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Abstract

This thesis was motivated by analysis of scattering data at 228 Hz (A _ 6 m) collected
on the western flank of the Mid-Atlantic Ridge as part of the Acoustical Reverberation
Special Research Program (ARSRP) using a range and azimuth-resolving sonar. The
succession of echoes from pulses transmitted near the ocean surface results from
interactions of sound with kilometer-tall bathymetric features at depths of up to five
kilometers and ranges as high as hundreds of kilometers.

The backscatter statistics of match-filtered, beamformed envelopes collected from
a selected bathymetric have a target-like character in the form of an enhanced tail in
the probability density function compared with the Rayleigh density. Concurrently,
visual observations of the wavelength-scale morphology of this region suggest that
the stochastic roughness is feature-like, being composed of contributions at discrete
scales associated with specific geological processes, in contrast to fractal Gaussian
processes which are non-feature-like, receiving roughness contributions at all scales
continuously. Scale structure, the stochastic spatial arrangement of roughness contri-
butions at various scales, is proposed to be a parameter of importance in explaining
the statistics of backscatter in the ARSRP data and in the general, theoretical prob-
lem of scattering from random rough surfaces.

These propositions are studied using an exact integral equation method for one-
dimensional rigid surfaces. Surface models are developed with a common power spec-
tral density but different scale structure. In particular, a new facet surface model is
proposed which exhibits feature-like roughness and matches the power spectral den-
sities commonly observed in natural interfaces such as the seafloor. The bistatic scat-
tering strength and the time-domain statistics of backscatter are computed, revealing
that given a common power spectral density, surfaces with feature-like roughness lead
to enhanced target-like behavior and enhanced incoherent forward scatter compared
to their non-feature-like counterparts.

Extending the surface models to a three-dimensional scenario, the closest match
of numerically computed time-domain backscatter to ARSRP data is obtained when
the scale structure of the seafloor is correctly represented, supporting the assertion



that scale structure is playing an important role in scattering from the Mid-Atlantic
Ridge.

Scale structure is concluded to be an important new concept in characterizing
those aspects of the stochastic roughness of surfaces which are relevant to scattering.

Thesis Supervisor: Arthur B. Baggeroer
Title: Professor, Department of Ocean Engineering
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Chapter 1

Introduction

The topic of wave scattering from random rough surfaces is of interest in a wide variety

of fields including sonar, radar and seismic imaging and detection, medical ultrasonics,

optics, computer rendering of images, and ultrasonic non-destructive testing. After

a century of effort, the solution of the general scattering problem is still not fully

understood. For those of us who harbor a fascination for waves, it is fortunate that

many questions remain to be answered and useful ways of applying acoustics remain

to be discovered.

Although wave scattering is a branch of physics, developments are often brought

about by the need to push the capabilities of the applications of wave physics to higher

levels. Such is the case in this thesis; the advances presented here in the general topic

of rough interface scattering were inspired by the need to push the capabilities of

active sonar in the deep ocean to higher levels of performance. The focus is on both

the sonar engineering application and the theoretical developments it has inspired.

1.1 Motivation

Sound is the most effective way to probe the ocean at long distances and is commonly

used for mapping the ocean floor, measuring oceanographic parameters, communicat-

ing, and detecting targets.

In target detection, a key concern is reverberation noise which, unlike ambient



noise in the ocean, cannot be removed by increasing source level. Amidst reverber-

ation noise, the ability to distinguish a target is a function of one's grasp of the

character of reverberation versus that of the target. In an effort to improve the un-

derstanding of reverberation, the Office of Naval Research launched the Acoustical

Reverberation Special Research Program (ARSRP) in 1989. A series of experiments

were performed to study reverberation and scattering in the deep waters of the middle

of the Atlantic Ocean on the Western flank of the Mid-Atlantic Ridge.

What poses the greatest challenge to long-range detection in this part of the

world's oceans is the young, mountainous crust which forms the seafloor and with

which sound waves interact. Rough features are found throughout a range of scales

that span many orders of magnitude above and below the wavelength, from grains

smaller than a millimeter in size to kilometer-tall abyssal hills. Variations in the types

of roughness are also extensive, alternating between flat sediment ponds and steep

scarps of exposed basalt, and between seafloor areas with distinct geological origin.

The reverberation from a pulse emitted near the surface can last up to 20 minutes

and results from interaction of sound with bathymetric features as far as a hundred

or more kilometers away. Match-filtered, beamformed envelopes of 55 Hz bandwidth

pulses centered at 228 Hz exhibit lineations across range and azimuth which have

been shown to be deterministically linked with large bathymetric features [41] [40]

[58] [28]. For such lineations and features, a scattering interaction is taking place at

an identifiable spot on the seafloor.

The next level of refinement is the understanding of the scattering process taking

place at the seafloor. A feature of the ARSRP experiments which poses unique

challenges is the use of range-resolving pulses. For such pulses, the seafloor region

over which the sonar integrates energy (footprint) is small, and scattered pressures

from separate features, which might occur at the same time in a large footprint, arrive

temporally separated. Unlike reverberation, scattering in the context of ARSRP is

not well-understood and has not been studied to the extent warranted by the extensive

datasets collected. To shed light on this matter, scattering strengths and probability

density functions of time-domain backscatter are extracted from the ARSRP data.



Inspired by these scattering data, rough surface scattering is then studied from a

theoretical perspective.

On a theoretical level, it is a trivial fact that for any rough interface, its roughness

and the material properties on either side of it govern the scattering process. What is

not trivial is how to subsume the roughness into a manageable set of parameters that

can be related to acoustical quantities of interest. With the advent of computational

approaches, that "manageable" number has been growing rapidly, but there is still a

need for the identification of only the most essential information about the roughness,

for two reasons. First, it is usually impossible to know the shape of a scattering surface

to sufficient accuracy for exact acoustical prediction. Second, even if the surface were

known to high resolution, its complexity may render exact acoustical calculations

prohibitively expensive. Both of these limitations exist in the context of the ARSRP

experiment and highlight the need to efficiently characterize the roughness in useful

ways. A pervasive concept in this characterization is that of scale.

1.2 The Tradition of Scale in Scattering

From the very beginning of the field of scattering from rough surfaces, the issue of

scale has been identified as most vital to characterize roughness. In his consideration

of scattering of a plane monochromatic wave from a sinusoidal surface in the late

19th century, Lord Rayleigh [55] identified the importance of the magnitude of the

vertical excursions on the surface relative to the wavelength and the grazing angle.

The parameter Ra = kAh cos Oi, where Ah is the amplitude of the sinusoidal surface

and Oi is the grazing angle of the incident wave, is used to evaluate the roughness of

a surface and has come to bear Rayleigh's name [55].

Another powerful tool in simplifying the task of predicting scatter from rough

surfaces is to use an acoustical model based on a probabilistic surface description

which, instead of attempting to treat each surface and its details individually, treats

an entire family of surfaces at once. In a statistical context, the notion of scale

preserves its importance. In the Rayleigh parameter, Ah is replaced by the root



mean square (rms) height of the surface; its square represents the average energy in

the random process.

As the applications of acoustics and electromagnetics have multiplied over the past

century, the full correlation function of a surface has been found to provide useful in-

formation for the prediction of scattering [50]. This function embodies the notion

that along with a surface's vertical scales, the horizontal scales over which variations

take place are relevant. The equivalent of this full second-moment statistical charac-

terization in the wavenumber domain is the power spectral density, which represents

the expected value of the energy in the surface at each wavenumber component.

In a further refinement, the terms "single-scale" and "multi-scale" have evolved to

create a distinction between surfaces which exhibit roughness in the form of features

closely distributed about a single scale and surfaces which exhibit roughness in the

form of features at many different scales. The organization of features at different

scales in a stochastic process is referred to in this thesis as scale structure, and it is

the focus of my research effort.

This refinement beyond merely describing the power spectral density of a random

surface, towards a determination of scale structure, is proposed to be necessary to

explain data such as those collected in the ARSRP experiments, because

1. Scattering occurs in response to features, not spectral components;

2. The geological processes that form the seafloor exhibit feature-like roughness;

and

3. Second moment representations of the seafloor for power-law type power spec-

tral densities are unable to model feature-like roughness.

The objective of this thesis is to study the importance of scale structure in scatter-

ing from random, rough surfaces on a theoretical level to aid in bringing the predictive

ability of scattering theories to the level warranted by current applications of acoustics.

One such application is the scattering of high-resolution range-resolving pulses from

the rough ocean floor. Threrefore, the processing of data from the ARSRP experiment

into a form conducive to interpretation is another major goal of this study.



1.3 Outline of Thesis

This thesis is divided into two major parts:

1. The analysis and interpretation of data from the ARSRP experiment.

* Chapter 2 explains the ARSRP experiment and shows how reverberation

can be modeled and, therefore, removed from the data to study scattering.

* Chapter 3 extracts scattering data corresponding to a specific bathymetric

feature from the reverberation data and demonstrates that intertwined

areas as narrow as 500 m of distinct geological type can be resolved and

studied separately. Evidence of target-like scatter and the importance of

anisotropy are seen.

* Chapter 4 analyzes the roughness of the seafloor from both a deterministic

morphological point of view and from a stochastic point of view, revealing

the existence of feature-like roughness which is not captured by second-

moment statistical models. A composite seafloor model is proposed.

The acoustical and bathymetric observations of Chapters 2, 3, and 4 lead to

the proposal that scale structure as a characteristic of random surfaces which is

distinct from the power spectral density is relevant to acoustic scattering. This

proposal is explored in a theoretical study.

2. The theoretical modeling of acoustic scatter from random rough surfaces.

* Chapter 5 develops feature-like one-dimensional stochastic models exhibit-

ing power-law decay in their power spectral densities. These models, dis-

tinct in scale structure from Gaussian models having the same second mo-

ment, are proposed as fitting components in the composite seafloor model

proposed in Chapter 4.

* Chapter 6 employs a Monte-Carlo technique based on the exact inte-

gral equations for scatter from rigid, one-dimensional surfaces to compute

bistatic scattering strength and the probability density functions of the



log-envelopes of backscatter from feature-like and non-feature-like surfaces

with identical power spectral density, demonstrating the importance of

scale structure in acoustic scattering.

Conclusions and suggestions for future work are contained in Chapter 7.

1.4 Summary of Contributions

This thesis makes four major contributions.

Contribution 1 The development of ARTIST, which is both a software package

and a mathematical formalism, to help visualize the insonification process in

physically intuitive ways, model reverberation, and extract scattering data orig-

inating from detailed seafloor regions in the context of a range and azimuth

resolving sonar system.

With the goal of extracting useful information about scattering from the ARSRP

data, a model is developed to keep track of the propagation and refraction of en-

ergy from the sonar arrays to the seafloor and back, the orientations and positions of

the arrays, the array beampatterns, and the effect of local bathymetry in generating

shadow zones and in modulating local grazing angles. Two data structures, insonifica-

tion and intersection patterns, are defined which efficiently represent the combination

of these factors and allow the insonification of the seafloor to be visualized in ways

conducive to physical interpretation.

Using ARTIST, simulated reverberation is generated and compared with ARSRP

data. Prominent events at 200 msec scales are successfully predicted, confirming

that they result from the single seafloor interaction ray paths modeled by ARTIST.

Other events, particularly at early times, are not adequately modeled by such ray

paths; in these cases, ARTIST is a valuable tool for gaining insight into the dominant

mechanisms responsible for the observed reverberation levels. For events which are

correctly modeled, the formalism allows portions of the data corresponding to specific

seafloor features to be extracted and analyzed.



Contribution 2 The analysis and interpretation of scattering and bathymetric data

from a feature of O (10 x 40) km 2 in size known as site B'.

The elongated bathymetric feature of O (10 x 40) km 2 in size known as site B'

is composed of alternating scarp and terrace areas. The areas of B' belonging to

either category are identified using polygonal shapes. Using these polygons, ARTIST

is able to separately extract detailed portions of reverberation data corresponding to

scarps and terraces. Using data from seven different ship positions, backscattering

strength curves are obtained for scarps and for terraces, revealing that terraces are

stronger scatterers at grazing angles below 20 degrees. Both seafloor types are found

to disagree with Lambert's law below grazing angles of 25 degrees.

The anisotropy of scarps is also investigated, revealing higher backscattering

strengths normal to the scarps than at 30-50 degrees relative to the axis of anisotropy.

The log-envelope pdfs of time-domain backscatter are estimated and found to

have a target-like or non-Rayleigh character at the highest levels for both seafloor

regions, but the deviations from non-Rayleigh are found to be higher for scarps at

normal incident azimuths with respect to the anisotropy, and at large grazing angles.

The bathymetry is observed to be feature-like, and the target-like acoustic data are

proposed to be linked to the feature-like nature of the roughness.

The bathymetry is then analyzed in more detail, revealing that the feature size

distibution is distinct along scarp-parallel and scarp-normal directions. Concurrently,

spectral estimates in the two orthogonal directions yield the same power spectrum.

This observation suggests the inability of the power spectral density to capture

feature-like roughness. A composite seafloor model is proposed which is the super-

position of component models each acting at a specific scale and corresponding to a

separate seafloor generating mechanism.

Contribution 3 The establishment of the concept of scale structure and its distinct-

ness from the power spectral density.

One-dimensional stochastic surface models with feature-like roughness are devel-

oped. Their power spectral densities are derived analytically and are shown to exhibit



a power-law decay. In contrast, Gaussian models with the same power-law spectrum

are not feature like, demonstrating the insufficiency of the power spectral density in

describing the appearance of spatial domain realizations.

In this thesis, the spatial arrangement of a surface's component features at differ-

ent scales is defined as "scale structure". It is proposed to be more descriptive than

the power spectral density in determining a surface's scattering properties, because

it directly describes the objects which cause scatter: surface features.

While scale structure remains largely a qualitative attribute, processes having

identical power spectral density but different scale structure are successfully discrim-

inated using the wavelet transform which suggests that a quantitative, mathematical

definition of scale structure could be based on wavelets.

Contribution 4 The establishment that scale structure is a surface attribute of rel-

evance to acoustic scatter and that second moment characterizations of random

surfaces are insufficient for predictions of scattering.

Using an exact integral equation numerical approach, the potential impact of scale

structure in scattering is investigated by comparing the scatter from feature-like and

non-feature-like surfaces having identical power spectral density. The results show

that scale structure is important both for bistatic scattering strength and for the pdfs

of the log-envelopes of backscatter and demonstrate the insufficiency of second mo-

ment characterizations in describing the roughness of surfaces in acoustically relevant

ways. Feature-like surfaces are found to behave considerably more target-like than

multi-scale surfaces.

Surfaces with similar scale structure but different power spectral densities are also

compared and are found to share some characteristics.

Finally, feature-like and multi-scale rough surfaces with variance and correlation

length similar to the roughness normal to Site B' scarps are tested. The results

demonstrate that scale structure preserves its importance in enhancing target-like

scatter at the scales of roughness encountered in the ARSRP scenario, suggesting

that proper analysis of the scale structure of the seafloor is worthwhile for improving



predictions of scattering statistics.



Chapter 2

Simulation of ARSRP

Reverberation

2.1 Introduction

In this Chapter, I address the issue of reverberation from the Atlantic Natural Lab-

oratory of the Mid-Atlantic Ridge, regarding which significant progress has been

made since the Office of Naval Research launched the Acoustical Reverberation Spe-

cial Research Program (ARSRP) in 1989. Previous efforts [41] [40] [58] [28] have

clearly shown that there exists a deterministic link between large-scale features in

the bathymetry and large-scale features in the beamformed reverberation time series.

These studies have also shown that direct ray paths from the arrays to the seafloor

play a dominant role in generating the most prominent returns.

Here, I study how reliably beamformed reverberation time series can be simulated

using the ray paths that interact with the bottom only once. With the aid of the

software package ARTIST [38] [37] [36], beamformed reverberation envelopes within

1/2 CZ are simulated at temporal resolutions of 200 msec and compared to actual

reverberation data collected at two sites near the MAR. The two sites studied lie at

either end of a set of deep interconnected valleys called the B'-C' corridor, shown on

Fig. 2-1. The western site is referred to as B', and the eastern site is referred to as

C'.



The purpose behind the reverberation simulations is to demonstrate that the prop-

agation and array resolution effects can be accounted for by ARTIST and therefore

removed from the data to isolate scattering. In particular, in Chapter 3 I am inter-

ested in identifying specific portions of data as resulting from scattering at selected

seafloor regions. The reverberation modeling is flavored by this end goal in that it is

carried out only to the degree necessary for the local scattering analysis; in particular,

the only ray paths accounted for are those which interact with the seafloor once. In

spite of this limitation, surprisingly good simulations of reverberation are possible in

ARSRP. The degree of agreement between data and model is excellent for prominent

events at intermediate to late times and fair at early times. The varying levels of

agreement provide insight into the physical mechanisms that are in play over each

data region.

In Section 2.2, I provide a brief description of the ARSRP experiment. This is

followed in Section 2.4 by a theoretical description of ARTIST propagation modeling

and data structures. Monostatic reverberation simulations at sites B' and C' and a

bistatic simulation at site B' are presented in Section 2.5.

2.2 Experiment

The ARSRP experiments took place at the Office of Naval Research Atlantic Natural

Laboratory, which occupies a 400 km by 200 km rectangular area centered around

470 W, 260 N, just West of the Mid-Atlantic Ridge (MAR) as shown in Fig. 2-1.

The seafloor in this area is geologically young, ranging from 0 to 28 million years

in age. At the largest scales, it is characterized by a series of mountains (abyssal

hills) rising one to two kilometers from valleys at depths of 3500 m at the eastern

end and 4500 m at the western end. The seafloor exhibits strong anisotropy, with

mountain crests oriented nominally 600 counter-clockwise from an x-axis pointing

East. Valleys are typically sedimented, but large portions of the abyssal hills display

exposed acoustically-hard rock such as basalt. At any given frequency, roughness

structures are present at scales ranging from thousandths of an acoustic wavelength
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Figure 2-1: Bathymetry of the Atlantic Natural Laboratory collected in 1992 on the

western flank of the Mid-Atlantic Ridge, having nominal horizontal resolution of 200

m.

or less to hundreds of wavelengths and higher. Reverberation and scattering from

such seafloor are complex phenomena and the ARSRP experiments were designed to

improve their understanding,

The data analyzed in this thesis were collected during the July 1993 ARSRP

Cruise [48]. The experimental configuration and the angular co-ordinate system used

are shown in Fig. 2-2. The R/V Cory Chouest towed a 10-element vertical line array

(VLA) source with 2.29 m spacing and a 128-element horizontal receiving line array

(HLA) with 2.5 m spacing. To permit bistatic observations of sites A, B', and C',

a second ship, the R/V Alliance, towed a vertical pair flextensional source and a

receiving array identical to the Cory's.

Two of the elements of the receiving array were desensitized to permit analysis

of the emitted signals and several others had significant gain reductions due to mal-

function. These issues resulted in an increase of the sidelobe level of the wideband

beampatterns from -30 dB to -25 dB, but had a minor impact on main lobe width. A
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Figure 2-2: Experiment configuration. The R/V Cory Chouest towed a ten element

VLA source and a 128 element HLA receiver. The R/V Alliance also towed a 128

element HLA, permitting bistatic observations of features insonified by the Cory's

source. The cartesian and angular co-ordinate systems used in the remainder of the

chapter are as indicated.

potentially more important difficulty relates to the hydrodynamically-induced verti-

cal array deformations with an amplitude of several wavelengths [14]. This has been

shown to smear the main lobe of the receiving array over as much as ten degrees for

vertical incidence directions, however the vertical array deformations have a negligi-

ble impact on the beampattern for the near-horizontal incidence directions considered

here. Similar distortions in the horizontal plane could degrade the beampattern for

near-horizontal look directions. In Ref. [12], the main lobe width of the receiver array

is deduced by picking a particularly loud and impulsive event incident upon the array

at near-horizontal angles and tracking its leakage into neighboring beams. The con-

clusions are that the main lobe is not discernably wider than for an ideal line array,

suggesting that horizontal deformations were negligible. Near-broadside beamwidths

were about 10, leading to a lateral footprint size at 1/2 CZ (~_ 35 km) of about 600

m. The data were processed into 128 non-overlapping beams.

A range of acoustical signals were emitted including CW multitones, wideband



O -11-o
ai6
0

CwU -V

-60 -40 -20 0 20 40 60
time, msec

Figure 2-3: Match-filtered de-modulated pulse used in the wideband 200-255 Hz LFM
experiments. The null-to-null width of the main lobe is about 35 msec; the 3-dB width
is about 20 msec. The highest sidelobe level is about -12 dB.

LFM's, stepped LFM's and signals from SUS charges. The experiment was divided

into "segments", which included 12 minutes of data acquisition using different "pings".

Each ping corresponded to a different signal. In this thesis, no distinction is made

between a segment and a ping since only the wideband LFM signals are analyzed.

These were pulses with instantaneous frequency linearly varying between 200 Hz and

255 Hz over a 5-second duration, with a cosine amplitude taper over the first and last

0.3 seconds. The Cory's source level at the center frequency of the pulse band was

232 dB re 1 MPa and the wavelength at this frequency was approximately 6 m at the

seafloor.

The acoustic data analyzed in this thesis were the result of demodulating, down-

sampling, match-filtering, and beamforming the raw data collected at the receiving

arrays. The match-filtering compressed the wideband LFM signals into a pulse ap-

proximately 35 msec wide between nulls with relatively high sidelobes, as shown in

Fig. 2-3. The 3-dB width of this pulse is approximately 20 msec. Its range resolution,

depending on the definition of pulse width, ranges from 15 to 26 m.
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Figure 2-4: Sound speed profile used in the ARTIST simulations.

Supporting environmental data include frequently measured array positions and

orientations, sound speed profiles from bathythermographs and CTD casts, and full-

coverage bathymetry at 200 m lateral resolution. The bathymetry, shown in Fig. 2-1,

was collected as part of the 1992 Reconnaissance Survey. The environmental data were

used as input parameters to ARTIST for simulation of reverberation and extraction

of scattering strength. The single sound speed profile used in all the simulations in

this Chapter is shown in Fig. 2-4. It represents a smoothed version of the CTD casts.

Higher-resolution bathymetric data were collected at selected sites to provide an

understanding of the fine-scale structure of the seafloor. These surveys include DSL-

120 sidescan sonar data with a resolution of 5 m and observations from the remotely-

operated vehicle Jason, including 1-m resolution pencil-beam mesotech sonar data and



video images [67] [18]. Although these datasets provide insufficient coverage and too

high a resolution for productive deterministic simulations, they are extremely useful

in revealing seafloor structure near the acoustic wavelength. Without this knowledge,

the interpretation of observed scattering behavior would be impossible.

2.3 Full-field vs. Ray Models

Previous studies of acoustic data from the ARSRP experiments have used either ray-

based models [22] [28], full-field Parabolic Equation (PE) models [58] [39], or both

[41] [40]. Both techniques present advantages and disadvantages. Full-field models

yield a more accurate picture of transmission loss in shadow zones because they

naturally account for diffraction and multipath. This translates into more realistic

reverberation simulations in shadow zones, provided that time-delays are available.

These can be obtained either by carrying out computationally-intensive wideband

full-field simulations, or more simply with a ray model. Full-field models also yield

correct transmission loss values near caustics where ray theory breaks down, and

they preserve phase in their calculations, thus accounting for the coherent effects of

multipath.

On the other hand, ray models provide a more intuitive interpretation of the

physics of reverberation and scattering. Each ray path corresponds to an energy

bundle that can be followed through the water column, interacts with the seafloor at

an identifiable grazing angle, and has a specific time delay associated with it. The

knowledge of grazing angles makes the study of the scattering behavior of particular

seafloor patches possible; a full-field model is incapable of this analysis because it

always includes coherent multipath even when the true insonification picture is simple

and well-captured by a ray analogy. With ray models, the easily-obtained time delays

are especially convenient in a broadband, pulse-revolving effort such as ARSRP.

In the deep water scenario of ARSRP, dominant reverberation events at ranges

greater than about 25 km are due to seafloor features which intersect ray paths

emanating directly from the receiving and transmitting arrays. Thus, ray theory is

_~_l~i~



not only intuitive but a correct model of the physics for those events. The confirmation

of this assertion was initiated in Ref. [28]; further confirmation is provided here in

Sections 2.5.1 and 2.5.2.

The portions of the data at lower levels typically cannot be attributed to ray

paths that interact with the seafloor only once; the received levels result from multi-

ple seafloor bounces. In these areas, the inclusion of all multipath in full-field models

leads to more realistic predictions. From an engineering perspective, the dominant

events (where ray models are more appropriate) are more important than the back-

ground because they lead to clutter in active sonar systems and as such they are the

motivation for ARSRP.

The above points should help clarify why a ray-based model was used instead of

a full-field model. I now proceed to the description of the ray-based code Acoustical

Ray-Tracing Insonification SofTware (ARTIST).

2.4 ARTIST

Existing ray models devoted to reverberation such as the Generic Sonar Model (GSM)

[70] and BiRASP [11] account for ray paths interacting several times with the bottom,

the surface, and volume scatterers. In these models, each portion of the reverberation

data is considered to originate from a multitude of scattering areas either in the

water column, the sea surface, or the bottom, insonified at varying grazing angles

and incident energies.

The principal goal of ARTIST is the local study of scattering at the water-seafloor

interface; a supporting goal is the prediction of reverberation. In modeling reverber-

ation, ARTIST concentrates on that part which is useful for local bottom scattering

studies, that is, the part for which the dominant contributors are direct and surface-

reflected rays interacting only once with the bottom.

It is natural to ask about the price paid in simulation quality by neglecting mul-

tiple seafloor bounces, volume scattering, and sea surface scattering. In ARSRP,

the sea surface was calm, major portions of the seafloor are acoustically hard, and



reverberation associated with multiple seafloor bounces is often significantly less en-

ergetic than that due to single seafloor interactions; ARTIST simulations are very

good in this situation. ARTIST incorporates grazing angles with respect to local

bathymetry in its simulations, providing it with a significant advantage with ARSRP

data compared to a flat seafloor model such as GSM.

Another ray-tracing model used in the context of ARSRP to study scattering and

reverberation is BISSM [5]. This model accounts for direct paths to the bathymetry to

determine transmission losses and grazing angles with respect to local seafloor slopes.

It allows for source-receiver separation and the specification of the source beampattern

and arbitrary sound speed profiles, and has been used to simulate reverberation and

extract Lambert's law coefficients in Ref. [28].

ARTIST is based on a rigorous theoretical framework in which data structures

resulting from ray-tracing are manipulated as insonification and intersection patterns.

These mathematical entities incorporate the full ambiguity function that results from

the combined effects of the source and receiver beampatterns, the pulse shape, and

the propagation process. Both direct and surface-reflected paths are included. As

will be shown in Sections 2.5.1 and 2.5.2 and in Chapter 3, the benefits of the careful

theoretical treatment are evident in the reverberation simulations, in the ability to

visualize the insonification process, and in the capability to reliably extract scattering

strength over detailed geographic areas.

The following Section is a mathematical description of ARTIST; the uninterested

reader may skip to Section 2.5 for a look at the reverberation simulations.

2.4.1 Theory of Operation

The description of the theory behind ARTIST is divided into three sections. First, the

modeling of propagation from the source to the seafloor and from the seafloor to the

receiver is described. Second, a method is presented which combines the source and

receiver data structures from the propagation modeling into a single data structure.

Third, the generation of simulated reverberation is discussed. In Chapter 3, the

theory is extended so that scattering data corresponding to selected seafloor features



can be extracted from the reverberation data.

Throughout Chapters 2 and 3, the subscripts s and r refer to the source and the

receiver respectively, and r is used to specify two-dimensional vectors in the xy plane.

Three-dimensional vectors are written (r, z).

Insonification Patterns

ARTIST models the propagation of direct and surface-interacting paths from the

source to the seafloor by performing a ray-trace starting from the source location

(r, Z*). If the source is an array, the center of the array is used. The sound speed

c(z) is assumed to depend only on depth z. Each ray is identified by its initial

spherical launch angle pair q = (a, 0) E 82 where

2= {(a,0) :a E [-r/2,7/2], 0 E S1} (2.1)

is the set of points on the sphere and S' = [-7r, 7r) is the set of points on the circle.

Each ray is traced until it either makes contact with the seafloor as defined in a

bathymetric input file, or until it exceeds a specified path length, whichever comes

first. If the sea surface is encountered, the ray is assumed to reflect with no specular

energy loss. If no seafloor contact is made, the ray is discarded. Let P, be the set of

all rays having made contact with the seafloor:

Ps = { 1 , 2, ... , p, P C s 2 . (2.2)

Upon contact, the following parameters are determined: horizontal contact posi-

tion r, = R,(¢), bathymetric depth z,(¢), local grazing angle with respect to the

bathymetry 7,(0), time delay t,(¢), and transmission loss TL,(¢). These parameters

are grouped into a single set

IsP = {(Rs(¢), qs(¢), ¢) : € E Ps}. (2.3)



where the second factor is

q8 () = (z, (), - (), ts (), TLs (0)). (2.4)

The numerical implementation of the ray-tracing imposes that 0 be a discrete variable,

but in reality there is some continuous subset S2 C S 2 for which the seafloor is

accessed by rays. The remainder of 82 is the space of rays that are discarded. I

define the continuous set I, such that it contains the result of the ray-trace over all

of S,2. The set I is merely a discretized version of the full set I,:

If C Is = {(Rs(), qs(¢), ¢) : e S2} C n 2 x Q x S. (2.5)

where

Q = x S x 1 + X (2.6)

and R+ is the set of real, positive numbers. The parameterization by q is mathemat-

ically convenient in that each ray launch angle is mapped to unique Rs,() and q,(q).

On the other hand, it is easier to gain physical insight into the parameters in q, when

they are represented graphically as functions of the horizontal position vector r. If

an inverse 4~(r) could be found for Rs,() such that 1 = 4~(R,()), I could write

Is = {r, q(,(r)), 4,(r)) :r e Rs(0), E S2}, (2.7)

achieving the desired parameterization by r. A single inverse can be found only when

R, () is one-to-one, but rays launched at seperate angles are often mapped to a single

position. For example, consider the ARSRP scenario in which a given point on the

seafloor can receive both a direct and a surface-reflected ray. In such cases, while a

global inverse does not exist, the notion of local inverses is useful, as described in the

following theorem.



Inverse Function Theorem: When

det (--) '0, (2.8)

3 a neighborhood A of q0, U of R(o0 ) and a function P so that R : A -+ U

is one-to-one, onto and 4 : U - A inverts R in these neighborhoods, i.e.

41(R(o)) = 0 or = (r).

For the current application, the vector condition in Eq. 2.8 can be simplified. When

the sound speed depends only on depth, the azimuths of ray contacts about the source

position are independent of declination launch angle a. In this case, Eq. 2.8 reduces

to the one-dimensional condition

G(a, 0) r 0o, (2.9)

where IR, - r I is the horizontal range.

The parameterization of all factors in I, by r can be realized by finding sets of

neighborhoods Am- C S,2 and U , C R 2 , m" E [1,2,..., M,] such that R, : Am -

Um is one-to-one and onto and has inverse 4Om : Um -- A m. There are infinitely

many ways to break up S2 into subsets over which local inverses exist. I define the

Am- as the unique combination of subsets of S2 such that

Ms

Si = U Am,  (2.10)
m= 1

and Ms is the minimum possible number of subsets. This number is at least 0 + 1

where O is the maximum number of zeros of G(a, 00) as a function of a for constant

0o. The number Ms may be greater than O + 1 whenever a particular subset C

of S, is totally disconnected from the rest of S. such that it is impossible for 0 to

vary continuously in passing from C to the remainder of S2 without passing through

regions where R,(q) is undefined; these undefined regions can contain hidden sign

changes. If they do, they constitute a boundary between some of the Ams . The



curves over which G = 0 are always boundaries between the A'8.

The original set Is is divided into M, subsets

I = {(r, qs (' (r)), Dm-(r)) : r E Um*}, (2.11)

which I define as insonification patterns, each of which is uniquely parameterized by

r; note that

I = U IsS. (2.12)

For a receiver located at (r*, zr), the same procedure is employed. The result of the

ray trace is recorded in a discrete set

IT = {(RrO(), qr(), €) : E Pr} (2.13)

which is a subset of the continuous set

Ir = { (Rr (0), qr (), ) : E S2}. (2.14)

The parameterization by ¢ is transformed into a parameterization by r by finding the

smallest number of neighborhoods B mr of ¢ and Vmr of r such that for each Bm,, the

function Rr : B m, - Vm, is one-to-one and onto and has inverse r : Vmr -+ Binm

and

Ir = UIr" .  (2.15)

The final product is the set of Mr insonification patterns

Irm= { (r, qr ( (r)), (r)) r E Vrr}. (2.16)

The source's insonification patterns provide information as to how a listener mov-

ing along the seafloor would be illuminated by the source. Conversely, the receiver's



insonification patterns contain information about the receiving array's perception of

a speaker standing at each seafloor point.

Intersection Patterns

With insonification patterns on hand for both the source and the receiver, information

about the propagation from the source to the bottom and from the bottom to the

receiver are known separately. The information from these processes is combined in

the form of intersection patterns. The regions over which the intersection patterns

are defined represent seafloor areas that are illuminated by both the source and the

receiver. Such areas are expected to play a strong role in reverberation and are also

the only ones of practical use for locally extracting scattering strength. Analogously

to insonification patterns, intersection patterns consist of a number of single-valued

functions of space defined on a subset of 72 that corresponds to an illuminated area.

