%

POINT SAMPLE RENDERING
by
J.P. Grossman
Hon. B.Sc., Mathematics (1996)

University of Toronto

Submitted to the
DEPARTMENT OF ELECTICAL ENGINEERING AND COMPUTER SCIENCE
In Partial Fulfillment of the Requirements for the Degree of
Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August, 1998
[Seplee, 7

© Massachusetts Institute of Technology
All rights reserved

Signature of Author 4 e
Department of Electrical Engineering and Computer Science, August, 1998

~ Ve

S

Certified by —
William J. Dally
Accepted by (
Arthur C. Smith, Chair, Department Conimittee on Graduate Students
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY fog.

NOV 1 6 1998 e

LIBRARIES

POINT SAMPLE RENDERING
by

J.P. Grossman

Submitted to the Department of Electrical Engineering and Computer Science
on August 7, 1998 in Partial Fulfillment of the
Requirements for the Degree of Master of Science in
Electrical Engineering and Computer Science

ABSTRACT

We present an algorithm suitable for real-time, high quality rendering of complex objects.
Objects are represented as a dense set of surface point samples which contain colour, depth and
normal information. These point samples are obtained by sampling orthographic views on an
equilateral triangle lattice. They are rendered directly and independently without any knowledge
of surface topology. We introduce a novel solution to the problem of surface reconstruction
using a hierarchy of Z-buffers to detect tears. The algorithm is fast, easily vectorizable, and
requires only modest resources.

Thesis Supervisor: William J. Dally
Title: Professor of Electrical Engineering and Computer Science

Acknowledgements

Thanks to Bill Dally, Seth Teller, Pat Hanrahan, John Owens, Scott Rixner and Shana Nichols for their valuable
comments on the structure and content of portions of this thesis. Thanks especially to Shana Nichols for her careful
proofreading and unwavering support.

Thanks also to the following people for granting us permission to use their Inventor models: Barbara Cutler
(‘sailboat’), Brendon Glazer (‘toybird’), Michael Golding (‘gavel’), Stephen Ho (‘tree’ and ‘pine tree’), and Tara
Schenkel (‘chair’ and ‘wheel’). These models were created as part of a computer graphics course taught by Seth
Teller at M.LI.T.

This research was carried out as part of a project, led by Bill Dally, to design an inexpensive media processor
capable of real time 3D graphics. A big thanks to Bill for his vision, his drive, and his encouragement; we miss you
here at MIT.

This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) under DARPA Order
E254 and monitored by the Army under Contract DABT63-96-C-0037.

Contents

1 Introduction

2 Image Based Rendering
2.1 A Brief History of Image Based Rendering.............cccocceiiiiiiiiniiiniiiniicnicnincicnceee

2.2 Problems with Image Based GraphiCs.........ccccceveviiniirniieiieniiiniiiieienenteeesee e
2.2.1 GeOMEriC ATTIACES ..oouveeiieiieiieieeeete ettt st

2.2.2 Static LIghting ...ccccooiiiiiii e

2.2.3 Large Memory ReqUITEIMENEScoovviiiiiiiiieiieniieicece e

3 Point Sample ReNAeringccocceveisvessnnesunnsenssnesseessecssessnsssesssessssssnsssesssssssesssssasssane

4 Surface RecoOnStruction.......ecceeeeeeeissecrecsressecsacsnrsnecnnennesnesens
4.1 Previous APPrOACHES.......cccciiiiiiiiiiiiiiiiiiiiiiciitc sttt st
4.2 Adequate SAMPINEGcoooiviiiiiiiiiiiiiiii s
4.3 Geometric Preliminari€s........ccociiiiiiiiiiiiiiiiiiiiciiieeee et
4.4 SAMPING.....iiiiiiiiiiiiiiiiie e e
4.5 Magnification and PErspectivecccoiiiiiiiiiiiiiiiiiiiiicccc e
4.6 FINAING ZAPS -eeovveviiieiieiiieiiiteciieiieit ettt st e
4.7 FIINZ ZAPS c-vteeeeeiieeeeieeie ittt ettt st e

5 Object MOdElNGc..ccoeieerurnrensencsurcsnnsnnsnnssesssenssnssasssnssnsssassssssssssasssaosssesssssanss
5.1 Obtaining Point SAMPIESccceoviiiiiiiiiiiiiiiiie et
5.2 Selection Of BIOCKS.....cuvviiiiiiiieieeciiieee ettt ee e ee e e e e e eanaeeeeesabaeeeeearaeean
5.3 NOtES ON PAIQIMELEIS ...uvvvvveieeiieecinriteeeeieee e e eeerrte e ee et esretbr e e e e e e s sessbassrreeressssesssrareeees

6 ViSIDIIILY eucevrecineisnnincsnnnsnnensnnsnncsnnssniisnesecsiecsensseccssesnesnisnssasssnsssssssessssssassssssnsssassssssnssssosssssns
6.1 View Frustum CLPPINEcociiiiiiiiiiiiiiiieiiectee ettt et
6.2 Spatial SubdiVISION.......ccoiiiiiiiiiii
6.3 VISIDILtY IMASKS .ot ee e e e ens
6.4 ViSIDIItY COMES ...oouviiiiiiiiiiiiiic i
6.5 Experimental RESUIS........cocoiiiiiiii e

7 ReNdEring......cccccveessrcssessecsncssrssacssessassanesascsascssoee
7.1 BasiC WaIPINE ..coovereiiiiiiiiiiiiit ittt sttt et e s
7.1.1 Incremental CalCulations...........ccceeeiiiiiienieniiiinierccreeeeeee et

7.1.2 Optimized Incremental Calculationsccceoeverierirenenienieinreneeeere s

7.2 Hierarchical Z-DUffer........cocoociiniiiiiniiiiiiiictce et
7.3 SRAAING....ccoiiiiiiiiiiiiii e e
731 SRAAOWS ..ottt e e e s e e

7.3.2 Backfacing POINES..........coceeiiiiiiiiiiiiiiii ettt

8 Results

11
11
12
12
13
13

15

17
17
18
18
19
20
20
23

25
25
26
27

29
29
29
29
31
33

35
35
36
37
37
39
40
41

43

9 Discussion and Future Work .
ATEITACES 1ttt e et e e e e e st e e e e e e e e e e e enanns
9.1.1 ROUGh EAEES.....coiiiiiiiiiiiiiececceee ettt e
9.1.2 SUITACE HOIES ..ottt n
ODBJECt MOAEIING ..ottt et et ae et ne e
9.2.1 Generating Point Samplesccooeviriiriiiiiiiiieeee e
9.2.2 Selection Of BIOCKS......coooiuiiiiiiiiiieee e
9.2.3 Partial BIOCKSccovvviiieiiieei ettt e e

10

9.1

9.2

9.3
94
9.5

REAL ODJECLS ...ttt st re s
DIECIMALION .oeeviieiiieee ettt e et e e e e e neaasaeeaaaaaeaasaaaaes

CONCIUSION aeceeeeeeeersrrereeseessssssssssersessesssssssssssssssssssssssesasssssssnssssssassssssssssssnerssssssssssssssssssane

Appendix - 32 Bit Packed RGB Arithmetic

References

1 Introduction

The research presented in this thesis was motivated by a desire to render complex objects in real time without the use
of expensive hardware. This ubiquitous goal has recently led to the use of images, rather than polygons, as
primitives. Unlike traditional polygon systems in which rendering time is proportional to scene complexity, in image
based systems rendering time is proportional to the number of pixels in the source images or the output image. The
techniques of view interpolation [Chen93, Chen95], epipolar geometry [Laveau94], plenoptic modeling
[McMillan95], light fields [Levoy96], lumigraphs [Gortler96], view based rendering [Pulli97], nailboards
[Schaufler97] and post rendering 3D warping [Mark97] have all demonstrated the speed and viability of image based
graphics.

Despite the success of these approaches, they suffer in varying degrees from a large appetite for memory,
noticeable artifacts from many viewing directions, and an inability to handle dynamic lighting. It is therefore
desirable to develop an algorithm which features the speed of image based graphics without these associated
problems. In this thesis we will show that Point Sample Rendering, which uses points rather than images as
primitives, is able to achieve this ideal.

In Point Sample Rendering, objects are modeled as a dense set of surface point samples. These samples are
obtained from orthographic views and are stored with colour, depth and normal information, enabling Z-buffer
composition, Phong shading, and other effects such as shadows. Motivated by image based rendering, point sample
rendering is similar in that it also takes as input existing views of an object and then uses these to synthesize novel
views. It is different in that (1) the point samples contain more geometric information than image pixels, and (2)
these samples are view independent - that is, the colour of a sample does not depend on the direction from which it
was obtained.

——

object point sample representation

Figure 1.1: Point sample representation of an object.

The use of points as a rendering primitive is appealing due to the speed and simplicity of such an approach.
Points can be rendered extremely quickly; there is no need for polygon clipping, scan conversion, texture mapping or
bump mapping. Like image based rendering, point sample rendering makes use of today’s large memories to
represent complex objects in a manner that avoids the large render-time computational costs of polygons. Unlike
image based representations, which are view dependent and will therefore sample the same surface element multiple
times, point sample representations contain very little redundancy, allowing memory to be used efficiently.

The primary goal of this thesis is to establish Point Sample Rendering as a viable algorithm for rendering
complex objects in real time. We will outline the challenges of Point Sample Rendering and discuss solutions to the

problems that arise. Chapter 2 reviews a number of different image-based rendering systems in order to better
understand their advantages and shortcomings. Chapter 3 introduces point sample rendering in greater depth, and
chapter 4 discusses our solution to the fundamental challenge of point sample rendering — the reconstruction of
continuous surfaces. Chapters 5-7 give details for a complete point sample rendering system in the context of our
solution to the surface reconstruction problem. We present some results in chapter 8; finally in chapters 9 and 10 we
discuss the strengths and weaknesses of point sample rendering, suggest some areas for future research, and
conclude.

10

2 Image Based Rendering

The ideas of using points and images as rendering primitives have evolved separately over time. However, the
particular Point Sample Rendering algorithm which will be discussed in this thesis was primarily motivated by, and
is similar to, image based rendering. It is therefore instructive to review a variety of image based rendering
techniques in order to understand our decision to use points for a real time rendering system despite the recent
success of images in this domain.

2.1 A Brief History of Image Based Rendering

The first paper on Image Based Rendering was arguably a 1976 paper entitled “Texture and Reflection in computer
Generated Images” [Blinn76]. In this paper Blinn and Newell formalized the idea, which had been previously
suggested in [Catmull75], of applying a texture to the surface of an object. They went on to introduce the concept of
environment maps which can be used to simulate reflection on curved, polished surfaces. Both of these ideas make
use of pre-computed images to enhance the complexity of a rendered scene. Textures are typically small repeating
patterns, whereas environment maps attempt to capture the reflection of the entire surroundings using images.

A natural extension of environment maps is to represent entire scenes as collections of images. In [Lipman80]
part of a small town was modeled by recording panoramic images at 10 foot intervals along each of several streets
and recording these images to videodisc. A user could then virtually drive through these streets and look in any
direction while doing so. Camera rotation was continuous, but camera translation was discrete — there was no
interpolation between neighbouring viewpoints. In [Chen93] this idea was extended to provide continuous motion
between viewpoints by morphing from one to the next. However, the virtual camera was constrained to lie on the
lines joining adjacent viewpoints, and the linear interpolation of the optical flow vectors which was used for
morphing provided approximate view reconstruction only. In [Laveau94] and [McMillan95] the optical flow
information was combined with knowledge of the relative positions of the cameras used to acquire the images. This
allowed the researchers to provide exact view reconstruction from arbitrary viewpoints.

The idea of using images to represent single objects (as opposed to entire scenes) was mentioned in [Chen93]
and realized by the ‘object movies’ described in [Chen95]. This system again used morphing to approximately
reconstruct novel views of an object. Another approach to generating approximate novel views is to simulate 3D
movement by applying affine transformations to existing views. In effect, this treats the object as a flat rectangle
textured with its image. To construct a nearby view, the textured rectangle is simply rendered from the new
viewpoint. This method has the advantage of being able to make use of standard texture mapping hardware. In
[Maciel95] these ‘imposters’ were precomputed and selected for use at render time. In [Schaufler95] they were
dynamically generated using polygons and then re-used for as many frames as possible. This latter approach was
also used in the Talisman rendering system [Toborg96] to provide higher refresh rates than would be possible using
polygons alone.

