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ABSTRACT

Experimental and numerical work was conducted to better understand composite
shell response to transverse loadings which simulate damage-causing impact
events. The quasi-static, centered, transverse loading response of laminated
graphite/epoxy shells in a [±45n/0n]s layup having geometric characteristics of a
commercial fuselage are studied. The singly-curved composite shell structures are
hinged along the straight circumferential edges and either free or simply
supported along the curved axial edges. Key components of the shell response are
response instabilities due to limit-point and/or bifurcation buckling.
Experimentally, deflection-controlled shell response is characterized via load-
deflection data, deformation-shape evolutions, and the resulting damage state.
Finite element models are used to study the kinematically nonlinear shell
response, including bifurcation, limit-points, and postbuckling. A novel technique
is developed for evaluating bifurcation from nonlinear prebuckling states utilizing
asymmetric spatial discretization to introduce numerical perturbations.
Advantages of the asymmetric meshing technique (AMT) over traditional
techniques include efficiency, robustness, ease of application, and solution of the
actual (not modified) problems. The AMT is validated by comparison to traditional
numerical analysis of a benchmark problem and verified by comparison to
experimental data. Applying the technique, bifurcation in a benchmark shell-
buckling problem is correctly identified. Excellent agreement between the
numerical and experimental results are obtained for a number of composite shells
although predictive capability decreases for stiffer (thicker) specimens which is
attributed to compliance of the test fixture. Restraining the axial edge (simple
support) has the effect of creating a more complex response which involves
unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were
noted to bifurcate into asymmetric deformation modes but were undamaged during
testing. Shells in this study which were damaged were not observed to bifurcate.
Thus, a direct link between bifurcation and atypical damage could not be
established although the mechanism (bifurcation) was identified.
Recommendations for further work in these related areas are provided and include
extensions of the AMT to other shell geometries and structural problems.

Thesis Supervisor: Paul A. Lagace
Title: MacVicar Faculty Fellow, Professor of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

Laminated composite materials continue to see increased use in

structural applications. Performance advantages over traditional metallic

structures abound: high specific stiffness and strength, mechanical tailoring

capabilities, and excellent fatigue characteristics are some of the attributes

that make structures built from laminated composites attractive to designers.

This is especially true in the aerospace community where composites are seen

to provide increased performance for both military and commercial structures.

In the aircraft industry, composites initially replaced secondary

structures that were typically made from aluminum, e.g., [1, 2]. Damage

considerations in the design of secondary structures are typically not critical.

However, composites have seen increased application in design of primary

aerospace structures where damage is a critical design issue. Primary

composite structures in the V-22 Osprey, single-stage to orbit (SSTO) reusable

launch vehicles, and the space shuttle are just some examples [3, 4].

Composites are also being used in large commercial aircraft designs. The

Beechcraft Starship was the first all-composite aircraft certified by the FAA

and, even more recently, composites have seen application in primary

structures such as the empennage of the Boeing 777. The use of composites in

primary aerospace structures necessitates a more detailed understanding of

damage and failure mechanisms of these materials [5].

Laminated composite structures are prone to damage from transverse



loading events, such as impact, due to their relatively low through-thickness

strength. Impact damage is manifested in various modes, such as

delamination, fiber breakage, and matrix cracking, thus making damage

quantification and detection difficult. Damage from impact events is known to

cause significant degradation in the operational performance of composite

structures. Impacted composite structures can have a reduction in static

strength in excess of 50% [6-8]. Thus, impact damage, and the resulting

performance degradation, become significant concerns when composites are to

be used in primary load-bearing structures such as an aircraft fuselage or

wing.

This need to understand damage and failure of aircraft structures is

formalized in safety regulations written and enforced by aircraft governing

agencies [9-11]. Safety and reliability of the structural design must be

demonstrated. This daunting task is accomplished through a damage

tolerance design philosophy. Damage tolerance is a measure of the ability of a

material/structure to "perform" (given particular requirements) with damage

present [12]. Safety regulations are written with this philosophy in mind. In

order to design damage tolerant structures, engineers must first understand

and characterize the damage types likely to occur during the life of a composite

structure. Damage states are characterized in a damage resistance study

which measures the damage incurred by a material/structure due to a

particular event [12].

One aspect of the damage tolerance requirement is that structures

must tolerate damage until such damage can be reasonably detected.

Inspectibility and inspection intervals thus become key in assessing damage

tolerance because the largest critical damage (including mode) which cannot be

observed must be 'tolerated' between inspection intervals. With this in mind,
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impact damage in composites is typically separated into two categories:

barely visible impact damage (BVID) which describes the threshold of visually

inspectible damage, and visible impact damage (VID) which is damage that

typically would be found during an inspection. BVID usually results from a

"low-velocity" [13], non-ballistic impact. For a typical composite aerospace

structure such as a fuselage, impact damage (including BVID) can result from

bird-strike, runway kickup, tool drop, and accidental contact with ground-

service vehicles. A key observation from past work is that impacted

composite structures, particularly 'thin' structures, can be damaged internally

with little or no visible surface damage (e.g., [14, 15]). In aircraft design with

composites, damage tolerance issues (impact damage) can become a limiting

design consideration.

Due to the importance of damage to design with composites, impact

damage resistance and tolerance have been investigated extensively in recent

years for composite plates and cylinders (tubes) [7, 14, 16]. However,

relatively few studies have focused on composite shell structures, primarily

due to additional complexities in testing and analyzing these structures relative

to plates. Unfortunately, most aircraft structures are more accurately

characterized as shells, e.g., wing and fuselage sections. Preliminary studies

that have focused on composite shell sections indicate that structural and

damage response of shells can be quite different than those in plates.

Experimental damage modes have been shown to be different through-

thickness (e.g., [17]) as have the in-plane distribution and extent of damage

(delamination and matrix cracking) [18]. The key difference between plate and

shell behavior is the presence of an instability in the shell response [19-21].

Shells, unlike plates, can experience either bifurcation or limit-point buckling

during transverse loading. Thus, there is a substantial need to characterize
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the loading and damage response of composite shell structures, particularly

instability behavior.

The objective of this work is to better understand composite shell

response to transverse loadings which may damage the structure. This

objective is accomplished with a combined experimental and numerical

approach. The experimental program builds on previous experimental work

and gives insight into the response of shell structures with boundary conditions

(supported on all four sides) representative of a fuselage structure. Numerical

modeling is performed to further the understanding of the elastic buckling of

these shell structures, particularly differences caused by limit-point and

bifurcation buckling. The numerical models are compared to previous

numerical and experimental results, as well as new experimental data from

this work. In this way, experimentation and numerical modeling is used

synergistically to provide better understanding of the shell response,

particularly damage resistance.

The work is organized in this document as follows. Relevant previous

work relating to damage resistance and elastic stability, particularly for shells,

is reviewed in chapter 2. This is followed, in chapter 3, by problem definition

and the combined experimental/numerical approach used in this work. In

chapter 4, numerical (finite element) modeling is discussed, particularly in

regard to evaluating shell instabilities. A new method for evaluating

bifurcation using finite elements is detailed. Also included in chapter 4 are

solutions of a benchmark shell buckling problem and comparison of theory with

previous experimental work. Experimental procedures are outlined in chapter

5. In chapter 6, results of the experimental program and numerical modeling

are presented. This is followed by a discussion of these results in chapter 7.

Finally, in chapter 8, conclusions are drawn based on the results of the
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investigation and recommendations are made for future research.
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CHAPTER 2

BACKGROUND

Significant strength and performance losses due to damage provide the

impetus for studying the damage resistance and damage tolerance of

composite structures. As discussed in chapter 1, damage resistance studies

facilitate damage tolerant design by identifying the damage that must be

tolerated. Damage tolerance of composite plate and shell structures has been

reviewed previously, e.g., [18], and is not treated in this chapter because the

current work focuses solely on damage resistance. A review of past work on

the damage resistance of composite plates and shells is given in section 2.1 to

identify key issues and provide a basis for subsequent discussion. Stability,

particularly for composite shells, is then discussed in section 2.2 because

buckling is known to be a key component in the type of shell response

considered in this work, e.g., [21]. Section 2.2 also includes a discussion of

numerical modeling (finite element) issues related to the prediction of shell

response, particularly instabilities. This review of past modeling efforts

provides the necessary background for discussion of present modeling efforts in

subsequent chapters.

2.1 Damage Resistance

In this section, a review of previous work on the response and damage

resistance of composite structures is presented. Damage resistance is a

measure of the damage incurred by a material/structure due to a particular
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event [12]. The current understanding of damage issues (resistance and

tolerance) for composite structures is based primarily on experience with plate

structures. Therefore, to study shells, it is instructive to consider past work

with plates. In this section, key conclusions based on plate experience are first

discussed as a prelude to the discussion of shells. A more detailed treatment of

composite plate and shell damage resistance can be found in reference [18].

2.1.1 Plates

Reviews of the extensive literature on the impact damage to composite

structures show that nearly all the past work concerns composite plates [7,

14, 16]. One of the key results of that work, as mentioned previously, is that

composites can be damaged without visible signs of the damage, i.e., the

damage is nondetectable. Damage is often incurred due to out-of-plane, or

transverse, impacts due to the relatively low through-thickness strength of

composites. Furthermore, this nondetectable damage can significantly

degrade structural performance. This, coupled with the probability of such

loadings during service, has prompted many investigations into the damage

resistance of composites. As noted previously, these damage resistance

studies have been dominated by investigations of plate configurations. This is

due, in large part, to the relative simplicity of this structural element.

A second key finding, relevant to this work, is that many impact events

which cause barely visible impact damage (BVID) are quasi-static in nature.

This means that the static response of the structure adequately represents

the impact event, including damage resistance. The impact and quasi-static

equivalence has been found independently by a number of researchers, e.g., [13,

22-27], and is based on peak force from the two test conditions being equal.

This finding is important with regard to testing composite structures because
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impact events of this type, which are difficult to perform and calibrate, can be

approximated with readily available, easy to use quasi-static tests.

Additionally, the impact response of these cases can be studied via static

analyses rather than more involved and time-consuming dynamic analyses.

Thus, for composite plates, many impact events are found to be quasi-static in

nature and peak force is noted to be an excellent impact damage resistance

metric.

Along with the general findings regarding BVID and impact/quasi-static

equivalence, the response (impact and quasi-static) and damage resistance of

composite plates has been shown to be a function of many parameters. These

specific parameters include material, stacking sequence, specimen geometry,

boundary conditions, and indentor/impactor geometry [16]. Damage resistance

is therefore a combination of both local and global (structural) effects [28]. The

most common approach to the local problem is to model behavior at the

loading site with a Hertzian-type nonlinear contact law [12]. The contact law

is static in nature but has been widely applied to impact events as well as to

structures that are not isotropic [25, 29]. In these cases, the form of the

contact law is fit to indentation data from tests on composite plates. Beyond

effects due to stresses induced at boundaries, damage in composite plates

begins local to the contact region and grows outward. Contact laws ignore all

the composite damage modes including fiber breaks, fiber splits, delamination,

matrix cracking, and crazing. To predict plate response, the contact law is

typically combined with a structural model, e.g., [12, 30, 31]. Thus, experience

with composite plates clearly shows that damage forms at the loading site due

to both local contact effects and structural response.



2.1.2 Shells

In contrast to composite plates, investigations of the damage resistance

of composite shells are sparse and largely inconclusive. Reviews focusing on

the extant literature on composite shell damage resistance have appeared

previously [18, 21] and key points relating to the current work are discussed

here. Recent experimental studies into the damage resistance and response of

transversely-loaded composite shells indicate that, as with plates, an impact

regime exists where a quasi-static representation is adequate [18, 19]. The

regime encompasses a wide range of structural configurations including shells

representative of actual aircraft structures. As with composite plates,

damage to impacted composite shells can be in the barely-visible regime

(BVID) [17, 19, 20, 31]. Some comparative studies, e.g., [32], have found that

composite plate and shell damage resistance are similar while others have

noted distinct differences in damage mode/extent and/or structural response

[17, 19-21, 31-35]. The ambiguity is likely due to the range of structural and

material parameters considered in the studies. Despite this ambiguity,

observed differences in plate and shell impact damage resistance imply that

the current understanding of composite damage resistance, based on

experience with plates, may be inadequate to address damage tolerance

concerns for general composite structures.

Given that damage resistance is a structural phenomenon, and that

plates and shells differ only in radius/radii (structural parameter), it follows

that shell damage resistance could well differ from that of plates. Transversely

loaded convex shells, in contrast to plates, can experience a response

instability (buckling) [34-37]. A typical instability response for a transverse,

center-loaded composite shell is presented in Figure 2.1 to illustrate this

behavior [19]. Deflection is nondimensionalized with respect to shell thickness
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to illustrate the large-deflection, nonlinear behavior of the response. Convex

shells with an instability were found to have improved damage resistance

compared with plates [19], and it was proposed that the instability provides a

mechanism, not available for plates, to dissipate impact energy. Damage

resulting from impact not only depends on the magnitude of the peak force, but

also upon which equilibrium path the peak force occurs. Furthermore,

asymmetric and atypical damage distributions and extents for shells (as

compared to plates) were observed and attributed to asymmetric deformation

modes due to buckling. Thus, shell instability (buckling) is linked to response

and damage resistance differences between plates and shells.

Instabilities are key to understanding the response of composite shells

to damaging transverse loads. Noted differences in response, damage mode,

and damage extent have all been attributed to shell instabilities (buckling).

Asymmetric and atypical damage distributions have been observed [19, 38]

and asymmetric deformation modes due to buckling identified [21]. Due to

asymmetric deformations, the maximum curvature change along the shell

surface does not occur at the loading site. This implies that the maximum

bending stress will occur away from the loading site. Thus, damage may form

away from the loading site. This has not been observed in previous work with

composite plates. These various damage issues related to shell stability

necessitate detailed consideration of buckling to gain a better understanding of

composite shell damage resistance. Thus, buckling, particularly finite element

modeling of shell buckling, is discussed in detail in section 2.2.

2.2 Elastic Stability

Stability of structural systems has received considerable attention over

the years due to its importance in structural failures. In section 2.2.1, a brief
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introduction is presented to introduce terminology and provide background for

the discussion of shell buckling in section 2.2.2. These two sections are built

upon in the last section to provide a discussion of finite element modeling of

shell buckling.

2.2.1 Definitions

The mathematical definition of stability, credited to Poincar6 (see [39]),

serves as the basis for use of the term in structural stability. In the original

definition, singular behavior at a critical point is termed either a limit or

bifurcation point, with the term buckling associated only with the latter. In

structural stability problems, however, the two types of instability are both

referred to as buckling - bifurcation buckling and limit-point buckling (also

referred to as nonlinear collapse, see [40]). Thus, in modern structural usage,

stability and buckling are used interchangeably and it is understood that

buckling occurs either at a limit or bifurcation point. The two types of

structural buckling are distinguished by considering the pre- and post-buckling

deformation states. Bifurcation buckling involves switching to a different

deformation state (eigenmode) at the bifurcation point, whereas in limit-point

buckling, the mode of deformation does not change. The change in deformation

state is often called "switching" or "branching" and can be calculated for linear

systems using a simple eigenanalysis. Switching to a new deformation state

via bifurcation occurs whenever the new state is associated with lower strain

energy than the state on the primary path [40-42].

The distinction between the two types of buckling is often illustrated

using a load-deflection plot for a generic structure and loading as in Figure 2.2

where deflection is in the same direction as the load. Alternatively, load can be

plotted versus the amplitude of the bifurcation mode to highlight the mode
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switch. However, plots such as Figure 2.2 are utilized when limit-point and

bifurcation buckling are both possible. The path corresponding to the

prebuckling behavior, and also associated with the limit point, is called the

primary path. On this path, prebuckling deformations grow nonlinearly until

the tangent stiffness equals zero at the limit point. If a bifurcation point

associated with lower energy occurs before the limit point, the structure will

take the path (termed the secondary path) associated with the bifurcation

point. A characteristic of a bifurcation point is that the tangent stiffness is

discontinuous (representing the "switch" between the primary and secondary

paths), whereas it is continuous at a limit point. A negative slope for the

secondary path is shown in Figure 2.2 which is common for structures which

undergo bifurcation buckling. However, the secondary path at a bifurcation

point may have positive slope, e.g., pressure-loaded spherical caps have a 30%

reduction in tangent stiffness (slope) at the bifurcation point [44].

Although not meaningful from a practical standpoint, mention should be

made of non-simple bifurcation [45, 46]. In non-simple bifurcation, multiple

bifurcation modes exist at (or very near) a given critical load as opposed to only

one mode in simple bifurcation. Non-simple bifurcation, also called compound

buckling [45, 47], is often encountered in analysis of axially compressed

cylinders where many eigenmodes are associated with (nearly) the same

critical load. In reality, as opposed to idealized models, imperfections and

nonlinear postbuckling interact such that these multiple bifurcation paths are

rarely encountered.

When considering postbuckling of structural systems, the method of

load introduction must always be specified because different response paths

can result [19, 35]. Structures can be tested either in load- or deflection-

control, also referred to as "dead loading" and loading in a "hard device",
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respectively [48]. A load-controlled response will progress along the first

equilibrium path (see Figure 2.1) until a critical load is reached where the

response transitions dynamically (at a constant force) to the second

equilibrium path. The dynamic transition is termed "snapping" and the

response a "snap-through" instability. This is in contrast to a deflection-

controlled test, such as the data in Figure 2.1, where the entire instability

region can be characterized and no "snapping" occurs. A detailed treatment of

stability and transitions between equilibrium paths, based on thermodynamic

equilibrium considerations, can be found in reference [48].

The influence of geometric imperfections (imperfection sensitivity) on

the buckling response of structures is known to be extremely important in

many cases. The effect of imperfections has recently seen a resurgence of

interest in both experimental characterization of such imperfections, and the

inclusion of imperfections in numerical models [49-51]. Imperfections have

many effects on the resulting response, including reduction of the critical

buckling load, changing the mode of buckling, or even elimination of buckling

from the response entirely. A key conclusion regarding imperfections,

attributed to Koiter (see [45]), is that the greatest reduction in buckling load is

not due to an imperfection which has the form of the first buckling mode. This

non-intuitive finding will be discussed in the context of numerical modeling in

section 2.2.3 and chapter 4. Imperfection sensitivity for the type of shells

considered in this work is also discussed in the next section.

With the aforementioned definitions of stability for generic structures,

attention in the next section is restricted to elastic stability of transversely-

loaded shells. Inelastic considerations, such as plasticity and damage,

represent second order effects which are outside the scope of the current work.

It will be shown in the following sections and in chapter 4 that elastic buckling



-32-

for composite shells considered in this work represents a significant challenge

in itself.

2.2.2 Shell Buckling

The bulk of previous work on stability has focused on structural

elements (such as bars and columns) under purely compressive loading. The

stability of thin shell structures, of interest in this work, is far more

complicated than those of bars [45]. Paraphrasing [43], a property of the

thinness of a shell is that it has significant membrane stiffness relative to

bending stiffness. A shell can absorb membrane strain energy through small

deformations whereas much larger bending deformations are required to

absorb an equivalent energy in bending. If the shell is loaded so that significant

compressive membrane strain energy is built up, this energy may be

exchanged to bending strain energy through the process of buckling. This

qualitative definition of shell buckling aids in understanding buckling of the

transversely-loaded thin shells considered in this work. Kinematics due to the

shell radius give rise to geometric coupling between in- and out-of- plane

displacements. Due to this coupling, compressive membrane stresses develop

under transverse loading. Buckling then occurs when it is energetically

favorable to exchange compressive membrane strain energy for bending strain

energy.

The current work is concerned with the response of thin composite shells

to centered, transverse loading. The two-dimensional response of these

structures, particularly when buckling occurs, involves large deflections and

rotations (and thus highly nonlinear kinematics). Due to these response

characteristics, the problem has been analyzed exclusively by the finite

element method. Finite element modeling of shell buckling is discussed in



section 2.2.3. While quantitative evaluation of shell buckling requires the use

of finite elements, it is qualitatively similar to simple arch behavior/buckling.

Simple, shallow arch response to pressure or center point-loads has been

analyzed for many years using a variety of assumptions and modeling

techniques, e.g., [41, 42, 52-54]. The behavior of such arches depends on many

factors including geometry, loading, and material properties. Both limit-point

and bifurcation buckling can occur in the arch response, as well as an entirely

stable behavior. These distinctions have been useful in the study of composite

arches [55] and also in categorizing the experimental response of the

composite shells [56] considered in chapter 4. In the measured response of the

composite shells, as with arches, bifurcation involves a primary deformation

mode/path symmetric to the loading (arch/shell center) which transitions to an

asymmetric, or inextensional [41, 42] mode. Thus, composite shells of interest

in this work have a stable response (inflection point) or buckle at either a

bifurcation (asymmetric mode) or limit point (symmetric mode).

While distinctions based on arch response allow a qualitative

interpretation of two-dimensional composite shell response, a quantitative

description is complicated by many factors. These include laminate couplings,

specifics of the boundary conditions and mechanisms of load introduction,

large-rotation kinematics, and two-dimensional behavior (axial variation).

These and other issues make a quantitative description of the shell response

difficult. Prediction of composite shell response, particularly with the finite

element method, are discussed in the following section.

2.2.3 Finite Element Modeling

Prediction of the structural response of transversely loaded composite

shells requires significant analytical/computational effort due to nonlinear
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geometric/kinematic couplings, large rotations, and buckling. One approach to

modeling the shell behavior utilizes an assumed-modes approach which has

been found useful in predicting arch and shell response [35-37, 54, 55, 57]. A

priori knowledge of the correct displacement modes (e.g., asymmetric modes

for shell bifurcation) is useful but not necessary in an assumed-modes

approach provided a sufficient number of terms are included in the

displacement function. With the assumed-modes approach, only a few

idealized boundary conditions can be solved, which severely limits the

technique. In contrast, the finite element method provides the ability to

efficiently consider various boundary conditions/loadings for shells where

nonlinear kinematics are required. Thus, the finite element method is by far

the most popular analysis tool for analyzing these problems.

Nonlinear (kinematic) shell formulations, corotational procedures [58],

and their accompanying solvers, are commonly applied to the solution of shell

stability problems with finite element methods. Within these formulations,

path-parameter methods, e.g., [59], allow limit points to be easily traversed

and postbuckling to be assessed. These techniques are ideal for calculating

limit-point behavior because the response involves the nonlinear growth of a

prebuckling deformation state. However, bifurcation and the associated

postbuckling pose significant difficulties in the numerical formulation and

practical solution of the problem. In a discretized numerical representation of

the structure, as in a finite element model, branching to the new bifurcation

state must be induced because the secondary deformation state, and the

associated path, do not exist in the model. Path-parameter methods for

evaluating limit points will typically miss or "step over" bifurcation points [46,

60]. The finite element routines increment past a bifurcation point and

evaluate the primary path, masking the bifurcation point. Thus, if a
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bifurcation point exists, the calculated response will be in error (overprediction

of critical load) because the bifurcation path represents a lower energy state.

For example, the limit-point response of a benchmark large-deflection, large-

rotation shell buckling problem was originally solved without considering

bifurcation [61] and the limit-point response (symmetric deformations) was

generated rather than the lower-energy bifurcation solution (asymmetric

deformations).

Overlooking bifurcation in these types of shell buckling problems is

pandemic in the literature. For example, all reported finite element analyses of

shell buckling problems of the type considered herein find only the limit-point

response. These analyses effectively ignore bifurcation because of the

imposition of quarter models due to assumed symmetries, e.g., [32, 34, 62-72].

Many of these analyses consider the benchmark problem mentioned

previously and others consider composite shell response directly relevant to

this work. Proper analysis of these shells requires consideration of bifurcation.

