
necessary renormalisation constants and improvementiaieefs, as well as the values &,
have been gathered from the literat@r@he scale is always fixed via the ratig/a as given by
[33], with rg = 0.5 fm.

The results have been subjected to a number of checks, neeasséss various systematic
uncertainties:

e Finite volume effects. In the 17/2 case, simulations g8 = 6.0 have been performed for
physical lattice sizes arourid~ 1.5 fm andL ~ 2 fm, at the lowest pseudoscalar meson

3TheB = 6.45 data, however, have been obtained at larger masses anexthapolated tong .
4See Appendix A of [8] and references therein.
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mass available. Consistent values for all the relevantrgbbkes are obtained within errors.
Simulations were hence carried out on lattices Witk 1.5 fm. In ther/4, a similar study
was performed af = 6.0,6.2 and masses arounmdk. In this case the conclusion is that
lattice sized. ~ 2 fm are needed to avoid finite volume effects.

e SU(3) breaking effects. Physical SW3) breaking effects oBx have been studied in the/2
case af3 = 6.0. To this purpose, simulations were performed for threeegbf the ratid =
(Ms—Mg)/(Ms+ My) (WhereMg is the physical quark mass), namely= 0.00,0.16,0.41,
at fixedromps= 1.78. No effect was observed @k within uncertainties, hinting at small
SU(3) breaking effects. It has to be stressed, however, that thelaied pseudoscalar mass
is relatively high.

e Spourious SU(3) breaking. The Q(a?) breaking of vector flavour symmetries induced by the
presence of the twisted mass term has received considextibigion in the literature (see
[26]). In order to check its effect, one can compare the psstalar meson mass obtained
for various flavour combinations of twisted and untwiste@us in therr/2 case. In the
Ms = My limit, the resulting states can be interpreted as belonggraymultiplet of pseudo-
Goldstone bosons; hence, deviations from unity in the sdtiss/m.¢)? of squared pseu-
doscalar masses in different flavour channels quantify & )ector symmetry breaking.
The values of these ratios show that the effect is never luegranfew percent level, and con-
verges to zero in the continuum limit. The splitting tendgtow mildly as the quark mass is
decreased. These findings contrast, but are by no meanspatibie, with the observation
of much larger amounts of @) flavour breaking at lighter quark masses [34].

After the publication of [8], a more detailed analysis of #ecuracy of the tuning of quark
masses and twist angles was performed. The quality of theguvas found to be satisfactory in all
cases save for the simulationgBat 6.1, mainly in thert/4 case. This is signalled e.g. by relatively
large differences between the value of the target twistearggt torr/2 or 11/4 when tuning the
quark masses via Egs. (2.13,2.14), and the value obtainedroputing the ratiqir | /mgr; with
the PCAC quark mass instead of the subtracted quark mass.

The reason for this behaviour has been traced back to the wlk; taken as input from the
literature. Indeed, for an accurate determinatiorkft is crucial to follow a constant physics
condition in the approach to the continuum limit, which fitee Qa?) ambiguities coming from
this source. Instead, the valug = 0.135496 quoted in [35] comes from an interpolation of data
obtained from a constant physics condition at other valdigs. dVhile the effect of relaxing the
constant physics requirement was found to be negligiblthfodata of [35], its impact on the tuning
of twist angles is large. Thg = 6.1 critical point has been hence determined afresh, obtainin
Kc = 0.13566511), andf = 6.1 simulations with new mass parameters have been perforffudid.
details will be provided in a forthcoming publication [36].

2.5 Continuum limit

As noted above, taking the continuum limit 8k involves a linear extrapolation & At this
stage, having results from two different regularisatiamisich can be combined in a fit constrained
to a common continuum limit, is essential for a proper cdrifdhe extrapolation.
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Figure 2: Uncertainties orBk related to the @) improvement of bilinears. The left panel displayg2
data, while the right panel shows'4 data.

It turned out that one of the most relevant sources of cuftdtes is related to the construction
of the Q@) improved bilinears in the denominator of Eq. (2.19). Fotanse, using either the
values forz,,Z,,c, determined by the ALPHA Collaboration or those obtained ey LANL
group [37] results in sizeable effects Br at the lowest values @@ available (see Figure 2). This
signals the presence of largg@) ambiguities inBk far from the continuum limit. Combined
linear+quadratic extrapolation of the data proved to bealhs. Thus the values ¢ for which
the difference between ALPHA and LANL constructions d&pimproved bilinears results
discrepancies beyond one sigma were conservatively disdan the linear fits to the continuum
limit. This means that results 8t= 6.0 and = 6.1 had to be left out. The resulting extrapolation
is illustrated by the left panel of Figure 3. The final resalts:

Bk = 0.73571), (2.20)
BYS(2 GeV) = 0.534(52). (2.21)

When comparing with the result quoted in [8], it has to be makdo account thafi = 6.1 data
have been revised, for the reasons explained above.

