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Abstract. This paper introduces a generic and scalable anomaly detection
framework. Anomaly detection can improve operation and maintenance effi-
ciency and assure experiments can be carried out effectively. The framework
facilitates common tasks such as data sample building, retagging and visu-
alization, deviation measurement and performance measurement for machine
learning-based anomaly detection methods. The samples we used are sourced
from Ganglia monitoring data. There are several anomaly detection methods to
handle spatial and temporal anomalies within the framework. Finally, we show
the rudimental application of the framework on Lustre distributed file systems
in daily operation and maintenance.

1 Introduction

At present, the Institute of High Energy Physics (IHEP) local cluster consists of 20,000 CPU
slots, hundreds of data servers, 20 PB disk storage and 10 PB tape storage. After data taking
from the Jiangmen Underground Neutrino Observatory (JUNO) and the Large High Altitude
Air Shower Observatory (LHAASO) [1] experiment, the data volume processed at this center
will approach 10 PB per year. Prompt anomaly detection can improve operation and main-
tenance efficiency and assure high energy physics experiments can be carried out effectively.
We develop a generic anomaly detection framework based on machine learning.

Anomalies are data points which are either different from the majority of others or dif-
ferent from the expectation of a reliable prediction model in a time series. For Ganglia mon-
itoring metric data, we classify anomalies into spatial anomalies and temporal anomalies.
Spatial anomalies are points of high-dimensional data without time dimension. For temporal
anomalies, they may not be spatial anomalies, but they are quite different from the current
sequence data by analyzing temporal characteristics.

We have broken down some machine learning-based methods into four broad categories.
First, based on a classification [2] , anomalies can be detected by trained models with the
help of supervised learning algorithms such as xgboost, random forest, etc. Second, based on
cluster analysis [3, 4], samples are clustered by density analysis and cutting such as k-means,
Isolation Forest [5], etc. The third and fourth categories detect anomalies by analyzing the
difference between the real value and the predicted value after predicting. The prediction
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methods of the third category are based on statistics [6] such as Autoregressive Integrated
Moving Average model (ARIMA) [7]. The prediction methods of the fourth category are
based on deep learning [8] such as Hierarchical Temporal Memory (HTM) [9, 10], etc.

We develop a framework because a particular anomaly detection algorithm is usually ap-
plicable to only a special use-case. Unlike methods mentioned above, the anomaly detection
framework we developed can detect anomalies by combining the relationship of multiple in-
dicators in addition to using single metric. The framework we developed in Python is suitable
to be expanded with statistical machine learning algorithms and deep learning algorithms. It
provides some functions such as data sample building, retagging and visualization, deviation
measurement and performance measurement for machine learning-based anomaly detection
methods.

2 Architecture

As shown in the Figure 1, after collecting data from the Ganglia monitoring system and
preprocessing, we detect spatial anomalies and temporal anomalies separately. In addition,
we ignore irrelevant anomalies caused by particular known circumstances such as system
upgrading by setting time intervals and nodenames in anomaly filter modules.

Figure 1. Anomaly detection process

We develop the framework based on Django [11], which is based on a MTV (model-
template-view) architecture. There are over twenty general metrics and about one hundred
special metrics of the monitoring data, which is collected by the Ganglia monitoring system
at IHEP. The timestamped monitoring data are stored in ElasticSearch [12]. We develop a
CRUD (create retrieve, update, and delete) interface based on Python ElasticSearch interface
in the data interface layer. Configuration such as a list of metrics and model information
is stored in MySQL and we deal with MySQL interaction based on Django ORM (Object
Relational Mapping). The template layer is a collection of HTML pages which correspond
to common functions of anomaly detection tasks. The visualization presents the results of
prediction and detection more clearly in line diagrams and scatterplots.
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3 Algorithms

We have two classes of anomaly detection methods for temporal anomalies. The first one
is detecting after extracting time series features. The other one is detecting anomalies by
judging the deviation of predicted data and true data.

3.1 Time-series features extraction

We maintain data of W time steps as time series x. There are W data points per metric in the
time series. We extract statistical features and fitting features for every time series.