To evaluate the bifurcation response, a full model, i.e., with no assumed

symmetries, is needed because the secondary path is typically associated with

asymmetric deformation modes.

To evaluate bifurcation with finite element techniques, the bifurcation

point must first be identified before a switch is made to the secondary solution

path. Finding bifurcation points on nonlinear primary solution paths, while not

automatic, can be accomplished through careful monitoring of characteristics

of the primary solution path. In particular, a change in sign of the determinant

of the stiffness (or, more correctly, the tangent stiffness) matrix indicates that

a bifurcation point has been passed [46, 73]. In practice, two converged

solution points (converged tangent stiffness matrices) from the primary path

"cradle" the bifurcation point [46]. Cradling involves determining successively
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smaller load/deflection ranges within which the bifurcation point lies. At the

first point, the stiffness matrix will have a positive determinant, and at the

second point the matrix will have a negative determinant. A bifurcation point

exists between two such points. Subsequent evaluations of solutions within

this range allow the bifurcation point to be cradled over successively smaller

ranges until it is sufficiently determined. "Sufficiently determined" is a

subjective decision of the analyst. While this method provides a way to

determine bifurcation points, they can be overlooked in practice, e.g., in the

benchmark problem of section 4.3.

Branches from the nonlinear primary path can only be calculated in an

improvised manner [60] which requires insight and additional effort on the part

of the analyst. Thus, after identifying the bifurcation point, myriad issues

related to switching/branching to the secondary equilibrium path remain.

Various techniques exist for inducing bifurcation in finite element analyses.

These all include modifying the structure so that structural response is biased

toward the bifurcation mode, and thus the secondary path. After switching to

the secondary path has occurred, postbuckling is easily evaluated using the

nonlinear techniques discussed earlier. Asymmetric boundary conditions and

eccentric loadings (e.g., [74, 75]) are sometimes utilized to bias the model. By

far the most common technique utilizes biases based on eigenmodes of the

structure, e.g., [46, 60, 73, 76]. In this technique, bifurcation is identified using

a standard eigenvalue analysis of the structure which also yields the

eigenmode(s). The number and amplitude of eigenmodes must be selected

(subjectively) by the analyst when performing a branch switch. Typically, and

for simplicity, only the first eigenmode is used.

One method for branch switching introduces geometric imperfections

into the structure which have the form of the calculated eigenmode(s). If the
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imperfection amplitude is large enough, bifurcation will be induced because the

shell geometry is biased towards this deformation mode. In trying different

amplitudes, the goal is to obtain an imperfection that is large enough to induce

bifurcation, but small enough that the modified problem (due to imperfections)

still represents the original problem. As with cradling the bifurcation point,

this is an iterative process of trial and error. Finally, there is the choice of

where on the primary path to evaluate and introduce the eigenmodes.

Introduction and evaluation near the bifurcation point, rather than in the

initial configuration, is desired to minimize the effect of the imperfections on

the prebuckling response. While many analyses introduce the geometric

imperfection into the initial model of the structure, differences have been noted

when the imperfection is introduced near the bifurcation point [69].

A more sophisticated method involves introducing the eigenmode(s) as a

solution to the incremental shell deformation. The eigenmodes are determined

at the first of the two points which ultimately cradle the bifurcation point.

After the mode(s) and amplitude(s) are selected by the analyst, they are placed

in the model and the energy of the system is minimized with respect to load.

Thus, the first of the cradling points becomes the bifurcation point and, given

that the deformation state has been predetermined, the next "solution" is found

by finding the load which minimizes the energy of the system. While

bifurcation can be induced close to the true bifurcation point, the subjective

choices of eigenmode number and amplitude remain, as well as the trial-and-

error method of scaling the eigenmode(s) to obtain a converged solution.

While the finite element technique provides a robust method for

considering various boundary conditions and structural configurations, care

must be taken when utilizing this method for stability problems. Bifurcation

for the type of shell structures considered in this work, while clearly an
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important aspect of the response, is typically ignored in the literature. In

either case, using scaled eigenmodes to induce bifurcation requires subjective

decisions by the analyst. The analyst must have some insight into what is

required of the bias (eigenmode number and amplitude) and interactively adjust

the finite element code [60].

Damage resistance studies of composite shells rely on accurate

prediction of the structural response. Bifurcation must therefore be

considered. Finite element models must be able to properly capture such

bifurcation if predictive capabilities for damage resistance are to be attained.
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CHAPTER 3

APPROACH

The objective of the current work is to better understand composite shell

response to transverse loadings which may damage the structure. To

accomplish this objective, a combined experimental and numerical approach is

used to study the response of composite shell structures to transverse loading.

The assessment of response differences due to either limit-point or bifurcation

buckling is of particular importance in this study since buckling has been

shown to be a key mechanism in the impact of shells, including damage

resistance. Both experimentation and numerical modeling provide insight into

these processes and their effect on damage resistance of composite shell

structures.

The general approach taken in this research, including specimen

geometry and boundary conditions, is explained in section 3.1. In section 3.2,

numerical modeling efforts are discussed, particularly the evaluation of

buckling behavior in the nonlinear response of shells. The experimental

component of this work is described in section 3.3.

3.1 General Overview

Experiments, combined with numerical modeling (finite element

analysis), are used to gain a better understanding of the response of laminated

composite shell structures to transverse loadings which may cause damage.

Previous experimental work has established the importance of buckling
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instabilities in the response of such composite shells, including effects on

damage resistance [18, 19, 21]. Therefore, a significant challenge, both

experimentally and numerically, is to evaluate shell buckling and how this

behavior might affect damage formation. Thus, before embarking on further

experimentation, numerical modeling was used to assess and predict shell

response. Elastic models, which do not consider the formation of damage

during loading, are used to analyze the previous experimental work which was

largely free of damage formation. Prediction of the nonlinear, large-deflection,

large-rotation response, including buckling, represents the state-of-the-art in

numerical (finite element) modeling. Traditional methods for evaluating shell

buckling are utilized as well as a novel technique which is detailed in chapter 4.

A benchmark large-deflection shell buckling problem and previous

experimental data are used to verify and validate the numerical models.

Insights from the initial elastic modeling and previous experimental

work are used to design the experimental portion of this work. In particular,

boundary conditions and damage formation were identified as key areas for

further exploration. With regard to boundary conditions, the free axial edges

(see Figure 3.1) are the primary difference between the previous experimental

boundary conditions and a fuselage section. An aerospace structure such as a

wing or fuselage would be supported on all four sides. The test fixture from the

previous work is therefore modified to restrain the shells along the axial edges

while maintaining the hinged condition along the circumferential edges. Load-

deflection and mode-shape data from testing are used to characterize the shell

response with the new boundary conditions. Damage resistance for these more

realistically restrained shells is characterized to assess whether asymmetric

(atypical) damage forms at the loading site or whether damage forms away

from the loading site, as well as when (with respect to loading) damage occurs.
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Previous experimental results, as well as the numerical modeling, indicate that

this may occur due to the asymmetric deformation modes inherent in

bifurcation. Shell damage, which is atypical compared to plates in both extent

and distribution, is of significant interest because tolerance requirements,

based on known plate behavior, may not adequately address this damage.

Finally, numerical models are developed for comparison to the new

experimental data. Effects of the structural response, particularly buckling,

on damage formation are considered by evaluating stress states from the

numerical models on a ply-by-ply basis.

Due to complexities in the loading and the existence of discontinuities, it

is difficult, if not impossible, to study damage issues by direct analysis of a

specific full-scale aerospace component such as a fuselage or wing. Therefore,

it is desirable to obtain a more general understanding of damage issues via a

much 'simpler' structural element. The general understanding can then be

applied to specific cases as appropriate. This simpler structure needs a

"proper" resemblance to the actual structure in that it should have the same

geometrical characteristics and loading conditions. With this in mind, a curved

section of a fuselage is envisioned for analysis. This structural element is a

singly curved cylindrical composite shell with rectangular planform which has

previously been investigated in experimental impact and quasi-static tests [18,

21]. The static idealization is justified due to the equivalence of impact and

quasi-static responses previously demonstrated for these structures and

impact regimes of interest [38] (see chapter 2). Thus, the transverse static

loading of this structural element is studied in an effort to understand the shell

response, particularly buckling and damage resistance.

The composite shells studied are made from Hercules AS4/3501-6

graphite/epoxy prepreg tape in a [-45n/0n]s layup. This layup and material
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system have been used previously in both damage resistance [19-21, 38] and

tolerance studies [77]. Thus, results from this work can be directly compared

to the previous work, the only difference being in the axial boundary condition.

The scaling parameter, n, takes on the values 1, 2, and 3 to give three different

laminate thicknesses. Individual plies have a thickness of 0.134 mm and are

grouped in this fashion to create effective plies. The orientation of ply angle, 8,

with respect to the specimen axes and structural parameters are identified in

Figure 3.1. Using effective plies as the basis for scaling, the structural

variables are represented as:

X, = n(X1 ) (3.1)

where X represents a structural parameter (radius, span, or thickness). Base

values, X1 , for each of the parameters are: R 1 = 152 mm (6"), S 1 = 102 mm

(4"), and T1 = 0.804 mm (6 plies). It should be noted that S 3 (305 mm) and T2

(1.608 mm) approximately correspond to values for stringer spacing (span)

and thickness for a typical commercial aircraft and that R 6 (0.914 m) and R 12

(1.829 m) correspond to general aviation and commercial aircraft fuselage

radii, respectively [78]. Specifics of the structural parameters studied are

given in sections 3.2 and 3.3.

All shells considered in this work are centrally loaded as indicated in

Figure 3.2. Specifics of the load introduction are detailed in chapters 4 and 5

for the numerical modeling and experimental portion of the work, respectively.

Two different sets of boundary conditions are considered - one set from

previous experimental work [21] and a second set which is more representative

of a typical aerospace structure (supported on all four edges). In the previous

work, pinned/no in-plane sliding (hinged) boundary conditions were used along

the circumferential edges while the axial edges were traction free. The hinged



-44-

Loading

~V

Vv~

Figure 3.2 Illustration of restrained shell with local coordinate system used
to describe boundary condition at shell axial edge.
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condition along the circumferential edge and a local right-handed, orthogonal,

curvilinear coordinate system is illustrated in Figure 3.2 to help clarify the

idealized boundary conditions. The v- and w- displacement components are

restrained (fixed) along the circumferential edge while rotation is allowed (free)

about the x-axis (u-displacement component). The u-displacement is not

restrained during testing, but the shell edge will experience some frictional

restraint during loading. The importance of this boundary condition is

addressed in chapter 4.

A second set of boundary conditions are used in the experimental

component of this work. The curved axial edges are restrained in addition to

the hinged condition on the circumferential edges from the previous work. In

the case of a fuselage, the shell structure would be supported on the

circumferential edges by stringers and on the axial edges by stringers or

frames. The out-of-plane component of displacement (w) is restrained along

the axial edges which gives a simple-support condition. The true boundary

condition of a fuselage lies somewhere between simply supported and fully

clamped. Thus, the experimental simple-support boundary condition is a

reasonable idealization of the actual boundary condition.

3.2 Numerical (Finite Element) Modeling

Modeling of the shell structures considered necessarily incorporates both

limit-point and bifurcation buckling. The nonlinear response of these

composite shells to static transverse loading is investigated numerically using

the finite element method. The finite element code STAGS (STructural

Analysis of General Shells), available at the Structural Materials Branch of

NASA Langley Research Center, is used to analyze the nonlinear response of

shell structures in this work [73]. The specimens analyzed are thin, monolithic
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composite laminates which are relevant as wing or fuselage structures and

correspond to composite shells which have either previously been tested [21] or

which are tested in this work. Analysis of thick laminates, i.e., including

transverse shear in the analysis, is beyond the scope of this work.

The STAGS finite element routine utilizes von Karmn nonlinear

kinematics [73] and shell elements. This formulation allows for large rotations

and small strains but ignores transverse shear deformation. This is

appropriate in the analysis of thin shells [79]. STAGS uses a corotational

procedure [72] with the Riks are-length method [59] to calculate large

deformation nonlinear behavior of structures. To assess limit-point versus

bifurcation buckling (including asymmetric deformation modes), eigenvalue

analyses can be conducted near limit points to determine whether the solution

path bifurcates rather than approaches a limit point. This is traditionally

accomplished manually by terminating the nonlinear analysis near an

expected bifurcation point and performing a linear bifurcation analysis. The

eigenmode(s) from the bifurcation analysis is(are) then arbitrarily scaled and

superposed on the shell structure to form an imperfect shell. The nonlinear

analysis is then restarted (with the imperfections) to determine if the solution

follows a new, and oftentimes asymmetric, bifurcation path. Alternatively, a

novel approach to inducing bifurcation is introduced in this work utilizing

asymmetric meshing of the shell in the circumferential direction. Advantages

of this new technique and comparison to traditional techniques, such as using

scaled eigenmodes, are discussed in detail in chapter 4.

Elastic analyses of a benchmark large-deflection shell problem from the

literature as well as previous experimental results from quasi-static testing of

composite shells [21] is undertaken. Damage is not considered in these initial

calculations as the numerical comparisons simply serve to validate the models
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and investigate the new technique for bifurcation. The benchmark problem

[61] has the same idealized boundary conditions as the first set of experimental

results (see Figure 3.2). Load-deflection curves and mode-shape evolutions for

a variety of composite shells, previously unavailable in the literature, are used

to assess the accuracy and limitations of the numerical modeling techniques.

Eighteen different shell configurations were tested in stroke control in that

previous work [21]. In addition to the three thicknesses described in section

3.1, two radii and three different span values were considered (see equation

3.1): n takes on the values 6 and 12 for radius and 1, 2, and 3 for span. A

comparison of the average response characteristics (force-deflection data)

between the finite element results and experiments is detailed in chapter 4.

Deflection-mode data at different deflections (stroke values) give additional

insight into the shell response and are also compared with those predicted from

the analysis. These comparisons are used to give credence to the finite

element analyses and the new technique for evaluating bifurcation.

Shells from the experimental portion of this work (section 3.3) are also

analyzed using the finite element technique. Load-deflection data and mode-

shape evolutions are compared to determine whether the models capture the

data. Of particular importance for these cases is the presence of bifurcation

versus limit-point buckling. It is unknown whether bifurcation into

asymmetric modes will occur and whether those modes will affect damage

formation. However, it is particularly important to assess whether the models

capture the mode-shape behavior observed in the experiments because these

cases closely represent real aerospace structures. If the response for these

cases can be captured, stresses can then be evaluated to correlate with

damage data. With regard to any type of damage prediction, it is important to

note that the uncertain understanding of damage modes and adequate failure



criteria for composites limit even the most complex analyses. A large number

of different (but similar) criteria, all involving engineering approximations, are

available in the open literature for analyzing composites, e.g., [80, 81].

However, calculation of the structural response is the primary goal of this

research. Thus, any observed shell damage which is atypical of well-known

plate damage can be considered by evaluating ply stresses that result from the

calculated structural response, and comparing those distributions and

magnitudes with available damage data. Progressive or multi-mode damage

modeling will not be considered as it is beyond the scope of this work.

3.3 Experiments

In the experimental portion of this work, the response of composite

shells with boundary conditions representative of a real structure are

considered. A fuselage or wing structure is supported on all four edges and

therefore an axial restraint is added to the boundary conditions (hinged on the

circumferential edge) considered previously. A knife-edge restraint is added to

the axial edges which acts to restrain the out-of-plane motion of the axial

edges. These knife-edge restraints are added to the circumferential hinge

constraints of the test fixture used previously [18, 21]. The addition of the

axial restraint to the shell edges is the only difference between the new

experimental work and the previous experiments discussed in section 3.2.

Utilizing the new boundary conditions, two specific goals are accomplished

through the experimental program: characterization of the loading response

including mode-shape evolutions, and evaluation of damage resistance.

Damage, particularly comparison between shells with symmetric and

asymmetric deformation modes, is explored for insight into damage

processes/mechanisms. Destructive damage evaluation (sectioning) is also



used to investigate damage formation away from the loading site.

The composite shells are centrally loaded in stroke control using the

same 12.7 mm (0.5") diameter hemispherical steel tup used previously.

Although eighteen shells were tested previously, a smaller test matrix is used

in this work because the curved knife edges which restrain the axial edges do

not allow radius or span adjustment. Therefore, only thickness can be varied

giving three specimen types - T 1 , T2 , and T3. Radius and span are set equal to

1829 mm (72") and 305 mm (12"), respectively, because these values are

closest to a typical commercial fuselage. Six total specimens are loaded in two

rounds of testing. All testing procedures are detailed in chapter 5.

In the first round of tests, the load-deflection response for each of the

shell types with the new boundary conditions is characterized. These tests are

conducted in stroke control until either buckling or gross damage is observed.

The test fixture can not restrain the shells on the circumferential edge after

the instability region (second equilibrium path in Figure 2.1), and gross damage

is undesirable because of inspectibility issues related to Barely Visible Damage

(BVD). Shell response on the second equilibrium path is associated with

symmetric deformations and tensile membrane stresses, much like the

response of plates. As differences in plate and shell response are of interest in

this work, it is not essential that this response regime (second equilibrium

path) be characterized. Thus, loading is terminated so that the shells remain

in the test fixture or so they are not severely damaged. After testing, the shells

are evaluated for damage using x-radiography and sectioning. X-radiography

characterizes damage at the loading site while sectioning allows damage

formation away from the loading site to be investigated.

The primary goal of the second round of testing is to obtain mode-shape

evolutions for each of the specimens. The load-deflection response from the



first round of testing is used to determine stroke intervals at which to take

mode-shape data in the second round of testing. A sufficient number (typically

6 or 7) of evenly spaced mode-shapes are desired for each specimen to provide

insight into the buckling process. Additional mode shape locations may be

considered if interesting points are identified on the initial load-deflection

curves. Mode shapes are taken at these predetermined intervals at three

equally-spaced axial locations on the shell surface. This provides a detailed

characterization of the deformation of the shell surface. Load-deflection data is

also acquired during the second round of testing to determine the repeatability

of the tests and, thus, the effectiveness of the boundary conditions (test

fixture). These tests are terminated at a mode-shape location (stroke) before

reaching the peak load from the first round of tests. Damage is known to scale

with peak load for composite plates [13, 23, 26], and preliminary work

indicates a similar relationship for shell structures in most cases [38]. Thus, if

different peak loads are reached in each round of testing, the process of damage

formation can be interrogated.
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CHAPTER 4

FINITE ELEMENT MODELING

Modeling procedures for predicting the response of shell structures are

discussed in this chapter. The specific finite element method utilized is first

discussed, particularly issues related to calculation of buckling. A novel

technique for exploring bifurcation within nonlinear finite element formulations

is developed and discussed. The utility of this method is illustrated vis-a-vis a

benchmark shell buckling problem from the literature, and the models using

this technique are validated by comparison to composite shell buckling data.

4.1 Modeling Overview

The STAGS (STructural Analysis of General Shells) finite element code

available at the Structural Materials Branch of NASA Langley Research

Center [73] was used to analyze the elastic response of transversely (center)

loaded shells. This code is used extensively to analyze the nonlinear response

of (composite) shell structures. The 410 shell element available in STAGS was

utilized for its applicability to the thin shell structures in this work [79]. This

"workhorse" element in the STAGS code employs the nonlinear Kirchoff-Love

shell hypothesis which ignores transverse shear. However, it is known to be

extremely accurate for modeling thin shell structures. It is a displacement-

based four-node quadrilateral C1 shell element having a cubic (translations and

rotations) bending field and a linear/cubic (in-plane translation/transverse

rotations) membrane field. The 410 element has three translational and three



rotational degrees of freedom per node and also includes drilling rotational

stiffness. The true Newton capability is utilized to iteratively solve the

resulting nonlinear equations. Arbitrarily large rotations, but small strains,

are modeled using the standard nonlinear corotational procedure [72] in

STAGS and limit points are easily traversed using the Riks arc-length

procedure [59].

The right-handed curvilinear coordinate system used in this work is

shown for a generic shell in Figure 4.1 In Figure 4.1, a 10 by 10 mesh of 100

elements is used to discretize the shell along the axial (x) and circumferential

(y, curvilinear) directions, respectively. This mesh has previously been shown

to give a converged limit-point solution (using STAGS) to the benchmark

problem analyzed in section 4.3 [72]. The mesh shown in Figure 4.1 utilizes

one shell unit in STAGS. A shell unit is one of several substructures within

STAGS which can be conveniently (and independently) discretized and then

connected/joined with other substructures (beam, plate, shell, or parts thereof)

or individual elements.

Boundary conditions are the same for all shells analyzed in this section.

Shells are free of traction on the axial edges and hinged on the circumferential

edges. The circumferential edge (hinged) constraint is represented in the model

by setting all nodal displacements (u, v, w) and rotations (Ry, Rz) equal to zero

except the x-axis rotation (Rx) where zero moment is enforced. The shells are

point-loaded at the center of the shell surface in all cases. The point-load

assumption and variations in boundary conditions are discussed in subsequent

sections. Quarter-symmetry is not assumed because a full model of the shell is

required to investigate bifurcation as noted in chapter 2. Shell discretization is

further discussed in the next section because asymmetric

discretization/meshing is utilized to investigate bifurcation.
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Figure 4.1 Illustration of a 10 x 10 mesh and curvilinear shell coordinate
system. (The x and y (curvilinear) vectors are in the plane of
the shell while z is everywhere perpendicular to the shell
surface.)
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As discussed in section 2.2.3, bifurcation from a nonlinear prebuckling

state is significantly more challenging within finite element formulations than

evaluating limit points. Path-parameter methods, such as the arc-length

method utilized in STAGS, can easily evaluate limit points but can step over,

or miss, bifurcation points during a nonlinear analysis [46, 60]. Issues arise in

both evaluating whether a bifurcation point exists, and also in

switching/branching to the secondary (bifurcation) path. A change in sign of

the determinant of the stiffness (or, more correctly, the tangent stiffness)

matrix is monitored within STAGS to indicate whether a bifurcation point has

been passed [46, 73]. Successive analyses cradle the indicated bifurcation

point and allow it to be sufficiently determined. Cradling of the bifurcation

point is the preferred technique to find bifurcation points within the STAGS

code [73]. Two standard techniques to switch/branch to the secondary path

within STAGS are explored vis-a-vis a benchmark problem in section 4.3. Both

techniques utilize eigenmodes of the bifurcation point. Eigenmode(s) are either

introduced as geometric imperfections in the structural model, or are imposed

as a solution near the bifurcation point. The latter method is called the

"equivalence transform" technique within STAGS and is preferred as the more

robust method for calculating bifurcation paths. However, as discussed in

section 2.2.3, both methods require significant and subjective interaction on

the part of the analyst to be successful. An alternative technique for

assessing bifurcation is explored in section 4.2 to address these issues.

4.2 Asymmetric Meshing Technique for Bifurcation

The novel approach used in this work for inducing bifurcation arises

from considering the effect imperfections have on the numerical representation

of the structure in the finite element model. Traditional techniques for inducing



bifurcation introduce biases or imperfections into the numerical model of the

structure by introducing a geometric imperfection in the structural model or by

assuming a form of the solution. These biases or imperfections act as

perturbations on the nonlinear stiffness (tangent stiffness) matrix or loading

vector of the numerical model. The perturbations due to the fictitious

imperfection allow a transition to the secondary bifurcation path because it is

the preferred lowest energy state. The novel technique developed in this work

introduces perturbations into the model by meshing the structure

asymmetrically. The resulting perturbation in the nonlinear mathematical

model acts to induce bifurcation in the same way mathematically as geometric

imperfections. Geometric imperfections create a "built-in" asymmetry in the

nonlinear stiffness matrix by altering, or perturbing, the problem geometry.

