
ComputeOps: Container for High Performance Computing

Cécile Cavet1,∗, Martin Souchal1,∗∗, Sébastien Gadrat2,∗∗∗, Gilles Grasseau3, Andrea
Satirana3, Aurélien Bailly-Reyre4,5, Olivier Dadoun5, Victor Mendoza5, David Chamont6,
Gérard Marchal-Duval6, Emmanuel Medernach7 and Jérôme Pansanel7

1APC/FACe, Université de Paris, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, 10 rue A. Domon et L.
Duquet, 75013 Paris, France

2Centre de Calcul de l’IN2P3, 21 Avenue Pierre de Coubertin, 69100 Villeurbanne, France
3LLR, Ecole Polytechnique, Rue de Fresnel, 91128 Palaiseau, France
4ISCD, BP380, 4, place Jussieu, 75252 Paris Cedex 5, France
5LPNHE, Campus de Jussieu, 4 place Jussieu, 75252 Paris Cedex 5, France
6IJCLab, CNRS Université Paris-Saclay Bât. 100, Faculté des sciences, F-91405 Orsay Cedex
7IPHC, 23, rue du Loess - BP28, 67037 Strasbourg Cedex 2, France

Abstract. The High Performance Computing (HPC) domain aims to optimize
code in order to use the latest multicore and parallel technologies including
specific processor instructions. In this computing framework, portability and
reproducibility are key concepts. A way to handle these requirements is to use
Linux containers. These "light virtual machines" allow to encapsulate applica-
tions within its environment in Linux processes. Containers have been recently
rediscovered due to their abilities to provide both multi-infrastructure environ-
nement for developers and system administrators and reproducibility due to im-
age building file. Two container solutions are emerging: Docker for micro-
services and Singularity for computing applications. We present here the status
of the ComputeOps project which has the goal to study the benefit of containers
for HPC applications.

1 Introduction

Containers provide flexible strategies for packaging, deploying and running isolated applica-
tion processes within multi-user systems, thus enabling scientific reproducibility. The recent
re-discovery of Linux containers has given rise to an innovative way to encapsulate and share
codes and services.

We will present here a status report of the ComputeOps project, highlighting on the
progress made since the last proceeding published for CHEP 2018 [1].

2 Container solution evaluation

Several groups and research groups are partners of the ComputeOps project. Each partner
provides skills and/or R&D infrastructures, as well as pilot applications, to tackle the main
∗e-mail: ccavet@apc.in2p3.fr
∗∗e-mail: souchal@apc.in2p3.fr
∗∗∗e-mail: sebastien.gadrat@cc.in2p3.fr

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 07006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507006



research topics in particle physics and astronomy. A complete description of the partners and
the pilot applications can be found in the CHEP 2018 proceeding [1].

A first step of the project was to evaluate the main container solutions available: Docker,
Singularity, Rkt, uDocker, Shifter, CharlieCloud and Kata containers [1]. The conclusion of
this evaluation has shown that the Singularity [2] solution is the best compromise for the time
being. The solution can easily be installed in local clusters and in computing centers and can
be used without privileged mode. Singularity is the most widely used container solution in
HPC centers and has a large users community. It is also fully compatible with Continuous
Integration (CI) which is an important feature for a large community of researchers.

It is however important to note that all these containers solutions are evolving quickly,
and some other solutions seem quite promising.

3 Sharing container images

In order to host the container images, catalogues of images such as hubs, registries and mar-
ketplaces are traditionally provided in the ecosystem built around a container technology.
Catalogues of images are usually linked with source code management tools, hosting the
recipe used to build the image in a fully transparent approach.

We will see in this section that other tools may be used for sharing container images
between users. An other important aspect will also be approached with the automatic con-
struction of the container image. Indeed, the GitLab [4] source code management tool also
provides a Continuous Integration and Continuous Deployment (CI/CD) plateform which al-
lows to automatically build images of applications and deploy them in catalogues of images
or direcly on infrastructures.

3.1 Hubs, registries and marketplaces

Public hubs such as Docker Hub [5] and Singularity Hub [6] are based on open source solu-
tions and provide a registry service and a web portal. Both hubs offer to users the possibility
to use public images and to manage their own container images.

For a specific user community such as the IN2P3 research community [7], private hubs
have also started to flourish. They are based on:

• an authentification mechanism relying on a GitLab/GitHub account;

• collections of images for specific projects;

• manageable workflows;

• the ability for users to rate available containers and view recipes.