Intersection patterns are defined as:

X = {r,Qn(r), Im'd[j](r), Q(Ir[ ](r) : r E Wn} (2.17)

where the domain of definition for each intersection pattern, Wn, is the intersection

of the domains of definition of its constituent insonification patterns:

Wn = Ur" n vr .  (2.18)

The index n is related to the insonification pattern indices through

n = (m, - 1)Mr + mr. (2.19)

Conversely, m, and mr can be recovered from n using

m,[n] = floor (nM1)+ 1 (2.20)



m,[n] = n - Mrfloor n-

The second factor in Eq. 2.17 is

Q"(r) = (z'(r), -y"(r), -y"(r), 7n(r), t"(r),TLn(r)),

z (r) = zs(" r] (r)) = zr("'t~"](r)), r E W',

y~y(r) = , (Is [nl(r)), r E Wn,

"y7(r) = yr(41)[n](r)), r E Wn,

t~ (r) = ts(Lm".["](r)) + tr(I r[n](r)), r W ,

TL (r) = TL,(QIm'[n](r)) + TLr(4Ir['](r)), r E Wn ,

and qr"(r) is the bistatic angle in the xy plane, given by

71(r) = Z((r - r*), (r - r*)), r Wn ,

where Z(ri, r 2) is the angle between ri and r 2.

The intersection patterns reveal the manner in which seafloor areas are being

insonified both geometrically and energy-wise from the combined effects of source

and receiver, and the times at which they contribute to the received signals.

and

where

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



Simulated Data

Using the information in the intersection patterns, I seek to generate simulated re-

verberation time series AL(tj, bk) representing the average energy collected at times

tj by beams bk, where j E {1, 2,..., J} and k E {1, 2,..., K}.

For each intersection pattern, the energy contributed to pixel (j, k) is found by

integrating the energy at the seafloor, given by 1 0 E(r, ' j ,k)/1O where the quantity

E"(r, j, k), in dB units, includes the effects of the source beampattern B,(¢), the

receiver beampattern B k)() for beam k, the pulse magnitude in dB T(t), the trans-

mission loss TL (0) and the scattering strength SS (yn (r), y (r), r77n(r), r). The total

energy received at tj by beam bk is the sum over the N intersection patterns, each

corresponding to a different set of ray paths linking the source, the seafloor, and the

receiver. The simulated data are given by:

AL(tj, bk) = 10 log 10  10 ~o dr' , (2.29)
n=l Wn

where

En(r, j, k) = Fn(r, j, k) + SS (yn(r), -n (r), ,n (r), r) , r E Wn (2.30)

and

F (r, j, k) = B, (m,[n] (r)) + B(k) (1)r[n](r)) + T(tj - t (r)) - TL(r), r E W"

(2.31)

is the ambiguity function for pixel (j, k). Since the integration in Eq. 2.29 is over all

of Wn, the ambiguity function sidelobe energy is included in the calculation of the

pixel level. In Eq. 2.30, an estimated scattering strength function must be used since

there is usually no a priori knowledge of the true function. The presence of r as one

of the arguments of SS emphasizes that local variations due to changes in seafloor

geology could be specified.



2.5 Reverberation Simulations

In this section, simulated reverberation is compared to actual reverberation first for

monostatic source-receiver geometries at sites B' and C' in Sec. 2.5.1 and then for

a bistatic geometry at site B' in Sec. 2.5.2. The number of beams is K = 128.

I used J = 350 time bins of 200 msec in duration yielding time series 70 seconds

long from the onset of pulse transmission, which was sufficient to capture all 1/2 CZ

reverberation for all segments considered.

In any of these simulations, it is necessary that some scattering model be applied at

the seafloor. Because I have no a priori knowledge of the actual scattering character-

istics, I employ reasonable phenomenological scattering functions having the desirable

property of showing an increase in backscatter with grazing angle. This serves to en-

hance the features in the simulated reverberation and leads to better agreement with

the data. The use of such rough approximations to the actual scattering relationship

enables one to incorporate, if only approximately, the universal role of the grazing

angle in affecting observed energy levels.

Later, in the scattering analysis of Chapter 3, the actual dependence of scattering

strength on grazing angle is extracted from the data using ARTIST.

2.5.1 Monostatic Reverberation at B' and C'

In the monostatic configuration, I first consider segment 436 in which the Cory

Chouest was located 20 km East and 10 km South of B'. Figure 2-5 (a) is a ren-

dering of the bathymetry in the vicinity; the location of segment 436 is indicated by

the black circle at the center. The arrow is the orientation of the receiving array. The

configuration is only quasi-monostatic in that although both the source and receiving

arrays are towed by the Cory, their centers are separated by over 1 km. The other

six circles shown in red represent the ship locations for other segments used for the

backscattering analysis of Chapter 3.

ARTIST reveals that Ms = Mr = 2 and that the sets I. and Ir contain direct

paths to the seafloor while Iy and I2 contain mostly surface-reflected paths. The
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Figure 2-5: (a) Bathymetry in meters for monostatic segment 436, near site B'. The
position of the Cory and the orientation of its receiving array are indicated by the
black circle and arrow respectively. The six red dots represent the position of the
Cory during the other experimental segments used in the scattering strength study.
(b) Visualization of direct-path intersection pattern X', with color contours corre-
sponding to I sin(Q- (r))|, 'X being the grazing angle with respect to local bathymetry.
The black contours represent tl(r), the two-way time delay in seconds.
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Figure 2-6: Actual (top) and simulated (bottom) data for segment 436. Labels A
through I identify matching features. These labels are mirrored in Fig. 2-5 showing
that the yellowish-orange lineations in the intersection pattern, corresponding to high
grazing angles, are good predictors of hot spots in the reverberation.

insonification patterns will not be presented for the monostatic cases. I present only

the first intersection pattern X 1 (r), which corresponds to the combination of the

direct-path insonification pattern for both the source and the receiver, m, = 1 and

m, = 1. In the monostatic configuration, little additional insight would be provided

by presenting the insonification patterns or the other intersection patterns, although

it will be seen that this is not the case for the bistatic geometry of Sec. 2.5.2.

In Fig. 2-5 (b), the colored area is W1 ; the blank areas lie in shadow and are

not accessible by rays. The black contours overlaid are isochrons representing tl(r),



and the color contours represent I sin(-4.(r)) . This visualization of the intersection

pattern provides considerable insight into the reverberation. Ridges surrounded by

shadow or enhanced by an increased grazing angle are expected to lead to prominent

features in the reverberation data.

Figure 2-6 shows real and synthetic data. The "real" data are the beamformed

data averaged according to Eq. 3.12. The color corresponds to the amplitude of the

averaged envelope in dB re 1 pPa as a function of time (horizontal axis) and beam

number (vertical axis). The colormap, which has a discrete jump at 74 dB, was chosen

to combine the event-selection feature of a threshold plot with the detailed rendering

of structure at intermediate levels provided by a continuous colormap.

Those features which are well represented in both the simulated and the actual

data are labeled A through I, and the corresponding seafloor areas in the intersection

pattern and the bathymetry are marked using the same labels in (a) and (b). In

relating features between Figs. 2-5 and 2-6, it is important to remember the right-left

ambiguity associated with the receiving system. It explains why features A and E,

which are on opposite sides of the Cory, intersect in the beam-time space of Fig. 2-6.

The phenomenological scattering relationship applied at the seafloor is Lambert's

law,

SS = p + 10 loglo(sin(J-y n i)). (2.32)

I emphasize that this relationship is not presumed to be correct, but a reasonable

approximation [28] for the purpose of incorporating the effect of local grazing angles

when no a priori information on the true scattering relationship exists.

As can be deduced from looking at Figures 2-6 and 2-5 (b), the most prominent

reverberation events register with areas where local grazing angles are higher than

25 degrees. One of the principal objectives of the ARSRP experiment was to "...

understand low grazing angle scattering." By "low grazing angle", one typically

means angles between 0 and 15, perhaps 20 degrees. Interestingly, Figs. 2-5 and 2-6

show that such low grazing angles play a minor role in generating the loudest events



at 200 msec scales.

While the labeled features are self-explanatory in their agreement, areas where dis-

agreement exists merit further discussion. The discrepancy between 0 and 5 seconds

where the data show a red stripe extending across all beams followed by a yellow-

orange band is associated with energy having propagated directly from the source to

the receiver without interacting with the seafloor. The band corresponds to sidelobe

leakage from the matched filter. From 6 to 10 seconds, considerably more beampat-

tern sidelobe leakage is observed in the data than in the model. This discrepancy

vanishes at higher ranges where the ray angles at the receiving array are closer to

horizontal. The marked sidelobe leakage at early times is due to the high-amplitude

vertical array deformations [14] which corrupt the beampattern for rays incident from

directions away from horizontal. The effect of deformations was not included in the

beampattern used by ARTIST.

Disagreements in hot spots before 20 seconds are generally associated with mul-

tiple seafloor bounce paths, which lead to reverberation of comparable magnitude to

that from direct and surface-reflected paths at early times. Clearly, these areas are to

be avoided in a study of backscattering strength versus grazing angle. Disagreements

at early times also result from the unknown sidelobe structure of the transmitting

array and the vertical deformations of the receiving array.

At late times near 1/2 CZ (> 40 sec), smaller hot spots are difficult to predict

reliably since their detection is highly sensitive to bathymetry at near-horizontal

propagation directions.

At intermediate times, discrepancies are associated mainly with scattering phe-

nomena. A good example is the beam-time space surrounding FF in Fig. 2-6. While

ARTIST predicts the existence of returns in this beam-time area, levels above 74 dB

are predicted only for feature F of Fig. 2-5 (a). On the other hand, the data show

levels above 74 dB over a region 10 seconds long and 20 beams wide centered on FF.

Based on Ref. [28], the coefficient of Lambert's law was chosen as -17 dB to pro-

vide the best match with all seafloor areas simultaneously. The observed discrepancy

suggests that the scattering properties of the contributing seafloor around F differ
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Figure 2-7: (a) Bathymetry in meters for monostatic segment 889, near site C'. The
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Figure 2-8: Actual (top) and simulated (bottom) data for segment 889 with labels A
through K identifying matching features and mirrored in Fig. 2-7.

appreciably in the value of the Lambert's law coefficient and/or in the nature of the

relationship of scattering strength to grazing angle.

The second example of reverberation simulation is segment 889 at site C'. The

Cory Chouest's position and orientation during segment 889 are shown in Fig. 2-7

(a). The feature C' itself is indicated by the letter C. Fig.2-7 (b) shows the quantity

sin( -(r)) in color overlaid on intersection pattern 1, highlighting the various ridges

which are predicted to contribute strongly to the reverberation. Finally, Fig. 2-8

shows the actual and simulated data, with a number of correctly predicted features

labeled A through K.
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Figure 2-9: Bathymetry for bistatic configuration during segment 423, in meters. The
Cory is represented by the circle. The position of the Alliance and the orientation of
its receiving array are indicated by the square and arrow respectively. Feature BB
corresponds to site B'.

2.5.2 Bistatic Reverberation Simulation at B'

In this section, I show bistatic reverberation data and modeling for segment 423. The

source was on the R/V Cory Chouest about 35 km due East of B' and the receiver

was on the R/V Alliance, located about 20 km North of the Cory. The Cory's source

is represented by the circle in Fig. 2-9 and the Alliance's receiving array by a square.

The source-receiver separation leads to distinct insonification patterns for the source

and the receiver, as shown in Fig. 2-10.

As in the monostatic case, Ms = Mr = 2; I and Ir contain direct paths to the

seafloor, and 12 Ir2 contain mostly surface-reflected paths. While the differences in

source and receiver insonification patterns are expected due to physical separation,
it is interesting that the insonification from surface-reflected paths should differ so

significantly from the direct path insonification. The largest difference between direct

and surface-reflected paths can be seen at the circumference of the plots, where the

ray energy is going through the 1/2 CZ point and is propagating almost horizontally.
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Rays corresponding to the image contributions lie several hundred meters above their

direct path counterparts and thus are likely to miss prominent bathymetric features

and propagate farther.

The next step in the modeling consists in combining insonification patterns pair-

wise, taking one from the source and one from the receiver, into intersection patterns.

Each combination represents one path from source to bottom to receiver. Figure 2-11

depicts all N = 4 intersection patterns.

The time contours represent the total travel time from the source to the seafloor

to the receiver array, tn(r). The shape of these contours is nominally an ellipse, but

deviations are especially evident in the earliest contour where the bathymetry, being of

higher magnitude relative to range at small ranges, induces travel-time perturbations.

The color represents the gain function

G"(r, k) = B, (4m [n](r)) + B(k) ((r[n](r)) - TLn(r), r E Wn (2.33)

for beam number k = 30. The function G", in contrast to Fn in Eq. 2.31, excludes

the pulse function T(t). One can clearly distinguish the concentric contours centered

around the Cory Chouest corresponding to the transmitting array's sidelobe structure,

and the hyperbolic main lobe of beam 30 of the receiving array with focus at the

Alliance. The contributions to the time series between times t and t + At for beam

30 originate predominantly from seafloor lying on the red hyperbola between time

contours t and t + At.

Depicted in Figure 2-12 (a) are the beamformed data collected by the Alliance.

In Fig. 2-12 (b), I show synthetic data generated by ARTIST using only direct paths,

that is, using only n = 1. In (c), both direct and surface-reflected paths are included,

using all four possible intersection patterns. The immense bright spot labeled BB

extending from 30 to 55 seconds and from beams 10 to 45 is caused by insonification

of B', as can be confirmed by referring back to Fig. 2-11. There is a clear enhancement

in the ability to model BB when surface-bounce paths are included. Enhancement

is also observed in capturing the double ridge of AA and in reducing shadow zones
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around CC and DD. Near DD, the surface-bounce prediction by ARTIST does not

lead to sufficiently energetic returns to merit a bright color, but the light blue color

indicates that the existence of a return is predicted. The fine-tuning of predicted

energy levels would require an accurate knowledge of the dependence of scattering

strength on grazing angle and variations in scattering behavior between different areas

of the seafloor. Included in this local variation is the fact that some of the received

energy comes from volume scattering within sediment ponds as opposed to scattering

at the water-seafloor interface. Such detailed knowledge of local scattering physics is

beyond the state of current research.

The greatest discrepancies between ARTIST simulations and actual data result

from the effect of multiple seafloor bounces, which lead to reverberation of comparable

magnitude to direct and surface-reflected paths during the first 10-15 seconds. Indeed,

at feature EE, it is not known whether the disagreement between data and model

is due to local scattering phenomena or paths having undergone multiple seafloor

bounces. Such areas are to be avoided in a study of scattering strength.

2.6 Summary

The rigorous framework for propagation modeling and data structure manipulation

embodied by ARTIST has been used to model reverberation in ARSRP. The concepts

of insonification and intersection patterns have been shown to be useful tools both

for visualizing the complex illumination of the seafloor and for data interpretation. I

have shown that ARTIST is useful in capturing predominant reverberation features

within 1/2 CZ in both bistatic and monostatic configurations. In this regard, the

ability to account for surface bounce and source-receiver separation has been shown

to be of significant value.

The disagreements between simulated and actual data are useful in suggesting

that other mechanisms than those modeled by ARTIST are at play. Disagreements at

early times are due to the fact that reverberation from multiple seafloor interaction

paths is comparable to or higher in magnitude than that from direct and surface-



(a) 120

100
80 o

97
60 9595

40 92
20 89

87

(b)120 84

a 100 82
. 79

E 80 DM 76
E 60 74

4 0  71
68

20

(c)1 20 63
61

100 58

80 55
60 53

50
40

20

0 10 20 30 40 50 60
time, seconds

Figure 2-12: (a) Beamformed, match-filtered reverberation data collected at the Al-

liance during segment 423, averaged over 200 msec windows. (b) Synthetic data using

only direct paths (X 1 only). (c) Synthetic data using both direct and surface-reflected

paths (all Xn). Color contours are in dB re 1 pPa.



reflected paths. At late times, disagreements can be ascribed to uncertainties in the

environment, and at intermediate times local scattering behavior can be the main

cause of discrepancies between ARTIST simulations and data.

For those events in the reverberation simulations which are correctly modeled,

such as feature B in Fig. 2-6 and Fig. 2-12, and feature C in Fig. 2-8 (c), one can

conclude that the physics are adequately described by direct and surface-reflected ray

paths. A more thorough analysis involving the extraction of the scattering strength

of specific bathymetric features is then possible. Such an analysis is the subject of

Chapter 3.



Chapter 3

Analysis of Backscatter From Site

B'

The success of ARTIST in modeling the major features in the reverberation using

direct and surface-bounce paths with a single bottom interaction indicates that for

dominant events, scattering is taking place at isolated features insonified at clearly-

defined grazing angles. This simple insonification picture opens the door to the next

higher level in studying ARSRP data: the extraction of specific portions of data

corresponding to selected bathymetric regions.

Previous studies of scattering in ARSRP include Ref. [28], in which Lambert's law

coefficients p were extracted at site A, shown on Fig. 2-1. One of the conclusions was

that p = -17dB provided the best fit to the entire ARSRP dataset, although values

ranging from -10 to -20 dB were observed. More recently [22], the scattering behavior

of site A was compared to that of crust 25 km to the north across a sediment pond,

with an attempt to explain variations in backscattering strength by the seafloor dip

distribution. The sites studied correspond to crust with distinct geological origin.

It was concluded that seafloor dip distribution was insufficient in accounting for the

observed differences in scattering behavior. Therefore, the differences were attributed

to other factors such as fine-scale roughness.

In both of the above studies, the focus was on characterizing the global scattering

properties of bathymetric features of order 10 km in diameter or larger. In contrast,



the scattering analysis presented here seeks to resolve scattering strength variations

between different categories of seafloor within such a feature by making maximal

use of available environmental data, resolving capabilities of the sonar system, and

the unique capabilities of ARTIST. In particular, site B' is investigated, which is

a highly anisotropic feature composed of steep, unsedimented scarps separated by

flat, sedimented terraces. Using the full capabilities of ARTIST, a distinction in the

scattering properties of scarps and terraces is sought by carefully "chiseling" out those

portions in the reverberation data corresponding to individual scarps and terraces.

The width of the geographical regions being resolved is as narrow as 500 m.

In Section 3.1, the ARTIST framework outlined in Section 2.4 is extended to the

case of scattering data extraction. The extraction of scattering strength is discussed

in Section 3.1.1, and the extraction of the log-envelope statistics is discussed in Sec-

tion 3.1.2. In Section 3.2, I explore means specific to the ARSRP experiment to limit

the errors in mapping portions of data to seafloor regions.

The scattering strength curves for scarps and terraces are presented in Section 3.3.1.

This section also includes an investigation of the effect of the anisotropy of B' on

backscattering strength, which is made possible by the wide range of azimuths rel-

ative to B' over the seven segments considered. Next, the full probability density

functions (pdfs) of the backscattered waveforms are estimated for scarps and terraces

in Section 3.4. As with scattering strength, the effect of scarp anisotropy is inves-

tigated. I also present density estimates for "noise" reverberation which cannot be

ascribed to any portion of the bathymetry through a single bottom interaction.

Finally, the results are discussed in Section 3.5 and summarized in Section 3.6.



3.1 ARTIST Framework For Local Analysis of Scat-

tering

3.1.1 Extraction of Scattering Strength

It is assumed that the data are pixels corresponding to average reverberation levels

RL(tj, bk) defined over the same time-beam grid as the simulated data AL(t j , bk).

The goal is to appropriately normalize the energy of pixels (j, k) to yield scattering

strengths and to relate a single triad of angles -y,(j, k), y, (j, k), and r(j, k) to each

pixel.

Normally, only a subset A C {(j, k) : j E [1, 2, ... , J], k e [1, 2,... , K]} of the

available pixels contains information that can readily be used for scattering strength

studies. Some pixels are dominated by paths having interacted several times with

the bottom for which a single triad of angles and a localized seafloor area cannot be

defined. The energy in some pixels may originate from portions of the seafloor not

under study.

The first step in the scattering strength extraction is to explicitly define the set

of pixels A that arises from single interactions of rays with seafloor lying within a

bathymetric region of interest Q C R. The usable set of pixels for scattering analysis

is represented as the union of the usable pixels for each intersection pattern,

N

A =UA. (3.1)
n=1

To find the A , let jn(r) and kn (r) be index functions which identify a unique pixel

in the data as being dominantly contributed to by seafloor location r within Wn:

(j" (r), k(r)) = arg max F"(r,j, k), r E W". (3.2)
Letting the sonar footprint for time t{1,2,... J}and beam bk {be denoted by Z1,2,... ,K}

Letting the sonar footprint for time tj and beam bk be denoted by Zj k C R 2 , the



usable set of pixels for intersection pattern n is given by

A"= {(jn(r), kn(r)) : Zn(r),kn(r) C Q, r E WnnQ}. (3.3)

Note that in Equ. 3.3, I require that the footprint lie entirely within the region

of interest Q. This is to prevent the possibility of contamination of the scattering

strength estimates by contributions from outside Q. This is especially relevant if

the ambiguity function is near its maximum at distinct seafloor locations far from

each other, which occurs, for example, in the case of a horizontal line array receiver.

This type of array possesses a right-left ambiguity such that illuminated seafloor on

opposite sides of the ship is insonified with comparable energy. The sonar footprint

is defined explicitly for each pixel as

Zk = {r E W " : F (r, j, k) _ Fmax(j, k) - TH}, (3.4)

where TH is a chosen threshold below the maximum value of the ambiguity function,

given by

Fmax(j, k) = max Fn(r, j, k). (3.5)
r E W n , n E [1,2,...,N]

Note that this definition of footprint is more than just an area term; it specifies the

actual physical seafloor locations as well. The scattering strength is then calculated

using

SS(j, k) = RL(tj, bk) - 10 log10  Hk(r') dr'i , (j, k) E A (3.6)

_n : (j,k) E An fWnJ

where the function Hk (r) is defined as

10 F ( r k ) / 1 r E Zk (3.7)
Hk (r) = 0 otherwise.



Defining the operator T,k as

T f,k * f(r) / f(r')dr', (3.8)
n: (j,k) E A

n

the grazing and bistatic angles are then computed as weighted averages over the

selected areas and insonification patterns:

7s(j,k) = TJ,k [Hnk (r)y,n(r) (3.9)
TJ,k * Hynk(r)

S(jU, k) = T,k [Hk(r)(r)] 3.10)
Tk Hk(r)(3.10)

and

(j, k) = T,k Hk(r)(r')(3.11)
Tjk H,k (r)

The formulation presented here avoids the explicit specification of a footprint area;

it is calculated for each pixel based on the threshold parameter TH and the full

ambiguity function. In practice, this formulation is only feasible when the bathymetry

is sampled at a higher rate than the Nyquist rate of the ambiguity function. In the

case of ARSRP, the 200 m bathymetric resolution is sufficient to sample the cross-

range variation in the ambiguity function caused by the receiver beampattern, but

it is far from sufficient in capturing the 0(10 m) variations in range modulating the

match-filtered pulse.

In order to stabilize the scattering strength estimates, I average the data over a

time window At large enough to yield a range resolution on the order of the 200 m

lateral resolution of the bathymetry; I use At = 200 msec, which yields a spatial

extent of about 150 m. Supposing that the complex received time series for beam k



is given by r(t, k), the pixel energies are then calculated according to

1 t+At/2

RL(tbk) = 10 logl0  -At Ir(t, k) 12dt . (3.12)
R LR tj, bk) = 10 10910 tj -At/2

The pulse shape to use in the ambiguity function in Eq. 2.31 is therefore the boxcar

(t) 1 -At/2 < t < At/2
T(t) ={ -t/ Y (3.13)

0 otherwise.

The grazing and bistatic angles are then calculated as before using Eqs. 3.9, 3.10, and

3.11 but the scattering strength calculation of Eq. 3.6 becomes

SS(j, k) = RL(t, bk) - 10 log1 0 [T. H k(r)] - 10 log 0  t,] (j, k) A (3.14)

where At, is the null-to-null match-filtered pulse resolution of 35 msec.

In the case where Ir(t, k)l in Eq. 3.12 is Rayleigh distributed, it can be shown

[42] that the log-transformed variable RL has a mean which depends on the mean

intensity Ir(t, k) 2 and on the number of degrees of freedom [t in the average through

the relation

RL = 10 log(|r(t, k)12) + F( ). (3.15)

At a minimum of 1 degree of freedom (p = 1), F(/p) = 2.5 dB; the log-transformed

variable has a 2.5 dB augmentative bias compared to the log of the mean intensity.

As p increases, this bias tends to zero. In the processing of the data in this thesis

for scattering strength analysis, 200 msec pixels are used containing about 10 pulse

widths. Equation 3.12 therefore averages over about p = 10 degrees of freedom,

yielding a negligible bias of about 0.2 dB [42].

The log-transformed variable has a standard deviation which depends only on the

number of degrees of freedom. At p = 1 this value is 5.6 dB. The standard deviation

decreases as 1 increases. At p = 10, the standard deviation is approximately 1.4 dB.



While this poses a fundamental resolution limit on estimates of logarithmic quantities

such as scattering strength using a single pixel RL(tj, bk), the error on estimates of

mean scattering strength can be made arbitrarily small by averaging over sufficiently

many pixels.

3.1.2 Extraction of Log-Envelope pdfs

From Eq.3.12, each data pixel used in the scattering analyses is an average over 200

msec of the actual received envelopes. I define rj*,k(t) to be the portion of the high-

resolution envelope for beam k that lies between tj - At/2 and tj + At/2. Thus, in

addition to grazing and bistatic angles, footprint physical locations Zk and normal-

ization energy, each data pixel (j, k) is related to a high-resolution time subseries of

200 msec duration containing about six null-to-null pulse widths or ten 3 dB pulse

widths. The extraction of scattering strength in Section 3.1.1 concerns the average

values of each of the rj,k(t). I now seek to statistically characterize the fluctuations

of the rJ,k(t) within each 200 msec window.

A convenient way to characterize the fluctuations is through the use of histograms

of the envelopes rj,k(t). Histograms are estimates of the complete one-point probabil-

ity distribution function (pdf) of r, including all moments. They do not provide any

information regarding the N-point joint pdfs of r for N > 1. These N-point joint

pdfs will not be studied in this thesis.

Since the mean has already been discussed in the form of scattering strengths, it

is removed from each time subseries so that only the higher moments are studied. I

define rj,k to be the mean-corrected versions of the high-resolution subseries:

r,k(t) = ,k(t) - RL(j, k). (3.16)

The question arises as to whether this mean subtraction affects the statistics. The

number of pulse widths which lie within a processing window At defines the maximum

number of independent observations of the underlying statistical process for each

window. When this number is sufficiently large, the zero-mean operation in Eq. 3.16



does not alter the density of the process. In the current application, there are 10

pulse widths per processing window and the subtraction of the mean has a significant

effect on the statistics. The effect has been characterized in the case where r(t) is a

log-Rayleigh process in Appendix B.

Before proceeding to the presentation of the scattering strengths and time-domain

statistics for the ARSRP scenario, two key concerns are addressed (i) the effect of

uncertainties in the environment, and (ii) the avoidance of seafloor areas where the

direct and surface-bounce paths interfere coherently.

3.2 Issues in Local Scattering Analysis

3.2.1 Uncertainties in the Environment

The degree of agreement between the prominent features in the simulated and actual

data is degraded by uncertainties in the environment. Careful treatment is necessary

to prevent this degradation from inducing large errors into the scattering strength

estimates.

Hot spots in the simulation are sometimes off by a few time indices or beam

numbers. For example, feature BB in Fig. 2-6 does not have exactly the same outline

in the actual and simulated data. The set A of pixels that would be selected by

ARTIST in the scattering strength extraction phase is roughly those pixels which

are yellow, orange or red. If a selected pixel does not in fact lie on a data hot spot,

an abnormally low value of scattering strength is deduced. To avoid selecting these

shadow zone pixels, a minimum threshold TH* is applied to the data. Pixels lying

below this level are not considered in the analysis. The threshold is set by considering

the average reverberation levels at similar times along beams which are known to lie in

shadow, for example beams 60-70 between 45 and 55 seconds in Fig. 2-6. Fortunately,

it is always possible to find such shadow zone data in the analysis of B', therefore

TH* can always be defined.



3.2.2 Resolved or Unresolved Direct and Surface-reflected

Paths

Were infinite-duration CW signals to be used, the direct and surface-reflected paths

would interfere with one another at all points in the water column and lead to a Lloyd

mirror TL pattern. At the other extreme, were a delta function signal to be employed,

direct and surface-reflected arrivals would be temporally separated everywhere except

along isolated singular surfaces, and a separate TL value would be experienced for

each arrival. Clearly, the LFM pulse used in ARSRP lies between these two exteremes

in that direct and surface-reflected arrivals are resolved or temporally separated over

some portion of the water column, and are unresolved or temporally overlapping over

the remaining portions. Over the resolved portions, the average energy in a window

large enough to include both arrivals is given by the sum of the energies in each

separate arrival. Over the unresolved portions, the two arrivals interfere coherently

and the Lloyd mirror effect is experienced. Applying the Lloyd mirror pattern in

the resolved region or an incoherent sum in the unresolved region could introduce

significant errors in the evaluation of TL.

In Ref. [22], TL for the site A experiments was estimated at all points by ap-

plying a monochromatic Lloyd mirror pattern that explicitly included the 5 degree

downward steering of the source, and then performing an incoherent average over

bandwidth. The importance of the correct treatment of the surface contribution is

reduced because the downward source steering significantly attenuates this path. The

surface contribution for the site B' experiments analyzed here is not negligible since

the source beampattern was steered to broadside. This requires that careful be paid

to the summation of energy over the two paths. Either the correct amplitudes must

be determined, or those portions of the seafloor where a coherent interaction takes

place must be identified and excluded. Here, I choose the latter since the TL esti-

mates obtained by ARTIST are only valid when direct and surface-reflected paths

interfere incoherently.

In Ref. [58], wideband PE simulations were used to simulate the incident energy at



B' and it was suggested that an interference between direct and surface-reflected paths

existed, however the ranges at which this effect became important was not specified.

To determine these, I determine the minimum acceptable time delay between two

pulses such that an incoherent sum is within 1 dB of the wideband coherent sum.

The seafloor locations to exclude are then identified as those where surface and direct

rays arrive within the minimum acceptable time delay.

Figure 2-3 depicts the pulse used in the ARSRP experiments. Figure 3-1 (a) shows

direct and surface bounce arrivals combined coherently for three values of delay: 80

msec (black), 15 msec (blue), and 5 msec (red). At very low delay, the opposite

sign of the arrival from the pressure-release surface begins to cancel out the direct

arrival and a stark reduction in amplitude is visible. At the larger values of delay,

one observes two separate arrivals which don't interfere with each other.

Figure 3-1 (b) shows the error in incoherently versus coherently computing the

average energy over a 1 sec window as a function of time delay between direct and

surface arrivals of equal amplitude. The two horizontal lines correspond to a +1 dB

contour. From the figure, the smallest acceptable time delay to maintain a 1 dB error

in the incoherent energy calculation is about 15 msec. If the amplitudes of the two

pulses were not equal (which is usually the case), the minimum time delay would

be reduced further as the ability of the weaker pulse to attenuate the stronger pulse

would be diminished. This would increase ARTIST's region of validity.

The time delay between direct and surface arrivals generally decreases with range.

The seafloor below a source at a depth of 150 m receives direct and surface bounce

contributions which are separated by about 200 msec, or ten times the 3-dB width of

the match-filtered pulse. At the edge of 1/2 CZ, the direct and surface arrivals are

simultaneous. Thus, seafloor portions to exclude lie beyond some critical range.

Fig. 3-2 (a) depicts the function t - R/co as a function of range R, where co is a

nominal value of sound speed (1500 m/sec). The variable t is the ray time delay from

source to seafloor for segment 423 along a transect extending directly West from the

Cory Chouest, as indicated by the dashed line in Fig. 2-9.

Beyond a range of about 30 km, the time separation between the two eigenrays
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Figure 3-1: (a) Coherent combinations of direct and surface-bounce arrivals for 80
msec (black), 15 msec (blue), and 5 msec (red) delays. (b) Error associated with inco-
herently versus coherently combining direct and surface-bounce arrivals as a function
of the time delay between them. The parallel lines delimit the ± 1 dB error region.
The lower limit of time delay to maintain a 1 dB error is 15 msec.
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Figure 3-2: (a) The function t - R/co as a function of range for a ray trace from the
Cory along the dashed line of Fig 2-9 (segment 423). t is the travel time, R is the
range in km, and co is a nominal value of sound speed, set to 1500 m/sec. The top
line of ray contacts has undergone a surface bounce, while the bottom one has not.
The range at which the time delay between the two rays falls below 15 msec (critical
range) is approximately 30 km. (b) Critical range as a function of azimuth 0 for the
Cory during segment 423. The case in (a) corresponds to 0 = -180'.



falls below 15 msec. The incoherent summation is no longer valid and the portion of

the data corresponding to those ranges should be neglected in the scattering analysis.

This affects a small subset of the data; of the 32 km of seafloor which are insonified

along this azimuth, only the last 2 km are unavailable for incoherent processing. The

decision to keep or throw away data points for further analysis must be made at each

azimuth, and for each source-receiver geometry. Fig. 3-2 (b) shows the critical range

as a function of azimuth for the Cory Chouest during segment 423.

A benefit of eliminating seafloor areas where coherent interaction occurs is that

these are usually those where caustics are encountered; by neglecting such areas,

ray calculations are kept simple. It is understood that caustics can be important

practically, but they are a propagation phenomenon and therefore are not the focus

of this scattering study.

3.3 Presentation and Analysis of Backscatter

Focusing on monostatic configurations at site B', I explore (i) variations in backscat-

tering strength between scarps and terraces, and (ii) the effect of seafloor anisotropy

for scarps. The data are extracted using ARTIST and the seven segments depicted in

Fig. 2-5 (a). The segments insonify B' from different angles and at different ranges.

Based on Refs. [68], [67], and [18], I define scarps and terraces as follows. The

sketch of Fig. 3-3 may be useful.

Scarp (blue) These seafloor areas are steep and lightly sedimented. They feature

an eroded surface of exposed basalt cut by cross-scarp canyons which are 100-

200 m wide and 30-50 m deep on average. These large canyons are in turn

intersected by smaller scarp-parallel canyons 10-30 m wide and as deep as 10-20

m. The rough features on these scarps range in scale from centimeters to tens

of meters.

Terrace (green) Mostly flat seafloor lying at the base of scarps or between scarps.

Such areas are erratic in terms of roughness. Referring to Fig. 3-3, there is



talus near the base of a scarp, consisting of piles of loose basalt ranging from
tens of centimeters to tens of meters in size. The central area of the terrace is
heavily sedimented (f 25 m thick), with little exposed basalt. Finally, if there

is a subsequent scarp, the area near the tip of the next scarp is exposed basalt.