One of the problems encountered with imposters is that because they are flat, object intersections are not
handled correctly. To address this problem, Schaufler added depth information to the imposters [Schaufler97]. The
resulting ‘nailboards’ (imposters with depth) are still rendered using the same 2D affine transformation as before.
However, the depth information is used to compute approximate depths for pixels in the destination image; object
intersections can then be dealt with using a Z-buffer. Alternately, the depth information could be used to compute an
exact 3D warp as in [Mark97].

It was argued in [McMillan95] that all image based graphics algorithms can be cast as attempts to reconstruct
the plenoptic function (light flow in all directions). This approach is used explicitly by [Levoy96] (Light Field
Rendering) and [Gortler96] (Lumigraphs). Rather than forward mapping images to construct views, they attempt to
directly represent the 4D function which gives the colour and intensity of the light travelling along any ray in free
space. Images can then be constructed by ray tracing this data structure directly. In [Levoy96] a light field rendering
system is presented which is capable of computing images in real time. Since then a number of researchers have
investigated extensions and applications of the light field concept [Wong97, Camahort98, Dischler98, Miller98].

11

The past two years have seen an abundance of research in image based graphics. If the proceedings of the
annual SIGGRAPH conference provide any sort of measure of a topic’s importance, then the SIGGRAPH 98
proceedings, which contain two full paper sessions devoted to image based rendering, indicate the prominence of this
area of research in the computer graphics community. A complete summary of all ongoing work in this field is
beyond the scope of this thesis; in this section we have simply provided an overview of the foundations upon which
current research is based.

2.2 Problems with Image Based Graphics

Several of the techniques mentioned in section 2.1 are capable of rendering complex objects in real time. However,
there are three basic problems that one encounters using an image based rendering paradigm: geometric artifacts,
static lighting, and large memory requirements. The following sections briefly outline these problems; in Chapter 3
we will see how they can be avoided by using Point Sample Rendering.

2.2.1 Geometric Artifacts

It is impossible to accurately reconstruct a novel view of an object from existing views without knowing anything
about the object’s geometry. For example, consider the two views of a teapot shown in Figure 2.1 (a) and (b).
Suppose we wish to construct an in-between view by applying a transformation to the two existing views and then
combining the resulting images. Without any geometric information, there is no way to ensure that the spouts from
the two images will be correctly aligned, and we will invariably end up with the geometric artifact shown in Figure
2.1c. In [Levoy96] this problem is addressed by artificially blurring the image as in Figure 2.1d.

(a) (b) (c) (d)

Figure 2.1: (a, b) Two views of a teapot. (¢) Without any geometric information, any attempt to
combine the two views to construct an in-between view will invariably result in a double image of the
spout, (d) Artificially blurring the image to hide geometric artifacts.

In practice, with the notable exception of imposters which treat objects as textured rectangles, nearly all image
based rendering algorithms make use of some sort of geometric information. This information is either in the form
of correspondences between images [Chen93, Chen95, Laveau94, McMillan95], explicit per-pixel depth information
with known transformations between views [Dally96, Pulli97], or an approximation of the object’s shape which is
used to alleviate, but not eliminate, the geometric artifacts [Gortler96].

The extent to which an image based rendering algorithm suffers from geometric artifacts depends on the manner
in which it makes use of geometry. This is not to say that one should always maintain accurate depth information
and precisely calibrated transformations between images in order to perform exact 3D warps; there are two reasons
to seek algorithms with less of a reliance on geometry. First, this information may simply not be available when real
objects are being modeled. The modeler may not have access to an accurate range scanner, or may be generating the
model from pre-existing photographs. Second, it may not be possible to represent the object using images with
depth. Two objects which defy such a representation are presented in [Gortler96]. One is a hairy stuffed lion, the
other is a glass fruit bowl containing fruit. The former contains detail which is too fine to represent using one sample
per pixel, the later contains pixels with visible depth complexity greater than 1 (fruit seen through glass).

2.2.2 Static Lighting

Another side effect of rendering without the complete geometric information available in polygon systems is the
inability to use dynamic lighting. This is usually seen as an advantage rather than a drawback of image based
rendering: the lighting, although static, is free. It requires no computation at render time since it is captured in the
images of the object. Furthermore, it will contain all of the complex and usually computationally intensive lighting
effects that are present in the original images such as shadows, specular highlights and anisotropic effects.

Notwithstanding these advantages of static lighting, there are certain applications which demand dynamic
lighting. In [Wong97] the light field system was extended to support dynamic lighting by storing a Bidirectional
Reflectance Distribution Function at each pixel, essentially turning a 4 dimensional data structure into a 6
dimensional data structure to take into account the lighting directions. However, this change increases model size
significantly and slows down rendering; an SGI Indigo 2 was required to achieve interactive frame rates.

2.2.3 Large Memory Requirements

Since a large number of images are required to properly sample an object, image based techniques are fairly memory
intensive. This makes it difficult to render scenes containing multiple objects in an image based fashion. In most
cases it also necessitates the use of compression which slows down the rendering process. Table 2.1 gives typical
uncompressed model sizes for various rendering techniques which appear in the literature; clearly the models are not
getting any smaller over time.

Rendering Technique Typical Uncompressed Model Size
QuickTime VR [Chen95] IMB’
Light Fields [Levoy96] 400MB
Lumigraph [Gortler96] 1.125GB
Light Field + BRDF [Wong97] 4GB’
Uniformly Sampled Light Field [Camahort98] 11.3GB

Table 2.1: Typical Image Based Graphics model sizes. * estimate based on content of reference

13

14

3 Point Sample Rendering

In image based graphics, views of an object are sampled as a collection of view dependent image pixels. In point
sample rendering, the views are sampled as a collection of infinitesimal view-independent surface points. This subtle
shift in paradigm allows us to address the problems presented in section 2.2 without sacrificing rendering speed. By
storing an exact depth for each point we are able to avoid geometric artifacts. By storing the normal, shininess and
specular colour we are able to implement dynamic lighting. Finally, the use of a view independent primitive allows
us to dramatically reduce memory requirements. Rather than sampling a given surface element from all directions as
in image based graphics, we sample it once and then compute its appearance from an arbitrary direction using the
current lighting model (Figure 3.1).

\
DA<1 o

N
- /1N .

(a) (b)

Figure 3.1: (a) Image Based Rendering stores views of a surface element from every direction. (b) Point
Sample Rendering stores a single point with colour and normal and computes views from arbitrary directions
using the current lighting model

Points have often been used to model ‘soft’ objects such as smoke, clouds, dust, fire, water and trees [Reeves83,
Smith84, Reeves85]. The idea of using points to model solid objects was mentioned nearly two decades ago by
Csuri et. al. [Csuri79] and was briefly investigated by Levoy and Whitted some years later for the special case of
continuous, differentiable surfaces [Levoy85]. In 1988 Cline et. al. generated surface points from computed
tomography data in order to quickly render parts of the human anatomy [Cline88]. More recently Max and Ohsaki
used point samples, obtained from orthographic views and stored with colour, depth and normal information, to
model and render trees [Max95]. However, almost all work to date dealing with a point sample representation has
focused on using it to generate a more conventional representation such as a polygon mesh or a volumetric model
[Hoppe92, Turk94, Curless96].

Figure 3.2: A dark surface is closer to the viewer than a light surface. When the surfaces are rendered using
point samples, the points on the dark surface are more spread out. Some screen pixels are ‘missed’, and the
light surface peeps through.

The fundamental challenge of point sample rendering is the reconstruction of continuous surfaces. In polygon
rendering, continuous surfaces are represented exactly with polygons and displayed accurately using scan
conversion., However, point sample rendering represents surfaces only as a collection of points which are forward-
mapped into the destination image. It is entirely possible for some pixels to be ‘missed’, causing tears to appear in
surfaces (Figure 3.2). It is therefore necessary to somehow fix these surface holes. Furthermore, this issue should be

addressed in a manner that does not seriously impact rendering speed. The algorithm presented in [Levoy85] makes
use of surface derivatives and is therefore applicable only to differentiable surfaces. In [Max95] no attempt is made
to address this problem at render time, but it is alleviated by sampling the trees at a higher resolution than that at
which they are displayed. Although this does not completely eliminate gaps in the output image, such gaps are not
problematic as they appear to the viewer as spaces between leaves rather than errors in the final image. In chapter 3
we will examine this problem more closely and present a solution which produces good results with little overhead.

A secondary challenge of point sample rendering is the automatic generation of efficient point sample
representations for objects. In this thesis we restrict our attention to synthetic objects, which allows us to sample the
objects from arbitrary directions without worrying about the inaccuracies associated with real cameras and range
scanners. As in image based rendering, we will take the approach of viewing an object from a number of different
directions and storing samples from each of these views. The problem is to (1) select an appropriate set of directions
from which to sample the object, and (ii) select a suitable sct of point samples from each direction such that the
entire set of samples forms a complete representation of the object with minimal redundancy.

The remainder of this thesis details our approach to object modeling and rendering using point samples. In
order to test and evaluate our ideas, we have implemented a software system which takes as input object descriptions
in Open Inventor format and produces point sample models as output. These models are then displayed in a window
where they may be manipulated (rotated, translated and scaled) in real time by the user. The software system was
used to generate all of the statistics and renderings which appear in this thesis.

Figure 3.3: Interactive viewer

16

4 Surface Reconstruction

Given a set of surface point samples, it is easy enough to transform them to screen space and map them to pixels.
When a point sample is mapped to a pixel, we say that the pixel is hit by the point sample. When a pixel is hit by
points from multiple surfaces a Z-buffer can be used to resolve visibility. The difficulty is that, in general, not all
pixels belonging to a surface will be hit by some point from that surface. For example, Figure 3.2 shows a dark
surface that has holes in it because some of the pixels were ‘missed’. A light surface which is further away is visible
through these holes.

It is necessary to somehow reconstruct these surfaces so that they appear continuous when rendered. Note that it
is not necessary to compute an internal representation for the surfaces as in [Hoppe92]; we simply need to ensure
that they are properly reconstructed in the output image.

4.1 Previous Approaches

One approach to the problem of surface reconstruction is to treat the point samples as vertices of a triangular mesh
which can be scan-converted as in [Mark97]. We have rejected this approach for a number of reasons. First and
foremost, it is slow, requiring a large number of operations per point sample. Second, it is difficult to correctly
generate the mesh without some a priori knowledge of the object’s surface topology; there is no exact way to
determine which points should be connected to form triangles and which points lie on different surfaces and should
remain unconnected. Invariably one must rely on some heuristic which compares depths and normals of adjacent
points. Third, it is extremely difficult to ascertain whether or not the entire surface of the object is covered by the
union of all triangles from all views, especially if we are retaining only a subset of the point samples from each view.
Fourth, when a concave surface is sampled by multiple views, the triangles formed by points in one view can obscure
point samples from other views (Figure 4.1a). This degrades the quality of rendered images by causing pixels to be
filled using the less accurate colour obtained from triangle interpolation rather than the more accurate point sample
which lies behind the triangle. Fifth, noticeable artifacts result when we attempt to combine triangles from multiple
views in a single image. Far from merging seamlessly to form a single continuous surface, triangles from different
views appear incoherent, as shown in Figure 4.1b.

(a) (b) (©

Figure 4.1: (a) A curved surface is sampled by two views (shown in one dimension). When the views
are combined, triangles from one view (connected dark points) obscure point samples from the other
(light points). (b) Part of an object consists of a light surface intersecting a dark surface at 90° (shown in
lighter shades of gray). This corner is sampled by two different views. When triangles from these two
views are combined by scan-converting them into a single Z-buffered image (shown in darker shades of
gray), the triangles appear incoherent due to the different rates at which they interpolate from light to
dark. (c) ‘Overshooting’ in splatting.

Another approach is the use of ‘splatting’, whereby a single point is mapped to multiple pixels on the screen,
and the colour of a pixel is the weighted average of the colours of the contributing points. This method was used by
Levoy and Whitted [Levoy85]; it has also been used in the context of volume rendering [Westover90] and image
based graphics [Mark97]. However, this is again slow, requiring a large number of operations per point.
Furthermore, choosing the size and shape of the splat to ensure that there are no tears in any surface is an extremely
difficult problem. One interesting idea is to use point sample normals to draw small oriented circles or
quadrilaterals, but this results in ‘overshoot’ near corners as shown in Figure 4.1c.

