DELPHI Collaboration

DELPHI 2002-04 CONF 545 February 18, 2002

Preliminary S-Matrix Fits to LEP 1 and LEP 2 DELPHI Data

G.Della Ricca¹, J.Holt², A.Olchevski³

Abstract

The hadronic and leptonic cross-sections and leptonic forward-backward asymmetries determined from the data collected with the DELPHI detector at energies near the Z^0 resonance peak (88-93 GeV) and above (130-209 GeV) during LEP operations between 1990 and 2000 have been interpreted in terms of the S-matrix parameters.

¹INFN, Trieste, Italy

²CERN, Geneva, Switzerland

³Joint Institute for Nuclear Research, Dubna, Russia

1 Introduction

The published measurements of [1], [2], [3] and the preliminary results of [4] and [5] were analyzed in the framework of the S-matrix approach, achieving a substantial improvement in the precision of the γZ^0 interference compared to the accuracy obtained from the Z^0 data alone [1], updating the results presented in [2].

2 Interpretation of the results in the S-matrix formalism

The S-matrix formalism is a rigorous model independent approach to describe the cross-sections and the forward-backward asymmetries in the e^+e^- annihilations. In this model, the cross-sections can be parametrized as follows:

$$\sigma_a^0(s) = \frac{4}{3}\pi\alpha^2 \left[\frac{\mathbf{g}_f{}^a}{s} + \frac{\mathbf{j}_f{}^a(s - \overline{\mathbf{M}}_Z{}^2) + \mathbf{r}_f{}^a s}{(s - \overline{\mathbf{M}}_Z{}^2)^2 + \overline{\mathbf{M}}_Z{}^2\overline{\mathbf{\Gamma}}_Z{}^2} \right] \quad \text{with} \quad \begin{array}{l} a = \text{tot}, \text{fb} \\ \mathbf{f} = \text{had}, \mathbf{e}, \mu, \tau , \end{array}$$
(1)

while the forward-backward asymmetries are given by:

$$A_{\rm fb}^{0}(s) = \frac{3}{4} \frac{\sigma_{\rm fb}^{0}(s)}{\sigma_{\rm tot}^{0}(s)}, \qquad (2)$$

where \sqrt{s} is the centre-of-mass energy. The parameters r_f and j_f scale the Z^0 exchange and the γZ^0 interference contributions to the total cross-section and forward-backward asymmetries. The contribution g_f of the pure γ exchange was fixed to the value predicted by QED in all fits. The Z^0 exchange term, the γZ^0 interference term and the photon exchange term are given by:

$$\begin{aligned} \mathbf{r}_{f}^{\text{tot}} &= \kappa^{2} \left[\hat{a}_{e}^{2} + \hat{v}_{e}^{2} \right] \left[\hat{a}_{f}^{2} + \hat{v}_{f}^{2} \right] - 2\kappa \, \hat{v}_{e} \, \hat{v}_{f} C_{Im} \\ \mathbf{j}_{f}^{\text{tot}} &= 2\kappa \, \hat{v}_{e} \, \hat{v}_{f} \left(C_{Re} + C_{Im} \right) \\ \mathbf{g}_{f}^{\text{tot}} &= Q_{e}^{2} Q_{f}^{2} \left| F_{A}(\mathbf{M}_{Z}) \right|^{2} \\ \mathbf{r}_{f}^{\text{fb}} &= 4\kappa^{2} \hat{a}_{e} \, \hat{v}_{e} \, \hat{a}_{f} \, \hat{v}_{f} - 2\kappa \, \hat{a}_{e} \, \hat{a}_{f} C_{Im} \\ \mathbf{j}_{f}^{\text{fb}} &= 2\kappa \, \hat{a}_{e} \, \hat{a}_{f} \left(C_{Re} + C_{Im} \right) \\ \mathbf{g}_{f}^{\text{fb}} &= 0 \,, \end{aligned}$$
(3)

with the following definitions:

$$\kappa = \frac{G_F M_Z^2}{2\sqrt{2}\pi\alpha} \approx 1.50$$

$$C_{Im} = \frac{\Gamma_Z}{M_Z} Q_e Q_f \operatorname{Im} \{F_A(M_Z)\}$$

$$C_{Re} = Q_e Q_f \operatorname{Re} \{F_A(M_Z)\}$$

$$F_A(M_Z) = \frac{\alpha(M_Z)}{\alpha},$$
(4)

where $\alpha(M_Z)$ is the complex fine-structure constant, and $\alpha \equiv \alpha(0)$. The photonic virtual and bremsstrahlung corrections are included through the convolution of Equation 1 with the photonic flux function.