Other (red) Seafloor which does not fit neatly into either of the two categories

above and which may contain some of the characteristics of both. For example,
slump blocks are segments of scarp which have detached from from rest of the

scarp. While similar to scarps in their composition, they tend to be much more

sedimented, hence also similar to terrace seafloor.

Scarp Terrace Scarp Terrace

SSediment

Talus

Basalt
500 m

Figure 3-3: Sketch of the cross-section of B', showing the alternating scarp-terrace
structure. The upper portions of the scarps are bare basalt while the lower portions
are talus. The terraces, extending from the base of one scarp to the tip of the next,
are heavily sedimented in the central portions but range from talus at one end to bare
basalt at the other.

The backscattering analysis requires a detailed geographical delimitation of all

areas on B' and their classification into one of the three categories. This is achieved

using the color-coded polygons Oi shown in the three-dimensional view of B' in Fig. 3-

4. Each Qi is analogous to the region of interest Q in the scattering strength extraction



description of Sec. 3.1.1. Corresponding to each £i is a set of pixels Ai in the rever-

beration data; thus, pixels are readily sorted into one of the three seafloor types and

separate scattering strength curves can be obtained for each type.

3.3.1 Backscattering Strength for Three Seafloor Classes at

B'

Armed with the knowledge of which data pixels and seafloor areas to avoid for each

segment, a detailed backscattering analysis is possible. I perform ARTIST runs on

all seven of the segments depicted on Fig. 2-5 (a) and establish a mapping between

200 msec reverberation data pixels and their normalization energy levels and grazing

angles as described in the last part of Sec. 3.1.1. On Fig. 3-5 each dot corresponds

to one of the selected pixels in one of the segments and is color-coded with its corre-

sponding segment. The position of a dot co-incides with the peak of its corresponding

ambiguity function F#ax(j, k), where (j, k) is the selected pixel and # is the segment

number. The same polygons Ri as in Fig. 3-4 are overlaid on Fig. 3-5 so that the

reader may identify the three-dimensional appearance of the seafloor features that

each segment insonifies.

Using data from all seven segments, backscattering strength curves are estimated

separately for the three seafloor classes. The results are shown on Fig. 3-6. I empha-

size that each grazing angle is computed as the minimum angle between the incident

ray direction and the best-fit plane at the point of contact of the ray with the 200-

m resolution Hydrosweep bathymetry. The grazing angles are not computed with

respect to a horizontal seafloor, and they are not merely vertical angles.

For grazing angles below 15 degrees, the blue curve, corresponding to scarp

seafloor, lies 3-4 dB below the green curve for terrace seafloor. In this regime, other

seafloor, shown in red, exhibits a behavior which lies in between scarp and terrace

seafloor. Starting at around 20 degrees, all three curves converge.

In the case of scarp seafloor, the highest grazing angle contributions come from

the steepest parts of the scarps, high enough above the terraces to lie above the
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Figure 3-4: Three-dimensional view of the bathymetry at B', with overlaid color-coded
polygons classifying each region into one of three seafloor types. The illumination for
the shading is from the northwest; the scarps and terraces are easily distinguishable
in this view.
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Figure 3-5: The positions of the seven segments used in the scattering analysis are

indicated by the colored * symbols. Each dot corresponds to a selected pixel in the
received data of one of the segments and is color-coded according to its segment. The
polygons of Fig. 3-4 are overlaid.

start of talus slopes (see Fig. 3-3). The lowest grazing angles come mostly from the

tops of the scarps, which are composed of relatively smooth exposed basalt. The

middle grazing angle region comes mostly from the bases of the scarps where talus

has accumulated and formed a less steeply-sloping bottom. This talus extends into

the terrace seafloor, and so the middle grazing angle range for terrace seafloor also

comes from talus, explaining the match in backscattering strengths between scarps

and terraces in this regime.

The lower grazing angle contributions for the terrace curves generally come from

the central portion of the terraces which are heavily sedimented. Volume scattering

from loose basalt buried within the sediment is a potential cause of the enhanced

backscattering strengths in this angular regime. The flat surface of the sediment
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Figure 3-6: Backscattering strength as a function of grazing angle for scarp (blue),
Terrace (green), and Other (red) seafloor. An enhancement of 4 dB in terrace seafloor
as compared to scarp seafloor is observed at the lowest grazing angles, while all three
curves agree at grazing angles above 20 degrees. The best-fit Lambert's law at the
higher grazing angles has p = -16 dB (black curve), but this law fails at low grazing
angles.

masks a much rougher underlying basalt basement. The grazing angles with respect

to the basement may in some cases be much higher than those calculated using

the water-sediment interface, which would also lead to enhaned low-grazing angle

backscatter.

"Other" seafloor, manifesting a combination of the geological characteristics of

scarp and terrace seafloor, lies in between the two previous curves at all angular

regimes, as would be expected.

It is interesting to compare the data with the best fit Lambert's law. For the

regime above 20 degrees, the best fit coefficient is pl = -16 dB for all three seafloor

classes. Fig. 3-6 shows that while Lambert's law can be made to match the data

starting at 25 degrees, it fails at lower grazing angles.



3.3.2 The Effect of Anisotropy on Backscattering Strength

at B'

The obvious large scale anisotropy in Mid-Atlantic Ridge seafloor and more specif-

ically that encountered at site B', as seen from Fig. 3-4, naturally leads one to ask

about scattering behavior at various azimuths relative to particular seafloor features.

I define the axis of B' as the line making an angle of 66 degrees with the x-

axis, lying along the direction of the bathymetry's longest correlation length. By

using the fact that the seven segments used in the previous section insonify B' from

different directions, it is possible to study whether the anisotropy at B' translates

into measurable differences in backscattering strength.

As mentioned earlier, I focus exclusively on scarp seafloor. There are three rea-

sons for this; first, scarp seafloor is the category for which evidence of anisotropy is

strongest. Second, since the ~_ 228 Hz pulse penetrates the sediment cover of terraces,

it interacts with an unknown underlying interface. In the case of scarp seafloor, the

water-seafloor interface obtained using high-frequency sonar is more representative

of the true scattering surface because the rigidity of basalt allows little penetration.

Finally, I note that large volumes of data are required if reliable estimates are to be

obtained at many azimuths; as can be seen from Fig. 3-5, scatter from scarps is much

more common than scatter from terraces.

The four curves on Fig. 3-7 show the dependence of backscattering strength on

grazing angle at four different values of the incident azimuth relative to the axis of

B'. The dark blue curve corresponds to incident azimuths between 70 and 90 degrees.

The light blue curve is for azimuths between 60 to 70 degrees, the green for 50 to

60 degrees, and the red for 30 to 50 degrees. The backscattering strength curves are

shifted down by at least 5 dB at all grazing angles as the azimuth ranges from 90 to 30

degrees relative to the axis of B'. This Figure suggests re-interpretation of the scarp

curve in Fig. 3-6 as a composite over many azimuths. Lambert's law curves were fit

to the largest grazing angles yielding p = -14 dB from 60 to 90 degrees, p = -17.5

dB from 50 to 60 degrees, and p = -22.5 dB from 30 to 50 degrees. Lambert's law
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Figure 3-7: Backscattering strength as a function of grazing angle for various angles

of incidence relative to the anisotropic axis of B': 70 - 90' (dark blue), 60 - 70' (light

blue), 50 - 600 (green), and 30 - 500 (red). The best-fit Lambert's law curves are

shown in black.

is seen to fail at all azimuths for low grazing angles due to the different functional

relationship of the data.

3.4 Time-Domain Statistics of Backscatter at B'

In analyzing high-resolution envelopes backscattered from B', I choose a statistical

approach because neither the knowledge of the bathymetry and the environment, nor

current computational models are sufficient to deterministically relate obervations to

data in the ARSRP application.

Through the data structures made available by ARTIST, it is possible to extract

data histograms for specific regions of interest on the seafloor lying within particular

grazing and bistatic angle regimes, and at desired incident azimuths with respect to

the anisotropy of B'. Before presenting these, I present the log-envelope pdf estimate

for the pixels that are deemed by ARTIST not to correspond to direct or surface-



Segment # Jmin Jmax Kmin Kmax TH* (dB)
423 110 170 50 120 68
430 100 170 60 120 66
436 80 140 80 128 64
492 110 170 70 125 66
499 120 190 80 128 64

Table 3.1: Values used to select noise subspace for each segment.

reflected paths. I shall call these pixels "noise pixels"; the energy in these pixels

results from a large number of multiple-bottom interaction ray paths.

3.4.1 Pdf of Log-Envelope of Noise Pixels

The set of noise pixels is

A* = {(j, k) E At : RL(j, k) < TH*} (3.17)

where At is the complement of the selected set A with respect to { (j, k) : j E

[Jmin, ' , , Jmax], k E [Kmin ... , Kmax] }. The latter subset is a rectangular area

of pixels that was set manually for each segment and which is just large enough to

include A. The threshold TH* for each segment is set using the method of Sec. 3.2.1.

Table 3.1 indicates the values of Jmin, Jmax, Kmin, Jmax, and TH* that were used

for each segment.

The total contribution to the histogram is the union over all segments of

rnoise = U rj,k(t). (3.18)
(j,k) E A*

Fig. 3-8 (a) is a plot of the histogram on a linear scale (y-axis). The x-axis is in dB,

corresponding to the fact that the time series rj(t, k) (c.f. Eq. 3.12) are in dB. The

thin solid curve is a plot of the log-Rayleigh distribution which results when the real

and imaginary components of the underlying signal are Gaussian. It respresents the

tranformed version of the Rayleigh pdf after the operation 10 loglo(r(t)), which I refer



to as the log-Rayleigh pdf, as described in Appendix B. If, at each value of time, the

signal is viewed as a sum over a number of degrees of freedom each corresponding to

independent paths or independent scatterers, then a Rayleigh pdf is obtained in the

upper limit of this number.

Each time subseries is 200 msec long and contains 10 independent observations of

the underlying statistical process given that the 3-dB width of the pulses is 20 msec.

As explained in Appendix B, when sets of I log-Rayleigh variables are normalized by

their mean, the resulting variables are no longer log-Rayleigh. Taking the example

case I = 2, we begin with two i.i.d. log-Rayleigh variables {Ei, E 2} and end up with

1{ (El-E 2), ~(E2 -E 1)}, a set in which the second variable is perfectly correlated with

the first. Because El and E2 are i.i.d., the opposite signs of the variable El - E2 lead

to a symmetric distribution. From this argument alone, I have already determined

that this variable cannot be log-Rayleigh, since this pdf is not symmetric.

The thick solid curve on Fig. 3-8 (a) is the transformed version of the log-Rayleigh

density that results from normalizing sets of I = 10 log-Rayleigh variables by their

means. The data histogram agrees with this density of mean-corrected log-Rayleigh

variables, indicating that the magnitude of the underlying signal envelope is Rayleigh.

If the effect of mean normalization were not included, it might be incorrectly deduced

from the difference between the histogram and the log-Rayleigh distribution near the

peak that the process was non-Rayleigh.

In Fig. 3-8 (b), I show the same data with the y-axis in dB according to a relative

scale chosen to make the peak of the density 50 dB. The log scale is useful to search for

non-Rayleigh behavior at the high level tail which could be hidden in a linear display.

The horizontal line is a reference showing the decibel level ascribed to a histogram

bin having only one element. As in (a), the thin solid line is the log-Rayleigh pdf and

the thick line is the density of log-Rayleigh variables mean-normalized in sets of 10.

The noise data agree very well with the latter curve at levels above -30 dB.

Below -30 dB, the density estimates are unreliable. Such low levels, if they occur at

all, usually result from sidelobe leakage of the higher levels; they are not independent

estimates of a Rayleigh variable, but samples corrupted by linear dependence on
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the higher level variables. I have observed by carrying out numerical simulations of

complex Gaussian white noise convolved with different pulse types, that changing the

pulse sidelobe structure changes the lower levels in the log-envelope density estimates

in erratic and unpredictable ways. Given that the low levels do not form the basis for

any conclusions in this thesis, they have been omitted entirely from all the histograms

presented in this chapter. The high level density estimates, which are used to draw

conclusions, are insensitive to pulse sidelobe structure.

The last histogram bin is clearly above the log-Rayleigh pdf. This might be

interpreted as evidence of non-Rayleigh behavior, but the bin matches well with the

mean-modified log-Rayleigh pdf, indicating that the noise pixels are in fact Rayleigh.

The log-Rayleigh curve would be encountered in the limit of increazing window

size At. Excessively large windows would lead to non-stationary samples, thus it is

preferred to use reasonable window sizes and account for the warping of the density

by the zero-mean operation.

The standard deviation is estimated to be 5.39 + 0.03 dB; the mean-corrected

log-Rayleigh pdf for I = 10 (see Appendix B) has a standard deviation of 5.38 dB.

The result that the noise pixels are Rayleigh is intuitive, given that ARTIST

simulations have identified them as correpsonding to shadow zones, deriving their

energy from more than one path having reverberated up and down several times in

the water column and also potentially from sidelobe leakage.

3.4.2 Pdf Estimates For Scarps and Terraces

The density estimate of rj,k(t) for terrace seafloor at all grazing angles is displayed on

Fig. 3-9 in (a) linear and (b) logarithmic units. The green curves are the densities of

log-Rayleigh variables zero-meaned in groups of 10. There is evidence of non-Rayleigh

behavior near the peak in (a) and in the last two histogram bins in (b). The third

last histogram bin, centered about 15 dB, is 10 dB above the Rayleigh case, so 15

dB events are ten times more likely from the terraces than from a perflectly Rayleigh

process.

Turning now to scarps, I show density estimates of the log-envelopes for two
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though all grazing angles are included in the estimate, very few data pixels are as-

sociated with grazing angles above 25 degrees. The depression from the peak in (a)

and the enhanced upper tail in (b) indicate a departure from Rayleigh.



grazing angles regimes: smaller than 25 degrees in Fig. 3-10 (a) and (b) and greater

than 25 degrees in Fig. 3-10 (c) and (d). In (a), the depression of the histogram peak

from the peak of the curve for Rayleigh statistics is greater than for the terraces.

Examining (b), the 15 dB histogram bin (third last) is slightly higher than for the

terraces; more importantly, there is significant evidence of non-Rayleigh behavior

above 15 dB. The last histogram bin lies approximately 40 dB above the curve for

the Rayleigh case; these scarp events are 10,000 times more likely than from a Rayleigh

process.

Examining grazing angles greater than 25 degrees, the linear plot in (c) reveals

an even greater depression of the histogram from the Rayleigh case than in Fig. 3-9

and (a) of Fig. 3-10. In (c), the high-level tails show clear evidence of non-Rayleigh

behavior, with the highest bin revealing a 50,000 higher likelihood of the strongest

events than from a Rayleigh process.

It is interesting to ask how the enhanced high-level tails affect the second moment

of the log-envelope pdfs. To reduce the error on this standard deviation estimate, I

do not restrict the analysis to site B'; I use all data pixels which can be ascribed to

scattering from bathymetric features through ray paths interacting with the seafloor

only once. The result is a standard deviation of 5.90 + 0.04 dB, which is to be

compared to a value of 5.38 dB of the process were perfectly Rayleigh. Thus, there

is an increase of about 0.5 dB in the standard deviation of the log-envelope pdfs

compared to a Rayleigh process.

The observation that the received signals from scarps and terraces at all grazing

angles are not fully-formed Rayleigh suggests that individual scatterers are occasion-

ally glinted by the sonar system. This glinting enhances the high-level tails in the

envelope pdfs as compared with the Rayleigh distribution. The fact that the glints

become more likely at high grazing angles suggest that they are not caused by shad-

owing but by scattering by rare large facets oriented to reflect specularly in the back

direction.



Log -Envelope PDF Estimates For Scarps

Grazing angles < 25 deg
Linear Disnlav of PDF

(a)

0 .0 2 - A l l

0
-50 -40 -30 -20 -10 0

Envelope, dB

L .
10 20 30

Logarithmic Display of PDF, relative units

(b)

-20 -10 0
Envelope, dB

10 20 30

0.1

0.08

0.06

0.04

Grazing angles > 25 deg
Linear Display of PDF

(c)

A

0.02-

-50 -40 -30 -20 -10 0
Envelope, dB

10 20 30

Logarithmic Display of PDF, relative units
50 

II(d) ~ L

10

0
-50 -40 -30 -20 -10 0

Envelope, dB
10 20 30

Figure 3-10: Estimates of the pdfs of backscatter from scarp areas (red). (a) and
(b) The shallow grazing angles are comparable to those that dominate the terrace
seafloor. Data from the scarps at low grazing angles exhibit a greater departure from
Rayleigh than the terraces (c.f. Fig. 3-9). (c) and (d) The departure is accentuated
further at the higher grazing angles.

0.1

0.08

0.06

0.04

30[

20
10

0
50 -40 -30

,~~- -*-- -~-



3.4.3 Effect of Anisotropy on Scarp pdfs

Taking the analysis one step further, Fig. 3-11 examines the scarp time series for

different incidence directions with respect to the anisotropy of B', for grazing angles

less than 25 degrees. Fig. 3-11 (a) and (b) are for azimuths 70-90 degrees from the

axis of B', that is, within a ± 20 degree cone of being normal to the scarps. Fig. 3-11

(c) and (d) show log-envelope density estimates for azimuths of incidence of 30-70

degrees with respect to the axis of B'.

Finally, in Fig. 3-12, I examine the effect of anisotropy as in Fig. 3-11 except that

now I focus on grazing angles greater than 25 degrees. Both grazing angle regimes

reveal the same observation: the departure from Rayleigh at the central peak of the

linear density and at the tails of the logarithmic density is more dramatic normal to

the scarps. The last bin of Fig. 3-12 (b) suggests that scarp events above 20 dB are

more than 200,000 times more likely for normal incident azimuths and high grazing

angles than from a Rayleigh process.

3.5 Discussion

3.5.1 Terraces

The comparisons of scattering strengths and envelope densities for scarp and terrace

seafloor have revealed that terraces are stronger scatterers at low grazing angles while

their time-domain backscatter is closer to being Rayleigh than scarps. Since there is

little direct knowledge on the fine scale structure of the sediment and its underlying

basement, it is difficult to ascertain the cause of this behavior.

The increase in backscattering strengths at lower grazing angles could be explained

both by the presence of scatterers within the sediment, and by a scatterer-free sed-

iment layer overlying a basalt basement. In the latter case, the flat surface of the

sediment leads to shallow grazing angles, but the wave interaction is at a potentially

steeper interface beneath, explaining the higher scattering strengths.

In the absence of volume scatterers, the time-domain statistics should be similar
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to those for scarps since interaction is with the same interface. It is likely that

volume scatterers are contributing to the backscatter thereby increasing the number

of degrees of freedom in the waveforms and resulting in statistics that are closer to

being Rayleigh than for scarps. These issues will be explored no further in this thesis

since I concentrate on scattering at the exposed water-basalt interface rather than

scattering within or underneath sediments. The reader interested in volume scattering

in ARSRP is referred to Ref. [33].

3.5.2 Lambert's Law

Agreement with Lambert's law is expected when the roughness within the footprint

distributes acoustic intensity uniformily in solid angle. The energy, or scattering

strength, radiated in any direction is then simply the projected area of the footprint

in that direction. For an impenetrable boundary, conservation of energy fixes the

value of the coefficient of Lambert's law, but is it customary in practice to account for

energy lost through penetration or other mechanisms not accounted for by empirically

fitting the coefficient to the data.

The best-fit Lambert's law has a coefficient p of -16 dB for all three seafloor

classes, and is found to fail at low grazing angles, which is also where the three seafloor

types exhibit distinct scattering strengths. In the anisotropic study of scarps, best-fit

Lambert's law coefficients range from -22.5 dB at 30-50 degrees relative to the axis of

B' up to -14 dB for normal incident azimuths. In all cases, it is found to fail at grazing

angles below 30 degrees. The failure of Lambert's law indicates that the seafloor and

the footprint size in ARSRP violate the assumption of uniform intensity scattering.

3.5.3 Log-envelope pdfs

The deviation of the statistics from those of a Rayleigh process for all the seafloor

areas analyzed imply that the number of degrees of freedom which sum up to make

the backscattered signal is not sufficiently high for the real and imaginary parts of

the signal to have converged to independent Gaussian processes by the Central Limit



Theorem. There are three plausible causes.

1. It is at least occasionally true that a small number of scatterers within the

footprint dominates over the rest. A good example would be an occasional glint

from a facet large compared to the wavelength oriented in the back direction.

2. The number of scatterers within the footprint is at all times large enough to

cause fully-formed Rayleigh signals, but a shadowing function causes the mean

energy levels to fluctuate over time as the pulse passes over shadowed and

illuminated features within the 200 msec time windows used in data processing.

3. A combination of 1 and 2 is responsible for the non-Rayleigh behavior.

As the grazing angle increases, the effect of shadowing becomes less important. If

shadowing were an important mechanism for generating non-Rayleigh scatter, devia-

tions from Rayleigh would decrease with increasing grazing angle. The data exhibit

the opposite behavior and therefore do not support option 2. This implies the in-

triguing result that a sufficiently small number of abnormally strong scatterers is

encountered in the approximately 500 m x 25 m footprint.

3.5.4 Scarp Anisotropy: Evidence of Scale Structure Impor-

tance in Acoustic Scatter

Further insight can be gained by considering the observed dependence on incident

azimuth with respect to B' anisotropy. It is helpful to make use of available knowledge

regarding the fine-scale structure of B' scarps. Geophysical surveys at B' [67] reveal

that scarp anisotropy exists at smaller scales. As mentioned earlier, the scarps are

cut by canyons 100-200 m wide and 30-50 m deep along the direction normal to the

axis of B'. This is the roughness that is experienced by a wave incident parallel to the

scarps. Along the axis of B', or parallel to the scarps, one finds gullies 10-30 m wide

and 10-20 m deep, which is the roughness that a wave incident normal to the scarps

experiences. There are other forms of wavelength-scale roughness such as talus, but



these structures lead to isotropic roughness and therefore cannot be used to explain

data dependence on anisotropy.

It is possible that the backscattered energy in ARSRP contains glints from rela-

tively smooth features on the order of a wavelength or larger with high slopes (> 450).

According to this theory, backscatter from the scarp-parallel gullies is expected to be

stronger than from the canyons since the gullies are more likely to present retro-

reflecting features than the canyons.

It is appropriate at this point to mention a perplexing result from Ref. [18] pre-

sented in the next chapter. The estimates of power spectral density parallel and

normal to B' scarps are very close to being identical in shape and amplitude, sug-

gesting isotropy in spite of clear identification of anisotropy in visual observations of

the bathymetry at the same scales. It appears that the spectral representation has

lost information about the features in the bathymetry, features which are potentially

relevant to scattering.

The explanation of scatter in terms of the statistical morphology of scattering

surfaces is the central subject of this thesis. The spatial organization of a surface's

features at different scales is defined as scale structure. The ARSRP data suggest

that scale structure plays an important role in scattering.

3.5.5 Discrete Scatter

One of the proposed mechanisms for explaining scatter in ARSRP has come to be

known as the Dyer conjecture [13]. Although no analysis of the time-domain statis-

tics were performed in the original paper [13], the theory was formulated based on

the statement that "Rough bottom acoustic backscatter observed in the 200-300 Hz

frequency range has a discrete character." The theory proposes that scatter from

isolated, smooth "facets" can lead both to discrete backscatter and high values of

backscattering strength as observed in ARSRP, if their sizes are close to one acoustic

wavelength. The reasoning is as follows: facets large compared to the wavelength

scatter strongly but only in the forward direction, and facets much smaller than the

wavelength scatter omnidirectionally but do so weakly. Only those facets which are of



comparable size to the wavelength lead to energetic backscatter. The discrete charac-

ter of backscatter would persist at a range frequencies because the wavelength would

self-select wavelength-sized features.

The events based on which I proclaim event-like or temporally discrete statistics

are extremely rare, as can be seen from the histograms themselves. The frequency of

these events is not sufficient to make them the dominant contributors of scattering

strength, which is the mean energy of the envelope. The specific cause of such events,

whatever it is, is itself rare, and it is not the same as that which causes the mean

levels. For the Dyer conjecture to explain both the mean levels and the rare events,

it is required that we regard the rare event of a wavelength-sized feature oriented to

reflect specularly in the back direction as the cause of the high-level events and the

common event of a wavelength-sized feature oriented in any other direction as the

cause of the mean levels. However, any smooth feature oriented in the back direction

of size equal to or larger than the wavelength leads to high-level events. The Dyer

conjecture is thus not quite adequate in describing both the glinting and scattering

strengths. Nevertheless, it was a powerful inspirational force in shaping the ideas to

be presented in the remainder of this thesis about scale structure and its impact on

acoustical scattering.

3.6 Summary

1. Focusing on monostatic configurations and site B', I have shown that in the

context of ARSRP it is possible to classify scattering data according to a set

of intertwined seafloor categories defined over regions as narrow as 500 m. The

ability of ARTIST in incorporating the range and azimuth resolution capabilities

of the sonar have proven invaluable in this respect.

2. The data analysis has revealed higher backscattering strengths for terraces than

for scarps at grazing angles below 15 degrees. Lambert's law was found to fail

at grazing angles below 20 degrees.



3. Backscattering strength curves for scarp seafloor were extracted for different in-

cident azimuths relative to the anisotropic axis of B'. It was found that backscat-

tering strengths for incident azimuths normal to the scarps were at least 5 dB

higher than at 30 to 50 degrees relative to the scarps. Best-fit Lambert's law

coefficients ranged from -22.5 dB at 30 to 50 degrees relative to the scarps, up to

-14 dB normal to the scarps; Lambert's law was found to fail at grazing angles

below 30 degrees at all azimuths.

4. In the estimates of high-resolution log-envelope pdfs, I have found that data

associated by ARTIST with multiple seafloor interaction ray paths behave as

samples from a Rayleigh process. In establishing this fact, it was important to

account for the logarithmic transformation applied to the data as well as the

effect of subtracting the mean from data segments ten pulses wide.

5. While exhibiting a variance which is only 0.5 dB different from that of a Rayleigh

process, all of the pdf estimates for data which can be mapped to the seafloor

by ARTIST through direct or surface-reflected paths differ from the pdf of a

Rayleigh process in two important ways: they exhibit a lower peak value and

enhanced tails. The enhancement of the tails is such that high-level events are

many orders of magnitude more likely than from a Rayleigh process.

6. The extent of the disagreement with a Rayleigh process is higher for scarps

than for terraces. For scarps, the disagreement is higher at large grazing angles,

suggesting that shadowing is not the leading cause.

7. For a given range of grazing angles, the disagreement with a Rayleigh process

is higher normal to the scarps. Concurrently, the fine scale roughness at B'

exhibits features which are more elongated and have smaller slopes parallel to

the scarps than normal to the scarps, although the power spectral density along

both directions is the same (shown in Chapter 4). These observations lead to

the suggestion that scale structure, or feature size distribution, may play an

important role in scattering from random rough surfaces and that alternative



methods in statistical seafloor morphology are needed to represent them.

The high-level tails in the pdfs are relevant from an engineering perspective be-

cause they can lead to clutter in active sonars. They are also intriguing from a

scientific point of view and provoke some thoughts regarding a possible connection

with the stochastic morphology of the seafloor. In the next chapter, I take a closer

look at the feature-like nature of the bathymetry by presenting a set of nested plots of

increasing resolution centered on site B' and periodograms of high-resolution profiles

normal to and parallel to B' scarps. This analysis of the bathymetry combined with

the results of the present Chapter form the motivation for the theoretical exploration

of scale structure and its role in scattering in Chapters 5 and 6.



Chapter 4

Seafloor Morphology

In the previous chapter, enhanced tails were observed at the high levels in the pdf's of

time-domain backscatter across all grazing and anisotropic angles. The tails provide

quantitative confirmation that time-domain backscatter has an event-like character.

These events are proposed to result from scattering at localized seafloor features. It

is then natural to pose questions regarding the features that are contained on the

seafloor. These questions can only be answered by taking a closer look at available

bathymetric surveys.

In this chapter, I concentrate solely on the seafloor and perform a deterministic,

morphological analysis using a series of nested surveys to reveal dominant structures

in each range of scales. This is followed by estimates of the power spectral densities

of high resolution profiles normal and parallel to scarp seafloor at site B'.

The observations will inspire a new stochastic seafloor model which, in contrast

to the Goff-Jordan model, can generate feature-like roughness.

4.1 Deterministic Observations

The coarsest dataset is the Hydrosweep bathymetry of the Atlantic Natural Labora-

tory depicted in Fig. 2-1, collected in 1992 and providing a 200 m horizontal resolution.

The horizontal extent covered by this figure is several hundred kilometers, and the

dominant feature of the roughness at these scales is the nominal 600 orientation of
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Figure 4-1: Zoom-in on the square at site B' in Fig. 2-1. At the range of scales in

this plot, the bathymetry does not exhibit features at a predominant scale.

the quasi-periodic lineations with separation distance on the order of 20 km (abyssal

hills). Also, there is a gradual subsidence of the mean seafloor depth from ~_ 3500 m

at the MAR to _ 4500 at the Western end. The numerous abyssal hills evident in

this view have a predictable impact on reverberation, as shown in Chapter 2.

The next higher level of detail is depicted in Fig. 4-1; it is a zoom-in on the

rectangle labeled Site B' on Fig. 2-1 with a horizontal extent of 40 km. The view

provided at this scale of magnification reveals no repeatable features. The steep scarps

of B' change into a sedimented valley in the center. Partial ridges are scattered around

the circumference of the plot, but with no clear pattern.
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Figure 4-2: Vertically exagerrated view of bathymetry at site B' collected with DSL-

120 sonar system at a lateral resolution of about 5 m. The color contours represent

the depth in meters. In this view, a central sedimented terrace separates an upper

scarp of exposed basalt from a lower scarp. These are the same two scarps that were

used in the data analysis of Chapter 3 and which can be seen in the perspective view

of Fig. 3-4. The region below the lower scarp contains of mix of exposed basalt and

sedimented areas which was typically classified as "Other" seafloor in Chapter 3. The

dominant form of roughness on the scarps at this scale comes from the cross-scarp

canyons.



The next view, with horizontal extent of about 5 km, focuses on the B' rectangle

of Fig. 4-1 to yield Fig. 4-2. These data were collected using the 120 kHz sonar

system DSL-120 yielding a 5 m horizontal resolution. At this scale, one can see the

re-emergence of repeatable, single-scale features. These are especially evident on the

highest scarp; they take the form of canyons cutting normal to the scarp and are

separated by an average distance of 100-200 m. This finding has been studied and

related to mass wasting in Ref. [67]. These cross-scarp canyons are also visible in the

lower scarp. The two scarps are separated by a sedimended terrace which shows little

roughness in this view. In Ref. [67], the authors observe scarp-parallel gullies 10-30 m

wide and 10-20 m in height on some of the lower scarps of B'. These gullies intersect

the larger cross-scarp canyons at near right angles, yielding a trellis pattern.

A non-vertically exaggerated view of the DSL-120 bathymetry taken from Ref. [67]

is shown on Fig. 4-3. The cross-scarp canyons are even more evident in this Figure.

Zooming in on the rectangle in Fig. 4-2 gives Fig. 4-4 with horizontal extent on the

order of 500 m. These data were collected using the Mesotech 675 KHz pencil-beam

sonar system of the ROV Jason, with horizontal resolution of 2 m. The smooth areas

result from interpolation; data are only available along a set of tracks taken by the

ROV. Shown on the figure is the size of the ARSRP sonar footprint, represented by

the red rectangle. The canyons from the previous view are still visible, but a new

finer-scale structure can now be distinguished. On the flanks and at the base of the

scarp, there are cross-scarp corrugations with average spacing on the order of 20 m.

Near the top of the scarp, a number of blocky features with diameter around 10 m is

visible. Focusing in on these features using the black rectangle, it can be seen in Fig. 4-

5 that they are comparable to the wavelength in size. They are labeled "facets" since

they are morphologically consistent with the notion of the smooth localized features

mentioned in the previous chapter and at the beginning of this chapter.

The ROV was equipped with video cameras, permitting an even more detailed

view of the seafloor. The two still-camera images shown in Fig. 4-6 along with their

interpretation were borrowed from Ref. [18]. They were taken at locations indicated

by the black dots on Fig. 4-4. Fig. 4-6 (a) is from UTM location (191.410, 2944.65)



Figure 4-3: View of bathymetry from DSL-120 system taken from Tucholke et al.,
Geology 25(2), Ref. [67], over the same region as Fig. 4-2 but to scale. The shadowing
provides a clearer view of the single-scale nature of the structures on the scarps. The

axis running left to right is approximately 7 km long, that running bottom to top is

approximately 4 km long, and the length of the vertical axis shown at the bottom

left corner is approximately 1300 m.

km near the top of the scarp and (b) is from (191.320, 2944.3) km near the bottom of

the scarp. In (a) the vertical extent of the picture is around 3 m and in (b) it is about

2 m. At (a), the angle of the scarp is approximately 450. At this sub-wavelength scale,

we see the appearance of yet another form of roughness due to manganese nodules

around 10-20 cm in scale. There is an absence of roughness for scales from 30 cm up

to the full size of the view, 3 m. The grayish matter between the nodules is a thin

sediment cover over basalt. There is an absence of roughness over much of the range

of scales between the sediment grain size and the size of the nodules. In (b), the slope

is initially 70 - 90' at the left edge and abruptly settles to shallower angles at the top
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Figure 4-4: Zoom-in on rectangle of Fig. 4-2 using 2 m gridded bathymetry from
Mesotech pencil-beam scanning system. Contours in meters.

right corner. This latter area consists of talus more heavily draped with sediment.

Apart from this break in slope, the structure is similar to (a), where roughness is

dominated by features 10-20 cm in diameter.

