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Abstract

To obtain synoptic data, a survey system must be capable of mapping an ocean structure
faster than significant changes in the structure occur. For most, if not all, traditional meth-
ods of subsurface sampling, the requirement of synopticity must be relaxed due to physical
and economic operational limitations of the sampling platforms [1, 2]. However, recent work
with autonomous underwater vehicles [3, 4, 5, 6, 7, 8] has expanded the operational bound-
aries of these platforms to the point where it is possible to obtain synoptic or near-synoptic
measurements of small scale, rapidly evolving processes using AUVs. This expansion of ca-
pability brings with it a correspondingly large number of options for constructing surveys,
which in turn lead to a wide range of survey performances. This work addresses the question
of how to best survey a dynamic phenomena within the constraints of vehicle operational
characteristics and available energy.

A fundamental difficulty in doing oceanographic surveys with autonomous underwater
vehicles (AUVs) is the coupling of space and time through the AUV survey trajectory.
Also, the finite velocity and energy capacity of an AUV imposeses serious constraints on
the extent of the survey domain and on the spatial and temporal survey resolutions. Given
an oceanographic process of interest with its associated spatial and temporal scales, what are
the AUV survey trajectories which will give the best survey performance in terms of some
performance metric? What should this performance metric be? These are the fundamental
questions which will be addressed in this thesis.

The focus of this thesis is the development of tools to determine how to effectively use
AUVs to survey small-scale oceanographic processes. Contributions of this work include
an examinations of the broad domain of scientific and engineering problems inherent in
surveying oceanographic processes with AUVs. This extended examination provides context
for the remainder of the thesis in which we develop a quantitative survey error metric
which accounts for errors due to both spatial undersampling and temporal evolution of the
sample field. The accuracy of the survey error metric is established with surveys through



a simulated oceanographic process. We also develop the AUV "survey envelope" using the
physical constraints (minimum and maximum AUV speed, total energy capacity) of the
survey platform. The survey envelope delineates a region of survey parameter space within
which an AUV can sucessfully complete a mission. By combining the survey error metric
with the survey envelope, we create a survey analysis tool which can be used to gain insight
into the AUV survey trajectory design problem. We demonstrate the application of this
survey analysis tool with a survey design for an open--ocean deep convection event.

Thesis Supervisor: James G. Bellingham
Title: Lecturer, Department of Ocean Engineering

Thesis Supervisor: Arthur B. Baggeroer
Title: Professor of Electrical and Ocean Engineering
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Chapter 1

Introduction

It is clear that capabilities for synoptic observation of dynamic random fields in the ocean

are much needed. Unfortunately, the wide range of length scales of both temporal and

spatial variability found in these processes makes the surveying of dynamic phenomena in

the world's oceans problematic. To obtain synoptic data from ground-based observations,

a survey system must be capable of mapping an ocean structure faster than significant

changes in this structure occur. For most, if not all, traditional methods of subsurface

oceanographic sampling, the requirement of synopticity must be relaxed due to physical

and economic operational limitations of the sampling platforms [1],[2].

Consequently, a variety of new and traditional observational techniques are available to

the ocean scientist. One of the newest of these techniques is the Autonomous Underwater

Vehicle. AUVs combine many of the traditional sampling technologies with a highly mobile

platform, allowing the collection of spatially correlated samples without the substantial

cost associated with an array of sensing elements. When surveying with AUVs, we want

to find ways of allocating our scarce observational resources to maximize the information

content of the collected data. Because they are a relatively new technology, it is also not

yet well understood how to best utilize AUVs in oceanographic experimentation. This work

will explore the issues inherent in surveying oceanographic phenomena with AUVs and will

develop quantitative metrics for measuring the effectiveness of these surveys.



1.1 Motivation

In this section we examine the characteristics of traditional observational systems as well

as those of the autonomous underwater vehicle. A comparison of these characteristics

will give insight into the suitability of the various sampling platforms for specific scientific

programs or for studying a particular oceanographic process. We will also discuss the

synergistic combination of these observational systems for oceanographic research through

the implementation of autonomous ocean sampling networks (AOSNs). These discussions

will demonstrate the importance of emerging technologies, such as AUVs and AOSNs, in

the future of oceanographic research. We conclude this section with a brief statement of

the problems which will be addressed in this work.

1.1.1 Traditional Observational Systems

Several different observational platforms are widely in use, measuring oceanographic phe-

nomena over length and time scales spanning several orders of magnitude [1]. The obser-

vational platforms with the greatest spatial coverages are satellites. While satellites can

provide images of wide expanses of the ocean surface (several hundred kilometer swaths)

almost instantaneously, these observations cannot capture the complex subsurface dynam-

ics of the process under study. Also, the spatial resolutions of satellite-based observational

systems are typically too coarse to yield useful data for most small scale oceanographic

phenomena. Lastly, these observations must be ground-truthed with in situ measurements.

Such in situ observations are, in turn, most often made by dedicated oceanographic research

vessels or by ships of opportunity, using a variety of dipping and/or towed instruments. In

this scenario, the survey sampling resolutions are determined by factors such as the speed of

the ship, the number of stations where the ship stops, the total at-sea time of the ship, and,

in the case of towed instruments or remotely operated vehicles, the complex cable dynamics

of the towed instrument or ROV. A typical "tow-yo" survey would have track separations

of at least several kilometers. Another constraint on ship-borne observations, and often the

most important one, is the economic cost of manning and maintaining the research vessel.

To address this last constraint, another class of observational platforms has been de-



signed which requires the support of an ocean-going vessel only during the installation and

retrieval of instruments. Drifters, gliders, and moorings fall into this category. Drifters

and gliders consist of small, self-contained instrument packages which either passively drift

along with the current on the surface or at some fixed depth (drifters), or which utilize

some mechanism to exercise limited control over their spatial location (gliders). One of the

main attractions of drifters and gliders is that they can be deployed (either as single units

or in groups) and left in place for long durations, allowing them to cover broad (basin-scale)

geographic areas. Unfortunately, the scientist cannot specify the path that the drifters or

gliders will take on their long journey. In some instances, drifters become confined to a

limited region due to the action of currents associated with fronts or meso-scale rings or

eddies [1]. Gliders are designed to alleviate this problem by exercising some modest de-

gree of control over their heading and depth by taking advantage of temperature gradients

or some other low power source of energy in the ocean to develop a small degree of con-

trol authority. Nevertheless, the main drawback of drifters and gliders remains the lack of

control over the spatial position of the instrument. The inherently Lagrangian or mixed

Lagrangian/Eulerian nature of their measurements can also make it quite difficult to extract

salient information from drifter and glider measurements [9].

At the other end of this spectrum of unmanned observational systems are moorings.

Like drifters and gliders, moorings are also self-contained instrument packages. However,

instead of moving with the water mass they are fixed at a given location and depth via a cable

attached to an anchor on the ocean floor. A surface expression (buoy) may also be present,

allowing the mooring to transmit data back to the scientist via radio or satellite. While

time-series data can be taken from individual moorings, a network of moorings is required

to generate spatially-correlated measurements. For moorings, the expense of deploying a

spatial array constrains the observational system.

Other issues which effect the use of drifters, gliders, and moorings in oceanographic

experimentation are reliability, data storage, and data retrieval. Due to economic and

operational pressures, the typical drifter, glider, or mooring deployment is limited to a

maximum of two years. In some systems, it is possible to transmit data back to the scientist

via satellite but the strict power limitations placed on the transmitters necessitate a very
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Figure 1.1: Sampling regimes for various sensor platforms. The labeled boxes give the maximum
and minimum spatial and temporal sampling resolutions for the specified platforms. Drifters and
AUVs are seen to be the most versatile platforms in terms of the range of measurements resolutions
which they can achieve. The values on the spatial and temporal axes are not necessarily achievable
simultaneously (a fast temporal sampling at a broad spatial resolution is not possible for most of
these platforms). Figure after Dickey [1].

slow bit rate. Thus, usually only a small percentage of the data taken can be transmitted

and the rest must be stored on-board the instruments. The scientist will typically have to

wait until the end of the deployment to retrieve data from the instrument. Although great

strides have been made in the last few years in producing denser storage media, the vast

amount of data which can potentially be gathered by these instruments indicates that data

storage will remain problematic in these systems for many years to come.

The length and time scales spanned by all of these observational systems cover several

orders of magnitude in both dimensions. Figure 1.1 shows the regions of applicability for

each of these platforms. The values on the spatial and temporal axes are indicative of the

range over which each instrument can operate in each dimension. The boxes shown should

not be construed as implying that all combinations of length and time scales contained



within these boxes are necessarily achievable by the observational systems. For instance, a

fast survey with widely separated track lines is not possible for most of these systems even

though such surveys are contained within the bounds shown.

1.1.2 Autonomous Underwater Vehicles

The autonomous underwater vehicle (AUV) combines the functionality of many of the ob-

servational systems described above with a highly mobile sensor platform [10],[4]. The

scientific objectives of the mission and the size and power requirements of the various in-

strument packages are a few of the factors affecting the choice of observational systems to

be carried by an AUV. As the name implies, an AUV does not require external supervision

to complete an assigned mission. Furthermore, cost permitting, several AUVs can be em-

ployed to increase the coverage of the phenomenon of interest. Primarily due to their small

size, AUVs are able to conduct sampling surveys with greatly improved spatial resolution in

comparison to ship-borne towed instrument surveys, but the increases in spatial resolution

come at the expense of a reduction in total deployment time (see Figure 1.1). Fortunately,

recent work with AUVs [10],[4],[6],[7] has expanded the operational boundaries of these plat-

forms to the point where it is possible to obtain synoptic or near-synoptic measurements of

small scale, rapidly evolving oceanographic processes [11, 12]. For instance, the Odyssey IIb

class of AUVs, built and operated by the MIT Sea Grant AUV Laboratory, have been or are

scheduled to be employed in studies of hydrothermal plumes [13],[14], Arctic ice-fracture

mechanics and under-ice topography surveys [4],[15],[16], tidal convergence fronts [17], and

open-ocean deep convection [18],[19].

1.1.3 Autonomous Oceanographic Sampling Networks

Obviously, no single sensing platform can meet all oceanographic exploration needs. In fact,

because of the grand scale of the typical oceanographic phenomenon, it is often prudent

to use any and all of available resources. An autonomous ocean sampling network, shown

in Figure 1.2, embodies such a combination of resources [20]. By combining traditional

sampling methods with new technologies and existing expertise in the areas of AUV design,

communications, and control, a new paradigm for scientific ocean presence has been created.



Figure 1.2: Autonomous Ocean Sampling Networks (AOSNs) are a new paradigm for oceanographic
observation relying on the synergistic exploitation of both new and traditional sensing/sampling
platforms, including moorings, drifters, satellites, and AUVs. The autonomous underwater vehicle
plays a vital role in the AOSN since it is the mobility of the AUV which provides the network its
major resource for reacting to rapidly evolving and spatially distributed oceanographic phenomena.
The AUVs also greatly enhances the spatial coverage of the network. Figure by Bellingham.

The AOSN utilizes satellites, moored instruments, gliders, drifters, and multiple AUVs to

gain synoptic coverage of episodic oceanographic phenomena. Like AUVs, AOSNs do not

require that the scientist (or a support vessel) be present during the collection of data. The

network is remotely monitored by the scientist and tasks are down-loaded to the various

instruments for autonomous execution. AOSNs can be particularly beneficial when the

phenomena of interest are associated with harsh oceanographic or meteorological conditions.

1.1.4 Oceanographic Context

The work of this thesis has been undertaken in anticipation of an experiment to take place

in the Labrador Sea during the winter of 1997/98. In this experiment, an AOSN will be

used to study open-ocean deep convection. This phenomenon is known to occur in only a

few places in the high latitudes of the northern and southern hemispheres. The Labrador

Sea has been one of the more active of these sites over the last several years. Since open-



ocean deep convection is responsible for setting in motion the transport of 1-2x 1012 watts

of heat northward each year [18], this process has a critical role in the transfer of heat from

the atmosphere into the oceans and is vital to global climate change [21]. The length scales

of interest in open-ocean deep convection range from small-scale plumes (less than 1 km

across) to meso-scale preconditioning (approximately 100 km) [22]. The event is episodic

in nature. Characteristic time scales range from 6 to 12 hours for the violent overturning

of the water column to several days or weeks for the sinking and spreading of the cold

convection chimney.

Because of the episodic nature of this process, autonomous sensing platforms such as

moorings and AUVs are ideally suited to the study of open-ocean deep convection. These

instruments can be left on station unattended and can be either automatically or remotely

triggered to collect data at the onset of a convection event. Because the exact spatial

location of a convection event cannot be predicted in advance of the onset of this process,

moorings are not expected to be very successful in capturing a convection event. On the

other hand, the ability of an AUV to transit to the event greatly improves its chances of

recording a convection event.

Open-ocean deep convection is not the only oceanographic process which we might wish

to study using AUVs. For instance, we might wish to examine ocean current eddies which

have an important role in the general circulation of the worlds oceans. Eddies in ocean

currents have characteristic length scales in a range of 10-100's km and evolve on time

scales of several weeks to months. Plumes from hydrothermal vents or pollution sources are

another dynamic phenomenon which we might wish to examine. Diffusing plumes occur

with characteristic length scales of 0.1-1 km and can last anywhere from hours to days for

a pollution outflow event or up to several weeks for a large hydrothermal event. Lastly, we

may wish to study the dynamics of an ocean frontal zone where two bodies of water collide

and mix. Frontal dynamic zones can be extremely localized in space and time. For instance,

recent investigations in the region of the Haro Strait with AUVs [17] have found that fronts

can have characteristic lengths of as little as 100 meters and can form and disappear within

the space of 15-30 minutes. This is probably more extreme than would be seen in open

ocean fronts and can, therefore, be taken as a lower bound on the length and time scales of



ocean fronts.

1.1.5 Problem Statement

Given an oceanographic process of interest with its associated spatial and temporal scales,

what are the AUV survey trajectories which give the best survey performance in terms

of some performance metric? What should this performance metric be? These are the

fundamental questions which will be addressed in this thesis. The focus of this thesis is

placed on the development of tools to determine how to effectively use multiple AUVs for

surveying small-scale oceanographic processes. A metric of the total survey error will be

developed and its use as an adaptive experiment design tool will be demonstrated.

1.2 Thesis Tasks

A fundamental difficulty of sampling with AUVs is the coupling of space and time through

the AUV survey trajectory. Unlike conventional sampling techniques where, for example,

an array of sensors take samples at numerous locations in space at each sampling instant,

an AUV samples only a single point in space at each sampling time. Because of the finite

velocity and limited energy capacity of an AUV, this places serious constraints on the extent

of the AUV's survey domain and on the spatial and temporal survey resolutions at which

the survey is conducted. In the limiting case of a process which does not significantly

evolve in time over the course of a survey mission (geomagnetic fields, for instance), the

operational constraints of the AUV are no longer restrictive. However, if the AUVs are being

employed to study phenomena which evolve on time scales comparable to or faster than the

total survey time, then the spatial field sampled by the AUV will be seriously corrupted by

temporal evolution of the dataset, a phenomenon which we call "blurring". For AUV studies

of oceanographic processes, this problem dominates other sampling and survey design issues.

Given such a process, how do we design the trajectory which an AUV must follow in order to

obtain the greatest amount of information about the spatial and temporal structure of this

process subject to the above constraints? This is the fundamental question which this thesis

will address. In this work we will develop a quantitative framework for evaluating AUV



performance and use this framework to design AUV surveys of oceanographic processes.

The tasks required in developing these capabilities are outline below.

1.2.1 Exploration of Issues

There are numerous difficulties or challenges involved in surveying oceanographic processes

with AUVs. We will enumerate these issues in an attempt to put the current research

effort into the context of broader issues or problems. Specifically, we will explore vehicle

engineering and operational challenges, algorithmic and computational difficulties, issues in

survey designs and adaptive sampling, and simulation and modeling problems, as well as

sampling theoretic issues. We will not provide solutions for most of these problems, we will

only point out their existence. This discussion serves to place the AUV survey problem in

perspective. Problems which we will address are described below.