In order to manage quality and security issues in container images, image scanning can
be used in a CI process to check whether the image is compliant with the lastest security
releases. Several tools such as Clair [8] and Trivy [9] have been developed during the last
years in order to provide a way to search for Common Vulnerabilities Exposures (CVEs)
inside container images.

3.2 Filesystem

CernVM-FS [11] (usually referred as CVMFS) is a software distribution system allowing to
deploy software on world-wide distributed infrastructures. It has been developed to assist
High Energy Physics (HEP) collaborations to deploy their software on all sites where they
are running jobs. The software deployment is usually made on one dedicated server (so

2

EPJ Web of Conferences 245, 07006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507006



Figure 1. CernVM workflow to publish data in CernVM-FS [12].

called stratum-0) which will mirror the software on all the registered servers (see Fig.1 for
the detailed workflow).

CVMFS appears quite convenient for sharing and publishing container images (definition
files will however rather be stored in GitLab). The preferred image format will be the Sin-
gularity unpacked (directory tree) images as this format will allow I/O optimisation thanks
to advanced CVMFS features. This format is breaking the container portability, though the
publication workflow will ensure that the image is distributed to all clients.

3.3 A Comprehensive Software Archive Network (CSAN)

In the model of Comprehensive Archive Networks such as CRAN [13] for R, CPAN [14] for
Perl or CTAN [15] for TeX, the ComputeOps group is currently working on building a Com-
prehensive Software Archive Network (CSAN). This CSAN will be based on Singularity [2]
and the Guix [16] package manager which will allow a full reproducibility of the container
including all the software installed inside it thanks to the Guix package manager. A user-
friendly web portal, such as the Microsoft R© Azure Container Marketplace (see Fig. 2), will
be built to allow users to easily search for containers. Image validation (done by experts) will
be required before uploading the images in the CSAN.

The CSAN portal will offer a wide variety of containers provided by the community,
validated by experts, to the scientific community. It will allow a subtantial gain of time for
most of the users, granting them access to containers in a friendly way.

3.4 Continous integration with containers

Continous integration (CI), such as the one provided by GitLab, allows to define workflows
to automatically build and distribute container images.

3

EPJ Web of Conferences 245, 07006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507006



Figure 2. The Microsoft R© Azure Containers Marketplace web portal.

The CI workflow involving containers is usually made of several steps:

1. code commit: the code hosted on the GitLab-CI starts a new pipeline on each commit
or upon some specific conditions;

2. pipeline runner: GitLab-CI provides a container runner based on Docker, in which one
can build a Docker or Singularity image following the recipe provided;

3. automatic deployment of built images and/or automatic pushing to a registry;

4. image scanning: check the CVEs (Common Vulnerabilities Exposure) in the final im-
age (see section 3.1).

This workflow automation for building images is an important part in the portability and
reproducibility requirements.

4 Orchestrator versus scheduler

4.1 Schedulers

Schedulers (or Workload Managers) are designed to handle jobs with finite time, especially
when dealing with multiple users, providing job queueing mechanisms and complex fair re-
sources sharing rules. Managing containerized applications with schedulers will be almost
straight forward with Singularity as the Singularity runtime can be called with a simple com-
mandline and does not require any dependancy, whereas Docker requires a daemon running
on the host. In all cases, Singularity can be used through a simple script wrapper in case
we need to set up some specific environment. This actually explains the rapid adoption of
Singularity in all kind of data centers.

4.2 Orchestrator: the Kubernetes era

Orchestrators have been designed to manage containerized workloads, providing primarily
resource management, but also a lot of interesting features such like service reliability,

4

EPJ Web of Conferences 245, 07006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507006



Figure 3. Schematic view of the Kubernetes architecture at Google [17].

isolation or scalability. However, they are more suited for hosting long running services, not
computing jobs. Indeed they have been designed to manage micro-service containers such
as web services in production. Consequently, they lack finite job scheduling mechanism (no
management of potential constraints and links between jobs, input data and output data), and
multi-users management.

Among the various orchestrators solution, Kubernetes [18] is the world’s most popu-
lar production-grade container orchestration platform (see Fig. 3), and the most important
project of the Cloud Native Computing Foundation (CNCF) [19], which provides the follow-
ing advantages:

• velocity: evolving quickly, while staying available;

• scalability: services are replicated and they support auto-scaling using pre-defined config-
urations;

• portability: applications deployed using Kubernetes can be easily transferred between en-
vironments;

• efficiency: applications can be co-located on the same machine without impacting the ap-
plication themselves due to containerization.