The observations from the nested views of the seafloor can be summarized as fol-

lows. Each of the nested views presents a wavenumber-filtered picture of the seafloor

where the largest scale detectable is associated with the lateral extent of the view,

and the smallest scale is associated with the smallest pixel in the image. In each case,

the range of scales encompasses several orders of magnitude. In some of the views, a

dominant form of roughness at a single scale is revealed. For example, in the 2 to 3

m views of the top scarp of B', this dominant roughness took the form of 20-30 cm

manganese nodules. At the 5 km view of Fig. 4-2, there was a detectable roughness



Figure 4-5: Zoom-in on rectangle of Fig. 4-5 showing some wavelength-scale structure
on the scarps of site B'.

dominance by the cross-scarp canyons. On the other hand, in the view of Fig. 4-1,

such single-scale patterns were not evident.

It is clear that the morphology of the seafloor, whether it reveals features at a

dominant scale or not, differs from one range of scales to the next. It is therefore inter-

esting to take a look at traditional spectral stochastic seafloor analysis to see how this

variability across scales translates into energy density as a function of wavenumber.

4.2 Spectral Analysis

The most common technique for characterizing stochastic seafloor roughness is spec-

tral analysis [17] [3]. A characteristic which is shared by seafloor from widely varying
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Figure 4-6: Video still images of bathymetry at sub-wavelength scales from Goff et

al., J. Geo. Res. 102(B7), Ref. [18], taken (a) at (191.410, 2944.65) km and (b)

at (191.320, 2944.3) km, as indicated by the dots on Fig. 4-4. Both images show a

dominance of features at a scale of 10-20 cm, with comparatively little roughness at

any other scale.
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parts of the world's oceans is that plots of their power spectral densities as a func-

tion of wavenumber yield straight lines in log-log space. This implies the relationship

S,,(k) = A/kb , A > 0. In practice, the exponent b usually lies somewhere between 1

and 3. The parameters A and b (and their variants) have been used in the past both

for classifying the seafloor and characterizing its roughness.

500 m

N

Y

1200 m

Figure 4-7: The cross-scarp (A-A) and scarp-parallel (B-B) profiles used in the

spectral analysis, superimposed on a view from above of the interpolated Mesotech

bathymetry.

Fig. 4-7 shows a top view of the 2 m Mesotech bathymetry shown previously in

Fig. 4-4. In this view, it is easy to discern the tracks of the ROV, with characteristic

width determined by the average swath width (_ 30 m) of the mechanically swept

sonar. Valid data are extracted from the bathymetry along polygonal lines passing

through the ROV's tracks. The black line labeled A-A on Fig. 4-7 is used for a

cross-scarp spectral estimate, and the line labeled B-B is used for a scarp-parallel
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estimate. The estimates were obtained by removing the linear variation along the

profile, applying a Kaiser-Bessel window of order 5, and Fourier transforming the

magnitude squared of the result.

Fig. 4-8 (a) displays the resulting profile for the cross-scarp direction, and the

spectral estimate along with the best-fit straight line are indicated in (b). Fig. 4-9

displays the analogous information for the scarp-parallel direction.

In both cases, the typical power-law decay is observed, with exponents b of 2.60 in

(a) and 2.76 in (b). A similar spectral analysis was performed in Ref. [18]; the best-

fit exponents b were found to be 2.44 ± 0.08 and 2.46 ± 0.14 for the cross-scarp and

scarp-parallel directions, respectively, where the error estimates were taken from the

periodograms themselves by considering their noisiness to be an empirically-defined

error envelope.

This method of error estimation explains the discrepancy between the results of

Ref. [18] and the values 2.60 and 2.76 obtained here. By using slightly perturbed

paths for the profiles in Fig. 4-7 such that the new paths still lie on the valid, non-

interpolated data within the swath width of the ROV, values of b have been found

to vary by about ±0.3. While for any given path the error estimate on the exponent

may be adequately determined by the noisiness of the periodogram, this error is

not representative of the uncertainty relative to other scarp-parallel or cross-scarp

profiles lying within a swath width. The values presented here lie in the upper regime

of the exponents encountered across different paths, because the paths were explicitly

chosen to pass through 10-15 m facet-like features. The sharp slope variations in

these features tend to increase the slope of the periodograms.

The power law form of seafloor power spectra has important mathematical implica-

tions. If a stochastic process has Gaussian statistics (refer to Chapter 5 for a rigorous

definition of Gaussianity) and a power-law spectrum, it is a fractal random process

for certain values of the decay exponent. The ensemble statistics of the process are

fractal because the correlation function is self-similar, i.e R,,(aT) = aRxx,(T), which

implies that its full pdf is self-similar in the Gaussian case.

In the Gaussian case, individual realizations themselves have fractal properties;
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Figure 4-8: (a) Cross-scarp profile from Fig. 4-7. (b) Periodogram.
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Figure 4-9: (a) Scarp-parallel profile from Fig. 4-7. (b) Periodogram.
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they are non-rectifiable, i.e. the event that a disk of radius e exists such that the

surface is differentiable over this disk has probability zero for E > 0. These nowhere-

differentiable curves have the property of showing roughness at all scales simultane-

ously. Incidentally, this implies that the existence of locally smooth segments such as

facets is impossible because a facet must exhibit no roughness at scales smaller than

its width. Thus, a Gaussian fractal model with power-law spectrum is inadequate to

model facets.

The most common stochastic model currently in use for modeling of the seafloor

for acoustical purposes is the Goff-Jordan model [19] [20]. It is an anisotropic, two-

dimensional, Gaussian, and fractal model which provides for a power-law decay at

high wavenumbers with adjustable exponent.

One of the powerful ideas behind the Goff-Jordan model is that it can be used to

extrapolate measured roughness into roughness at smaller scales. This approach is

explored further for a particular realization. A 100 km by 100 km patch is generated

with 60 degree anisotropy and a major to minor anisotropic axis of 4.5 and fractal

dimension of 2.4. These parameters are comparable to measured values in ARSRP.

The specific values of correlation length and variance were set graphically by manu-

ally scaling horizontal and vertical directions for best visual agreement with ARSRP

bathymetry.

Fig. 4-10 shows a zoom-in on a 5 km x 5 km area of this patch to see how

the predicted morphology at fine scales compares with the observations over similar

horizontal dimensions in Fig. 4-2 and 4-3. The 60 degree large-scale anisotropy is

extrapolated fully to the smaller scales by the Goff-Jordan model when in fact a

different kind of anisotropy is clearly visible at the _ 500 m scales of Fig. 4-3 in the

cross-scarp canyons. The contour plot in (a) looks more like the plot of the large-scale

bathymetry in Fig 2-1, based on which the model parameters were set, than 5 km

scale roughness. Although specific "features" can sometimes be picked out, there is

no dominant pattern and features of all sizes are equally likely to manifest themselves,

as one would expect from this Gaussian model.

The fractal concept is useful in capturing the easily observable fact that the
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Figure 4-10: (a) Contour plot of a realization from the Goff-Jordan model with fractal

dimension 2.4 and 60 degree anisotropy. (b) Carpet plot of same. The realizations of

the Goff-Jordan model do not capture the canyons structures of Fig.4-3.
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seafloor shows structure over a broad range of scales, from the width of the ocean's

basins down to fractions of a millimeter and smaller. The difficulty with the Goff-

Jordan model is that its realizations correspond to the superposition of randomized

contributions at each scale continuously, while the seafloor emphasizes structure at a

set of isolated scales.

This issue has been discussed in Ref. [24], where the variograms of profiles from

the East Pacific Rise were analyzed and found to be inconsistent with self-similar

and self-affine fractal models such as the Goff-Jordan model. This opens the door

to proposals of seafloor models that might succeed better at matching observed scale

structure.

In spite of the morphological differences, it is surprising but true that power

spectral density estimates of the actual seafloor at scales of 5 km and below can

match the extrapolated version of the 50-100 km scale Goff-Jordan spectrum to higher

wavenumbers. This fact suggests that the power spectral density does not uniquely

determine the scale structure of a random process. This subject is explored in a

theoretical sense in the next chapter.

4.3 Conclusion

4.3.1 Summary of Observations

Two seemingly contradictory claims can be made about the bathymetric data. First,

since structure is observed over scales spanning from centimeters to hundreds of kilo-

meters, the data are consistent with the qualitative notion of a fractal. On the other

hand, when looking over a particular range of scales, a single-scale form of roughness

can be present which predominates over roughness components at adjacent orders

of magnitude in scale. This kind of roughness cannot be explained by a Gaussian

power-law model such as the Goff-Jordan model.

While such models may be successful in capturing the existence of structure over

the 7 orders of magnitude considered here, it is not a useful concept in describing
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seafloor morphology more precisely a few orders of magnitude about a particular

scale. Since wave interactions with the seafloor impose a specific scale associated

with the wavelength and the footprint, it appears more sensible to model the seafloor

morphology about those scales than to attempt to simultaneously model its mor-

phology at all scales between, say, 1/1000 th of a wavelenth and 10,000 times the

wavelength.

One of the challenges of stochastic seafloor modeling is to analytically relate ob-

served power spectral densities to proposed seafloor formation mechanisms such as

faulting, erosion, sediment transport, and lava pillowing. Some of these mechanisms

clearly occur at characteristic scales: faulting takes place every so many million years,

and lava pillows are clustered about some characteristic mean size, as are manganese

nodules. The idea that individual seafloor forming mechanisms at various scales can

lead to non-fractal roughness can be found in Ref. [24] where "mathematical models

of scale-dependent spatial structures are presented, and their relationship to geologic

processes such as ridge evolution, crust formation, and sedimentation is discussed".

On the other hand other, processes such as erosion might be expected to operate

simultaneously over many scales, although clearly certain scales can be favored as

evidenced by the canyons and gullies of B' scarps [67].

4.3.2 A New Seafloor Model

I entertain an alternative to the Goff-Jordan model for modeling stochastic seafloor

morphology which is consistent both with the visual appearance of the bathymetry

showing single-scale structures and the observed power-law spectra. The model is

depicted in Fig. 4-11 for the case of one-dimensional profiles. The top part of the

plot shows the logarithm of the seafloor power spectral density versus the logarithm

of the wavenumber as being a straight line. This total power spectrum is seen as the

superposition of a set of random processes each of which is associated with its own

geological formation mechanism. Each of the individual random processes operates

over a finite range of scales and either generates identifiable features clustered about

some mean size or multiscale roughness over that range of scales, depending on the
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Multi-scale Seafloor as a Composite of Single-Scale Processes

0 io/10

log(wavenumber)

1-20 km 20-1000 m 0.5-50 m 10-100 cm

Abyssal Hills Faults, Slope Breaks, Talus, Scarp- Lava Pillows,
Cross-Scarp Canyons Parallel Gullies Manganese

Nodules

Figure 4-11: In the composite seafloor model, the existence of roughness over a range
of scales spanning many orders of magnitude is explained as the superposition of
single scale processes each corresponding to a specific geophysical mechanism.

underlying geophysical process. Although the example shown is for a one-dimensional

profile, the idea that seafloor is composed of component single-scale processes acting

at distinct scales extends to two-dimensions.

It should be apparent that an assumption was made in superimposing the indi-

vidual processes: that there is a consistent scaling in going to smaller and smaller

scales. This assumption is necessary in order to satisfy the observation that seafloor

periodograms often exhibit a power-law decay over many orders of magnitude in

wavenumber. The assumption is not without physical motivation since it is gener-

ally true that natural features which have a larger horizontal extent are also taller,

although this does not prescribe a constant scaling. In the context of the compos-

ite model, the constant scaling would imply that totally different seafloor forming

mechanisms have a common, natural length-to-width ratio.

Those readers who find this suggestion preposterous may find comfort in the fact
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that there are many examples of spectra in which the decay rate abruptly changes

at a certain value of wavenumber [17] [18], tending to support the intuitive idea that

single-scale seafloor forming mechanisms at vastly differing scales do not operate with

exactly the same height to width ratio.

Leaving this debate for another forum, I proceed to the rest of this thesis with a

view of the seafloor as a composite over individual single-scale processes. The com-

posite model as discussed so far has left the appearance of the realizations nebulous.

The next chapter proposes some specific tentative models for the component single-

scale processes. These processes are one-dimensional so that time-domain acoustic

scatter may be computed exactly numerically in Chapter 6.

4.3.3 The Next Step

The motivation for looking at the seafloor in terms of features was the theory that

acoustical glints in ARSRP are explained by locally-smooth features. It was shown

in this chapter that there appear to be morphological differences between actual

bathymetry and realizations of a Gaussian power-law model even when the power

spectral densities match, suggesting that the power spectral density may be insuffi-

cient in describing scale structure. This proposition is verified formally in Chapter

5.

The possibility that a connection exists between the acoustical and bathymetric

observations is the main focus of this thesis. The establishment of a connection

requires the demonstration that surfaces with differing scale structure have different

scattering properties.

In attempting this demonstration, the tone now switches from being heavily data-

oriented to being highly theoretical. In particular, surfaces are modeled as one-

dimensional profiles made of rigid material so that exact time-domain numerical

simulations, presented in Chapter 6, can be performed on today's computers. The

idealized modeling allows one to focus on scale structure from a general, theoretical

perspective so as to establish its potential impact on scattering. The assumption

of one-dimensionality poses some limitations on the applicability of the results to

110



ARSRP scattering. There are also potential effects from other mechanisms such as

elastic waves. These limitations are a necessary trade-off to enable the study of scale

structure from a general, conceptual perspective.

The developments in Chapters 5 and 6 provide valuable insights into the physics

of scattering from feature-like and non-feature like surfaces and help interpret the

ARSRP data. By applying the composite seafloor model developed here, using the

feature-like surface models presented in Chapter 5 as the component single-scale pro-

cesses, and extending the models to the full three-dimensional scenario of site B'

scarps, it is found that including feature-like roughness gives the best match to the

observed statistics of time-domain backscatter. This result supports the theory that

feature-like roughness of Mid-Atlantic Ridge seafloor is an important factor in gener-

ating enhanced high-level tails in the log-envelope pdfs in a range-resolving scenario.
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Chapter 5

Surface Models

In the previous chapter, it has been suggested that there is a parameter totally in-

dependent of the power spectral density in describing statistical surface morphology;

this parameter was described as scale structure. In this chapter new surface models

are proposed to (i) help refine the concept of scale structure, differentiating it from

other attributes of a random process such as the power spectral density and Gaus-

sianity, and (ii) generate one-dimensional realizations that capture the feature-like

appearance observed in natural interfaces from which exact acoustical scatter can be

computed in Chapter 6.

Two prototype feature-like models are presented and their correlation function

and power spectral densities are derived analytically. The derivations reveal that in

both cases, the power spectral density has a power law decay and the processes are

non-Gaussian. Sample realizations of these processes are compared to Gaussian real-

izations having the same power spectral density and are shown to be morphologically

different in spite of the identical second moments.

The feature-like processes in isolation are found to have an unnatural appear-

ance. Two methods are proposed to bring the appearance closer to natural-looking

interfaces. The first is the execution of the seafloor model laid out at the end of

the last chapter involving the superposition of component single scale processes. The

second is the addition of a small amount of the Gaussian, multiscale process to the

feature-like realizations.
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With these more natural-looking interfaces, it becomes difficult for the eye to

make out the differences between the composite feature-like case and the Gaussian

case. Spectral analysis is no help since by construction the Gaussian case has the

same second moment as the feature-like case. Wavelets are proposed as ideal tools

for differentiating scale structure where other methods fail.

5.1 On Gaussianity

Throughout this chapter and the next, references are often made to Gaussianity and

to Gaussian power spectra or correlation functions. This section is intentended to

define the two, establish that they are in no way connected, and point out that they

make quite different statements about a random process.

The complete specification of a one-dimensional random process f(x) requires

the N-point joint probability density of heights pf(F), where f = [fl, f2,... , fN]T =

[f(xl), f(x 2),... , f(xN)]T is a column vector of heights at arbitrary locations x =

[zl, 2, ... , XN] T for any N. Specification of the mean j(x) = £[f(x)] and correlation

function Rff(x', x") = £[f(x')f(x")] fixes the first and second moments of the N-point

joint probability density:

= f Fpf(F)dF, (5.1)

R =f FFTpf(F)dF, (5.2)

where [p]i = I4 (xi) and [R]ij = Rff(xi, xj). The expectations of products of three

or more (possibly repeated) elements of f are unknown. In particular, none of the

moments greater than two for even the one-point probability density are known. The

unspecified moments leave room for enormous variability.

All the stochastic processes used in this thesis for surface modeling are zero-mean

and wide-sense stationary. The latter condition implies that Rff(x1, 2) = Rff(X)
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where X = Ix2 - xll. The power spectrum Sff(k) is then defined as the Fourier

transform of Rff(X):

Sff(k) = R f(x)e-ikxdX (5.3)

where k is the wavenumber.

A random process is Gaussian if, for all sample locations {xi} and arbritrary

dimensionality N,

1 1
pf(F) = exp(- FTA-1F). (5.4)

(27)N/2IA12 2

where the elements of the covariance matrix A are given by [A]ij = S[(f- ))(f- _)T],

and in this case A = R since I = 0. In wide-sense stationary Gaussian processes,

specification of the mean and correlation function is a complete probabilistic de-

scription. The first and second moments determine all higher order moments in the

N-point density.

It is easy to get confused between a Gaussian process and a process with Gaussian

spectrum. The term "Gaussian process" is used when Eq. 5.4 applies. A process has

Gaussian spectrum when Rff(X), or equivalently Sff(k), has a Gaussian shape, as in

Sf( _ (_ lca
S C= vk-e 4 (5.5)

ffiC

where l is the correlation length and aff is the variance. Neither description implies

the other.

5.2 A First Attempt at a New Stochastic Surface

Model

In an attempt to capture the morphology which has been observed in seafloor at

various levels of resolution and which has been described as feature-like, it is neces-
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sary to find some random process that will impart a feature-like appearance to the

realizations. Consider the Poisson Process

_ [Ar(" - X)]k I rk X ')
Pr [N(x") - N(x') = k] = [Ar(x" ')]k (x , (5.6)

where N(x") - N(xz') is the count of the number of transitions between x' and x".

It describes a staircase in which the length between each step is random with mean

1/Ar and variance 1A', and the height of each step is 1, as shown in Fig. 5-1 (a).

The larger Ar, the more quickly new arrivals occur. Such a process might be a good

building block for defining the horizontal dimensions of component features. Let {xi}

be the locations of the transitions of N(x), ordered by increasing size, and let h(x)

be a piecewise constant function defined by

h(x) = zi x2  x < zi+1  (5.7)

where the heights {zi} are independent, Gaussian and zero-mean with variance a ,2

i.e. with probability density

pz,(Zi) = e (5.8)

A sample path of this process is shown in Fig. 5-2 (a). The realization is piecewise

constant over segments whose lengths are determined by the simple Poisson process,

and displays smooth features of varying sizes. Incidentally, the process h(x) can be

represented as the derivative of the compound Poisson process [54]. It is intriguing to

ask about the correlation function and power spectral density of h(x).
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-1: (a) A Poisson counting process N(x) defines a set of transition locations
The process h(x) is constant at height zm between the arrivals xm and xm+l.
are uncorrelated, zero-mean, and Gaussian.

The correlation function of h(x), Rhh(X), is given by

SE[h(x')h(x")] = $[z?]Pr[N(x") - N(x') = 0]

+ E $[zizj]Pr[N(x") - N(x') = Ij - ij]
Ij-il=1

= CN-IX x = If"- X'I. (5.10)

The variance is

(5.11)a2 = Rhh(0) = O2z.

The correlation length l = 2/A, can be computed using Eq. C.58 in Appendix C.
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Figure 5-2: (a) Realization of piecewise contant feature-like process. (b) Realization of
Gaussian process having the same second moment as the piecewise constant process,
demonstrating that two processes with identical power spectral density can have vastly
differing scale structure.

The power spectral density is readily obtained by Fourier transforming the correlation

function:

Shh(k) = Rhh(X)e-jkxdx

1 2a2= 1 (5.12)
Ar 1 + (k/Ar)2

As shown in Fig. 5-3 (a), the spectrum is effectively a low-pass filter with cutoff

wavenumber of kc = Ar = 2/1, and a rolloff of 20 dB per decade. The high frequency

asymptote is given by

Shh(k) ~ 2O2zAr/k 2 = 4at /l/(kle)2  (5.13)

as k -+ oo, and the limiting value of the spectrum at k = 0 is

lim Shh(k) r 2a 2z/Ar = Uhhlc. (5.14)
k-+O

The power-law spectrum of Eq. 5.12 and plotted on Fig. 5-3 should be familiar.

It is generally associated with a one-dimensional Goff-Jordan type model, which is
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Figure 5-3: Power spectral density of the piecewise constant process, showing a power-
law decay with exponent 2 past a corner wavenumber.

Gaussian and exhibits uniformily distributed independent phase components; a real-

ization is shown in Fig.5-2 (b). It also has fractal properties; in particular, the Haus-

dorff dimension of its realizations is greater than the topological dimension, which

implies non-rectifiability (non-differentiability) everywhere [71]. In comparison, the

piecewise-constant function is non-rectifiable (non-differentiable) at a countably infi-

nite set of points defined by the vertices.

In general, the unique Gaussian process f(x) which has prescribed power spectral

density Sff(k) can be obtained from the operation

f (x) = R(x) * w(x), (5.15)

where

R(x) = F- 1 {I [Sf(k)] }, (5.16)

where w(x) is a zero-mean stationary white Gaussian noise process with unit vari-
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ance, * denotes convolution and -1 is the inverse Fourier transform operator. The

resulting process is Gaussian because all LTI-filtered zero-mean Gaussian white noise

signals are Gaussian processes [53].

The realizations in Fig. 5-2 (a) and (b) have identical correlation function, hence

identical correlation length, variance and power spectral density, yet there are im-

mense differences in their morphology: the two processes have different scale struc-

ture.

The Gaussian surface exhibits roughness which is evenly distributed in space at

all wavenumbers as opposed to the piecewise constant process, in which the high-

wavenumber roughness comes from the slope discontinuities and is concentrated at

discrete points. The vertices allow the piecewise constant surface to possess as much

high-wavenumber energy as the Gaussian surface while simultaneously exhibiting

smooth features.

The piecewise constant process is non-Gaussian because the unique process which

has Gaussian statistics and the power spectral density in Eq. 5.12 has fractal scale

structure; the piecewise constant process, on the other hand, is non-fractal.

This idealized study of a one-dimensional profile helps in interpreting the previ-

ously troubling result that the power spectral densities of the Goff-Jordan model and

actual bathymetry in Chapter 4 can be identical even when realizations appear quite

different; the power spectral density of a random process does very little to constrain

scale structure.

While the realizations of the piecewise-constant process may be totally adequate in

principle to proceed to calculations of acoustical scatter, they have an unnatural look

compared to the fractal ones, resembling more city skylines than mountain flanks.

This situation is partially alleviated when a process is designed as the superposi-

tion of a set of single-scale processes as was suggested in Chapter 4.
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5.2.1 Composite Piecewise-Constant Process

Let there be N independent piecewise-constant component processes hi(x) with dif-

ferent rate parameters A'. The composite process h,(x) is defined as

N

h, (x) = hi(x), (5.17)
i=1

implying

N

Shch, (k) = Shhi(k). (5.18)
i=1

To ensure that Shh, (k) has a power-law decay, two conditions are imposed:

1. The variance of each process is normalized so that the high wavenumber asymp-

totes overlap. From Eq. 5.13, this is achieved when (or )2A = const.

2. Assuming the { A} are ordered by increasing size, the tail of Shhc (k) at wavenum-

bers just beyond A' receives i contributions, while at wavenumbers lying between

AX-1 and A' it receives only i - 1 contributions. A jump is experienced at the

corner wavenumbers of each component process. To avoid this difficulty, each

component surface hi(x) is passed through a filter with a cutoff wavenumber

of A+'. This smooths the sharp features of component process hi(x) up to a

characteristic scale determined by the subsequent process hi+1 (x).

Fig. 5-4 shows an example in which there are three component processes with

rate parameters separated by a factor of 10, i.e. A+1 = 10A. The curve in (b) is

the power spectral density of the composite process, which has the desired power law

decay apart from minor ripples.

A sample realization is shown on Fig. 5-5. The top three plots are realizations at

each of the component scales, and the fourth plot is the composite. The bottom plot

in Fig. 5-5 shows a realization for the Gaussian case, obtained from Eq. 5.15 using

the composite power spectral density on Fig. 5-4 (b).
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Figure 5-4: (a) Power spectra of three component single-scale processes separated by

a factor of 10 in scale. The first two spectra are low-pass filtered to avoid overlap of

the tails. (b) Spectrum of composite process, showing the desired power-law decay

over many orders of magnitude in wavenumber. There are slight ripples where one

single-scale process takes over from the previous one.
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Figure 5-5: The top three plots show sample realizations of the piecewise-constant
process at three scalings. The red curve in the fourth plot is the sum of the three

single-scale realizations. The green curve at bottom is a fractal (Gaussian) realization

having the power spectral density in Fig. 5-4 (b). The composite process has a similar

natural look to the fractal case.
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While the composite process's components are unnatural-looking, the composite

itself appears almost as natural as the fractal case.

The fractal case with spectral decay of 1 can be interpreted as the superposi-

tion of infinitely many low-pass filtered piecewise-constant processes across all scales

continuously, that is, with inter-rate parameter ratios approaching 1. With this in-

terpretation, one can see that any composite process assembled as described in this

section gains a natural look when there is a sufficient number of component processes

and if their rate parameters are sufficiently close, but if this approach is taken too far,

the feature-like nature of the composite process is lost. This method of superposition

is reminiscent of techniques for the synthesis of fractal 1/f processes using wavelets

in Ref. [71]. See Appendix E for a definition of 1/f processes.

It is to be noted that other fractal composite processes than the Gaussian one

mentioned above can be created. The case Ai = AAi+l where A is not small and

N -+ oo, is fractal both in the sense of Hausdorff dimension and in the sense of

self-similarity, but its scale structure is different from the Gaussian case; it remains

feature-like.

5.2.2 Summary

This section has developed a framework for stochastically modeling surfaces in such

a way as to respect naturally observed power law spectra and simultaneously incor-

porate the notion of aggregate single-scale processes, each possibly stemming from a

unique physical mechanism. By comparison with Gaussian processes with identical

spectra, it has been established that the power spectral density does not fix the scale

structure of surfaces.

The simplified model investigated here to represent the component single-scale

processes has the disadvantage of having a fixed rate of decay in wavenumber, with

energy decaying as the wavenumber to the negative second power. One is also con-

strained to representing all features as piecewise-constant. As such, this model is not

as versatile as the Goff-Jordan model in which decay rates can be matched empiri-

cally to data. As discussed in Section 5.5, filtering techniques can help attain different
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inter-vertex shapes and rates of decay, but there are limitations. These limitations

lead to a new effort, called the Facet random process. It is analogous to the process

presented in this section except that the variation is linear between the vertices.

5.3 The Facet Random Process

In the hopes of generating more realistic-looking realizations and being able to model

one more rate of decay at high wavenumbers, I now explore the case where a linear

variation exists between vertices.

The Facet random process h(x) is defined as follows:

h(x) = zm + m +(Zm+1 - Zm), Xm < X < mL+1 (5.19)
Xm+1 - Xm

where the {xi} are given by the Poisson process in Eq. 5.6 and the heights {zi} are

Gaussian as before, but with a potentially non-white stationary discrete correlation

function Rzz[k] = 8 [zjzi] where k = IJ - il.

5.3.1 Uncorrelated Vertices

In this section, the focus is on h(O)(x), defined as the case of h(x) where the set {zi}

is a discrete Gaussian white noise sequence:

a 2 ) k = 0
R(o[k] = z, (5.20)

0, k $0.

A realization of this process is shown in Fig. 5-6 (a). The Facet process has the

following correlation function which is derived fully in Appendix C:

R( o) (X)= [h(x')h(x")] = [(m + l Xm (Zm+ 1 - Zm)
hhxm+1 - m

z + "( xn (zn+1 - z)) (5.21)

=O2 (2E 4(ArX) + E2(rX) * E2(AX))
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Figure 5-6: (a) Realization of the uncorrelated vertex Facet process. (b) Realization

of the Gaussian process with second moment identical to the Facet process, demon-

strating once more that second moment characterizations are insufficient to fix scale
structure in random processes.

where * denotes convolution and X = x" - x'. E,(x) is the n-th order exponential

integral for x > 0 and is zero for x < 0:

Se-xuu-ndu, X > 0
En(x) = of (5.22)

0, X < 0.

The resulting power spectrum, also derived in Appendix C, is:

2a2 [2 arctan(k/Ar) (5.23)
°hh Ar (k/Ar)3

+ (k/r)4 (ln2( 1+ (k/Ar) 2) - ln(l + (k/Ar) 2) - arctan2(k/Ar))]

The variance of h( (x) is (~)2 = az, and its correlation length is:

1() 1 10 (5.24)
The Facet surface has a power-law spectrum as can be seen by its asymptotic3

The Facet surface has a power-law spectrum as can be seen by its asymptotic
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behaviour at large k.

As k -+ , S (k) 4 2 = 0) 
2  (5.25)

k 3  31( 0) )

This expression shows that Facet process provides a rigid rate of decay of the power

spectral density with wavenumber equal to 3. Methods for obtaining other rates of

decay are discussed in Section 5.5.

The value of the spectrum at k = 0 is

3 U2 27,(o)
lim S( ) (k) = = /3-(()2(0) (5.26)
k40 hh - 2 Ar 40 hh

The spectrum of h(O) (x) is essentially a low-pass filter with a gain of ~ , a rolloff
1

of 30 dB per decade and a corner wavenumber of () Ar. The corner wavenumber

is calculated as the intersection point of the high-frequency asymptote with a line of

zero slope passing through the spectrum's origin in log-log space, as shown in Fig. 5-7.

As with the piecewiese-constant case, there is a Gaussian counterpart to the Facet

process having identical power spectral density. Realizations can be generated using

Eq. 5.15 with Sf f(k) set to S() (k). Such a realization is shown in Fig. 5-6 (b).

emphasizing once more the important point that scale structure is not determined by

the power spectral density.

5.3.2 Arbitrary Inter-Vertex Correlation

The correlation function, power spectral density, correlation length and variance for

the case of arbitrary inter-vertex correlation function are derived in Appendix C. As

a means of numerically validating the derivations, this section presents Monte Carlo

estimates of the power spectral density of the Facet process in the general case of

correlated vertices. The estimates are compared to the analytical form in Eq. C.54.

In particular, the special case of a Gaussian inter-vertex correlation function is
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Figure 5-7: Non-dimensionalized Facet spectra with Gaussian inter-vertex correlation
having d correlated vertices. d = 0 (red) corresponds to uncorrelated vertices. The
corner wavenumber for this case, along with the high and low frequency asymptotes,
are shown in green. d = oc yields a Gaussian spectrum (light blue). Intermediate val-
ues of d tend to match the Gaussian spectrum at low wavenumbers while maintaining
a 1/k3 rolloff at high wavenumbers.

adopted:

R ,[k] = crze , (5.27)

where the parameter d is roughly the number of adjacent vertices which are correlated.

The case d = 0 corresponds to the uncorrelated vertex process h(O)(x). As can be seen

in Fig 5-7, when d is non-zero and finite, the spectrum of h(x) has a Gaussian shape at

low wavenumbers but retains the characteristic power-law decay with exponent -3 at

high wavenumbers. As d increases, the facets have to be made progressively smaller

to maintain constant correlation length and variance, and at the limiting value of
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Figure 5-8: (a) Non-dimensional sample realizations of the Facet process with Gaus-
sian inter-vertex correlation function for d = 0 (red) and d = 25 (magenta). (b) Monte
Carlo spectral estimates for d = 0 and d = 25 (black lines) compared to analytical

expressions for the spectra (colored lines).
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d = oo00, the facets have infinitesimal length. The case of d = oo00 leads to h(x) being

a Gaussian process with no slope discontinuitites having the Gaussian spectrum in

Eq. 5.5. Similarly, all Gaussian processes can be represented as a Facet process with

vanishing facet size. This is due to the fact that the vertex heights {zi} are Gaussian.

For the Monte Carlo spectral estimates, two cases are studied, d = 0 and d = 25.

The spectral estimates are obtained through the formula

1 N

hh(k) = F(q(x)hi(x)) , (5.28)
i=1

where Shh(k) is the spectral estimate, T is the Fourier transform operator, hi(x) is the

ith of a total of N = 50 independent surface realizations, and q(x) is an appropriately

chosen taper. Figure 5-8(a) shows one surface realization for both d = 0 and d = 25

and 5-8(b) demonstrates the excellent agreement between the Monte Carlo estimated

spectra and the analytical results. The case of nonzero d is not studied further in this

thesis, so references to the Facet process can be assumed to mean the uncorrelated

vertex Facet process.

5.3.3 The Composite Facet Process

Remembering that the motivation for proposing feature-like processes was to capture

observed structure in a natural interface, I now study how qualitatively "natural"

the superposition of single-scale processes appears compared to the fractal case. As

in the piecewise constant case, the component processes are normalized so that their

high-wavenumber asymptotes overlap, and they are low-pass filtered and separated

by a factor of 10 in scale.

The three first plots in Fig. 5-10 show the component realizations; the fourth

plot shows the composite. The fifth plot is a realization from the Gaussian process

generated using Eq. 5.15 and the composite process's spectrum shown in Fig. 5-9 (b).

It can be concluded that the unnatural-looking isolated single-scale process gains

a much more natural look when viewed as but one of several single-scale processes

129



Spectra of Component Processes
(a) to

10 

b 10

10-4

10 -

10 2

(b) 104

10

1 0 -4

10
4

10
10

-- 10-1 10o kl o' 10klc

Figure 5-9: (a) The spectra of three Facet processes differing by a scale factor of 10.
(b) The spectrum of the superposition of the three Facet processes in (a).
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Figure 5-10: The top three plots are the realizations of low-pass filtered Facet pro-
cesses at three scalings. The red curve is the superposition of the three Facet realiza-
tions, and the green curve is a Gaussian realization using the power spectral density
in Fig. 5-9 (b). The composite and Gaussian realizations qualitatively look similar
but nevertheless differ in scale structure.
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acting in concert at different scales. It is not necessary to give up the satisfying look

of fractal realizations when viewing the seafloor as a result of composite single-scale

formation mechanisms.