1.2.2 Survey Performance Metrics

To compare differing survey trajectories with each other, a performance metric for an AUV

survey is required. In general, this performance metric may take the form of a cost functional

which is based upon a combination of various user defined parameters such as the total AUV

survey mission time, the size of the realized survey domain, and/or the degree to which some

scientific objective has been met. Total survey performance increases as the cost functional

decreases and is said to be "optimal" when the cost functional is minimized. The cost

functional is also sometimes called the objective functional indicating that the user has

chosen to give precedence (heavier weighting) to the scientific objective over the economic

and logistical costs incurred.

In this thesis, the performance metric will be defined to give heaviest weighting to the

scientific quality of the survey as given by a combination of a total survey error with a

measure of the energy cost of a given survey. The total survey error will be based on

estimation errors in a reconstruction of the process field from survey samples and will

incorporate errors due to the (assumed) spatial undersampling of the process field as well

as the temporal "blurring" inherent in reconstructing temporally evolving, spatial fields

from survey samples. The energy economics of AUV surveys will also be calculated. These



two metrics, total survey error and survey energy consumed, will be combined to form the

survey performance metric.

1.2.3 Process Simulations and Error Metric Verification

The theoretical total survey error metric will need to be verified. To this end, a simulation

of a spatially homogeneous and isotropic, temporally stationary random field will be imple-

mented. The simulation will use the technique of "sampling from the spectrum" [23, 24],

allowing for a simulation which is not inherently discretized, has an arbitrary domain shape

and size, and does not require the computation of off-trajectory field values. This last char-

acteristic is an essential component in making the simulation technique computationally

feasible. Simulated random fields will be employed to test the validity of the total survey

error metric through a series of simulated AUV surveys through the random fields.

1.2.4 Simple Survey Designs and Vehicle Customization

The survey performance metric will be employed to quantitatively compare the results from

differing strategies, facilitating research into optimal survey designs. Simple survey designs

will be made and shown to be optimal for a restricted class of target random field processes.

The performance metric will also be employed in an examination of various AUV survey

strategies as applied to open-ocean deep convection. The problem of optimal location of

observations from a control theoretic viewpoint will be left for future work.

In addition to guiding the design of survey strategies, it will also be shown that the

survey performance metric can be utilized in the optimization of the design of the AUVs

themselves. The survey performance metric allows the researcher to tailor the choice or

design of an AUV to a specific oceanographic process. We will demonstrate the use of the

survey performance metric to identify useful vehicle redesign parameters within the context

of a specific oceanographic experimental scenario.



1.3 Thesis Organization

Before engaging the problem at hand, we begin with an exploration of relevant background

material (with an emphasis on AUVs and the Odyssey IIb vehicle) and a discussion of

some of the problems and challenges which, although worthy in their own right, will not

be addressed in this thesis. This is done so that the reader can place the contributions

of this thesis in context. These two discussions take place in Chapter 2. After these

preliminaries, we turn to the development of performance metrics to characterize AUV

surveys of oceanographic processes in Chapter 3. These performance metrics are concerned

with both the energetics and the field reconstruction errors involved in surveying spatially

distributed, temporally evolving fields using AUVs. The total survey error metric developed

in this chapter will be subjected to verification through simulated surveys in Chapter 4. The

combined use of the performance metrics for survey design as well as AUV choice/design will

be explored in Chapter 5. We also demonstrate the application of the survey performance

metrics to the design of an AUV survey of open-ocean deep convection in this chapter.

Finally, an overview of contributions and a discussion of future directions for this research

will be given in Chapter 6.



Chapter 2

Background and Problem Domains

2.1 Introduction

The intent of this chapter is two-fold: to present background material in areas related to

the research undertaken in later chapters and to raise many of the difficult and challenging

issues which are inherent in sampling oceanographic phenomena with AUVs. With regards

to the former goal, Section 2.2 gives background information in the areas of sampling and

reconstruction of process fields, error analysis and performance metrics, modeling and simu-

lation of oceanographic processes, experiment design, and autonomous underwater vehicles.

A brief introduction to the Odyssey IIb class of AUVs is given in Section 2.3. Next, we

examine some of the difficulties associated with surveying oceanographic phenomena with

AUVs in Section 2.4. The discussion is broken into several broad problem domains: en-

gineering challenges, computational and algorithmic challenges, survey design issues, and

difficulties inherent in sampling oceanographic processes with AUVs. Sampling issues are

given more in-depth examination due to their vital role in the following chapters of this

work. Concluding remarks are made in Section 2.5.

2.2 Background and Related Work

In order to reconstruct a particular realization of an oceanographic process, we will in gen-

eral require observations in one temporal and three spatial dimensions of a given dynamic



field. Even if reconstruction of the process is not needed, we still require multidimensional

observations of the process to be able to estimate its spatial and temporal spectra. In

fact, many seemingly disparate disciplines are connected by their reliance upon multidi-

mensional observations as a means to gain new knowledge of the various phenomena of

interest. This provides a link between these disciplines at the most basic and theoretic

levels. For this reason, we examine literature from oceanography, meteorology, hydrology,

geophysics, electrical engineering, and statistics in developing the following list of related

works. The specific applicability of these sources to the current work varies substantially

from field to field. We separate the related works into several broad categories: sampling

and reconstruction, error analysis and performance metrics, modeling and simulation, ex-

periment design, wavelets and multiscale stochastic processes, and autonomous underwater

vehicles. We touch briefly on the contributions from each of these areas below.

2.2.1 Sampling and Reconstruction

A large body of literature exists with regards to the sampling of deterministic functions and

stochastic processes in the one-dimensional case. These results, primarily from electrical

engineering and statistics, date back to the work of Fourier and beyond. Although signif-

icant contributions were made by both Cauchy and Nyquist, it was not until the middle

of this century that sampling theoretic results were combined into a coherent framework

through the works of Shannon [25],[26] and Wiener [27], with later generalizations by Pa-

poulis [28]. All of these works address the unidimensional sampling problem, from either

the deterministic function or stochastic process perspectives. An extensive summary of

results in unidimensional sampling theory is given by Jerri [29]. The works of Petersen and

Middleton [30] and Miyakawa [31] provide the necessary extensions to multiple dimensions

in the deterministic and stochastic cases, respectively. Dudgeon and Mersereau [32] give an

overview of multidimensional deterministic signal processing. All of these works make the

basic assumption that samples are taken uniformly in space or time or both. This will not

be the case for spatial samples along the trajectory of an AUV. The works of Bretherton [33]

and Marvasti [34] on nonuniform sampling give important insights into this issue.



2.2.2 Error Analysis and Performance Metrics

All but the most trivial sampling scenarios involve aliasing and/or truncation errors. Shan-

non [25] provides the basic result for errors due to aliasing and Jerri [35] gives a com-

prehensive review of the literature on estimation errors. Applications of these results to

reconstruction from nonuniform sensor arrays are found in numerous disciplines: Bras [36]

examines reconstruction errors as applied to random fields in hydrology and Robinson [37]

gives examples of error analysis in the area of oceanography. The work of Bretherton [38]

on error maps for interpolation arrays has proven to be an invaluable resource. Finally,

Bellingham [11] and Willcox [12] analyze the errors inherent in reconstruction of random

processes from AUV-surveyed samples, incorporating both spatial aliasing and temporal

evolutionary effects.

2.2.3 Modeling and Simulation

While modeling of oceanographic processes will not be the primary focus of this work, nu-

merical simulations of multidimensional stochastic processes will be required to verify the

techniques developed herein. These simulations are, in turn, based upon simple stochastic

models of dynamic fields. The references below deal with modeling and simulation issues

from a variety of disciplines: Mejia [39] in hydrology, Handcock [40] in meteorology, and Goff

and Jordan [41],[42], Robinson [37], and Jones and Marshall [22] in oceanography. Addi-

tionally, an efficient method for simulating non-stationary and/or anisotropic random fields

is developed in the hydrology literature by Mantoglou and Wilson [43],[44]. Gauss-Markov

processes and Markov Random Fields (MRFs) are described in a book by Vanmarcke [45]

and reviewed in the paper by Derin [46]. Multiscale representations of MRFs are developed

by Luettgen [47], and Irving [48] discusses multiscale model identification. Although the fo-

cus of this thesis will not be on the accurate simulation of specific oceanographic processes,

insights gained from the above works will be useful in the development of simulations which

are representative of and qualitatively similar to real oceanographic processes.



2.2.4 Experiment Design

Due to limited resources, it is rarely possible to sample space-time processes at the multidi-

mensional equivalent of the Nyquist rate. This will of course lead to reconstruction errors.

These errors can be minimized by a judicious allocation of sampling resources. Rodriguez-

Iturbe and Mejia [49] examine this problem as applied to the design of a rain gauge network

for monitoring precipitation. Similarly, Bretherton [38] examines the efficiency of oceano-

graphic sampling arrays by making trial and error adjustments to array configurations in an

attempt to trade off spatial coverage and interpolation accuracy. Kumar [50] from electri-

cal engineering and Hogg [51] from oceanography, examine optimal experiment designs for

parameter estimation. Finally, Fedorov [52] addresses the problem of multidimensional ex-

periment design from the viewpoint of the statistician. The common thread running through

each of these works is an attempt to accurately estimate the multidimensional covariance

function and to use this knowledge to appropriately allocate experimental resources.

2.2.5 Autonomous Underwater Vehicles

The development of autonomous underwater vehicles (AUVs) has a long and rich history.

Although we will not try to do justice here to the numerous AUV platforms which have

been built for various applications, the vehicles described by Yoerger [10], Bellingham [4],

Von Alt [6], and Smith [7] give a representative sampling of some of the small oceanographic

research AUVs which have been developed in the last few years. In has been only recently

that AUV technology has reached the point were these platforms have become useful for

real oceanographic experimentation. The number of references on the actual use of AUVs in

oceanographic research is small. Bellingham [11] and Willcox [12] discuss the development

of a performance metric for AUV survey design, while gradient search algorithms for AUV

exploration of thermal or chemical plumes are compared in Burian [53]. Yoerger [8] reports

on the use of an AUV for magnetic surveying of the sea floor, and Schmidt [17] describes

the application of AUV technology to the exploration of coastal fronts. Even though they

are beginning to be accepted in the oceanographic community as reliable sensor platforms,

research and development work on AUVs is still quite active. As AUV technology matures,

we will see increasing use of AUVs in oceanographic research settings.



Figure 2.1: The Odyssey IIb Autonomous Underwater Vehicle (AUV) is retrieved after a successful
mission. The Odyssey IIb is a third generation AUV designed and built at the MIT Sea Grant AUV
Laboratory. A fleet of five Odyssey IIb vehicles are currently operational. These vehicles are highly
robust, having completed over 300 deployments world-wide with no vehicle losses.

2.3 Odyssey IIb

The Odyssey IIb vehicle, Figure 2.1, is a third generation AUV designed and built at the

MIT Sea Grant AUV Laboratory. The vehicle's outer fairing has the streamlined shape of

a wide torpedo and measures 2 m in length by 0.6 m in diameter (at its widest point). The

outer fairing serves only to decrease drag and improve the controllability of the Odyssey

while the inner fairing forms the rigid "backbone" of the vehicle. The volume of the vehicle

is free-flooded save for two 17-inch glass spheres which serve as the main pressure vessels.

These spheres house the main vehicle computer (MVC), attitude sensors, batteries and

power management equipment, and miscellaneous payload electronics.

A fleet of five Odyssey IIb vehicles are currently operational. These five AUVs are

shown in Figure 2.2 in various stages of preparation for a mission. The outer fairing has

been removed from the first, third, and fourth vehicles, displaying the inner fairing on the

first vehicle (in the foreground) and the wet cabling and spheres in the third and fourth

vehicles. The two hemispheres in the inner fairing are the cradles for the pressure spheres.



Figure 2.2: Inside the Odyssey IIb AUV. The fleet in various stages of assembly is shown in (a).
The outer fairing has been removed on the first, third, and fourth vehicles. The first vehicle, in
the foreground, shows the inner fairing which provides mechanical rigidity and cradles the spherical
pressure housings. The third and fourth vehicle also have their inner fairings removed exposing the
spheres, wet cabling, and various sensors. A detail of the inner vehicle is shown in (b). The pressure
spheres house the main vehicle computer, batteries, and some sensor electronics.



Table 2.1: Possible battery packs for the Odyssey IIb AUV assuming a single 17-inch glass sphere
(pressure housing) carrying the maximum number of cells. The first three battery chemistries are
secondary (rechargeable) cells and the last is a primary (single use) cell technology. The Li-ion cells
are not yet commercially available. The comments for each chemistry give the discharge time and
temperature assumed in calculating the energy capacity of each battery pack. Since the number of
cycles possible on a rechargeable pack is dependent upon the rate and depth of discharge of prior
cycles on the battery pack and can vary substantially from cell to cell, this quantity can typically
only be roughly estimated (in the absence of extensive field experience with a particular battery
chemistry). We have determined that the Ag-Zn pack has a lifetime of approximately 30 cycles
when deployed on the Odyssey IIb AUV. Figure after Bales [54].

We can see an acoustic tomography source mounted on the nose of the first vehicle as well

as a modem/homing transponder mounting on the aft sphere (protruding through the inner

fairing). A detail of the inside of the Odyssey IIb with the inner fairing removed is shown

in Figure 2.2(b) which also shows a closer view of the tail cone of the vehicle. The tail

cone is a modular unit containing the thruster and the pitch and yaw actuators and control

surfaces (the upper rudder fin and the propeller have been removed from the tail cone in

this picture).

The Odyssey IIb vehicle is powered by batteries which reside in the aft sphere. Not

surprisingly, the energy source available to the vehicle during any given mission is one of

the most important constraining factors in mission planning. For this reason, we would like

to have a battery which is as energy-dense as possible. Several different battery chemistries

have been studied (see Bales [54]) for the Odyssey IIb's battery pack. Table 2.1 gives some

Chemistry Mass Number Energy Comment
(kg) of Cells (kW-hr)

Ag-Zn 28.2 56 3.6 10 hr rate
(LR30) at 00 C

Li-ion 20.5 128 2.4 7 hr rate
(Yardney) (est.) (est.) (est.) at 250 C

Ni-Cd 37.8 122 1.6 5 hr rate
(DD) (est.) (est.) at 250 C

Li-Thionyl 26.9 122 10.25 280 hr rate
Chloride (DD) at 250 C



Dimensions 2 m (length) x 0.6 m (max. diameter)
Displacement 165 kg
Thruster 1 electric (brushless) 20 lbs max. thrust
Depth Rating 6000 m
Energy Battery, up to 10 kW-hr
Endurance/Range 12 hours at 5 km/hr max.
Control Fully autonomous or acoustically controlled
Payloads CTD, ADCP, Cameras, Sidescan Sonar

Acoustic Tomography, Turbidity
Navigation Compass and rate gyros, Acoustic LBL system
Fleet Status 5 operational AUVs
Reliability Highly robust: over 300 deployments

Table 2.2: Specifications and capabilities of the Odyssey IIb class of AUVs.

possible Odyssey IIb battery packs based on these battery chemistries. These possible

battery packs assume a maximum volume of one 17-inch glass sphere (as pressure housing)

carrying the maximum number of cells. The first three battery chemistries are secondary

(rechargeable) cells and the last is a primary (single use) cell technology. The Li-ion cells

are not yet commercially available. The comments for each chemistry gives the discharge

time and temperature assumed in calculating the energy capacity of each battery pack.

Since the number of cycles possible on a rechargeable pack is dependent upon the rate and

depth of discharge of prior cycles on the battery pack and can vary substantially from cell

to cell, this quantity can typically only be roughly estimated (in the absence of extensive

field experience with a particular battery chemistry). The Odyssey IIb battery pack most

commonly used is based on the Ag-Zn chemistry. Our experience with these battery packs

indicates that a useful lifetime of approximately 30 recharge cycles is possible with careful

monitoring and control of the discharge and recharge of the battery pack.