The asymmetric meshing technique (AMT) also creates an asymmetric

nonlinear stiffness matrix for the shell structure. However, the root of the

perturbations in the AMT is the asymmetric spatial variation in discretization.

Asymmetry using the AMT is thus "built-in" to the numerical model without

altering/perturbing the actual problem (geometry or loading).

The AMT provides a simple method for perturbing the numerical model

of the actual structure without modifying the original problem. This is in

contrast to traditional techniques which modify the original problem either by

imposing structural imperfections or solutions based on the buckling response.

Traditional techniques also require prior knowledge of the structural response,

particularly the bifurcation mode(s). In the AMT, the solution to the

bifurcation response simply relies on numerical perturbations and is not based

on a priori assumptions/knowledge. The actual problem, not a modified one, is

solved using the AMT which allows the true bifurcation point to be directly

determined and traversed. The tangent stiffness matrix does not need to be
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monitored nor is the analyst required to initiate a branch switch. The AMT

thus does not require prior knowledge of the structural response and avoids

subjective choices by the analyst such as the number and amplitude of

eigenmodes to use in a branch switch.

To induce bifurcation with the AMT, the shell is meshed asymmetrically

in the circumferential (y) direction. An asymmetric mesh of this sort can be

obtained in a variety of ways and different meshes are discussed in the context

of the benchmark shell problem in section 4.3. The asymmetric mesh in Figure

4.2 is the most prevalent mesh used throughout this work and compares very

closely with the 100 element symmetric mesh in Figure 4.1. The asymmetric

mesh in Figure 4.2 is comprised of two shell units, rather than one shell unit in

the symmetric case (see Figure 4.1). The first shell unit covers 60% of the

shell in the circumferential (y) direction, while the second shell unit covers the

remaining 40%. The first shell unit is meshed identically to the symmetric

case in Figure 4.1 with 6 elements along the curved surface. The second shell

unit contains five, rather than four, elements in the circumferential direction.

This creates an asymmetric mesh with 11 elements (total) in the

circumferential direction and 110 elements to represent the entire shell.

Various asymmetric discretization schemes are compared in section 4.3 vis-a-

vis the benchmark problem. The 60% / 40% distribution of Figure 4.2 was

chosen for two reasons. One, the asymmetry can be easily varied by simply

changing the mesh refinement in the second (40% ) part of the shell. This does

not require changing the loading definition which is on the first shell unit. Two,

mesh refinement at the loading point was anticipated (but never required)

which is more easily accomplished within one shell unit, rather than across two

which would be the case for a 50% / 50% distribution.

Discretization in this work is described by giving the number of elements
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Figure 4.2 Illustration of an asymmetrically meshed shell discretized into
two shell units in the circumferential (y) direction.
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in the axial (x) and circumferential (y) directions for the first (60% of surface)

and second (40% of surface) shell units, respectively. The asymmetric mesh of

110 elements in Figure 4.2 is denoted by a 10x6 / 10x5 mesh while the

symmetric mesh in Figure 4.1 is denoted as a 10 x 10 mesh (one shell unit). It

is important to note that element compatibility is the same as compatibility

between shell units. Thus, a 10x6 / 10x4 mesh of 100 elements is identical to a

10x10 mesh.

4.3 Benchmark Shell Buckling Problem

Characteristics of the type of shell buckling considered in this work are

illustrated through a benchmark isotropic shell buckling problem, apparently

solved originally by Sabir and Lock [61]. The benchmark is used in the

literature to evaluate large-rotation, large-deflection finite element models.

The utility and performance characteristics of the asymmetric meshing

technique, relative to other traditional methods, are identified through the

benchmark problem.

4.3.1 Comparison to Previous Work (Limit-point Buckling)

The configuration of the benchmark isotropic shell problem is given in

Figure 4.3. The singly-curved shell has a radius of 2.54 m (100"), a thickness of

6.35 mm (1/4"), and a width and span both of 508 mm (20"). The shell material

has a Young's modulus, E, of 3.10275 GPa and a Poisson's ratio, V, of 0.3. The

square-planform shell is point-loaded at the center and has boundary

conditions of hinged on the circumferential edges and free on the axial edges.

Both load and deflection are taken as positive in the - z shell coordinate

direction (see Figure 4.1). Results of the original analysis [61] and a more

recent analysis from the literature [71] are compared with a STAGS solution
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Load

R

Figure 4.3 Configuration for benchmark shell problem.

using a 10 x 10 mesh in Figure 4.4. The somewhat coarse 10 x 10 mesh

represents a converged solution checked against a finer 20 x 20 element mesh

and repeats the limit-point response found in the literature. The shell response

is noted to experience negative loads in the postbuckling region to maintain

equilibrium. In a deflection- (stroke-) controlled experiment, the ability to apply

both positive and negative load would be necessary to measure the benchmark

response in Figure 4.4. The STAGS solution for the benchmark is also the

same as that reported in reference [72] using STAGS and quarter-symmetry.

All solutions found in the literature for this problem match those given in

Figure 4.4.

The shell response shown in Figure 4.4, using the symmetric mesh,

represents a limit-point solution where the shell buckles into a mode

corresponding to the prebuckling deformations. The mode is symmetric with

respect to the loading along the circumferential shell direction as illustrated in
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Figure 4.4 Numerical analysis and previously reported results [61, 71] for
load-deflection response of benchmark shell problem.
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the mode-shape evolution in Figure 4.5. Mode shapes of the shell mid-surface

are provided at discrete values of center displacement (we) to reference the

load-deflection response in Figure 4.4. The mode shapes in Figure 4.5, and

throughout this work, are provided in a global Cartesian frame (different than

the curvilinear frame in Figures 4.1 and 4.2) to best visualize the shape of the

shell during buckling. The Cartesian frame is coincident with the curvilinear

shell frame at the center of the shell, with the origin at the midpoint of the axial

(hinged) boundary condition (point O in Figure 4.1). The modes in Figure 4.5 are

along the center of the shell, and the initial shell geometry is given by the case

of w, equal to 0.0 mm.

Both the load and deflection are noted to decrease after the critical

(limit) point in Figure 4.4. This behavior is termed "snapback" and has been

rationalized by considering the variation in behavior in the axial direction, i.e.,

the behavior at the shell center as in Figure 4.5 versus that at the free axial

edges. The center of the shell buckles before the edges of the shell due to the

loading at the center. After the edges buckle, they snap-through to a fully

inverted configuration whereas the center of the shell is restrained by the

loading (negative in this region of the response). This can be seen in the load

versus center and edge deflection plots in Figure 4.6. The snapback behavior is

attributed to the edge response first lagging, then leading, the response at the

center of the shell. Both free edges follow the edge response in Figure 4.6,

because the response of this isotropic shell is symmetric in the axial direction

with respect to the shell center.

4.3.2 Bifurcation Buckling

All solutions in the literature for the benchmark problem evaluate the

limit-point response using quarter-symmetries, effectively ignoring bifurcation.
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Figure 4.5 Central spanwise deformation modes for benchmark problem at
different values of center deflection, w,, using STAGS with a
symmetric (10x10) mesh.
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Figure 4.6 Load versus center and edge deflections for benchmark problem
using STAGS with a symmetric (10x10) mesh.
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To consider bifurcation, two traditional techniques are utilized to evaluate the

benchmark response for comparison to the AMT. As noted in chapter 2,

bifurcation can be identified in a nonlinear finite element analysis by

monitoring the determinant of the tangent stiffness matrix. Taking this

approach, bifurcation is indicated in the benchmark problem (10x10 mesh)

between 410 N and 530 N. The first technique to evaluate bifurcation uses

geometric imperfections in the problem geometry. An imperfection in the form

of the first linear eigenmode is used to modify the initial shell geometry. This

results in an asymmetric nonlinear shell stiffness matrix which triggers the

bifilrcation response shown in Figure 4.7. The largest translational component

of the eigenmode is scaled as a percentage of the shell thickness to give the

three different responses. A plot of this eigenmode in Figure 4.8 reveals that it

is dominated by an asymmetric mode in the circumferential direction, in

contrast to the symmetric prebuckling deformation in Figure 4.5. The smallest

imperfection amplitude (0.1 %) is not large enough to cause the shell to

bifurcate and the limit-point response is computed. This can be seen by

comparing the response in Figure 4.7 to that of Figure 4.4. Larger values of

imperfection (1.0% and 10%) induce bifurcation at different values of critical

load, 509 N and 441 N, respectively, with different postbuckling

characteristics. Varying the imperfection amplitude gives a range of

responses and buckling loads. In practice, the response is computed at various

values of imperfection amplitude until the smallest one which causes

bifurcation is identified.

A second, and more sophisticated technique for evaluating bifurcation is

the equivalence transform technique. This branching procedure, discussed in

section 4.1, was used to calculate the bifurcation response and the results are

shown in Figure 4.9. Bifurcation is induced at 509 N because the previous
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Figure 4.7 Load-deflection response for benchmark problem using STAGS
with a symmetric (10x10) mesh incorporating scaled eigenmode
imperfections into the initial geometry.
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Figure 4.8 Central spanwise plot of the linear bifurcation mode for
benchmark shell problem.

20

10

0

E0

C(
0

-10
-200



-67-

-e- 1.0% t
-a--- 20% t

E 10% t

20 30

Central Deflection, we (mm)

Figure 4.9 Load-deflection response for benchmark problem using STAGS
with a symmetric (10x10) mesh incorporating scaled eigenmode
deformations (equivalence transform) near the bifurcation
point.
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analyses using the symmetric mesh and geometric imperfections indicate a

bifurcation point between loads of 509 N and 530 N. The first eigenmode is

taken from the tangent stiffness matrix as evaluated at 509 N and then used

to initiate the branch switch. Again, a small (1.0% thickness) imperfection

amplitude misses the bifurcation point entirely, while larger values induce

bifurcation much like the response found in Figure 4.7. An eigenmode

amplitude of 2.0% (relative to specimen thickness) is used to calculate

deformation-shape evolutions for the benchmark problem in Figure 4.10. In

contrast to the symmetric modes in Figure 4.5, the bifurcation response in

Figure 4.10 is dominated by an asymmetric mode in the postbuckling regime

until the response rejoins the limit-point solution on the second equilibrium

path. It is clear from Figures 4.7 through 4.10 that bifurcation into an

asymmetric mode occurs in this benchmark problem, and that the limit-point

solutions previously presented miss the asymmetric behavior and

overestimate the buckling load by approximately 12%.

Bifurcation can also be investigated using the asymmetric meshing

technique described in section 4.2. Bifurcation in the benchmark is

investigated using a 10x6 / 10x5 mesh (see Figure 4.2) and the results are

compared to the limit-point response in Figure 4.11. The bifurcation response

previously identified is found directly, including the bifurcation point and

postbuckling response, using the asymmetric meshing technique. The buckling

load for the asymmetric mesh (510 N) corresponds with that found with the

equivalence transform technique in Figure 4.9. Asymmetric mode shapes in

the postbuckling region for the asymmetric mesh are given in Figure 4.12 for

comparison to those in Figure 4.10 and excellent agreement is noted. The

behavior of the edge and center of the shell in Figure 4.13 are noted to have

similar characteristics as those for the limit-point solution given in Figure 4.6
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Figure 4.10 Central spanwise deformation modes for benchmark problem at
different values of center deflection, w,, using STAGS with a
symmetric (10x10) mesh and the equivalence transform
method (2.0% thickness).
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Figure 4.13 Load versus center and edge deflections for benchmark problem
using STAGS with an asymmetric (10x6 / 10x5) mesh.
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except that snapback is not evident at the center of the shell. The center of

the shell (where loading is applied) first leads the edge response, then lags it

through the latter part of the postbuckling region before it again leads on the

second equilibrium path. Thus, although snapback is not a feature of the

bifurcation response, the behavior of the shell does vary in the axial direction,

i.e., the shell does not deform as an arch.

4.3.3 Mesh Refinement and Convergence

In the previous examples involving the benchmark problem, the shell

was discretized using a 10x6 / 10x5 mesh. The question arises as to how

changing the asymmetric mesh will affect the response, aside from the usual

convergence issues associated with mesh refinement. Many analyses of the

benchmark were conducted using different asymmetric meshes. Of these,

three solutions are presented in an exploded view in Figure 4.14 to show the

excellent agreement among the various meshes. In the cases shown in Figure

4.14, and in all other cases where bifurcation is induced, different asymmetric

meshes give the same response including buckling modes. From these studies

it can be concluded that if the perturbation exists, the model will evaluate the

same (lowest-energy) bifurcation response. Thus, the form of the asymmetric

mesh is found to be irrelevant when bifurcation is induced. This leads to the

question as to whether bifurcation is always induced.

It is a common feature of finite element analyses that successive mesh

refinement should converge to an exact solution in the limit of infinitely many

elements. However, further refinement of the asymmetric meshes discussed

does not lead to a convergence to the bifurcation path. Rather, subsequent

refinement of the mesh moves the solution from the (correct) bifurcation path

to the primary path. This is illustrated by the solutions to the benchmark
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problem given in Figure 4.15 using two different refined asymmetric meshes.

The more refined mesh, 20x12 / 20x9, does not induce bifurcation but rather

shows the limit-point response. A less refined, but more asymmetric mesh

(20x12 / 20x5), finds the correct bifurcation response. This indicates that, if

the perturbation (asymmetry) is not strong enough, the limit-point response

will be found. This is due to numerical roundoff in the finite element model and

is a manifestation of the same effect which causes small eigenmode

amplitudes to miss bifurcation. Thus, as with the equivalence transform

technique, either the limit-point or bifurcation response will be evaluated using

the AMT depending on the strength of the induced perturbation. During the

analysis of bifurcation using asymmetric meshing, it is clear when bifurcation

is induced - a path different (and of lower energy) than the primary path

results. In the analyses of shells in this chapter, a 10x6 / 10x5 mesh is found

to provide converged bifurcation solutions. However, other shell

geometries/materials are likely to have different convergence behavior and

may require more refined meshes than the 10x6 / 10x5 mesh used for the shells

in this chapter.

4.4 Analysis of Previous Experimental Work

Previous finite element analyses have been hampered by a lack of

experimental data by which to validate the analyses. The studies rely on

comparison to other analyses for verification, e.g., [82] and the benchmark

problem discussed in section 4.3. Recent experimental data allows the unique

opportunity to validate the current analysis technique by comparison to large-

deflection, large-rotation, composite shell data [18, 21]. Load-deflection and

mode-shape evolutions are available for these tests and are used for

comparison to results from the STAGS finite element models utilizing the
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Figure 4.15 Load-deflection response for benchmark problem using STAGS
with asymmetric (20x12 / 20x9) and (20x12 / 20x5) meshes.
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AMT.

4.4.1 Description of Experiments

Full details of the experiments analyzed in this section can be found in

References [21, 56]. These shells share many characteristics of the composite

shells considered in the experimental portion of the current work (see section

3.3). The composite shells were manufactured from Hercules AS4/3501-6

graphite/epoxy prepreg tape in a [±45n/0ns layup where n takes on the values

1, 2, and 3. Ply material properties for this material system are given in Table

4.1. Effective laminate properties are computed within STAGS based on these

ply properties. Structural parameters and the orientation of ply angle, 0, are

as shown previously in Figure 3.1. Note that the 0' ply direction is along the

curvilinear y-axis (circumferential direction) of the shell. While only thickness

(t) is varied in the current experimental work, radius, span, and thickness were

varied in the experiments analyzed in this section. Specimens are designated

as in chapter 3 (equation 3.1) with subscripts indicating scale factors of the

base values. This gives eighteen specimens with different structural

parameters: Re, R 12 , S 1 , S2, S3 , T1, T2, T3. Experimental values of radius are

Table 4.1 AS4/3501-6 Ply Data

Ell 142 GPa

E22 9.81 GPa

G12 6.00 GPa

V12 0.3

ply thickness 0.134 mm



given in Appendix B and are used in the analysis while nominal laminate

properties, including thickness, are used. Due to the test fixture design,

nominal and experimental values for span are identical.

The experimental boundary conditions are idealized as hinged on the

circumferential edges and free on the axial edges which are the same as for the

benchmark problem. The loading is idealized as point loading in the center of

the shell as for the benchmark problem. This differs from the experiments

where a 12.7 mm (1/2") diameter hemispherical steel indentor was used to load

the center of the shell. The analysis uses the path-parameter (Riks arc-

length) method to increment the loading. This also differs from the

experiments wherein the load was introduced under displacement (stroke)

control. An important consequence of this is that, in the experiments, negative

load can not be applied to the shell center such that contact is lost at a zero-

load crossing after bifurcation. Thus, experimental data is available for

postbuckling only until zero load is reached. In the analysis, the asymmetric

discretization scheme (60%/40%) utilized in the benchmark problem is again

used here. All results represent converged solutions attained through mesh

refinement studies. Those studies show that a 10x6 / 10x5 mesh is adequate to

capture the entire response including bifurcation and postbuckling. Numerical

and experimental load-deflection comparisons for all specimens tested in the

previous work are presented in Appendix B. Loading and boundary condition

idealizations are discussed in the context of the results in the next section.

4.4.2 Load-deflection and Mode-shape Comparisons

As discussed previously, both load-deflection and mode-shape data are

available for comparison to the finite element results. As in the benchmark

problem, both deflection and load are considered positive in the direction of load
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application (-z in the coordinate system from Figure 4.1). Numerical

comparisons to measured load-deflection and mode-shape evolutions for

specimens R 6S 3T 1 and R 12 S 3 T1 are presented in Figures 4.16 to 4.25. To

analyze these specimens, a more refined asymmetric mesh of 30x12 / 30x9

was utilized. This mesh provides the same response as a 10x6 / 10x5 mesh but

generates smoother (more datapoints) deflection mode shapes in both the axial

and circumferential directions for comparison to the experimental data.

Although this mesh missed the bifurcation path in the benchmark problem, it

is successful in capturing bifurcation for these composite cases. This is most

likely due to the difference in material and geometric properties. In the results

presented, displacement is nondimensionalized with respect to specimen

thickness (Ti = 0.804 mm) to emphasize the large-deflection nature of the shell

behavior. Both limit-point (symmetric mesh) and bifurcation (asymmetric

mesh) solutions are provided in all cases.

Bifurcation is clearly the critical consideration in the buckling response

of the shells as shown in Figures 4.16 and 4.17. Bifurcation from the nonlinear

(and symmetric) primary equilibrium path occurs at 67% of the limit-point

buckling load for both these shells. The entire postbuckling regime shown is

dominated by the deformation mode associated with the bifurcation. Excellent

agreement is obtained between the load-deflection bifurcation solutions and the

experimental data in Figures 4.16 and 4.17.

Comparison of central mode-shape evolutions for these two specimens

in Figures 4.18 to 4.21 provide further evidence that the analysis captures the

experimental behavior. Mode shapes corresponding to the concave side of the

shell are presented at discrete values of nondimensionalized center

displacements (w, / Tn) to reference the load-deflection plots in Figures 4.16 and

4.17. For specimen R 6 S 3 T 1 , symmetric mode shapes are evident for
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Figure 4.17 Central load-deflection results from numerical analyses and
experiment [21] for the transverse buckling response of
composite shell specimen R 12S 3T 1 .
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Figure 4.18 Numerical analysis results of central spanwise deformation
modes for specimen R 6S3 T 1 at different values of normalized
center deflection.
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Figure 4.19 Measured [21] central spanwise deformation modes for
specimen R 6S 3T 1 at different values of normalized center
deflection.
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Figure 4.20 Numerical analysis results of central spanwise deformation
modes for specimen R 12 S3 T 1 at different values of normalized
center deflection.
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Figure 4.21 Measured [21] central spanwise deformation modes for
specimen R12 S 3 TI at different values of normalized center
deflection.
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displacements below the critical bifurcation point in both the numerical and

experimental results shown in Figures 4.18 and 4.19, respectively. A dominant

asymmetric mode, with respect to the loading in the circumferential direction,

is evident only after bifurcation between nondimensional center deflections of

3.1 and 6.3. The same transition, from a primary symmetric mode prior to

bifurcation to a dominant asymmetric mode, is also noted for specimen

R 12S 3T1 between nondimensional center deflections of 3.2 and 4.9 in Figures

4.20 and 4.21. Mode shapes in the axial direction for specimens R 6S 3T 1 and

R12S3 T1 also reveal good agreement between numerical and experiment results

as seen in Figures 4.22 and 4.23, and Figures 4.24 and 4.25, respectively. The

experimental data indicates some variation in the axial height of the

undeformed specimen which is then evident throughout the specimen response

by comparison to the numerical results. In general, excellent agreement

between theory and experiment is noted for the deformation modes of

specimens R6S3 T 1 and R 12 S3 T1 .

The postbuckling response immediately following bifurcation from the

primary equilibrium paths in Figures 4.16 and 4.17 contain several local

minima and maxima which deserve further consideration. The majority of

specimens analyzed display this behavior near the bifurcation point. The local

minima and maxima are associated with axial variations in the shell response

which is evident in the deformation mode-shape evolutions near the bifurcation

point as shown in Figures 4.26 and 4.27 for specimen R 6S 3T 1. The edge mode

corresponds to the back (upper right) edge in Figure 4.1. As shown in Figure

4.26, the center of the shell is noted to have an asymmetric (bifurcation) mode

at a wc/ T value of 5.6 whereas the asymmetric mode is not evident at the

shell edge at a we / Tn value of 5.6 but is evident at a value of 6.6 (see Figure

4.27). This latter value corresponds to the first local minima. Thus, transition
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Figure 4.22 Numerical analysis results of central axial deformation modes
for specimen R 6S 3T1 at different values of normalized center
deflection.
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Figure 4.23 Measured [21] central axial deformation modes for specimen
R 6S3 T1 at different values of normalized center deflection.
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Figure 4.26 Numerical analysis results of central spanwise deformation
modes for specimen R6S 3T1 at different values of normalized
center deflection, we/T1, near the bifurcation point.
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Figure 4.27 Numerical analysis results of edge spanwise deformation modes
for specimen R6S3 T1 at different values of normalized center
deflection, we/T1, near the bifurcation point.
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from the first local maxima (near a w / Tn value of 5.6) to the first minima

(near a we / Tn value of 6.6) involves axial propagation of the asymmetric mode

from the center to the free shell edges. Using similar considerations, the

second local maxima (near a wc/Tn value of 8.5) is seen to correspond to the

shell edge assuming a mode with an inflection point much like the center of the

shell.

Due to bending-twisting coupling in the composite laminate, the two

shell edges do not deform symmetrically (as in the isotropic benchmark

problem). This is evident in the load versus normalized center and edge

deflection plots in Figure 4.28. Edge 1 corresponds to the back edge in Figure

4.1, and edge 2 the front (lower left). Initially, the shell edges lag behind the

response of the center of the shell but closely follow one another. Only through

the postbuckling region are there significant differences between the shell

edges where one edge is noted to lag behind the other. On the second stable

equilibrium path, as on the first, the shell edges behave similarly and begin to

lag behind the center of the shell as the load increases. Thus, asymmetries in

the composite shell response are due to bifurcation into an asymmetric mode

in the circumferential direction, and also due to bending-twisting coupling in the

laminate in the axial direction.

4.4.3 Modeling Assumptions and Experimental Realities

The measured responses of the composite shells are sensitive to

imperfections and other experimental realities, such as non-ideal boundary

conditions [21, 37], indentation (contact modeling) at the loading point, and

damage formation and propagation. These effects have not been accounted for

in the elastic models in this work. This is appropriate for many of the shells

tested, such as those discussed in section 4.4.2, as illustrated by the excellent



-94-

e- center
-e- edge 1
-U- edge 2

0 5 10 15

Normalized Deflection, w/T1

Figure 4.28 Load versus center and edge deflections from numerical
analysis of specimen R12S3T1.