4.2 Adequate Sampling

In order to maximize speed, our solution essentially ignores the problem altogether at render time, as in [Max95].
To see how this can be achieved without introducing holes into the image, we start with the simplifying assumptions
that the object will be viewed orthographically, and that the target resolution and magnification at which it will be
viewed are known in advance. We can then, in principle, choose a set of surface point samples which are dense
enough so that when the object is viewed there will be no holes, independent of the viewing angle. We say that an
object or surface is adequately sampled (at the given resolution and magnification) if this condition is met. To
fashion this idea into a working point sample rendering algorithm, we need to answer the following three questions:

e How can we generate an adequate sampling using as few point samples as possible?
* How do we display the object when the magnification or resolution is increased?
e What modifications must be made to the algorithm in order to display perspective views of the object?

These questions will be addressed in the following sections.

4.3 Geometric Preliminaries

We begin by establishing a geometric condition which guarantees that a set of point samples forms an adequate
sampling of a surface. Suppose we overlay a finite triangular mesh on top of a regular array of square pixels. We
say that a pixel is contained in the triangular mesh if its center lies within one of the triangles (Figure 4.2a). As
before, we say that a pixel is hit by a mesh point if the mesh point lies inside the pixel.

Theorem If the side length of each triangle in the mesh is less than the pixel side length, then every pixel which is
contained in the mesh is hit by some point in the mesh.

(b) (©

Figure 4.2: (a) Pixels contained in a mesh. (b) If one of A, B, C lies above P and another lies below, then
the distance between them is greater than the side length of P. (¢) A, B, C lie in the shaded region.

Proof Our proof is by contradiction - suppose instead that some pixel P is contained in the mesh but is not hit by
any mesh point. Then there is some mesh triangle ABC such that ABC contains the center of P, but A, B, C lie
outside of P. Now we cannot have one vertex of ABC above (and possibly to the left/right of) P and another below
P, as then the distance between these vertices would be greater than the side length of P (Figure 4.2). Similarly, we
cannot have one vertex to the left of P and another vertex to the right of P. Without loss of generality, then, assume
that A, B, C all lie to the left of and/or below P (Figure 4.2c). The only way for a triangle with vertices in this region
to contain the center of P is if one vertex is at the upper left corner of P and the other is at the lower right, but then
the distance between these vertices is greater than the side length of P, contradiction.

Corollary Suppose a surface is sampled at points which form a continuous triangular mesh on the surface. If the
side length of every triangle in the mesh is less than the side length of a pixel at the target resolution (assuming unit

magnification), then the surface is adequately sampled.

Proof This follows directly from the theorem and the fact that when the mesh is projected orthographically onto the
screen, the projected side lengths of the triangles are less than or equal to their unprojected lengths.

18

4.4 Sampling

The previous section provides some direction as to how we can adequately sample an object. In particular, it
suggests that to minimize the number of samples, the distance between adjacent samples on the surface of the object
should be as large as possible but less than ds, the pixel side length at the target resolution (again assuming unit
magnification). In order to obtain such a uniform sampling, we sample orthographic views of the object on an
equilateral triangle lattice. Now it is possible for the distance between adjacent samples on the object to be
arbitrarily large on surfaces which are nearly parallel to the viewing direction (Figure 4.3a). However, suppose we
restrict our attention to a surface (or partial surface) S whose normal differs by no more than 8 from the projection
direction at any point, where 0 is a ‘tolerance angle’. If we sample the orthographic view on an equilateral triangle
lattice with side length ds-cos®, we obtain a continuous triangular mesh of samples on S in which each side length is
at most (ds-cos0) / cos® = ds (Figure 4.3b). Hence, S is adequately sampled.

ds-cos

viewing
direction

@ (b)

Figure 4.3: (a) When an orthographic view is sampled on a regular lattice, the samples on the surface of the
object can be arbitrarily far apart. (b) If the normal of a surface is everywhere within 6 of the viewing
direction and the spacing between lattice points is ds-cos8, then the distance between adjacent samples on the
surface of the object will be less than or equal to ds.

Suppose the object being modeled is smooth and convex, where by “smooth” we mean that the surface normal
exists and doesn’t change too quickly (we will neglect to derive a more precise definition for smooth since this
would not add anything to the discussion). Given 8, we can choose a set of projections such that any direction in
space will be within 8 of some projection direction. In particular, the normal at each point on the surface of the
object will differ by no more than 6 from some projection direction. It follows that if we use this set of projections
to sample the object then the entire object will be adequately sampled.

Unfortunately, most interesting objects exhibit a tendency to be neither smooth nor convex. We will not,
therefore, use the corollary of section 4.3 to ‘prove’ that an object is being adequately sampled. We simply use it to
provide theoretical motivation for an algorithm which, ultimately, must be verified experimentally.

We conclude with three comments on sampling. First, although we have referred multiple times to ‘surface
meshes’ we do not store any surface mesh information with the point samples, nor is it necessary to do so. It suffices
for there to exist some continuous triangulation of the points on a surface which satisfies the conditions given in
section 4.2. Second, as we collect point samples from multiple orthographic projections of an object, a given surface
patch will in general appear in, and be sampled by, several projections. Hence, this patch need not be adequately
sampled by some single projection so long as it is adequately sampled by the union of samples from all projections.
Finally, the preceding discussion brings to light the advantage of using an equilateral triangle mesh. If we were to
use a square lattice instead, we would need to decrease the spacing between lattice points to ds-cos®/N2 in order to
compensate for the longer diagonals within the lattice squares. This would increase the total number of samples in a
projection by 73%.

19

4.5 Magnification and Perspective

The concept of an ‘adequately sampled’ surface does not solve the surface reconstruction problem; if we wish to
magnify the object we are once again confronted by the original dilemma. However, suppose that the object is
adequately sampled at the original resolution/magnification, and suppose we decrease the image resolution by the
same amount that the magnification is increased. The object will again be adequately sampled at this new
resolution/magnification. Thus, we can render the object at the lower resolution and resample the resulting image to
the desired resolution.

This works well for reconstructing orthographic views of the object, but when we try to adapt the solution to
perspective views we encounter a problem: because of the perspective transform, different parts of the object will be
magnified by different amounts. A straightforward solution would be to choose a single lower resolution taking into
account the worst case magnification of the object, i.e. the magnification of the part closest to the viewer. However,
this unfairly penalizes those parts of the object which would be adequately sampled at a higher resolution, and it
unnecessarily degrades the quality of the final image.

Figure 4.4: The dark surface is rendered using a higher level depth buffer in which there are no gaps. This
depth buffer is used to detect and eliminate holes in the image.

To address this problem, we introduce a hierarchy of lower resolution depth buffers as in [Green93]. The
lowest buffer in the hierarchy has the same resolution as the target image, and each buffer in the hierarchy has one
half the resolution of the buffer below. Then, in addition to mapping point samples into the destination image as
usual, each part of the object is rendered in a depth buffer at a low enough resolution such that the points cannot
spread out and leave holes. When all parts of the object have been rendered, we will have an image which, in
general, will contain many gaps. However, it is now possible to detect and eliminate these holes by comparing the
depths in the image to those in the hierarchy of depth buffers (Figure 4.4). The next two sections provide details of
this process.

4.6 Finding gaps

The easiest way to use the hierarchical depth buffer to detect holes is to treat a pixel in the k™ depth buffer as an
opaque square which covers exactly 4° image pixels. We can then make a binary decision for each pixel by
determining whether or not it lies behind some depth buffer pixel. If a pixel is covered by a depth buffer pixel, then
we assume that it does not lie on the foreground surface, i.e. it is a hole. In the final image this pixel must be
recoloured by interpolating its surroundings. If a pixel is not covered by any depth buffer pixels, then we assume
that it does lie on the foreground surface, and its colour is unchanged in the final image. This method is fast and easy
to implement. However, it produces pronounced blocky artifacts, particularly at edges, as can be seen in Figure 4.5.

20

Figure 4.5: Treating depth buffer pixels as opaque squares produces blocky artifacts

In Figure 4.6 we see an example of how this problem is caused. The edge of a light foreground surface is
rendered over a dark background in the k = 2 depth buffer (Figure 4.6a). Each depth buffer pixel which is hit by
some point sample becomes a 4x4 opaque square, and all background pixels which lie behind these squares are
treated as holes and discarded (Figure 4.6b). This creates large gaps in the image; many pixels are assumed to be
holes even though in reality they are far from the edge of the surface. When these gaps are filled using interpolated
colours, the surface colour bleeds into the background, creating noticeable artifacts.

(a) (b) (c)

Figure 4.6: (a) A light foreground surface is rendered in the k = 2 depth buffer. The image pixels and depth
buffer pixels are indicated using light and dark lines respectively. The light diagonal line indicates the actual
edge of the foreground surface, and the light squares indicate pixels which are hit by point samples. (b)
Background pixels which lie behind depth buffer pixels are discarded. (¢) Final image: when the holes are
filled the surface colour spreads out into the background.

Our strategy for dealing with this problem is to replace the binary decision with a continuous one. Each pixel
will be assigned a weight in [0, 1] indicating a ‘confidence’ in the pixel, where a 1 indicates that the pixel is
definitely in the foreground and a O indicates that the pixel definitely represents a hole and its colour should be
ignored. The weights will then be used to blend between a pixel’s original and interpolated colours. To see how
these weights can be obtained, we observe that: (i) if a pixel is surrounded by depth buffer pixels which are closer to
the viewer, then it is certainly a hole and should have weight 0; (ii) if a pixel is surrounded by depth buffer pixels
which are further away from the viewer, then it is certainly in the foreground and should have weight 1; (iii) if a pixel
is surrounded by depth buffer pixels both closer to and further away from the viewer, then it lies near the edge of the
surface and should have a weight between 0 and 1. It therefore makes sense to consider multiple depth buffer pixels
when assigning a weight to a single image pixel.

21

et

____.--—.----——._—_

- ---@--—--9----—-8
L ny Tt SYEY YR P

Figure 4.7: Computing the coverage of an image pixel. Depth buffer pixels are shown with solid gray
outlines; the square mesh with vertices at their centers is shown using dashed lines. One vertex lies in front
of the image pixel (coverage 1); the other three lie behind it (coverage 0). Using bilinear interpolation, the
coverage of the pixel is 9/16.

We accomplish this by treating the k™ depth buffer as a square mesh with vertices at the depth buffer pixel
centers. We then compute the amount by which the k"™ depth buffer ‘covers’ an image pixel as follows: the center of
the image pixel lies inside one of the squares of the mesh. The depth at each corner of the square is compared to the
depth of the image pixel; a corner is assigned a coverage of 1 if it lies in front of the pixel and O otherwise. Finally,
we take the coverage of the pixel to be the bilinear interpolation of these four corner coverages (this is reminiscent of
the “Percentage Closer Filtering” used in [Reeves87] to generate antialiased shadows). The total coverage of a pixel
is then the sum of the coverages from each depth buffer (capped at 1), and weight = 1 - coverage. This is illustrated
in Figure 4.7.

(a) (b) (c)

Figure 4.8: (a) Rendering the same light surface as in Figure 4.6a. (b) Weights assigned to image pixels
(larger weights are darker). (c¢) Final image: the artifacts are less noticeable.

In Figure 4.8 we see how the example of Figure 4.6 is handled by this new approach. Figure 4.8b shows the
weights that are assigned to image pixels using bilinear interpolation. These weights are used to blend between each
pixel’s original and interpolated colours; in the final image the artifacts are much less prominent (Figure 4.8c¢).
Finally, Figure 4.9 provides a direct comparison of the two approaches; the latter method clearly produces better
results.

22

() (b)

Figure 4.9: Comparison of methods for finding gaps. (a) Opaque squares, binary decisions. (b) Square
mesh, bilinear coverages.

4.7 Filling gaps

To fill the gaps in the final image we must compute a colour for pixels with weight less than 1. This problem is not
specific to point sample rendering; it is the general problem of image reconstruction given incomplete information.
Our solution is a variation of the two phase “pull-push” algorithm described in [Gortler96] (which, in turn, was based
on the work presented in [Mitchel87]). In the ‘pull’ phase we compute a succession of lower resolution
approximations of the image, each one having half the resolution of the previous one. In the ‘push’ phase, we use
these lower resolution images to fill gaps in the higher resolution images. This is illustrated in Figure 4.10 with a
picture of a mandrill.