Statistical features consist of some general statistical features, skewness, kurtosis, volatil-
ity indicator and statistical features about repeating data. General statistical features consist
of maximum value, minimum value, mean, variance, standard deviation, median, dot prod-
uct, sum, range, locations and relative locations of maximum and minimum. The volatility
indicator measures the volatility of data by computing mean, mean of absolute value, sum of
first difference and counting the number of values in x that are lower or higher than the mean
of x. Statistical features about repeating data consist of the percentage of recurring values
and some general statistical features after removing duplicate values.

We take the last k (k = 6, 12, 18, 24, 30, 36) data points of time series x as time series
Y (collections of time series) respectively. Fitting features are these values which are the
difference between the last element of time series x and the smoothed values of each time
series of Y after Moving Average Algorithm [13], Weighted Moving Average Algorithm[14],
Exponential Moving Average Algorithm [15] and Double Exponential Moving Average Al-
gorithm [16]. There are over 30 statistical features after time-series features extraction. The
number of fitting features depend on W.

3.2 Prediction algorithms

Statistical approaches consist of Moving Average (MA), Exponential Moving Average
(EWMA) and linear regression (LR). We predict the current data by fitting and smoothing
historical data based on these algorithms mentioned above.

Long short-term memory (LSTM) [17] is well suited to predict based on time series data.
The output and the input of the next sequence can be calculated together to obtain the output
of the next sequence. We select some of the historical metric data to predict the current
metric data. The number of metrics of the current data is m and the number of metrics of the
selected historical data is n. For each sample, the input is shaped as (length of window, n)
and the output is shaped as (1, m). The main configuration parameters include the number of
LSTM layers, units (the number of hidden neurons), epochs, the number of batch and fraction
of data to reserve for validation.

To evaluate the performance, we provide error indicators of different models when fitting
the time-series with different metric data. In the framework, the error indicators consist of
Mean Error (ME), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean
Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE).

3.3 Detection algorithms

The algorithm shown in 3.3.1 and 3.3.2 are used after prediction. The Isolation Forest shown
in 3.3.3 is used after time-series extraction or for spatial anomalies.
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3.3.1 N-sigma

The predicted value at time t is yt, the true value is xt. Because some metrics are more volatile,
we capture the relative error as Equation 1.

et = yt − xt (1)

We can give a threshold directly, but we have to change the threshold manually for dif-
ferent situations. We used the relative errors of metrics (bytes_in, cpu_idle and mem_free)
of two metadata servers to draw violin plots respectively and the data set is approximately
modeled by a normal distribution. We assume that the relative error of time windows follows
a normal distribution and set a threshold by confidence probability.

3.3.2 Q-function

We compute the anomaly score by a Gaussian tail probability. The mean value is µ. We
define the anomaly score (st) as follows. The closer anomaly score of a sample is to 1, the
more likely the anomaly is. The anomaly score ranges from 0.5 to 1.

st = 1 − Q(t) (2)

Q(x) =


1√
2π

x∫
−∞

e−
(t−µ)2
2σ2 dt x < µ,

1 − 1√
2π

x∫
−∞

e−
(t−µ)2
2σ2 dt x >= µ,

(3)

3.3.3 Isolation Forest

For Isolation Forest [18], we subsample randomly first and then build many binary trees
based on cutting. In the process of building, we split randomly on features until each data
tuple forms a leaf node or the height reaches the limit. For anomalies, they are more easily
divided into leaf nodes, so their average path length is shorter than others. c(n) is the average
pathlength of trees. The number of samples used for building trees is n. x is an instance
and h(x) is the number of edges between the root node and the terminating node plus an
adjustment c(T.size). T.size is the number of instances of the terminating node where x is
located. We compute anomaly score S(x,n) based on the average path length E(h(x)):

s(x, n) = 2
E(h(x))

c(n) (4)

c(n) =


2H(n − 1) − 2(n−1)

n n > 2,
1 n = 2,
0 otherwise.