30

15
V

0
.j

0

-15
20



-95-

agreement between analysis and experiment. The point-load idealization of the

indentor and the mathematical idealization of the hinged boundary condition

are justified for specimens R 6S 3 T 1 and R 1 2 S 3 T 1 as the analysis and

experiments agree. Likewise, inevitable imperfections in the specimens and

boundary conditions do not seem to affect these shells. However, results from

modeling all eighteen of the specimens indicate that experimental realities,

particularly boundary conditions, need to be considered in some cases. In

general, experimental load-deflection curves are more compliant than those

predicted. This has been attributed to compliance in the test fixture which

interacts with the shell response through the hinged boundary condition [21].

Test fixture compliance of this kind has been discussed by previous authors in

relation to nonlinear collapse of arches at limit points [42, 52]. Fixture

compliance acts to soften the structural response and reduce, or even

eliminate, limit points in arches.

In the experiments, because the load is introduced under deflection

control, compliance of the test fixture in the direction of loading (- z direction) is

unimportant. However, compliance of the test fixture perpendicular to the

applied loading will couple to the response of the specimen. Compliance of the

test fixture thus refers to the in-plane boundary condition of the hinged

support. Rather than being fixed, as in the numerical idealization, there is a

stiffness associated with the in-plane constraint. The compliant behavior of

the experimental data relative to the numerical models is evident in Figure

4.29 where analysis and experiment are compared for specimen R 12 S 3T 2 . To

investigate the effect of test fixture compliance, a lower bound for the effect of

the test fixture is considered by allowing the shell to have a traditional simple-

support rather than a hinge. Thus, rather than being rigid (or fixed), the in-

plane restraint is free. In arch analyses, a simple support such as this allows
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the arch to deform continuously with no critical buckling load. The

experimental response should thus lie between the two extremes of hinged and

simply-supported. This is in agreement with the results obtained for the shells

analyzed here as illustrated in Figure 4.29. The simple-support results are

much more compliant than the hinged results and act as a lower bound to the

measured response with regard to this aspect of the boundary condition. In

reality, the test fixture will behave somewhere between a hinge and simple

support, roughly acting as a spring in series with the stiffness of the shell.

Simple-support results are included in Appendix B for comparison to the

experimental results. The simple-support results are generated using an

asymmetric mesh (10x6 / 10x5) in Figure 4.29 and Appendix B. Note that

symmetric and asymmetric mesh results using the simple-support condition

are identical, i.e., bifurcation does not occur. These analyses show that the

hinged and simple-support analyses generally bound the behavior as expected.

Detailed comparisons of the numerical predictions with the experimental data

are given in Reference [83].

A second plausible explanation for more compliant experimental results

is that specifics of the contact between the indentor and the shell needs

consideration. Contact modeling of shell structures with typical indentation

laws for composites have been used, e.g., [84], but other work has indicated

that those laws are valid only for a very small region of initial loading of the

shell [18]. These contact models act as a nonlinear spring in series with the

shell which would reduce the measured structural stiffness in load-deflection

plots. In general, contact also acts to soften the structural response by acting

as a nonlinear spring in series with the elastic structural response (and the

elastic response of the boundary condition). Damage formation will also act to

soften the measured structural response. However, only one specimen,
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R6 S3 T3 , was damaged during testing. Thus, damage did not affect the response

of any of the specimens presented in this chapter. Lastly, the models do not

include transverse shear in the finite element formulation. While the shells

considered in this work are relatively thin, transverse shear may need to be

included in the analysis near the point of load introduction, particularly for

thicker (T2 and T3) specimens. As with the other mechanisms described in this

section, inclusion of transverse shear will also tend to make the response more

compliant, e.g., [64].

4.5 Summary

Finite element modeling techniques for analyzing composite shells under

transverse loading, including bifurcation response, have been presented in this

chapter. A technique (AMT) for inducing bifurcation which involves

asymmetric meshing has been verified and validated vis-a-vis a benchmark

problem and comparison with composite shell data. The elastic models are in

excellent agreement with other techniques for evaluating bifurcation and the

experimental data. The technique enabled all tested specimens from previous

work to be analyzed and the bifurcation response, if it exists, to be identified (all

results in Appendix B). Unlike the standard techniques, the tangent stiffness

matrix does not need to be monitored nor is it necessary to initiate a branch

switch - the bifurcation point and postbuckling path are found directly. In

using this technique to induce bifurcation, care must be taken when refining

the mesh, but it is immediately obvious when an asymmetric mesh finds the

bifurcation path by comparison to the limit-point (symmetric mesh) response.

Experimental realities which are not considered in the idealized models,

notably compliance of the test fixture, can contribute to a measured response

which is more compliant than the predicted response. In cases where test
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fixture compliance or contact behavior is important, the models will require

additional complexity such as contact elements or Lagrange constraints.

However, the basic scheme for the AMT modeling will not change.

Overall, predictive capabilities, particularly with regard to bifurcation, of

the models and the AMT have been demonstrated within assumptions of the

models.



-100-

CHAPTER 5

EXPERIMENTS

Experimental procedures followed in this research are presented in this

chapter. The specimen manufacturing process, test fixture, and methods for

damage characterization are covered in detail. Results from specimen surveys

used to evaluate manufacturing procedures are also presented.

5.1 Manufacturing Procedures

The manufacturing procedure for composite shells is outlined in this

section and roughly follows standard TELAC procedures [85]. An assessment

of specimen quality is given in section 5.2. As for plates, the manufacture of

shells consists of layup, placement on molds, curing, postcuring, and final

specimen preparation.

5.1.1 Graphite/Epoxy Prepreg Lavup

The AS4/3501-6 material is received in pre-impregnated (prepreg) form

on a 1.524 m (5 foot) wide roll and subsequently cut into 305 mm (12") wide

rolls for use in laminate manufacture. The AS4/3501-6 prepreg is a net-resin

material system with an uncured areal weight of 149 g/m2 and 36% resin

content. Nominal cured ply thickness is 0.134 mm. To begin laminate

manufacture, the prepreg tape material is removed from freezer storage and

allowed to warm up in the sealed storage bag for a minimum of 45 minutes.

Removal in this fashion prevents moisture in the ambient air from condensing
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on the cold prepreg.

Plies are cut with a utility-knife utilizing Teflon-covered templates

manufactured previously for use in TELAC. The templates are used to form

plies with matrix, but not fiber (discontinuous fibers), joints. Plies are cut such

that a 343 mm by 330 mm (13.5" x 13") laminate can be created. The

individual plies are then put together to form a flat laminate. To complete the

layup process, the laminates are sandwiched between two layers of peel-ply

(Teflon fabric) release cloth.

5.1.2 Curing

The preparation for curing of composite shells does not have a

standardized manufacturing procedure, but previous work [18, 21] in TELAC

with shells has yielded an acceptable procedure which is described here.

Cylindrical molds are constructed from 6061 aluminum and consist of

bulkheads, a baseplate, topsheet, and clamping bars. The entire mold

assembly is depicted in Figure 5.1. Five 9.53 mm (3/8") thick bulkheads, each

having a radius of 1.829 m (72"), are used with a 9.53 mm (3/8") thick, 737 mm

by 838 mm (29" x 33") baseplate. The bulkheads (from previous work [21])

are bolted onto the baseplate 178 mm (7") apart to form a frame. Two 6061

aluminum sheets, 0.794 mm (1/32") thick, are then placed over the bulkheads

and clamped to the baseplates using two clamping bars. Two topsheets,

rather than a single sheet [18, 21], are used to minimize the impression in the

mold surface caused by the bulkheads when the clamping bars are tightened.

The load from the bulkheads is dispersed by the lower topsheet before it is

transferred to the upper topsheet. The upper topsheet acts as the actual mold

surface for the composite. The lower topsheet is cut such that it exactly

matches the arclength of the bulkheads. The clamping bars are 737 mm long,
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102 mm wide, and 9.53 mm thick (29" x 4" x 3/8"). Five 6.37 mm (1/4") bolts

aligned with the bulkheads are used to tighten down each clamping bar until

the topsheets conform to the bulkheads thus forming a cylindrical mold

surface. Prior to assembling the molds, it was found helpful to bend the upper

topsheet, using a sheet metal forming tool, at the sharp juncture where the

bulkheads and baseplate meet. The bulkheads have center cutouts which

allow equal pressure on both sides of the mold (aluminum topsheet) during

autoclave pressurization. This prevents collapse of the molds during curing.

The next step in the manufacturing process is to setup the laminates on

the cure assembly. Small modifications to the standard TELAC cure

preparation procedure for the AS4/3501-6 material system were necessitated

by the curved geometry of the molds. The cure procedure is thus discussed in

detail and the modifications noted. Two shells are manufactured during each

cure cycle. Details of standard TELAC procedures for this material system

can be found in [85] and supplement the description found in this section.

The mold surface (aluminum sheet) is carefully cleaned and then

approximately 25.4 mm (1") of each shell edge is taped off. The uncovered

section of the mold surface is then sprayed with Mold Wiz®, a commercial mold

release agent, prior to placement of cure materials. The mold release agent

facilitates cleaning of the aluminum topsheets after curing. The tape is

removed from the edges and guaranteed nonporous Teflon (GNPT) is flash-

taped to the upper aluminum topsheet. The GNPT covers the cylindrical

section of the mold leaving about 25.4 mm (1") of aluminum topsheet

uncovered on all four edges. The uncovered portion of the topsheet is later used

to attach the vacuum bag. Dams made from 25.4 mm (1") wide, 3.18 mm

(1/8") thick cork tape are used to create an enclosure on the curved topsheet in

which the laminates are placed. To align the laminates on the mold surface, a
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T-square is used to lay down the first piece of cork tape in the center of the

mold. This part of the enclosure separates the two shells on the mold and thus

serves as a reference line for laminate placement. The peel-ply-covered

laminates are placed on the mold and enclosed on the remaining three sides

with cork tape. Two layers of cork tape are used so that the cork enclosures

are higher than the assembled laminates and cure materials.

A cross-section of the cure assembly is illustrated in Figure 5.2. The

peel-ply-covered laminates are conformed to the mold by hand on top of the

GNPT and between the cork-dam enclosures. The laminates are covered with

porous Teflon, and then nonporous Teflon as in Figure 5.2. Top-plates are

placed over this configuration. Top-plates for plate specimens are normally

9.53 mm (3/8") thick aluminum plates. For the curved molds, a different

approach was needed as in previous work [18, 21]. 6061-T6 aluminum sheets

having the same planar dimensions as the specimens and thicknesses of 0.79

mm (1/32") are used as top-plates. The top-plates are placed over the

laminates and flash-taped to the cork dams in the circumferential direction to

remain fixed until vacuum is pulled. A second layer of GNPT is placed over the

entire cure assembly to prevent excess resin from reaching the breather

material and vacuum port. Fiberglass air breather is placed over the GNPT to

allow a vacuum to be pulled over both laminates. After all cure materials are

on the mold, vacuum bag material is vacuum-taped over the entire cure

assembly and a vacuum port with rubber gasket installed in a slit cut in the

bag. The vacuum is usually pulled through a port cut in the cure plate (mold)

when plate specimens are manufactured. This completes the cure assembly.

The cure and postcure cycles are standard for this material system and

details can again be found in [85]. Laminates are processed using the standard

manufacturer's cure cycle, illustrated in Figure 5.3, of a one-hour flow stage at
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116C and a two-hour set stage at 177 0 C. This was conducted in an autoclave

under vacuum with 0.59 MPa external pressure. Laminates were postcured in

an oven at 177 0C for eight hours.

5.1.3 Final Specimen Preparation

Plate specimens are typically cut to the appropriate size for testing or

to remove 'ridges' from epoxy and fiber washout. This is done using a water-

cooled, diamond-grit cutting wheel mounted on a milling machine. The 220 grit,

1.52 mm (0.060") thick, 254 mm (10") diameter cutting wheel spins at 1100

rpm. Specimens are fed into the wheel at 4.7 mm/s (11"/minute). This same

basic procedure is used for shells. Each shell is supported during trimming by a

thick (2.412 mm) graphite/epoxy shell which was previously manufactured and

has the same nominal dimensions as those being trimmed. All shells were

trimmed to yield 305 mm (span direction) by 314 mm wide (12" x 12 3/8")

specimens for testing. The span dimension refers to a straight line between

the shell boundary conditions, i.e., not the arclength, as in Figure 3.1.

Specimen dimensions are maintained within 0.25 mm (0.01") of the nominal

values.

Deflection measurements require the black composite shells to be

painted white on the concave side for compatibility with the laser displacement

transducer used. Shells are placed on an axial edge and painted with Krylon

flat-white spray paint (as in [211). The can of spray paint is held

approximately 305 mm (6") from the shell and swept from side to side with

each pass appropriately overlapping the previous pass. If necessary,

specimens were painted twice in this manner to adequately cover the shell.
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5.2 Curvature and Thickness Mapping

In this work, cylindrical shell specimens are characterized by radius of

curvature, twist, thickness, and planform dimensions. To evaluate the

manufacturing process, mapping schemes were utilized to determine the

radius, twist, and thickness of each shell. Planform dimensions were discussed

in the previous section. Nine points on each shell were used to determine an

average shell thickness. The approximate location of these nine points is

illustrated in Figure 5.4 where the distances indicated refer to the shell surface.

Thickness was measured before the shells were painted using a deep-throat

micrometer with a resolution of 0.01 mm.

A heuristic, developed previously [18], was used to calculate the

curvature at three locations along the axis of the shell and the twist along the

axial and circumferential directions using distance measurements made from a

reference plane. The heuristic is reviewed here to include the use of a

noncontacting laser transducer in place of the (previously used) linearly

variable differential transformer (LVDT) contacting displacement transducer.

No panel deflection is induced by the noncontacting laser which eliminates one

source of error in the previous curvature measurement heuristic. Shells are

placed on an axial edge and lightly held in a vise which is mounted on a milling

machine table with a digital traverse. Resolution on the digital traverse is 13

g~m (0.0005"). A laser displacement transducer with a spot diameter of 1 mm

is mounted in the milling machine head to measure shell depth. The traverse

motion is perpendicular to the laser beam as depicted in Figure 5.5. The

Keyence LB-11/70 transducer has a resolution of 10 pm in the range of 60 mm

to 140 mm. Using simple geometric considerations, the curvature at a station

(y-location) of a shell can be calculated by measuring the x- and z- location of
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Figure 5.5 Illustration of overhead view of curvature measuring setup.

three points on the shell (see Figure 5.6). The x- and z- locations are given by

the digital traverse and laser, respectively.

Using Figure 5.6, radii are calculated with equation 5.1:

Ri= 2(- ; i = 1,2,3 (5.1)
2(zic - zi)

where Ri is the radius at y-location i. The distance xi changes at each y-

location either because the shell is twisting or because the radius changes

between each y-station. The origin for all measurements is chosen near the

circumferential edge along the first y-station as indicated in the upper right of

Figure 5.6. There are three y-locations (yl, Y2, and y3 in Figure 5.6) where

measurements are taken for each shell. The three y-locations are marked on

the white shell surface with a ruler. The three points at each y-location are

measured in the following way, using yi as an example: the origin is defined as



-111-

I I I
I I

I I

,I I
I
SIZ

I I I Z
I I I
III
I I I

I I I

I I

zI I 
x y2

z2c
I I

I I I
I I

I I

I I
II I

I II I
z3x1 ' y3

,z3c
I II
I II
I I I
I I I

Figure 5.6 Measurements and associated locations used in radii and twist
calculations.



-112-

above and the distance (xl) across the shell to an equivalent depth (z-direction)

is measured. This determines a straight line across the shell that is level with

the milling machine table and traverse. The height (zic) at the midpoint of the

line is measured next completing all the necessary measurements to calculate

the radius at the first y-location. The same procedure is followed at stations Y2

and y3 where the x- location of the starting point is kept constant (equal to 0).

The distance between y-stations is equal to the distance d in Figure 5.4. As an

example, the radius increases at each y-location in Figure 5.6 to illustrate how

the radius can vary.

The twist of each shell can also be calculated about the x- and y-axes

given in Figure 5.6. The straight line defined at yl, and the straight line

between the yl and y3 stations are useful for calculating axial and spanwise

twist, respectively. As an example, at the third y-location (Y3) the change in

height (Z3xl - z3) of the line defined at yj can be used to calculate the twist of

the shell along the y-axis. This change in height indicates the rotation of the

straight line about the y-axis (axial twist). A similar change in height can be

defined to calculate twist about the x-axis. Therefore, spanwise and axial twist

are given by equations 5.2 and 5.3, respectively:

an= tan-l Z3xl-Z1 (5.2)

and

S= tan -1  3xl- (5.3)

Y3 - Y1

where y is the spanwise twist and P is the axial twist, in radians. The height at

xl at the third y-location, designated as Z3xl, is used to calculate both twist

metrics.

For each nominal value of radius and thickness, the average and
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coefficient of variation over all test specimens was calculated and is given in

Table 5.1. Detailed information on the radius and thickness measurements for

each specimen is given in Appendix A. Nominal values for radius and

thickness, as well as the percent difference of the average radius and thickness

from the nominal values, are also given in Table 5.1.

The manufacturing data in Table 5.1 indicates that the manufacturing

process utilized in this research is adequate. Average thickness values are all

within 3% of nominal values with acceptable coefficients of variation (less than

4%). The average radius of curvature is within 7% of the nominal (desired)

value with an acceptable coefficient of variation. All twist angles are below 10

and are considered negligible. The average twists, gamma and beta, are -0.01'

and -0.06' respectively.

5.3 Test Fixture (Boundary Conditions)

The boundary conditions for testing, as described in chapters 3 and 4,

are pinned/no in-plane sliding (hinged) on the circumferential edges and simply-

supported (with in-plane sliding) on the axial edges. A specially designed test

Table 5.1 Results of Thickness and Curvature Mapping

Metric Average C. V.a Nominal Difference

T, 0.829 mm 1.2 % 0.804 mm + 3.1%

T2 1.580 mm 3.7 % 1.608 mm -1.7 %

T3 2.414 mm 3.4 % 2.412 mm +0.1%

R12 1954 mm 4.0 % 1829 mm +6.8 %

a Indicates coefficient of variation.
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fixture [18, 21] was modified for use in this work, preserving many of the

essential features. The original test fixture allowed free axial shell edges and

thus was modified to achieve the simply-supported/in-plane sliding condition on

the circumferential edges desired in this work.

A side-view illustration of the original test fixture is shown in Figure 5.7.

The convex shell is loaded in the center and restrained on the circumferential

edges by the rod/cushion assemblies. Although not necessary in this work, the

rods can be rotated in the cushions prior to testing to accept different shell

geometries before being fixed in place with clamps and 12.7 mm (1/2") diameter

threaded steel rods, as shown in Figure 5.8. The cushions mount to the upper

plate of the rigid test stand and provide a continuous support for the rods. The

two rod/cushion assemblies are mounted on the upper plate, one being fixed and

the second being adjustable in the spanwise direction (see Figure 5.7). The

upper plate of the rigid stand has a 318 mm (axial dimension) by 292 mm

(12.5" x 11.5") cutout in its center to allow for shell buckling into an inverted

configuration as well as deflection measurements. The circumferential shell

edges rest in grooved inserts which are bolted to the rods, as illustrated in

Figure 5.9 [21]. The groove in the steel inserts has a radius of 1.59 mm (1/16")

which allows rotation at this boundary. A consequence of this design is the

inability to resist "pull-out" of the shell after the shell instability. In this

loading region the shell experiences tensile membrane forces in the

circumferential direction. However, as discussed in chapter 3, the response of

interest in this work occurs before pull-out.

Modifications to the test fixture were necessary to restrain the axial

edges of the shell specimens. The boundary condition is achieved using upper

and lower axial supports with 'knife' edges which support the axial shell edges

on 4.76 mm (3/16") radius rounded corners as illustrated in Figure 5.10. One
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set (of two) of 6061-T6 aluminum axial supports are shown schematically in

Figures 5.11 and 5.12. The axial shell edge rests between the upper and lower

knife-edge constraints so that transverse displacement is restricted but

rotation and in-plane displacement are allowed.

Each lower axial support is mounted to the upper plate of the test

fixture between the two rod/cushion assemblies (see Figure 5.7) using three

12.7 mm (1/2") diameter steel threaded rods. Each upper axial support is

bolted to these same three steel rods and additionally restrained with two 1/4-

20 steel bolts that attach to the lower axial support in the axial direction as in

Figure 5.10. All tolerances on the upper and lower supports were maintained

to ±0.127 mm (± 0.005"). The 4.76 mm (3/16") radius cut on the knife edge(s)

was made using a radius tool and this dimension is considered exact.

Preliminary STAGS analysis of the worst-case loading for this work (T 3

shell, 2500 N loading, factor-of-safety of two on resulting axial edge load),

coupled with a simple Hertzian contact law, predicts the deflection of the axial

support to be less than 0.025 mm (1 mil). This deflection is small relative to

the panel thicknesses and specimen deflection and is thus considered

acceptable.

5.4 Testing Procedures

In this section, the experimental procedures used in the testing of the

composite shells are described. General procedures associated with the test

fixture (i.e. mounting the specimens) are reviewed before testing procedures,

including deflection mode-shape evaluation, are described.

Two types of testing are conducted: overall loading response and mode-

shape tests. The overall loading response tests are performed first to

experimentally characterize the loading response over the entire regime of
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interest. The regime of interest includes all behavior until an instability is

observed or until large-scale damage is observed. If an instability occurs

during loading, the test is terminated because the test fixture is not able to

restrain the circumferential shell edges during postbuckling. Instabilities are

observed during testing by monitoring a real-time plot of load versus elapsed

test time. As stroke increases linearly during the test, this is the same as

observing a load-deflection plot. Instabilities are indicated by a gradual

reduction in the slope of the load versus time plot until the load decreases.

Large-scale damage formation, such as penetration, is to be avoided because of

the interest in barely visible impact damage (BVID) as discussed previously.

Damage formation is indicated by loud cracking and popping noises during

testing as well as the formation of visible matrix cracks on the concave surface

of the shell directly under the indentor. Mode-shape tests are performed to give

deflection mode-shape evolutions during the buckling process. In these tests,

stroke is held at predetermined positions so that mode shapes can be assessed.

These positions are determined using the overall loading response data as

discussed in chapter 3.

5.4.1 Specimen Set-up in Fixture

Specific procedures were maintained to consistently place each shell in

the proper position for testing. First, both rods are rotated in the cushions so

the shell, when put in place, will impinge perpendicular to the grooved steel

insert as in Figure 5.9. The known nominal slope at the circumferential shell

edge is matched to within ±0.3 degrees using gradations marked on the outer

surface of the rods. The fixed rod and cushion (see Figure 5.7) are then bolted

to the upper plate. Next, the two lower axial supports are mounted 305 mm

(12") apart on the upper plate of the test fixture with 12.7 mm (1/2") diameter
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steel threaded rods. A T-square is used to ensure that the lower axial supports

are perpendicular to the long direction of the steel insert in the fixed rod. The

shell is placed so that it rests on the lower axial supports with a 4.76 mm

(3/16") overhang on both axial sides. The shell (circumferential edge) also rests

against the grooved insert of the fixed rod/cushion assembly.