5.3.4 Hybrid Facet Process

In conceding to the possibility that certain seafloor-forming mechanisms could be

truly multi-scale as opposed to composite feature-like, it is interesting to consider the

case in which some multi-scale roughness is added to the Facet process. Multi-scale

effects in seafloor shaping could result from the cumulative of effects of erosion and

sedimentation occuring over millions of years, gradually eroding the clarity of the

original feature-like character.

In this section, I consider three random processes fl(x), f 2 (x), and f 3 (x) where

fl(x) is the Facet Process with uncorrelated vertices, f 2 (x) is the corresponding

Gaussian process with identical power spectral density which I define as the GPL

process, and f 3 (x) is a power-conserving linear combination of the first two:

af (x) + bf 2 (x) (5.29)
v/a2 + b2

The process f 3(x) is termed Hybrid. As an example case the values a = F and

b = 1 are picked such that 3/4 of the roughness energy comes from the Facet process

and only 1/4 from the multi-scale process. A realization of each of these processes is

displayed on Fig. 5-11; all three functions have the same power spectral density.

Given that 3/4 of the energy comes from the Facet process, it is not surprising

that some of the prominent features in the Facet realization are visible in the Hybrid

realization. What is surprising is that the eye has a tendency of seeing the GPL and

Hybrid processes as qualitatively most similar. Looking at the Hybrid realization

in isolation, one might be ready to concede right away that it appears fractal and

therefore well-represented by something like the Goff-Jordan model. Amazingly, 75%

of the energy comes from a process which is far from being fractal. The fact that

the human eye can't always be relied on in detecting non-fractal roughness is not
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Figure 5-11: Realizations from three processes with identical power spectral density.
The red plot is a Facet realization, the green plot is of the corresponding Gaussian
process, and the yellow plot is of a Hybrid surface obtaining 75% of its energy from
the Facet process and 25% from the Gaussian process. The Hybrid and Gaussian
surfaces appear more similar than any other choice of two surfaces.

133



palliated by spectral analysis since all three processes have identical spectrum.

In the quest to understand how a single-scale seafloor-forming mechanism could

contribute to an overall profile, it is important to be able to detect the "signal"

corresponding to the feature-like roughness amidst the "noise" of fractal roughness.

The non-detection of underlying feature-like processes has the potentially serious

consequence of not being able to link statistical seafloor models and seafloor-forming

processes.

As will be shown in the next chapter, proper characterization of scale structure

is also important to predict mean scattering strengths and time-domain statistics of

acoustic scatter.

If neither the qualitative look of the profiles nor conventional spectral analysis

can be relied on to detect scale structure differences, which tool could succeed at this

task? I propose that statistical wavelet analysis is ideal and show how it may be used

in the next section.

5.4 Wavelet Analysis

In the preceding sections, scale structure was shown not to be determined by the

power spectral density. This was primarily due to the fact that the power spectral

density is a second moment quantity and that the differences in scale structure in the

functions considered were attributable to differences in the higher moments.

The power spectral density is an awkward choice to characterize scale structure

not only because it is a second-moment quantity, but also because it has no spatial

localization ability. The concept of scale structure attempts to capture the spatial

arrangement of features at different scales; it is a space-scale, or time-frequency con-

cept. The complex exponential eigenfunctions functions used in Fourier analysis have

infinite spatial extent. On average, a feature with sharp edges generates the same

high-wavenumber energy as a series of smaller features distributed evenly in space.

The shortcomings of the Fourier transform do not doom scale structure to re-

main a qualitative concept. Multiresolution analysis, and in particular the Wavelet
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tranform (Appendix E, [59] [71] [49] [9] [16] [69] [26] [32] [15] [66]), have introduced

rigorous mathematical frameworks that enable localization in both space and scale.

The wavelet transform is used in this section to demonstrate that scale structure can

be characterized quantitatively. In particular, the continuous wavelet transform of

single realizations and the statistics of wavelet transform coefficients for ensembles of

realizations are presented for the thre Facet, GPL, and Hybrid processes defined in

the previous section.

Unlike conventional spectral analysis, wavelet analysis allows a choice of many

eigenfunctions each of which leads to a different decomposition. For the purposes of

differentiating processes that may or may not contain piecewise-linear segments, the

Daubechies 2 wavelet is a good candidate because it is orthogonal to linear variations.

5.4.1 Deterministic Continuous Wavelet Transform

Figure 5-12 is a depiction of the same three realizations as in Fig. 5-11 with a color

contour plot in the background representing the logarithm of the energy in the con-

tinuous wavelet transform as a function of scale (y-axis) and space (x-axis). Note that

the y-axis applies to the contour plots of the wavelet transform and not to the plots of

the realizations. Both axes are normalized to correlation length. The scale parameter

is roughly the length of the analyzing wavelet and the x-axis indicates where on the

surface that analyzing wavelet is centered.

The dark areas in the case of the Facet realization in red corresponds to those

areas where the wavelets lie entirely within one of the facets and yield zero energy. If

a wavelet at a given scale is smaller than a facet, all smaller-scale wavelets centered

at that position also yield zero energy. The larger facets yield zero energy beginning

at larger scales, as would be expected.

On the other hand, neither the fractal nor the Hybrid cases show an obvious de-

pendence across scale. Instead, the loci where the wavelets yield zero energy form a

complex pattern of fractal bifurcations. Overall, the three plots in Fig. 5-12 demon-

strate that the continuous wavelet transform of an individual realization does not

provide any more information than could have been obtained just by looking at the
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surfaces.

This example suggests that a statistical wavelet analysis might be better suited

for differentiating scale structure in stochastic processes. This endeavor is undertaken

with advance warning that along with conventional spectral analysis, qualitative pe-

rusal of realizations, and deterministic wavelet methods, statistical measures based on

wavelets will also fail to detect differences between processes having identical second

moment but different scale structure unless moments greater than 2 are considered.

This is demonstrated in Appendix E and results from the fact that the wavelet trans-

form is a linear operator.

5.4.2 Statistics of Wavelet Transform Coefficients

Whereas the continuous wavelet transform was used in the deterministic case, I now

turn to the wavelet transform proper, which yields a set of wavelet coefficients eval-

uated at discrete intervals in scale and space, as explained in Appendix E.

Among the many combinations of higher moments from the general N-point prob-

ability density function, only one is analyzed here: the full one-point pdf of the

wavelet coefficients at one scale. The pdfs are obtained by forming histograms from

the wavelet coefficients using 50 independent realizations of each process. In Fig. 5-

13, the histograms for the coefficients at a scale of approximately one tenth of a

correlation length are presented.

The histograms are normalized to unit variance, and the blue curves in each plot

represent a zero-mean, unit variance Gaussian pdf. The GPL case yields nearly-

Gaussian wavelet coefficients and the Facet case yields highly non-Gaussian coeffi-

cients. The Hybrid surface lies between the two extremes, signifying that the statisti-

cal wavelet decomposition has differentiated the scale structure of all three surfaces.

For the GPL surface, it has been shown [71] that Gaussian processes with power-

law power spectral densities are fractal and yield wavelet coefficients which are Gaus-

sian and quasi-independent of one another across both scale and space. In light of

this fact, the Gaussian result in the GPL surface is not surprising.

The wavelet coefficients are non-Gaussian in both the Hybrid and Facet cases in
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Figure 5-12: Contour plot of the magnitude of the Continuous Wavelet Transform us-
ing a Daubechies 2 wavelet, in dB. The x-axis is spatial position along the surface and
the y-axis is the scale parameter corresponding to the spatial extent of the analyzing
wavelet. At the top of each figure, the analyzing wavelet is 8 correlation lengths long,
and at the bottom, its length is infinitesimal. The CWT does not significantly en-
hance one's ability to distinguish between the Hybrid (yellow) and Gaussian (green)
realizations. The dark areas in the Facet case (red) occur when the size of the wavelet
is smaller than the horizontal extent of a facet.
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Figure 5-13: Estimated PDF's of the wavelet coefficients at a scale of 1/10 of a
correlation length, normalized to unit variance. The Gaussian (green) process has
Gaussian coefficients, but the other two processes yield non-Gaussian coefficients.
The statistical wavelet analysis has successfully differentiated the scale structure of
the three processes.
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PDFs of Realizations Normalized to Unit Variance
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Figure 5-14: For comparison with Fig. 5-13, histograms of the realizations themselves
showing that all three processes have a Gaussian one-point PDF.
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spite of the fact that all three processes studied have a Gaussian one-point pdf. This

can be readily verified by plotting histograms of the realizations themselves, as shown

in Fig. 5-14. It can also be concluded from considering the fact that each point on

the Facet surface is a linear combination of two Gaussian variables and is therefore

Gaussian. The Hybrid surface is a linear combination of two Gaussian surfaces and

is therefore also Gaussian.

Fig. 5-13 identifies statistical wavelet analysis as a tool for characterizing the sta-

tistical morphology of surfaces or, to be more precise, their scale structure. Several

other densities could be examined in the future, such as conditional densities across

scale. Clearly, in the Facet case, the wavelet coefficients at small scales are not in-

dependent of higher-scale coefficients. In particular, when the energy in co-located

coefficients at higher scales is zero, the conditional density of the smaller-scale coef-

ficients will be peaked about zero.

Any wavelet coefficient non-Gaussianity or prolonged dependence across scale and

space indicates a departure from fractal scale structure and might constitute a starting

point for demonstrating the inappropriateness of fractal models in describing seafloor

areas with suspected feature-like morphology.

In the ARSRP scenario, such wavelet analysis is not necessary since the feature-

like morphology is evident to the eye in the two-dimensional representations of the

bathymetry in the previous chapter. It is also not possible at the scales of the two

profiles in Figs.4-8 and 4-9, since statistical stability would require a larger number of

profiles than are available. Nevertheless, the idea constitutes an exciting possibility

for future study.

5.5 Other Rates of Decay

Seafloor profiles from around the world's oceans show decay exponents that range

anywhere from 1 to 3.5 or higher. In the fractal model of Goff and Jordan, [19]

the exponent can be adjusted to empirically fit the data. In the models proposed

here there are only two possible values of the exponent, 2 or 3 corresponding to
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piecewise constant or piecewise linear segments. Other values could surely be attained

by considering other processes than Gaussian and Poisson for the vertices and by

considering other functional forms between the vertices.

A simple way to achieve other rates of decay is to employ generalized derivatives:

dh(x) = 7- 1 {(j k)H(k)}, 0 < a < 1. (5.30)
dx,

This operation decreases the rate of decay of the power spectral density by 2a. Start-

ing from the Facet process, it allows all exponents from 3 to 1 to be attained. The

variation between the vertices then consists of asymmetric cusps instead of straight

lines. Starting from the piecewise constant process, exponents from 2 to 0 can be

attained, but the realizations look even more unrealistic, exhibiting spikes at the

vertices which become delta functions for a = 1.

The case a = 1 leads to piecewise-constant realizations in which the vertex heights

are determined by the slopes of the Facet process and for which the power spectral

density decays as 1. The only difference in construction between this process and

the piecewise constant process described at the beginning of this chapter is that the

vertex heights are non-Gaussian.

This example demonstrates that changing the vertex statistics changes the rate

of decay in the power law. It also suggests that there is a wide range of surface types

with differing scale structure but identical rates of decay at high wavenumbers that

remains to be explored.

5.6 Summary

The main conclusion of this chapter is that the scale structure of a stochastic sur-

face is not determined by its power spectral density. Gaussian stochastic processes

with power-law decay exhibit roughness at all scales which is uniformily distributed

in space, leading to realizations with no feature-like behavior. Several alternatives

have been presented which are capable of capturing feature-like morphology while
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respecting the power-law decay of naturally observed power spectral densities.

As models of interfaces such as the seafloor, the realizations of the proposed

feature-like processes were found to look unnatural. Composite models formed by

superimposing component single-scale models acting at different scales have four de-

sirable qualities: (i) they do not look unnatural; (ii) their power spectral densities

have power-law decay; (iii) they lead to feature-like roughness, and (iv) they allow

each section of the wavenumber spectrum to be accounted for by a separate seafloor-

forming mechanism, taking statistical seafloor modeling one step closer to directly

connecting observed spectra with geophysical processes. Qualities (i) and (ii) are

shared by Gaussian models but qualities (iii) and (iv) are not.

It was demonstrated that it is easy for feature-like roughness to go undetected

when accompanied by Gaussian multi-scale roughness. The wavelet transform has

shown itself to be a valuable tool in differentiating the scale structure of random sur-

faces in situations where neither the power spectral density nor qualitative appearance

can succeed. The tool is not the sole requirement; wavelet moments higher than the

second must be considered when surfaces with identical power spectral density are

compared.

While only one-dimensional surface models were investigated here, the concept

of scale structure and its distinctness from the power spectral density extend to

two dimensions. The development of two-dimensional stochastic surface models with

feature-like structure would enhance the ability to describe the scale structure of

realistic surfaces such as the seafloor. In Appendix C, the extension of the Facet

seafloor model to the two-dimensional case is discussed.

The issue of scale structure and its applicability to seafloor modeling is both

exciting and profound, perhaps too profound to be exhaustively investigated in a

thesis on acoustics. Returning to acoustics, more excitement is added in the next

chapter by investigating acoustical scattering from one-dimensional random rough

surfaces with differing spectra and scale structure.
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Chapter 6

Acoustic Scatter From

One-Dimensional Surface Models

6.1 Introduction

In Chapter 3, a potential connection was proposed between the non-Rayleigh time-

domain statistics in the ARSRP experiment and the feature-like roughness of the

seafloor. The deeper investigation of seafloor morphology in Chapter 4 confirmed the

existence of feature-like structure and inspired a new stochastic seafloor model con-

sisting of the superposition of single-scale processes. In Chapter 5, one-dimensional

models for the component single-scale processes were developed with the goal of gener-

ating realizations that would allow exact calculations of scattering in the time-domain,

which forms the subject of the present chapter.

At the same time, the refinement of the concept of scale structure and its dis-

tinctness from the power spectral density has provoked some questions as to the

appropriateness of second moment characterizations in describing morphology. The

second moment description fixes the power spectral density of the process, which de-

termines the expected value of the energy at each wavenumber. The previous chapter

has established that an enormous range of scale structures is permitted by specify-

ing only the power spectral density because the manner in which the energy at each

wavenumber is organized spatially into features is left unspecified.
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From a physical point of view, it is clear that what causes scattering are features

and not wavenumber components, therefore it is enticing to study the potential impli-

cations in acoustics where it is customary to model only the second moment of rough

scattering surfaces. Often, this is accompanied by the implicit assumption that the

second moment is a complete description, implying that the surfaces are realizations

of Gaussian processes. This is the case of the standard formulations of the perturba-

tion and Kirchhoff approximations which form the backbone of scattering models in

many numerical codes.

This chapter is thus a juncture where the proposal inspired from Chapters 3 and

4 that event-like statistics and feature-like morphology are related can be tested on

a theoretical level using the surface models of Chapter 5.

The four surfaces types used in the scattering study are:

Gaussian-Gaussian (GG) A Gaussian process having Gaussian power spectrum,

for which Eqs. 5.4 and 5.5 both apply.

Facet The Facet process of Section 5.3, which is a non-Gaussian, stationary process

constructed by joining random vertices {xi, zi} with straight line segments. The

power spectrum of this non-Gaussian process exhibits a power law decay at high

wavenumbers of the form A/kb where b = 3.

Gaussian-Power Law (GPL) A Gaussian process whose sample surfaces are gen-

erated by filtering zero-mean Gaussian white noise through a filter with fre-

quency response equal to the positive square root of the Facet process's spec-

trum.

Hybrid A non-Gaussian process created by a linear combination of Facet and GPL

processes, with 75% of the energy coming from the Facet process.

These surfaces are used in three sets of numerical experiments.

1. The most pressing question is whether the Facet surface and its Gaussian coun-

terpart, the GPL surface, have distinct scattering properties. If so, second
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moment characterizations of random surfaces are not sufficient in acoustic scat-

tering. It is also intriguing to ask whether the smooth features of the Facet

process impart scattering properties that are similar to those of so-called single-

scale processes, such as the GG process, which also exhibit smooth features but

show little energy at high wavenumbers. These questions are addressed in Sec-

tion 6.4, where the bistatic scattering strength and the time-domain statistics

of backscatter are compared for Facet, GPL, and GG surfaces.

2. The next intriguing question is whether acoustics are capable of distinguishing

the Hybrid and GPL processes given that neither qualitative perusal of the

realizations nor spectral methods can. Section 6.5 addresses this question by

comparing the bistatic and time-domain scatter for Facet, GPL, and Hybrid

surfaces.

3. In Section 6.6, values of variance and correlation length closer to those encounted

in the ARSRP scenario are tested to examine whether the conclusions from the

first two sets of numerical experiments could apply to rougher interfaces.

All results are presented in non-dimensionalized form and are independent of

center frequency and sound speed; they are thus applicable in a wide range of physical

settings.

To ensure that any acoustical differences between the surfaces results from their

properties and not from the approximations used in computing the scatter, an exact

Monte Carlo integral equation method from Ref. [60] is employed. The theory behind

the integral equation technique is presented in Section 6.2, and in Section 6.3 some of

the issues in numerically implementing it are discussed but first, the characteristics

of the model surfaces are described in more detail.

6.1.1 Surface Properties

A normalized sample path for each surface type is shown in Fig. 6-2, and the surfaces'

properties are summarized in Fig. 6-1, showing that the first triad of surfaces defines
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the poles of an aesthetic triangle with respect to Gaussianity, scale structure, and

power spectral density.

Facet

Non-Ga ss n Process

0

0 o

0
0 4

SGaussianity

Gaussian Process

GG , GPL

Figure 6-1: The Facet, GPL and GG surfaces define the three poles of a surface

property triangle. The three arrows in the center define the three axes along which

surface properties can vary. The GG surface is Gaussian, has Gaussian spectrum, and

has feature-like roughness. The GPL surface is Gaussian, has power-law spectrum

and is multi-scale. The Facet surface is non-Gaussian, has power-law spectrum, and

has feature-like roughness. The Hybrid surface lies along a constant value of the

power spectrum axis between the GPL and Facet poles.

This triangle is useful in discussing proper usage of the terms "single-scale" and

"multi-scale". As discussed in Chapter 1, these terms are currently used both as

statements of the qualitative appearance of realizations in the spatial domain (scale

structure) and as statements about the power spectral density. Since language already

exists to describe where a function lies in terms of Gaussianity and power spectrum, I
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propose that the most reasonable use of these terms is along the scale structure axis.

Single-scale then takes the meaning "feature-like", implying the existence of large,

smooth features. The opposite is "multi-scale", meaning that the roughness is both

spatially scrambled and arises from contributions at many scales.

The definition of the surfaces constitutes a complete statistical characterization

in which the variance a and correlation length 1, are parameters. Ideally, this study

would present results spanning the entire a - lc plane, but the computational cost of

this complete study using the exact numerical method would be too high on today's

machines.

The first two sets of numerical experiments involve only two points in this plane,

which were chosen so as to lie away from the infinitesimal and away from the infinite,

in a region in which features are likely to be of the same order of magnitude as the

wavelength. This region is interesting because it leads to complex scattering behavior

and is neither fully understood nor adequately predicted by any current analytical

scattering theory in the general case. The two points are far enough from each other

for their scattering properties to be distinct and to permit some general conclusions

about the physics of surface scattering. The values are (i) (a, l,) = (0.2, 1.O)A and (ii)

(a, l,) = (0.3, 4.0)A. The incident field is a tapered plane wave at 45 degrees.

A third value of (a, 1c) is considered in Section 6.6, where the objective is for the

realizations to more closely resemble seafloor from the ARSRP scenario. In this set

of experiments the incident field is a plane wave at a grazing angle of 30 degrees, to

match the median grazing angle for backscatter from the scarps of site B'.

While penetrable fluid boundaries could readily be handled, the impenetrable

case involves half as many unknowns. To minimize computational requirements the

surfaces are modeled as impenetrable, and more specifically, as rigid in tribute to the

basalt seafloor of ARSRP scarps that has inspired this study.

6.1.2 Previous Work

The second set of numerical experiments, involving the comparison of scatter from

three surface types differering in scale structure but having identical power spectral
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Figure 6-2: Normalized sample paths for the GG, Facet, GPL and Hybrid processes.
The GG and Facet surfaces show feature-like roughness while the GPL surface shows
multi-scale roughness. Although the Hybrid, Facet and GPL surfaces have the same
power spectrum, the high-wavenumber energy is maximally concentrated in space for
the Facet surface, while it is maximally distributed for the GPL surface; the Hybrid
surface is a combination of the two but is qualitatively most similar to the GPL
surface.
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density, is reminiscent of the studies performed in Ref. [30]. In this article, the authors

numerically compute coherence and scattering strength in the forward and back di-

rections for an incident wave scattered by different rough surfaces. In the first study,

a sawtooth surface realization is generated; its power spectrum is calculated and three

new surface realizations are generated by scrambling the phases at each wavenum-

ber. The three scambled-phase realizations are less feature-like than the sawtooth

realization but have the same energy at each wavenumber. The scattering strength

and coherence are found to be distinct for all three surfaces. In the second study,

scatter from a water-wave realization is compared to scatter from three realizations

having identical spectra but scrambled phases, yielding identical conclusions to the

first study.

The distinction of the work presented in this thesis from that of Ref.[30] is that

here, the computed quantities are ensemble averages over a large set of surface realiza-

tions having identical statistics. For a given surface model, the Fourier transforms of

individual realizations differ both in amplitude and phase, resulting in distinct scat-

tering characteristics for each realization. I do not focus on individual realizations;

rather, I investigate the effect of a change in the statistics of surface models on the

ensemble statistics of scatter.

With regards to this focus on ensemble statistics rather than individual realiza-

tions, this thesis resembles the work of Thorsos [60] [61] in which exact average bistatic

scattering strengths from pressure-release Gaussian surfaces with Gaussian (GG) and

Pierson-Moskowitz (GPL) spectra are compared. Here, the concept of scale structure

is studied by introducing a new surface model which has the feature-like characteris-

tics of the GG surface but the power-law decay at high wavenumbers exhibited by the

GPL surface. Along with the bistatic scattering strength, the time-domain statistics

are evaluated for rigid rather than pressure-release surfaces.

In Ref. [51], sea reverberation is modeled as a shot noise process consisting in the

superposition of impulsive returns from discrete scatterers. In the limit of a large

number of scatterers, the carrier amplitude is shown to be Gaussian. The author

indicates how the coefficient of excess of the envelopes may be related to the scatterer
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density. A large coefficient of excess indicates a depressed peak and enhanced tails

in the carrier amplitude pdf relative to a Gaussian, which occurs when individual

scatterers are resolved. In this chapter, it is shown numerically that certain surfaces

exhibit such target-like characteristics. In characterizing the extent of the target-like

behavior, I choose to depict the full pdfs of the logarithmic intensity of the carrier

amplitudes instead of presenting values for the coefficient of excess, since the latter

relate only to the departure of the fourth moment of a given pdf from a Gaussian pdf.

6.2 Integral Equation Method

In this Section, I describe the exact integral equation solution method adapted from

[60] which is used to compute the scatter from each realization. The statistics of scat-

ter are obtained by a Monte Carlo approach in which the exact solution to each real-

ization is found and averaged over a number realizations. First, the matrix equations

embodying the Helmholtz-Kirchhoff integral in the case of a finite, rigid boundary are

developed. This is followed by a discussion of the choice of the monochromatic inci-

dent field in Section 6.2.2 and a discussion of wideband incident fields in Section 6.2.3.

6.2.1 Theory

The Helmoltz-Kirchhoff integral formula gives the total acoustic pressure in a volume

V as an integral of source terms distributed over a smooth closed surface S, bound-

ing V. For the one-dimensional finite-length surfaces used here, S, is the union of

a circular contour at infinity S, + S. and two contours which surround the surface

infinitesimally close to it, So on the illuminated side and S2 behind it. The contribu-

tion over S,. + S. is equal to pinc(r), and the portion over S2 is zero if one assumes

that p(r) = Op(r)/On = 0 behind the surface. A full explanation of the choices of

contour integration for finite surfaces is found in Appendix D. For rigid surfaces, the
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Figure 6-3: Integration paths for the Helmholtz-Kirchhoff integral equation as used
to compute the scatter from a finite-length rough surface.

Helmholtz-Kirchhoff formula reduces to:

1 f OHo ) (kIr - r'l)
p(r) = pinc(r) + - p(r') O n' dS'. (6.1)

Equation 6.1 is valid for any r not on So. In the limit where r -+ r" E So, and given

that So is a smooth surface, Eq. 6.1 becomes

1 1 s OHo)(kjr" - r ')
2p(r") = pinc(r") + 4io p(r') On' dS. (6.2)

Equation 6.2 is a Fredholm integral equation of the second kind for the total pres-

sure on the surface, p(r"). For arbitrary So, this equation must be solved numerically

by discretization. It can be proven that the discretized version of a Fredholm equa-

tion of the second kind converges to a unique and correct result as the discretization

interval tends to zero [25].

The surface is sampled at equal intervals Ax and Eq. 6.2 becomes a matrix equa-
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tion:

a = Hb (6.3)

where b, = p(rj) is the unknown vector, ak = Pinc(rk), and

aH(o1)(kjrk-r'D k )1

HkI =, r'=r, (6.4)
1 AX d2f(X') k

- 47(rk )2 d r'=k

where y2(r') = 1 + (df(x')/dx')2 and f(x) is the function defining the surface So. The

normal derivative of the Hankel function in Eq. 6.4 is

(k - r') k (k - r [(f(')- f")) - f)) - f (x' - x")] . (6.5)
n' 7(x') Ir - r'I

For the diagonal elements of H where r" = r', f(x") is expanded in a Taylor series

about x' as suggested in [60], and the limit is taken as r" -+ r', yielding

lim O(1) (k r" - r') if"(x') (66)lim (6.6)r"-r' On' y3(')

The scattered pressure, defined as p,(r) = p(r) - pinc(r), is computed at any location

r in the fluid from the discretized version of Eq. 6.1:

p(r) = bkAx7(rk) OHo)(kIr - r')
r) = 4i n'(6.7)

k r'=rk

6.2.2 Narrowband Fields

A tapered plane wave incident field identical to that in Ref. [60] is used:

Pinc(r) = exp {ikinc r [1 + w(r)] - (x - z cot )2/g 2 }, (6.8)

where w(r) = [2(x - z cot 0) 2/g 2 - 1]/(kg sin 0)2. This pulse has Gaussian amplitude

taper perpendicular to the incidence direction. The taper parameter g is set to
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Figure 6-4: Scattering geometry. The surface is rigid.

L/4 for all surfaces considered here, where L is the horizontal extent of the surface

and is chosen such that the incident beam illuminates a representative sample of

the roughness. The angle of incidence is 0 and the incident wavenumber is kie =

k(cos(O + r), sin(9 + ir)) as shown in Fig. 6-4. The taper suppresses the edge effects

caused by assuming that the total field and its normal derivative are identically zero

behind the surface in Eq. 6.1. A consequence of the chosen taper is that the incident

field is only an approximate solution to the Helmoltz equation. The particular form

used satisfies the Helmholtz equation to order 1/(kg sin 0)2 < 1 [60].

A useful quantity in distinguishing the angular dependence of narrowband scatter

from various one-dimensional surfaces is the scattering cross section, defined as the

mean-square scattered pressure evaluated in the far field normalized by the incident

energy and a cylindrical spreading factor. The far-field scattering strength SS is ten

times the logarithm of the scattering cross section. For the incident field in Eq. 6.8,

SS(O, 8 ) = lim 10log rI[Ip(r)(619)
Irl-+oo ir/2g[1 - 0.5(1 + 2 cot 2 9)/(kg sin 9)2]'

where p,(r) is found from Eq. 6.7 numerically. Since the sample surfaces scale with

wavelength, the scattering strength is independent of frequency and sound speed.
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6.2.3 Wideband Fields

Central to this thesis is an exploration of the time-domain statistics of scatter. The

incident field in Eq. 6.8 is generalized to include frequency dependence:

pB(r, w) = pinc(r)G(w). (6.10)

In this chapter, real band-limited pulses g(t) are considered such that

Gb(w), 1 - F/2 < w/wc < 1 + F/2

G(w) = G*(-w), -1 - P/2 < w/wc < -1 + F/2 (6.11)

0, otherwise.

The quantity F is the proportional bandwidth, defined as the ratio of bandwidth to

center frequency wc. The time-domain response of each surface realization is obtained

from the inverse Fourier transform of p, (r, w)

p.(r, t) = p(r, w)e-iwtdw, (6.12)

where p,(r, w) is obtained by solving Eq. 6.3 at each frequency using the wideband

incident field in Eq. 6.10.

As a time-domain analog to the scattering strength, the zero-mean log-envelope

E(t, 0, 0,) is defined as:

E(t, , ,) = lim (10 log p (r, t)12 - 9[10 log |p,(r, t) 2]) . (6.13)
IrI-oo

Since a single angle of incidence is considered in each study, the notation for the

log-envelope is simplified to E(t). Note that the definition in Eq. 6.13 implies that

the log-envelope is zero-mean.

Of interest is the probability density of E, PE(E) which is estimated directly from

all the realizations of E(t) using histograms. These density estimates form the basis

for comparing the acoustic properties of the surfaces. The significance of differences
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in estimated pdf's is always tested using the chi-square test.

It can be shown that all p, (r, t) evaluated in the far-field are scaled versions of one

another for independently varying w, and c. The log-envelope one-point probability

density functions are insensitive to scalings, hence independent of w, and c.

The scenario in which p,(r, t) is the sum over a large number of independent,

identically distributed variables is a limiting case for the statistics of E(t). By the

central limit theorem, the quantity r(t) = 1p,(t)l has a Rayleigh density at all values

of t:

pr(R) = e-R2/2e u(R), (6.14)

where u(R) is the unit step function. The probability density of the resulting envelope,

ER(t), is

In 10 E 10ER/10

PER(ER) = 20 10 e . (6.15)20cr

This density will be referred to as log-Rayleigh. The fact that ER is zero mean

constrains the value of Uo as follows:

0 = £[ER] = f 20 log R e- R 2/2f dR = 10 log e(ln 2u - C), (6.16)

implying that Ua = ec/2 ~ 0.89 where C is Euler's constant (0.577215 ... ) [21].

Physically, this limiting case is achieved when p,(t) is the sum of a large number

of scatterers that can be considered independent and identically-distributed, which

occurs when the pulse insonifies a sufficiently large segment of a stationary random

surface. At sufficiently small values of proportional bandwidth F, the pulse expe-

riences the random-phase combination of many scatterers instead of the target-like

scatter from individual scatterers. In each estimation of the log-envelope pdfs, the

results are compared to the limiting case to gain a feeling for how target-like the

surfaces behave at each bandwidth.

The integral equations were solved on a DEC Alpha 600 5/333 with 256 Mb
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of RAM. The leading order of the algorithm was M3 NQ where M is the number of

surface sample points, N is the number of surfaces, and Q is the number of frequencies.

In all the simulations, N = 50 was found to provide sufficiently small error bounds

on estimates of scattering strength and time statistics. For narrowband scattering,

the highest number of samples used was M = 1900. For the wideband case, M = 800

and Q = 100 required a week of run time and were considered the upper limit of

practicality. An advantage of the integral equation method is that the matrices are

well-conditioned.

6.3 Numerical Implementation Issues: An Exam-

ple

In this Section, some of the issues in numerically implementing the Monte Carlo inte-

gral equation method are discussed for an example case consisting in the computation

of scatter from GG, Facet and GPL surfaces with L = 80A, (a, ic) = (0.2, 1.0)A, and

O = 450; the number of realizations is N = 50. This example corresponds to one of

the cases that are studied in the first set of numerical experiments in Section 6.4.

6.3.1 Surface Filtering

Recall from Sec. 6.2.1 that the integral equation formulation requires that each scat-

tering surface be smooth. A curve is said to be smooth if its first derivative exists

and is continuous everywhere. The Facet surface has a countable number of slope

discontinuities and is not smooth. The GPL surface has uncountably many slope dis-

continuities since it is non-differentiable at every point. Any surface with countably

or uncountably many slope discontinuities can be made smooth by low-pass filtering.

Although the acoustic properties of a low-pass filtered surface fd(x) differ from those

of the original surface f(x), the difference vanishes at high enough corner wavenum-

bers in the low-pass filters. This fact enables one to compute the scatter from a

surface with slope discontinuities as the limit of integral equation solutions from a
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sequence of smooth, low-pass filtered surfaces with increasing corner wavenumber.

In every set of experiments, all three surface types were filtered using the same

low-pass filter D(k) for consistency.

fd(x) = f (x')d(x - x')dx'. (6.17)

The surface filters D(k) were chosen carefully. A filter with sharp cutoffs in the

wavenumber domain exhibits significant rippling in the spatial domain; these ripples

are imparted to the surface and, when large enough, distort its scattering properties.

Small-amplitude ripples can also significantly alter the scattered field if they lead

to large distortions in the first or second derivative. By using conventional signal

processing windows as impulse responses d(x) for the filters, these problems were

avoided; Kaiser-Bessel windows of order 5 [23] were used. The corner wavenumber kc

was defined as the location of the first null of D(k). The spatial extent LKB of the

Kaiser-Bessel window of order 5 is related to the corner wavenumber kc through the

approximate formula LKB - 3.87r/k,.

6.3.2 Convergence

If the filtered surfaces fd(x) are not sampled finely enough, the error on the computed

scatter is unacceptably large. With each increase in sampling resolution, the error is

diminished. The scatter is said to have "converged in sampling" when a doubling in

resolution leads to changes in scattering strength which are smaller than or equal to

0.2 dB over all angles of scatter for a given angle of incidence.

Convergence is also an issue with regards to k,. Beyond a critical value of k,,

negligible changes in the computed pressures are incurred by doubling ke, and the

smoothed surfaces are acoustically equivalent to their unsmoothed versions. In these

situations the scatter is said to have "converged in k,". At each value of ke, the

surfaces must be sampled sufficiently finely to have converged in sampling. The

sampling rate required for convergence in sampling increases with k,.