(b) () (d)

Figure 4.10: The pull-push algorithm. (a) Original image. (b) Incomplete image; 50% of the pixels have
been discarded. (¢) Lower resolution approximations. (d) Reconstruction.

The lower resolution approximations of the image are computed by repeatedly averaging 2x2 blocks of pixels,
taking the weight of the new pixel to be the sum of the weights of the four pixels, capped at 1. Specifically,

ifc* and w_":_ , are the colour and weight of the (x, y) pixel in the ¥™ low resolution approximation, then:

k k k k k k k k
ok Wi 2v€2x2y T Wart2vC2x+1,2y T W 2y01 €202y T Want1 2y41€ 2041, 2v41
x,y =

k k k k
Woray TWaren 2y T Warayel T Wars2v4

k+l _ k k k k
woy =MIN(, Wiy oy +Wo oy ¥ Woro Wi 2v4)

23

In the ‘push’ phase, to compute the final colour c;'f). of the (x, y) pixel in the k™ low resolution image, we inspect

its weight wf,‘.. If wf_). =1 then we simply set c;’f‘. = c; , - Otherwise, we compute an interpolated colour Ex’ﬁ N

using as interpolants the pixels in the (k+1)* image. We then set

C’k - wk k

b \~k
o oy Cxy T (I1-wy ¥), ¥

If we were to use bilinear interpolation to compute ¢k then we would interpolate the four closest pixels in the

x,y?
(k+1)" image with weights 9/16, 3/16, 3/16 and 1/16 (since the interpolation is always from one level up in the
hierarchy, the weights never change). However, if we approximate these weights as %2, %4, % and 0, then the
algorithm runs significantly faster (over 6 times faster using packed RGB arithmetic; see Appendix) without any
noticeable degradation in image quality. Hence, we interpolate the three closest pixels in the (k+1)* image with
weights %2, % and % (Figure 4.11a). For example,

~k _ 1 rk+1 1 rk+1 1 rk+1
C2x+l.2)‘+] _EC,\',_\' +ZCX+|'»," +ZC.Y,}‘+]

with similar expressions for €5y 5, , Cacs1 2,5 and Cag oy -

(a) (b)

Figure 4.11: (a) An interpolated colour is computed using the three closest lower resolution pixels as
shown. (b) Before gaps are filled (left) and after (right).

24

5 Object Modeling

The goal of the modeling process is to generate an adequate sampling of the object for a given target
resolution/magnification using as few samples as possible. In this chapter we will describe the approach taken by
our software system. The system is capable of automatically generating point sample representations for arbitrary
synthetic objects; there is no user intervention.

In what follows we will refer to two different coordinate systems: object space and projection space. Object
space is the coordinate system for the entire object; in these coordinates the object lies inside a unit sphere centered
at the origin. Projection space is a per-projection coordinate system whose origin coincides with the object space
origin and whose Z-axis points towards the viewer.

5.1 Obtaining Point Samples

The target resolution is specified by the user; the target magnification is assumed to be 1. The first step is to choose
a set of orthographic projection directions from which to sample the object. We chose to do this in a data-
independent manner, using the same set of projections for each object. While this does not guarantee that the object
will be adequately sampled by the union of samples from all projections, it greatly simplifies the sampling process,
and a judicious choice of projection directions will adequately sample most objects with high probability. In
particular, a large number of projection directions distributed evenly about the sphere of directions will adequately
sample most objects. We used the 32 directions obtained by subdividing the sphere of directions into octants,
subdividing each of the eight resulting spherical triangles into 4 smaller triangles by joining the midpoints of the
sides, then taking the centers of these 32 spherical triangles.

As explained in section 4.4, rather than sampling the orthographic projections on a square lattice at the target
resolution, we sample on a denser equilateral triangle lattice. The density of the lattice is determined by the
tolerance angle; if the tolerance angle is 8 then the spacing between samples is ds-cos® (where ds is the pixel side

length), which gives us %—5 2 g samples per pixel. We typically use 6 = 25° which translates to 1.4 samples
cos
per pixel.

Each point sample contains a depth, an object space surface normal, diffuse colour, specular colour and
shininess. Table 5.1 gives the amount of storage associated with each of these; an entire point will fit into three 32
bit words. Surface normals are quantized to one of 32768 unit vectors. These vectors are generated using the same
procedure described previously to generate projection directions, except that there are 6 levels of subdivision rather
than 1, producing 32768 spherical triangles. The vectors are stored in a large lookup table which is accessed when
the points are shaded at render time.

Field # bits | Description

Depth 32 Single precision floating point
Object space normal | 15 quantized to one of 32768 vectors
Diffuse colour 24 8 bits of red, green, blue

Specular colour 16 6 bits of green, 5 bits of red, blue
Shininess 8 Exponent for Phong shading
Total 95

Table 5.1: Data associated with each point sample

25

The samples in a projection are divided into 8x8 blocks. This allows us to compress the database by retaining
only those blocks which are needed while maintaining the rendering speed and storage efficiency afforded by a
regular lattice (a regular lattice can be rendered quickly by using incremental calculations to transform the points,
and it can be stored more compactly than a set of unrelated points as we only need to store one spatial coordinate
explicitly). In addition, the use of blocks makes it possible to amortize visibility tests over groups of 64 points.

000 0O0OOES

Figure 5.1: 8x8 block of point samples

There is a tradeoff involved in the choice of the block size. With smaller blocks it is easier to retain exactly
those parts of a projection which are needed, resulting in smaller databases and faster rendering times. On the other
hand, there is a fixed amount of overhead associated with each block (visibility calculations, initialization of
incremental calculations, etc). With smaller blocks, this overhead is amortized over fewer points. We have found an
8x8 block to be optimal in terms of rendering speed (see section 5.3).

The texture of the object is sampled using an Elliptical Weighted Average filter [Heckbert89]. To use this filter,
one would normally project a small circle onto the tangent plane of the sample point from the direction of view,
producing an ellipse in the tangent plane (Figure 5.2a). This ellipse is then mapped into texture space and taken to
be the support of an elliptical gaussian filter. However, this is a view-dependent filter whereas we desire our samples
to be view-independent. We therefore use a circle in the tangent plane of the sample point with diameter equal to the
length of a pixel diagonal (Figure 5.2b); this circle is then mapped to an ellipse in texture space as usual.

(a) (b)

Figure 5.2: View dependent texture filtering (a) and view independent texture filtering (b).

5.2 Selection of Blocks

The union of point samples from all projections is assumed to form an adequate sampling of the object. The next
task in the modeling process is to find a subset S of blocks which is still an adequate sampling but contains as little
redundancy as possible. For this we use a greedy algorithm.

We start with no blocks (S = ¢). We then step through the list of orthographic projections; from each projection
we select blocks to add to S. A block is selected if it corresponds to a part of the object which is not yet adequately
sampled by S. Rather than attempt to exactly determine which surfaces are not adequately sampled, which is
extremely difficult, we employ the heuristic of both ray tracing the orthographic projection and reconstructing it from
S, then comparing the depths of the two images thus obtained (Figure 5.3). This tests for undersampled surfaces by
searching for pixels which are ‘missed” by the reconstruction. If a pixel is missing from a surface then, by definition,
that surface is not adequately sampled. However, if no pixels are missing from a surface it does not follow that the
surface must be adequately sampled, as there may be some other rotated/translated view in which the surface will
contain a hole. Thus, to enhance the quality of the test it is repeated several times using various translations and

26

rotations for the view. Typically, we use every combination of four rotations (0°, 22.5°, 45°, 67.5°) and four
translations (either no offset or a one half pixel offset in both x and y), a total of sixteen tests.

(a) (b) (c) (d)

Figure 5.3: Block Selection. (a) Ray traced projection. (b) Projection reconstructed from current set of
blocks. (¢) Pixels where (a) and (b) have different depths. (d) Blocks added to set.

Since we start with no blocks, there will be a bias towards including blocks from earlier projections. Indeed, for
the first two projections, which are taken from opposite directions, all the blocks which contain samples of the object
will necessarily be included. To eliminate this bias we make a second pass through the projections in the same
order; for each projection we remove from S any of its blocks that are no longer needed. This second pass has been
observed to decrease the total number of blocks in the set by an average of 22%.

5.3 Notes on Parameters

There are a number of different parameters involved in object modeling, and for the most part it is difficult to
determine a priori what the optimal settings for these parameters will be. For this we must resort to experimentation.

We varied the tolerance angle and block size for each of the five models shown in Figure 5.4. These models
were selected to represent a wide range of object characteristics, from the large smooth surfaces of ‘top’ to the
intricate features of ‘kittyhawk’.

top toybird sailboat plant kittyhawk

Figure 5.4: Models used to find optimal threshold angle, number of projections and block size

Figure 5.5 shows the average file size and rendering time as a function of tolerance angle; both are minimized
for 6 = 25° (1.4 samples per pixel). Figure 5.6 shows the average file size and rendering time as a function of block

size. As expected, file size increases monotonically with block size due to the fact that larger blocks make it more
difficult to retain only those portions of projections which are needed. The optimal block size in terms of rendering
speed 1s 8x8.

One choice that was theoretically motivated was the decision to sample on an equilateral triangle lattice as
opposed to a more traditional square lattice (section 4.4). Of course, there is nothing to prevent the use of a square
lattice in the modeling algorithm; we simply do not expect it to perform as well. Figure 5.7 shows the average file
size and rendering time as a function of tolerance angle for square lattice sampling; both are minimized for 0 = 45°
(2 samples per pixel). As predicted, the square lattice is inferior to the equilateral triangle lattice, producing models
which are on average 14% larger and 5% slower.

File Size (MB)

File Size (MB)

»

»

1Y

N

=

-

-

23+ t 225

File Size (MB)

w
f

»

I

~
Render Time (ms)

0
N
g

o
«

10 15 20 25 30 35 40 45 50 ° 5 10
Tolerance Angle

15 20 25 30 35 40 45 50
Tolerance Angle

Figure 5.5: Average file size and render time as a function of tolerance angle.

Render Time (ms)
N N
2 4
=3 o

8
o

4 5 6 7 8 9 10 1 12 13 4 5 6 7 8 9 10 " 12 13
Block Size Block Size

Figure 5.6: Average file size and render time as a function of block size

Sampling on a Square Lattice Sampling on a Square Lattice
2.35 ; 224 B
222 %
2.3 . 220
E 218
2.25 5
g 216 .
5 214 .
=
22 § .
§ 212 .
2 ;
215 210
208
21 206
[5 10 15 20 25 30 35 40 45 50 55 [5 10 15 20 25 30 35 40 45 50 55
Tolerance Angle Tolerance Angle

Figure 5.7: Average file size and render time as a function of tolerance angle for square lattice sampling.

6 Visibility

The simplest way to construct an image from a point sample representation is to render all of the blocks. However,
from a given viewpoint only a subset of the blocks are visible. If we can somehow identify this subset then we can
save time by rendering only those blocks which contribute to the final image. Since it is generally impractical to
compute this set exactly, we are interested in ways of quickly and conservatively estimating a set of visible blocks.

6.1 View Frustum Clipping

The first method which is used to test a block’s visibility is to see if it lies within the view frustum — the region of
space that is in the camera’s field of view. As usual, the view frustum is defined by a ‘near’ plane, a ‘far’ plane, and
the four planes which pass through the camera and the sides of the screen (Figure 6.1). We use a block’s bounding
sphere to determine whether or not the block lies entirely outside one of these planes. If it does, then we don’t need
to render it.

S
/, -
7 -
x4 Prag
-
/’I r”’
4 -7

near plane ,- PR

7 -~ far plane

4
4 -
=TI \

Figure 6.1: View Frustum

6.2 Spatial Subdivision

If a block lies inside the view frustum, then whether or not it is visible depends on whether or not it is obscured by
some other part of the object, which in turn depends on the position of the camera. A brute force approach to
determining visibility, then, is to subdivide space into a finite number of regions and to associate with each region a
list of potentially visible blocks. However, we chose not to implement a visibility test based on spatial subdivision
due to the large amount of storage required. Since this is a three dimensional problem, the number of bits of storage
which are needed is proportional to the number of blocks times the cube of the resolution of the spatial subdivision.