In order to propose a job scheduling mechanism, Kubernetes has a job processing feature
allowing to run jobs. Since a couple of years, Kubernetes is indeed evolving in a way that
containerized HPC workloads will soon be able to be run in a Kubernetes cluster [20]. Fur-
thermore, Sylabs [2] is currently working on enabling Singularity containers orchestration
with Kubernetes [21].

5 Conclusion

Containers have proven that they are able to provide a pragmatic and efficient solution to
the problem of packaging complex software dependencies into self-contained, ready-to-run
executable runtimes that can be easily deployed in a portable way. Singularity, in particular,
provides an HPC-friendly container runtime that streamlines adoption in data centers.

The ComputeOps project goal is to explore the benefit of the usage of containers for the
IN2P3 scientific communities, suggesting tools and recipes to ease the use of these technolo-
gies.

In this context, the group previously set up a private Singularity Hub [10], and is currently
working on a Comprehensive Software Archive Network.

5

EPJ Web of Conferences 245, 07006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507006



We also provide recipes and documentation to use the various tools required to build
images, to deploy or store those images, to run containers while meeting scientific contraints.
We also provide tutorials on these technologies.

Ultimately the project aim is to facilitate the use of such technologies when defining
computing models for new astronomy and particle physics research collaborations and groups
at the french CNRS/IN2P3 research institute.

6 Acknowledgements

The project is founded by the french CNRS/IN2P3 institute and is part of the DecaLog Master
Project for transversal Research & Development in Computing and Data.

References

[1] C. Cavet, A. Bailly-Reyre, D. Chamont, O. Dadoun, A. Dehne Garcia, P.-E. Guérin, P.
Hennion, O. Lodygensky, G. Marchal-Duval, E. Medernach, V. Mendoza, J. Pansanel, R.
Randriatoamanana, A. Sartirana, M. Souchal and J. Tugler, EPJ Web of Conferences 214,
07004 (2019) CHEP 2018.

[2] https://sylabs.io/

[3] https://www.docker.com/

[4] https://about.gitlab.com
[5] https://hub.docker.com/

[6] https://singularity-hub.org/

[7] https://in2p3.cnrs.fr/fr/institut-national-de-physique-nucleaire-et-de-physique-des-particules-0
[8] https://github.com/quay/clair
[9] https://github.com/aquasecurity/trivy
[10] https://sregistry.in2p3.fr
[11] https://cernvm.cern.ch/portal/filesystem
[12] D. Dykstra and J. Blomer, Journal of Physics: Conference Series 513, 042015 (2014).
[13] https://cran.r-project.org/

[14] https://www.cpan.org/

[15] https://www.ctan.org/

[16] http://guix.gnu.org/

[17] Initially taken from the Kubernetes Project webpage https://kubernetes.io/

[18] https://kubernetes.io/

[19] https://www.cncf.io/

[20] https://kubernetes.io/blog/2017/08/kubernetes-meets-high-performance/

[21] https://sylabs.io/guides/cri/1.0/user-guide/k8s.html

6

EPJ Web of Conferences 245, 07006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507006

https://sylabs.io/
https://www.docker.com/
https://about.gitlab.com
https://hub.docker.com/
https://singularity-hub.org/
https://in2p3.cnrs.fr/fr/institut-national-de-physique-nucleaire-et-de-physique-des-particules-0
https://github.com/quay/clair
https://github.com/aquasecurity/trivy
https://sregistry.in2p3.fr
https://cernvm.cern.ch/portal/filesystem
https://cran.r-project.org/
https://www.cpan.org/
https://www.ctan.org/
http://guix.gnu.org/
https://kubernetes.io/
https://kubernetes.io/
https://www.cncf.io/
https://kubernetes.io/blog/2017/08/kubernetes-meets-high-performance/
https://sylabs.io/guides/cri/1.0/user-guide/k8s.html

	Introduction
	Container solution evaluation
	Sharing container images
	Hubs, registries and marketplaces
	Filesystem
	A Comprehensive Software Archive Network (CSAN)
	Continous integration with containers

	Orchestrator versus scheduler
	Schedulers
	Orchestrator: the Kubernetes era

	Conclusion
	Acknowledgements