The value forBx in Eq. (2.20) is shown in the right panel of Figure 3 alongsitteer repre-
sentative results in quenched QCD found in the literature di&cussed in Appendix E of [8], the
difference with other computations with Wilson fermiongriainly due to the method employed to
determineBy: instead of using a ratio similar to the one in Eq. (2.19),dhthors of [22] extract
Bk from a fit of the mass dependence of a different ratio of catiah functions, inspired by Chiral
Perturbation Theory. It has to be stressed that the conputat [22] does not have direct access
to the physical kaon mass region.

The result of Eq. (2.20) is the only existing quenched resuthe literature which has si-
multaneously eliminated any systematic uncertainty eelé renormalisation (both at a reference
scale and from the point of view of RG running), ultravioletaff dependences, and finite volume
effects (within the available accuracy). On the other hdhe,control of the mass dependence of
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Figure3: Left: Continuum limit extrapolation oBx . Right: Comparison with other quenched results.

Bk with Wilson fermions is still not as accurate as with e.g. bienger or domain wall fermions.
Overall, it seems fair to claim that Eq. (2.20) is a benchntaskilt forBy in quenched QCD.

3. A strategy to compute Bg

Long-distance QCD contributions to indirect CP violatiartheB-meson sector of the SM are
encoded in the bag parameters

. (B%O7°2Y)

BB = ) (31)
M
where the relevant effective four-quark interactions hiesform
0PB=2 = (by:¢)(bys0), (=d.,s. (3.2)

These B-parameters appear, together with the corresmpmairson decay constants, e.g. in the
expressions for neutr&@-meson mass differencédv, [15]

BayFey ] [ (M) [ Mal ][ n
AMy = 0.05 ps'? u B 3.3
d pS = x {230 Mev} {167 Ge\/] [0.0078] [0.55 : (3.3)
Be,Fe, 1 [ m(m) T[ Msl ][ 1
AMs=17.2 pst s B 3.4
s pS = x {260 Mev} {167 Ge\/] [0.040] [0.55]’ (34)

whereng encodes short-distance QCD effects. The experimentaesdhr these quantities are
AMy = 0.507 + 0.005 ps! [14] andAMs = 17.77 4+ 0.10(stab + 0.07(sys ps~* [38]. The recent
measurement adiMs by the CDF Collaboration has set very stringent constrantthe required
precision of theoretical determinations @SFBZS, which are now at the same level as those on
BBd FBZd. In addition to “standard” systematic uncertainties sustilynamical light quark effects,
matrix elements involving heavy quarks are particularlyssg/e to improvements coming from a
systematic, conceptually controlled treatment of heawgrkjeffects within lattice QCD.

10
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A strategy for a precise lattice QCD computationBgf, which in principle would keep all
systematic uncertainties under control, has been put foniva[11]. Theb quark is treated at
leading order in Heavy Quark Effective Theory (i.e. in thatistapproximation), although/in,
corrections from the heavy quark expansion can be eventuradluded following the spirit of
[39]. In the static approximation the relevant physical #iage is a linear combination of matrix
elements of two static-light four-fermion operators, viz.

0252 = (hyh0)(hys0), (=d,s, (3.5)

03% 2= (h(1-w)0)(h(1-)0), (=d,s. (3.6)
The renormalisation of generic static-light four-fermioperators with Wilson light fermions has
been analysed in detail in [11]. An important conclusionhi$ study is that, similar to the case of
fully relativistic operators, parity-even operators metWween them due to the breaking of chiral
symmetry. On the other hand, in the parity-odd sector it ssiiide to find a complete basis of op-
erators that renormalise multiplicatively. This opensdber to a generalisation to this context of
the tmQCD strategy pursued fBk. In particular, it is possible to extraBg, from matrix elements
of the VA+ AV and SP+ PS parts of the operators in Egs. (3.5,3.6) if the light qdakour ¢ is
twisted ato = 11/2. This avoids any need of dealing with complicated open@ioormalisation pat-
terns, and eliminates any constraint on quenched comgpnsatiue to exceptional configurations.
Furthermore, it is possible to extend the automatie)dmprovement arguments of Frezzotti and
Rossi to show that the matrix elements of interest will digmcaling violations at &2) only.

The numerical implementation of non-perturbative rendisation for static-light four-fermion
operators is discussed in detail in [11]. Preliminary ressfdr the RG running of static-light four-
fermion operators in quenched QCD are shown in Figure 4. Fasalts will be the object of a
forthcoming publication [40].

4. tmQCD for K — mrr?