6.3 Visibility Masks

One way to lessen the amount of storage required is to reduce the dimensionality of the problem. If we restrict our
attention to viewpoints which lie outside the convex hull of the object, then whether or not a block is visible depends
only on the direction from which it is viewed. Visibility as a function of direction is a two dimensional problem
which we tackle using visibility masks.

The visibility mask is based on Normal Masks as introduced by Zhang and Hoff [Zhang97]. The sphere of
directions is subdivided into 128 spherical triangles using the procedure described in section 5.1 with two levels of
subdivision. Each triangle represents a set of directions. To each block, we assign a bitmask of length 128 - one bit
per triangle. The ™ bit in a block’s bitmask is 1 if and only if the block is visible (from a viewpoint outside the
convex hull of the object) from some direction which lies inside the k™ triangle. We call this bitmask the visibility
mask for that block.

29

Figure 6.2: The sphere of directions is subdivided into 128 triangles. Each triangle contains a set of
directions which is represented by a single bit in the visibility mask.

To compute the visibility masks, we render the entire set of blocks orthographically from a number of directions
in each triangle (typically ten directions per triangle). Each point is tagged with a pointer to its block; this tag is used
to determine the subset of blocks which contribute to the orthographic images. The visibility masks in this subset of
blocks are updated by setting the appropriate triangle bit.

The simplest way to make use of these masks at render time is to construct a visibility mask for the screen. In
this mask, the k™ bit is set if and only if some direction from a screen pixel to the eye lies inside the k™ triangle on
the triangulated sphere of directions. We then AND this mask with each block’s mask; a block is definitely not
visible if the result of this test is zero (illustrated in two dimensions in Figure 6.3).

(a) (b) (c) (d)

Figure 6.3: Using visibility masks to test visibility. (a) Eye-screen directions. (b) Set of directions from
which a point is visible. (c¢) Screen mask generated from set of screen-eye directions. (d) Visibility mask of
point. We can deduce that the point is not visible from the fact that the AND of the two masks is zero.

As explained in [Zhang97], however, using a single mask for the whole screen is overly conservative. We are,
in effect, using the entire set of directions from the eye to the screen to approximate the set of directions subtended
by a single block. In reality the latter set is almost certainly much smaller, so if we can improve the approximation
then we will improve the rate of culling.

To this end, we subdivide the screen into 2" x 2" square regions. In order to be able to quickly determine which
region contains a given block, we organize the regions into a binary space partitioning (BSP) tree of depth 2n. This
also enables us to gracefully handle the case in which a block straddles two or more regions by searching for the
smallest node of the BSP tree which contains the block. A mask is generated for each node of the BSP tree, and each
block is tested using the mask of the smallest node that contains the block. We note that the mask for each square
region specifies which spherical triangles it intersects when these triangles are projected onto the screen. These
masks can therefore be computed quickly and exactly by scan converting the projected triangles on the 2" x 2"
screen. The mask of each internal BSP tree node is then the OR of the masks of its two children.

There is naturally a tradeoff involved in choosing n - larger n will result in improved culling, but more overhead.
We have found that n = 2 gives the best performance on average (i.e. a 4 x 4 subdivision of the screen).

30

6.4 Visibility Cones

One of the basic visibility tests used in polygon rendering is “backface culling”; there is no need to render polygons
whose normals are pointing away from the viewer. We can adapt this test to point sample rendering. We begin with
the observation that, similar to polygons, the tangent plane at each point sample defines a half space from which the
point is never visible. Taking the intersection of these half spaces over all the points in a block, we obtain a region in
space, bounded by up to 64 planes, from which no part of the block is ever visible. It would be quite expensive to
attempt to exactly determine whether or not the camera lies inside this region. Instead, we can approximate the
region by placing a cone inside it. This visibility cone gives us a fast, conservative visibility test; no part of the
block is visible from any viewpoint within the cone.

(@ (b) (c)

Figure 6.4: Visibility cone in two dimensions. (a) Half space from which point is never visible.
(b) Region from which no part of the block is visible. (¢) Cone inside region.

In what follows we describe one possible way to choose this cone. Let p; (1 < i < 64) denote the points in a
block, and let n; denote their normals. The half space from which the i point is never visible is then defined by

(x—p)n;<0 (6.1)
We wish to define the axis of the cone parametrically by
p+m teR (6.2)

Take

p= %— (6.3)

And choose n such that min(n-n;) is maximized. The rationale for this is that we want the cone to be as large
I

as possible, so the apex angle should be as large as possible, so the worst discrepancy between n and some n; should
be minimized. We can solve for n exactly using the observation that it must be the spherical circumcircle of three of
the n;, so there are only a finite number of candidates to test. Note that all points in a block are obtained from a
single orthographic projection taken from some direction d. It follows that (-d)-n; > 0 for each i, so by definition of n

min(n-n;) Zmin(-d -n;) >0 (6.4)

Next, we find an apex g for the cone. Since g must on the line defined by equation (6.2), it is of the form
g=p+ion (6.5)
Since g must lie in each of the half spaces defined in (6.1), for each i we have

(p;—p)n

n-n;

(p+t,n=p;)-n; <0 = t) < (6.6)

31

Note that, from equation (6.4), we do not have to worry about this denominator being zero or negative. We
therefore set

fo = min[—————(p (=P] 6.7)
: n-n;

Next we must choose the angle o between the axis of the cone and the sides of the cone. If 3, is the angle
between n and n,, then in order to ensure that the cone lies inside each of the half spaces in (6.1) we must have
a <90— f; for each i (Figure 6.5).

Figure 6.5: Constraining the apex angle of the visibility cone. The cone has apex ¢ and axis n. The i point
is at p, with normal n,. The angle between n and n, is . To ensure that the cone lies in the half space
defined by (x - p,)-n, <0, we must have a <90 — f3,.

Since we want the apex to be as large as possible given this constraint, we take

o =min(90—- S,) (6.8)
The cone is then defined by
C-D N s 6.9)
e —d|

The following definition is equivalent and requires less computation to determine whether or not a point x lies
inside the cone:

n

(x—q)-

2
<0 and ((x—q)ALJ Z(,wc—-q)2 (6.10)
cos o cos o

The cone is thus defined by the apex ¢ and the vector v = . Note that

cosa
cosa = cos(min(90 -5,))= max(cos(90 — 3,))=max(sin B,)

=max(\/1—cos2 B)=\/I—min cos® 3, =\/l—min(n'n,)2
I] 1l

(6.11)

32

6.5 Experimental Results

In order to verify that the savings afforded by the visibility mask and the visibility cone outweigh their overhead, we
rendered the five objects shown in Figure 5.4 and the eight shown in Figure 6.6 (thirteen in total) both with and
without visibility cones and using a varying number of bits for the visibility masks. In Figure 6.7 we see that the best
speedup - slightly over 18% - results from a combination of visibility cones and 128 bit visibility masks. Using only
32 bits for the visibility mask yields nearly the same speedup, so this smaller mask size may in some cases be
preferable for reasons of simplicity and storage efficiency.

dragon gavel pencil

pine tree table tree

Figure 6.6: Models used for visibility experiments.

Percentage Blocks Culled Percentage Speedup

@ Mask only
B Mask + Cone

@ Mask Only
o Mask + Cone

0 32 128 512 o 32 128 512
Number of Mask Bits Number Mask Bits

Figure 6.7: Average percentage blocks culled and average percentage speedup as a function of visibility
tests used.

To find the best value for the parameter n mentioned in Section 6.3 (used to subdivide the screen into 2" x 2"
square regions), we again rendered each of the thirteen models varying n from 0 (no subdivision) to 6 (64x64
subdivision). Figure 6.8 show the average percentage improvement in culling and percentage speedup over the base
case n = 0 (no subdivision) as a function n. As expected, the culling improves as n is increased, but there is a
tradeoff between the savings in rendering time and the overhead of the visibility test. The optimal speedup occurs at
n =2 (4x4 subdivision).

Percentage Improvement in Culling Percentage Speedup
45 qives v s smmin v v e v - E . B T
0 3
35
2
30
1
25
20 ° -
1 2 3 4 5
15 1
10 2
5 4
3
0
0 1 2 3 4 5 6 44
Jog resolution log resolution

Figure 6.8: Average percentage improvement in culling and percentage speedup as a function of screen
subdivision factor.

34

7 Rendering

At this point we are ready to put together the pieces of the previous chapters and discuss the point sample rendering
algorithm in its entirety. There are five steps in the point sample rendering pipeline:

1. Visibility Testing. We conservatively estimate a set of visible blocks by clipping against the view frustum and
testing the visibility cone and the visibility mask of each block.

2. Block Warping. Each potentially visible block is warped [Wolberg 90] into the destination image and the
hierarchical Z-buffer. Points are not shaded at this stage; they are simply copied into the image buffer.

3. Finding Gaps. After all blocks have been warped we use the depths in the hierarchical Z-buffer to detect
surface holes as described in section 4.6.

4. Shading. Shading is performed in screen space. Each non-background pixel with non-zero weight is shaded
according to the current lighting model.

5. Filling Gaps. Finally, the surface holes which were detected in the third step must be coloured appropriately as
described in section 4.7.

Three of these steps have been dealt with previously. In this chapter we will discuss the procedure used to warp
blocks (sections 7.1 and 7.2) as well as the shading algorithm (section 7.3).

7.1 Basic Warping

In this section we will describe the basic Point Sample Rendering algorithm which maps each point sample to the
nearest pixel in the destination image. We will show how the computations can be optimized using incremental
calculations. We ignore for the time being the hierarchical Z-buffer which will be discussed in section 7.2.

Recall that the points in a block are stored in the coordinates of the orthographic projection from which the
block was obtained. We begin, then, by computing, for each projection, the transformation from projection space to
camera space. By camera space we mean the coordinate system in which the camera is at the origin and the screen
is a square of side 2 centered and axis-aligned in the plane z = 1. We can write this transformation as

x X A Ay Ag|lX| |V,
YVI=Aly|+v=1A, Ay Ay |y |FH vy (7.1)
7z’ z Au AZ_Y ALz z v,

where (x, y, z) are the projection space coordinates of a point, (x’, y’, z’) are the camera space coordinates, A is an
orthogonal matrix giving the rotation and scale components of the transformation, and v is a translation vector. We
can then compute the integer screen coordinates (i, v) from the camera space coordinates with a perspective divide
and a scale/offset which maps [-1, 1] to [0, N] as follows:

B A

where | -] denotes the greatest integer function and N is the resolution of the image. The complete transformation
from (x, y,) to (u, v) is thus

35

N| Apx+A y+A z+v,
u={— - +1
21 Apx+A,y+A z+y, |
i (7.3)
N| A x+A y+A z+v,
y=|— = — - —+1
2| Apx+A,y+Azzty,

If we use the straightforward approach of computing the full transformation for each point, then we need 9
additions and 9 multiplications to compute x’, y’, z’, 1 reciprocal to compute 1/z’, and 2 more additions and 4 more
multiplications to compute u, v for a total of 11 additions, 13 multiplications and 1 reciprocal for each point. We can
reduce this to 11, 11 and 1 by absorbing the factor of N/2 in the precomputed matrix coefficients.

The destination image is Z-buffered. Since shading is performed in screen space after all blocks have been
warped, points must be copied to the image ‘as is’; at each image pixel we must be able to store a point’s diffuse
colour, specular colour, normal and shininess. The following pseudocode outlines the warping procedure:

for each point
compute u, v, z'
if (z’ < depth(u, v))
depth(u, v) = z’
copy point to pixel(u, v)
end 1if
end for

where depth(u, v) denotes the Z-buffer depth at (#, v) and smaller depths are closer to the viewer.
7.1.1 Incremental Calculations

We can reduce the number of operations required by using incremental calculations to take advantage of the fact that

the points have been sampled on a regular lattice. Let (x,,y,,z,) be the projection space coordinates of the i” point

in a block; let (x,’,y,’,z,’) be its camera space coordinates, and (u,,v,) its integer screen coordinates. If

(X,_1»¥~1>2,;) and (x,,y,,z,) are adjacent points on the same row of a block, then
X, =x,_ +dx and Y, = Vo (7.4)
where dx is the fixed spacing between point samples. If we define

X

q, =Aux, + Ay, v, (7.5)

p,=ALx + Ax_‘ Yy, +v
r= Azxxl + AZ\'yl +v.
then we can compute (,,v,) much more efficiently as follows:

P, =P +Axxdx 4, =4, +A\‘xdx n=ra +Azxdx
xl’=pl+AXZZl y1’=q1+szzl ZI’=I'I+AZZZ,

u = M5 p = M2y
21z’ 21 z°

This now requires 8 additions, 5 multiplications and 1 reciprocal per point, a significant improvement. Here we
are again assuming that N/2 is absorbed into other constants, and we note that A,.dx, A,.dx, and A,dx are not counted
as multiplications as these values can be pre-computed.