Define M to be the number of surfaces samples spaced a uniform distance of
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Ax = L/M apart. At the (a, lc) value of (0.2, 1.0)A in this example, convergence in

kc for the GG surfaces occured at k = 2.5k, where k is the acoustic wavenumber,

requiring Ax = A/5 (M = 400). The GPL and Facet surfaces were considerably slower

to converge, requiring k, = 8k and Ax < A/16 (M = 1300), as shown in Fig. 6-5(a).

This value of k corresponds to an averaging width of LKB - A/4. Fig. 6-5 (b) shows

the appearance of a filtered 45 degree corner at each cutoff wavenumber.

While Fig. 6-5 only shows results for the Facet surface, the convergence pattern for

the GPL surface was almost identical. What explains the more rapid convergence in

k, for the GG surface is that it does not possess much energy at wavenumbers above

2.5k, so filters with cutoff wavenumbers above this value do not alter its shape. Higher

cutoff wavenumbers are required for the Facet and GPL surfaces because they contain

significant roughness up to much higher wavenumbers, leading to small features.

6.3.3 Wideband Case

In a numerical setting, obtaining results over a band of frequencies requires discrete

frequency sampling. A judicious choice of frequency spacing Af is such that no time-

domain aliasing occurs. Strictly, this condition is achievable only if Af 5 1/2Tm

where Tm is the time between the first and last non-zero contributions. Since multiple

scatter occurs forever along the surface after the initial interrogation by the incident

pulse, Tm is infinite, but in practice a Af corresponding to the reciprocal of the time

required for the pulse to travel two to three times the surface length is sufficient to

avoid aliasing.

For the time-domain results the computational cost of solving at a large number

of frequencies restricted the investigation to backscattering and M to a maximum of

800. In the example of this Section, the highest cutoff wavenumber for which 800

samples are sufficient to attain convergence in sampling is kc = 4k. Referring back

to Fig. 6-5(a), the backscattering strength at k, = 4k has not quite converged to its

value for an unrounded surface, which is attained at k, = 8k. However, the rms error

is on the order of 1 dB and is acceptably low. Given computational hardware many

times faster, the ideal value of M = 1300 could be used, which would have permitted
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Figure 6-5: (a) Monte Carlo estimates of average scattering strength for 50 Facet
surfaces with (o, Ic) = (0.2, 1.0)A and increasing values of k. Convergence occurs at
k, = 8k. (b) Size of a rounded corner relative to the wavelength for increasing values
of k. At k, = 8k, the rounded corner is acoustically equivalent to a perfect corner.
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kc = 8k.

Explicit reference is made to the degree of convergence in kc for the time-domain

simulations in each set of experiments.

6.3.4 Accuracy of pdf Estimates

The number of pulse widths fitting within the length of the surface, L/Axp, is an

indication of the number of independent observations of the random process E(t).

As the pulse length increases and covers larger portions of the surface, longer obser-

vation times are needed to achieve representative envelopes, which in turn requires

the use of longer surfaces. In each set of numerical experiments, the surface lengths

were not increased as a function of pulse length. Consequently, the accuracy of the

pdf estimates decreased as the bandwidth was decreased. By concatenating the 50

realizations used in each experiment, one gets a minimum of 50 independent obser-

vations of E(t). This minimum is achieved when the the pulse's spatial resolution

on the surface is greater than or equal to L. All comparisons in this paper involving

estimated pdf's are warranted by a chi-square test of the histograms using the number

of independent observations as the number of degrees of freedom.

6.3.5 RMS Slope

A useful quantity in the discussion of the results is the angle of the rms slope. For the

GG surface this quantity is s = V'a/l&. For the Facet GPL, and Hybrid surfaces, s

is undefined. The 1/k3 decay of the height spectrum causes a 1/k decay of the slope

spectrum, leading to a divergent integral. Low-pass filtering the surface eliminates

this logarithmic singularity such that the rms slope exists and is given by:

1

s = ([(df (x)/dx) 2]) = ( k2Sff(k)ID(k)12 dk) (6.18)

Each member of the surface filter family D(k) is the Fourier transform of a Kaiser-

Bessel window of order 5. For each value of cutoff wavenumber Eq. 6.18 is solved
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(a, 1c)/A Gaussian-Gaussian Facet, GPL and Hybrid
(0.2, 1.0) 15.80 kc = 4k : 27.7°; kc = 8k : 35.20
(0.3, 4.0) 6.10 kc = 4k : 18.20; kc = 8k : 21.10
(2.0, 8.0) N/A kc = 2k : 41.2o; kc = 4k : 45.9'

Table 6.1: Value of the rms slope angle 7 for the surfaces used in this study. Each
surface has been low-pass filtered using a Kaiser-Bessel window of order 5 with varying
cutoff wavenumber.

numerically and the corresponding values of - = arctan(s) are shown in Table 6.1 for

all the surfaces used in this study.

Note that while s increases without bound as the corner wavenumber tends to

infinity, the existence of a corner wavenumber beyond which all surfaces are acousti-

cally identical suggests a physical definition of the rms slope which can be used for

non-integrable slope spectra.

6.3.6 Angular Resolution

Figure 6-5 may be used to remark on an issue not related to convergence. A conse-

quence of using finite length surfaces is that scatter at neighbouring angles is smeared

together. For example the coherent component, which would be a delta function at

8, = 135' for an infinite length surface, is transformed into a contribution of non-

zero angular width and finite amplitude. The smearing effect becomes increasingly

important at low grazing angles where the projection of the surface's length on the

scattering wavenumber is very small.

Angular resolution must sometimes be traded for increased computational speed.

In the first two sets of numerical experiments, L = 80A is used and provides ample

angular resolution. In the third set of experiments, a higher sampling rate is needed

to achieve convergence at kc = 4k, so shorter surfaces having L = 35A must be used

for the wideband simulations to maintain N = 800, leading to a decrease in angular

resolution, although not excessively so.
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6.4 Scatter From Facet, GG and GPL Surfaces

With the theoretical approach and numerical issues clearly established, it is now

possible to proceed to the computation of scattering from rough surfaces. The metrics

through which scattering properties are assessed are the bistatic scattering strength

and the one-point pdfs of backscattered envelopes for a plane wave at 45 degree

incidence. In this first set of experiments, the triad of surfaces lying at the poles of

the triangle in Fig. 6-1 are studied.

The bistatic scattering strength results are presented and discussed in Section 6.4.1,

and Section 6.4.2 presents the log-envelope histograms at proportional bandwidths of

1.8%, 9%, and 36%. Note that in the wideband case the normalization wavelength A

is the wavelength at the center frequency.

6.4.1 Narrowband Results

The expected value of the bistatic scattering strength was estimated for all three

surface types for two cases: (a, 1c) = (0.2, 1.0)A and (0.3, 4.0)A. Each sample surface

was low-pass filtered at a cutoff wavenumber of 16k (twice the convergent cutoff of

8k), and thus the computed scatter was the same as would be calculated for unfiltered

surfaces. The results are presented on Figs. 6-6 (a) and (b). In both (a) and (b) what

is most obvious is the enhanced scatter in the back quadrant for the two surfaces with

power law spectra compared to the GG surface. It should be noted that the integral

of scattered energy across all bistatic angles was within 1% of the incident energy for

all cases shown.

While the Facet and GPL surfaces have identical spectra, Fig. 6-6 shows their

scattering strengths to be distinct. This is proof that the second moment is insufficient

to predict the average scattering strength from a random rough surface. On the other

hand, the figure also shows that for the values of (a, l,) considered, the power spectrum

gives a coarse idea of the energy in backscatter. It is hard to imagine surfaces more

opposite in their manifestation of a given power spectrum. In the extreme case of

the Facet surface, all of the high-wavenumber roughness is concentrated at discrete
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Figure 6-6: Monte Carlo estimates of scattering strength for (a, lc) = (a) (0.2, 1.0)A

and (b) (0.3, 4.0)A. The Facet and GPL surfaces possess highly enhanced backscatter
compared to the GG surface due to high-wavenumber roughness. The Facet and GG

surfaces, being single-scale, show an enhanced forward scatter lobe compared to the
GPL surface. In all cases, energy conservation is satisfied to within 1%.
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points, while in the GPL surface it is distributed as evenly as possible. Any other

surface with the same power spectrum is bound to lie in between these two extremes

and thus it should be the case that all surfaces with a power-law spectrum with

exponent not far from the present value of 3 will lead to enhanced scatter in the back

quadrant for the values of (a, 1,) considered here.

The Facet surface exhibits a different functional dependence than the GPL surface,

manifesting a 3-5 dB increase about the specular direction which is especially evident

in Fig. 6-6 (b). It appears to behave like the GG surface within ±20 degrees of the

specular direction, and like the GPL surface (although at reduced levels) everywhere

else.

A physical interpretation of this phenomenon is as follows. In the GG surface, the

incident energy encounters a curve each part of which is sufficiently smooth compared

to the wavelength to act like a reflector. This is confirmed by the validity of the

Kirchoff approximation for this surface and these values of (a, 1,) [60]. The total

scattering strength in any direction is dominated by the likelihood that locally-plane

segments of the curve will reflect the incident energy in that direction. The average

slope of the reflecting segments is zero, hence there is a bulge of incoherent energy

about the specular direction. In Fig. 6-6 (b) the angle of the rms slope (from Table 6.1)

is less than half of its value in (a), and thus the likelihood of slopes large enough to

reflect energy into the low grazing angles of backscatter is lower. This explains the

decreased backscattering strength in (b).

On the other hand, the GPL surface never presents locally plane segments because

it contains structure down to infinitesimal scales. Each infinitesimal feature is a tiny

diffractor which radiates in all directions, and the total scatter is the cumulative effect

of these diffractors. This explains the quasi-omnidirectional beampattern of the GPL

surface, in which backscatter is no more than 5 dB weaker than incoherent forward

scatter.

The Facet surface is unique in that it consists of a combination of reflectors (the

facets) and diffractors (the vertices). The diffractors lead to enhanced backscatter as

in the GPL surface, and the reflectors lead to enhanced scatter about the forward

164



direction, as in the GG surface. The vertices diffract into directions unlikely to

receive energy from reflective contributions, and the facets contribute more energy in

the foward direction than would be possible for the diffractors alone. The facets are

also contributors to energy in the back direction through their relatively high slopes.

Of course, by conservation of energy, the scatter in the Facet surface cannot be as

high in backscatter as the GPL surface while being as high in the forward direction

as the GG surface.

In reality, all rough surfaces combine multiple reflections and diffractions but the

physical interpretation above is representative of the dominant phenomena in each

case and leads to the following general propositions:

1. The ability to produce a forward scatter lobe in a surface with zero mean slope is

determined by the presence of single-scale features which must be large enough

to act as local reflectors. The scale structure and average feature size are thus

good predictors of the existence or inexistence of a foward scatter lobe.

2. The ability to produce high scatter in the back quadrant is governed by high-

wavenumber roughness, which takes the form of sharp corners and short steep

slopes. Thus, the power spectrum is an indicator of high energy in backscatter.

An important task in future efforts will be to see how these propositions hold at

other values of (a, 1,), 0, and for other types of random surfaces. At sufficiently small

values of a, the differences in the statistics of various surface types are not expected

to play as important a role in the acoustics.

The variance and correlation length seem to be good predictors of energy in coher-

ent scatter relative to incoherent specular scatter. All three surfaces show a coherent

specular peak in Fig. 6-6 (a) while neither show it in (b) as it is buried in the inco-

herent component.

Lastly, it appears that the acoustics are indifferent to surface Gaussianity for

the surfaces studied here, because Gaussianity is largely redundant once the scale

structure and the power spectrum are known.

165



6.4.2 Wideband Results

The incident pulse used in the numerical calculations had spectrum Gb(w) (see Eq. 6.11),

equal to a Chebyshev window of order 50 and bandwidth Fw,. This pulse has con-

stant sidelobe level equal to -50 dB and its time-bandwidth product is approximately

AtAw/(27r) 4.2. From this, one can deduce the spatial extent of the pulse in

wavelengths: Axp/A = cAt/(2A cos 0) 21 2.1/(F cos 0).

Three values of proportional bandwidth F were used: 1.8%, 9%, and 36%, for each

of the two values of (a, 1c) in the previous section. Recall that in the wideband case,

A is defined as the wavelength at the centre frequency.

For each set of 50 surfaces, average onset and extinction times were determined

for the log-envelopes, corresponding to the average time at which the response first

rises above a noise threshold and the average time beyond which it stays indefinitely

below the theshold, respectively. All envelope data lying outside these times were

rejected since they were associated with sidelobe leakage.

The quantity of interest is the zero-mean log-envelope defined in Eq. 6.13, which is

formed by concatenating the selected portions of individual log-envelopes and subract-

ing the mean. Histograms of these global envelopes were then formed, representing

numerical estimates of their probability density functions. These pdf estimates are

independent of center frequency and sound velocity.

At F = 36%, there are 9.7 pulse widths per surface; this value decreases to 2.4 at

F = 9%, and at F = 1.8%, the pulse is longer than the surface. In the latter case,

because the pulse never insonifies to its fullest capacity, one is not observing the true

statistics of a F = 1.8% pulse. The true statistics of E(t) for this case would be

more log-Rayleigh than those presented because the envelope would be the sum over

a larger number of scatterers.

Case (i) (a, 1,) = (0.3, 4.0)A

Pdf estimates for the Facet and GPL surfaces are presented in Fig. 6-7. The pdf's

of the GG surface were not calculated because at this value of (a, l,) and horizontal
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extent L, the backscatter is dominated by edge effects.
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Figure 6-7: Estimates of the pdf's of the log-envelope for (a, lc) = (0.3, 4.0)A. E(t)
is nearly log-Rayleigh at all proportional bandwidths F for the GPL surface. In the
Facet surface, the deviation from log-Rayleigh is accentuated as the bandwidth is
increased and the pulse resolves individual targets. This does not occur for the multi-
scale GPL surface because many scatterers are included within the pulse width even
at the highest resolution considered here. The log-Rayleigh distribution is shown in
dark blue, and the pulse resolution is shown in correlation lengths for each bandwidth.

In each of the histograms in the figure, the solid line represents the log-Rayleigh

distribution given by Eq. 6.15. The first row of the figure shows that for the Facet

surface, the envelope statistics are increasingly non-Rayleigh as the bandwidth is

increased from 1.8 % to 36 % and the pulse length is decreased from 41 to 2 correlation

lengths. The sample paths of Fig. 6-2, which are normalized by the rms height and

correlation length, may be useful to gain an intuitive feel of how much of the surface

is included by the pulse at each bandwidth. Note that the ratio of pulse length to

correlation length is related to the average number of facets per pulse. The average

horizontal extent of a facet (range-wise) is 1/A , so the average number of facets per
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pulse is AxzAr. From Eq. 5.24,

10 /.2x
AXAr = 0 A . (6.19)

The nature of the deviation from the log-Rayleigh distribution for the Facet surface

is that levels below -10 dB are more likely to occur, levels between -10 dB and 10 dB

are less likely to occur, and more importantly, levels above 10 dB are significantly

more likely to occur. The log-Rayleigh distribution shows a sharp cutoff at 10 dB

but the 36% bandwidth case for the Facet surface shows a high value of the pdf for

amplitudes as high as 25 dB.

To explain this bandwidth-dependent result, it is insightful to look at the two sam-

ple log-envelopes for the 36% case shown in Fig. 6-8. Scatter from the Facet surface

shows short high-amplitude bursts separated by quiescent periods, representing the

pulse's ability to resolve individual features. This is in sharp contrast to the sample

envelope from the GPL surface in which one cannot clearly distinguish events. The

pulse at this high value of F, being 21, long (see Fig. 6-2) includes roughly 4 facets

on average. The target nature of the envelope is due to the fact that on occasion a

facet with slope angle of 450 gives rise to a glint in the back direction.

Looking at the second row of Fig. 6-7, the envelope statistics of the GPL surface

at proportional bandwidths of 1.8% and 9% are perfectly log-Rayleigh while at 36%

they are nearly so. This suggests that even at the largest F the pulse includes many

scatterers. This is in fact true as the GPL surface is multi-scale and presents features

down to infinitesimal sizes.

The reflectors of the Facet surface occur at a single characteristic scale and are

responsible for the non-Rayleigh envelope statistics. Still, as the bandwidth is de-

creased, the envelope statistics become more log-Rayleigh since the response at any

given time includes contributions from a growing number of features.

168



Facet

Gaussian-Power Law

Figure 6-8: Sample realizations of the log-envelope for (a, lc) = (0.3, 4.0)A. The Facet
surface leads to log-envelopes with strong peaks separated by quiescence. The GPL
surface does not give rise to distinct events.

Case (ii) (a, lc) = (0.2, 1.0)A

It can be seen from Fig. 6-9 that the GPL surface is log-Rayleigh at all bandwidths.

The second column shows that while the Facet surface is still largely log-Rayleigh at

F = 9%, the GG surface is already exhibiting event-like statistics. Only in the third

column, at F = 36%, does the Facet surface begin to deviate from log-Rayleigh, while

the GG surface has already reached a strongly non-Rayleigh character.

It is perplexing at first to observe that the GG surface achieves non-Rayleigh scat-

ter at lower proportional bandwidths than the Facet surface. Both surface types have

the same variance and correlation length and are single-scale, and it is reasonable to

expect event-like scatter to occur at around the same bandwidth. There are two fac-

tors which explain why this is not so. First, the GG surface, with -y = 15.80, presents
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Figure 6-9: Estimates of the pdf's of the log-envelope for (a, 1c) = (0.2, 1.0)A. The
GG surface is event-like at lower proportional bandwidths F than the Facet surface
because of its lower rms slope y and the larger size of its features. The log-Rayleigh
distribution is shown in dark blue, and the pulse resolution is shown in correlation
lengths for each bandwidth.

back-facing slopes much less frequently than the Facet surface, for which 7 = 28.10.

It was observed in Case (i) that the non-Rayleigh scatter for the Facet surface was

associated with occasional glints from facets in reflection. If back-reflecting segments

become too likely, the envelope is not likely to experience quiescence in between

glints, and is likely to include more than one glint at a time. This summation over n

independent targets leads to log-Rayleigh envelopes for sufficiently large n.

The lower value of y for the GG surface is partly responsible for its higher devia-

tions from log-Rayleigh than the Facet surface. A second reason is that the average

170



width of a feature for the GG surface, being equal to I, is about twice that of an

average facet (1/Ar - 0.521,), so there are half as many features per pulse.

Perplexing differences also exist within the Facet surface family. While there are

16 facets per pulse for both F = 36% of Case (ii) and F = 9% of Case (i), the pdf

estimates for these two cases are quite different. The difference is explained by the

rms slope which is 28.10 in the former and 18.40 in the latter. This leads to more a

log-Rayleigh behavior in Case (ii). Another consequence of the higher likelihood of

back-facing facets is the higher backscattering strength by about 7 dB in Case (ii) as

compared to Case (i) (Fig. 6-6).

6.5 Scattering From Hybrid Surfaces

The perfectly smooth features of the GG and the Facet surfaces lead to realiations

that appear unnatural because most natural interfaces, including those for which

a single-scale component dominates, exhibit some degree of roughness at all scales.

In answer to this fact, Hybrid surfaces were introduced in the previous chapter as a

combination of GPL and Facet roughness. The realizations of this process were found

to have as natural a look as their GPL counterparts yet derived 75% of their energy

from the Facet process. A realization of each of these processes is shown on Fig. 5-11.

In this second set of experiments, the bistatic scattering strength and the time-

domain statistics of backscatter are compared for Facet, GPL, and Hybrid surfaces

for the case (o, l,) = (0.3, 4.0)A to investigate whether the differences in the results

obtained so far between Facet and GPL processes are merely an artifact of the per-

flectly smooth features. As in Section 6.4, the surfaces are 80 wavelengths long and

are filtered at a cutoff of 4k. The pulse used in the wideband results has a spec-

trum given by a Chebyshev winddow of order 50, and three values of proportional

bandwidth are used: 1.8%, 9% and 36%.

In spite of drawing 75% of its energy from the Facet process, the Hybrid process

appears qualitatively fractal. If this were a real profile collected from the seafloor,

one would probably not suspect from its appearance that a single-scale process lurks
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beneath, and spectral methods would not detect it because the power spectral density

is power-law. It was shown that the statistics of the wavelet coefficients provided one

means of detecting the differences in scale structure from both the Facet and GPL

cases. The fascinating question that is about to be answered is whether the acoustical

scattering process can detect what only the wavelets could.

BAC FWD
10

5 - Facet

0 - Power Law

-25

-30
0 20 40 60 80 100 120 140 160 180

Scattering Angle, degrees

Figure 6-10: Monte Carlo estimates of scattering strength from Facet, GPL, and
Hybrid surfaces for (a, Ic)= (0.3, 4.0)A.

Figure 6-10 shows that the bistatic scattering strength curves are distinct for the

three surface types, with the Hybrid curve lying roughly half way between the Facet

and GPL cases. The maximum deviation of the Hybrid curve from either of the

two other curves is about 3 dB. It demonstrates that properly establishing the scale

structure of a random surfaces for the purpose of scattering predictions goes beyond

spectral analysis and qualitative perusal of a few sample profiles.

Turning now to time-domain statistics, Fig. 6-11 show the log-envelope histograms

of backscatter at proportional bandwidths of 1.8%, 9% and 36%. As with the scatter-

ing strength results, the statistics of backscatter for the Hybrid surface lie somewhere

in between those of the GPL and Facet surfaces, showing some deviation from the

log-Rayleigh curve, but not as much as the Facet case. The deviation is most appar-
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ent at the 36% bandwidth but is distinguishable even at the lowest bandwidth in the

form of a lower peak.

r= 1.8%
Pulse = 41 Ic
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Figure 6-11: Estimates of the log-envelope pdf of backscatter from Facet, GPL, and

Hybrid surfaces for (a, lc) = (0.3, 4.0)A. The presence of 25% fractal energy in the

Hybrid surface leads to a reduction in the deviations from log-Rayleigh. Nevertheless,
at all three values of bandwidth the underlying Facet process of the Hybrid surface

leads to non-Rayleigh behavior in spite of being invisible to the eye and undetectable

through spectral methods.

It can be concluded that the obervation of a power-law power spectral density and

a fractal qualitative appearance are not sufficient to default to a Gaussian model;

feature-like roughness, even when hidden beneath a multi-scale "noise" signal, is

detectable by the acoustics in both narrowband and wideband scenarios.
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6.5.1 Effect of Scale Structure

At the conclusion of this second in a series of three numerical investigations, the

following has been learned. The non-Rayleigh behaviour of the Facet, Hybrid, and

GG surfaces suggests that single-scale roughness behaves as a collection of targets,

however feature-like roughness is not sufficient to ensure target-like envelope statistics;

the pulse width, the center wavelength, and the surface variance and correlation length

must satisfy some critera.

The multi-scale roughness of the GPL surface makes it considerably harder for

the surface to possess areas of strong scatter separated by areas of weak scatter, but

this is not to say that Gaussian surfaces with power-law spectra can never produce

non-Rayleigh time statistics. The lower peak in the histogram for the 36% bandwidth

case in Fig. 6-11 shows that the GPL surface is beginning to act non-Rayleigh. Using

the number of independent observations of the envelope as the number of degrees of

freedom, a chi-square test shows that while the deviation from log-Rayleigh is small, it

is statistically significant. This trend can only increase as the bandwidth is increased

further. Therefore, not only is feature-like roughness insufficient for target-like scatter,

it is not necessary either. However, it should be the case that for single-scale and

multi-scale surfaces with identical correlation length and variance, target-like scatter

will occur at much lower bandwidths in the single-scale surfaces. The next Section

allows this theory to be tested in the context of much rougher surfaces than have

been considered so far.

6.6 Scattering From Higher-Variance Surfaces

6.6.1 Variance and Correlation Length

While the surfaces studied so far have established the insufficiency of the power

spectral density in predicting scatter, only two points in the (a, Ic) plane have been

tested. It is natural to ask whether similar conclusions would be reached at other

values of variance and correlation length.
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Since the ARSRP experiment was the motivation for this study, it seems fitting

to attempt cases that resemble Mid-Atlantic Ridge bathymetry more closely. This

endeavor comes with advance knowledge that a one-dimensional model cannot hope

to obtain realistic values of scattering strength in a two-dimensional scenario. The

ability to characterize the time-domain statistics of scatter from a two-dimensional

surface with a one-dimensional model is also questionable. It was shown in previous

Sections that a prime cause of non-Rayleigh time-domain backscatter is glinting from

retroreflecting smooth features. In the two-dimensional case, the orientation of the

features has an out-of-plane component that is expected to make glinting more rare

than in the 1-D case. In spite of these limitations, the examination of a case with

roughness parameters closer to those of ARSRP one-dimensional profiles can only

bring one closer to fully understanding scattering in this experiment.

Recall that in Chapter 3, scarp-parallel corrugations on the order of 10-20 m high

and 20-30 m wide were observed, and it was when incidence azimuths were normal

to these corrugations and when grazing angles were high that maximum departures

from Rayleigh were observed.

Here, I apply the composite seafloor model, viewing the faulting pattern that

defines the scarps and terraces at Site B', shown in Fig. 3-3, as a single-scale form

of roughness at large scales, on which I superimpose a form of roughness at the scale

of the scarp-parallel corrugations. I assume that little roughness is present at scales

between corrugation-scale roughness and the scale of the scarp-terrace roughness.

Focusing on the scarps is then equivalent to focusing on one of the facets of the

scarp-terrace process. The only form of roughness that exists on one of these facets

is due to the single-scale process at the corrugation scale, and possible roughness

at smaller scales. I investigate whether a difference in scattering behavior occurs

depending on whether the roughness at the scales of the corrugations and below is

modeled as being feature-like through the Facet process, multi-scale through the GPL

process, or a combination of both through the Hybrid process.

An estimate of the ratio of rms height to correlation length to be used in the surface

models can be obtained from the best-fit power law a/kb of the power spectral density
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of the profile normal to B' scarps in Fig. 4-9, where I found a = 0.73 and b = 2.76.

I assume that the value of b is close enough to 3 to allow use of the Facet seafloor

model. The choice of the ratio of rms height to correlation length fixes the position

of the high-wavenumber asymptote, as can be seen from Eq. 5.25, which becomes

Shh r- 7r 1 \ k2 1 (6.20)

implying

a 3
-0.14. (6.21)

l Vr 10

I choose a value of correlation length equal to 8 wavelengths, and a ratio of rms

height to correlation length of 0.25, i.e. (a, Ic) = (2.0, 8.0)A = (12.0, 48.0). The focus

is not on matching the values exactly but on obtaining roughness which is credibly

similar to the face of one of the B' scarps. The rms slopes of Facet, GPL, and Hybrid

surfaces with these values of variance and correlation length are approximately 45

degrees, as shown in Table 6.1, and are therefore compatible with the slopes that

are expected in the roughness from the cross-scarp corrugations. Simultaneously, the

ratio of variance to correlation length is sufficiently near the values predicted from

spectral estimates of the seafloor and the values of variance and correlation length

themselves are comparable to the heights and widths of the corrugations.

The bistatic scattering strength results for 30 degree grazing incidence are shown

in Fig. 6-12. The observation in the two previous sets of numerical experiments that

feature-like roughness leads to enhanced incoherent scatter in the forward direction

is seen to apply here, with the Hybrid and Facet surfaces showing an enhancement

in the forward direction.

The results show that at values of variance and correlation length comparable to

the ARSRP scenario, the bistatic scattering strength is distinct for one-dimensional

surfaces with different scale structure but identical power spectral density. The scat-

tering strengths for each surface type cannot be directly compared to those observed in

ARSRP because increasing the dimensionality of the surfaces leads to radical changes
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of scattering strength for Facet, GPL and Hybrid surfaces

in scattering behavior. Nevertheless, the one-dimensional simulation presented here

suggests that scale structure is likely to be an important factor in the two-dimensional

scenario as well.

6.6.2 Pulse

In an effort to emulate the ARSRP scenario, the same pulse spectrum G(w) is used:

S - cos()(t+T/2)))

A(t) = 1,

1( +cos (,r(t-T/2 ) '

ST<t< T
2 2

- T <_ t < -
- 7<t< .
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G (w) = (t) cos ( 10  t + + ( - ) (t + ) (6.23)

The values of the pulse parameters in the ARSRP scenario were T = 5 sec, T = 0.3

sec, wlo = 200 Hz, and whi = 255 Hz. The log-envelope of the pulse is depicted in

Fig. 2-3 of Chapter 2. The time-bandwidth product of this pulse is AtAw/(2r) 2 2,

giving a ratio of pulse width to wavelength of Axp/A _ 1/(P cos 0), where an incident

grazing angle 0 of 30 degrees is used.

As in other Sections in this chapter, the results are presented in non-dimensionalized

form; the case studied here has a proportional bandwidth of F = 24%. Thus, the spa-

tial resolution of the pulse is about 5 wavelengths, or 0.6 correlation lengths. In the

case of the Facet process, this corresponds to there being, on average, about one facet

per pulse.

This new choice of pulse for the numerical simulations raises the issue of the effect

of pulse shape on the statistics. Having experimented with several pulse shapes, a

summary of general trends can be presented. First, note that low-amplitude por-

tions of the envelope are the result of weak scattering and/or sidelobe leakage from

numerous higher-amplitude portions of the response. Thus, the lower the amplitude

level, the higher the number of degrees of freedom which sum to form the total signal.

For this reason, increases in pulse sidelobe level tend to reduce deviations from log-

Rayleigh at lower levels. Deviations from the log-Rayleigh distribution at the highest

levels beyond 10 dB are insensitive to changes in sidelobe level, because these high

levels are due to peaks in the envelope which are unaffected by leakage from lower-

amplitude portions. A widening of the main lobe of the incident pulse decreases

deviations from log-Rayleigh at all amplitude levels. Although the use of a different

pulse alters the pdf estimates, the conclusions drawn in this paper are not affected

by the choice of pulse.
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6.6.3 Wideband Results

The pdf estimates of the log-envelopes of backscatter for an incident grazing angle of

30 degrees are shown in Fig. 6-13. At these values of variance and correlation length,

most of the facets of the Facet surface are much larger than the wavelength and act

as perfect reflectors. The occurence of a strong return in the back direction then

co-incides with the rare event that the facet slope is almost exactly back-reflecting

or that multiple reflections send energy in the back direction. The behavior of this

surface is thus extremely target-like.

The GPL surface is exhibiting significant non-Rayleigh behavior at these values

of bandwidth, correlation length, variance, and incident angle. This behavior can be

ascribed to the existence of significant portions of the surface which are shadowed

by large vertical excursions. Thus, non-Rayleigh behavior is exhibited even if the

scatter from illuminated portions of the surface is the sum over a large number of

small scatterers. The current example clearly emphasizes that feature-like roughness

is not a requirement for target-like scatter. The Hybrid surface, as before, manifests

a behavior which lies in between that of the Facet and GPL surfaces.

I now simulate a two-dimensional scenario by considering the lateral size of the

sonar footprint, about 600 m, to be composed of approximately ten correlation lengths

in the scarp-parallel direction. The scatter from the two-dimensional footprint is

then viewed as the superposition over 10 independent one-dimensional surfaces. To

simulate the backscattered envelopes, the envelopes from the one-dimensional surfaces

are first combined coherently in sets of 10, then processed as usual.

Fig. 6-14 demonstrates the result with the pdfs plotted on a log-scale as in the pdf

estimates of data in Chapter 3. The summation over 10 processes considerably reduces

the deviations from log-Rayleigh, but a significant deviation persists at the high levels

in the case of the Facet and Hybrid surfaces. The deviation is not sufficient to match

that of scarp-normal log-envelope pdfs at high grazing angles in Fig. 3-12, however

this example shows how two-dimensionality shapes the histograms - the lower levels

converge to Rayleigh, and the highest levels persist in their non-Rayleigh behavior,
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Figure 6-13: Log-envelope pdfs for Facet, GPL and Hybrid surfaces with (a, lc) =
(2.0, 8.0)A. The blue curve is the log-Rayleigh distribution. The match-filtered pulse
of the ARSRP experiment was used, having proportional bandwidth of 24%. The
Facet surface exhibits extreme target-like behavior. The scattering properties of Hy-
brid surface are distinct from those of the Facet and GPL surfaces.
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Figure 6-14: Log-envelope pdfs for simulated two-dimensional Facet, GPL and Hybrid
surfaces in ARSRP scenario. The blue curve is the log-Rayleigh distribution.
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even if just slightly.

The pdf estimates are sensitive to the number of correlation lengths that are

deemed to exist within the sonar footprint. At a smaller value, the GPL surface

would maintain its non-Rayleigh character at high levels. At larger values, all three

surfaces would lead to Rayleigh statistics. Since the correct value to use is a matter of

debate it is not possible based on this experiment to prove that in backscatter from

the scarps of site B', feature-like roughness is the cause of non-Rayleigh statistics.

Using the best estimates of variance and correlation lengths from the bathymetric

data, I find that the surface models with feature-like roughness provide the closest

match with the observed statistics of backscatter from site B' scarps (see Figs. 3-11

and 3-12).

This example does demonstrate that for roughness comparable in magnitude to

the scarps of ARSRP, scale structure plays an important role in enhancing target-

like statistics of time-domain backscatter, supporting the assertion that the feature-

like nature of bathymetry in ARSRP can play a role in the observed non-Rayleigh

behavior of the acoustic data and showing that it would be necessary to characterize

the two-dimensional scale structure of ARSRP scarps to explain the data.

6.7 Summary

1. Scatter from the Facet process provides proof that second moment character-

izations of random rough surfaces are not sufficient for predicting either the

bistatic scattering strength or the time-domain statistics of backscatter.

2. Feature-like roughness is neither sufficient nor necessary for target-like scatter.

Both feature-like and multi-scale surfaces behave as a collection of resolvable

targets and lead to non-Rayleigh log-envelope statistics at sufficiently high pro-

portional bandwidths. In multi-scale surfaces, whose component targets are

much smaller and thus not easily resolved by the incident pulse, the onset

of non-Rayleigh statistics occurs at higher proportional bandwidths than in

feature-like surfaces. With decreasing bandwidth, log-envelope statistics are
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increasingly log-Rayleigh for all random surfaces due to the simultaneous con-

tribution of an arbitrarily large number of targets. Shadowing may prevent the

log-Rayleigh distribution from ever being attained in some surfaces.