The second rod/cushion assembly is spanwise adjustable (see Figure

5.7). This assembly is moved toward the shell in the spanwise direction until

the shell impinges on the grooved insert of the second rod. The second

rod/cushion assembly is carefully adjusted so that the shell is seen to make

contact all along the length of the steel insert, thus ensuring proper adjustment

(parallel) relative to the fixed rod/cushion. The adjustable rod/cushion

assembly is fixed to the upper plate, again with 12.7 mm (1/2") diameter steel

threaded rods. The shell is now supported on all edges but rests only lightly

against the lower axial support knife edges.

In the last step, the upper axial supports are placed on the three steel

threaded rods extending up from each lower axial support. The shells, having

radii which nearly match (see Table 5.1) the 1.829 m (72") radius machined on

the axial supports, can be easily seated onto the lower axial supports. The

shells are seated by moving the upper and lower knife edges (axial supports)

together using the three bolts on top of each upper axial support. These bolts

are tightened to 0.5 N-m using a torque wrench so that the shell makes

intimate contact with the knife edges on both the upper and lower axial

supports, thereby conforming the specimen to the 1.829 m radius of the axial

boundary condition. The torque of 0.5 N-m was found to effectively seat all the

shell types (thicknesses) in this investigation. The shell is now in contact with

the upper and lower axial supports (axial boundary condition) along the entire

axial boundary and impinges on the steel inserts of each rod (circumferential
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boundary condition) as desired.

5.4.2 Quasi-static Testing and Mode-shape Measurement

Mounting of the shell in the test fixture has been described in the

previous section. The next step before testing is to align the shell with the

indentor. Before being mounted in the test fixture, masking tape is placed on

the shell and the center of the shell marked with a 0.5 mm pen on both

surfaces. The center marks on the top and bottom (concave side) of the shell

are used later to align the indentor and laser, respectively. A cone-shaped

center finder is used in place of the indentor to align the center of the shell

directly under the indentor. Bolts which hold the test fixture to the lower

crosshead are loosened and the test fixture adjusted so the shell is properly

aligned with the indentor. Spanwise adjustment of the shell is accommodated

by slots in the base of the test fixture. Adjustment in the axial direction,

typically less than 1 mm, is accommodated because the bolt diameter is

smaller than the width of the slots in the test fixture base. After aligning the

shell with the indentor, the mounting bolts are again tightened. The center

finder is replaced with the hemispherical indentor and the masking tape used to

mark the shell center on the convex surface is removed.

All tests are run in stroke control on an MTS-810 uniaxial hydraulic

testing machine with an Instron 8500+ digital controller. Stroke resolution on

the controller is 10 pm. Shells are indented using a 12.7 mm (1/2") diameter

hemispherical steel indentor. A PCB model 208A04 22240 N (5000 lb) force

transducer with resolution of 0.09 N (0.02 lb) is mounted in series with the

indentor in the upper grip of the test fixture. The upper grip is stationary

during testing and the shell is pushed in stroke control into the indentor by the

lower grip as shown in Figure 5.13. All data is acquired with LabVIEW
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software on a Power Macintosh computer via an A/D board. Discretization of

the analog data by the A/D board limits the recorded load resolution to 0.27 N

(0.06 lb) but does not limit the stroke resolution of 10 pm. Preliminary

analysis of the specimen response indicates approximately 15 mm of deflection

at the instability point. A stroke rate of 0.05 mm/s is used with a data (load

and stroke) sampling rate of 1 Hz to allow the tests to proceed quasi-statically

and the response to be adequately characterized. The chosen stroke rate

allows 18 mm of deflection to be obtained in 6 minutes.

The same noncontacting laser transducer discussed in section 5.2 is

used to survey shell deflection mode shapes during testing. The laser has a

beam spot of 1 mm and resolution of 10 pm. The laser is mounted on a

traverse assembly specifically designed to assess mode shapes during testing

of shells [21]. The traverse assembly is mounted to the base of the test fixture

such that the laser shines against the concave shell surface as in Figure 5.9.

The laser/traverse assembly is designed such that the laser beam is

perpendicular to the plane defined by the spanwise and axial directions (x- and

y-directions in Figure 5.6), equivalent to being perpendicular to the upper plate

in Figure 5.7. Prior to each test, but after the shell has been mounted in the

fixture, the laser position is finely adjusted so that it is centered (axially) under

the shell center. This is done by aligning the visible laser beam spot with the

center of the shell. The masking tape used to mark the shell center is then

removed.

The traverse, pictured in Figure 5.14, has continuous movement in the

spanwise (shell) direction and discrete axial positions in 12.7 mm (1/2")

intervals. Mode shapes were evaluated at three axial locations: along the axial

centerline (directly under the indentor) and at 76.2 mm (3") on either side of the

centerline. During testing, the mount for the laser, pictured in Figure 5.14, is
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manually moved between axial stations to take the three different mode

shapes. The discrete axial location of the laser is known at all times but the

spanwise position, being the direction of continuous movement, must be

measured. This is done with a rack-and-pinion system connected to a

potentiometer which provides a linearly varying voltage with spanwise

position. Using the data acquisition system previously described, spanwise

position is known within 0.5 mm and the shell height within 10 Pm.

After the shell is mounted in the test fixture and the laser and indentor

aligned with the shell center, testing is ready to begin. Before loading, the initial

shape of the shell mounted in the fixture is assessed which defines the

configuration of the unloaded shell. The test is begun by raising the lower

crosshead (grip) which moves the test fixture, traverse, and specimen toward

the stationary indentor. This is done by manually adjusting the stroke until a

preload of not more than 1 N is seen. Stroke is then linearly increased at 0.05

mm/s until the test is either stopped manually (in the case of a loading

response test) or automatically at a predetermined value of stroke (as in the

case of a mode-shape test). Unloading occurs at the same stroke rate of 0.05

mm/s until the indentor loses contact with the specimen.

5.5 Damage Evaluation

All specimens were evaluated for damage after testing. Visual

inspection of damage is undertaken directly after testing. On the convex

surface, contact with the indentor typically leaves a smooth or shiny region

with dimensions smaller than the indentor diameter. This is typical of previous

indentation work with composite shells and has been characterized as a

marred region [18]. On the concave surface, matrix cracks at the center of the

shell in the 450 direction can be seen during and after testing. However, it is
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unclear whether the cracks occur only in the white paint or are manifestations

of actual matrix cracks in the bottom 450 ply.

Two further methods were used to evaluate damage: x-radiography and

sectioning. Dye-penetrant enhanced x-radiography provides a view of the

damage state, typically matrix cracks and delaminations, that is integrated

though-thickness. After testing, a 0.79 mm (1/32") diameter hole is drilled

through the thickness of the specimen at the center of the loading site. Flash

tape is applied to the concave side of the specimen and a dye is injected with a

syringe into the hole on the convex surface. The x-ray opaque penetrating dye

is 1,4 Diiodobutane (DiB) which seeps into cracks and delaminations in the

specimens through capillary action. A small excess bubble of DiB is

maintained on the specimen for approximately half an hour. This allows the

DiB to fully penetrate into the damaged region. The excess dye bubble and

flash tape are removed and the specimen x-rayed. A Scanray® Torrex 150D

X-ray Inspection System used in "TIMERAD" mode and 50 kV potential is

used to x-ray the specimens with 260 mR (milliRoentgens) of radiation along

with Polaroid Type 52 PolaPan film.

DiB soaked portions of the shell specimens show up as dark areas in the

x-rays. A sample x-ray photograph showing a large delamination is provided in

Figure 5.15. The x-ray photograph is of the damage state looking down at the

convex side of the shell. The 0O direction in Figure 5.15 is along the vertical axis

of the page (circumferential shell direction) and positive angles are taken

counterclockwise from that axis. All x-ray photographs in this work maintain

this orientation and are shown to scale. The large damage (delamination) axis

is along the 450 ply in this particular figure. The small, light, circular region at

the center of the x-ray in Figure 5.15 is the hole drilled through the center of the

impact site to inject the penetrating dye. The large light region in the photo is
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Figure 5.15 Sample planar x-ray picture showing damaged region.

characteristic of a delamination. In this photo, a larger delamination can be

seen at 45' and a much smaller one at -45'. The dark line at 450 is a long

matrix split in the ply on the concave side of the shell. Shorter matrix splits

can also be seen at -450 and 00. X-radiographs are a planar projection of a

curved surface resulting in a smaller damage length in the photograph. This

reduction in damage length is less than 0.2% in the circumferential direction

(maximum effect) which is negligible.

Sectioning allows through-thickness damage details to be examined so

that damage away from the loading point can also be investigated. The

specimen is cut into four sections at the three axial locations where the mode

shapes are evaluated. The cuts are made with the diamond-grit cutting wheel

as described in section 5.1.3, taking into account that the blade thickness

removes approximately 1.5 mm of the specimen. The sectioned axial edges are

then buffed with a felt bob rotating in a drill press using a slurry of 0.7 gm grit

powder and water. This creates a polished surface needed to identify through-
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thickness damage with a microscope. An Olympus SZ-Tr Zoom stereo

microscope is used to examine the shell edges under a magnification of 30-40X.

Matrix cracks appear as light lines through the darker matrix and

delaminations appear as lightened areas between plies (or ply groups). A

sample cross section near the loading point for a T2 shell is given in Figure 5.16.

Crazing in the upper half of the 450 ply group, delaminations between the lower

0' and -450, and the -450 and 450 ply groups, and matrix cracks in the lower

-450 and 450 ply groups are clearly visible in the photographs. The white paint

(see section 5.1.3) on the lower concave shell surface is also visible. These

features are even more clearly visible in the magnified view in the lower

picture. A single matrix crack on the right in the 450 ply group is visible, and

another on the left in the -450 group. A delamination between the two -450

plies, visible in the upper-left corner of the magnified view, is noted to

terminate at the matrix crack in the -450 ply group.
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CHAPTER 6

RESULTS

Results from testing and numerical analysis are presented in this

chapter for specimen configurations tested in this work utilizing the boundary

conditions discussed in chapter 5. Experimental results include load-deflection

data, deflection mode-shape evolutions, and x-radiographs of damage.

Numerical results computed with the STAGS finite element code include load-

deflection histories and deflection mode-shape evolutions.

6.1 Experimental Observations

As discussed in section 5.4, two types of testing were conducted - overall

loading response and mode-shape tests. The overall loading response tests are

used to experimentally characterize the loading response over the entire

regime of interest. Mode-shape tests are used to characterize deflection mode-

shape evolutions during the shell response, including the buckling process.

After testing, specimen damage is evaluated for all specimens using the x-

radiography technique.

6.1.1 Loading Response

The loading response is characterized by plotting the load versus the

applied stroke (deflection). Two load-deflection results are available for each

specimen geometry (thickness) from the two types of tests conducted.

Specimens are referenced by the type of test as follows: -1 after the specimen
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type identification refers to the overall loading tests (e.g., specimen R 1 2S 3T1 -1),

and -2 refers to the damage tests. The tests differ only in that loading was

terminated at different peak loads, as described in chapter 3. Specimens of a

given type (thickness) are nominally identical although small differences are

noted in the experimentally determined radii (see chapter 5). Data from both

types of tests are presented in this section for comparison.

Two types of audible phenomenon were noted during testing: a popping

noise, and a cracking/crunching noise. 'Cracking' is a sharp, brittle sound,

whereas 'popping' is louder and not as sharp. The cracking/crunching noise has

been observed previously for transversely-loaded composite plates and shells

and is associated with damage formation [18]. Damage formation is often

associated with load drops in the load-deflection data, e.g., [86], and therefore

load drops frequently occur in association with cracking/crunching. Load drops,

not due to damage formation, are noted at points in the load-deflection

response where 'popping' was observed. The 'popping noise' is therefore

believed to be associated with an instability point in the shell response. These

two audible phenomena were monitored during testing, and the approximate

stroke value at which they occurred was noted within ±0.5 mm by observing

real-time output of the stroke data.

Load-deflection data from the overall loading response and mode-shape

tests for specimen type R 12 S 3 T1 are presented in Figures 6.1 (specimen

R 12 S 3 T 1 -1) and 6.2 (specimen R1 2S 3 T 1-2), respectively. Hysteresis in the

loading response in Figures 6.1 and 6.2 is typical of load-deflection curves

observed in this work and has been found in previous work with similar shells

[21]. In Figure 6.1, the shell response first experiences a period of load-

softening below approximately 3 mm of applied center deflection. Above 3 mm,

the response stiffens slightly until the load suddenly drops at a center
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deflection value of 8.5 mm. At the load drop, the shell audibly 'popped' during

testing and the test was manually stopped and held at 8.9 mm of deflection in

order to take mode-shape measurements. The specimen was subsequently

unloaded. As this specimen was undamaged, the sudden load drop and

associated 'popping' is attributed to dynamic buckling at the critical point. The

dynamic nature of buckling at this point will be further discussed in section 6.2

and chapter 7.

The loading portion of the response for specimen R 12S3T1-2 in Figure 6.2

is similar to the loading portion in Figure 6.1. The most notable difference in

the response for specimens R 12S 3T1-1 and R12S 3T1-2 are the small deviations

in smooth response where stroke was held for mode-shape measurements to

be taken in the latter. In Figure 6.2, mode shapes were taken at values of

applied center deflection (stroke) of 2.0 mm, 4.0 mm, 6.0 mm, 8.0 mm, 10.0

mm, and 12.0 mm. Deviations at held-stroke values were noted for all

specimens. However, as in previous work [21], the load generally returns to

the original path making the load-deflection curves smooth apart from the

held-stroke datapoints. These points are therefore not considered important

and are justifiably ignored in further discussion. Specimen R12S3T1-2 in Figure

6.2 was loaded to a higher load than specimen R12S 3T 1-1. No damage was

observed in specimen R12S3 T1-1 so additional mode shapes were pursued in the

second test to gain insight into postbuckling. Note that in Figure 6.2, no drop in

load associated with buckling at 8.5 mm is observed as in Figure 6.1. However,

audible 'popping' was noted near a center deflection value of 5.0 mm and during

the hold at 10.0 mm. Additionally, after the held-stroke position at 8.0 mm, the

response does not return to the original path as is typically the case. During

unloading of specimen R12S3 T1-2, the shell is noted to remain in a postbuckled

state (load value of approximately 5 N) between applied center deflection
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values of approximately 8 mm and 9 mm. Loading of the shell abruptly

decreases at a stroke value of 7.9 mm. The abrupt loading was heard audibly

as a large 'pop' during the test indicating a dynamic unloading phenomenon,

likely due to an instability point. Dynamic unloading of this type has

previously been reported for similarly loaded composite shells [18].

The load-deflection responses of specimen type R 12S 3 T2 for the two test

types are presented in Figures 6.3 (R12S 3T2 -1) and 6.4 (R12S 3 T2 -2). Again, the

two loading portions of the curves are noted to be similar. Audible 'cracking'

was noted at applied center deflections of approximately 10.0 mm, 11.5 mm,

14.0 mm, 16.0 mm, 16.5 mm, 17.5 mm, and 19.0 mm for specimen R 12 S3 T2 -1.

A drop in load is noted in the loading response at a center deflection value of

16.6 mm which may correspond to this observed 'cracking'. For specimen

R 12 S3 T2 -2, audible 'cracking' was noted at a center deflection of 12.5 mm, and

mode shapes were evaluated at applied center deflection values of 2.0 mm, 4.0

mm, 6.0 mm, 8.0 mm, 12.0 mm, and 16.0 mm. Loading was terminated at

16.0 mm to obtain damage information prior to the load drop observed for

specimen R 12S3 T2 -1 at a center deflection of 16.6 mm.

Good agreement is again noted for the loading portions of both specimen

responses presented in Figures 6.5 and 6.6 for specimen type R 12S 3 T 3 . During

loading of specimen R 12S 3 T3 -1, 'cracking' was noted at applied center deflection

values of 8.0 mm, 10.0 mm, 12.5 mm, 14.0 mm, and 16.5 mm. Multiple

'cracking' was observed at the latter three deflection values, with a significant

load drop (-300 N) noted at the peak deflection (16.7 mm). Given the 'cracking'

noted at a center deflection of 14.0 mm, the load drop at 13.9 mm is likely

associated with damage formation. However, the load drop at a center

deflection of 11.2 mm was not associated with any audible event. Unloading

occurs smoothly for both specimens. Mode shapes were evaluated at stroke
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values of 3.0 mm, 6.0 mm, 9.0 mm, 12.0 mm, and 15.0 mm for specimen

R 12S3 T3-2. Loading for this specimen was terminated at a center deflection

value of 15.0 mm to obtain damage data at a load below the peak load for

specimen R12 S 3 T3 -1, i.e., intermediate damage data was desired for this

specimen type. 'Cracking' was noted at applied center deflection values of 7.5

mm, 9.5 mm, 11.5 mm, 12.5 mm, 13.5 mm, 14.0 mm, and 15.0 mm with

multiple (most severe) cracking occurring at 13.5 mm and 14.0 mm.

Additionally, 'popping' was heard at a center deflection of 14.0 mm and during

the hold at a center deflection of 15.0 mm.

A comparison of the load-deflection response of specimens having

different thicknesses is provided in Figure 6.7. The stiffening influence of

increased thickness is apparent.

6.1.2 Mode-shape Evolutions

Mode shapes were assessed in the overall loading response tests as well

as in the mode-shape tests. Mode-shape evolutions were measured

continuously in the spanwise direction at three discrete axial locations as

described in chapter 5. Mode shapes in this section are presented by plotting

the vertical position of the concave side of the shell versus the spanwise

position at different values of applied center deflection (stroke) as done in

chapter 4. Also as in chapter 4, the origin is located at the midpoint of the axial

(hinged) boundary condition (see Figure 4.1). Central spanwise modes refer to

modes where the axial position bisects the shell (through the origin in Figure

4.1). Left and right spanwise modes refer to modes at axial (x-direction in

Figure 4.1) positions of -76.2 mm and 76.2 mm, respectively. The axial

boundary conditions at ±152.4 mm (x-direction in Figure 4.1) restrain the shells

such that the vertical deflection is zero along these edges. Thus, the left and
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right spanwise deformation modes provide modal information midway between

the shell center and the axial boundaries. In the overall loading response tests,

mode shapes were assessed at three values of applied stroke (we): the initial

geometry of the shell (w, = 0 mm), the maximum value of center deflection, and

the final, unloaded shape of the shell (we = 0 mm). For the mode-shape tests,

mode shapes were measured at predetermined values of applied stroke as

discussed in chapter 5.

Central spanwise modes for specimen R 1 2S 3 T 1 -1 (see load-deflection

data in Figure 6.1) are presented in Figure 6.8. The initial and final shape of

the shell are noted to correspond which indicates that the shell returns to its

original configuration upon removal of load. The mode shape at the maximum

value of center deflection, 8.9 mm, is noted to be asymmetric in the spanwise

direction. As with the composite shell cases in chapter 4, the asymmetry

indicates that the shell has bifurcated. Bifurcation occurs prior to loading

corresponding to a center deflection value of 8.9 mm. The initial and final

conditions of the left and right spanwise mode shapes in Figures 6.9 and 6.10

are also noted to coincide, again indicating that the shell returns to the

undeformed configuration after load has been removed. The left and right mode

shapes represent a transition from zero deflection at the axial boundary and

the response of the central deformation mode. The asymmetry shown in the

central spanwise mode is also clearly evident in the right mode. Asymmetry is

also noted, to a lesser degree, in the left mode shape. This shell has thus

deformed asymmetrically in the axial as well as the spanwise direction. This is

further discussed in regard to specimen R12S 3 T1 -2.

Asymmetries in the mode-shape evolution for this specimen type are

more clearly identified in the mode-shape evolutions presented in Figures 6.11

through 6.13 for specimen R 12S 3 T1 -2. The response in the central spanwise
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Figure 6.8 Measured central spanwise deformation modes for specimen
R1 2S3 T1 -1 at different values of center deflection.
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Figure 6.9 Measured left spanwise deformation modes for specimen
R 12S 3 T 1 -1 at different values of center deflection.
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Figure 6.10 Measured right spanwise deformation modes for specimen
R1 2S3 T1 -1 at different values of center deflection.
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Figure 6.11 Measured central spanwise deformation modes for specimen
R 12S 3T1 -2 at different values of center deflection.
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Figure 6.12 Measured left spanwise deformation modes for specimen
R 12S 3 T 1-2 at different values of center deflection.

-150-

10

5

0

-5

E
E

C

0e
0

-10



wc (mm)

o O
* 2.0
o 4.0
* 6.0
o 8.0
* 10.0
a 12.0

- final

0 50 100 150 200 250 300

Spanwise Position (mm)

Figure 6.13 Measured right spanwise deformation modes for specimen
R 12 S3 T1 -2 at different values of center deflection.
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modes is noted to be symmetric at a center deflection value of 2.0 mm. The

mode at a center deflection of 4.0 mm is dominated by a symmetric

component, but there is a slight asymmetry. However, the asymmetry is

clearly evident at center deflection values of 6.0 mm, 8.0 mm, and 10.0 mm.

These modes indicate that specimen R 12S 3 T 1-2 bifurcates between center

deflection values of 2.0 mm and 6.0 mm. Symmetry in the deformation mode

is regained at a center deflection of 12.0 mm. This is much like the response of

composite shells in chapter 4 where the response regains symmetry upon

loading onto the second equilibrium path in the inverted configuration. The left

and right deformation modes in Figures 6.12 and 6.13 also reflect the transition

from a symmetric to asymmetric mode between center deflection values of 2.0

mm and 6.0 mm. An antisymmetric component of deformation in the left and

right modes at center deflection values of 2.0 mm, 4.0 mm, and 12.0 mm is

evident by comparing Figures 6.12 and 6.13. These modes are all noted to be

slightly asymmetric, and antisymmetric with respect to one another (left and

right modes). This antisymmetry is discussed subsequently in this section and

also in section 6.2.

Excellent agreement is also noted for mode shapes compared for the

remaining two specimen types, R 12 S3 T2 and R 12S3 T3 . The central, left, and

right spanwise deformation modes from the overall loading tests of specimens

R 12S 3 T2 -1 and R 12 S3 T 3-1 are provided in Figures 6.14 to 6.16, and 6.17 to 6.19,

respectively. For comparison, the central, left, and right spanwise mode-shape

evolutions for the mode-shape tests of specimens R 1 2S3 T2 -2 and R 12 S3 T3 -2 are

provided in Figures 6.20 to 6.22, and 6.23 to 6.25, respectively.

Deformations local to the contact area (loading point) at peak applied

deflection for the overall loading tests are noted to be quite severe for both

specimen types (Figures 6.14 and 6.17). A unique feature of these two mode
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Figure 6.14 Measured central spanwise deformation modes for specimen
R12S3T2-1 at different values of center deflection.
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Figure 6.15 Measured left spanwise deformation modes for specimen
R12S 3T2-1 at different values of center deflection.
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Figure 6.16 Measured right spanwise deformation modes for specimen
R 12S3 T2-1 at different values of center deflection.
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Figure 6.17 Measured central spanwise deformation modes for specimen
R12S3T3-1 at different values of center deflection.
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Figure 6.18 Measured left spanwise deformation modes for specimen
R 12S 3 T3 -1 at different values of center deflection.
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Figure 6.19 Measured right spanwise deformation modes for specimen
R 12S3 T3 -1 at different values of center deflection.
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Figure 6.20 Measured central spanwise deformation modes for specimen
R1 2S3 T2 -2 at different values of center deflection.
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Figure 6.21 Measured left spanwise deformation modes for specimen
R 12S3 T2-2 at different values of center deflection.
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Figure 6.22 Measured right spanwise deformation modes for specimen
R 12 S3 T2 -2 at different values of center deflection.
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Figure 6.23 Measured central spanwise deformation modes for specimen
R 12S 3 T3 -2 at different values of center deflection.
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Figure 6.25 Measured right spanwise deformation modes for specimen
R 12S 3 T3 -2 at different values of center deflection.
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shapes is the residual indentation at the loading site evident in the final,

unloaded, mode shape. Both of these specimens were damaged during loading

(see section 6.1.3) and the indentation is attributed to damage formation. A

description of the severity and modes of damage for all specimens is given in

section 6.1.3. The residual indentation is also evident, to a lesser degree, in the

final mode shape for specimen R 12 S 3 T 2 -2 in Figure 6.20. This is consistent

with the local indentation being attributed to damage as this specimen was

loaded to a lower peak deflection (and thus, peak force) than the specimen in

Figure 6.14 and therefore was less severely damaged. A final mode shape for

specimen R 12 S3 T 3 -2 in Figure 6.23 is not available because this specimen was

inadvertently removed from the test fixture before a final mode shape was

assessed.