A summary of the specifications and the capabilities of the Odyssey IIb AUV are given

in Table 2.2. These vehicles have proven to be highly robust, having been deployed in

over 300 missions world-wide, in such diverse missions as under-ice mapping in the Arctic,

exploration of plumes from thermal vents on the Juan de Fuca Ridge, studying ocean fronts

in the Haro Strait, and searching for giant squid off the coast of New Zealand.



2.4 Problem Domains

As with any new scientific tool or methodology, there are many issues and uncertainties

in doing oceanographic surveys with AUVs. Some of theses issues are straightforward in

nature and can be easily understood (if not remedied) while others can be quite subtle.

The following discussion is included in this work at this point so that the reader may better

understand the context within which the developments of later chapters is undertaken. We

also raise some issues here which will be neglected in subsequent chapters, either for the sake

of clarity or to reduce the complexity of the task at hand. The following list of problems

and challenges is also not meant to be exhaustive. Rather, it is intended to convince the

reader that surveying with AUVs is a discipline which, while much progress has been made

of late, is still in its infancy, containing many issues yet to be explored.

2.4.1 Engineering Challenges

The references mentioned in Section 2.2.5 are primarily concerned with the development

of the autonomous underwater vehicle from an engineering or technological standpoint.

Even though AUVs have begun to enjoy a certain amount of success in the oceanographic

community, there is still much basic level engineering work to be done to improve the

capabilities and the robustness of AUV survey systems. We discuss some salient engineering

problems below.

Limited Energy Capacity

Battery power is one of the fundamental metrics by which any autonomous system is mea-

sured. As shown in Table 2.1, many competing battery chemistries are available for use

on an AUV. However, none of these chemistries can give an AUV both high speed and

long endurance capabilities. There is a fundamental trade-off between speed and mission

duration, and this trade-off must be considered when designing or choosing an AUV for

a particular experiment. The AUV's energy system should be matched to the spatial and

temporal scales of the oceanographic process of interest. Until improved battery technolo-

gies are available, AUVs will be constrained to relatively low operational speeds (3-8 knots)



since propulsion loads dominate AUV energy consumption.

Limited Computational Power

Sophisticated electronics and control systems are required for an AUV to successfully meet

mission objectives. However, the sophistication of the computers necessary to carry out such

tasks pales in comparison to the computational requirements involved in running models

of oceanographic phenomena in real time. To implement model-based adaptive sampling

strategies on AUVs, we need to run models of the phenomena of interest on the vehicles

concurrent with the collection of survey data. To place such computational capabilities on

an AUV would incur too great an energy cost, and, in many cases, the equipment would be

too large to fit the space available inside the AUV. For this reason, it is not currently possible

to implement model-based sampling strategies with AUVs if the computation is to be done

in real-time using the AUV's computational resources alone. This situation will surely

change as smaller, faster, and more energy-efficient computational engines become available.

We can also ameliorate this problem by off-loading the AUV's computational burden onto

an external compute enginer via telemetering of the AUVs mission data. This presumes

an adequate (fast) communication link between the AUV and the external computation

platform. As we will see below, this presumption is not always valid.

Sensor Noise and Navigation Errors

Investigators rely on accurate descriptions of the sensor noise associated with the surveying

process when analyzing sampled data. Even though the AUV is not itself a sensor but a

mobile sensor platform, it can introduce noise into the various observations through many

modalities. The most powerful of these is due to uncertainties in vehicle position. Errors

in vehicle location make it difficult to infer the spatial structure of a phenomenon. Un-

derstanding the effects of these errors is essential when analyzing data from AUV surveys.

Furthermore, improving the navigational accuracy of AUVs requires both internal (compass,

rate gyros, INS) and external (acoustic, GPS) navigational aids, as well as computational

resources, to take advantage of the data collected from these resources. This remains an

active area of research in the AUV community.



Communications Systems

Communication in the ocean over even modest distances can be quite problematic when

high data rates are necessary. Nevertheless, fast and reliable communications systems will

be required to realize the full potential of the AUV for the coordinated multiple vehicle

surveys implied by the AOSN paradigm (Section 1.1.3). Periodic communication from the

AUV to a base station is also desirable during survey missions to facilitate adaptive and

off-board model-based sampling strategies. These issues remain to be adequately addressed.

2.4.2 Algorithmic and Computational Challenges

Algorithmic and computational problems predominately arise from three areas: (i) the

mismatch of properties of the sampling process or the physical phenomena of interest with

the assumptions required by the common data processing/process modeling techniques, (ii)

inadequacies or inefficiencies of the algorithms, or (iii) our imperfect understanding of the

processes of interest. While these problems are usually independent of the data collection

method or system, they are often exacerbated in AUV survey scenarios. The fact that

AUVs are often used to study processes at length and time scales which have not previously

been possible leads to a fundamental lack of understanding of the evolutionary dynamics of

the phenomena of interest at the scales of the AUV survey.

Non-Causality of Spatial Variables

Several efficient estimators exist which operate on a single causal variable, time. It is the

causality of the the temporal variable which allows these algorithms, such as the Kalman

filter and the RTS smoothing algorithms, to proceed in a highly efficient, recursive manner.

However, oceanographic processes typically evolve in three spatial and one temporal di-

mension. Since the spatial variables of the processes do not exhibit this time-like quality of

causality which admits efficient, recursive algorithms, the optimal inversion of spatial data

(even without an added temporal dimension) is computationally expensive. This funda-

mental difficulty is encountered in almost all inversion techniques for spatially distributed

data. Multiscale processing, which will be discussed further in Chapter 6, addresses this dif-

ficulty, but, since it is a new methodology, it is not yet suitable for application to real-time



computation of process field estimates.

Non-stationarity/Non-homogeneity of Processes

Another challenge to surveying with AUVs is the fact that real oceanographic processes

are often non-stationary in time and/or non-homogeneous in space. A survey of such fields

would need to be able to locally react to non-stationarity/non-homogeneity to accurately

reconstruct the process field. That is, the AUV must be able to react by sampling more

densely in regions of high spatial or temporal variability. To do this, the vehicle must be

able to identify these variations in the process in real-time. This is not practical in many

cases due to the inadequacy of the available field inversion techniques both in computational

complexity and in their inability to invert non-stationary/non-isotropic data.

Inadequate Field Inversion Techniques

Most space-time field inversion techniques create estimates which assume that the under-

lying fields are stationary and homogeneous. This assumption is incorporated into the

inversion usually as an explicit statistical model of the correlation structure of the process

of interest. Such techniques fail when the correlation models do not meet these criteria.

Thus, we see that these techniques require prior knowledge about the process under inves-

tigation in order to specify realistic correlation structures. Another inadequacy of many

inversion methods is that they do automatically produce estimation error statistics. This

can make it difficult to assess the validity of interpolated fields. Because each inversion

method is unique in its characteristics, we discuss the two most popular methods and a

promising new technique below.

Kriging A variant of Gauss-Markov estimation where only the mean is computed. Also

know as method of empirical orthogonal functions (EOFs) or universal kriging when

estimating more than just the mean. This algorithm is statistically "optimal" but

suffers from the fact that it is extremely computationally intensive. This method also

requires an a priori statistical model of the correlation structure of the field. It would

not be possible to compute kriged estimates of a field on the fly using an AUV's main



vehicle computer due to the large quantity of data collected during AUV surveys. See

Isaaks and Srivastava [24] for further detail.

Objective Mapping Also known as objective interpolation or objective analysis, this is in

essence a least-squares estimation technique and, consequently, is also computationally

expensive. This method is further hampered by the fact that it provides no statistical

estimate of the estimation error. While objective mapping has achieved sucess in the

fields of oceanography, meteorology, and geophysics, the computational complexity of

the algorithm precludes its use for real-time computation on an AUV computers. An

extended discussion of objective mapping can be found in Wunsch [55].

Multiscale Processing This new processing technique gains efficiency by representing

multiple spatial dimensions in terms of a single causal variable, scale. The algorithms

admitted by this change of variables are analogous to numerous state-space algorithms,

such as the Kalman filter. This method also requires an a priori scale-spaces covari-

ance model for the process of interest. Given this model, multiscale techniques are

remarkable fast. However, developing a scale-space model for a process can be quite

difficult since no system identification or realization theory exists for the technique.

This technique has the advantage of producing estimation error fields as part of the

ongoing field inversion. For further detail, see the theses of Chou [56], Fieguth [57],

and Irving [48].

2.4.3 Survey Design and Adaptive Sampling

There is a need to develop operational paradigms for AUVs which take advantage of the

unique abilities of these vehicles. Survey sampling with AUVs is fundamentally different

from the ways in which other oceanographic instruments have previously been used. Because

AUVs have only recently become useful tools for oceanographers, we are only now learning

how to effectively and efficiently use this new tool. The topics discussed below are areas

which further work is required in order to achieve this goal.



Identifying the Proper Sampling Domain

In Figure 1.1 we saw that the ranges of space and time over which the oceanographer

might wish to sample, using either AUVs or more traditional sampling systems, are quite

broad. Deciding which processes are appropriately studied using an AUV is an important

first step in learning how to use AUVs in an oceanographic research or exploration setting.

This is not always as simple as defining whether or not a particular process falls within

the AUV survey domain "box" of Figure 1.1, since this box represents only the spatial

and temporal boundaries of AUV operation and should not be construed to imply that all

combinations of survey spatial resolution and total survey time which fall within this box

are necessarily achievable with an AUV. In general, careful consideration of the underlying

sampling strategy is required when determining whether or not an AUV would make a

useful contribution towards the study of a particular oceanographic phenomena.

Appropriately Sized Surveys

There are two broad classes of problems which oceanographers typically address. The first

is the spectral estimation problem, which involves designing a series of AUV missions from

which an estimate of the spatial spectrum of the phenomena is to be made. The second

broad problem category is field estimation, where an estimate of the spatial field of the

process of interest is reconstructed from survey observations. The simplest way that this

later problem can be addressed is through a grid survey, where the resolution of the spatial

grid and the total survey time must be traded-off against each other in order to achieve an

"optimal" reconstructed field. This question will be addressed in detail in Chapter 3.

Reactive Surveys

The uniform grid survey mentioned above requires that some prior knowledge of the process

of interest be used to help determine the appropriate trade-off between spatial resolution

and mission duration. However, this scenario is not well suited for missions in which the

objective is to determine fluxes of a variable (such as heat, for example) or to otherwise

characterize highly localized and dynamic phenomena. One way to address such surveys is

to allow the AUV to alter the mission trajectory based on incoming data. A simple version



of such a scenario is a search mission in which an AUV searches in a regular pattern until

a distinctive feature is detected. The then AUV enters into a feature tracking mode, where

it reactively surveys the phenomena. In this scenario, not only does the vehicle react to

the presence of the detected feature, but it must also react to the evolution of the feature

to continuously reposition itself within the feature or to move along the boundaries of the

feature. Some work on reactive survey algorithms has been done (for example, [53]), with

results that are promising but as yet unrealistic for oceanographic research. Continued work

on this particular type of survey is much needed, particularly to guard against, detect, and

correct poor surveys decisions due to noisy data .

Coupled Model/Observational Systems

In order to improve the reactivity of an AUV survey, we would like to be able to incorporate

spatially diverse measurements into a physical process model and use the predictive power

of the coupled observational/modeling system to dynamically alter the trajectory of the

AUV to improve the quality of the collected data. Numerous difficulties arise in trying to

implement such a system. These difficulties include the following:

Communication A communication infrastructure is required to take advantage of dis-

tributed observational assets. The complexity of such a system grows precipitously

as the speed of the network (or the volume of data being transmitted) increases. Al-

though such networks are in common use on land (i.e., the internet), the complexities

of sound propagation in water hinders the application of prior experience to the devel-

opment of underwater communication networks. Another challenge with such systems

is that they typically are very power consumptive (although not nearly so consump-

tive as AUV propulsion systems), restricting their use with many battery powered

observational assets.

Data Assimilation The data gathered from the various observational platforms will rep-

resent observations over a broad range of space and time scales, as well as many

physically incompatible phenomenological variables (such as temperature and topog-

raphy). These data must be assimilated to drive the evolution of the process model.



Data assimilation techniques remain an active area of research.

Model Computation Assuming that we have a model of an oceanographic process (we

let the development of such models lie within the purview of the oceanographer),

we must be able to run this model in (near) real-time to take advantage of its pre-

dictive ability to adaptively alter the AUV's survey trajectory or the configuration

of other observational assets. As discussed previously, the computational burden of

these oceanographic models is enormous, making the implementation of a coupled ob-

servational/modeling system quite difficult if the computation must be done on-board

an AUV.

Control Finally, the scientist must be able to exercise high-level control of such a network

through a low-bandwidth (typically satellite) channel. This requires that the network

of sampling systems be essentially autonomous, with only supervisory control from

the scientist. Operational algorithms must be developed to enable such a system.

Multiple Vehicle Operations and Coordinated Surveys

Surveying phenomena with multiple vehicles is one of the most direct ways to reduce the

error in an uniform grid survey of a process, provided that the surveys conducted by the

individual vehicles are coordinated to minimize errors in the reconstructed field. This

requires that vehicles know the location of their companion AUVs as well as have a shared

survey plan. This can accomplished with current technologies. New possibilities arise when

we let one or more of the vehicles share the lead in an adaptive survey which reacts to

the data collected by the loose network of vehicles. Research efforts in communication,

modeling, and vehicle behaviors will be required to realize coordinated surveys with several

AUVs.

2.4.4 Sampling Theoretic Issues

A fundamental difficulty is sampling with AUVs is the confounding of space and time

through the AUV survey trajectory. Of course, when the processes of interest does not

evolve significantly over the duration of the survey mission, this is not longer a difficulty
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Figure 2.3: Surveying in both space and time. Due to the finite velocity of the AUV, any survey
which ranges over spatial dimensions must also range over the temporal dimension as well. Here,
the mission is a simple "lawn-mower" survey where the AUV surveys back and forth in a plane. In
reality, the AUV is surveying in a three dimensional space consisting of two spatial dimensions and
one temporal dimension, as shown. This phenomenon of mixed space-time sampling is fundamental
to all surveys which employ AUVs or any moving sensor platform.

since the measurements essentially range only over space. However, many if not most of

the processes which we wish to sample with AUVs are ones which evolve rapidly in both

space and time, and spatial and temporal undersampling is inevitable.

Space-Time Confusion

As stated above, perhaps the most fundamental difficulty in sampling with AUVs is the

intertwining of space and time samples through the AUV survey trajectory. Unlike con-

ventional sampling techniques where, for example, an array of sensors takes samples at

numerous locations in space at each sampling instant, an AUV samples only a single point

in space at each sampling time (or a few points if multiple AUVs are employed). Due

to the finite velocity of the AUV, any survey which ranges over spatial dimensions must

also range over the temporal dimension as well. A simple "lawn-mower" survey mission

is shown in Figure 2.3. The AUV surveys back and forth in a two dimensional plane. In



reality, though, the AUV is surveying in a three dimensional space consisting of two spatial

dimensions and one temporal dimension, as shown. This phenomenon of mixed space-time

sampling is fundamental to all surveys which employ AUVs or any moving sensor platform.

In the limiting case of a process which does not significantly evolve in time over the course of

a survey mission (geomagnetic fields, for instance), the velocity constraint on the AUV is no

longer restrictive. However, if the AUVs are being employed to study a phenomenon which

evolves on time scales comparable to or faster than the total survey time, then the spatial

field sampled by the AUV will be seriously corrupted by temporal evolution of the dataset,

a phenomenon which we call "blurring". For AUV studies of oceanographic processes, this

problem dominates other sampling and survey design issues. Therefore, an understanding

of the effects of temporal blurring is necessary in analyzing data from AUV surveys of

oceanographic processes.

Currents and Doppler

Consider for the moment the following thought experiment. We wish to study, using an

AUV, a time evolving, uni-dimensional spatial field which consists of a single plane propa-

gating wave with propagation speed, c, propagating in the +x-direction. The AUV surveys

at its own speed, v. Consider the problem of estimating the spatial frequency of this process.