3. Scatter from the Hybrid process demonstrates that feature-like roughness is

detectable by acoustic waves even when it is undetectable by either the quali-

tative appearance of realizations or spectral methods. The distinctness of the

statistics of the Hybrid surface from those of the GPL and Facet surfaces sug-

gest that the values of scale structure that are relevant to scattering are more

numerous than simply "feature-like" or "multi-scale"; the values vary continu-

ously between the two extremes. Accurate prediction of scattering strength and

the statistics of log-envelopes require that along with a surface's power spectral

density, its scale structure be determined. This may be accomplished using a

variety of multi-scale transform techniques such as the wavelet transform.

4. It appears that Gaussianity is a redundant parameter and is important in scat-

tering only to the degree to which it affects the scale structure and the power

spectrum as suggested in Fig. 6-1.

5. In all the numerical experiments, the Facet surface features strong scatter in the

back direction as the GPL surface does while exhibiting a forward scatter lobe

(similar to that of the GG surface in the first experiment), which supports the

assertions that the power spectral density has a dominant role in determining

scattering strengths in the back direction and that scale structure plays an

important role in determining incoherent scattering strengths about the specular

direction and the degree of target-like behavior.

6. The calculations using values of variance and correlation length comparable to

roughness on Site B' scarps support the theory that the feature-like nature of

the bathymetry in ARSRP plays a role in enhancing observed target-like scatter

in acoustic data. Surface models with feature-like roughness provide the closest

match to the statistics observed in backscatter from the scarps of site B' in
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ARSRP.

184



Chapter 7

Conclusion

7.1 Contributions

The contributions, results and conclusions in this thesis can be grouped into two

categories: (i) those resulting from the analysis of acoustic and bathymetry data from

the ARSRP experiment, and (ii) those associated with the theoretical investigation

of scale structure in stochastic surfaces and its role in acoustic scattering. Each of

these areas is discussed in turn.

7.1.1 Analysis of ARSRP Acoustic and Bathymetric Data

The ARSRP acoustic reverbation data collected near the Mid-Atlantic Ridge are the

result of a complex physical process that involves propagation through the water

column and scattering with a highly rough seafloor with variable geophysical charac-

teristics. Buried within the resulting reverberation is information about scattering,

which is the component of interest in this thesis.

Contribution 1 The development of ARTIST, which is both a software package

and a mathematical formalism, to help visualize the insonification process in

physically intuitive ways, model reverberation, and extract scattering data orig-

inating from detailed seafloor regions.

* Visualization of seafloor insonification
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The development of the mathematical entities of insonification and intersection pat-

terns have proved ideal in visualizing the combined effects of propagation, shadowing,

bathymetry, time delays, and source-receiver geometry and beampatterns. Graphical

representations of intersection patterns allow the identification of bathymetric fea-

tures expected to play a major role in reverberation, the time windows and beam

numbers in which they will contribute, and the combined insonification effects due

to source and receiver beampatterns, transmission loss, and local grazing angles with

respect to the bathymetry.

* Modeling of Reverberation

The intersection pattern data structure is readily used to generate simulated reverber-

ation. 1/2 CZ reverberation simulations at 200 msec scales in both monostatic and

bistatic source-receiver geometries showed excellent agreement with the prominent

features in actual reverberation data at intermediate to late times. Reverberation at

early times is dominated by mutiple seafloor interaction paths, which are not modeled

by ARTIST. The success of the simulations emphasizes the deterministic connection

between reverberation and bathymetry and the fact that prominent events are as-

sociated with single seafloor interactions. Areas where agreement is poor between

model and data provide valuable information about the physical mechanisms at play,

be they multiple seafloor interactions or local variations in scattering behavior not

modeled by ARTIST.

* Extraction of scattering information

The dominance of surface-bounce and direct ray paths interacting with the seafloor

only once for the most prominent events in ARSRP data, along with the capabilities

of ARTIST, allow the extraction of portions of the reverberation data that specifically

correspond to detailed geographic regions. The energy in each pixel in the data is

normalized by TL and beampattern values and related to unique grazing and bistatic

angles and a footprint area that is based on the sonar's spatio-temporal ambiguity

function.
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Using the 200 m resolution bathymetric data, the capabilities of the sonar system,

and the capabilities of ARTIST, the scatter from intertwined seafloor areas as narrow

as 500 m with distinct geology was resolved.

Contribution 2 The analysis and interpretation of scattering and bathymetric data

from a feature of O (5 x 5) km in size known as site B'.

* Establishment of distinctness of backscattering strengths and time-domain statis-

tics from scarps and terraces and failure of Lambert's law at low grazing angles

Site B' is composed of alternating scarp and terrace areas which were explicitly

identified using polygonal shapes as narrow as 500 m and used as input to ARTIST

for the extraction of scattering strength. Backscattering strength curves were then

obtained separately for scarps and terraces and were shown to be distinct from each

other, with terraces showing higher backscattering strengths by about 3-4 dB at

grazing angles below 20 degrees. The best-fit Lambert's law has a coefficient p of -16

dB but fails dramatically at angles below 25 degrees, a result which is consistent with

well-known properties of seafloor scattering at low grazing angles.

The probability density functions of high-resolution log-envelopes exhibit a lower

peak value and enhanced tails as compared with the log-Rayleigh pdf. This is true

for both geological categories, but scarps show a higher deviation from Rayleigh.

While the variance of the log-envelope pdfs from scarps and terraces is within 0.5

dB of the value associated with a Rayleigh process, the observed deviations from the

Rayleigh distribution are significant in the context of target detection and provide

useful information about the scale structure of the seafloor.

* Demonstration of the importance of anisotropy in scattering from B' scarps

Using seven different ship positions with respect to site B', the effect of the

anisotropy of B' scarps was investigated, revealing that backscattering strengths are

at least 5 dB higher normal to the scarps than 30 to 50 degrees relative to the scarps.

The best-fit Lambert's law coefficients range from -22.5 dB between 30 and 50 degrees
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with respect to B' scarps, to -14 dB normal to the scarps. Again, Lambert's law is

found to fail at low grazing angles. The deviations of the time-domain statistics of

high-resolution log-envelopes from Rayleigh are found to be accentuated for normal

azimuths to the scarps, and at large grazing angles.

e Proposal of a composite stochastic seafloor model

Nested views of the bathymetry at increasing resolutions have revealed that the rough-

ness at smaller scales cannot be extrapolated from the roughness at larger scales. At

the range of scales defined by the views, the roughness exhibits repeatable feature-

like structures such as abyssal hills, canyons, gullies, and manganese nodules which

cannot simultaneously be explained with Gaussian seafloor models. A new model

of the seafloor was proposed which is the composite of many single scale processes

each of which is potentially associated with a specific geophysical mechanism. The

new model satisfies observed power spectra which have a power-law decay over many

orders of magnitude in wavenumber but can model feature-like roughness.

* Interpretation of scattering data using bathymetric observations and proposal

of theories

Estimates of the power spectral densities of profiles normal and parallel to B' scarps

are very close, suggesting isotropy, however visual observations of B' scarps at the

same scales reveal a distinctness in morphology in the two directions. In both di-

rections, the morphology is feature-like, but parallel to the scarps the features are

canyons 100-200 m wide and 30-50 m tall and normal to the scarps the features are

gullies 10-20 m tall and 20-50 m tall. The distinctness of the scatter for different

anisotropic directions is proposed to result from the distinctness of the roughness

along both directions. The distinctness cannot be explained by the power spectral

density since it is equal in both directions. The linked acoustic and bathymetric

observations have led to two proposals:

1. The power spectral density is inadequate in specifying feature-like roughness;

and
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2. There is a link between the scale structure of the roughness and its scattering

strength and log-envelope pdfs. Specifically, the presence of feature-like rough-

ness at certain scales can enhance backscatter and target-like behavior in the

time-domain.

These two proposals have led to a theoretical exploration of the sufficiency of the

power spectral density in describing feature-like roughness and in predicting acoustic

scatter.

7.1.2 Surface Scale Structure and its Impact On Acoustic

Scattering

Contribution 3 The establishment of the concept of scale structure and its distinct-

ness from the power spectral density.

* Qualitative definition of scale structure

The scale structure of a stochastic process is defined as the statistical spatial arrange-

ment of features at different scales.

* Development of single-scale models with feature-like scale structure and power-

law power spectral density

Two prototype one-dimensional surface models have been proposed which generate

feature-like roughness: a piecewise-constant process and a piecewise-linear process

defined as the Facet process. The power spectral densities and correlation functions

have been derived analytically and verified numerically in both cases; they exhibit a

power-law decay. Comparison of realizations from these processes with realizations of

Gaussian processes having identical second moment has demonstrated that the scale

structure of stochastic processes is not determined by the power spectral density.

As models of seafloor, both processes are found to look unnatural, however when

the models are used as the single-scale components of a composite process, the un-

natural look disappears. Realizations of the composite seafloor model have four de-

sirable qualities: (i) they do not look unnatural; (ii) their power spectral densities

189



have power-law decay; (iii) they lead to feature-like roughness, and (iv) they allow

each section of the wavenumber spectrum to be accounted for by a separate seafloor-

forming mechanism, taking statistical seafloor modeling one step closer to directly

connecting observed spectra with geophysical processes. Qualities (i) and (ii) are

shared by Gaussian models but qualities (iii) and (iv) are not.

* Usefulness of wavelet transform for detecting differences in scale structure

Scale structure has been shown to be quantifiable using wavelet transforms. Whereas

qualitative methods invariably end up concluding that a realization is either "feature-

like" or "not feature-like", the statistics of wavelet coefficients can detect subtle differ-

ence in scale structure. For a set of surfaces with identical power spectral density but

differences in scale structure, all second moment characterizations fail in detecting

differences, be they spectral or wavelet. Therefore, higher moments than the second

must be used to characterize scale structure. A variation on the proposed feature-like

seafloor models was the Hybrid surface which was defined as a linear combination

of Facet and Gaussian power-law processes. The resulting process is qualitatively

and spectrally indistinguishable from the Gaussian power-law process, but wavelets

successfully distinguish all three processes.

Contribution 4 The establishment that scale structure is a surface attribute of rel-

evance to acoustic scatter and that second moment characterizations of random

surfaces are insufficient for predictions of scattering.

A Monte Carlo numerical implementation of the exact Helmholtz-Kirchhoff inte-

gral equation for scatter from a one-dimensional rigid surface was used to estimate

mean bistatic scattering strengths and the one-point probability density functions of

backscattered log-envelopes. The results of three numerical experiments led to the

following conclusions.

* The power spectral density is insufficient in predicting scattering
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The bistatic scattering strengths and log-envelope statistics of Facet and GPL sur-

faces, having identical power spectral density but different scale structure, were com-

pared at two values of variance and correlation length: (a, lc) = (0.3, 4.0)A and

(0.2, 1.0)A. The scattering strengths were found to be distict by as much as 5 dB and

the time-domain statistics of backscatter were found to deviate considerably from

Rayleigh for the Facet surface and only marginally so for the GPL surface. These

observations confirm the intuitive notion that surface features, not wavenumber com-

ponents, are responsible for scattering and that since a given power spectrum allows

many different scale structures, the power spectral density is not in general sufficient

to make predictions about the scattering properties of a random rough surface.

* Feature-like surfaces are more prone to behaving as a collection of resolvable

targets than multi-scale surfaces, but feature-like roughness is neither necessary

nor sufficient for non-Rayleigh envelope statistics to occur.

Common scattering characteristics can be found between surfaces having vastly dif-

ferent power spectral densities but similar scale structure, as was found by comparing

the scatter from Facet surfaces and Gaussian surfaces with Gaussian power spectral

density (GG). The proclivity for an enhanced incoherent forward scatter lobe and for

target-like statistics was noted for the above two values of variance and correlation

length. It is not generally true that feature-like surfaces necessarily imply target-like

scatter since pulses with large spatial extents can include a sufficient number of sta-

tistically independent scatterers for the log-envelopes to be Rayleigh for all surface

scale structures, assuming that shadowing does not play a major role, and pulses

with sufficiently small spatial extents can begin to resolve individual scatterers for all

surface types.

* Scale structure is a continuous parameter of relevance to acoustic scattering

Hybrid surfaces, considered more realistic as models of natural interfaces, were found

to have distinct scattering properties from both the Facet and Gaussian power law

(GPL) processes, in spite of looking qualitatively similar to the latter. The distinct-

ness of scatter from the Facet process compared to the GPL process is not an artifact
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of the perfectly smooth facets; scattering properties are distinct throughout the con-

tinuum of scale structures between the Facet and GPL cases, and potentially for a

wide set of other processes with identical second moment not studied here, emphasiz-

ing the importance of the use of a technique such as the wavelet transform to identify

scale structure.

* Feature-like roughness at the scales encountered in the ARSRP experiment does

enhance target-like behavior

At the large values of variance and correlation length characteristic of roughness on the

scarps of site B' normal to the anisotropic axis, Facet and Hybrid one-dimensional sur-

faces were shown to significantly enhance the high-level tails in the pdfs of backscat-

tered log-envelopes compared to GPL surfaces thereby improving the match with

ARSRP data and supporting the theory that feature-like roughness in ARSRP scarps

plays a role in the non-Rayleigh behavior of the data.

This research has demonstrated the importance of going beyond second moment

characterizations of rough surfaces in making predictions of acoustic scatter. It pro-

poses that a view of random rough surfaces in terms of the distribution of physical

features at various scales is both more natural and more effective in understanding

scattering than wavenumber representations and second moment statistics. Wavelet

transforms appear to be ideal for this task, as they naturally embody the ability to

detect features.

This thesis has made important contributions in modeling of reverberation, un-

derstanding of acoustic scattering, modeling of surfaces stochastically, and statistical

representations of seafloor morphology. The three last areas appear fertile at the

moment for further exploration.

7.2 Suggestions For Future Research

There are three lines of questioning that show considerable promise for future research.

The first is in random rough surface scattering, the second is in stochastic surface

modeling, and the third is in geophysics. Each of these areas is discussed in turn.
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7.2.1 Scattering from Random Rough Surfaces

This thesis has established that scale structure is not congruent with the power spec-

tral density in establishing the properties of a rough surface which are relevant for

acoustic scattering. Although the simulations presented in this thesis have provided

insight into the role of scale structure, a great many questions remain unanswered

about its role in rough surface scattering. Obtaining the answer to any of these

questions will constitute an advancement in the field:

* What is the role of scale structure at other values of variance and correlation

length?

Using only three values of variance and correlation length, considerable progress has

been made in this thesis in understanding the importance of scale structure. It is

unclear what are the boundaries in the (a, lc) plane, if any, outside which or within

which scale structure can be neglected and the dependence of these boundaries on

pulse width. Can a general understanding of the scale structure effect at all values

of variance and correlation length be attained for arbitrary power spectral density or

does each case need to be investigated in isolation? These questions could be answered

by sampling the (a, lc) plane more finely using exact computational methods.

* What are the scattering properties of the other surface models proposed in

Chapter 5?

Models with different values of spectral exponent were presented: the piecewise con-

stant model, fractional derivative model, and models with different vertex statistics.

Also, a composite model made of feature-like processes acting at different scales was

introduced. These models should be studied to gain a better undertanding of how

the range of possible scale structures affects scattering.

* Can the effects of scale structure on acoustics be accounted for in the Kirchhoff

and perturbation approximations?
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Clearly, this thesis has demonstrated that the standard form for random rough sur-

faces [50] involving only the second moment is doomed to fail in predicting either

the bistatics scattering strength of the time-domain statistics of scattered envelopes,

but perhaps the methods can be extended satisfactorily by adding a small number of

higher moments.

* Do the conclusions drawn using one-dimensional surfaces carry over to the two-

dimensional case?

The three-dimensional rough surface scattering problem, involving surfaces defined

over two-dimensional domains, cannot always be understood from one-dimensional

surface examples. Azimuthal angles outside the plane of incidence have no equivalent

in one-dimensional surfaces. Two-dimensional rough surfaces present a variability

in the lateral dimension which has significant impact on scattering that cannot be

modeled correctly using only one dimension. Anisotropy is unique to two-dimensional

interfaces. Since the concept of feature-like versus multi-scale roughness clearly ap-

plies in two dimensions, it is interesting to ask how scale structure affects scatter in

the three-dimensional scattering problem, where additionally to the unique charac-

teristics mentioned so far, two-dimensional feature-like surfaces would have smooth

features with arbitrary slope and azimuthal orientation. Given the numerical inten-

siveness of the three-dimensional wideband problem, this issue is particularly well-

suited for experimental study. An experiment would involve the design of prototype

one-dimensional and two-dimensional surfaces from which acoustic scatter would be

collected and compared in a controlled environment.

* What is the role of scale structure in three dimensions?

There are many examples of natural three-dimensional processes through which sound

propagates which lead to power-law spectra. Some examples are volume inhomo-

geneities in sediments, internal wave fields, and turbulence.

* Can exact numerical methods be improved to accelerate computations?
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In fact, this question is already answered. Iterative solutions of the integral equation

solution have a computational time of order N 2 , where N is the number of surface

samples [62]. Tsang, Chan and Pak (1994) have developed a sparse-matrix flat-surface

iterative approach (SMFSIA) whose computational time is of order N log N. It may

be fruitful to benchmark these approaches against the integral equation method used

here in the case of feature-like surfaces such as the Facet surface. If as accurate, these

methods could allow more rapid investigation. In the case of the Facet and other

feature-like surfaces, solutions based on the exact solution of Biot and Tolstoy [4] [64]

[65] [63] are promising. This solution has been used both for one-dimensional and

two-dimensional rough surfaces and also for three-dimensional objects [44] [43] [45]

[27] [46] [47] [31] [29] [7] [35] [6] [8] [34].

* What is the role of scale structure in the general case of an interface between

two elastic media?

There is no reason to believe that the distinctness of the scattering properties of multi-

scale and feature-like surfaces in the rigid case does not carry over to scattering at an

arbitrary elastic interface, but this remains to be verified. Elastic media support many

more wave types, each of which could be affected in unique ways by scale structure.

Scale structure could have an important role to play in the coupling between wave

types, for example.

7.2.2 Stochastic Surface Modeling (Applied Mathematics)

I have identified three areas meriting further study.

* Development of the two-dimensional Facet process

Feature-like two-dimensional surface models with power-law spectra need to be devel-

oped. As described at the end of Appendix C, the natural extension to two-dimensions

in the case of the Facet process is to use triangular Facets between vertices which are

Poisson distributed in the plane with Gaussian heights. This would allow numeri-

cal investigation of the effect of scale structure in the three-dimensional scattering

problem.

195



* Analytical definition of scale structure

Of the three properties in the triangle of Fig. 6-1, both Gaussianity and the power

spectral density can be defined analytically, but the definition of scale structure re-

mains largely qualitative. As demonstrated by the Hybrid surface, there is a need

for an analytical definition that will identify surfaces which lie somewhere between

being feature-like and multi-scale. While it was shown in this thesis that space-scale

methods such as the wavelet transform can differentiate between surfaces that, by

construction, are known to differ in scale structure, this quantity has not been de-

fined explicitly so that given a surface with unknown statistics, its scale structure can

be determined quantitatively.

I believe that a definition in terms of the statistics of wavelet coefficients may prove

fruitful. The wavelet decomposition includes the information contained in the power

spectral density and information about Gaussianity, but also provides information

about features. The characterization of surfaces in terms of their wavelet statistics

would therefore be more complete than using spectral methods. It would also allow

the design of surface models in the wavelet domain with prescribed power spectral

density and scale structure.

* Formulation of acoustic scatter in terms of wavelet statistics

With a characterization of stochastic surface models in terms of wavelet coefficients,

the door is opened to test new ideas for analytical formulations of stochastic surface

scattering. Such formulations are typically based on the power spectral density, but

a formulation based on wavelet coefficient statistics may be able to accurately predict

the effects of scale structure along with the commonly modeled effects of variance,

correlation length, and the shape of the power spectral density. Such a formulation

could be designed to inherently incorporate some of the ideas on separation of scales

that are being used at the present time.
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7.2.3 Geophysics and Oceanography

The composite seafloor model and the concept of scale structure proposed in this

thesis open a new door to studying statistical seafloor morphology. Analyzing the

scale structure of bathymetric data, using wavelets for example, would allow any

feature-like component processes to be identified and potentially related to a specific

geological process. If a link is established, the marine geologist's ability to study the

various processes which form the ocean floor using statistical datasets of bathymetry

is enhanced.

Once each seafloor-forming process is identified and the manner in which it con-

tributes to roughness is understood, seafloor models could be developed which are

parameterized by physical variables such as spreading rate, mass wasting, etc. as

opposed to a phenomenological parameterization. The advantage of the parameteri-

zation in terms of physical processes is that a single model would apply in many parts

of the world's oceans.

A variety of 1, 2, and 3-dimensional geophysical, oceanographic, and atmospheric

stochastic processes exhibit power spectra with power-law decay. In all these fields,

it is common either to use a deterministic characterization or a statistical one. In

the former case, the scale structure of specific features can be studied individually

but global study is not feasible for small features (< 1 km for example). In the

latter case, global study is possible but second-order characterizations are often used

which cannot model scale structure. There is a need for a tool that can characterize

feature-like roughness stochastically so that this vital physics-rich information can be

included in global models.
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Appendix A

A Note on Beampatterns

In Chapters 2 and 3, each array was modeled as a directive point source, as implied by

Equation 2.31. The directivity results from applying the isovelocity far-field beampat-

terns B,(q) or B$k) (0) to a point source at the center of the array. For monochromatic

insonification, the amplitude of the pressure experienced at the seafloor results from

the coherent interaction of separate ray paths from individual elements in the source

array. Since each ray path has its own phase and TL, the question arises whether

the resulting amplitude is well approximated by ARTIST. The accuracy of the ap-

proximation depends on how well the refractive medium preserves the relative phases

between the array elements. The results of Ref. [52] suggest that the relative phases

are well preserved in ARSRP, since identical amplitudes are obtained whether the

calculation is performed element by element or using a directive point source.

A second question relates to the calculation of beampatterns in the wideband case.

Here, additionally to the coherent interaction of array elements that forms the beam-

pattern, the incident amplitude at the seafloor is affected by coherent interference

across the frequency band. The proper beampattern to use is therefore the coherent

wideband far-field beampattern of the array in an isovelocity medium. In Ref. [22],

the wideband scenario is handled by summing the squared of monochromatic beam-

patterns at each frequency, corresponding to a phase-neglecting incoherent average.

The choice of frequency integration method affects mostly the sidelobe level, which

is lower (and correct) in the coherent case. It is not felt that coherent wideband
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integration would change any of the conclusions of Ref. [22].
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Appendix B

Manipulation of Rayleigh Variables

As the number of independent, identically distributed (i.i.d.) variables which make

up a complex signal p,(t) grows, the real and imaginary components of p,(t) are

Gaussian by the Central Limit Theorem. Then, the quantity r(t) = Ip,(t)l has a

Rayleigh density:

pr(R) = Re2/2 (R), (B.1)

where u(R) is the unit step function. The probability density of the resulting log-

envelope,

ER(t) = 20 loglo(r(t)), (B.2)

can be found from the Rayleigh density using the Jacobian of transformation B.2 [53]:

In 10 10ER/10

PER(ER)= 1010e- (B.3)PE (ER) = 20a2 10 e (B3)

This density will be referred to as log-Rayleigh. In all of the results presented in this

thesis, the log-envelope mean is subtracted out. The fact that ER(t) is zero-mean
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contrains the value of ar2 as follows:

0 = &[ER] = 20 log R e- R2/2C dR = 10 log e(ln 2a - C), (B.4)

implying that a2 = eC/2 _ 0.89 where C is Euler's constant (0.577215 ... ) [21].

This result is valid if the mean is known as an independent parameter, however in the

data processing, each processed waveform is of finite length. The mean is estimated

from the finite-length samples; its subtraction removes a degree of freedom from the

samples and modifies the distribution of the samples.

The number of degrees of freedom for each finite-length chunk of ER(t) is deter-

mined by the ratio of pulse width to sample window width, I.

Suppose we have I i.i.d. log-Rayleigh variables E. Grouping them together

and subtracting their mean, we now have I partially correlated variables E = Ei -

j E=, Ej. Whereas there were I degrees of freedom before subtraction, there are

now I - 1 degrees of freedom. Further, each variable is no longer log-Rayleigh.

Taking the example case I = 2, we begin with the set {E 1, E2 } and end up with

{ (E1 -E 2), (E 2 - E1 ) }, a set in which the second variable is perfectly correlated with

the first. Because El and E2 are i.i.d., the opposite signs of the variable E1 - E2 lead

to a symmetric distribution. From this argument alone, I have already determined

that this variable cannot be log-Rayleigh, since this pdf is not symmetric.

For arbitrary I, the pdf of the mean-corrected variables is obtained from

pP(E) = pE(E) * IpE(-IE) * ... * IpE(-IE) . (B.5)

I

I have not endeavored to solve this analytically, but a numerical solution is read-

ily implemented, and the resulting pdf's are presented on Fig. B-1 for the cases

I = 2, 4, 7, 10 and 15. On the linear scale of Fig. B-1 (a), it can be seen that the

mean-corrected variables quickly converge to the log-Rayleigh density. In (b), the

logarithmic scale provides an expanded view which reveals that the tails still haven't

quite converged even at I = 15.
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Since logarithmic views of the upper tail in the pdfs are used in this thesis to es-

tablish whether or not collected envelopes are Rayleigh, it is important to determine

the number of degrees of freedom from the window sizes and pulse lengths in ques-

tion, and employ the correct formula in Eq. B.5. For example, in the data analysis

of Chapter 2, I employ 200 msec data segments containing ten 20 msec 3-dB pulse

widths. This corresponds to the light blue curve, which lies several orders of magni-

tude above the log-Rayleigh pdf at the high-level tail. Were the pdf estimates to be

compared directly with the Rayleigh curve, it might be incorrectly deduced that the

data are non-Rayleigh.

Finally, I would like to address some issues regarding the mean and variance of

intensity measurements. The background for this discussion is Ref. [42], in which the

statistics of averaged intensity measurements are studied.

All log-envelope histograms in this thesis are obtained from instantaneous (non-

averaged) intensity. It is shown in Ref.[42] that instantaneous intensity measures

which obey a Rayleigh pdf lead to a log-envelope with fixed standard deviation of 5.57

dB. In the processing of Chapter 3 in which mean-corrected 200 msec time windows

are used (the mean being estimated from the 200 msec sample itself), the standard

deviation can be computed numerically from the pdf in Eq. B.5 using the case I = 10;

it is 5.38 dB. Any statistically significant deviation of the standard deviation of the

data from this value of 5.38 dB indicates non-Rayleigh behavior. However, the focus

in this thesis is on the high-level tails in the pdfs which, while they are often orders of

magnitude greater than the tails of the Rayleigh process, may not affect the standard

deviation by more than 1 dB.
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Appendix C

The Facet Seafloor Process:

Derivations

This appendix contains derivations for the correlation function, power spectral den-

sity, correlation length, and variance of the random process h(x) defined by

h(x) = Zi + (zi+ - z) (C.1)
Xi+1 

- Xi

where i and i + 1 are the indices of the vertices whose abscissae lie just before and

just after the current position x, respectively. The {xi} are Poisson arrivals, defined

as the transition locations of

Pr[N(x") - N(x') = k] = []ke (C.2)

The {zi} are zero-mean and Gaussian with variance a2 and discrete correlation func-

tion S[zizj] = Rzz[k], k = Ij - il. The processes generating the {xi} and the {zi} are

independent. Proceeding to the derivation of the correlation function, we define two

arbitrary locations on the x-axis, x' and x", with x" > x'. We also define xm and Xm+l

as the abscissae of the vertices lying just before and just after x' respectively, and

x, and Xn+l as those lying just before and just after x" respectively. The correlation
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function is

Rhh(x',") = E[h(x')h(x")] = : [(zm + m (m+1 - m) X (C.3)
k=O

z, + " (z,+ - z)) N(x") - N(x') = k Pr[N(x") - N(x') = k]
Xn+l - Xn

where we have conditioned on the number of events between x' and x". Recall that

for T and y both vectors in R" , the conditional density of T given y is

P Y(XIY) = p,F(X, Y)/py(Y) (C.4)

Another form of this relation applies when y is a variable taking discrete values:

p-lvy=k(X, k) = P-,y=k(X, k)/Pr[y = k]. (C.5)

Distributing the elements within the parentheses in Eq. C.3, and using the indepen-

dence of the {xi} and the {zi},

Rhh(X) = [Ar(X" - )]k -AI(x"-x' ) Rzz[k] (C.6)Rhh (X) = E k! e
k=O

+(Rzz[k - 1] - Rzz[k])E X - )N(x") - N(x') = k
[(m+ - Xm

+(R,,[k + 1] - Rzz[k])g [X 1 1 " IN(x") - N(x') = k
Xm+1 - Xn

+(2Rzz[k] - Rzz[k - 1] - Rzz[k + 1]) x

E [(x' - xm - X" IN(x") - N(x') = k'+1 - m n+1 -, n

The terms within each of the three expectation operators in the above equation are

evaluated separately. Some background equations are necessary before this can be

attempted.
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C.1 Probability Densities for Xm+l, Xm, and x'

The probability density function for Xm+l (the first arrival after x') is given by:

Pxm+l (Xm+l)
d

= Pr[xm+l < Xm+1]
dXm+l

d
= d (1 - Pr[N(Xm+1) - N(x') = 0])

dXm+1
= A re-A,(xm+-X')U(Xm+l - Z').

U(x) =
1 0,

x><0

x<0.
(C.9)

The pdf of the first arrival beyond x' depends only on the distance from x'. In general,

the pdf of an arrival given a sequence of prior arrivals depends only on the distance

from the latest of the arrivals. This results from the fact that the generating Poisson

process is an independent increments process [53].

PXjIl,2,,..,-i(Xj IX1, X2,...,X i ) = Are-A,(xj-x)U(Xj - X ),j > i. (C.10)

Applying this rule, we see that

Pxm+iixm (XM+ Xm) = PxM+1(Xm+1). (C.11)

Because the Poisson process is symmetric, the above arguments also apply to the

pdf of an arrival given a sequence of later arrivals. In particular, the pdf of the first

arrival before x' is given by:

(C.12)Pxm(Xm) = Are-A'(x'-Xm)U(x' - Xm).

For notational convenience, we define xF - (Xm, x', Xm+l) and x" - (x, x", Xn+1).

Note that x' and x" are not random variables. They are the current observation
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points on h(x) and as such appear in the pdf's of x' and x" as parameters. The pdf

of x' is:

p-,(X') = Pxm+llx (Xm+1IXm)Pxm(Xm) (C.13)

= Are-Xr(xm+X-m)U(Xm+i - X')U(x' - Xm).

The accompanying shifted versions of U(x) serve to explicitly specify that xm < z' <

xm+1. In the expression for p-r, (X"), similar functions would appear corresponding to

x, < x" < x,+l. In the sections to follow, joint and conditional pdf's involving both x'

and x" will be presented. Whenever there are at least two arrivals between x' and x",

the following inequality applies: -oo < xm < x' < Xm+J < X, x" < X+l. When

there is one arrival between x' and x", -00 < Xm < X' < Xm+1 = Xn < X"1 < Xn+l.

When there are no arrivals between x' and x", -oo00 < = X , < x' < " <

Xm+1 = Xz+l. Multiplication by a set of appropriately shifted U(x) incorporates these

inequalities explicitly, but in the following derivations they are left out to simplify

notation.

C.2 The Sandwiched Arrival

Consider a point x, which is the sth of k points between x' and x". The pdf of x, is

extremely useful in the derivation of the correlation function of the facet process.

- N() = k) ,N(x")-N(x')=k (Xs, N(x") - ) = k)

PxIN(x")-N(x')=k(XIN(x) - N(') = k) = Pr[N(x") - N(x')

(1 - Pr[x, > X,, N(x") - N(x') = k])

Pr[N(x") - N(x')] = k

d i1 Pr[N(Xs) - N(x') = i, N(x") - N(x') = k]

dX 8  Pr[N(x") - N(x') = k]

d -1 Pr[N(X,) - N(x') = i]Pr[N(x") - N(Xs) = k - i]

dX 8  Pr[N(x") - N(x') = k]

d S-1 [Ar (Xs - x')]i [Ar(X" - Xs)]k-i k! ' (C.15)
-dX i! (k - i)! [Ar(x" - ') (C.5)
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After differentiation and a change of index on one of the two resulting sums, one gets:

Px,IN(x)-N(x')=k(XsIN(x") - N(x') = k) (C.16)
-1 k!( X)k-i-(X ) - k!(" - X,)k-i(X - ')i- 1

i= i!(k- i - 1)!(x" - x') k  (i-1)!(k- i)!(x"- x') k

k!(x" - X)k-s(X, - z')S- l

(s - 1)!(k - s)!(x" - x')k '

where the last line is obtained by a change of index on the second sum. The resulting

pdf is referred to as the sandwiched arrival pdf. In the case of a single event between

z' and x", s = k = 1, the pdf of xs is uniform on the interval (x', x"].

C.3 Joint Conditional Densities for x', x", and (x', x")

given N(x") - N(x')

The joint conditional densities are derived for three seperate cases: (i) N(x") -

N(x') = 0, (ii) N(x") - N(x') = 1, and (iii) N(x") - N(x') > 1.

C.3.1 Case (i): N(x") - N(x') = 0

When there are no arrivals between x' and x", x x,n and xm+l xn,+l. The pdf

for x conditioned on there being no arrivals between x' and x" is thus the product of

the pdf's for xm (lying before x') and Xm+l (lying after x") by indepent increments.

P~iN(xI)-N(x')=(XIN(x") - N(x') = 0) = A2e-Ar(xm+1-X")e-r(X ' - xm). (C.17)

Knowledge of x fixes aX and x,+l. Therefore,

P i"IF,N(')-N()=o(XIX', N(x") - N(x') = 0) = 6(Xn - Xm)6(Xn+l - Xm+1).

(C.18)
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The above two relations are combined using Eq. C.4.