(7.6)

36

To move from one row points in the block to the next we use a slightly different set of constants, but the
derivation is exactly the same. Since we sample on an equilateral triangle lattice, equation (7.4) becomes:

X, =X;_ +£ and Y, =Y +£dx 7.4
! i-8) I Yi-g)

We can then adjust the update equations for p,, g, and r, accordingly.
7.1.2 Optimized Incremental Calculations

We can, in fact, compute (u,, v,) using even fewer operations. To see how this is possible, we rewrite (7.3) using the
definitions in (7.5), then add and subtract a constant from each fraction:

XZ
P, r
-+ A A A
ul=lp_l_xZ_ZL+1 =ﬂ 2z +xz+1
_2 ri+AzzZt 2 rt+AzzZi Azz
) (7.7)
A.
N q’_AJZ tA
LA Nl eyt
N n+Agz, Ay
Thus, if we define
A
p’=p;i——*%r,
] 1 sz
¥z
9,'=q,———r (7.8)
1 1 Azz
r’=r,

then we can rewrite (7.6) as follows:

s) A A 5) A' A 5 s
P, = Pig +[Axx - Z zx}’ 9, =4i +£Ayx - :; Z’CPX L=rha +Azxdx
2 zZ
’ o A
u = Nipl, As v, = Niai, B
20z A, 21z A,

This now requires 6 additions, 3 multiplications and 1 reciprocal per point. Again we assume that N/2 is
absorbed into other constants, and we do not count additions and multiplications of constants that can be
precomputed. The equations for moving from one row to the next are again derived analogously.

(7.6%)

7.2 Hierarchical Z-buffer

In order to implement the surface reconstruction algorithm presented in Chapter 4, each block must be warped into
the hierarchy of Z-buffers at a low enough resolution such that its points can’t spread out and leave holes. If the

. N L
image resolution is NxN, then the k" depth buffer has resolution [—k—wxlr—]yk—" where [-] denotes the least integer
2 2

37

function. To select an appropriate depth buffer for the block, we start with the assumption that the block is an
adequate sampling for orthographic views with unit magnification at MxM pixels. Suppose that the object is being
rendered with magnification ¥ and let d =min z,” where z,”is the camera space depth of the i point in the block as

before. Then the worst case effective magnification of the block, taking into account the change in resolution, the
object magnification, and the perspective projection, is

w
= (7.9)

To compensate for this, we need to choose the depth buffer such that

M};Vzk <1 (7.10)

nfbfZ) o

It is fairly expensive to compute d =min z,’ exactly. As an approximation, we can instead use the distance d’
1

Thus, we take

from the camera to the bounding sphere of the block. This provides a lower bound for d and is much easier to
calculate.

If kK = 0, then the block is being warped into the usual depth buffer only and we do not need to make any
modifications to the warping procedure of section 7.1. If k > 0, then we need to augment the warping procedure as
follows:

for each point
compute u, v, z’
if (z’ < depth(0, u, v))
depth(0, u, v) = z°’
copy point to pixel(u, v)

u’ = u/2%k
v’ = v/2"k
if (z' + threshold < depth(k, u’, v'))
depth(k, u’, v’) = z’ + threshold
end if

end for
where depth (k, u, v) denotes the k” Z-buffer depth at (u, v).

Note that instead of simply testing the point’s Z value against the value in the depth buffer, we first add a small
threshold. The reason for this is that the depth buffer will be used to filter out points which lie behind the foreground
surface; the use of a threshold prevents points which lie on the foreground surface from being accidentally discarded.
For example, suppose 3 points from a foreground surface and 1 point from a background surface are mapped to four
different image pixels contained in a single depth map pixel (shown in one dimension in Figure 7.1). Without the
threshold, all but the nearest of these points will be discarded (Figure 7.1a). The use of a threshold prevents this
from happening (Figure 7.1b), allowing us to use all or most of the surface points when computing the final image.
We found a good choice for the threshold to be three times the image pixel width; smaller thresholds produce images
of lower quality, while larger thresholds begin to have difficulty discriminating between foreground and background
surfaces. Figure 7.2 shows the striking difference in image quality which results from the use of a threshold; the left
image was rendered using a threshold of three times the image pixel width.

38

L]

(a) (b)

Figure 7.1: Four points are mapped to different image pixels contained in a single depth map pixel. (a) No
depth threshold - only the nearest point is retained. (b) The use of a small threshold prevents points on the
same surface as the nearest point from being discarded

Figure 7.2: Depth threshold (left) vs. no threshold (right)

7.3 Shading

After all the blocks have been warped and weights have been assigned to image pixels as described in section 4.6,
the non-background pixels with positive weight must be shaded according to the current lighting model. Performing
shading in screen space after pixels have been weighted saves time by shading only those points which contribute to
the final image. For our purposes the lighting model is Phong shading with shadows, but one could certainly
implement a model which is more or less sophisticated as needed.

Since point sample normals are stored in object space, we perform shading calculations in object space to avoid
transforming the normals to another coordinate system. We therefore need to recover object space coordinates for
the points contained in the image pixels. Since we do not store the exact camera space x’ and y’ coordinates for
points when they are copied to pixels in the image buffer, we assume that they are located at the pixel centers. Using
the z’ coordinates which are stored in the image Z-buffer, we can then transform the points from camera space to
object space. The pixel centers form a regular square lattice, so this transformation can be done quickly using

incremental calculations.

It is worth noting that because of the dense reflectance information contained in point sample models, the
resulting specular highlights are of ray-trace quality, as can be seen in Figure 7.3.

39

Figure 7.3: High quality specular highlights.
7.3.1 Shadows

Shadows are computed using shadow maps [Williams78]. For each light, we render the object from the light’s
viewpoint and use a hierarchical depth map to store Z values. Since we are only interested in creating a depth map,
we don’t have to worry about copying points’ reflectance information into a destination image. The warping
procedure is thus greatly simplified. For each block we again choose an appropriate level k in the depth buffer
hierarchy and then warp the points as follows:

for each point

compute u’', v’', z'
if (z' < depth(k, u’, v"))
depth(k, u’, v') = z’
end if
end for

To calculate how much of a given point is in shadow, we first transform the point to light space, the coordinate
system of the light’s hierarchical depth map. We then compute a coverage for the point using almost exactly the
same procedure as that used in section 4.6 for detecting gaps. The only difference is that we subtract a small bias
from the point’s depth before comparing it to the depths in the shadow map, as in [Williams78] and [Reeves87], to
prevent surfaces from casting shadows on themselves due to small inaccuracies in the computation of the points’
light space coordinates. In our case, these inaccuracies arise primarily from the fact that the points’ x” and y’ camera
space coordinates are rounded to pixel centers.

Since the warping procedure used to create shadow maps is so simple, it is extremely fast. As a result, shadows
can be computed with much less overhead than would normally be expected from an algorithm which re-renders the
object for each light source. For example, Figure 7.4 was rendered at 256x256 pixels with three light sources - two
directional lights and a spotlight. It took 204ms to render without shadows and 356ms with shadows - an overhead
of less than 25% per light source.

Figure 7.4: Fast shadows.

40

7.3.2 Backfacing Points

Since the normals of the points are not inspected when they are copied to the image buffer, it is entirely possible for
some of them to be pointing away from the viewer. For solid objects, these points necessarily lie behind a
foreground surface and will thus usually be filtered out (Figure 7.5a). However, points that lie near a corner may be
missed by the filtering process because of the small threshold that is used to avoid discarding points on the
foreground surface (Figure 7.5b). This can cause incorrectly coloured pixels to appear in the final image (Figure
7.6a). To fix this problem, we must eliminate backfacing points by assigning them a weight of zero (Figure 7.6b).
This is performed during shading, which is when the points’ normals are extracted.

.._.hw

=
¥) LY

(a) (b)

Figure 7.5: (a) Most backfacing points are filtered out because they lie behind a foreground surface.
(b) Backfacing points near a corner can sneak in.

(a) (b)

Figure 7.6: Close up of the edge of a cylinder. (a) Backfacing points are not eliminated; some pixels
are coloured incorrectly. (b) Backfacing points are eliminated.

4]

42

8 Results

Our test system was run as a single process on a 333MHz dual Pentium II with 512MB RAM. Table 8.1 gives file
size, number of blocks and construction time for the fourteen models shown in Figure 8.1. The models were
rendered with no shadows and a single directional light source at 256x256 pixels; Table 8.2 gives timing statistics for
these settings. ‘init’ refers to the initialization stage during which all buffers are cleared and the screen visibility
masks are constructed. The remaining times are for the five rendering steps described in Chapter 7. The largest of
the models, ‘Tree’, was obtained from an Inventor model which contains 26,438 cones and ellipsoids and takes over
10 seconds to render using the Inventor Scene Viewer running on the same machine

Figure 8.1: Models for which statistics are presented: Chair, Dragon, Gavel, Kittyhawk, Pencil, Pine Tree,
Plant, Sailboat, Table, Teapot, Top, Toybird, Tree and Wheel.

43

Chair | Dragon | Gavel | Kittyhawk | Pencil | Pine Tree | Plant
File size (MB) 1.32 0.96 1.20 1.73 0.38 7.12 2.33
Number of blocks 2666 2100 1779 3390 682 11051 3973
Construction time 0:15 0:18 0:08 1:02 0:09 1:35 0:34
(hours : minutes)
Sailboat | Table | Teapot | Top Toybird | Tree Wheel
File size (MB) 1.00 1.86 1.94 2.96 1.46 7.41 2.19
Number of blocks 1786 3128 2871 | 4473 2411 10694 4742
Construction time 0:13 1:18 0:34 0:43 0:11 4:08 1:04
(hours : minutes)
Table 8.1: Model statistics
time (ms) Chair | Dragon | Gavel | Kittyhawk | Pencil | Pine Tree | Plant
init 9 10 9 10 10 9 10
visibility 3 3 3 5 1 9 7
warp 44 36 38 62 15 226 74
find gaps 3 7 6 8 5 4 9
shade 14 18 20 23 12 25 24
pull 7 7 7 7 7 7 7
push 2 3 2 3 2 2 3
total 82 84 85 118 52 282 134
time (ms) Sailboat | Table | Teapot | Top | Toybird | Tree | Wheel
init 9 10 10 9 10 9 10
visibility 2 6 5 6 4 11 8
warp 33 52 55 61 50 171 73
find gaps 6 7 7 3 8 6 4
shade 18 21 25 21 23 27 29
pull 7 7 7 6 7 7 6
push 2 3 2 2 3 3 2
total 77 106 111 108 105 234 132

Table 8.2: Timung statistics. All times are given in milliseconds for a software only implementation running
on a 333MHz Pentium II.

Table 8.3 shows the extent to which the two visibility tests (visibility cone and visibility mask) are able to
eliminate blocks in these images. Note that the visibility cone works quite well for objects with low curvature (e.g.
Teapot, Top) but poorly for objects with high curvature (e.g. Chair, Pine Tree). This is due to the fact that surfaces
with high curvature are visible from a larger set of directions. In most cases the visibility cone is outperformed by
the visibility mask, but it is still able to provide some additional culling.

44

% culled Chair Dragon Gavel Kittyhawk Pencil Pine Tree Plant
Neither 0 0 0 0 0 0 0
Cone only 13.5 16.1 19.3 14.3 23.8 1.2 29.3
Mask only 15.6 19.1 29.1 25.0 26.8 11.1 27
Both 19.0 24.1 31.9 26.6 30.5 11.6 34

% culled Sailboat Table Teapot Top Toybird Tree Wheel
Neither 0 0 0 0 0 0 0
Cone only 27.2 26.0 32.1 39.6 23.0 49 20.3
Mask only 26.9 30.7 25.5 37.5 20.5 36.5 222
Both 31.0 36.0 353 46.4 27.5 36.8 253

Table 8.3: Culling statistics. Percentage of blocks eliminated as a function of which visibility tests are used.