Fits to the measured inclusive and non-radiative hadronic and leptonic cross-sections and leptonic forward-backward asymmetries were carried out in this framework using the corresponding branch of the ZFITTER/SMATASY6.36 [6, 7, 8] program¹. The fits included hadronic and leptonic DELPHI measurements performed near the Z⁰ resonance [1], and hadronic, muon and tau measurements at higher energies [2, 3, 4, 5].

The usual definitions of the mass M_Z and width Γ_Z of a Breit-Wigner resonance were used, the width being *s*-dependent:

$$M_{Z} \equiv \overline{M}_{Z} \sqrt{1 + \overline{\Gamma}_{Z}^{2} / \overline{M}_{Z}^{2}} \approx \overline{M}_{Z} + 34.20 \text{ MeV}/c^{2}$$

$$\Gamma_{Z} \equiv \overline{\Gamma}_{Z} \sqrt{1 + \overline{\Gamma}_{Z}^{2} / \overline{M}_{Z}^{2}} \approx \overline{\Gamma}_{Z} + 0.94 \text{ MeV}.$$
(5)

The results of the fits are presented in Table 1. The χ^2 amounted to 162.2(236.9) in the case of the 16-parameter fit (i.e. without assuming lepton universality) and to 176.5(246.5) for the 8-parameter fit (where lepton universality was assumed), for the line-shape and the combined line-shape and high energy data, respectively, the number of fitted points being 177(237). The correlation coefficients between the free parameters of the 16- and 8-parameter fits for the LEP1 and LEP1+LEP2 are shown in Tables 2, 3, 4 and 5. The data support the hypothesis of lepton universality. Overall, the measurements are in good agreement with the Standard Model predictions.

The correlations between the parameters M_Z and j_{had}^{tot} is shown in Figure 1. It can be seen that a significant improvement on the precision on the hadronic interference parameter, j_{had}^{tot} , is obtained when the high energy data are included in the fit.

¹The following values for the Standard Model parameters were used: $M_Z = 91.1875 \text{ GeV}$, $m_t = 175 \text{ GeV}$, $M_H = 150 \text{ GeV}$, $\alpha_s = 0.118$, $\Delta \alpha_{had}^{(5)} = 2.8761 \times 10^{-2}$ and $G_F = 1.166389 \times 10^{-5} \text{ GeV}^{-2}$. The following ZFITTER flags were used: AFBC: 1 SCAL: 0 SCRE: 0 AMT4: 4 BORN: 0 BOXD: 1 CONV: 1 FINR: 1 FOT2: 3 GAMS: 1 DIAG: 1 INTF: 1 BARB: 2 PART: 0 POWR: 1 PRNT: 0 ALEM: 2 QCDC: 3 VPOL: 1 WEAK: 1 FTJR: 1 EXPR: 0 EXPF: 0 HIGS: 0 AFMT: 1 CZAK: 0 PREC:10 HIG2: 0 ALE2: 3 GFER: 2 ISPP: 2 FSRS: 1 MISC: 0 MISD: 1 IPFC: 5 IPSC: 0 IPTO: 3 FBHO: 0 FSPP: 0 FUNA: 0 ASCR: 1 SFSR: 1 ENUE: 1 TUPV: 1 .