If the AUV is moving in the positive direction, then the estimate made from the survey

measurements of the wavenumber of the plane wave will be lower than its actual value due

to the familiar Doppler effect. Indeed, if the vehicle's speed and the propagation speed of

the plane wave are equal (v = c), then the wavenumber estimated from the survey samples

will be zero. If the AUV's speed is greater than the propagation speed of the process of

interest, then the estimated wavenumber will be too high. A similar phenomenon occurs

when the AUV moves in the -x-direction.

While this effect is a well-known perturbation in many estimation problems, the effect is

greatly magnified in the case of oceanographic processes due to the low propagation speeds

observed. Thus, instead of a perturbation of a small percent of the actual value, we see

that the estimated wavenumber can differ by more than 100 percent of the actual value and

can even have the wrong sign. Obviously, the Doppler effect can be quite disastrous to an



AUV oceanographic survey. In the case where the propagation speed and the vehicle speed

are both known, the correct wavenumber can be calculated (to some experimental precision

which is not affected by the Doppler effect). If one of these speeds is not known precisely,

then it is not possible to estimate the wavenumber of the plane wave with any accuracy.

This problem is exacerbated by the presence of oceanic currents within the survey do-

main. This introduces a third speed (velocity in the more general case of multiple spatial

dimensions) which must also be precisely known in order to make accurate estimates. To

see this, consider the case of an AUV which has an earth relative measure of its own speed

(such as would be given by an acoustic long-baseline (LBL) navigation system). We assume

perfect knowledge of the propagation speed of the process of interest. If an unmeasured

(unestimated) current were present in this survey domain, we would, again, not be able to

accurately estimate the wavenumber of the single wavenumber component. Fortunately, it

is often the case that accurate values for the maximum magnitude of the local currents are

known, allowing errors bounds to be placed on the estimate of the single wavenumber.

So far, we have discussed a highly idealized deterministic process, a single plane wave.

This is of course a gross oversimplification of processes that we would explore with an

AUV. Two issues immediately spring to attention. The first is the fact that there will be

a spectrum of waves composing any real oceanographic phenomenon. While we have seen

that it is difficult to estimate a single wavenumber, the task is even more daunting when

there is a continuum of wave numbers for which you want to estimate the spectral density.

Second, an actual oceanographic process of interest most likely does not obey the linear

(wave-equation) dispersion relation which we assumed above, with the implication that we

cannot know the propagation speed of a measured wave unless we know its wavenumber

exactly. This, of course, poses a serious limitation to surveys with AUVs.

Non-Uniform Sampling in Multiple Dimensions

Perhaps one of the most fundamental departures from the typical sampling theoretic domain

is the fact the AUV measurements need not be taken on any uniform grid. Because of this,

the number of available interpolation and estimation techniques decreases while the com-

putational complexity increases. This is a significant disadvantage since the computational



complexity of these inversion techniques typically grow as the cube of the total number

of sample points. Thus, for an AUV survey of one hour and a standard sampling rate of

5 Hz, we would generate eighteen thousand survey samples, necessitating the inversion of a

matrix of size eighteen thousand by eighteen thousand for a standard Kriging inversion [24].

This is clearly not feasible. Given current technology, the question is not how long would

it take, but could it be done at all, even for a relatively short survey. Of course, we can

ameliorate this problem by binning the data before inverting. However, this can reduce the

fidelity of the reconstructed field beyond useful limits for many oceanographic applications.

Thus, we see that irregular sampling can place serious practical constraints on the problem

of surveying oceanographic phenomena with AUVs.

2.5 Discussion

In this chapter we have given references on topics related, either directly or indirectly, to

the problem of surveying oceanographic processes with AUVs. These references are not

certainly not exhaustive, but give pointers into the literature for the benefit of the reader.

We have also presented an overview of the specifications and capabilities of the Odyssey IIb

class of AUVs. We utilized this presentation to raise some of significant vehicle design and

engineering issues.

We have also examined several other issues and challenges inherent in surveying with

AUVs in this chapter. These issues are necessary context for the development of later chap-

ters. They also point to areas in which further exploration is required. In particular, the

lack of computationally efficient inversion algorithms for spatially distributed data is a diffi-

culty which goes to the heart of the whole sampling problem. We will see in Chapter 6 that

new and promising spatial data processing techniques are on the horizon. The application

of these techniques to the AUV survey sampling problem has the potential to revolutionize

the way that oceanography is practiced, through the realization of fully functional coupled

observational/modeling systems. However, for this to be possible, many of the engineer-

ing challenges identified in Section 2.4.1 must also be addressed. Power management and

improved battery technologies will be vital to the implementation of autonomous ocean



sampling networks, as will the development of reliable and fast underwater communication

and navigational networks. Finally, advances in the area of reactive and adaptive survey

design will be necessary as an enabling technology of the AOSN paradigm.



Chapter 3

Performance Metrics

3.1 Introduction

The effectiveness of a survey can be addressed quantitatively only within the framework

of a given oceanographic experiment. For one problem, it may be the best measurement

of total heat flux through a surface, for another it may be characterization of horizontal

variability across an ocean front. For the purposes of this thesis, the objective will be to

obtain the best representation, in a least-squares sense, of a measured scalar field. There

are two major sources of error, arising from the finite spatial resolution of the survey and

the finite time required to sample. Temporal evolution of the ocean during a survey has

the effect of "blurring" the true field, driving one to increase vehicle speed and minimize

survey distance; however, vehicle speeds are strongly energy constrained, and decreasing the

survey distance effectively reduces the sampling resolution (assuming a fixed survey area).

Thus, the trade-off is fundamentally between errors introduced by temporal "blurring," and

errors introduced by spatial undersampling.

Perhaps the most important constraint on an underwater survey system is its energy

capacity [58]. Consequently, an important figure of merit is the energy required to ac-

complish a survey. In a practical sense, energy is minimized by reducing the distance a

vehicle must travel and optimizing its speed for efficiency. It will be shown that for surveys

which are not time-constrained, the energy reduction is linearly proportional to the reduc-

tion of distance traveled. For time constrained surveys, the energy savings achieved by the



distance-reducing strategies can approach the cube of this reduction of distance.

Compared to vehicles deployed and operated from surface vessels, energy saving takes on

an additional dimension for long-deployment systems like the Autonomous Ocean Sampling

Network (AOSN) [20]. For vehicles which are serviced between missions, perhaps on an

oceanographic vessel, there is little incentive to use less than the vehicle's total useful

energy capacity in any given mission. Instead the objective is to make best use of the energy

available, since the logistical expenses (such as ship time) are likely to dwarf the cost of the

energy onboard the vehicle. However, choices about the consumption of energy are more

complex in long-deployment scenarios, such as in AOSNs, since the bulk of the system's

energy is stored at network nodes rather than in the vehicles themselves. In this case, the

trade-off is between many low-resolution surveys, and a few surveys at a higher resolution.

Issues of the complexity and reliability of the docking and recharging mechanisms must also

be addressed. Thus, for long-deployment systems, there may be an incentive to use less

than the total energy capacity of the vehicle during each mission.

This chapter provides some tools for quantifying the trade-off between different survey

strategies. In Section 3.2 we review the energy economics of surveying with AUVs and

generate an energy consumption function which is dependent upon the survey sampling

resolution, A, and the total survey time, T. Next, we analyze the errors inherent in these

surveys as functions of A and r in Section 3.3 and combine these errors to form an over-

all survey performance metric. Finally, Section 3.4 reviews the analysis of the preceding

sections, discussing the assumptions made and the overall utility of the performance metrics.

3.2 Energy Analysis

One of the most important constraints on an underwater survey system is its energy capacity

[58]. Consequently, an important figure of merit is the energy required to accomplish a

survey. An AUV's energy consumption for a given survey mission is determined by three

parameters: the area over which the survey is made, the resolution of the survey, and the

total time that it takes to complete the survey. Let us consider for the moment a simple

grid survey at spatial resolution A, over a fixed square area A. The total linear distance, L,



Symbol Value Description
H 40 W Hotel Load

7 0.35 Propulsion Efficiency
Cd 0.006 Drag Coefficient
S 3 m Wetted Surface Area

p 1000 kg/m Density of Water

Table 3.1: Parameters for the Odyssey IIb vehicle and sea water.

traversed in the survey is given by

A A
L f- 2A A (3.1)

2A 2A'

where 2A is the distance between points or tracklines in a uniform grid survey. The relation-

ship above is clearly only an approximation since the shape and size of the survey relative

to the survey resolution must be taken into account. However, for a rectangular area with

both sides significantly larger than A, the approximation will be good. Assuming that this

approximation holds, the vehicle speed required to complete a survey in a given time is

L A
V = - (3.2)

T 2AT'

where 7 is the total survey time. Finally, given V and 7, we compute the total energy

consumption [20] for a survey,

Etot =pCSV3 + H T, (3.3)

where p is the density of water, Cd is the drag coefficient for the vehicle, S is the vehicle's

wetted surface area, q is the propulsion efficiency, and H is the vehicle hotel load. Values for

these parameters for the standard Odyssey IIb AUV are given in Table 3.1. The first term in

the right hand side of Equation (3.3) is associated with the propulsion of the vehicle through

the water; the second term is due to the energy consumed by the vehicle's computer, sensors,

electronics, etc. (the "hotel" load). We see from Equation (3.3) that Etot decreases with

decreasing V and/or T. Unfortunately, Equation (3.2) indicates that V and 7 cannot both

decrease at the same time without changing the resolution of the survey. We must make



a trade-off between these two mission parameters to minimize the total energy consumed

during the survey. If we divide the total energy consumed by the total survey distance we

have an equation for the energy consumption per unit distance,

Etot pCdSV2  H
- 2 - (3.4)

L 277 V

Taking the derivative of Equation (3.4) with respect to velocity, V, and setting this equal

to zero gives us the optimal vehicle speed

Vopt pC= dS (3.5)

This velocity is optimal in the sense that it minimizes energy consumption per unit distance

traveled. This relationship is shown in Figure 3.1, where we see that at its optimal speed

of 0.92 m/s, the Odyssey IIb class of AUVs will achieve an energy performance of 65.27

J/m. This corresponds to a maximum survey path length (or range) of approximately 275

km based on a 5 kW-hr (1.8 x 107 J) battery pack. Note further that by increasing the

operational speed of the AUV to twice the optimal speed the energy consumed per unit

distance also approximately doubles. This is because we are in an approximately linear

region of the energy consumption curve (Figure 3.1) due to our proximity to the global

minimum. This fact is fortunate since typical operating speeds for the Odyssey IIb vehicles

fall in the range of 1.5 to 2.0 m/s.

By substituting Equation (3.5) into Equation (3.3), we find that the minimum total

energy consumption required to complete a survey at spatial resolution A in time T is

3LH 3
Emin =- t-H. (3.6)

2Vopt 2

This is a lower bound on the total energy consumed in a time constrained survey.

3.2.1 Application

To further illustrate our discussion of survey economics, we will employ an example. Let

the survey domain be a fixed square area, A = 9 km 2, and compute the total survey
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Figure 3.1: The energy consumed per unit distance as a function of vehicle speed for the Odyssey IIb
AUV. The optimal velocity is 0.92 m/s with a corresponding optimal energy consumption per unit
distance of 65.27 J/m. From Equation (3.4) we see that the energy consumed per unit distance
increases asymptotically as 1/V for speeds less than Vopt and as V2 for speeds greater than Vopt.

energy as a function of (A, T). The results of this computation are shown in Figure 3.2.

The contours show the energy that would be consumed during a survey for any given

pair of survey parameters (A,T). We have plotted energy consumption contours in equal

step sizes beginning at a value which is one sixteenth of the total energy contained in an

Odyssey IIb battery pack and ending at a contour corresponding to eight times the energy

of the Odyssey IIb battery pack. This covers the range of current and near future battery

technology. The behavior of the contours for higher total energy consumption (lower left

portion of plot) should be evident from the contours shown. From this figure we see that

the total survey energy is greatest for surveys which are densely sampled and/or completed

quickly. However, we must also consider the effects of physical constraints imposed by the

AUV on the surveying process. There are two such constraints.

For the sake of this example, let us assume that we have a 5 kW-hr battery available.
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Figure 3.2: Total survey energy consumption as a function of survey spatial resolution, A, and total
survey time, 7, for a grid survey of a square survey domain with A = 9 km2 . Contours of energy
consumption are plotted for values in the range Eody/16 < Econsumed < 8 Edy, where EOdy = 1.6e7
J is the energy contained in an Odyssey IIb battery pack. The dotted line divides two domains of
the energy consumption curve. In the upper domain, the total energy consumed is independent
of the spatial resolution at which the survey is conducted. These surveys are constrained by the
vehicle hotel load. In the lower portion of the plot, spatial resolution and total survey time both
influence the energy consumption of a given survey. As spatial resolution decreases (corresponding
to finer grid spacing) the total survey energy increases while total energy consumption increases
with decreasing survey time (faster vehicle speed). The typical AUV surveys will be designed to fall
into the lower region of the total energy consumption plot.

This is realistic for a rechargable battery pack for Odyssey IIb given a focused research effort

(primary cell technology is currently available for 10 kW-hr battery packs which would still

fit in an Odyssey IIb pressure housing, but these packs would not be rechargable). The

5 kW-hr batteries constrain the total survey energy to be no more than 1.8 x 107 J. Also,

hydrodynamic constraints on the vehicle require that it operate at velocities equal to or

greater than 0.25 m/s to maintain control authority. When taken together, these energy

and velocity constraints define a finite region of (A, T) space within which it is reasonable

for the vehicle to operate. This region, referred to as the "survey envelope", is shown

in Figure 3.3. The straight edges of the survey envelope correspond to the AUV speed
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Figure 3.3: The Odyssey IIb survey envelope defines the operational region of the AUV in terms
of the survey resolution A and total survey time 7. This survey envelope is derived from the finite
energy supply (batteries) of the vehicle and the vehicle's operational velocity range. The envelope
shown is for a fixed square area grid survey with A = 9 [km 2].

constraints and the curved edge near the top of the envelope is due to the finite energy

stored in the AUV's batteries.

3.2.2 Survey Trajectories for 3-D Sampling

The calculation of total survey energy as a function of (A, 7), as shown in Figure 3.3, assumes

a two-dimensional survey domain with a uniformly spaced grid survey trajectory (so that

Equation (3.1) is a reasonable approximation). However, many (if not most) oceanographic

survey missions with AUVs will require operation in all three spatial dimensions. This does

not preclude use of the type of analysis that we have performed above. As demonstrated by

Figure 3.4, two-dimensional grid survey patterns can be easily extracted from some types

of three-dimensional survey trajectories. For the grid survey with superimposed "Yo-Yo"

shown, the total survey energy will increase by a factor associated with the pitch angle of
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Figure 3.4: A three dimensional survey trajectory performed by the Odyssey II AUV on the Juan de
Fuca Ridge, June 25, 1995. The trajectory is comprised of a grid survey in the horizontal dimensions
with a "Yo-Yo" superimposed in the vertical. Horizontal samples locations (asterisks) for a plane of
constant depth are shown below. Total mission time was 188 minutes.

the AUV. pitch angle abovlee which thfor the AUV cannmissiot function efficientlywas 30 degrees, resulting in

an increase of total mission path length by a factor of approximately 1.15. This, in turn,

requires that the survey velocity increase by a factor of 1.15 if the AUV is to complete the

mission in the same time that would have been required for the two dimensional array. Since

the energy consumption for most AUV survey missions is dominated by propulsion costs,

we can say that the increase in total survey energy consumption is proportional to this

factor. In general, the propulsion portion of the total energy consumption (Equation (3.3))

will increase by a factor

f = cos(a-3 ,  (3.7)

where a is the pitch angle associated with the vehicle's "Yo-Yo". As the pitch angle in-

creases, the propulsion energy required will increase more rapidly. There will be some

maximum pitch angle above which the AUV cannot function efficiently due to stability

and/or velocity limitations. Note also that a survey trajectory such as this inextricably

couples the horizontal and vertical spatial resolutions of the survey. If we wish to sam-



ple very densely in a horizontal plane, we will be limited by the maximum pitch angle to

very small vertical excursions. This represents a rather severe survey design constraint and

motivates a future examination of multiple vehicle operations.