We did not make any attempt to compress the models. The purpose of the test system was to investigate point

sample rendering; compression is an orthogonal issue.

compression a necessity.

Furthermore, the models are not so large as to make

45

46

9 Discussion and Future Work

Point sample rendering allows complex objects to be displayed at interactive rates on today’s inexpensive personal
computers. It requires no hardware acceleration, it has only modest memory requirements, and it fully supports
dynamic lighting.

The key to the speed of our algorithm is the simplicity of the procedure used to warp points into the destination
image. All of the relatively expensive computations - shading, finding gaps, and filling gaps - are performed in
screen space after all points have been warped. This places an absolute upper bound on the overhead of these
operations, independent of the number and/or complexity of models being rendered. Ideally, one would also like the
overall rendering time to be independent of model complexity. Although this is not the case, it is very nearly so; for
example, the ‘pine tree’ inventor model is two orders of magnitude more complex than ‘sailboat’, yet the point
sample rendering time is less than four times greater.

In the following sections we discuss some issues which were not fully addressed by this thesis and are therefore
suitable subjects for further investigation.

9.1 Artifacts

For the most part, the images generated using point samples are of high quality, comparable or superior to images
generated using polygons. However, they are not without artifacts. In particular, they suffer from rough edges and
occasional surface holes.

9.1.1 Rough Edges

Without the precise geometric information available in polygon rendering, it is difficult to perform any sort of sub-
pixel anti-aliasing, particularly at silhouette edges. There are clearly visible artifacts in Figure 8.1 due to this
problem. A brute force solution is to increase the sampling density and render objects at double the image
resolution. This works well (Figure 9.1b), but has the obvious disadvantage of being significantly slower. A more
sophisticated variant of this solution would be to store both low and high resolution copies of each block, using the
slower high resolution copy only for those blocks that lie on a silhouette edge. A less expensive alternative is to take
the approach of [Levoy96] and artificially blur the image to hide the problem (Figure 9.1c).

(b)

Figure 9.1: (a) Rendered at 128x128, no anti-aliasing. (b) Rendered at 256x256 and displayed at 128x128
(2x2 subpixel anti-aliasing). (¢) Artificially blurred.

The noisy edges in Figure 9.1a are quite different from the ‘jaggies’ that one observes in polygon rendering. They
seem, at first, to indicate a software or arithmetic error in the rendering process. However, they are simply an artifact
of the manner in which surfaces are sampled. Figure 9.2 illustrates how these noisy edges can arise when rendering
using point samples.

47

(a) (b)

Figure 9.2: (a) A surface is rendered by scan converting polygons. Pixels are coloured if their centers lie
inside a polygon, producing jagged edges. (b) A surface is rendered using point samples. Pixels are
coloured if they are hit by a point sample, which can produce noisy edges.

9.1.2 Surface Holes

The algorithm described in section 4.6 to detect tears works well in general. In particular, it is guaranteed to
eliminate surface holes in surfaces that have been adequately sampled and are rendered to a single level of the depth
buffer hierarchy. However, it is possible for the blocks of a surface to be warped into two (or more) different levels
of the hierarchy; in this case the algorithm provides no guarantee that pixels which lie at the interface between levels
and represent holes will be given zero weight. In fact, we do occasionally see holes in such regions, as shown in
Figure 9.3.

Figure 9.3: Surface holes occasionally appear at the interface between different levels of the depth
buffer hierarchy.

It is not immediately clear how to deal with this problem. One possible approach is to detect when a pixel is
partially covered by multiple levels of the depth buffer hierarchy. In this case the coverages can be weighted more
heavily, for example they can be multiplied by a factor greater than one. This will make it more likely that
background pixels in these in-between regions are given a coverage > | and hence zero weight.

48

9.2 Object Modeling

The goal of the modeling process is to generate an adequate sampling of an object using as few point samples as
possible. In chapter 5 we presented one possible approach; it is by no means the only one, and it can almost
certainly be improved upon. This is definitely an area that merits further investigation.

9.2.1 Generating Point Samples

The algorithm in Chapter 5 made use of a single set of orthographic projections which did not depend on the object
being modeled. The obvious alternative is to use a data dependent set of projections. The only constraint on the
projections is that their union should provide an adequate sampling; one could therefore use geometric knowledge of
the object to try to find a minimal set having this property. For simple objects such as “Top’ this set would contain
relatively few projections, whereas for more complicated objects such as ‘Kittyhawk’ and ‘Pine Tree’ it would
contain more.

One limitation of any algorithm which samples orthographic projections on a regular lattice is that it is difficult
to properly sample thin spoke-like structures which are on the order of one pixel wide. As a result, such structures
often appear ragged in rendered images (Figure 9.4). One possible solution to this problem is to vary the spacing
between lattice points as needed. Another possible solution, which is itself an interesting area of investigation, is to
have objects generate their own point samples rather than relying on some external sampling process. Each
geometric primitive would produce a set of points which form an adequate sampling of the primitive, much in the
same way that primitives ‘dice’ themselves into micropolygons in the Reyes rendering architecture [Cook87]. The
difficulty lies in organizing these generated points into blocks or some other structure so that they may be stored and
rendered efficiently.

Figure 9.4: Ragged spokes.
9.2.2 Selection of Blocks

The greedy algorithm presented in Chapter 5 for selecting a set of blocks made no use of the fact that some blocks
are ‘better’ than other blocks in the sense that they do a better job of sampling the surface of the object. In
particular, a surface will be more densely sampled by projection directions close to the surface’s normal. This
observation could be used as the basis of an algorithm for selecting blocks. Each block could be scored based on the
deviation of the point sample normals from the projection direction, or the spacing between the point samples on the
surface of the object, or a combination of both. One could then walk through the entire set of blocks in the order of
lowest score to highest score, discarding any blocks that are not needed to form an adequate sampling of the object.
This algorithm would likely be much slower than the one presented in Chapter 5, but it could potentially produce a
better selection of blocks.

9.2.3 Partial Blocks

An implicit assumption has been made that if a block is selected for inclusion in the final point sample model, then
all the point samples in the block are retained. In fact there is no reason why this is necessary. If it can somehow be
determined that a particular point sample is not needed to form an adequate sampling of the object, then that point
sample can be discarded without harm. This decreases the disk storage space of the model, and reduces the amount
of computation that must be performed at render time (using the notation of section 7.1.2, we would still need to

49

compute p’, ¢’ and r’ to preserve the integrity of the incremental calculations, but we would not need to compute z’,
u and v). It may not decrease the amount of memory required to store the model since, to optimize rendering time,
the blocks may be stored as fixed-sized arrays of point samples.

Note that it is already necessary to handle partial blocks since not every ray which is traced in a given
orthographic projection will intersect the object. In our software system, we use a bitmask to indicate which point
samples are missing in the disk images, and we mark these point samples as invalid by giving them infinite depth
when the blocks are loaded into memory. We can therefore discard unwanted point samples simply by marking them
as invalid; we do not need to augment either the internal block representation or the rendering algorithm.

9.3 Hardware Acceleration

Although point sample rendering does not rely on hardware acceleration, it could certainly benefit from such
support. Moreover, this hardware need not be special purpose; the block warping procedure is extremely simple and
involves at most two conditionals, both of them Z-buffer tests. Furthermore, the algorithm exhibits a high degree of
data locality as each point is warped independently and there are no references to global data structures such as
texture maps or bump maps. The algorithm is therefore naturally vectorizable and parallelizable, and could easily be
implemented on any SIMD or VLIW architecture

9.4 Real Objects

A topic which invariably arises in any discussion of modeling paradigms is the acquisition of models from real
objects. In order to construct a point sample model for an object, it is necessary to somehow obtain both shape and
reflectance information for that object. This is a challenging problem, but it has been addressed quite successfully by
Sato, Wheeler and Ikeuchi [Sato97a]. In fact, one of the problems they encountered was that the models they
generated - which included dense grids containing colour, normal and specular information - could not be rendered
using standard software or hardware. It was therefore necessary for them to write software to display these models,
and image generation was slow [Sato97b]. This problem would be solved by generating point sample
representations of these models which would make full use of the reflectance information and could be rendered in
real time.

9.5 Decimation

The density at which an object is sampled depends on the approximate resolution and magnification at which the
object is to be viewed. In this thesis we have discussed at length how to handle magnification, but we have not dealt
with the issue of decimation. Of course the algorithm will work without modification if either the resolution or the
magnification are decreased, but there are two reasons why this (null) solution is not satisfactory:

i) Many more points will be rendered than are necessary to display the object; this will slow down rendering
considerably.

i1) This would lead to the types of aliasing artifacts which are seen in non mip-mapped textures.

A natural approach is to use a form of mip-mapping, storing multiple representations of the object at various
magnifications. However, since it is not possible to interpolate between consecutive representations (as in mip-
mapped textures), we would need to choose a single representation at render time based on the object’s current
magnification. This could lead to ‘popping’ artifacts as the object moves closer to or further away from the viewer.
A better approach may be to mip-map at the block level; this would also take into account the fact that different parts
of the object are magnified by different amounts.

50

10 Conclusion

Point Sample Rendering is an algorithm which features the speed of image based graphics with quality, flexibility
and memory requirements approaching those of traditional polygon graphics. Objects are represented as a dense set
of point samples which can be rendered extremely quickly. These point samples contain precise depth and
reflectance information, allowing objects to be rendered in dynamically lit environments with no geometric artifacts.
Because the point samples are view-independent, point sample representations contain very little redundancy,
allowing memory to be used efficiently.

We have introduced a novel solution to the problem of surface reconstruction, using a combination of adequate
sampling and hierarchical Z-buffers to detect and repair surface tears. This approach does not sacrifice the speed of
the basic rendering algorithm, and in certain cases it guarantees that images will not contain holes. We have also
shown how a variant of percentage closer filtering [Reeves87] can be used to eliminate artifacts which result from a
straightforward utilization of the hierarchical Z-buffer.

Because of its flexibility, Point Sample Rendering is suitable for modeling and rendering complex objects in
virtual environments with dynamic lighting such as flight simulators, virtual museums and video games. It is also
appropriate for modeling real objects when dense reflectance information is available. Since Point Sample
Rendering has low memory requirements, it can be implemented on inexpensive personal computers.

In this thesis, we have shown that it is possible to render directly from point samples. Our software system,
implemented on a 333MHz Pentium II, has demonstrated the ability of Point Sample Rendering to render complex
objects in real time. It has also shown that the resulting images are of high quality, with good shadows and ray-trace
quality specular highlights. With further research, particularly in the areas discussed in chapter 9, Point Sample
Rendering will become a mature, robust rendering algorithm.

51

Appendix - 32 Bit Packed RGB Arithmetic

Ordinarily, performing arithmetic on colour values requires repeating each operation three times — once for each
colour channel. On a 32 bit machine we can sometimes avoid this repetition of operations by storing RGB values in
the following packed form:

OORRRRRRRR0 0GGGGGGGG0 0BBBBBBBB0 0

This allows up to four such values to be added as regular integers without worrying about overflowing from one
colour channel to the next; the result of such an addition will be of the form

RRRRRRRRRRGGGGGGGGGGBBBBBBBBBBO 0

We used packed RGB values to speed up the pull-push algorithm by a factor of nearly three.