	LE	P1	LEP1-	SM	
$M_{\rm Z}$	91.1939 ± 0.0112	91.1826 ± 0.0094	91.1857 ± 0.0037	91.1841 ± 0.0036	_
$\Gamma_{\rm Z}$	2.4861 ± 0.0048	2.4886 ± 0.0046	2.4890 ± 0.0041	2.4889 ± 0.0041	2.497
$r_{\rm had}^{\rm tot}$	2.9490 ± 0.0110	2.9544 ± 0.0106	2.9557 ± 0.0096	2.9554 ± 0.0096	2.966
$\mathbf{r}_{\mathrm{e}}^{\mathrm{tot}}$	0.14092 ± 0.00095		0.14125 ± 0.00091		
$\mathrm{r}_{\mu}^{\mathrm{tot}}$	0.14274 ± 0.00072		0.14295 ± 0.00067		
$\mathbf{r}_{\tau}^{\mathrm{tot}}$	0.14161 ± 0.00100		0.14201 ± 0.00096		
r_ℓ^{tot}		0.14230 ± 0.00062		0.14235 ± 0.00058	0.1427
$j_{\rm had}^{\rm tot}$	-0.21 ± 0.64	0.54 ± 0.54	0.36 ± 0.14	0.39 ± 0.14	0.22
$j_{\rm e}^{\rm tot}$	-0.095 ± 0.074		-0.050 ± 0.047		
${ m j}_{\mu}^{ m tot}$	0.056 ± 0.042		0.022 ± 0.020		
j_{τ}^{tot}	0.040 ± 0.046		-0.007 ± 0.026		
j_ℓ^{tot}		0.047 ± 0.037		0.006 ± 0.016	0.004
r_{e}^{fb}	0.00306 ± 0.00092		0.00298 ± 0.00091		
$\mathrm{r}^{\mathrm{fb}}_{\mu}$	0.00275 ± 0.00051		0.00286 ± 0.00049		
$\mathbf{r}^{\mathrm{fb}}_{\tau}$	0.00416 ± 0.00072		0.00428 ± 0.00070		
$r_\ell^{\rm fb}$		0.00304 ± 0.00038		0.00326 ± 0.00037	0.00273
$j_{\rm e}^{\rm fb}$	0.803 ± 0.073		0.805 ± 0.073		
${ m j}_{\mu}^{ m fb}$	0.711 ± 0.037		0.797 ± 0.024		
$j_{ au}^{fb}$	0.707 ± 0.047		0.822 ± 0.032		
$j_\ell^{\rm fb}$		0.726 ± 0.027		0.804 ± 0.019	0.799

 $Table\ 1:$ Results of the 16- and 8-parameter fits to the line-shape and combined line-shape and high energy data. Also shown are the Standard Model predictions for the fit parameters.

	$\Gamma_{\rm Z}$	$\rm r_{had}^{tot}$	$r_{\rm e}^{\rm tot}$	$\mathrm{r}_{\mu}^{\mathrm{tot}}$	$\mathrm{r}_{ au}^{\mathrm{tot}}$	$j_{\rm had}^{\rm tot}$	$j_{\rm e}^{\rm tot}$	${ m j}_{\mu}^{ m tot}$	$\mathrm{j}_{ au}^{\mathrm{tot}}$	r_{e}^{fb}	$\mathrm{r}^{\mathrm{fb}}_{\mu}$	$\mathbf{r}^{\mathrm{fb}}_{\tau}$	$j_{\rm e}^{\rm fb}$	${ m j}_{\mu}^{ m fb}$	j_{τ}^{fb}
$M_{\rm Z}$	-0.50	-0.46	-0.29	-0.32	-0.25	-0.96	-0.81	-0.70	-0.64	0.13	0.25	0.16	-0.03	0.00	0.00
$\Gamma_{\rm Z}$		0.90	0.52	0.67	0.49	0.53	0.41	0.38	0.35	-0.06	-0.11	-0.07	0.04	0.04	0.03
$r_{\rm had}^{\rm tot}$			0.53	0.68	0.49	0.50	0.38	0.36	0.32	-0.05	-0.10	-0.06	0.04	0.05	0.04
$r_{\rm e}^{\rm tot}$				0.39	0.28	0.30	0.26	0.22	0.20	0.07	-0.06	-0.04	0.08	0.03	0.02
${ m r}_{\mu}^{ m tot}$					0.36	0.34	0.26	0.33	0.23	-0.03	-0.05	-0.04	0.03	0.08	0.03
$\mathbf{r}_{\tau}^{\mathrm{tot}}$						0.26	0.20	0.19	0.25	-0.03	-0.05	0.00	0.02	0.03	0.09
$j_{\rm had}^{\rm tot}$							0.79	0.70	0.64	-0.13	-0.24	-0.16	0.03	0.01	0.01
$j_{\rm e}^{\rm tot}$								0.58	0.53	-0.08	-0.20	-0.13	0.11	0.00	0.00
${ m j}_{\mu}^{ m tot}$									0.46	-0.09	-0.15	-0.12	0.02	-0.04	0.00
j_{τ}^{tot}										-0.08	-0.16	-0.08	0.02	0.00	-0.04
$r_{\rm e}^{\rm fb}$											0.04	0.03	0.09	0.00	0.00
$\mathrm{r}^{\mathrm{fb}}_{\mu}$												0.05	-0.01	0.19	0.00
$\mathrm{r}_{ au}^{\mathrm{fb}}$													-0.01	0.00	0.18
$j_{\rm e}^{\rm fb}$														0.00	0.00
$\mathrm{j}^{\mathrm{fb}}_{\mu}$															0.00