3.3 Error Analysis

In order to assess the degree of synopticity with which an AUV can measure a generic

oceanographic process, an understanding of the survey errors inherent in the sampling

strategy must be acquired. We have identified two major contributions to the survey error

which are dependent upon the spatial resolution and duration of the survey. In terms of

spatial resolution, the survey error is dominated by the loss of detail in the reconstruction

of the field due the inevitable undersampling of the phenomenon. The dependence of the

survey error upon total survey time can be derived from the autocorrelation function of

the process of interest. If we have a reasonable understanding of the physics of the process

under study (either from a model or experimental data), we will be able to generate analytic

error surfaces in terms of A and r for any given survey strategy.

Prior to any discussion of survey errors, we must be explicit about the scientific goals

of an AUV survey of a given oceanographic process. These scientific goals are embodied in

the survey objective function, which is itself dependent upon the specific experiment and

process under study. The objective function serves as a metric for the effectiveness of a

given experiment in extracting the desired scientific information. For instance, for some

processes we may wish to obtain an estimate of the energy density spectrum, P(w, k), of

the process. For other processes, it may be that we wish to recover an accurate "snap-shot"

of the spatial field. These two scenarios will lead to differing survey objective functions

[59, 60], and, in turn, to differing survey strategies. Therefore, we will need to specify our

objective function in order to measure the degree of success that we can achieve with a given

survey strategy. For the following discussion, and throughout the remainder of this thesis,

our goal will be to accurately reconstruct a "snap-shot" of a spatially distributed, time-

evolving, scalar parameter process. That is, we want to reconstruct a spatial field which

represents, as accurately as possible, the true field at some instance during the survey. This



estimated field will exhibit errors due to spatial undersampling and temporal "blurring" of

the underlying phenomenon. For the sake of clarity of analysis, we will assume that any

AUV navigational errors are negligible.

3.3.1 Spatial Survey Error

Let us begin by considering a spatially distributed process field, y(x), that does not evolve

in time. Assume that we have surveyed this field, producing the samples,

9(xi) = y(xi) + w(xi), (3.8)

where xi is the location of the ith sample and w(xi) is a measurement noise which is

zero mean, white noise with variance a 2 and which is uncorrelated with y(xi). From the

noisy samples 9(xi) we reconstruct a continuous field which, for simplicity of notation, we

also refer to as 9(x). This reconstructed field will be bandlimited by the multidimensional

equivalent of the Nyquist frequency associated with the survey spatial resolution. We define

the error field in terms of the real field and the survey reconstructed field as

e(x) = y(x) - 9(x), x E D, (3.9)

where D is the spatial domain of the survey.

We can define any number of error metrics in terms of this error field. Many popular

metrics measure some function of the energy contained in the error field. We have chosen

to define the error metric as the total energy contained in the error field normalized by the

total energy contained in the two constituent fields. Thus, we define the spatial survey error

metric to be

f 9(x) - y(x)2dx
EX = (3.10)

J [19(x)12 + y(X)12] d

The denominator serves to normalize the energy in the error field. It contains terms for

both the estimated and true fields so that the spatial survey error will satisfy 0 < EA < 1.



The error metric is given the subscript A to emphasize that it is a function of the survey

sampling resolutions.

For any given experiment, the value of this metric will be a function of survey param-

eters such as the survey spatial resolution and the measurement noise variance and of the

particular realization of the process field, y(x). The dependence upon the process field

will cause fluctuations in the value of the spatial survey error metric from experiment to

experiment. We would like to be able to remove or average out these fluctuations. We do

this by taking the expectation of Equation (3.10). When we take the expectation of the top

and the bottom seperately, it becomes clear that the error metric will only take on values

between zero and one, with E = 1 indicating that the true and reconstructed fields are

totally spatially uncorrelated.

To understand the contribution of the survey process to the spatial sampling error, we

begin with the multidimensional version of Parseval's Theorem [32], which states that the

total energy contained in a signal is proportional to the integral of the squared magnitude

of its Fourier transform, i.e.,

f00 

OO

|0g(x)12dx = (27r)-n f 1G(k) 2dk, 
(3.11)
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where g(x) C R n is a spatially distributed (static) process, G(k) E Cn is its Fourier trans-

form, and 9(k) - IG(k)12 is the spatial energy density spectrum of the process. For sim-

plicity of notation, we use a single intregral sign to imply the n-dimensional intregral. In

sampling the process field, we will create an estimate of the wavenumber distribution of the

process of interest, G(k), which is band-limited by the multidimensional equivalent of the

Nyquist frequency associated with the sampling resolution A . Therefore, our estimate of the

energy density spectrum, 9(k), will also be band-limited to this spatial frequencies range.

This phenomenon is illustrated in Figure 3.5(c). By employing this multi-dimensional ver-

sion of Parseval's Theorem, we can transform Equation (3.10) to wavenumber space. We

define the error associated with spatial aliasing to be

E{ Y(k) - Y(k) dk
E JYk00 ) J (3.12)
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Figure 3.5: Examples of Fourier transforms of the process field, survey reconstructed field, and
the associated error field. The Fourier transform of an unidimensional and bandlimited process field
is shown in (a). The Fourier transform of the reconstructed field is given in (b). This transform
includes the effects of spatial aliasing and a white measurement noise. The Fourier transform of
the difference of these two fields is given by the difference of the two transforms, as shown in (c).
Although it is shown as a bandlimited signal, the error field will in general contain energy at all
wavenumbers due to the fact that the process field will in general be a non-bandlimited signal.



where we have also taken the expectation as described above. In order to interpret this error

we must determine the value of Y(k) - Y(k) , the Fourier transform of the error field. This

is simply the transform of an aliased version of the process field plus some measurement

noise and is easy to compute provided that we know the Fourier transform of the process

field. The necessary calculations are shown pictorially in Figure 3.5.

Figure 3.5(a) is an idealized version of the Fourier transform of some arbitrary process

field. The transform shown as being bandlimited and unidimensional to enhance the clarity

of the figure. In general, this transform will be neither bandlimited nor unidimensional.

The Fourier transform of the reconstructed field is given in Figure 3.5(b). Note that the

effect of aliasing is to "fold over" energy from wavenumbers higher than the sampling

wavenumber, increasing the energy in the high wavenumber regions of the transform. The

effect of the measurement noise is to increase the energy in the reconstructed field transform

uniformly across the spectrum (recall that w(xi) was assumed to be a white noise). The

combined effects of spatial aliasing and measurement noise produce a reconstructed field

transform (shown as a solid line in Figure 3.5(b)) which deviates significantly from that of

the process field. Finally, in Figure 3.5(c) we see that the transform of the error field is

simply the difference between the process and reconstructed field transforms. Although this

transform is bandlimited in the example shown, the error field will generally have energy at

all wavenumbers. Now, from Figure 3.5(c), we see that the numerator of Equation (3.12)

is given by

E{_ Y(k) - Y(k) dk} = 2 IY(k) 2 dk + W(k)12 dk, (3.13)

where W(k) is the Fourier transform of w(x) and we have used the fact that y(x) and w(x)

are uncorrelated to separate their Fourier transforms. The regions of intergration are

T={ kI k I ks | k 1  (3.14)

which is the support of the sampling process, and

Q {k ke [E - , ks ) (I , ] }, (3.15)



which is the region of wavenumber space which lies outside the support of the sampling

function. Note that the 11 and T are exclusive sets and that they partition the whole

n-dimensional k-space, i.e., 2 n T = 0 and Q U T = 7 n .

We can now further extend the definition of the spatial survey error as

2f IY(k)12 dk + fT IW(k)12 dk

2j IY(k)12 dk + T IW(k) 2 dk

2fP(k)dk + f W(k)dk
T (3.16)

2 f -P(k)dk + fW(k)dk

where P(k) is the energy density spectrum of the process y(x), W(k) = a. is the energy

density spectrum for the noise process, and where 2 and T are the volumes of wavenumber

space which respectively lie outside and inside the support of the sampling function [11,

12]. We see from this definition that there are two factors which contribute to the spatial

survey error. The first of these arises from the familiar concept of signal-to-noise ratios

(SNRs). As the SNR of the sampling process decreases, the noise terms in the numerator

and denominator of Equation (3.16) dominate, causing eAx - 1 as SNR -+ -oo, regardless

of the spatial resolution at which the field is sampled. The other factors contribution to the

spatial survey error arises because the reconstructed field is aliased with respect to the real

field. This effect is governed by the first terms in the equation above. In the absence of

measurement noise, the undersampling of the true field will cause x -+ 1 as the bandwidth

of the underlying process increases well beyond the range of the survey spatial resolution,

i.e., Ik, sl < Ikel -

Now, since measurement noise cannot be controlled by the experiment designer, we will

neglect these terms for the remainder of this thesis. Thus, we redefine the spatial survey

error metric to be

P(k) dk
A = P() (3.17)

- P(k)dk



This metric is a number which ranges between zero and one, as desired. It specifies the

fraction of the total energy present in the field that we have lost in the survey process. For

instance, for SA = 0, we have captured all of the energy with the survey and, hence, can

perfectly reconstruct of the (static) process field.

3.3.2 Temporal Survey Error

In the previous section we assumed that the process of interest was static. We now let this

process evolve with time. To accurately reconstruct the process, we would have to make

our survey instantaneous. This is analogous to taking a snap-shot of the process and is,

of course, impossible to achieve in practice with an AUV. The time evolution of the field

will degrade the information which we obtain with our survey. Therefore, we must attempt

to determine the degree to which our temporally "blurred" sample field can accurately

represent the true field.

For the moment, consider the value of the process field at location xi at time t, which

we will denote with the symbol yi(t). If the survey begins at time t = to, then this location

would be sampled at some later time, t = to+t', due to the finite speed of the AUV (assuming

that xi is not the starting location of the survey). Note that yi(t) is not a continuous field

as was y(x) in Section 3.3.1 above. It is rather a collection of random variables at the finite

number of spatial sample locations in the survey domain. There is no need to try (nor

would it be possible) to reconstruct a time-series at each of the survey sample locations

and, hence, a temporal aliasing error analogous to the spatial aliasing error of the previous

section would not be appropriate here.

To construct a temporal survey error metric, we begin by taking the expectation of the

squared error between the true field and survey sample value at the spatial location xi.

This is given by

Et,xj = E [yi(to) - }(to+ t')1 2

= E{Yi y(to) + (to+t') - 2y(to)9i(to+t') }
S r 2 + (,2 + 2) - 2cov( yi(to), yi(o+t') ), (3.18)



where a2 is the temporal variance of the process field, a2 is the variance of a zero-mean,

white noise temporal measurement error which is uncorrelated with the process field. We

use the uncorrelatedness of the field and the noise to reduce the last term in the above

equation to a covariance function involving only the process field.

From Equation (3.18) we see that in the absence of measurement noise, et,x, -+ 0 as

t' 0, since the process has no time to evolve before the sample is taken. However, as

t' 0c, Equation (3.18) goes to 2a 2. Although this may seem peculiar at first, we can

readily convince ourselves that this is correct. As t' -+ oo, the covariance will go to zero.

We will then essentially have two completely uncorrelated random variables, each of which

contributes its variance, a 2, to the expected error. Therefore, in order to properly normalize

Et,xi, we should divide by twice the variance of the process. We define our normalized point-

wise expected error, e, as

= 20 2 - 2cov( yi (to), yi(to+t') ) + U2
Et - 2 2

2

= 1-R(t') + a (3.19)
2a

2 '

where we have used the fact that the covariance divided by the variance is defined to be the

autocorrelation function, R(t). (Note that R(t) is also the Fourier transform of the energy

density spectrum, P(w).) The last term is a constant which depends on the variance of

the measurement noise only. Since the ultimate goal of constructing these error metrics

is to aid the experimenter in designing survey mission, we will ignore this last term since

this parameter is not readily controlled. Also, the assumption that 2r > a2, is typically

justifiable, again leading us to ignore this term in the remainder of this thesis.

Equation (3.19) computes an expected error for each individual sample in the survey.

However, we require an error metric which captures the effect of temporal blurring for

all of the samples in the field. We create this error metric by summing the point-wise

expectred errors over the entire survey domain. In the limit, this can be done by integrating

Equation (3.19) over the total survey time, Ts, and taking the time average. Thus, we use



the point-wise error to define the temporal survey error as

1 T7 /2 1 , /2 1 fT /2
S = - Et, (t) dt= [1 - R(t)] dt = 1 - - R(t) dt,

s -7s, /2 Ts -7, s/2 Ts -7, /2
(3.20)

where we have moved the time origin, to, from the beginning of the survey to the mid-point

of the survey to minimize the overall error. S, is given the subscript 7 to emphasize that

this error metric is a product of the temporal blurring of the process over the duration of

the survey.

The temporal survey error metric measures the average correlation of the sample field

with the true field. As 7, - 0, the autocorrelation function will go to one and, hence,

S, -- 0. This is what we would expect since we are essentially measuring the difference

between two "snap-shots" of the process which have been taken at the same instance. On

the other hand, as 7, - 00o, E, -+ 1 since the autocorrelation function goes to zero; this

indicates that the sampled field and the field at t = to are completely uncorrelated.

3.3.3 Total Survey Error

In the previous two sections we developed spatial and temporal survey error metrics. The

spatial survey error metric gives the expected error in reconstructing a spatial field from

an undersampled survey of that field. This error is derived from spectral energy which is

aliased into the reconstructed field and can be thought of as the variance of the error field.

The temporal survey error metric is an average of pointwise errors derived the temporal

autocorrelation function. Unlike the spatial survey error, the temporal survey error metric

is not cannot be related to a temporal error variance. This is a fundamental difference

between the two error metrics.

We now combine these errors into a single survey error metric,

Stot = 1- (1 - SA)(1- 7)

= + S - - AS, . (3.21)

In Section 3.3.1, E~ was interpreted as the fraction of spatial information about the process



which has been lost. Therefore, the factor (1 - SA) is the fraction of spatial information

about the process which has been accurately recovered by the survey. Alternatively, one

can think of these qualities as the fraction of detail which has been lost and retained by the

sampling process, respectively. The reduction of this information by temporal blurring is

given by the second term. Therefore, Etot measures the uncertainty in our estimate of the

process field at time to. For £tot = 0, we have a perfect estimate, while Stot = 1 indicates

that we have gained no new understanding of the process. Actual surveys will fall between

these two extremes.

Recall that both x and £, are computed from expectations. Therefore, the product of

the two errors as written in Equation (3.21) makes the assumption that these two quantities

are uncorrelated. This assumptions will not be valid for many of the oceanographic processes

which we might envision studying with an AUV. Nevertheless, this total survey error metric

should capture much of the gross structure performance of an AUV survey of these processes

and will continue to be useful in designing surveying strategies for these experiments.

3.4 Discussion

The energy and error metrics developed in the sections above can be combined to create

a survey design tool which will allow the experimenter to trade-off various vehicle design

parameters to tailor an AUV to a particular scientific mission. This tool can also aid

in the design of survey trajectories by providing an objective overall survey performance

measure with which differing survey strategies can be directly compared. These issues will

be addressed in Chapter 5.

Before moving on to these issues, we must first examine the validity of the error metrics

discussed above. In developing these metrics, we made several simplifying assumptions in

order to make the problem tractable. These assumptions are:

1. The process of interest is temporally stationary and spatially homogeneous. Although

spatial isotropy is not a requirement, per se, imposed by Equation (3.17), it will nev-

ertheless be assumed throughout the following Chapters in order to simplify the com-

putations. Note, however, that spatial anisotropy is common in many oceanographic



processes, particularly those involving wave-like motions or currents.

2. The frequency and wavenumber spectra (or, equivalently, the spatial and temporal

autocorrelation functions) of the process of interest are known. It is further assumed

that these spectra (autocorrelation functions) are separable functions of frequency

and wavenumber (time and space). This is a consequence of the assumption that

the temporal and spatial error metrics are uncorrelated (see Section 3.3.3).This is a

particularly poor assumption for most oceanographic processes and will place seri-

ous restrictions upon the class of processes for which this metric will be absolutely

accurate.