As excellent agreement is noted between the overall loading and mode-

shape deformation data, only evolutions from the mode-shape tests are used

for further discussion of the response of specimen types R 12S3 T2 and R 12 S3 T3

(Figures 6.20 to 6.25). The central spanwise deformation modes for both these

specimens (Figures 6.20 and 6.23) are dominated by symmetry, i.e., there is no

dominant asymmetry indicative of bifurcation such as that observed for

specimen type R 12 S3 T1. A slight asymmetry is discernible in the central mode

shapes of specimen R 12S 3 T2 -2 at center deflection values of 2.0 mm, 4.0 mm,

and 6.0 mm and in those of specimen R 12 S3 T3 -2 at center deflection values of

3.0 mm and 6.0 mm in Figures 6.20 and 6.23, respectively. Within fidelity of

the mode measurements, it is not possible to determine whether or not these

slight asymmetries indicate bifurcation.

The left and right spanwise mode shapes for these specimens shown in

Figures 6.21, 6.22, 6.24, and 6.25 are also dominated primarily by symmetric

deformations. Considering the left and right mode shapes for specimen
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R 12 S3 T2 in Figures 6.21 and 6.22, a slight asymmetry is noted in both mode-

shape evolutions beginning at a center deflection value of 2.0 mm. Comparison

of the left and right mode shapes reveals that this asymmetry is

antisymmetric with respect to the center of the shell. This same type of

antisymmetry was previously noted for specimen type R 12S 3 T1 beginning at a

center deflection value of 2.0 mm. The antisymmetry is also evident in the left

and right mode shapes for specimen R 12 S 3 T 3 -2 in Figures 6.24 and 6.25

beginning at a center deflection value of 3.0 mm. Due to the dominant

symmetry in the central mode, and the antisymmetry in the left and right

modes, the asymmetric deformations in the left and right mode shapes are

attributed to bending-twisting coupling in the laminate. Due to this laminate

coupling, bending moments in both the axial and circumferential direction will

cause the shell to twist which would be manifested in the left and right mode

shapes as antisymmetric modes. Antisymmetric modes due to bending-

twisting coupling are further discussed in section 6.2 utilizing numerical

modeling results.

6.1.3 Damage Development

Damage was investigated using sectioning and x-radiography as

described in chapter 5. X-radiography was utilized to evaluate damage

development at the loading site for a given specimen type at different peak

loads (used as a damage resistance metric). As discussed in chapter 2, damage

becomes more severe at higher peak loads for composite shells with the caveat

that the presence of an instability may cause significantly increased damage

extent as well as atypical (as compared to plates) damage distributions. As

peak load is the primary damage resistance metric, this value has been

tabulated for each specimen tested in Table 6.1 along with the corresponding
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Table 6.1 Peak Load and Associated Center Deflection

Specimen Type Test Type Peak Load Center Deflection, wc

R 12S 3 T1-1 Overall Loading 109 N 8.4 mm

R 12S 3 T 1-2 Mode-shape 201 N 12.0 mm

R 12S 3T 2-1 Overall Loading 1737 N 19.1 mm

R 12S 3 T2 -2 Mode-shape 1096 N 16.0 mm

R 12S 3 T 3-1 Overall Loading 2746 N 16.6 mm

R 12S 3T 3-2 Mode-shape 1987 N 15.0 mm

value of center displacement (stroke). Sectioning was utilized to explore the

possibility of damage development away from the loading site. Damage

formation away from the loading site has been hypothesized due to the

asymmetric nature of shell buckling modes.

No damage was found in the x-radiographs for specimen type R12 S3 T1

where the peak loads for these two tests were 109 N and 201 N. Previous

work has identified a threshold value of peak force of approximately 400 N

below which no damage is found for composite shells of the same material,

layup, and thicknesses [38]. The data for specimen type R 12S 3 T1 is therefore

consistent with this earlier observation. Also consistent with this observation

is that all specimens which reach peak forces above 400 N (specimen types

R 12S3 T2 and R 12S3 T3 ) are damaged. X-radiographs of the loading site for these

two specimen types are provided in Figures 6.26 and 6.27, respectively. The x-

radiographs of damage for these shell specimens are typical of damage for

composite plate specimens having this layup, with typical delaminations and
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10 mm

Figure 6.26 X-ray photographs of specimen type R 1 2S 3T 2 loaded to: (top)
1096 N (we = 16.0 mm), and (bottom) 1737 N (we = 19.1 mm).
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10 mm

Figure 6.27 X-ray photographs of specimen type R 12 S 3 T 3 loaded to: (top)
1987 N (w, = 15.0 mm), and (bottom) 2746 N (we = 16.6 mm).
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matrix cracks along the ply fiber directions of 450, -450, and 00, with the largest

extent in the 450 direction. Sectioning of the specimens through the damaged

region also reveals that, as is typical of plates, delamination and matrix

cracking occurs on the backface (concave side) of the shell, opposite

indentation (see Figure 5.16). This is further substantiated by visually

observed 450 matrix cracks on the backface of both specimens directly under

the indentor at maximum load and deflection (one matrix crack for specimen

R 12 S3 T3 -1 and two for specimen R 12S3 T3 -2). Also typical of previous findings

for plates and shells (with no instability) is the observation that damage extent

increases with peak force.

For the three specimen configurations tested, no damage atypical of

plate-like damage was observed. Previously observed atypical damage has

been attributed to bifurcation into an asymmetric mode. Thus, finding typical

damage is not surprising because the two specimen types that were damaged,

R 12 S 3 T2 and R 12S 3 T 3 , did not have dominant asymmetric modes indicative of

bifurcation. The specimen type which did bifurcate, R1 2S 3 T 1, was undamaged.

All specimens were sectioned after testing and examined under an

optical microscope as described in chapter 5. Sectioning was undertaken to

investigate the possibility of damage away from the loading site. This

possibility has been hypothesized due to the presence of asymmetric

deformation modes during bifurcation buckling. Sectioning of all specimens

revealed only damage at the loading site. No additional damage sites were

identified through the sectioning process, and the only damage observed was

that which emanated from the loading site. Again, this is consistent with the

observation that bifurcation into dominant asymmetric modes was observed

only for specimen type R 12 S 3 T1 which was undamaged. Thus, all of the

damage observed in this work is consistent with previous x-radiograph findings
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for the damage resistance of composite plates.

6.2 Numerical Analysis

Results from numerical analysis of the experimental specimens are

presented in this section. As for the experimental data in section 6.1,

numerical results for load-deflection behavior at the loading point and mode-

shape evolutions of the shell during loading are used to characterize the

response. Nominal laminate properties given in Table 4.1 and experimentally

determined values of radius (see Appendix A) are utilized in the numerical

analyses. Experimental and nominal values of span are identical due to the

test fixture design. As in chapter 4, the shells are point-loaded at the center.

Boundary conditions are modeled as in chapter 4 except for the condition along

the (curved) axial edges. Whereas the axial edges were free for the shells

analyzed in chapter 4, the shells in this section are restrained out-of-plane.

This is accomplished within the finite element analysis by setting the

transverse displacement (w) and rotation about the x-axis (Rx) to zero (see

Figure 4.1). While the knife edges are designed to allow rotation about the

circumferential y-axis (Ry), the upper and lower knife edges restrict rotation

about the axial x-axis (Rx). Setting Rx to zero at the axial boundaries in the

finite element model reflects this experimental condition. All other aspects of

the numerical analyses are identical to those discussed in chapter 4.

6.2.1 Loading Response

As with the experimental results, loading response is characterized by

plotting the load versus corresponding deflection (stroke in the experiments).

Results from both types of testing (specimens) are presented in this section to

determine the effect of the experimentally determined radii on the response.
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As with the numerical analysis of specimens in chapter 4, it is instructive to

consider both limit-point and bifurcation analyses for each specimen.

Comparing both types of response in this way highlights the importance of

bifurcation. Limit-point analyses are obtained with symmetric meshes

whereas the AMT is used to assess bifurcation (or limit-point behavior if

bifurcation does not exist).

All of the shells are found to have a bifurcation point followed by a limit

point. This behavior is different than that encountered for the cases discussed

in chapter 4 where a single critical point is observed for each shell. Therefore,

the response generated using the AMT for specimen type R12S3T 1 is compared

with the bifurcation response calculated using two traditional techniques. This

is done to validate the new technique with regard to this different type of shell

behavior. A converged solution using a symmetric mesh is first undertaken

prior to inducing bifurcation using traditional techniques. The equivalence

transform and geometric imperfection techniques were previously discussed

and used to evaluate shell bifurcation in chapter 4. Finally, bifurcation for

these shells is investigated using the AMT.

The response of specimen R 12S 3T1-1 utilizing three symmetric meshes

is presented in Figure 6.28 to investigate convergence via mesh refinement.

The 10x10 mesh is not converged by comparison to the 20x20 and 30x30

meshes. However, the 20x20 mesh is sufficiently refined because it gives a

converged solution to the shell limit-point response. The response of this

specimen initially softens, then stiffens, and then softens again towards a limit

point near a load of 145 N and a center deflection value of approximately 9

mm. Postbuckling after the limit point in these cases causes convergence

difficulties for the finite element analysis. Nonconvergence occurs in the

numerical solution of the nonlinear shell equations when a solution can not be
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Figure 6.28 Load-deflection results from numerical analyses for specimen
R1 2 S3 T1 -1 using symmetric meshes.
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obtained even upon successive reductions in the load/displacement steps.

Convergence difficulties of this sort are oftentimes encountered in practice and

are found in this study for specimen types R12S3T 1 and R12S 3T2. Postbuckling

for these cases is likely dynamic in nature, and thus an analysis which includes

inertia of the composite shell would be required. A transient (dynamic)

analysis is typically employed in such cases to characterize the response [73].

Dynamic analyses of this sort are beyond the scope of this work. Furthermore,

as discussed in chapter 3, the response prior to this postbuckling is of interest

in this work because it addresses the response region where shell behavior

differs from plates. Thus, the current analysis is sufficient for the objectives of

this work. In addition, postbuckling of specimen types R12S 3T3 will later be

shown to be adequately captured by the static analyses. This is interpreted to

mean that postbuckling of the thicker specimens is not dynamic, most likely

due to the increased bending stiffness of the shell, which acts to resist the

dynamic motion.

Bifurcation of specimen R 12S 3T1-1 is investigated using the AMT and

these results are compared to the limit-point response using a symmetric

20x20 mesh in Figure 6.29. The response calculated using the AMT is noted to

bifurcate from the primary path at approximately 130 N, approximately 15 N

below the limit-point solution calculated with the converged symmetric mesh.

Thus, the shell bifurcates before reaching the limit point. This bifurcation

point will be shown, in section 6.2.2, to be associated with a dominant

asymmetric mode similar to that encountered for the composite shells

discussed in chapter 4. After bifurcation, the response follows a descending

path very close to the primary path as both load and deflection decrease to

approximately 40 N and 3.8 mm, respectively. At this point, the response is

noted to resume loading upon a second equilibrium path which leads to a second
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Figure 6.29 Load-deflection results from numerical analyses for specimen
R 12S3 T1 -1 using symmetric and asymmetric meshes.
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critical point. This second critical point is a limit point and is not associated

with bifurcation. After the second critical point, the response parallels the

limit-point path from the symmetric analysis and convergence difficulties are

again encountered. Much like the second equilibrium path for the benchmark

problem discussed in chapter 4, it is likely that the bifurcation and limit-point

postbuckling paths will correspond as the shell snaps through to an inverted

configuration and regains load-carrying capability on a third (and final)

equilibrium path. This behavior will later be noted for specimen type R 12S 3T 3

where load-carrying capability is regained on a third such equilibrium path.

Both load and deflection decrease after the bifurcation point on the

descending path for specimen R 12S 3T 1-1 in Figure 6.29. This type of response,

where both load and deflection decrease simultaneously, can only be realized in

an analysis where the "loading" is a combination of both load and deflection

increments (path-parameter). In a load-controlled test, the response at the

bifurcation point would "snap" (at a constant load of 130 N) dynamically to the

second equilibrium path, just prior to the limit point. In a deflection (stroke)

-controlled test, the response at the bifurcation point would dynamically "snap"

(at a constant center deflection of 7.1 mm) to the second equilibrium path.

Thus, the single response calculated using the path-parameter method allows

both the load- and deflection- controlled response of the shell to be evaluated.

Other asymmetric meshes are used to calculate the response of

specimen R 12S 3 T 1 -1 to evaluate convergence of the bifurcation solution. A

very coarse 10x6 / 10x5 mesh is noted to induce bifurcation but the response is

not converged by comparison to a more refined 32x18 / 32x7 mesh in Figure

6.30. However, convergence is obtained using the 20x12 / 20x5 mesh in Figure

6.29 which corresponds to the more refined mesh result in Figure 6.30.

Asymmetric 20x12 /20x7 and 32x18 / 32x9 meshes did not induce bifurcation,
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Figure 6.30 Load-deflection results from numerical analyses for specimen
R 12 S 3 T1-1 using various asymmetric meshes.
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but rather found the limit-point response. Thus, for specimen R 12 S 3 T 1 -1, a

20x12 / 20x5 mesh is sufficient to find the converged bifurcation response.

These observations are consistent with the discussion of mesh refinement and

asymmetric meshing given in chapter 4.

The bifurcation point at a load value of 130 N and a center deflection of

7.1 mm, and the associated postbuckling path, are next evaluated using two

traditional methods to verify the AMT solution. Results from the 20x20 and

30x30 symmetric mesh analyses (see Figure 6.28) indicate, by a change in sign

of the determinant of the tangent stiffness matrix, that a bifurcation point

exists at 129.7 N. The first bifurcation mode at this point on the primary (first

equilibrium) path is found to be dominated by an asymmetry much like that

encountered in chapter 4 for similar composite shells. A central spanwise plot

of this bifurcation mode, scaled to 1000% of the shell thickness, is presented in

Figure 6.31 to illustrate the asymmetry. The equivalence transform technique

is next utilized to assess bifurcation near the indicated critical (bifurcation)

point of 129.7 N. The bifurcation mode is assumed as a solution at 126 N and

the load minimized to initiate a branch switch. The technique failed to switch

to the bifurcation path over a large range of assumed modal amplitudes (as a

percentage of specimen thickness): 1%, 10%, 50%, 100%, 500%, 1000%. In all

cases, a switch was not initiated and the response remained on the primary

path. A branch switch was next attempted at 129 N using a variety of modal

amplitudes for the first eigenmode. Bifurcation did not occur for amplitudes (as

a percentage of specimen thickness) of 1%, 5%, 10%, or 25%, but was initiated

at 50% and 100%. Numerical results from a successful switch (50% t) are

shown in Figure 6.32. By comparison to Figure 6.29, the bifurcation response

in Figure 6.32 corresponds to that found previously using the AMT.
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Figure 6.31 Central spanwise bifurcation mode evaluated at 126 N for
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Figure 6.32 Load-deflection results from numerical analyses of specimen
R 12S 3T1-1 using a 20x20 symmetric mesh incorporating scaled
eigenmode deformations (equivalence transform) near the
bifurcation point.
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As an alternative to the equivalence transform technique, the second

traditional technique of introducing geometric imperfections can be used to

initiate a branch switch. A geometric imperfection in the form of the first

eigenmode calculated near the bifurcation point (load value of 126 N) is

introduced into the initial problem geometry to initiate bifurcation. As in

chapter 4, the mode is introduced by scaling its largest translational amplitude

as a percentage of specimen thickness. Bifurcation is initiated using a

geometric imperfection with amplitude of 0.5% of the specimen thickness using

a symmetric 20x20 mesh and the results presented in Figure 6.33. The

bifurcation response is compared with the limit-point solution using the

symmetric 20x20 mesh in Figure 6.33. By comparing Figures 6.33 and 6.29,

the solution using the geometric imperfection and the AMT are found to be

equivalent. The imperfection amplitude of 0.5% t is very close to the smallest

imperfection which will induce bifurcation (an imperfection amplitude of 0.1% t

did not induce bifurcation). Larger imperfection amplitudes (50% and 100% of

thickness) are introduced to generate the solutions presented in Figure 6.34

and thereby investigate effects of the choice of imperfection amplitude.

Increasing the imperfection amplitude is noted to reduce the bifurcation load

significantly for a 50% t imperfection. At an imperfection equal to the

specimen thickness (100% t), the response is noted to bifurcate from the

primary path directly to the second equilibrium path in the bifurcation

response of the unperturbed geometry (see Figure 6.29). These large

amplitude imperfections are also noted to cause an increase in the value of the

second critical point (near a center deflection value of 10 mm). These results

indicate that alteration of the original problem (geometry) by these relatively

large imperfections has a significant effect on the resulting predicted response.

However, results using small geometric imperfections and the equivalence
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Figure 6.33 Load-deflection results from numerical analyses of specimen
R12 S 3 T 1 -1 using a 20x20 symmetric mesh and a 20x20
symmetric mesh with a 0.5% t imperfection based on the
eigenmode in Figure 6.31.
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Figure 6.34 Load-deflection results from numerical analyses of specimen
R 12S3 T1 -1 using a 20x20 symmetric mesh with 50% and 100% t
imperfections based on the eigenmode in Figure 6.31.
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transform technique both verify the AMT bifurcation solution.

The effect of changing the radius, the only difference between specimens

R 12S 3T1-1 and R12S 3T1-2, is explored in Figure 6.35. The converged bifurcation

response for these two specimens, utilizing asymmetric 20x12 / 20x5 meshes,

correspond. Thus, the difference in radius for these two specimens, (1.978 m

for R1 2S 3T 1-1, and 1.960 m for R12S 3T1-1, respectively) does not significantly

affect the numerically evaluated bifurcation response.

The limit-point and bifurcation responses of specimen R 12S 3T2-1 in

Figure 6.36 are noted to be qualitatively similar to that of specimen type

R 12S 3 T1. Bifurcation from the primary path is followed by a path

characterized by decreasing load and deflection nearly coincident with the

primary path. The response then begins loading on a second equilibrium path

towards a second critical (limit) point. Although not physically meaningful, the

limit-point response is provided for comparison to the bifurcation response. A

20x20 symmetric mesh and a 20x12 / 20x7 asymmetric mesh are found to give

converged limit-point and bifurcation solutions, respectively, for this specimen

type. As with specimen type R 12S 3 T 1, all solutions (symmetric and

asymmetric meshes) for specimen R 12S 3T 2-1 are found to experience

convergence difficulties after the second critical point. Also in agreement with

the findings for specimen type R 12S 3T 1 is that the small difference in radius

between specimens R 12S 3T 2-1 and R1 2 S 3T 2-2 has little effect on the

numerically predicted response. This can be seen in the results presented in

Figure 6.37.

The response of specimen type R12S 3T3 qualitatively differs from those

of specimen types R 12S 3T1 and R12S 3T2 in two ways: there is only one critical

point and, as mentioned previously, there are no convergence difficulties

associated with traversing onto the final (third) equilibrium path. The
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Figure 6.35 Load-deflection results from numerical analyses for specimens
R 12S3 T 1-1 and R 12 S3 T 1-2 using an asymmetric (20x12 / 20x5)
mesh.
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Figure 6.36 Load-deflection results from numerical analyses for specimen
R12S 3 T2 -1 using symmetric and asymmetric meshes.
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Figure 6.37 Load-deflection results from numerical analyses for specimens
R 12 S3 T2 -1 and R 1 2S 3 T 2-2 using an asymmetric (20x12 / 20x7)
mesh.
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converged limit-point and bifurcation responses for specimen R 12 S 3 T3 -1 are

presented in Figure 6.38 using 20x20 symmetric and 20x12 / 20x7 asymmetric

meshes, respectively. The bifurcation response follows the primary response

until a center deflection value of 7.1 mm (load value of 1080 N) where

bifurcation occurs onto a stable secondary path. The secondary path

associated with the bifurcation lies very close to the primary path as shown in

the exploded-view of the response in Figure 6.39. The response reaches a

critical (limit) point at approximately 1440 N (10.0 mm center deflection). The

load drops rapidly after the critical point at a center deflection value of 11.2

mm to a load of approximately 925 N where the response reaches the final

postbuckling path and regains its load-carrying capability. Thus, for specimen

type R 12S 3 T3 , bifurcation is subtle relative to the other specimen types and

there are no convergence difficulties associated with the transition to the final

equilibrium path. As with the other two specimen types, the response of

specimens R 1 2S 3 T 3 -1 and R 12S 3 T 3-2 in Figure 6.40 reveals that the radius

difference (largest of all the specimen types) between these two specimens has

little effect on the resulting numerical response.

As with the experimental data (see Figure 6.7), it is instructive to

consider the response of the three specimen types relative to one another. The

numerical load-deflection response for the three specimens are presented in

Figure 6.41 for comparison. It is immediately obvious that thicker panels, as

expected, are stiffer both initially and overall. Both the load and deflection

range associated with the bifurcation point (instability region) decreases

significantly with thickness as can be noted by comparing the responses of

specimen R 12S3 T1 -1 and R 12S3 T2 -1. This instability region associated with the

bifurcation point disappears altogether for specimen R 12 S3 T3 -1. The deflection

associated with the critical points at both the first bifurcation point and the
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Figure 6.38 Load-deflection results from numerical analyses for specimen
R 12S 3 T3 -1 using symmetric and asymmetric meshes.
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Figure 6.39 Blow-up of Figure 6.38 in area of bifurcation: load-deflection
results from numerical analyses for specimen R 12S 3 T 3 -1 using
symmetric and asymmetric meshes.

1500

1400

1300

1200

Z

0
-j

1100

10



-191-

-- R12S3T3-1
--- R12S3T3-2

5 10 15

Deflection (mm)

Figure 6.40 Load-deflection results from numerical analyses for specimens
R 12S3 T3 -1 and R 12 S3 T3 -2 using an asymmetric (20x12 / 20x7)
mesh.
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Figure 6.41 Load-deflection results from numerical analyses for specimens
R 12 S 3 T 1 -1, R 12 S 3 T 2 -1, and R 12 S 3 T 3 -1 using asymmetric
meshes.
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second critical (limit) point, are noted to be approximately independent of

thickness when radius and span are held constant. Bifurcation occurs at a

center deflection of approximately 7.0 mm, and the second local maximum

occurs at a value of approximately 10.5 mm for all specimen types. However,

the loads associated with these points clearly increase with increasing

specimen thickness. The consistent values of deflection associated with

buckling for specimens of different thickness has been noted in previous work

with arches (e.g., [52]) and is related to the typical shell-height parameter. As

a result, shell height is oftentimes used to nondimensionalize transverse

deformations of arches and shells, e.g., [33, 54]. Nominal shell height for the

shells in this work is 6.4 mm which is slightly less than the displacement

corresponding to bifurcation (7.0 mm). However, the out-of-plane deformations

vary from a maximum at the shell center to zero at the restrained axial edges.