(5)

H(n) = ln(n) + 0.5772156649 (6)

For temporal anomaly detection, the features are time-series features. For spatial anomaly
detection, the features are metrics of samples. The main parameters include the number of
trees (n_estimators), the number of subsamples (max_samples), anomaly ratio (contamina-
tion) and whether to extract time-series features.
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4 Experience in Lustre file system

4.1 Data

The real metadata of Lustre file system [19] in the IHEP data center is used for the experi-
ments. The metrics used are shown in Table 1. For models that require a lot of historical data
to train, we use 8 metadata servers from August 1st, 2019 to September 30th, 2019. The test
dataset is one of the metadata servers from October 1st, 2019 to October 25th, 2019. There
are almost 140,000 training samples and almost 6000 test samples. The data in the database
does not have an anomaly tag, so we cannot compute precision and recall rate accurately at
present.

Table 1. Metrics used in the experience

Categories Metrics Description

Network

bytes_in The number of bytes received per second
bytes_out The number of bytes emitted per second
pkts_in The number of packets received per second
pkts_out The number of packets emitted per second

CPU

cpu_idle Percentage of time the CPU is idle
load_one The load average from the last minute
load_five The load average from the last five minutes
load_fifteen The load average from the last fifteen

Memory

mem_free Available memory capacity
mem_buffers Buffer capacity
mem_cached Cache capacity
swap_free Available swap capacity
proc_run Total number of running processes
proc_total Total number of processes

4.2 Prediction Experiments

We compare these algorithms (parameter configuration is shown in Table 2) with RMSE and
MAPE. As shown in Figure 2 for network and CPU, the deviation is lower for LSTM. For
memory, EWMA performs better. But LSTM can predict all metrics based on one model.

Table 2. Prediction algorithm parameter configuration

Algorithms Parameter configuration
LR windows=12*3
MA windows=12*3
EWMA windows=12*3,alpha=0.7
LSTM windows=12*3, n=14, m=14, n_layers=2, units=128,

epochs=300, input_shape=(windows,n), output_shape=m,
learn_rate=0.001, optimizer=Adam, loss=mae

4.3 Anomaly Detection Experiments

We use three anomaly detection methods to detect anomalies. For temporal anomaly method
1, we use Isolation Forest (n_estimators=100, max_samples=256, contamination=0.0001)
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Figure 2. Prediction results. The left side of the figure shows the RMSE and MAPE of bytes_in_value.
The middle diagram shows the RMSE and MAPE of cpu_idle_value. The right side of the figure shows
the RMSE and MAPE of mem_free_value.

after extracting time-series features. For temporal anomaly method 2, the prediction al-
gorithm is LSTM (parameters configuration as listed in Table 2) and the Q-function is
the detection algorithm (st=0.9999). For spatial anomaly method, we use Isolation Forest
(n_estimators=100, max_samples=256, contamination=0.0001). Detection results are shown
in Figures 3-5.

Figure 3. Result of temporal anomaly detection method 1. The red line shows true bytes_in_value of
mds01.ihep.ac.cn. The orange line shows the anomaly score. The black points show the anomalies.

5 Conclusion

In this paper, we introduced a generic anomaly detection framework which provides the
generic functionality required for anomaly detection tasks such as data sample building,
retagging and visualization, deviation measurement and performance measurement. It was
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Figure 4. Result of temporal anomaly detection method 2. The red line shows true bytes_in_value of
mds01.ihep.ac.cn. The dark blue line shows the predicted value of bytes_in_value by LSTM. The light
blue shows the deviation between true value and predicted value. The black points show the anomalies.

Figure 5. Result of spatial anomaly detection method. The red line shows true bytes_in_value of
mds01.ihep.ac.cn. The orange line shows the anomaly score. There is no spatial anomaly detected.

initially applied to the metadata servers of Lustre file system, but it is not yet in production.
Furthermore, the framework provides extracted time-series, different prediction models,
and anomaly detection algorithms. In the future, we will associate these anomalies with
anomalies in the actual environment such as disk failure, traffic abnormality, etc.
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