Pull

Recall that the lower resolution image approximations are computed by repeatedly averaging 2x2 blocks of pixels,
taking the weight of the new pixel to be the sum of the weights of the four pixels, capped at 1. If cf, yand wf, , are the

colour and weight of the (x, y) pixel in the k™ low resolution approximation, then

k k k k k k & x
ket W22y 2y T Wori1 0y C o2y F W2 2041020 2540 T Wi, 2041 C2x1, 2541

Cxn =

k k k k
W2x,2.\ + Woxt1,2y + Wox,2v+1 + W2x+],2\'+l

k+l _ k k k k
Wiy = MIN(I’ War2y + Wox+1,2y + Wor2vn T W2x+1,2\+l)

We cannot directly implement these equations using packed RGB arithmetic because of the wc product terms.

ko k

However, suppose we define d f’\ =w,,c,,. We can then implement the equations using the following sequential

steps:
Woum = wl?fx,Z\ + W§x+],2\ + ng,zm + ng,zm ey
wil = MIN(, wy,,) 2)
dchc,tI = dé(x,Z\' + d§x+l,2\' +d2kx,2\+1 +d§x+l,2\+l (3)

i Wym >l then 4=

C))

Sum

Step (3) can now be performed using packed RGB values without, as mentioned before, worrying about
overflowing from one colour channel to the next. Now if w,,, < 1 then we’re done. We don’t need to perform the

division of step (4), and the definition of d f . ensures that if w,, < I then each of the three colour channel sums is

<255,s0 d ftl 1s guaranteed to still have 0’s in between the colour channels. If wy,, > 1, then we need to perform

the division. In the general case this cannot be accomplished using packed arithmetic; we must unpack, perform
three divisions, and repack. However, in the common case all the weights are zero or one, so we will be dividing by
2, 3 or 4. Division by 2 or 4 is trivial; to divide by 3 we multiply by 1/3. The binary expansion of 1/3 is
.01010101..., so this can be accomplished as follows:

52

// create the bitmask 00111111110011111111001111111100
#define RGBMASK 0x3fcff3fc

// Fast divide by 3

// rgb is the result of the sum in step (3)

rgb = ((rgb >> 2) & RGBMASK) +
(({rgb & Oxff3fcff0) >> 4) & RGBMASK) +
({((rgb & 0xfc3f0fc0) >> 6) & RGBMASK) +
(((rgb & 0xf03c0£00) >> 8) & RGBMASK);

Note that if w,,, = 3, then each colour channel is at most 3x255 before the divide, so after the divide we are
once again guaranteed to have 0’s in between the colour channels.

Push

Recall that an interpolated colour Eﬁ , is computed using as interpolants the three closest pixels in the (k+1)" image
with weights ¥2, ¥4 and %, e.g.:

~k R VY SR ST SV R 50

C2x+l,2y+l _Ecx,y +Zcx+l,y +Zcx,y+1
with similar expressions for 52",(,2). , 52’; +1,2y» and 52';,2\. +1- The interpolated colour is then blended with the pixel’s

original colour:

k

X,y

ko= wk

k k o\~
Xy yCry T 1- Wiy)

It is straightforward to compute the interpolated colour using packed arithmetic:
rgb_interp = ((rgbl >> 1) + ((rgb2 + rgb3) >> 2)) & RGBMASK

where RGBMASK is as defined previously. To blend the two colours together we again, in the general case, need to
unpack, perform three blends, and repack. However, in the common case (all weights are zero or one) we either

don’t need to blend (wf, y = 0) or we don’t need to compute an interpolated colour at all (wf‘ , =)

53

References

[Blinn76]

[Camahort98]

[Catmull75]

[Chen93]

[Chen95]

[Cline88]

[Cook87]

[Csuri79]

[Curless96]

[Dally96]

[Dischler98]

[Gortler96]

[Greene93]

[Heckbert87]

54

James F. Blinn, Martin E. Newell, “Texture and Reflection in Computer Generated Images”,
Communications of the ACM (SIGGRAPH 76 Proceedings), Vol 19, No. 10, 1976, pp. 542-547

Emilio Camahort, Apolstolos Lerios, Donald Fussell, “Uniformly Sampled Light Fields”, Proc. 9"
Eurographics Workshop on Rendering, Vienna, Austria, June 1998, pp. 117-130

Edwin A. Catmull, “Computer Display of Curved Surfaces”, Proceedings of the Conference on
Computer Graphics, Pattern Recognition and Data Structure, May 1975, pp. 11-17.

Shenchang Eric Chen, Lance Williams, “View Interpolation for Image Synthesis”, Proc.
SIGGRAPH °93. In Computer Graphics Proceedings, Annual Conference Series, 1993, ACM
SIGGRAPH, pp. 279-285

Shenchang Eric Chen, “QuickTime® - An Image-Based Approach to Virtual Environment
Navigation”, Proc. SIGGRAPH ’95. In Computer Graphics Proceedings, Annual Conference
Series, 1995, ACM SIGGRAPH, pp. 29-37

H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Crawford, B. C. Teeter, “Two Algorithms for the
three-dimensional reconstruction of tomograms”, Medical Physics, Vol. 15, No. 3, May-June
1988, pp. 320-327.

Robert L. Cook, Loren Carpenter, Edwin Catmull, “The Reyes Image Rendering Architecture”,
Computer Graphics (SIGGRAPH ’87 Proceedings), Vol. 21, No. 4, July 1987, pp. 95-102

C. Csuri, R. Hackathorn, R. Parent, W. Carlson, M. Howard, “Towards an Interactive High Visual
Complexity Animation System”, Computer Graphics (SIGGRAPH °79 Proceedings), Vol. 13, No.
2, August 1979, pp. 289-299

Brian Curless, Marc Levoy, “A Volumetric Method for Building Complex Models from Range
Images”, Proc. SIGGRAPH °96. In Computer Graphics Proceedings, Annual conference Series,
1996, ACM SIGGRAPH, pp. 303-312

William J. Dally, Leonard McMillan, Gary Bishop, Henry Fuchs, “The Delta Tree: An Object-
Centered Approach to Image-Based Rendering”, Artificial Intelligence memo 1604, Massachusetts
Institute of Technology, May 1996.

Jean-Michel Dischler, “Efficiently Rendering Macro Geometric Surface Structures with Bi-
Directional Texture Functions”, Proc. 9 Eurographics Workshop on Rendering, Vienna, Austria,
June 1998, pp. 169 - 180

Stephen J. Gortler, Radek Grzeszczuk, Richard Szeliski, Michael F. Cohen, “The Lumigraph”,
Proc. SIGGRAPH ’96. In Computer Graphics Proceedings, Annual Conference Series, 1996,
ACM SIGGRAPH, pp. 43-54

Ned Greene, Michael Kass, Gavin Miller, “Hierarchical Z-buffer Visibility”, Proc. SIGGRAPH
’93. In Computer Graphics Proceedings, Annual Conference Series, 1993, ACM SIGGRAPH, pp-
231-238

Paul S. Heckbert, “Ray Tracing Jell-O® Brand Gelatin”, Computer Graphics (SIGGRAPH °87
Proceedings), Vol. 21, No. 4, July 1987, pp. 73-74

[Heckbert89]

[Hoppe92]

[Laveau94}

[Levoy85]

[Levoy96]

[Lipman80]

[Maciel95]

[Mark97]

[Max95]

[McMillan95]

[Miller98]

[Mitchell87]

[Pulli97]

[Reeves83]

[Reeves85]

[Reeves87]

[Smith84]

Paul S. Heckbert, “Fundamentals of Texture Mapping and Image Warping”, Masters Thesis, Dept.
of EECS, UCB, Technical Report No. UCB/CSD 89/516, June 1989

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, Werner Stuetzle, “Surface
Reconstruction from Unorganized Points”, Computer Graphics (SIGGRAPH ’92 Proceedings),
Vol. 26, No. 2, July 1992, pp. 71-78

S. Laveau, O.D. Faugeras, “3-D Scene Representation as a Collection of Images and Fundamental
Matrices”, INRIA Technical Report No. 2205, February 1994

Mark Levoy, Turner Whitted, “The Use of Points as a Display Primitive”, Technical Report TR
85-022, The University of North Carolina at Chapel Hill, Department of Computer Science, 1985

Mark Levoy, Pat Hanrahan, “Light Field Rendering”, Proc. SIGGRAPH °96. In Computer
Graphics Proceedings, Annual Conference Series, 1996, ACM SIGGRAPH, pp. 31-42

A. Lippman, “Movie-Maps: An Application of the Optical Video disk to Computer Graphics”,
Proc. SIGGRAPH ’80, 1980

Paulo W. Maciel, Peter Shirley, “Visual Navigation of Large Environments Using Textured
Clusters”, Proc. 1995 Symposium on Interactive 3D Graphics, April 1995, pp. 95-102

William R. Mark, Leonard McMillan, Gary Bishop, “Post-Rendering 3D Warping”, Proc. 1997
Symposium on Interactive 3D Graphics, pp. 7-16

Nelson Max, Keiichi Ohsaki, “Rendering Trees from Precomputed Z-Buffer Views”, 6
Eurographics Workshop on Rendering, Dublin, Ireland, June 1995, pp. 45-54

Leonard McMillan, Gary Bishop, “Plenoptic Modeling: an image-based rendering system”, In
Computer Graphics Proceedings, Annual Conference Series, 1995, ACM SIGGRAPH, pp. 39-46

Gavin Miller, Steven Rubin, Dulce Poncelen, “Lazy Decompression of Surface Light Fields for
Precomputed Global Illumination”, Proc. 9" Eurographics Workshop on Rendering, Vienna,
Austria, June 1998, pp. 281-292

Don P. Mitchell, “Generating Antialiased Images at Low Sampling Densities”, Computer Graphics
(SIGGRAPH ’87 Proceedings), Vol. 21, No. 4, July 1987, pp. 65-69

Kari Pulli, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda Shapiro, Werner Stuetzle,
“View-based Rendering: Visualizing Real Objects from Scanned Range and Color Data”,
Rendering Techniques '97, Proc. Eurographics Workshop, pp. 23-34

William T. Reeves, “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,
Computer Graphics (SIGGRAPH ’83 Proceedings), Vol. 17, No. 3, July 1983, pp. 359-376

William T. Reeves, “Approximate and Probabilistic Algorithms for Shading and Rendering
Structured Particle Systems”, Computer Graphics (SIGGRAPH ’85 Proceedings), Vol 19, No. 3,
pp- 313-322

William T. Reeves David H. Salesin, Robert L. Cook, “Rendering Antialiased Shadows with
Depth Maps”, Computer Graphics (SIGGRAPH ’87 Proceedings), Vol. 21, No. 4, July 1987, pp.
283-291

Alvy Ray Smith, “Plants, Fractals and Formal Languages”, Computer Graphics (SIGGRAPH ’384
Proceedings), Vol. 18, No. 3, July 1984, pp. 1-10

55

[Sato97a]

[Sato97b]

[Schaufler95]

[Schaufler97]

[Toborg96]

[Turk94]

[Westover90]

[Wolberg90]

[Wong97]

[Zhang97]

56

Yoichi Sato, Mark D. Wheeler, Katsushi Ikeuchi, “Object Shape and Reflectance Modeling from
Observation”, Proc. SIGGRAPH ’'97. In Computer Graphics Proceedings, Annual Conference
Series, 1997, ACM SIGGRAPH, pp. 379-387

Yoichi Sato, Personal Communication (Question period following presentation of [Sato97a],
SIGGRAPH 1997)

Gernot Schaufler, “Dynamically Generated Imposters”, MVD ’95 Workshop “Modeling Virtual
Worlds — Distributed Graphics”, Nov. 1995, pp. 129-136

Gernot Schaufler, “Nailboards: A Rendering Primitive for Image Caching in Dynamic Scenes”,
Rendering Techniques *97, Proc. Eurographics Workshop, pp. 151-162

Jay Toborg, James T. Kajiya, “Talisman: Commodity Real-time 3D Graphics for the PC”,
Computer Graphics (SIGGRAPH 96 Proceedings), August 1996, pp. 353-363

Greg Turk and Marc Levoy, “Zippered Polygon Meshes from Range Images”, Proc. SIGGRAPH
’94. In Computer Graphics Proceedings, Annual Conference Series, 1994, ACM SIGGRAPH, pp.
311-318

Lee Westover, “Footprint Evaluation for Volume Rendering”, Computer Graphics (SIGGRAPH
’90 Proceedings), Vol. 24, No. 4, August 1990, pp. 367-376.

G. Wolberg, Digital Image Warping, IEEE Computer Society Press, Los Alamitos, California,
1990.

Tien-Tsin Wong, Pheng-Ann Heng, Siu-Hang Or, Wai-Yin Ng, “Image-based Rendering with
Controllable Illumination”, Rendering Techniques 97, Proc. Eurographics Workshop, pp. 13-22

Hansong Zhang and Kenneth E. Hoff III, “Fast Backface Culling Using Normal Masks”, Proc.
1997 Symposium on Interactive 3D Graphics, pp. 103-106