Thus, these shells do not deform as arches, but they do share the geometric

characteristic that buckling occurs at a consistent center deflection

approximately corresponding to the shell height.

6.2.2 Mode-shape Evolutions

The calculated numerical response for the three specimen types

discussed in the previous section, particularly bifurcation versus limit point

buckling, can be further elucidated by considering deformation evolutions. As

there is little difference in the calculated loading response for specimens of a

given thickness, only deformation evolutions for the mode-shape tests

(R1 2S 3 Tn-2 specimen types) are presented. Mode-shape evolutions for these

specimens are required later for comparison to the experimental data. The

mode-shape evolutions are presented in the same format as in section 6.1 for

direct comparison in chapter 7. The converged AMT bifurcation solutions for
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each specimen type are utilized to construct the mode-shape evolutions.

Refinement of these asymmetric meshes are 20x12 / 20x5 for specimen

R1 2 S 3T 1-2, and 20x12 / 20x7 for specimens R1 2 S3 T2 -2 and R 12 S3 T 3-2.

The numerically evaluated central, left, and right mode-shape evolutions

for specimen R 1 2 S 3 T 1-2 are presented in Figures 6.42, 6.43, and 6.44,

respectively. Mode shapes are presented at key values in the shell response:

the initial (undeformed) shell, near the midpoint of the first equilibrium path,

just prior to and just after the bifurcation point, at the start of and near the

midpoint of the second equilibrium path, at the limit point, and after the limit

point near the midpoint of the postbuckling path. The central deformation

mode for this specimen is noted to be symmetric at center deflection values of

2.6 mm and 7.1 mm, the latter being the last point evaluated prior to

bifurcation. At a center deflection value of 6.9 mm, just after bifurcation, the

mode shape is noted to be slightly asymmetric. The central mode shape is

then dominated by an asymmetric mode at a center deflection of 3.8 mm (load

value of 40.4 N) corresponding to the local minimum at the beginning of the

second equilibrium path (see Figure 6.29). The asymmetry is still clearly

evident on the second equilibrium path and at the second critical (limit) point at

center deflection values of 7.9 mm (load value of 100 N) and 10.5 mm (load

value of 123 N), respectively. The response remains asymmetric into the

second postbuckling region at a load and deflection of 82.6 N and 11.2 mm,

respectively. Thus, the response along the center of the shell is dominated by

symmetry until bifurcation, where an asymmetric mode dominates through

the second postbuckling region (after the second critical point).

The left and right mode-shape evolutions in Figures 6.43 and 6.44 of

specimen R 12 S 3 T 1 -2 have similar symmetries and asymmetries at the same

values of center deflection as the central spanwise mode in Figure 6.42. The
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Figure 6.42 Numerical analysis results of central spanwise deformation
modes for specimen R12S 3T 1-2 at different values of center
deflection.
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Figure 6.43 Numerical analysis results of left spanwise deformation modes
for specimen R12S3T1-2 at different values of center deflection.

10

5

0

-5

E
E
C

O

0Q

d)

-10



w (mm)

-a 10.5
-A 11.2

0 50 100 150 200 250 300

Spanwise Position (mm)

Figure 6.44 Numerical analysis results of right spanwise deformation modes
for specimen R 12S3 T1-2 at different values of center deflection.
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left and right mode shapes prior to the second equilibrium path, at center

deflections of 2.6 mm, 7.1 mm, 6.9 mm, and 3.8 mm, are similar to those for

the central spanwise mode. The modal amplitudes are slightly decreased

relative to the central mode because the left and right axial stations represent

the midpoint between the center of the shell and the restrained axial shell edge.

Although still asymmetric, left and right mode shapes on and after the second

equilibrium path are markedly different than those for the central mode.

Deformations at the center of the shell are significantly diminished in these

later modes as compared to those for the central mode shape. Larger

deformations at the center of the central spanwise mode relative to the left and

right modes are expected, however, due to load application at the center of the

central mode. Lastly, the left and right spanwise modes are noted to be slightly

asymmetric (relative to the central mode) and also nearly identical. These

modes are dominated by the asymmetric buckling mode but are not identical

due to the small antisymmetric effect due to laminate bending-twisting

coupling. Antisymmetry is also discernible in the left and right modes at a

center deflection of 2.6 mm. This effect has been noted for geometrically

similar composite shells in chapter 4, and further evidence and discussion is

presented subsequently in the left and right mode shapes for specimen types

R 12S 3 T2 and R 12S 3 T3 .

As with the load-deflection response, the central mode-shape evolution

for specimen R 12S 3 T2 -2 in Figure 6.45 displays the same characteristics as

specimen R 12S 3T 1-2 (see Figure 6.42). Mode shapes for specimen R 12S 3T 2 -2

are provided at the same key points in the response: on the first equilibrium

path, just prior to bifurcation, just after bifurcation, etc. A similar comparison

can be drawn regarding the left and right mode-shape evolutions for specimen

R 1 2S 3 T2 -2 as well (compare Figures 6.46 and 6.47 with Figures 6.43 and 6.44).
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Figure 6.45 Numerical analysis results of central spanwise deformation
modes for specimen R 12 S 3 T2 -2 at different values of center
deflection.
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Figure 6.46 Numerical analysis results of left spanwise deformation modes
for specimen R 12 S3 T2 -2 at different values of center deflection.
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Figure 6.47 Numerical analysis results of right spanwise deformation modes
for specimen R12S 3T2 -2 at different values of center deflection.
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Thus, response characteristics typical of specimen type R 1 2 S 3 T 1 -2 -

symmetric mode shapes prior to bifurcation, asymmetric mode shapes after

bifurcation, and a moderate antisymmetric effect in the left and right mode

shapes due to bending-twisting coupling - are observed for specimen R 12 S3 T2 -2

as well.

The central spanwise deformation modes for specimen R 12 S 3 T 3-2 in

Figure 6.48 also exhibit the transition from symmetric to asymmetric modes

at the bifurcation point. The inverted symmetric mode for this specimen upon

reaching the final (third) equilibrium path is evident at a center deflection of

11.4 mm (load value of 877 N). The left and right spanwise modes for

specimen R 1 2S 3 T 3 -2 in Figures 6.49 and 6.50 do not exhibit the symmetry

observed in the central spanwise mode on the final equilibrium path (center

deflection of 11.4 mm). In contrast, the modes are noted to be asymmetric and

also antisymmetric with respect to one another. Again, this is a manifestation

of the laminate bending-twisting coupling which induces a greater effect for this

layup at larger thicknesses. Further evidence for this antisymmetry is

provided by the left and right mode shapes prior to bifurcation at center

deflections of 4.7 mm and 7.0 mm which would otherwise be symmetric. The

bifurcation mode does dominate the left and right mode-shape responses as

evidenced by the loss of antisymmetry after bifurcation, but before the final

equilibrium path, at center deflection values of 7.4 mm, 9.2 mm, 11.1 mm, and

11.5 mm. The effect of laminate bending-twisting coupling is noted in the

mode-shape evolutions for all specimens, both prior to and after bifurcation,

but the effect is more pronounced for thicker specimens as expected.

The mode-shape evolutions for the three specimen types, taken together

with the loading response, indicate a consistent progression with regard to

thickness. The descending (load and deflection) instability region associated
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Figure 6.48 Numerical analysis results of central spanwise deformation
modes for specimen R 1 2 S 3 T 3-2 at different values of center
deflection.
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Figure 6.49 Numerical analysis results of left spanwise deformation modes
for specimen R12S3T3-2 at different values of center deflection.
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Figure 6.50 Numerical analysis results of right spanwise deformation modes
for specimen R 12S 3T3-2 at different values of center deflection.
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with the bifurcation point is less pronounced as thickness increases until it

disappears entirely for specimen type R 12S 3T 3 where a stable secondary

(bifurcation) path is observed. The secondary path, though stable, still has a

transition to asymmetric modes shapes associated with the bifurcation point.

Furthermore, the third (final) equilibrium path, where symmetric mode shapes

are regained for all three specimen types, is able to be characterized by a

static analysis for the thickest specimen type (R12S3 T3 ).
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CHAPTER 7

DISCUSSION

Important findings regarding composite shell response from the present

work are discussed in this chapter. Results from chapters 4 and 6 are used to

motivate the discussion. A comparison between the experimental and

numerical results from the specimens tested in this work is provided in section

7.1. Effects of boundary conditions on the predicted and experimentally

observed responses are considered in section 7.2. A discussion of damage

resistance for the specimens tested in this work is presented in section 7.3 and

related to the current understanding of damage resistance of composite shell

structures. Lastly, the utility of the asymmetric meshing technique (AMT) in

evaluating the bifurcation response of composite shells is considered in section

7.4.

7.1 Experimental and Numerical Comparisons

In this section, experimental data and results from the numerical

analysis are used to gain a better understanding of the response of the shells

tested in this work. Comparisons of both load-deflection behavior and mode-

shape evolutions are particularly useful for gaining insight into the shell

response. In all cases, converged numerical bifurcation results using the AMT

for each specimen are utilized for comparison to the experimental data.

As discussed in chapter 6, the numerical results allow both load- and

deflection-controlled buckling responses to be evaluated. A combination of
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both load and deflection (path-parameter) are utilized to "load" the structure in

the numerical analysis. In the numerical results for specimen types R 12S 3T1

and R 12S 3T 2, bifurcation involves an unstable postbuckling region wherein

both load and deflection decrease simultaneously. In a deflection-controlled

test, such as that performed in the experimental portion of this work, the

response would (and did) "snap" at constant deflection to the stable second

equilibrium path. This deflection-controlled "snap" is illustrated in Figure 7.1

utilizing the numerical results from specimen R12S3 T 1 -1 (see Figure 6.29).

"Snapping" during the deflection-controlled test must be considered when

making comparisons to the experimental data. The load-drops and associated

'popping' observed during testing of specimen type R12S3 T1 (see Figures 6.1

and 6.2) are likely associated with "snapping" from the primary path to the

second equilibrium path at the experimental bifurcation point.

The numerical and experimental loading responses for specimen

R12S 3T1-1 are provided in Figure 7.2. Although the responses coincide initially

(center deflections less than 0.5 mm in Figure 7.2), the experimental response

is noted to become more compliant than the predicted response as loading

increases and the response softens. The experimental loading response for

specimen types R 12S 3 T2 -1 and R 12 S3 T3 -1 are also noted to be more compliant

than the predicted results in the loading response comparisons presented in

Figures 7.3 and 7.4, respectively. The initial experimental response is in good

agreement with the numerical results for specimen R12S 3 T2-1, but is more

compliant than the prediction for specimen R 12S3 T3 -1.

A characteristic of all the experimental data relative to the numerical

predictions is that the data generally represents a more compliant response.

This is consistent with findings in chapter 4 for the broad range of composite

shells tested previously. Reasons for a more compliant experimental response
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Figure 7.1 Illustration of deflection-controlled "snap" utilizing load-
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Figure 7.2 Numerical and experimental load-deflection results for specimen
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Figure 7.3 Numerical and experimental load-deflection results for specimen
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for these specimens are the same as previously discussed in chapter 4: the

analysis does not include transverse shear or account for experimental

realities such as compliance of the test fixture (elastic, not rigid,

circumferential boundary condition), contact behavior at the loading point, or

damage. All of these effects act to make the experimental response more

compliant than the numerical results, as well as delaying or eliminating

bifurcation entirely. Increased compliance (and disagreement) of the

experimental response relative to the numerical predictions as thickness

increases can be attributed to many factors. These include a decrease in

relative stiffness of the test fixture as compared to the shells, deformation at

the loading site due to shear, and seating of the thicker specimens into the

grooved circumferential (hinged) supports. It should be noted that thinner

specimens fit into the grooved (finite radius) insert utilized here more readily

than thicker specimens. Refinements to the analysis, as well as experimental

techniques to investigate these different effects, are suggested in chapter 8 as

extensions of the current work.

In the numerical results, bifurcation is indicated in a number of ways

including a change in path and the development of asymmetric modes. In the

experimental data, mode-shape evolutions, particularly the transition from a

symmetric to an asymmetric mode, indicate bifurcation. Observed

asymmetries in experimental mode-shape evolutions are key to identifying

bifurcation in this work. However, it is important to distinguish between modal

asymmetry and antisymmetry. In chapter 6, left and right mode shapes for all

specimen types (e.g., see Figures 6.24 and 6.25 for specimen R12S 3T3-2) were

noted to be asymmetric. However, this asymmetry oftentimes occurred with

no corresponding asymmetry in the central mode and, furthermore, the left and

right modes were noted to be antisymmetric. This antisymmetry in the left
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and right spanwise modes is a result of bending-twisting coupling in the

composite laminate and does not indicate bifurcation. This is supported by the

numerical analysis results which indicate this type of antisymmetry in the

absence of bifurcation. Evidence of antisymmetry in left and right

experimental mode shapes is also observed prior to bifurcation and on the final

equilibrium path for all specimen types, regions where central deformation

modes are symmetric. Thus, the antisymmetry in left and right mode shapes

does not indicate bifurcation, but rather reflects a composite laminate

coupling. Evidence for this type of antisymmetry due to laminate coupling was

also provided in chapter 4 for the composite shells tested previously. This

antisymmetric effect is small relative to the asymmetric modes associated

with bifurcation. This can be seen for specimen type R12S 3T 1.

Mode shapes from numerical analysis for all three specimen types

(thicknesses) contain an asymmetric component due to the predicted

bifurcation. These asymmetries in the numerically evaluated mode shapes are

evident for all three specimen types between center deflection values of

approximately 7 mm and 11 mm. However, a dominant asymmetric mode

indicative of bifurcation is noted in the experimental data for only one of the

three specimen types, R 12S 3T1 , between center deflection values of 6.0 mm

and 10.0 mm. The other two specimen types were not observed to have this

dominant asymmetry, although slight asymmetries were noted in the central

modes between center deflection values of 2.0 mm and 6.0 mm. As discussed

in chapter 6, it is unclear whether the mode-shape data for these two thicker

specimens indicate bifurcation or not. Given evidence from chapter 4 and

previous work that test fixture compliance acts to inhibit bifurcation (and thus

asymmetric modes), it is not surprising that bifurcation is difficult to identify

for these thicker specimens. Recommendations for further work to



-215-

experimentally determine bifurcation are provided in chapter 8.

Experimental central spanwise mode shapes for specimen R 12S 3T1-2

are presented in Figure 7.5 for comparison to the numerical spanwise mode

shapes evaluated at the same values of applied center deflection in Figure 7.6.

Recall that the numerical response is deflection-controlled in this comparison,

following the path given in Figure 7.1. Excellent agreement is noted for all

mode shapes except for the mode at a center deflection value of 6.0 mm. The

experimental mode is noted to be asymmetric, i.e., the shell has bifurcated

prior this value of center deflection. The numerical solution, however, is

symmetric because bifurcation is not predicted until an applied center

deflection of 7.1 mm is reached. Thus, the experimental data indicates

bifurcation between center deflection values of 4.0 mm and 6.0 mm whereas it

is not predicted to occur until a center deflection value of 7.1 mm. In this range

of applied center deflection, the numerical response (primary path) lies very

close to the second equilibrium path (with associated asymmetric modes). It is

hypothesized that an imperfection (loading, boundary condition, or geometric)

causes bifurcation from the primary to the secondary path before the

numerical bifurcation point. This has been illustrated in chapter 6 (see Figure

6.34) where a geometric imperfection in the numerical model allowed the

response to move directly from the first to the second equilibrium path at a

center deflection of 4.5 mm. Apart from this discrepancy in mode shapes at a

center deflection of 6.0 mm, the experimental and numerical central spanwise

mode shapes for specimen R12S3T1-2 are in excellent agreement.

Numerical and experimental left and right spanwise mode shapes for

specimen R12S 3 T1 -2 are provided in Figures 7.7 and 7.8, and 7.9 and 7.10,

respectively, for comparison. As with the central spanwise mode shape,

bifurcation is evident for the experiments in the asymmetric left and right
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Measured central spanwise deformation modes for specimen
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Figure 7.6 Numerical analysis results of central spanwise deformation
modes for specimen R 12S 3 T 1-2 at different values of center
deflection.
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Figure 7.7 Measured left spanwise deformation modes for specimen
R12S 3T1-2 at different values of center deflection.
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Figure 7.8 Numerical analysis results of left spanwise deformation modes
for specimen R 12S 3T1-2 at different values of center deflection.
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Figure 7.10 Numerical analysis results of right spanwise deformation modes
for specimen R 12S3 T 1-2 at different values of center deflection.
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spanwise modes at a center deflection of 6.0 mm. Apart from the

antisymmetry due to bending-twisting coupling previously discussed, the left

and right numerically evaluated modes are similar, i.e., there is symmetry in

the axial direction. However, the experimental modes (Figures 7.7 and 7.9,

respectively), do not show this same agreement after bifurcation. This is

clearly evident in the mode at a center deflection of 10.0 mm where the right

mode (Figure 7.9) indicates that the shell edges (at the hinged boundaries) have

snapped-through to an inverted configuration whereas the left mode (Figure

7.7) has not inverted at the left boundary (spanwise position of 0 mm).

Asymmetry in the axial direction for the experimental results is also evident in

the left and right mode for specimen R 12S 3 T 1 -1 in chapter 6 (see Figures 6.9

and 6.10). Thus, an axial asymmetry, apart from the bending-twisting

antisymmetry, is evident in the experimental data which is not predicted

numerically. It is hypothesized that imperfect axial boundary conditions,

particularly frictional loading differences between the two axial boundaries,

induce this axial asymmetry. Investigation of this behavior is recommended

for further work.

As discussed previously, the experimental mode shapes for specimens

R 12S3 T2 -2 and R 12S3 T3 -2 do not allow bifurcation to be conclusively identified.

The experimental and numerical central spanwise modes for both specimens

are provided in Figures 7.11 through 7.14 for comparison. The mode shapes for

specimen R 12S 3 T2 -2 in Figure 7.11 are largely symmetric, in agreement with

the predicted modes in Figure 7.12 at center deflection values of 2.0 mm, 4.0

mm, and 6.0 mm. However, because bifurcation was predicted to occur at a

center deflection value of 7.1 mm, asymmetry is noted at a center deflection

value of 8.0 mm in the predicted results whereas the experimental mode is

symmetric. Furthermore, this last experimental mode indicates that the shell
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Figure 7.11 Measured central spanwise deformation modes for specimen
R12S 3T2-2 at different values of center deflection.
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Figure 7.12 Numerical analysis results of central spanwise deformation
modes for specimen R 12 S 3 T2 -2 at different values of center
deflection.
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Figure 7.13 Measured central spanwise deformation modes for specimen
R 12S3 T3 -2 at different values of center deflection.
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Figure 7.14 Numerical analysis results of central spanwise deformation
modes for specimen R 12S 3 T3 -2 at different values of center
deflection.
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is in an inverted configuration. The analysis would not predict this behavior

until loading on the final (third) equilibrium path. This specimen was damaged

during loading and it is hypothesized that increased compliance at the loading

point due to the incurred damage affects bifurcation into an asymmetric mode.

Characteristics of the deformation modes for specimen R 12 S3 T 3 -2, which was

also damaged during testing, indicate the same type of behavior (see Figures

7.13 and 7.14). Damage at the loading site is believed to induce symmetric

deformations and inhibit bifurcation. Thus, it is clearly important to consider

the effect of damage formation on the response of these shells, particularly in

regard to bifurcation. Suggestions for further experimental work to

characterize the effect of damage on the resulting shell response are made in

chapter 8.

Results discussed in this section provide a clear picture of the response

of the shells tested in this work. Analysis of these specimens shows that all

three specimen types, under perfect conditions, would bifurcate (into

asymmetric modes) from a primary equilibrium path, then reach a second

critical (limit point) before regaining load-carrying capability on a final

equilibrium path. Symmetric deformations dominate the response prior to

bifurcation and on the final (third) equilibrium path whereas asymmetric

modes dominate the transition between these paths. Bifurcation is

conclusively observed in the experimental data for specimen type R1 2 S3 T 1, but

it is unclear whether bifurcation into asymmetric modes occurred for the two

thicker specimen types. Numerical analysis predicts that bifurcation is

unstable in both load- and deflection-control for specimen types R 12 S3 T1 and

R 12S 3 T2 . Dynamic loading and unloading was observed in the response of

specimen type R12 S 3 T 1 but not for specimen type R 12 S 3 T2 . Generally, the

analysis is in good agreement with regard to predicting initial load-deflection
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response and mode-shape evolutions. However, some disagreement is noted at

higher load levels due to a more compliant experimental response. The more

compliant experimental response is linked to many factors including damage

and transverse shear, but primarily to the finite stiffness of the test fixture

which is modeled as rigid. Experimental refinements and modeling

recommendations are given in chapter 8 to better understand and quantify

these various effects with regard to composite shell buckling response and

damage resistance.

7.2 Boundary Conditions

In this section, two issues related to boundary conditions are explored.

In section 7.2.1, the assumption of zero displacement in the x-direction (u-

displacement component, i.e., sliding along the boundary) at each

circumferential hinged boundary condition for specimens tested in this work is

investigated. This is done to ascertain the effect of this aspect of the boundary

condition on the shell response. In section 7.2.2, the effect of adding the axial

restraint to the shell response is explored using data from this and previous

work, as well as results from numerical analyses.

7.2.1 Modeling Assumption at Circumferential (Hinged) Edge

The numerical analysis results presented in chapters 4 and 6 and

section 7.1 assume zero displacement for the u-component of displacement (x-

direction) at the circumferential shell edge (hinged condition). However, it is

unclear whether the experimental boundary condition at this shell edge

maintains zero displacement. Friction at the boundary condition likely makes

this displacement boundary condition neither completely fixed (zero) nor

completely free. The influence of this boundary condition on the response is
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easily bounded numerically by considering the two extremes of completely fixed

(zero displacement) or completely free (zero force). Analyses using the zero

force assumption at the circumferential boundary condition are identified as "u

free". Analyses which utilize the previous assumption of zero displacement at

this boundary condition are identified as "u fixed" in this section. As in section

7.1, all results from analysis represent converged bifurcation solutions for the

shell response.

The numerical load-deflection response for specimen R 12 S 3 T 1 -1 using

the two assumptions at the hinged boundary are presented in Figure 7.15. The

two extreme cases for the u-displacement are noted to have relatively little

effect on the predicted response. The "u free" case is slightly more compliant in

some regions than the "u fixed" case, but the effect is likely too small to be

observed in any experimental data. The change in boundary condition is noted

to influence the bifurcation load, however, and the limit-point load to a lesser

extent. For specimen R 12S 3 T1 -1, the bifurcation load is reduced from 127 N in

the "u fixed" case to 113 N in the "u free" case. Similarly, the limit-point load is

reduced from 121 N to 116 N. These reductions in bifurcation and limit-point

loads are also noted in the response comparisons for specimens R 12S 3 T2 -1 and

R 12 S 3 T 3 -1 in Figures 7.16 and 7.17, respectively. For these specimens, the

bifurcation load is noted to be reduced from 487 N to 436 N, and from 1075 N

to 1025 N, respectively. As with specimen R 12S3 T 1 -1, changing the boundary

condition is noted to have little effect on the overall response of the thicker

shells. Similarly, mode shapes for all specimens are not affected by this

change in boundary condition.

The analysis results in this section indicate that, as expected, a more

restrained condition at the boundary ("u fixed") results in a stiffer response

than the less restrictive "u free" case. The "u fixed" condition results in a
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Figure 7.15 Numerical load-deflection results for specimen R 12 S 3 T 1 -1
utilizing different assumptions on the u-component of
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slightly stiffer response with critical points approximately 10% higher than for

the "u free" cases. These results are for both extremes of the boundary

condition and result in relatively small changes in shell response.