The computation of non-leptonic kaon decay amplitudes ilD@Gses much harder problems
than those related hF = 2 processes:

¢ Finite volume effects strongly affect the two-pion finaltetamaking the direct extraction
of the amplitudes from Euclidean correlation functionsssdarably difficult [41, 42]. It has
thus become customary to attempt instead the computatitve oélevant couplings in a low-
energy effective description of QCD based on Chiral Pedtioh Theory, which in principle
would allow the computation of the amplitudes at a given pid¢he chiral expansion [43].
This requires, ideally, access to the chiral regime of QCD.

e The renormalisation of thAS= 1 effective Hamiltonian arising from the OPE treatment
of electroweak interactions requires dealing with a comgleerator mixing problem. In
particular, if chiral symmetry is not preserved by the &&tregularisation, as with Wilson
fermions, mixing with lower dimension operators proceeidscoefficients that diverge with
an integer power of the cutoff [44]. On the other hand, if thar quark is kept as an
active degree of freedom the presence of exact latticeldyirametry eliminates all power-
divergent mixings [45, 46].

11
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Figure 4: Preliminary results for the non-perturbative RG runningl{C.” points) of the four independent
elements of the multiplicatively renormalisable basisgarity- odd static-light four-fermion operators. See
[11] for notational details. The solid curves are perturiggpredictions.

The case for employing regularisations that preserve Ickjirametry in the approach to this
problem is therefore very strong. Indeed, chiral fermioagehbeen instrumental in a recent com-
putation, in the quenched approximation, of the leadirdeofow-energy couplings of th&S=1
effective weak Hamiltonian in the GIM limitn, = my [47], the first results of a comprehensive
programme aimed at understanding the rdle of the charm duahie Al = 1/2 enhancement rule
[46, 48]. On the other hand, it is conceivable that the comtver chiral symmetry breaking that
constitutes one of the main assets of tmQCD can be explaoitedder to alleviate the problems
related to renormalisation. Two different proposals haserbactually put forward to that effect.

In [49], a theory with four quark flavours is considered, with specifyinga priori how many
of them are dynamical. Once the light doublet is twisted gleurt/2, it is immediate to show that
the power divergences affectig— 1T matrix elements are at most linear, and that there are no
finite mixings with other dimension six operators. This isibstantial gain with respect to standard
Wilson fermions, in which divergences are quadratic andfimiixings are present. If the heavier
s, ¢ flavours are fully twisted as well (which is straightforwafthey are kept quenched), then it is
possible to eliminate power divergences altogether, siraplemploying non-perturbatively @)
improved fermion action and quark bilinears.

In [50], the authors consider a theory in which a valencessexintaining an arbitrary number
Ny of flavours is matched to a theory wily dynamical quarks. All the flavours are fully twisted.
The freedom to fix twist angles arbitrarily for valence quankithout the need to restrict to non-
anomalous chiral rotations, is then used to set up a valeswersthat allows to extrad{ — 7T
matrix elements from correlation functions that do not regany power divergent subtraction.
The authors propose a specific valence sector Mjth 10. In the same paper, a similar technique
is proposed to obtain a multiplicatively renormalisaBlg in this caseN, = 6. A strong advantage

12
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of this framework is that only fully twisted quarks are usadd hence automatic(@) improvement
arguments apply.

These tmQCD proposals are appealing in that they potgntifitr many of the advantages of
exactly symmetric regularisations at a considerably loveenputational cost. It has to be stressed,
however, that the arguments which show that undesired edenins cancel rely crucially on the
assumption that a precise tuning of the twist angle has bedormed. In the case of power di-
vergences the issue is particularly sensitive, as systennatertainties in the tuning of parameters
may result in a lack of cancellation of large contributioagorrelation functions. It is important to
notice, too, that the absence of exact chiral symmetry pasestrinsic lower bound to the quark
masses that can be simulated safely; in particular, acoetb® tdeep chiral regime, as achieved
in [47], may be compromised. Finally, the need to separadth= 3/2 andAl = 1/2 channels
requires a good control over the(&) breaking of isospin symmetry inherent to tmQCD. Given
these caveats, the suitability of tmQCD to deal vith— 7171 decays is an open problem that may
only be settled by dedicated numerical studies.

5. Conclusions

Twisted mass QCD, together with state-of-the-art techesdgior Wilson fermions, allow for
benchmark quenched computations of weak matrix elemeatshawn byBx. The ideas put
forward forAS= 2 matrix elements can be extended to other problemsAike- 2 andK — 7171
amplitudes, offering potential for precise computatidmet o not resort to exact chiral symmetry.

The dominant source of uncertainty left in the quenched@gppration (certainly so foBg)
is related to the lack of full Ga) improvement, which amplifies the error of the continuum timi
extrapolation. Thus, if Wilson fermions are to be used inftliare in the determination of weak
matrix elements, the use of tmQCD variants that embody aatior(a) improvement [50] may
prove essential. Two important aspects of the tmQCD aphprage critical in the context of weak
matrix elements: the tuning of parameters, in particulathef twist angle, has to be controlled
to high precision; and flavour symmetry breaking effectsehiavbe kept at the few percent level.
The question whether valence tmQCD quarks offer a convealérnative to chirally symmetric
fermions for some specific applications remains to be addreby dedicated simulations.
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