Px-,XiiIN(x,)-_N(xt)=o(X",X'IN(x") - N(x') = 0) = (C.19)

6(X - Xm) 6 (Xn+1 - Xm+1)A e-A(Xn+ x-")e-A (/-X'm)

C.3.2 Case (ii): N(x") - N(x') = 1

In this case, Xm+1 X- ~. By independent increments, the pdf for x' conditioned on

there being a single arrival between x' and x" is the product of the pdf for xm+l - xn

(lying between x' and x"), and for x,+l (lying after x"). Using the sandwiched arrival

formula,

e-Ar(x' -Xm)

px(x)-N(., )=1(X'N((x") - N(x') = 1) = Ar ("- Z') (C.20)

Only the xa component of x" is fixed; Xn+1 is an independent increments arrival

occuring after x". Therefore,

P",XIFI,N(x")-N(X)=1 (X"IX', N(x") - N(x') = 1) = 6(X, - Xm+1)Are
- A (xn + ' - ")

(C.21)

Combining these two relations using Eq. C.4,

p-,,XIN(X")-N(x)=1(X", X'IN(x") - N(x') = 1) = 6(X - Xm+l) A2e-A,(Xrn x")e-A,(x'-xm)
( X )  Ar

(C.22)

C.3.3 Case (iii): N(x") - N(x') > 1

In this case, all the vertices are distinct from one another. By independent increments,

the pdf for x will be the product of the pdf for xm which lies below x' and that for

xm+1, a sandwiched point being the first of k arrivals between x' and x". Using the
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sandwiched arrival formula,

PxlIN(x")-N((x')=k(XIN(x") - N(x') = k) = kAre-A' (x' - m) (" - Xm-') (C.23)

This equation applies for k > 0; it reduces to Eq. C.20 when k = 1. The pdf for x"

given Fx is the product of the pdf for xn+l which lies beyond x" and that for xn, a

sandwiched arrival being the last of k - 1 arrivals between xm+l and x". Relying once

more on the sandwiched arrival formula,

S(X n - Xm+l)j
- 2

P9l 7,N(x,)-N(xl)=k(X"IX', N(x") - N(x') = k) = (k - 1)Are - r(xnl - ") (x"- Xm+1)

(C.24)

Combining these two relations using Eq. C.4,

i4,xIN(x")-N(xt)=k (X, X'IN(x") - N(x') = k) = (C.25)

k(k - 1)A e-r(Xn+1 -x")e -A(x ' -Xm) (Xn - Xm+l)i-l
(X" - XI)k

Armed with the pdf's in this section, it is now possible to proceed with the eval-

uation of the expectations in Eq. C.6.

C.4 The correlation function of h(x)

The major analytical challenge in obtaining Rhh(x',x") resides in the evaluation of

the terms within the three expectation operators in Eq. C.6. It will be helpful to

make use of the fact that for an arbitrary vector y,

6fV()= df (Y)(Y). (C.26)

To simplify notation, we define

F() = - m (C.27)
Xm+1 - Xm
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G(x") =
Xn+1 - Xn

8 [F(F)IN(x") - N(x') = k],

£ [G(")IN(x") - N(x') = k] , (C.30)

and Term 3 is:

& [F(F)G(X)IN(x") - N(x') = k] (C.31)

In the following subsections, each term will be analyzed separately.

C.4.1 Term 1

The analysis for Term 1 has two components, one for k = 0 and one for k > 0.

Starting with k > 0 and using Eqs. C.23 and C.26,

E [F(FIN(x") - N(x') = k] = ddX'F(X') xN(X")-N(x)=k(X'IN(x") - N(x') = k)

-= j dXm

k!e" a

ak (

/ " (Xt - Xmw1)k-1
, dXm+lkAr (x" -X)k

k-le-a

(x' - Xm) e-r(,,-xm)
(Xm+i - Xm)

where a - Ar,(x" - x'), * denotes convolution,

f(t) * g(t) = OO-0OO
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Term 1 is:

(C.28)

Term 2 is:

(C.29)

(C.32)

f (T)g(t - T)dT, (C.33)

* E2(a) ,



and E,(x) is the n-th order exponential integral for x > 0:

E, (X) = f
I 0,

)0 e-"u-ndu, x>0

x < 0.
(C.34)

The convolution is left in uncalculated form because it involves definite integrals for

which an analytical solution is not available in today's integral tables. The case k = 0

yields:

C [F(FIN(x") - N(x') = 0] = dXF(X')PIN(xi.)-N(x,)=k(X|N(x")

I5 z3 - Xm
= dX X dXm+A2e-Ar(Xm+1-x")e-A(x'-xm) X - Xm

oo f,, Xm+1 - x m

= eaE 3 (a).

C.4.2 Term 2

The procedure for Term 2 is analogous to that for Term 1 and gives:

- N(x') = 0)

(C.35)

E[G(" )|N(x") - N(x') = k] =
Mea aklea
-- (kL )!J * [aEi (a)] },

e" {e- a - E 3(a)},

C.4.3 Term 3

The analysis for Term 3 has three components, one for k = 0, one for k = 1, and one

for k > 1. Starting with k > 1,

£[F(-)G(")IN(x") - N(x') = k] =

dX'F(X') f dX,"G(X")p ,IN(x")-N(x')=k(X', X"IN(x") - N(x') = k)
.1 x, lN x)- J)-

=f x dXm dXm+l dXn dX+l x
So AJ Xm+1 I

k(k - 1)(, rei)k e-A(Xn+l-Xm)(Xn - Xm+i)k-2F(XI)G(XII)
(2" - X [)k

!ea ak2e] I [aEi(a)] * E 2 (a)}
ak ([(k - 2)!l a.oa.E()

(C.37)
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For k = 1,

£[F(-)G(Y-)N(x") - N(x') = 1]

dXF(X') f dX"G(X")pi,WlN(xi)-N(x)= (X', X"IN(x") -

= fdXm
-oo

xi 0 A e- A, (xf+-x")
I dXm+lI/ dXn+l rx"( x/ e-Ar(x'-xm)F(X')

e
a

= - {[aE1(a)] * E2 (a)}
a

Finally, for k = 0,

E[F(I)G(fP) IN(x") - N(x') = 0]

= fdX'F(

= f'' dXm

= eaE 4 (a).

dX"G(X")p-, Nxam )-N,,, (x)=O(X',X"IN(x") - N(x') = 0)

0 dXm+A2e-A,(xm+l-x")e-A,(x'-xm) ('- Xm)(X" - Xm)

X,, (Xm+1 - Xm) 2

(C.39)

C.4.4 Final Substitution to Form Rhh(X', X")

Substituting Eqs. C.32, C.35, C.36, C.37, C.38, and C.39 into Eq. C.6 yields a function

which depends on a alone:

R*h(a) = (2E 4 (a) - e-a)(R,,zz[0] - R,,zz[1]) + ({aEl(a)} * {E 2 (a)})(2Rzz[1] - Rzz[2] - Rzz[0])
k-a

k! Rzz [k]k !
+ {ak-1 -a

+ E (k - 1)! * {E2(a) (Rzz[k - 1]- Rzz[k])
k=1

ak - le - al f((R llr(k - {)! * {aE(a)} (Rzz[k + 1] - Rzz[k])(k - 1)!
(C.40)

ak - 2 e-a
(k - 2)! * {aE(a)} * {E 2(a)} (2Rzz[k] - Rzz[k + 1] - Rzz[k - 1]).
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= N(x') = 1)

X" - Xm+ 1

Xn+1 - Xm+ 1

(C.38)

oo

+E
k=0
00

+ E
k=1

+ 1
k=2

X,)



In the above, the fact that Rzz[1] = Rzz[-1] was used. The correlation function of

h(x) is related to Rh (a) through:

Rhh( X") = Rhh(X" - X') = R rh(r(X" - X')), (C.41)

where X = x" - x'. The fact that Rhh(X', x") depends only on the separation between

the two observation points X proves that the process h(x) is wide-sense stationary.

Also, note that it is now possible to generalize to the case x' > x" simply by repeating

the analysis in this section after interchanging the definitions of x' and x". This leads

to the final result

Rhh(x, x") = Rhh(X) = Rh( rX), (C.42)

where X = Ix" - x'.

C.5 The Power Spectral Density of h(x)

To evaluate the power spectral corresponding to Rhh(X), the Laplace transform of

R*h(a) is found first. The Laplace transform of p(a) is defined as:

P(s) = £[p(a)] = p(a)e-ada. (C.43)

Two useful properties of the Laplace transform are

£[ap(a)] = P(s), (C.44)
dx

and

£[p(a) * q(a)] = P(s)Q(s). (C.45)
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The recursive property of the exponential integral functions is also useful:

1
E,(a) = (e-an-1

- aE,_l(a)) ,Eo(a) =
e-a

a
(C.46)

Also, note that

/ e-tEl(a) = e-t-dt.
at

From Ref. [10], two useful Laplace transforms are:

[El(a)]-- In(1 + s)
S

and

S[ake-a 1

k! (1 + s)k +l1

(C.47)

(C.48)

(C.49)

Using the above relations, it is possible to build the remaining unknown Laplace trans-

forms appearing in Eq. C.40. The Laplace transform of aEl(a) is readily obtained

from Eq. C.48 using Eq. C.44:

In(1 + s)
£[aEl(a)] = 2

s2

1

s(l + s)
(C.50)

It is then easy to calculate

1 In(1 + s)£[E2(a)] = C[e- a - aEl(a)] = 2
S S

(C.51)

A similar usage of the recursive relation for the exponential integrals yields the Laplace

transforms of E3 (a) and E4(a),

[E3 (a)] = (s -2)
2s2

ln(1 + s)
S
3 (C.52)
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and

[E4(a)] = (2s 2 - 3s + 6) _ ln(1 + s)
[E4 6s3 s 4 (C.53)

It is now an easy matter to substitute the above relations at their appropriate

destinations in Eq. C.40. The final result is:

( 2s82 - 3s + 6
+ 3s 3 2 1n(1 + s)

8
4

1 I(1 + s) [Rzz[k - 1] - Rzz[k]] +
8 8

2 (C.54)

s(1+ 8)

1S
n(1+ s)) [2Rzz[1] - Rzz[2]

S2
- Rzz[O]] +

00 1 In (1 + s)
E (1 + s) k- 1  82
k--2

(1 +)s(1 + s)
1
S

In (1 + s))
8
2

[2Rzz[k] - Rzz[k + 1] - Rzz[k - 1]].

The power spectral density of Rhh(X) is

Shh () = - Rhh(X)e-xwdX.

It is related to the Laplace transform of Rh(a) as follows:

2) =
Shh(W) = Re

Ar
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Lhh(S)
Rzz[k]

(1 + s) k+ l

1
(1 + s)k

00

k=1

E

k=1

(In

1 (In (1 + s)

(1 + s) k  82

s2 s(1 +s)

(C.55)

(C.56)

1 [Rzz[0] - Rzz[1]] +1 +

[Rzz[k + 1] - Rzz[k]] +

Lh( 8



C.6 Variance and Correlation Length

C.6.1 Variance

The variance is a h = £[h(x)2], and is given by the value of the correlation function

at X = 0 from Eq. C.40. Note that the convolution terms are 0 for a = 0.

h =h Rhh(0) = (2Rzz[0] + Rzz[1]).
3

(C.57)

C.6.2 Correlation Length

The definition of correlation length used in this thesis is:

(C.58)
V = o

where

Io = 2 Rhh(X)dx = 2 00

0 Ar f
R*h(a)da, (C.59)

and

122 = 2 X 2Rhh(X)dx =
2 a2R*h(a)da.rA f

Note that for a Gaussian spectrum with variance g2 and scale parameter lg,

ShG(w) = V/-ol 9e- , (C.61)

the chosen definition of correlation length yields 1, = 19. In order to find the correlation

length for h(x), two more Laplace transform relations are introduced. First, note that

j00p(a)da = P(O). (C.62)
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Second,

I 
co

d2
a2p(a)da = d p(s) l,=o.ds 2

(C.63)

Thus, the derivation of l depends directly on evaluating the limit as s --+ 0 of Eq. C.54

and its second derivative, a task undertaken in the following two sections.

C.6.3 lim s -+ 0 Lhh(s)

The limit of many of the terms in Eq. C.54 are easily evaluated. The others lead to

the form and are obtained by applying l'Hopital's rule:

1
lim L[aE(a)] = -, (C.64)
s-o 2

lim £[E2 (a)] =
s---O

and

1
limC[E 4 (a)] = -
s-O 4

The final result is:

lo = 2 lim Lhh(S)
Ar s-+4

1

Ar
+ 2

k=0

Rzz[k]] (C.67)

C.6.4 lim s -+ 0 -Lhh(S)

It is noted from Eq. C.54 that the terms making up Lhh(s) are composed of products

of any two of following four basic functions:

a(s) = (1 b(s) = C[E 2(a)]; c(s) = £[aEl(a)]; d(s) = £[E4 (a)].
(1 + s)j

(C.68)
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Term lim,,0 f(s) lim_+o f'(s) lim,-o f"(s)
a(s) 1 -j j(j + 1)
b(s) 1/2 -1/3 1/2
c(s) 1/2 -2/3 3/2
d(s) 1/4 -1/5 1/3

Table C.1: Limit values for terms in the second derivative of Lhh(S).

The second derivative operation introduces three product terms for each product term

in Lhh(S). For example,

(ab)" = (a'b + b'a)' = a"b + 2a'b' + b"a. (C.69)

The limit as s -+ 0 of the second derivative of the Laplace transform can thus be

obtained by finding limso for each of a, a', a", b, b', etc. Table C.1 shows the limit

values for each of these quantities, obtained through repetitive uses of l'Hopital's rule.

Using these results, it is lengthy although straightforward to show that

2 2 1 11 2 1
2 lim Lhh(S)= Rzz[0]+ Rzz[1]- Rz[2] +2 +(k+1)(k+2)Rzz[k]

(C.70)

C.6.5 Final Substitution for l1

Combining Eqs. C.58, C.67 and C.70, the correlation length for the Facet process is

1

S -RZ []'zz[2] + [l]2 Eo(k + 1)(k+ 2)Rzz[k] (C.71)
-- \1 (Rz [l] - Rzz[0]) + 2 Ek= o Rzz [k]

C.7 Ideas for The 2-D Facet Process

The one-dimensional profiles studied here are fruitful for the numerical study of scale

structure in the next Chapter, as the computational requirements of obtaining wide-

band time-domain simulations are then possible on today's machines. Although the
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insights provided lead to a new way of looking at the ARSRP data, the decision to fo-

cus on the one-dimensional case comes at the cost of being able to fully explain these

data. This thesis is an essential link in the chain of ideas that may one day provide

a full understanding. As an introduction to that future moment, I now introduce

a generalization of the Facet model to the two-dimensional case. The combination

of Poisson and Gaussian processes has up to now been successful in satisfying two

objectives: (i) Power-law decay of the power spectral density and (ii) feature-like

appearance of realizations. It is then natural to continue with these two processes as

building blocks in the two-dimensional case. The first step, as always, is the gener-

ation of vertices. The horizontal co-ordinates are given by pairs { (ri, Oi)} where the

{ri} are the abcissae of the process

Pr[N(r) = k] [rrr]k e-rr, (C.72)
k!

and the {Oi} are realizations from a uniform distribution on [-7r, r), or some from

some non-uniform distribution that captures anisotropy. The vertex heights {zi}

are zero-mean and Gaussian as before. The linking of the vertices, which was a

simple matter in the two-dimensional case is now more complicated as there are

many ways to link arbitrary points in the 2-D plane. One method which yields a

unique result for a given set of points is the Thiessen triangulation [57] [56] [1] [2].

In the Thiessen triangulation, the smallest circle enclosing each triangle must not

include more than the three datapoints defining the vertices of the triangle or, if

this cannot be satisfied, the minimum angle of adjacent triangles must be maximal.

The derivation of the correlation function and power spectral density appear quite

challenging, but numerical estimates from Monte-Carlo realizations could readily be

obtained.
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Appendix D

The Helmholtz-Kirchhoff Integral

for Scattering From Finite Surfaces

The exact solution used in this thesis for scattering from finite-length rough surfaces

is based on the direct numerical solution of the Helholtz-Kirchhoff integral equation.

In practice, the domain of integration used is the finite-length surface itself. This

is necessarily an approximation since the Helmholtz-Kirchhoff equation involves an

integral over a closed surface S bounding a volume V of interest. This Appendix shows

two different approximations that result in a domain of integration over the scattering

surface only. First, the derivation of the general Helmholtz-Kirchhoff equation is

presented.

D.1 Derivation of the Helmholtz-Kirchhoff Equa-

tion

Let the acoustic field be p(r) and let V be a simply-connected closed compact set of

finite diameter in R3. The surface S enclosing V constitutes the boundary between

V and its complement with respect to R 3 , V*. Let the field be non-trivial yet have

no sources within V. It is then necessarily generated by sources located in the com-

plement V*. The derivation of the Helmholtz-Kirchhoff equation is divided into two
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steps; the first is for field points within V and the second is for field points outside

V, or inside V* where sources reside.

D.1.1 The Field Inside V

Consider the free space Green's function G(r, r') satisfying

V 2G(r, r') + k 2G(r, r') = 6(r - r'). (D.1)

Since p(r') is source-free for r' E V, it satisfies the homogeneous Helmholtz equation

V2p(r') + k2p(r') = 0, r' E V. (D.2)

Multiplying Eq. D.1 by p(r') and subtracting Eq. D.2 multiplied by G(r, r') yields

p(r')V 2G(r, r') - G(r, r')V2p(r') = p(r')6(r - r'). (D.3)

Integrating over the volume V leads to

dV' (p(r')V2 G(r, r') - G(r, r')V2 p(r')) =
r V*.

re V*.
(D.4)

The zero result for r e V* is due to the fact that integration is over V and that since r'

e V, the delta function is not picked up by the integral. Using Green's second formula,

the volume integral is transformed into an integral over the surface S enclosing V:

p(r) = dS'. (p(r') V G (r, r') - G(r, r'(r, r')Vp(r')), r V. (D.5)

Carrying out the dot product gives

p(r) = f {p(r')
OG(r, r') - G(r,r') } dS', r E V,
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where n' is the outward surface normal on S. Eq. D.6 is represented symbolically as

p(r) = Ts(r, r')p(r') (D.7)

D.1.2 The Field Outside V

Since the field is non-trivial yet has no sources within V, it necessarily results from

sources located in V*. Thus,

V2p(r') + k2p(r') = S(r'), r' E V* (D.8)

where S(r') is some source distribution. Multiplying Eq. D.1 by p(r') and subtracting

Eq. D.8 multiplied by G(r, r') yields

p(r')V 2G(r, r') - G(r, r')V2p(r') = p(r')6(r - r') - S(r')G(r, r'). (D.9)

Integrating over the volume V* leads to

/ dV' (p(r')V 2G(r, r') - G(r, r')V2p(r')) = p(r) - dV'S(r')G(r, r') (D.10)

for r E V*. Using Green's second formula, the first volume integral can be transformed

into an integral over a surface enclosing V*. Note that if V is some set of finite

diameter, V* has infinite diameter and thus the surface which encloses it is the union

of S and S, where S, is a sphere of infinite radius. Thus,

S dS'. -(p(r')VG(r, r') - G(r, r')Vp(r')) + dV'S(r')G(r, r') = p(r). (D.11)
S+So J V*
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The integral over S is transformed into an integral over V by applying Green's second

formula in reverse:

SdS' - (p(r')VG(r, r') - G(r, r'Vp(r')))

= dV' (p(r')V2 G(r, r') - G(r, r')V2p(r')), rEV, reV*.

= 0 from Eq. D.4. (D.12)

Then, Eq. D.11 becomes

p(r) = j dV'S(r')G(r, r') + dS' (p(r')VG(r, r') - G(r, r')Vp(r')), r V*.
Jv* fSOO

(D.13)

For fields which satisfy the Sommerfeld radiation condition,

lim r - ikp(r)] = 0, (D.14)r-+oo [-Or

the integral over S. vanishes. It is useful to note that plane waves, which do not

satisfy the Sommerfeld radiation condition, satisfy

Ts. (r, r')pinc(r') = pinc(r), (D.15)

and

Ts.(r, r')Pinc(r') = pinc(r), r V (D.16)
0, rf V.

for Sa a sphere of finite radius a enclosing V. The general rule to be retained from

these derivations is that when the sources are outside the volume of interest V, the

field inside V is represented by a non-vanishing integral over the enclosing surface

S and a vanishing integral over V. Conversely, the field inside V* is represented

by a vanishing integral over S and a non-vanishing integral over V*. If there were

nonvanishing sources inside and outside V, both integrals would be non-vanishing in
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Figure D-1: Integration paths for the Helmholtz-Kirchhoff integral equation as used
to compute the scatter from a finite-length rough surface.

V and in V*.

D.2 Two-dimensional Surface Scattering

Figure D-1 depicts a scattering surface, a set of bounding surfaces and two volumes V

and V'. So is congruent with the scattering surface, S1 extends to x = +oo from the

edges of the scattering surface, S, is a semi-circular contour in the upper-half plane

with radius r -+ oo and So is a semi-circular contour in the lower-half plane with

radius r -+ oo. Finally, S2 is a segment that starts from the edges of So and runs

behind the scattering surface, an infinitesimally small distance away from it. The

direction of integration along each contour is as indicated in Fig. D-1. The inside of

the surface is defined to be the region to the left as one is traversing the contour. We

now consider the total field p(r) to be the sum of an incident and a scattered field,

p(r) = pinc(r) + p at(r). (D.17)
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The scattered field results from interactions of the incident field with the scattering

surface, located outside V and V'. The incident field emanates from loci outside V

and V'. The region of interest for the total field is V. The objective is to change

the integration path in Eq. D.6 to include only So. This is achieved by making

approximations to an initially correct expression of Eq. D.6. The initial contours

must be closed to satisfy exactness and must include So. There are two such paths:

Case (i) S = So + S1 + S,

Case (ii) S = So + S2 + Soo + S'

Each of these cases is explored separately in the following sections. In Case (i), the

integrand of the final result involves Psat(r), and in Case (ii) it involves p(r).

D.2.1 Case (i)

When S = So + S1 + S,, we have

p(r) = Tso+sl+si(r, r')p(r') = Tso+sl+s~(r, r')pinc(r') + Tso+s,+s (r, r')psat(r')

= pinc(r) + Tso+si+s, (r, r')pat(r') (D.18)

where the last step results from the fact that the sources for Pinc(r) lie outside the

contour S. Since pscat(r) is composed of outgoing waves from the scattering surface,

the Sommerfeld radiation condition applies and results in a vanishing contribution of

the scattered field over the semi-circular contour at infinity:

Ts. (r, r')pscat(r') = 0. (D.19)

Eq. D.18 then becomes

p(r) = pinc(r) + Tso+s 1(r, r')pcat(r'). (D.20)

In order to simplify Eq. D.20 further, approximations are necessary. First, the Kirch-

hoff approximation is made along the contour Si: pscat(r') = R(r')pinc(r'), where
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R(r') is a local reflection coefficient. When a plane wave incident field is assumed,

this implies Opscat(r')/On' = -R(r')8pic(r')/8n'. By fixing R(r') to be identically

zero on S 1, these approximations yield

Ts, (r, r')pscat(r') = 0. (D.21)

Substituting this result in Eq. D.20 leads to

p(r) = pinc(r) + Tso(r, r')pscat(r'), (D.22)

which involves integration over So only as desired.

D.2.2 Case (ii)

When S = So + S2 + Soc + S., we have

p(r) = Tso+s2+S+S" (r, r')p(r'). (D.23)

Because So + S2 forms a closed contour and there are no sources of Pi,, within this

contour, Eq. D.16 states that

Tso+s 2(r, r')pinc(r') = 0. (D.24)

Use of Eq. D.15 gives

(D.25)Pinc(r) = Ts.+S (r, r')Pinc(r').

The Sommerfeld radiation condition for the scattered field gives

Ts+s" (r, r')pscat(r') = 0. (D.26)
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Thus,

p(r) = pinc(r) + Tso+s 2 (r, r')p(r') (D.27)

In order to obtain an integral over So alone, the assumption is made that

p(r) = - (r) 0 (D.28)
On

behind the surface. This infinite-frequency approximation states that the field behind

the surface is completely shadowed. In reality, it will be non-zero due to diffraction

but for surfaces much longer than the wavelength the field is negligible except near

the edges. Eq. D.28 causes the integral over S2 to vanish, leaving

p(r) = pinc(r) + Tso (r, r')p(r'), (D.29)

another form involving integration along So only. Eqs. D.22 and D.29 are identical,

except for the appearance of the scattered field in Eq. D.22 versus the total field in

Eq. D.29. Since different assumptions were made in arriving at the two equations,

they are not equivalent. The form used in this thesis is that of Eq. D.29. Since the

surfaces used were always much larger than the wavelength, potential inaccuracies

in neglecting the integral over S2 only exist within a few wavelengths of the edges.

These edge effects are attenuated by using tapered incident fields.
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Appendix E

Wavelets

E.1 The Wavelet Transform

Methods for performing space-scale localization existed before the development of

wavelet theory. These methods, still in use today, are based on the Fourier transform.

The Short-Time Fourier Transform uses complex exponential eigenfunctions which

are windowed in space to limit their duration. One particular case is the Gabor

transform, in which a Gaussian window is used. A disadvantage of these techniques

is that a single window width must be chosen for the analysis. For analysis of a

low-wavenumber content function, it is often desirable to consider long segments.

Conversely, for high-wavenumber phenomena, short segments are preferred. While

windowed Fourier transform techniques do not provide this desired flexibility, wavelets

automatically include it. That is, short wavelets resolve high wavenumbers and long

wavelets resolve low wavenumbers.

Scale in wavelet analysis is the counterpart to the reciprocal of wavenumber in

Fourier analysis. Each eigenfunction, called a wavelet, is an oscillatory function of

short duraction, as seen in Fig. E-1. The projection of a sharp feature onto a wavelet

is energetic only if the two overlap in space. By shifting the wavelet horizontally over

the function to be analyzed, features comparable in size to the wavelet are detected

in sequence. Features of different size are detectable by scaling the wavelet. Wavelets

analysis is a particular case of multiresolution analysis in which a father wavelet O(x)
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Figure E-1: Example wavelets.

is used to generate a set of nested subspaces Vi. The father wavelet and the subpaces

are such that

1. ... cV-2 CV-lcVcVcV 2 C'...

2. niEzVi = {0}, UiEzVi = L2 (IZ);

3. f E Vi if and only if f(2.) E Vi+1;

4. f E Vo implies f(- -j) E Vo for allj E Z;

5. There exists a function € E Vo such that the set {o,j = (" - J),J

constitutes an orthonormal basis for Vo.

G Z

The first property indicates that each subspace Vi is a subset of the next higher

subspace Vi+l. The second part of Property 2 indicates that all the subspaces taken
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together span the space of square integrable functions on the real axis, L2 (R). The

first part of Property 2 indicates that each higher subspace is larger than all previous

subspaces. Property 3 states that the particular multiresolution considered is a dyadic

one, that is, each higher subspace spans all the functions in the previous subspace,

plus those that have twice the resolution. Properties 3, 4 and 5 together imply that

the basis for each Vi is qi,j = 2i/20(2i - -j). The 2i/2 normalization is required to

preserve an orthonormal basis at each level i. A new set of subspaces Wi are defined

to be the span of the basis functions included in Vi+l but not in Vi, i.e.

Vi = Vi-1 ( Wi-1, (E.1)

where the operator E is the orthogonal sum of two subspaces. The subspaces {Wi}

are orthogonal to each other. Wavelets i,j are the basis functions of the subspaces

Wi:

Wi = span{i,j, j E Z}. (E.2)

The analog of the father wavelet € that generates all i,j is the mother wavelet /,

which generates all 4i,j:

Oij = 2i/20(2i . -j). (E.3)

Let the projection of a function f in L 2(R) on the subspace Vi be defined as P f.

This is an approximation to f which grows increasingly accurate as i is increased; each

new level includes finer details. The projection of f on the subspace Wi, P&, gives

the details in passing from the approximation at level i to the next higher-resolution

approximation at level i + 1:

pi lf = P f + p1 f . (E.4)

From the discussion so far, we conclude that the index i satisfies the intuitive concept

231



of "scale". Suppose that a multiresolution analysis is begun with a coarse approx-

imation of f as its projection on V. This approximation plus all higher-resolution

details give f exactly:

00

f = pOf + = pk f. (E.5)
k=0

The above equation is equivalent to stating that

L2 (R) = span{o,j, i, j}, i > 0. (E.6)

The wavelet transform of f is simply the set of coefficients wij resulting from the

projection of f on each subspace:

wi = j f (x)i,j(x)dx. (E.7)

For a given resolution level i, wi,j gives the details of f localized about x = j/2 i at

scale i. These details are introduced in passing from the representation of f in Vi to its

finer representation in Vi+,. The wavelet coefficients over all i and j span L 2 (R), but

in practice there is some upper bound on scale (lower bound on i) that is considered in

the analysis. Defining the lowest level to be i = 0, a complete decomposition should

also include the approximation coefficients c0,k corresponding to Pof, where

ci,j = f (x)(x)dx. (E.8)
S--00

E.2 The Continuous Wavelet Transform

With the continuous wavelet transform, the analyzing wavelets are scaled and shifted

in a continuous instead of discrete manner:

a,b(X) = al-/fracl2 V( ). (E.9)
a
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The transform is:

Wa,bf = dxf(x)a- (a b). (E.10)

The resulting decomposition contains redundant information in that the discretely

scaled and shifted basis functions already formed a complete and orthonormal set;

the projection of f(x) onto a,b(x) for all other values of a and b than a = 2' and

b = 2- - j is fully recoverable from the discrete values.

To explore how the continuous wavelet transform might be useful, we show in

Fig. 5-12 the continuous wavelet transform of each realization of Fig. 5-11 as a two-

dimensional contour plot. The color intensity is proportional to the logarithm of the

magnitude ot the wavelet transform at each spatial co-ordinate (x-axis) and scale

parameter (y-axis). The realizations of Fig. 5-11 are overlaid. Some interesting

observations can be made. f2(x) and f3(x) have complicated bifurcating line patterns

that grow in number as scale decreases. These are indicative that with each reduction

in scale, additional structure is introduced; these functions exhibit fractal behavior.

fl(x), on the other hand, shows extensive black areas at the finer scales, starting

at around a = Ic. The analyzing wavelet is a Daubechies 2 wavelet which has zero

projection on constant and linearly-increasing functions. Thus, when the width of

the analyzing wavelet becomes smaller than a facet, a zero is introduced. Clearly,

the wavelet transform makes the task of distinguishing f'(x) from the other two

easy. Unfortunately, this is not a useful contribution because it was already easy to

distinguish it just from the realizations. It was to distinguish between f 2 (x) and f 3 (x)

that we hoped the wavelet transform would be helpful but alas they have similar-

looking wavelet transforms. In sum, these deterministic wavelet transforms have

not added much to our ability to detect hidden scale structure. More sophisticated

methods are required which are based on statistical analyses of the wavelet transform.
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E.3 Wavelet Statistics

Uncovering the scale structure of random functions requires an analysis of the statis-

tics of the coefficients wij or of the continuous wavelet transform. The goal for intro-

ducing wavelets was to provide a means of distinguishing between functions having

the same second-moment statistics but different scale structure. A second moment

analysis of the wavelet transform is not sufficient. For example, the correlation func-

tion of the continuous wavelet transform of a wide-sense stationary function f(x)

is:

Rww(a,a', b, b') = E [W(a, b) fW(a, b)f]

1[ I -bd f17' x- b'
-$ dxf(x)la--;( a dx'-(x')Ia- ( a'

= dxdx'Rff(x' X - b' )(x ) .  (E.11)ff dxd'R(x- s)( a

Clearly, if two functions f and g have identical correlation function, their wavelet

transforms have identical correlation functions. It is interesting to note that Rww is

a wide-sense stationary function of b and b' for a given scale. Setting a = a', Eq. E.11

becomes

1f 1 b'-b b' - b
6 [W(a, b) fW(a, b)fj = Rzz(b' - b) * a- 0( )a |a- ( )a (E.12)

where * is the convolution operator:

f(b) * g(b) = df (x - b)g(x). (E.13)

It is clear from Eq. E.12 that Rww(a, a, b, b') = Rww(a, a, b' - b), proving wide-sense

stationarity.
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E.4 Statistically Self-Similar Processes

The following definitions and theorems are taken from Ref. [71]. A random process

f (x) defined on -oo < x < oo00 is said to be statistically self-similar if its statistics are

invariant to dilations and compressions of the waveform in time. More specficially,

a random process f(x) is statistically self-similar with parameter H if for any real

a > 0 it obeys the scaling realtion

f(x) H aHf(ax) (E.14)

where 1 denotes equality in a statistical sense. Wide - sense self-similarity is defined

as similarity in second order statistics:

Mf = E[f(x)] = a-HMf(a) (E.15)

Rff(x', x") = [f(x')f(x")] = a - 2HRff(axl, ax"). (E.16)

In Ref. [71], a special class of stochastic processes is studied: 1/f processes. Loosely,

these are processes whose power spectral density is proportional to 1/f , for some

alpha. In Ref. [71], they are explicitly defined as follows:

Definition A wide-sense statistically self-similar zero-mean random process f(x) is said to

be a 1/f process if there exist ko and kl satisfying 0 < ko < kl < 00 such that

when f(x) is filtered by an ideal bandpass filter with wavenumber response

Bl(k) = 1, ko < lkl < k (E.17)
0, otherwise,

the resulting process gi(x) is wide-sense stationary and has finite variance.

This Definition is justified by the following Theorem:

Theorem A 1/f process f(x), when filtered by an ideal bandpass filter with frequency
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response

B(k) = 1, kL < |kl < k (E.18)
0, otherwise,

for arbitrary 0 < kL < ku < oo, yields a wide-sense stationary random process

g(x) with finite variance and having power spectum

S,(k) = kL < Ik < ku (E.19)
0, otherwise,

for some a > 0, and where the spectra exponent a is related to the self-similarity

parameter H according to a = 2H + 1.
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