3. Errors due to AUV positional uncertainties are negligible. This is equivalent to claim-

ing that the uncertainties in the position of the AUV are much smaller that the spatial

resolution scale of a given survey. This seems reasonable given some external naviga-

tional aid such as an acoustical long-baseling system [61], which can give positional

uncertainties as low as 1-10 m.

4. The process of interest is the only oceanographic phenomenon at play within the

survey domain. This excludes, for example, ocean currents and tides. As discussed

previously, the presence of currents can severely impact the quality of AUV sampled

data. This is also often a poor assumption for a real oceanographic experiment.

5. Errors due to the finite length of the AUV surveys (i.e., truncation errors) are negligi-

ble. While this may be a reasonable assumption for densely grided surveys, it will be

an increasingly poor assumption for low-resolution surveys as the number of tracklines

across a survey domain decreases.

6. All survey trajectories are "mow-the-lawn" (grid) patterms. No irregular trajectories

are allowed. While this constraint can certainly be accommodated by the researcher,

there are also situations in which grid surveys may be less efficient in terms of the

amount and quality of data which they generate.

Problems that meet these assumptions can be addressed with the framework of error met-

rics developed above. In Chapter 4, we will explore the validity of the error metrics by



conducting simulated AUV surveys through synthetic, spatially-distributed, time-evolving

oceanographic processes which conform to these restrictions.



Chapter 4

Random Field Simulations and

Performance Metric Verification

4.1 Introduction

Synthetic data from random field simulations are often used by oceanographers and other

scientists to assess the predictive ability of models, to generate input data for them, and

to test the statistical validity of their results. The efficient generation of these multidi-

mensional, random-field simulations remains an active field of research, primarily due to

the inherent computational complexity and various inadequacies of the available simula-

tion techniques. While numerous multidimensional simulation techniques exist, none is the

optimum choice for all applications. Each of these techniques place certain restrictions

(spatial isotropy, for instance) on the resulting simulated random field. Thus, choosing the

simulation techniques which are most appropriate for the requirements of the experimenter

requires careful consideration of the desired characteristics of the resulting random fields.

For this work, we would like to be able to simulate random fields which evolve in at

least two spatial dimensions as well as in time. We will allow these fields to be spatially

isotropic and temporally stationary. Indeed, these assumptions are necessary requirements

for many of the simulation techniques which currently exist. A brief description of several

of these methods is given below.



Cholesky Decomposition This technique decomposes the covariance matrix of a random

spatial field into upper and lower triangular components, and then creates the random

field by multiplying the lower triangular matrix by a vector of independent random

variables [62]. Since the size of the covariance matrix to be decomposed grows as the

square of the total number of points in the random field simulation, this method is

suitable only for small simulations.

FFT Spectral Method This method uses an assumed spectral density (for either w or k),

a dispersion relation relating w to k, and a field of random phases to generate spatially

anisotropic, temporally stationary random fields using a Fast Fourier Transform as

the underlying computational engine. Fields with high aspect ratios (that is, with

elongated, rectilinear domains) can be simulated. The computational efficiency of the

FFT algorithm makes this method attractive when uniformly spaced samples (in both

space and time) are sufficient.

Turning Bands Method This technique for generating spatial fields reduces the amount

of computation involved in a simulation by using several realizations of a random pro-

cess on a line to generate a multidimensional random field. An interpolation scheme

is use to produce the multidimensional field from the randomly oriented line pro-

cesses [44]. While this method is not as computationally efficient as the Fast Fourier

Transform method for large problems, it does have the benefit that the simulated

field does not have to conform a regular grid. This is required for simulating surveys

for highly irregular AUV trajectories. However, adding a temporally evolving compo-

nent to this method is not straightforward. For this reason this method will not be

employed.

Sampling from the Spectrum This technique generates isotropic spatial random fields

by taking a normalized sum of several harmonic components at each point in the simu-

lation [39]. The wavenumbers which define these harmonic components are themselves

random variables which are distributed in accordance with the radial spectral distri-

bution of the desired random field. While this method is not as fast as the FFT

method when numerous harmonic components are used, it is more flexible in that it



allows the generation of multidimensional random fields with fully separable spectral

densities in each dimension. This is in contrast with the FFT method which requires

that a dispersion relation be employed for computational reasons. As with the Turn-

ing Bands method, the technique of sampling from the spectrum does not necessitate

the discretization of the simulation domain. Furthermore, only those samples needed

to simulate the AUV's trajectory through the field are computed. This is a significant

computational advantage.

Multiscale Stochastic Processing This technique is motivated by the recognition that

scale serves the same function for multidimensional spatial processes as does time

for unidimensional processes [63, 64]. This realization allows efficient, inherently par-

allelizable, scale-recursive algorithms to be developed for the generation of synthetic

random fields. Scale-recursive algorithms make this method far more computationally

efficient than the other simulation techniques described above for large problems, al-

lowing for the generation of simulation fields on denser grids than previously possible.

However, this method is as yet still in its infancy and basic questions in system real-

ization and indentification remain unanswered for general systems. For this reason,

we will not employ this method.

In this chapter we present simulations of space-time random fields based on the technique

of sampling from the spectrum. Although less computationally efficient than some of the

other techniques, this method was chosen because it allows the generation of samples at

arbitrary locations within the simulation domain, and it also has a straightforward extension

to temporally evolving fields. It also does not require any unnecessary computation of

field values which are not needed for the AUV's survey trajectory through the random

field (unlike the Fast Fourier Transform technique). This method is described in detail

in Section 4.2 and results from simulated AUV surveys are presented in Section 4.3. In

Section 4.4 we compare the theoretical and simulated spatial and temporal survey errors.

Finally, we discuss the implications for the application of the performance metrics developed

in Chapter 3 to AUV survey experiment design in Section 4.5.



4.2 Process Simulation

Our simulation method is based on the method of sampling from the spectrum. Our de-

scription of this technique follows those of Bras and Rodriguez-Iturbe [23] and Mejia [39].

For clarity of exposition and for computational simplicity, we have chosen to simulate

a time varying, two dimensional, random field, y(x, t), which is spatially homogeneous and

isotropic and temporally stationary. Furthermore, the simulated fields will have zero mean

and unit variance, i.e.,

my = 0, (4.1)

and

2 1. (4.2)

For the sake of simplicity, we have have chosen to use a separable exponential autocovariance

function,

R(e, t) = R(f)R(t) = e-I/llAoe - Itl/ ro, (4.3)

where e is the (scalar) distance between two points in the field, i.e., £ = jxI. Given Equa-

tions (4.1) and (4.2), we see that the autocovariance function is also equivalent to the

autocorrelation function of the random field. The spatial correlation length is denoted by

Ao, and To is the temporal correlation "length", or time constant. Since the autocovariance

function above is a separable function of space and time, we know that the wavenumber-

frequency spectrum of the process will also be a separable function of k and w,

Pr (k, w) = r (k)Pr (w), (4.4)

where Pr(.) denotes the radial energy density spectrum of the given variable(s) and we have

relied upon the fact that the desired random field is spatially isotropic in order to write

the wavenumber spectrum as a function of a scalar wavenumber, k. Thus, Equation (4.4)



represents the radial wavenumber-frequency spectrum of the desired random field. In the

following sections, the technique of sampling from the spectrum will be derived for spatial

random fields and then a simple modification will allow the extension of this simulation to

time-varying processes.

4.2.1 Spatial Random Field

Since we have assumed that simulated process is both spatially homogeneous and isotropic,

we can intregrate out the directional dependence in the spectral density, yielding the radial

spectral density. The radial spectral density [23] of the random field described above is

found by taking the Fourier-Bessel (Hankel) transform of the autocorrelation function,

Pr(k) = Pr(kl) - (2rk)P(k) (4.5)

S27rk (- j R(e)Jo(k)efdl)

= k f e- /AoJo(ki)df

3

S(A02 kA+ 2 ]2 0<k <oo, (4.6)

where k is the radial wavenumber, Jo(-) is the Bessel function of the first kind of order

zero, and P(k) is the associated (non-radial) wavenumber spectral density of the isotropic

random field. Anticipating its later use, we also compute the radial spectral distribution

function for the random field,

PD(k) Pr(n)d.

= 02 2. +\ 2 2] dr

( 2 21[ 0 < k < oo. (4.7)

Taking the above development into account as well as the assumptions Equations (4.1)

and (4.2), we see that the statistics of the spatial random field are completely determined



by the length scale parameter, Ao. Thus, simulation of a spatial random field begins by

choosing this value and then selecting a vector of random wavenumbers from which the

spatial random field will be formed. The way in which these random wavenumbers are

selected is known as sampling from the spectrum and it is this process which gives the

simulation technique its name. This method is as follows.

Let u E TRM be a random vector with elements ui uniformly distributed on [0, 1].

Furthermore, let each element satisfy the equation

Ui = PD(ki), (4.8)

where the (scalar) radial wavenumbers, ki, are the random wavenumbers which we seek.

We solve for these wavenumbers by taking the inverse of Equation (4.8),

ki = pl(ui)

27r[ 1 ]1/2
A o (1 - u,)2 (4.9)

Figure 4.1 shows an histogram of a realization of the process of sampling from the spectrum.

This figure was produced using a total of 300 samples from the radial wavenumber spectral

distribution given, Equation (4.7). We see that the approximation to the desired radial

wavenumber spectral density is excellent given a modest number of wavenumber samples.

Note that the spectrum goes to zero as k -+ 0. This is a consequence of the fact that the

desired process has zero mean.

Finally, the vector of random wavenumbers generated above is used to simulate a zero

mean, unit variance spatial random field via

M

y(l, X2) = cos Zo [k[ ( 1cos ai + 2 cos a) + OI], (4.10)
i=1

where the ai's are random directions uniformly distributed on [0, 2r] and the Oj's are random

phases also uniformly distributed on [0, 27r]. Thus, the two-dimensional spatial random

field consists of a collection of M waves of random wavenumber and phase each oriented

in a random direction. The random wavenumbers are uncorrelated and the radial spectral
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Figure 4.1: Distribution of wavenumbers generated via the inverse method. A histogram of the
random wavenumbers generated via the inverse method to be used in a random field simulation are
shown. The mean of 32 distributions is denoted by o and ±1 standard deviation error bars shown
as vertical lines. The theoretical wavenumber spectral density (solid line) given by Equation (4.6).
The histogram was calculated using a total of 300 random wavenumbers samples.

density of the resulting field approximates that of Equation (4.6). An example of a typical

spatial random field generated with this method is shown in Figure 4.2. The correlation

length is set at one-quarter of the side length of the square simulation domain. While the

lower wavenumbers obviously dominate the process, significant detail is also evident in the

realization of the spatial random field.

4.2.2 Time Evolution

We want to modify the formulation of Equation (4.10) to add a time-varying component

to the random field simulation. The method to do this is simple and straight-forward. We

begin by generating a sequence of random frequencies using the method of sampling from

the spectrum, as we did above for the spatial random field. In order to do this we must



Figure 4.2: A realization of a simulated spatial random field. The simulation domain was a square
area with side length of 2 km which was grided into 128 cells in each direction. The correlation
length is Ao = 512 m. Note that significant detail is visible even though most of the process energy
is concentrated in the long wavelength portion of the spectrum. Contours are plotted to help bring
out the gross structure of the process.

first specify the frequency spectral density and distribution functions which correspond to

the temporal component of Equation (4.3). The frequency spectral density is given by

p(w) 1I R(t)ej'tdt
27r ._
1 J0 e-ItI/roeiJwtdt

- 2 - o w < 00oo. (4.11)To 2
To

The frequency spectral distribution corresponding to the prescribed temporal autocorrela-

tion function is simply the normalized integral of the frequency spectral density and is given



PD(w) - Pr ()d=O/ 0-r (Q)dQ

S1 + - tan-
7r ()

= 1+-tan- ' , -oo r 5 oo, (4.12)

where -r is the total survey time and T0 is the decorrelation time of the random field. Recall

that any distribution of defined to be a monotonic function which ranges from zero at w = 0

to one at w = 1. Given this frequency spectral distribution, we can generate a sequence of

random frequencies by inverting Equation (4.12), yielding,

1 r
wi tan(rui - ), (4.13)

TO 2

where, as before, the ui are random variables uniformly distributed on [0, 1]. We use the

resulting random frequencies to generate a time-series and then multiply Equation (4.10)

by this series to simulate time evolution of the random field. Thus, we have

M N

y(X 1, X2 ,t) = COS[ki(x 1 cosc +x X2cos ai) + 01,i] xE COS[W jt + 02,j],
i=1 j=1

(4.14)

where 02,j is a random phase uniformly distributed on [0, 2r]. With Equation (4.14), we

can generate simulate surveys with arbitrary AUV trajectories and arbitrarily sized and

shaped survey domains. This simulation technique is also quite efficient in that field values

are produced only at the sample locations and instances required by the simulated AUV's

trajectory.

From the construction of Equation (4.14), we see the separability of the space-time

autocorrelation function (Equation (4.3)) reflected in the separability of the simulation

formulation. While this may not be a desirable property for a simulated random field since

it ignores the existence of possible connections between the spatial and temporal evolution

of the simulated field which would naturally arise in the many real oceanographic process,

the goal here is not to construct an accurate simulation of a specific oceanographic process



but to generate a simple simulation which will allow us to examine the validity of the

performance metrics developed in Chapter 3. Before doing this, however, we must first

examine the statistical accuracy of the simulation given by Equation (4.14).

4.2.3 Simulation Statistics

We will now explore the statistical accuracy of these simulated processes. Recall that

we desire the random field to have zero-mean and unit variance. The expectation of the

synthetic field is

M

E{y(xl,x 2 ,t)} = .E{cos[ki(xicosai +x 2 cosai) +O81,i]}
i=1

N

x 1 E{cos[wt + 2,j],
j=1

=0, (4.15)

where we have used the identity E{cos(wv)} = 0, V w. Similarly, the sample variance is

given by

E X{y
2( 1, 2 7,) 2 ( ) El{cs2 [ki(x1 Cos ai X2 COS ai) +1,i]}

i=1

N

x E E{cos 2 [wjt + 2,j]},
j=1

4 M) (N)

MN 2 2

= 1, (4.16)

where we have used the fact that E{cos(wiv) cos(w2v)} = 6(w1, w2) and the identity

E{cos 2(wv)} = 1/2, V w, to simplify the sums.

It can be also shown [39, 23] that the resulting simulated random field is spatially

homogeneous and isotropic and temporally stationary, as desired, and has a sample au-

tocovariance function, (ef, t), the expectation of which equals the desired autocovariance



function, i.e., E{R(I, t)} = R(f, t), and which satisfies

lim var{1?(f, t)} = 0. (4.17)
M-oo

Thus, we see that simulated random field generated via Equation (4.14) will indeed exhibit

the desired spatial and temporal statistics. The degree to which the sample autocovariance

function agrees with the theoretical autocovariance function is dependent upon the number,

M, of harmonic components included in the random field. Equation (4.17) indicates that

this agreement will be asymptotically perfect as M -+ oo.

4.2.4 Summary

Before examining the simulated random fields generated via this method in the next section,

we want to summarize the qualities and characteristics of the spatial random fields gener-

ated. The simulated fields have zero mean and unit variance, are spatially homogeneous

and isotropic and temporally stationary, and the process is separable. The simulations

can be modified so that the resulting random fields are anisotropic by allowing the radial

wavenumber spectral density/distribution to be parameterized by the random directions,

ai, in addition to the parameter, ui. Perhaps the most important feature of this simulation

technique is the ability to calculate simulated values at any location within the field at any

instance in time. This is required for surveys which follow irregular survey trajectories. In

the next section we simulate simple "lawn-mower" surveys.