 $Table\ 2:$ Correlation matrix for the 16-parameters fit at LEP1 data.

	$\Gamma_{\rm Z}$	$r_{\rm had}^{\rm tot}$	$r_{\rm e}^{\rm tot}$	$r_{\mu}^{ m tot}$	$\mathbf{r}_{\tau}^{\mathrm{tot}}$	$j_{\rm had}^{\rm tot}$	$j_{\rm e}^{\rm tot}$	${ m j}_{\mu}^{ m tot}$	$\mathrm{j}_{ au}^{\mathrm{tot}}$	r_{e}^{fb}	$\mathrm{r}^{\mathrm{fb}}_{\mu}$	$\mathbf{r}_{\tau}^{\mathrm{fb}}$	$j_{\rm e}^{\rm fb}$	${ m j}_{\mu}^{ m fb}$	$\mathrm{j}_{ au}^{\mathrm{fb}}$
$M_{\rm Z}$	0.00	0.03	-0.01	0.02	0.01	-0.62	-0.38	-0.18	-0.16	0.04	0.08	0.06	0.00	-0.07	-0.06
$\Gamma_{\rm Z}$		0.87	0.44	0.61	0.42	0.06	-0.01	0.03	0.03	0.01	0.02	0.02	0.03	0.05	0.05
$r_{\rm had}^{\rm tot}$			0.45	0.62	0.43	0.04	-0.02	0.02	0.02	0.01	0.02	0.02	0.03	0.05	0.04
$r_{\rm e}^{\rm tot}$				0.32	0.22	0.03	0.04	0.01	0.01	0.11	0.01	0.01	0.07	0.03	0.02
$r_{\mu}^{\rm tot}$					0.30	0.02	-0.02	0.09	0.01	0.01	0.03	0.02	0.02	0.11	0.03
$\mathbf{r}_{\tau}^{\mathrm{tot}}$						0.02	-0.01	0.01	0.09	0.01	0.01	0.04	0.01	0.03	0.12
$j_{\rm had}^{\rm tot}$							0.27	0.15	0.14	-0.03	-0.06	-0.04	0.00	0.06	0.05
$j_{\rm e}^{\rm tot}$								0.08	0.07	0.02	-0.03	-0.02	0.13	0.03	0.03
j_{μ}^{tot}									0.04	-0.01	0.07	-0.01	0.00	0.34	0.02
j_{τ}^{tot}										-0.01	-0.01	0.08	0.00	0.02	0.34
$r_{\rm e}^{\rm fb}$											0.01	0.01	0.09	0.00	0.00
$r_{\mu}^{\rm fb}$												0.02	0.00	0.12	0.00
r_{τ}^{fb}													0.00	0.00	0.11
$j_{\rm e}^{\rm fb}$														0.00	0.00
$j_{\mu}^{\rm fb}$															0.01

Table 3: Correlation matrix for the 16-parameters fit at LEP1+LEP2 data.