Experimentally, with all other parameters held constant, the response will lie

between these two extremes. With regard to differences observed between the

experimental and numerical responses discussed previously (see Figures 7.2,

7.3, and 7.4), differences due to this component of the hinged boundary

condition are relatively small. Thus, the effect of the u-component of

displacement at the hinged boundary condition is relatively unimportant for

the shells considered in this work.

7.2.2 Effect of Axial Edge Restraint

One of the objectives of the experimental work is to explore the effect of

restraining the axial edge on the shell response. In the previous work [21] with

geometrically identical composite shells (discussed in section 4.4), the axial

edges were free of traction. In the experimental component of the current

work, these edges were restrained as described in chapter 5. Restraining the

axial edges is more representative of the condition for a fuselage structure than

free edges. The actual boundary condition in a fuselage, due to a frame or

stringer, will lie somewhere between this restrained case (simple support) and

fully clamped. The knife edges which restrain the shell along the axial edges in

the experiments are intended to restrain out-of-plane displacement. This

boundary condition is modeled (see section 6.2) by setting the out-of-plane

displacement, w, and x-axis (axial direction) rotation, Rx, equal to zero in the

numerical analyses. In this section, the response of geometrically identical

shells having free and restrained axial boundary conditions are compared. The

different responses are compared using both experimental data (from this and
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previous [21] work) and numerical analysis results. For the purposes of

discussion, specimens which are not restrained (free) on the axial edges are

denoted by using -free after the specimen type designation (e.g., R12S 3 T1-free)

while those with the axial edge restrained are denoted by using -restrained. The

"free" and "restrained" designations thus refer to the axial edge boundary

condition which is the only difference between specimens of a given geometry

as considered here. The effect of these two axial boundary conditions on

damage resistance is discussed in section 7.3.

The experimental loading responses for specimen type R1 2S3 T1 utilizing

the two different axial boundary conditions are presented in Figure 7.18. The

two load-deflection responses are in excellent agreement until the response of

specimen R 12S 3T 1-free diverges (prior to bifurcating) at a center deflection of

approximately 3.0 mm. Results from numerical analysis in Figure 7.19 of the

same specimens also indicate excellent agreement prior to bifurcation of the

"free" specimen. The axial-edge restraint has very little effect on the response

of this specimen type prior to bifurcation of the "free" specimen. Numerical

axial deformation mode shapes from chapter 4 (see Figure 4.24) for specimen

R 12 S 3T 1-free provide further insight into this observation. Prior to bifurcation

for specimen R12S 3T1-free, the axial shell edge is noted to deform out-of-plane

very little (0.7 mm) relative to the center of the shell (2.6 mm) where load is

applied. The axial variation in deformation prior to bifurcation for specimen

R 12S 3 T 1-free is similar to that for specimen R 12S 3 T 1-restrained. Therefore, in

the region of loading prior to bifurcation, shells with these two different axial

restraints deform similarly which explains the loading response agreement

prior to bifurcation of specimen R 12 S3 T1-free.

Similar agreement is generally noted prior to buckling for the other two

specimen types, R 12 S 3 T 2 and R 12 S 3 T 3 , as shown in the experimental and
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Figure 7.18 Experimental load-deflection response of composite shell
R 12S3 T 1 with axial edges restrained and free [21].
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Figure 7.19 Numerical load-deflection results for composite shell R 1 2 S3 T1
with axial edges restrained and free.
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numerical response comparisons in Figures 7.20 through 7.23. However, the

experimental response in Figure 7.22 for specimen R 12S 3 T 3-free is more

compliant than the response of specimen R12S 3T 3-restrained, including the

response prior to bifurcation. It is hypothesized that this is due to the test

fixture compliance at the circumferential boundary condition (hinged) described

in section 4.4.3. Test fixture compliance would less strongly affect specimen

R 12S 3 T 3-restrained because a percentage of the load is reacted through the

axial restraints rather than entirely through the (compliant) hinged restraint.

In general, however, the numerical and experimental responses for all three

specimen types indicate that prior to buckling for the "free" specimens, the

response of specimens with "restrained" and "free" axial constraints are quite

similar. Implications of this observation for composite shell damage resistance

are further discussed in section 7.3.

The response comparison for specimen type R12 S 3T 1 in Figures 7.18 and

7.19 are typical of those for the other two specimen types with regard to

differences caused by the axial boundary condition. The responses are similar

prior to bifurcation for the "free" specimen, but the critical (bifurcation) load for

the "restrained" specimens are noted to be much higher than for the "free"

specimen, e.g., 127 N versus 25 N for specimen type R 12 S3 T1 in Figure 7.19.

The bifurcation point for the "restrained" specimens has associated with it a

secondary (bifurcation) path which is unstable in both load- and deflection-

control. This is not observed for the "free" specimens which have a response

(e.g., as in Figure 7.19) which is unstable only in load-control. In the numerical

results for all "restrained" shells in this work, bifurcation occurs from the

primary path (symmetric deformation modes) to a secondary path

(asymmetric deformation modes) before collapsing at a limit point. In contrast

to the "free" shells, asymmetric modes are associated with the limit point for
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Figure 7.20 Experimental load-deflection response of composite shell
R12S 3 T2 with axial edges restrained and free [21].
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Figure 7.21 Numerical load-deflection results for composite shell R 12 S 3 T 2
with axial edges restrained and free.
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Figure 7.22 Experimental load-deflection response of composite shell
R 12S3 T3 with axial edges restrained and free [21].
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Figure 7.23 Numerical load-deflection results for composite shell R 12S 3 T3
with axial edges restrained and free.
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the "restrained" shells due to the prior bifurcation. In both the "free" and

"restrained" cases, the shells reach an inverted configuration on a stiffening

final equilibrium path having associated symmetric deformation modes. In the

"free" case, the final path is the second stable equilibrium path whereas for the

"restrained" cases this is the third stable path (due to bifurcation and a limit

point). In general, the response of the "restrained" shells is more complex

(bifurcation and limit-point buckling) and has higher critical loads than the

response of shells with "free" axial edge constraints.

A direct experimental comparison of the central spanwise mode shapes,

including bifurcation, can be made for specimen type R12S3 T1 having "free" and

"restrained" axial boundary conditions. The central spanwise modes for

specimen R 12S 3T-free are provided in Figure 7.24 for comparison to those in

Figure 7.5 for specimen R 12S 3T 1-restrained. As with the loading responses, the

(symmetric) mode shapes for these two cases are in excellent agreement prior

to bifurcation of the "free" specimen. A dominant asymmetric mode is evident

in the "free" response at a center deflection of 3.9 mm whereas an asymmetric

mode is not evident in the "restrained" case until a center deflection of 6.0 mm.

As with the loading response, numerically evaluated mode shapes for the

"restrained" specimen are in excellent agreement with numerically evaluated

mode shapes for the "free" case before the two responses diverge near the

bifurcation point of the "free" response (compare Figures 4.20 and 7.6).

The axial restraint also influences the form of the asymmetric shell

bifurcation mode. The influence of the axial restraint on the bifurcation mode

of specimen R12S 3T1-restrained is evident in Figure 7.5 for center deflections of

6.0 mm, 8.0 mm, and 10.0 mm by comparison to the bifurcation modes for

specimen R12S 3Tz-free in Figure 7.24. Bifurcation modes in Figure 7.24 are

sinusoidal (antisymmetric with respect to the shell center) as for an arch. In
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the "restrained" case, however, the bifurcation mode shapes do not display this

sinusoidal bifurcation, i.e., one circumferential half of the shell does not invert.

Local deformations at the loading point are also evident in the "restrained"

mode shapes (Figure 7.5) which are not evident in the "free" mode shapes

(Figure 7.24). This same behavior is noted in the numerically evaluated

central mode shapes for this specimen (compare Figures 7.6 and 4. 20) and in

the experimental data and numerical mode shapes for specimens R 1 2S 3 T2 -2

R 12S3 T3 -2 (Figures 7.11 to 7.14). This is due to the increased loading required

to deform the "restrained" shell into a bifurcation mode which the axial edges

resist, i.e., the center of the shell bifurcates into an asymmetric mode but the

shell edges, being restrained, resist this and any deformation. This distinct

axial variation indicates that, as was found for the load-deflection responses,

the "restrained" response is more complex than that of the "free" shells.

In this section, "restrained" shells have been noted to bifurcate into a

dominant asymmetric mode much like shells with the "free" axial boundary

condition. However, the loading responses of the "restrained" shells are more

complex - there are three equilibrium paths rather than two in the "free" case,

and the response contains both a bifurcation and limit point rather than one or

the other. Differences in the mode shapes (due to axial variation) are also

evident and again, the "restrained" mode shapes are found to be more complex

than the "free" modes. Thus, although bifurcation into a dominant asymmetric

mode occurs in the more realistic "restrained" cases, the behavior is different in

many respects from the "free" response. Differences in the "restrained" shell

response relative to the "free" cases clearly indicate that the axial restraint is

important.
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7.3 Damage Resistance

A primary objective of this work with regard to composite shell damage

resistance is to investigate the effect of bifurcation, and the associated

asymmetric deformation modes, on the resulting damage. As discussed in

chapter 2, asymmetric and atypical (with regard to extent and distribution)

damage states at the loading site have been observed for composite shells

similar to those tested in this work [19, 38]. However, results in chapter 6

have shown that the damage found for specimens in this work is typical of that

observed for composite plates having the same layup. Specimen type

R 12 S 3 T 1 , which was observed to bifurcate into asymmetric modes, was

undamaged. The specimens which did damage were not observed to bifurcate,

and therefore did not experience asymmetric modes. Atypical damage states

are not expected in such cases. Damage results for the "free" composite shell

geometries discussed in section 7.3 and chapter 4, are also consistent with

typical plate damage. Thus, in regard to damage resistance, nothing atypical

of that observed previously for composite plates of the same material and

geometry are observed in this work. However, this result is certainly not

conclusive based on the three specimen geometries considered in this work, i.e.,

the hypothesis of damage away from the loading site due to asymmetric

bifurcation modes has not been disproved. In fact, the mechanism for atypical

damage formation (bifurcation into asymmetric modes) was observed, it just

happens that this specimen type was undamaged during testing.

Recommendations for further work in regard to damage resistance,

particularly to investigate plate and shell differences, are made in chapter 8.

The finding in section 7.3 regarding loading-response agreement between

"free" and "restrained" shells may have implications for damage-resistance



-246-

testing of composite shells. Atypical damage found in previous work with

composite shells was noted to occur on the first equilibrium path, likely due to

compressive membrane loading of the shell on this path [19]. Investigation of

this atypical damage is of considerable interest as it is the key difference

between plate and shell damage resistance, i.e., it represents one area of

composite damage resistance which is not well understood. Numerical and

experimental results from this work indicate that the response for the "free"

and "restrained" shell configurations respond similarly in this region.

Therefore, "free" shells, which are straightforward to test relative to the

"restrained" configuration, are likely to provide damage resistance data that is

applicable to the more realistic (fuselage or similar structure) "restrained"

case. This hypothesis does need further experimental evidence, however,

particularly in regard to damage, because it is based solely on observed

similarities in the loading response at this time. Suggestions for further work

in this area are made in chapter 8.

7.4 Asymmetric Meshing Technique (AMT)

The asymmetric meshing technique developed and utilized in this work

has shown great utility in evaluating the nonlinear response of shells. The

technique is useful for evaluating bifurcation, particularly from nonlinear

prebuckling paths, using nonlinear finite element formulations. The effect of

the asymmetry is to introduce perturbations into the model such that lower-

energy bifurcation states can be assessed. This is done without altering the

problem geometry, and thus solutions to the problem of interest can be

generated without resorting to geometric imperfections or assumed solutions.

The asymmetric meshing has no effect on the linear response of the structure

because neither the problem geometry, boundary conditions, nor loading has
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been modified. While the AMT has only been utilized within the STAGS finite

element package in this work, the technique should be effective in any

nonlinear finite element formulation.

The AMT is seen as an alternative to the already existing "tools" for

analyzing bifurcation in shell structures. In this work it has been used to great

advantage where both limit-point and bifurcation buckling are aspects of the

shell response. Relative to the alternative techniques considered in this work

(equivalence transform and geometric imperfections), the AMT is

straightforward, efficient, and robust. It is relatively straightforward because

it avoids arbitrary choices associated with the other techniques such as the

amplitude and number of eigenmodes used as either imperfections or assumed

solutions in a branch switch. The AMT has been shown to identify and

traverse both bifurcation and limit points (sometimes both) in a single analysis

run. In fact, the AMT was utilized to "discover" the correct bifurcation solution

to the benchmark problem - only later was this response verified by traditional

techniques. The AMT's direct identification and traversal of bifurcation points

is in contrast to the other techniques which require repeated analysis to

converge to the bifurcation point and secondary path. In this sense, the AMT

is efficient, e.g., the bifurcation response for the eighteen shells in Appendix B

were each evaluated through a single numerical analysis. Traditional

techniques would incur significant additional computation and repeated

analysis to assess the same bifurcation response.

The AMT is perceived as more robust than traditional techniques with

regard to the effect of arbitrary choices on the resulting predicted response. As

with traditional techniques, the AMT requires the analyst to make an

arbitrary choice. Traditional techniques require choices regarding amplitude

and mode of the imperfection or assumed solution. The AMT requires the
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analyst to choose the form of the asymmetric mesh. For example, a number of

different asymmetric meshes were explored in chapters 4 and 6 for various

shell analyses. The effect of subjective choices on the resulting computed

response for both the traditional techniques and the AMT can be compared.

This does not refer to typical meshing refinements which are an aspect of all

finite element analyses. Rather, with traditional bifurcation techniques,

different choices of mode number and amplitude results in a range of

responses. In the AMT, different choices of asymmetric discretization results

in a maximum of two different responses - either the limit point or bifurcation

response (if it exists) is found. In this sense, the AMT is robust relative to the

traditional techniques. The effect of subjective discretization choices in the

AMT is limited to only two responses.

The AMT thus represents a method for evaluating the effect of

perturbations in nonlinear structural problems. The type of spatial

discretization used in the AMT to introduce perturbations in finite element

formulations is recommended for further exploration in chapter 8.



-249-

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The present work was conducted to better understand the response of

composite shells to transverse loadings which may damage these structures.

To do this, a combined experimental and numerical approach was undertaken

to study the response of composite shells to transverse loading. Buckling

instabilities are found to be a dominant feature of the observed shell response.

Nonlinear finite element models, including a novel technique for evaluating

bifurcation, were successfully developed to predict the shell response. In this

chapter, conclusions are drawn from the results of this investigation and

recommendations for future work are made.

8.1 Conclusions

The work conducted and the data and discussion presented herein lead to

the following conclusions:

1. Finite element models developed in this work utilizing the novel

asymmetric meshing technique (AMT) have successfully modeled the

response of various shell configurations including bifurcation,

postbuckling, and mode-shape evolutions. The technique and associated

models have been validated by comparison to traditional benchmark

analyses and verified by comparison to composite shell data.

2. Advantages of the AMT over traditional techniques for inducing
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bifurcation in the shells in this work have been identified and include

simplicity, efficiency, and robustness.

3. A large-rotation, large-deflection shell buckling problem, used as a

benchmark problem in the finite-element literature, is found to bifurcate

prior to the limit point predicted in previous work.

4. Bifurcation and limit-point buckling occur within the nonlinear region of

shell response for the structures considered in this work.

5. Bifurcation in the response of shells considered herein can be difficult to

identify experimentally using the transition from symmetric to

asymmetric deformation modes as an indicator.

6. Antisymmetry in measured and predicted left and right mode shapes is

due to laminate bending-twisting coupling with the effect being more

pronounced at larger deflections and for thicker specimens, as expected.

7. Generally, there is excellent agreement in the initial loading portion of

the predicted and experimental response with larger differences as the

response progresses.

8. Compliance of the test fixture is found to strongly influence a number of

measured shell responses as it causes a more compliant measured load-

deflection response, inhibits bifurcation, and promotes a symmetric

limit-point response.

9. As specimen thickness increases, bifurcation loads increase whereas

the associated deflections are approximately constant.

10. Increased thickness causes a more stable, stiffer response as the

deflection and load ranges associated with the instability region

(postbuckling after bifurcation) are reduced. The thickest specimen

bifurcates to a stable secondary path with no instability region.

11. Restraining the in-plane displacement along the hinged boundary
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condition has little effect on the predicted shell response.

12. Restraining axial edges has little or no effect on the response prior to

bifurcation but results in a more complex response thereafter including

higher critical bifurcation loads, an instability region that is unstable in

deflection- and load-control, a second critical (limit) point on a stable

secondary equilibrium path, and a third (final) equilibrium path.

13. No damage atypical of that previously observed for composite plates

was observed in this work and is attributed to the lack of observed

asymmetric bifurcation modes in cases where the specimens were

damaged.

8.2 Recommendations

The present work raises a number of issues which need to be addressed

by further investigation. Therefore, the following recommendations are made:

1. Asymmetric spatial discretization is a novel way to introduce

perturbations into nonlinear finite element problems. This technique

deserves further investigation as it may also be useful in other

applications, such as crack-turning problems.

2. Modeling refinements such as the inclusion of transverse shear and

contact elements at the loading point should be undertaken to

understand the relative importance of each on the resulting response.

These analysis refinements are necessary to obtain improved predictive

capabilities for shell response and damage resistance.

3. Evaluating bifurcation from nonlinear prebuckling states using the

asymmetric meshing technique should be explored for other problem

geometries, such as axially compressed cylinders and shell sections,
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particularly in regard to its perceived efficiency relative to current

techniques. Such investigations will lead to a more general

understanding of the applicability of the technique including its

advantages and limitations.

4. The hypothesis that atypical and asymmetric damage formation can

occur due to bifurcation (asymmetric deformation modes) should be

further explored. Damaged specimens in this work did not bifurcate, but

an undamaged specimen was observed to bifurcate, so a direct link

between damage and bifurcation has not yet been made. Analyses will

provide insight into laminate and structural parameters which would

likely lead to bifurcation and thus to atypical damage formation.

5. The effect of other boundary conditions, such as fully clamped, should be

considered to explore the range of possible shell responses, particularly

with regard to bifurcation as this is seen to influence damage resistance.

Analysis will indicate which shells bifurcate and thus which shells are

likely to incur atypical damage. These structural configurations then

become likely candidates for experimental damage resistance studies.

6. Effects of test fixture compliance, in the direction which affects

separation of the hinged supports, should be further explored both

experimentally and through analysis. For example, separation of the

two hinged restraints can be measured during testing using a

displacement transducer to provide information about test fixture

compliance which can then be utilized in numerical models to determine

the magnitude of this effect relative to other modeling assumptions.

7. The effect of damage formation on the resulting measured response

should be addressed, particularly with regard to bifurcation. To first

order, damage can be modeled as an area of reduced stiffness. Results of
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such analyses can be utilized to guide further experimental studies.

Experimentally, the effect of damage can be considered by comparing

the loading response of a virgin shell with that of a shell which has

previously been damaged.

8. If damage is to be understood in relation to asymmetric bifurcation

modes, identification and monitoring of bifurcation modes is necessary.

Comparative strain gages should be used to monitor bifurcation

experimentally. Gages placed symmetrically (circumferential direction)

with regard to the loading point on one shell surface will indicate

bifurcation when the gages diverge.

9. Comparisons between shells with free and restrained axial edges

indicate good agreement prior to bifurcation of the unrestrained shells.

This agreement should be further explored with regard to damage

formation because this agreement would facilitate future damage

resistance studies by allowing tests of specimens with free axial edges to

determine the effects of those with the more realistic boundary

conditions (restrained).
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APPENDIX A

MANUFACTURING DATA

Manufacturing data for all specimens is presented in Table A.1. Three

radii are calculated from measurements, as described in chapter 5, and their

average reported as well as the percent difference between the average and

nominal values. The nominal value for radius is 1829 mm (72"). Thickness is

averaged from nine points measured following the procedure given in chapter 5.

The percent difference between the average and nominal values are presented

as well as the coefficient of variation for the thickness data. Nominal values

for the three thicknesses, T1, T2, and T3 are 0.804 mm, 1.608 mm, and 2.412

mm, respectively.
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Table A.1 Radius and Thickness Data

Radius Thickness

Specimen Average Difference Average Difference C. V.a

R 12S 3 T1-1 1978 mm +8.2 % 0.822 mm +2.3 % 1.0 %

R12S 3T1-2 1959 mm +7.1% 0.836 mm +3.9 % 0.9 %

R 12 S3 T 2 -1 1942 mm +6.2 % 1.634 mm +1.6 % 0.9 %

R 12S3 T 2 -2 1968 mm +7.6 % 1.526 mm -5.1 % 0.9 %

R1 2S 3 T3 -1 1959 mm +7.1 % 2.493 mm +3.4 % 0.3 %

R 12S 3 T3 -2 1915 mm +4.7 % 2.334 mm -3.2 % 0.7 %

a Indicates coefficient of variation.



-267-

APPENDIX B

NUMERICAL COMPARISON TO PREVIOUS
EXPERIMENTAL LOAD-DEFLECTION DATA

Results from numerical analysis performed in this work are compared in

this appendix with experimental data for specimens tested in Reference [21].

The loading response comparison is based on load-deflection histories at the

center of the shell as described in chapter 4. All analyses utilize

experimentally determined values for shell radius given in Table B.1 as

explained in chapter 4. Three analyses utilizing the STAGS code are provided

for comparison to the experimental data: limit point, bifurcation, and simple

support. The limit-point solutions are generated with a symmetric 10x10

mesh and result in symmetric deformation modes. The bifurcation response is

evaluated with the AMT (see chapter 4) using an asymmetric 10x6 / 10x5

mesh. Bifurcation involves branching from a symmetric prebuckling

deformation mode to an asymmetric bifurcation mode. The simple support

analysis utilizes the AMT and asymmetric mesh but the shell has a traditional

simple support along the circumferential edges rather than a hinge.
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Table B.1 Measureda Values of Radius Used in Numerical Analysis

Specimen Radius (m)

R 6SIT1  0.857

R 6S 1 T2  0.880

R 6SIT3  0.867

R 6S2 T1  0.926

R6 S2 T2  0.852

R6 S 2 T 3  0.913

R 6S3 T 1  0.912

R 6S 3T 2  0.890

R 6S3 T3  0.899

R 12S 1 T 1  1.554

R 12 S1 T2  1.808

R 12 S1 T 3  1.746

R 12 S2 T 1  1.628

R 12 S2 T2  1.540

R 12 S2 T3  1.729

R 12 S3 T 1  1.743

R 12 S3 T2  1.677

R12 S3 T3  1.713

a Measured in [21] but previously unreported.
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Figure B.1 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 6S1 T1 .
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Figure B.2 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R6 S1 T 2 .
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Figure B.3 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 6 S1 T3 .
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Figure B.4 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R6 S2 T1 .
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Figure B.5 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 6 S 2 T 2 .
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Figure B.6 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 6 S2 T3 .
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Figure B.7 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
ReS3T 1.
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Figure B.8 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 6S3 T2 .
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Figure B.9 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 6S3 T3 .
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Figure B.10 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R12S1 T1.
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Figure B.11 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R12SIT2 .
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Figure B.12 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R12SIT3 .
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Figure B.13 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R12 S 2 T 1.
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Figure B.14 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 12S2T2 .
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Figure B.15 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 12S 2 T 3 .
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Figure B.16 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 12 S 3 T 1 .
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Figure B.17 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 12S 3 T 2 .
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Figure B.18 Comparison of results from numerical analysis and
experimental data [21] for the loading response of specimen
R 1 2 S 3 T 3 .
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