4.3 AUV Survey Simulations

Using the simulation technique described in the previous section, we have generated sim-

ulated AUV surveys of spatially varying, temporally evolving processes. These surveys

implement a simple "mow-the-lawn" pattern over a square domain of varying spatial di-

mensions. Regardless of simulation domain size, the true field is always calculated on a

128x128 cell grid which spans the simulation domain. This true field is the instantaneous

spatial field at the time t = to. The survey begins at time to-r-/2 and ends at time to,+/2,

where -r is the total time required to complete the survey (to may be set to zero without
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Figure 4.3: The sampling geometry of a simulated "lawn-mower" survey. The space-time trajectory
of the AUV through the survey domain is shown as a dark line. The AUV survey begins at time
t = -r 8/2 and ends at time t = +,r/2 (total survey time is -r). The projection of this trajectory
onto the spatial axes is shown as a broken line. Survey samples (denoted by *) are placed in a square
spatial grid (whose resolution is now greater than that of the simulated field) as depicted by the grid
in the plane t = 0. These samples are then interpolated up to the full resolution of the simulated
field and compared to the instantaneous simulated field at the (temporal) midpoint of the survey,
i.e., at t = 0.

loss of generality). Thus, the true field is a simulated random field taken instantaneously

at the midpoint (in time) of the survey. The total survey time is such that the simulated

trajectory will be consistent with the vehicles maximum velocity constraint. This true field

will serve as the benchmark against which the fields reconstructed from the survey samples

will be measured.

The AUV survey fields are generated in the following way. A spatial trajectory for a

"lawn-mower" survey is computed and discretized on a square, uniform grid, as is shown in

Figure 4.3. Beginning at the southwest corner of the simulation domain at time t = to-T/2,

the field is sampled in the first cell. At each subsequent sampling instant, t = to-r-/2+nAt,

a value is taken at the corresponding location in the simulation domain. These spatially and

t = +s/2 .



temporally distributed sample values build up a random field at a spatial resolution equal

to or coarser than the true random field. The time between sample points, At, is dependent

upon the speed of the AUV, the length of the survey trajectory, and the granularity of the

spatial grid. Thus, the effects of temporal blurring and spatial aliasing will be present in the

sampled field. If the field was taken at a coarser spatial resolution, then spatial interpolation

is performed to place the reconstructed field on the same spatial grid as the true field. The

spatial interpolation is performed with a bi-cubic spline interpolation method, which has

the visual effect of smoothing the field.

In Figures 4.4 (b)-(f), simulated surveys are plotted for five successive spatial resolutions

while -T is held constant. The "true" field, shown in Figure 4.4(a), is the instantaneous

simulated field taken at the midpoint of the survey. The effect of surveying with coarser

resolution is obvious, since less detail in the reconstructed fields for each successive reduction

in the survey resolution, As . Nevertheless, some of the gross characteristics of the true field

(Figure 4.4(a)) are still discernable even at the coarsest spatial resolution survey.

Note also the evolution of the process in time. This is most easily seen by comparing

Figure 4.4(b) with Figure 4.4(a), were we see that the field reconstructed from the survey

has evolved over the duration of the survey in relation to the true field. The degree of

evolution is controlled by the correlation time, T0 , and the duration of the simulated survey,

T8 . We will see that if the survey time is decreased, less temporal evolution of the process

will occur during the course of the survey. This agrees with our intuitive insight that

faster AUV's will perform better in terms of capturing spatially distributed, time-varying

phenomena.

Looking again at Figures 4.4(a) and 4.4(b) (or at Figure 4.2, which is shown in a

larger format), we notice a curious banding. This banding is an artifact of the technique

of sampling from the spectrum. In accordance with the spectral distribution given by

Equation (4.7), the technique of sampling from the spectrum typically only generates a

very few high wavenumbers, ki, to be used in the generation of the random field. These few

high wavenumbers are visible in the resulting realization because there are so few "nearby"

high wavenumber harmonics to disrupt or blend the banding effect caused by the highest

wavenumber components. This effect is also present in the temporal domain but does
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Figure 4.4: Fields reconstructed from simulated surveys of a random field with correlation time To
and correlation length Ao. The surveys are made at differing survey resolutions: (b) As = Ao, (c)
As = 2Ao, (d) A, = 4Ao, (e) A. = 8Ao, and (f) A8 = 16Ao. The field at t = to is shown in (a). The
total survey time for Figures (b)-(f) was 7, = 1/2 To.



not visually manifest itself in the spatial survey plots. While the spatial "banding"effect

may be visually unappealing, it does not represent a problem in terms of the statistics of

the resulting random field. This effect is diminished for lower survey sampling resolutions

since these resolutions correspond to wavelengths which are longer than those of the high

wavenumber harmonic components of the simulated field. Such artifacts can adversely affect

the calculation of AUV survey error in certain situations. In the next section, we will discuss

the calculation of these errors.

Figure 4.5 compares the sample autocorrelation function in both the spatial and tem-

poral domains with their respective theoretical autocorrelation functions, given by Equa-

tion (4.3). The spatial sample autocorrelation function (Figure 4.5(a)) is produced by

averaging the individual sample autocorrelation functions from 16 realizations of a spatial

simulation (no time evolution). Similarly, the temporal sample autocorrelation function is

the average of the sample autocorrelation functions from 16 time-series simulations (no vari-

ation in space). The overall excellent agreement between the sample autocorrelation func-

tions and their respective theoretical values indicated that the choice M = N = 300 provides

sufficient harmonic components for the purposes of these experiments. The disagreement

in the tails of the sample autocorrelation functions is due to the sparsity of high wavenum-

ber/frequency harmonic components in the vectors of random wavenumbers/frequencies

obtained through the process of sampling from the spectrum.

4.4 Survey Simulation Errors

One of the prime motivations for implementing the simulation process is to facilitate the

verification of the performance metrics developed in Chapter 3. We begin by examining

the spatial errors incurred in simulated AUV surveys of a static (not time varying) spatial

random field and compare these errors to the proposed spatial survey error metric developed

in Section 3.3. We will then look at the temporal survey errors from simulated surveys which

vary in total survey time but have a fixed spatial resolution. Finally, we will explore the

correspondence between the theoretical combined space-time error metric and the errors

from time-varying and spatially aliases simulated AUV surveys. In each experiment the



04-0.-0.2 \ " \\

-0.2-0.2 .. . ... " . .. , , i .\
10

-  
100 10t

(a)

0.5

0.6

0.4\

It

0" .. ....... ... .

-0.2
10 

-  
100 101

(b)

Figure 4.5: Sample autocorrelation functions compared to theoretical values. In (a), the spatial
sample autocorrelation function is calculated from the average sample autocorrelation function from
16 spatial (no temporal evolution) simulated surveys. In (b), the temporal sample autocorrelation is
calculated as the average from 16 time-series (no spatial variation) simulated surveys. The sample
autocorrelation functions are represented by the solid lines and the dashed lines give the ±1 standard
deviation error bounds. The dotted line is each figure is the theoretical value of the spatial or
temporal autocorrelation functions taken from Equation (4.3).
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simulated survey errors are defined to be the normalized mean square of the difference

between the field reconstructed from the simulated survey samples and the true field. This

mean square error is normalized by the energy contained in the reconstructed and true

fields. Thus, we have

_ [y(xi, to) - O(x , t )]2
sim - t(4.18)E, [y2(Xi, to) + 2 (X ti

where y(xi, to) is the "true" field, O(xi, ti) is the reconstructed field, xi ranges over all sample

locations in the true field, to is the sampling instance in the middle of the simulated AUV

survey (to may be set to zero without loss of generality). The sample times are given by

ti - + _i=[O0, 1,... ,N], (4.19)
2 N

where N+ 1 is the total number of sample points in the true field. Recall from previous

discussion that the true field is a random field simulation which is a "snap-shot" of the

random field taken at time t = to and with the greatest possible spatial simulation resolution.

4.4.1 Spatial Sampling Errors

To compute survey errors due to under-sampling of the simulated fields, several surveys were

conducted with varying spatial resolutions. The total survey duration was 7, = 10- 5 x To.

This, of course, does not correspond to any realistic AUV survey of an oceanographic pro-

cess, but it gives surveys which are essentially instantaneous and ensures that no temporal

survey errors will be present in the survey errors to be calculated from theses simulation

experiments.

The spatial survey errors from these simulated AUV surveys were calculated via Equa-

tion (4.18) and compared to the theoretical spatial survey error of Equation (3.17). The

results from these numerical experiments are presented in Figure 4.6. A total of sixteen

simulated surveys were conducted for each survey spatial resolution. The means of the

errors at each resolution are plotted as open circles and the ±2 standard deviation error

bounds are shown as vertical lines. In Figure 4.6 we see that the mean of the simulation

spatial survey error closely follows that of the theoretical error (shown as a solid line). How-
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Figure 4.6: Spatial survey errors from simulated surveys. Simulated "lawn-mower" surveys where
conducted for zero-mean, unit-variance random field processes with characteristic length and time
scales of Ao and To, respectively, with a total survey time of 7, = 1 s. The spatial survey error was
calculated via Equation (4.18) for sixteen simulated at each spatial resolution. For each resolution,
the mean of the errors is denoted with an open circle and the +2 standard deviation error bounds
are shown as vertical lines. The theoretical spatial survey error (Equation (3.17)) is shown as a solid
line.

ever, it is also clear that the variance of the simulation spatial errors increases as i. 0,

because the simulation domain has to shrink in order to achieve high spatial resolutions

without generating prohibitively large simulation grids. As the simulation domain shrinks,

the effect of banding (Section 4.3) becomes more pronounced, causing increased variance in

the simulation spatial errors. Since the vector of random wavenumbers used to generate the

simulated random field changes for each simulation, a natural variation in the process of

sampling from the spectrum causes an increased variation in the resulting simulation spatial

errors. This effect diminishes as the size of the simulation domain increases (that is, with

increasing A,/Ao) since the highest wavenumber components have wavenumbers which are

shorter than the simulation grid spacing. Therefore, even though these high frequencies are



present, the simulation aliases them into the lower-wavenumber end of the spectrum. This

is, of course, an undesirable effect but is also unavoidable due to computational limitations.

Overall, we see that the theoretical spatial survey errors of Equation (3.17) is an acceptable

and valid formulation. The discrepancies between the simulated and theoretical error at

high spatial resolutions is due to inadequacies in the simulation technique which arise from

computational constraints.

4.4.2 Temporal Sampling Errors

To calculate the temporal survey errors, we simulate several AUV surveys at a constant,

high spatial resolution but with varying total survey times, rs. The total survey time, Ts,

is varied over a range which encompasses total survey times which would be reasonable for

an AUV to achieve. All surveys are conducted at the same spatial resolution as the true

field to insure that spatial survey errors are not present in the calculation of the temporal

simulated survey error. The size of the simulation domain and the spatial resolution of the

surveys are held constant for all runs.

The temporal error from the simulated surveys is calculated via Equation (4.18) and

compared to the theoretical temporal survey error given by Equation (3.20). The results

of these numerical experiments are presented in Figure 4.7. A total of sixteen surveys are

conducted for each value of the total survey time, rs. We see excellent agreement between

the simulation and theoretical errors. The deviations of simulation errors from the temporal

errors is again due to an artifact of the simulation process and is not indicative of difficulties

with the formulation of the temporal survey error metric. We conclude that the temporal

survey error metric of Equation (3.20) is valid.

4.4.3 Total Survey Errors

In order to validate the total survey error metric of Equation (3.21), we need to simulate

surveys while varying both survey resolution and total survey time. We will now vary the

spatial resolution, As, and the total survey time, 7,, of the simulated AUV surveys in such

a way so as to cut a diagonal across the (A, r) error space which we have explored in the

previous two experiments. The results of these simulations are shown in Figure 4.8. A total
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Figure 4.7: Temporal survey errors from simulated surveys. Simulated "lawn-mower" surveys
where conducted for zero-mean, unit-variance random field processes with characteristic length and
time scales of A and 7r, respectively. The total survey time, -r, is varied while the spatial resolution
is held constant. The temporal survey error was calculated via Equation (4.18) and a total of sixteen
simulated surveys were conducted at each temporal resolution. For each resolution, the mean of the
errors is shown as an open circle and the ±2 standard deviation errors bars are denoted by vertical
lines. The theoretical temporal survey error (Equation (3.20)) is shown as a solid line.

of sixteen simulations are conducted for each pair of survey spatial resolutions and total

survey times, (A , ri). We see that the errors from the simulation are consistently slightly

lower that their theoretical values over much of the range shown. Nevertheless, the shape of

the two curves are highly consistent. This most likely indicates that a small constant mul-

tiplication offset is present in the simulated errors values. The good agreement between the

simulation and theoretical errors validates the combined survey error metric of Section 3.3.

The increased variation in the simulated surveys errors for high wavenumbers/frequencies

is by now familiar.
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Figure 4.8: Total survey errors from simulated surveys. Simulated "lawn-mower" surveys where
conducted for zero-mean, unit-variance random field processes with characteristic length and time
scales of Ao and To, respectively. The total survey time, 7,, and the survey spatial resolutions, A,,
are both varied between each group of surveys. The total simulated survey error is calculated via
Equation (4.18) and a total of sixteen simulated surveys were conducted at each resolution. The
error means are denoted with an open circle and the ±2 standard deviation error bounds are shown
as vertical bars. The theoretical total survey error (Equation (3.21)) is shown as a solid line.

4.5 Discussion

In this chapter we have developed a simple space-time random field simulation based on

the method of sampling from the spectrum. This technique is powerful in that it does

not require unnecessary computation and is flexible in terms of the size and shape of the

survey domain as well as its ability to compute field values along arbitrary space-time

survey trajectories. Even though it was not necessary for the experimentation undertaken

here, a slight modification of the simulation equation, Equation (4.14), would allow us to

incorporate dynamics to couple the spatial and temporal evolution of the resulting random

fields.

Having developed the random field simulation, we employed this capability in the gen-



eration of simulated AUV surveys of the random fields. We then used these simulated

surveys in the to verification of the survey error metric of Equation (3.21) of Chapter 3.

We found good agreement between the errors from the simulated surveys and the theoret-

ical errors. This agreement is not surprising since the assumptions made in formulating

the total survey error metric are met by the formulation of the simulated random fields.

The most profound of these assumptions is that the wavenumber-frequency spectral density

function is a separable function of wavenumber and frequency (or, equivalently, that the

space-time autocorrelation function is a separable function of space and time lags). These

assumptions were made in the formulation of the simulation so that the errors derived from

the simulated AUV surveys of the random field could serve to validate the total survey error

metric. However, this particular stipulation has the effect of precluding any coupling of the

spatial and temporal evolution of the random field. Thus, the dynamics of the simulated

fields are not representative of realistic oceanographic phenomena. If we were to simulate a

random field which incorporated a dynamical constraint (such as a dispersion relation) on

the space-time evolution of the field, we would find that the total survey error metric was

no longer accurate, although it would still be useful for providing insight into the design of

AUV surveys of real oceanographic phenomena. Problems such as this will be consider in

the next chapter.



Chapter 5

Survey Analyses

5.1 Introduction

There are a number of critical trade-offs which can be made in the design of a grid survey,

or in the design of an AUV for a specific oceanographic mission. To aid in making these

decisions, certain questions must be answered: What is the best compromise between survey

time and resolution? How large an area can be mapped with confidence? How does the

survey improve if multiple vehicles are employed? How can current AUVs be improved to

enhance their survey performance? These questions are the focus of this chapter.

Having developed an understanding of the energy economics of AUV surveys of oceano-

graphic processes as well as the errors incurred in these surveys in Chapter 3 and having

validated these error metrics in Chapter 4, we now employ these ideas in the creation of

a tool which can be used to objectively compare various survey strategies. Because we

require the context of a specific problem to derive concrete answers, Section 5.2 develops

a numerical example based on a simple model of an ocean process. During the course of

this example, our survey analysis tool will be developed. In Section 5.3, we employ the

analysis tool to develop insights into issues of AUV selection and design and of experiment

design in the context of the example oceanographic process of the previous section. We

then demonstrate the application of the survey analysis tool to experiment design issues for

AUV surveys of open-ocean deep convection in Section 5.4. This analysis is motivated by

a field experiment to take place in the Labrador Sea in January, February, and March of



1998 in which three Odyssey IIb AUVs will be deployed in an AOSN configuration to study

these episodic convection events.