	$\Gamma_{\rm Z}$	$r_{\rm had}^{\rm tot}$	r_ℓ^{tot}	$j_{\rm had}^{\rm tot}$	j_ℓ^{tot}	r_ℓ^{fb}	$j_\ell^{\rm fb}$
Mz	-0.42	-0.39	-0.32	-0.95	-0.82	0.26	0.04
$\Gamma_{\rm Z}$		0.90	0.74	0.45	0.38	-0.09	0.05
$r_{\rm had}^{\rm tot}$			0.75	0.43	0.35	-0.08	0.05
r_ℓ^{tot}				0.35	0.33	-0.04	0.09
$j_{\rm had}^{\rm tot}$					0.81	-0.26	-0.03
$j_\ell^{\rm tot}$						-0.20	-0.04
r_ℓ^{fb}							0.17

 $Table \ 4:$ Correlation matrix for the 8-parameter fit at LEP1 data.

	$\Gamma_{\rm Z}$	$r_{\rm had}^{\rm tot}$	r_ℓ^{tot}	$j_{\rm had}^{\rm tot}$	$j_\ell^{\rm tot}$	r_ℓ^{fb}	$j_\ell^{\rm fb}$
$M_{\rm Z}$	0.00	0.03	0.01	-0.60	-0.33	0.10	-0.11
$\Gamma_{\rm Z}$		0.87	0.70	0.06	0.03	0.03	0.07
$r_{\rm had}^{\rm tot}$			0.71	0.05	0.02	0.03	0.07
r_ℓ^{tot}				0.03	0.08	0.05	0.12
$j_{\rm had}^{\rm tot}$					0.26	-0.07	0.09
j_ℓ^{tot}						0.04	0.34
$r_\ell^{\rm fb}$							0.10

 $Table \ 5:$ Correlation matrix for the 8-parameter fit at LEP1+LEP2 data.

Figure 1: Contour plot in the M_Z - j_{had}^{tot} plane. The dotted curve shows the region accepted at the 68% confidence level from a fit to data taken at the energies around Z^0 ; the solid curve shows the region accepted at the same confidence level when the high energy data are also included in the fit.

References

- P. Abreu *et al.*, Nucl. Phys. **B417** (1994) 3;
 P. Abreu *et al.*, Nucl. Phys. **B418** (1994) 403;
 P. Abreu *et al.*, E. Phys. J. **C16** (2000) 371.
- [2] P. Abreu *et al.*, E. Phys. J. **C11** (1999) 383.
- [3] P. Abreu *et al.*, Phys. Lett. **B485** (2000) 45.
- [4] P. Abreu *et al.*, contributed paper to ICHEP (Osaka, July 2000), DELPHI 2000-128 CONF 427.
- [5] A. Behrmann *et al.*, contributed paper to EPS HEP 2001 (Budapest, July 2001) and LP01 (Rome, July 2001), DELPHI 2001-094 CONF 522.
- [6] D. Bardin et al., Z. Phys. C44 (1989) 493;
 D. Bardin et al., Comput. Phys.Comm. 59 (1990) 303;
 D. Bardin et al., Nucl. Phys. B351 (1991) 1;
 D. Bardin et al., Phys. Lett. B255 (1991) 290;
 D. Bardin et al., CERN-TH 6443/92 (May 1992);
 - D. Bardin *et al.*, Comput. Phys. Commun. **133** (2001) 229.
- [7] R. G. Stuart, Phys Lett. B272 (1991) 353;
 A. Leike, T. Riemann and J. Rose, Phys Lett. B273 (1991) 513;
 T. Riemann, Phys Lett. B293 (1992) 451.
- [8] S. Kirsch, T. Riemann, Comput. Phys. Commun. 88 (1995) 89.