5.2 Survey Analysis Tool

Let us assume, for the sake of example, that we wish to grid survey a process over a fixed

square area, A r 4km 2 , using an Odyssey IIb AUV. We also specify that the process of

interest is described by a wavenumber spectral density given by

2ko
P(k) =- k k (5.1)

k2 + k2 '

where ko = is the "cutoff" wavenumber of this Lorentzian density. This density indicates

that the process of interest is dominated by long-wavelength motions and has a spatial

autocorrelation function given by

R() = e- It l/Ao, (5.2)

where Ao is the correlation length scale. From our discussion of Section 4.2.1, we know that

an equivalent description of this process is the radial wavenumber spectral density,

3

Pr (k) = 2 k 1 + 2 , 0 < k < 0, (5.3)

which relies on the fact that the process is spatially isotropic to express the radial spectral

density in terms of a strictly non-negative scalar wavenumber, k.

In keeping with the simulation process of Chapter 4, we further specify that the temporal

autocorrelation function be given by

R(t) = e-Il/To, (5.4)

where To is the time constant of the example random field. Thus, we know from Section 4.2.2



that the frequency spectral density for this process is

ro1 ( 2 + W

- 2r2 -o< w < 00 (5.5)

where wo is the cut-off frequency associated with the correlation time constant, ro.

We complete the description of the example random field by specifying that it have zero

mean (my = 0) and unit variance (a2 = 1) and that the spatial and temporal correlation

scales are A = 2048 m and To = 105 s, respectively. With these specifications, we can now

calculate the spatial and temporal survey errors in addition to the total energy required to

complete a survey of this process as functions of the survey parameters (As, I7).

5.2.1 Spatial Survey Error

Recall from Equation (3.17) that the spatial survey error is given by

6A= fnJP(k)dk P(k)dk
oo

= Pr(k)dk /f Pr (k)dk

= 1 - -PD(ks), (5.6)

where PD(k) is the wavenumber radial spectral distribution function. We have changed

from the multidimensional wavenumber spectral density to the radial wavenumber spectral

density in moving from the first to the second line of the equation. This allows us to modify

the limits of integration as shown.

We have used this equation to elucidate the connection between the spatial survey error

and the wavenumber radial distribution function. The distribution function measures the

fractional amount of the total spectral energy which is contained in wavenumbers up to the

sampling wavenumber, ks, and is a monotonic function of that sampling wavenumber. Using

this fact, we now see that E, is also a monotonically increasing function of ks. Therefore,



x measures the fractional amount of the total spectral energy which lies outside of the

support of the sampling process. Substituting the wavenumber radial spectral density,

Equation (5.3), into this Equation (5.6) gives the spatial survey error for this example

process,

(7)2 2 [ ]

= k2 )2 A2A2 0 As, 0< . (5.7)
k2 + (2

5.2.2 Temporal Survey Error

We now turn our attention to the temporal survey error. For the process that we have

specified, the autocorrelation function is given by

R(t) = e-ltl/o. (5.8)

Inserting Equation (5.8) in to Equation (3.20), we compute the temporal survey error to be

1 f s/2
= / [1 - e /T]dt

Ts -r /2

+ 2o (e-/2 1) . (5.9)

5.2.3 Total Survey Error

Finally, we combine the spatial and temporal survey errors via Equation (3.21) to form the

total survey error, Etot. Inserting Equations (5.7) and (5.9) into Equation (3.21), we obtain

£tot(As, 7) 2= + A + 1 + 270 e--/2 0 1

2 + A 2 ] 2 x [1 + 2ro (e - /2To - )] (5.10)

where 0 < (As, rs) < 00. This function is plotted for our example problem in Figure 5.1(a).

Note that the error contour lines are more closely spaced on the spatial resolution axis than

on the total survey time axis. This is a consequence of the fact the the spatial error accounts
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Figure 5.1: Total survey error and survey analysis plot as a function of (A, 7). (a) The total survey
error is calculated for a grid survey of the example process in a survey domain of area, A = (2km) 2 .
Note that minimal error is achieved for surveys which are sampled densely and quickly. These
surveys correspond to "snap-shots" of the process since they have finely grided samples which have
been taken "instantaneously" in time. Conversely, Etot -+ 1 for coarse and slow surveys, indicating
that very little information about the process field has been recovered. (b) The combination of the
survey envelope and total survey error forms a tool which can be used to optimize surveys in terms
of various survey parameters. For instance, we can use these plots to choose survey resolutions and
total survey times to minimize the total survey error subject to the physical constraints imposed by
the sampling platform. Each point within the survey envelope gives the total survey error realized
for a particular (A, 7) pair. The minimum error possible for the present example is £mi, = 0.33.
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for errors in two spatial dimensions whereas the temporal survey error accrues errors only

in a single dimension.

5.2.4 Survey Analysis Tool

We have used the total survey error metric for our example oceanographic process, Equa-

tion (5.10), to generate of plot of the the this error as a function of survey spatial resolution

and total survey time. Figure 5.1(a) indicates that surveys which have minimal survey

error correspond to surveys which are quickly and densely sampled. However, as we saw in

Section 3.2, fast and dense surveys also correspond to high energy consumption. A trade-off

between energy consumption and the total survey error must be made to obtain optimal

survey parameters. The focus of this section will be the development of an analysis tool

which can be used to guide these trade-off decisions.

Recall that in Section 3.2 we generated a contour plot of the total energy consumed by an

Odyssey IIb AUV for a uniform grid survey of a square survey domain of area, A = 4 km2

Figure 3.2 gave the energy consumed as a function of the survey spatial resolution and total

survey time, (A,, Ts). We argued that some regions of this plot were not reachable by the

AUV due to limitations on the vehicle speed and total stored energy. These limitations

were embodied by the survey envelope, Figure 3.3, which partitioned the (As, Ts) space into

accessible and inaccessible regions for an Odyssey IIb AUV.

If we combine the survey envelope with the total survey error by directly superimposing

Figure 3.3 and Figure 5.1(a), we generate a plot which indicates the survey errors achievable

for all combinations of the survey parameter pair, (As, rT) by an Odyssey IIb AUV surveying

the example process of the previous section. This is shown in Figure 5.1(b). Plots such

as these are what we have termed the "survey analysis tool". They allow us to make

objective judgements about the various issues involving AUV survey design and vehicle

selection and/or design. For instance, using Figure 5.1(b), we can can readily determine

the minimum error, Emin = 0.33, which can be achieved with the Odyssey IIb AUV for

this particular survey example. Surveying at any combination of (As, T,) other than those

specified by this minimum value will result in decreased survey efficiency. In the most

general case, these plots would require three separate spatial dimensions and one temporal



dimension as well as three distinct correlation distances for the three cardinal directions.

We have used that fact that the example process is spatially isotropic to reduce the spatial

dimensionality. The use of this tool for survey analysis and vehicle design is the topic of

the next section.

5.3 Applications

There are numerous internal and external parameters which effect the performance of an

AUV survey of an oceanographic process. The complex interconnections of these param-

eters compound the difficulties of designing field experiments which makes extensive use

of AUVs. The survey analysis tool of Section 5.2 was developed as an aid in sorting out

these interconnections. In this section we will demonstrate the application of the survey

analysis tool to this task. The external parameters mentioned above, such as the size of the

survey domain and the choice of survey spatial resolution and duration, are examined in

Section 5.3.1. The effects of the internal parameters, such as vehicle speed constraints, are

discussed in Section 5.3.2. The example random process of Section 5.2 provides necessary

context for the analyses below.

5.3.1 Survey Design

Although there are numerous external parameters which influence the performance of an

AUV survey, the three parameters which have the greatest impact upon the overall survey

performance are (i) the ratio of the survey spatial resolution to the characteristic length

scale (correlation distance) of the process of interest, (As/A); (ii) the ratio of the total

survey time to the time constant (correlation time) of the process, (rs/-r); and (iii) the

non-dimensionalized size of the survey domain, (A/A2). In this section we will explore the

effect of these three parameters on the overall survey performance through the application

of the survey analysis tool and discuss the ramifications for AUV survey designs.

In Section 5.2.4 we showed that the survey analysis tool can be used to select the (As, rs)

pair which gives the minimum survey error for our example process. We now revisit this

idea. In Figures 5.2(a)-(c), we show analysis tool plots for varying survey domain areas.



Area etot IAopt (m) Topt (s) Comment
A = (lkm) 2  0.18 24.5 8.71 x 103  Figure 5.2(a)
A = (2km) 2  0.33 43.7 1.86 x 104  Figure 5.2(b)
A = (3km) 2  0.44 64.6 2.88 x 104  Figure 5.2(c)
A = (2km) 2  0.29 55.0 9.77 x 103  Figure 5.2(d),

Vmax - 2 Vmax

Table 5.1: Total survey errors for surveys of the example process of Section 5.2 with one standard
Odyssey IIb AUV. The example process has correlation length and time scales of A, = 256 meters
and o, = 6 hours, respectively. We see that smaller survey domains correspond to lower overall
survey errors.

The minimum survey errors in each of these plots (Table 5.1) are located along the lower left

corner region of the survey envelope. This is a consequence of the fact that we must sample

densely and quickly to achieve small errors. Minimum survey errors lie along the boundaries

of the survey envelope, indicating either that all of the vehicle's energy has been consumed

(curvilinear portions of the boundary) or that the vehicle has reached its maximum speed

constraint in attaining this minimum error (linear portions of the boundary). Note also

that the minimum error is strongly tied to the area of the survey domain. This agrees

with our intuition that smaller errors will be achieved in smaller survey domains. The size

of the survey domain is the first parameter which the experimenter should choose when

designing an AUV field program since this choice has the greatest impact on the overall

survey performance.

Having made the choice of survey domain size, the researcher should then decide how

many surveys should be made. If the generation of a high-resolution "snap-shot" of the

process of interest is the overriding objective of the experiment, then a single survey which

achieves a small error is desired. However, if greater errors can be tolerated, then multiple

surveys are perhaps in order. Consider a survey of the example process in a domain of area

A = 1 km2. We see from Figures 5.2 and 3.3 that either one survey could be conducted at

high spatial and temporal resolutions (with an error of, say, Etot 0 0.20) or two or more

surveys could be made (all with errors of, say, ESot _ 0.35) before exhausting the vehicle'

batteries. The ability to conduct multiple surveys with an AUV before it requires servicing

is very attractive from an operational standpoint. It also adds a new dimension to the
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Figure 5.2: Total survey error with survey envelopes. The total survey error is calculated via
Equation (5.10) for an example process random field which has correlation length and time scales of
Ao = 256 meters and T7 = 6 hours, respectively. Odyssey IIb vehicle parameters are used to generate
the survey envelope. The size of the survey domain is A = (lkm)2 in (a), A = (2km) 2 in (b) and
(d), and A = (3km) 2 in (c). Figures (a)-(c) show the effect of changing the overall size of the survey
domain on the total survey error. We see that surveys in smaller domains achieve lower total survey
errors since these surveys can be conducted on denser grids and completed more quickly than surveys
over larger domains. Figure (d) is calculated for a vehicle which has a maximum speed which is
twice that of the standard Odyssey IIb AUV. For this survey we see that the total survey error is
determined by the energy constrained portion of the survey envelope. This serves to elucidate the
way in which different components of the survey envelope (energy or velocity constraints) determine
the total survey error. The size of the survey domain is A = (2km) 2. Minimum survey errors for
each plot are given in Table 5.1.



survey/experiment design process. Although it has not been addressed in this work, we

can see that an extension of the survey performance metric that takes into account the

correlated observations from several AUV missions is desired to facilitate the design field

experiments which incorporate multiple surveys with AUVs.

Yet another dimension of the survey design problem illuminated by the survey analysis

tool is the fact that a continuum of surveys are possible at any given value of Etot (except in

the case Etot = Cmin). Looking again at Figure 5.2, we see that if we stipulate a desired total

survey error performance criterion, say, £tot = 0.5, for example, then all of the (As, Ts) pairs

lying along the curve defined by this criterion correspond to valid surveys which achieve

the desired performance. The surveys along this curve trade-off spatial resolution against

total survey time to maintain a constant value for the total survey error. Again, the survey

designer must determine which of these surveys would be most well suited for a particular

scientific program. This decision is illustrated with an example.

Consider only the two surveys lying on the curve Etot = 0.5 which touch the boundaries

of the survey envelope. From Figure 5.2, we see that one of these surveys will be as fast

as possible but will have poor spatial resolution. The other survey will have fine spatial

resolution but will take a long time to complete. These surveys also differ in that the slow

but densely sampled survey is constrained by the size of the vehicle's battery while it is the

AUV's maximum speed which limits the fast but coarsely sampled survey. In fact, after

reviewing Figure 3.3, we see that the fast but coarse survey consumes only about half of the

available energy, leaving open the possibility of a second survey. Again, the researcher must

make a choice regarding the utility of differing survey strategies using the insight gained

from the application of the survey analysis plots.

We have demonstrated above how the survey analysis tool can be used as an aid in the

design of AUV survey experiments. In the next section we will discuss the use of this tool in

selecting and/or designing AUVs which are tailored to specific scientific missions or which

meet certain broad operational objectives.



Area Parameter etot Aopt (m) Topt (s) Figure

(2km) 2  H, rl, Battery 0.33 43.7 1.86 x 104  5.3(a)-(c)
(2km) 2  Four AUVs 0.22 35.5 8.91 x 103  5.3(d)
(3km)2  Four AUVs 0.34 57.5 1.41 x 104  Not Shown

Table 5.2: Total survey errors for surveys of the example process of Section 5.2 with modified
vehicle parameters. The example process has correlation length and time scales of Ao = 256 meters
and ro = 6 hours, respectively. We compare these survey analysis plots with that for a survey of the
same example process with a single Odyssey IIb AUV.

5.3.2 Vehicle Design

Internal variables which influence AUV survey performance are factors such as the capacity

of the vehicle's battery, the efficiency of its propulsion system, the vehicle's hotel load, and

its maximum speed. In the discussion to follow, we will employ the survey analysis tool to

gain insight into the effects of these variables on the overall performance of an AUV survey.

Because it is difficult to increase the maximum speed of an AUV while maintaining a small

form factor (an assumed design constraint), we entertain the possibility of multiple vehicle

surveys. A small fleet of AUVs can perform a coordinated grid survey of a given domain

more quickly than a single vehicle could complete this survey. Employing multiple vehicles

in a survey is roughly equivalent to surveying with a single modified AUV which has a

greater maximum speed (assuming uniform grid surveys). For this reason, we classify the

decision to use multiple vehicles as a vehicle design parameter. Survey analysis plots with

modified vehicle parameters are shown in Figures 5.3 and 5.4 for surveys of the example

process of Section 5.2. We compare these survey analysis plots to those of surveys of the

same process and and over the survey domain but with an unmodified Odyssey IIb AUV.

In Figure 5.3, survey analysis plots are shown for surveys of the example process by

modified standard Odyssey IIb vehicles. These surveys were conducted over a domain of

area A = (2 km)2. These plots illuminate the effect of modifying various vehicle parameters

on overall survey performance. The minimum survey errors and corresponding (As,o,,pt, Ts,opt)

for these surveys are given in Table 5.2. We discuss the effects of modifying the vehicle

parameters below:

Reduced Hotel Load In Figure 5.3(a), the vehicle's hotel load, H, is reduced to 1/4 of
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Figure 5.3: Survey analysis plots for modified parameters. The survey envelope is calculated
with modified vehicle parameters. The underlying total survey error plot is for a survey domain of
area A = (2km) 2 . (a) The vehicle's hotel load, H, is reduced to 1/4 of the standard Odyssey IIb
value. Comparing the shape of the survey envelope to that of the standard Odyssey IIb vehicle
(Figure 5.2(b)), we see that decreasing the hotel load has increased the survey envelope, but only
to allow longer total survey times. The minimum survey error is the same as for the standard
Odyssey IIb configuration: E~in = 0.33. (b) The vehicle's inefficiency, (1 - r), is reduced to 1/4 of

its previous value. This pushes the energy boundary (upper left) of the survey envelope toward the
left side, allowing some more densely sampled surveys. However, since the minimum survey error
lies towards the lower left of the plot, the minimum survey error remains the same. (c) The vehicle's
battery is made 4 times larger. The survey envelope increases towards the upper left corner. Again,
the minimum survey error does not change. (d) Four standard Odyssey IIb vehicles are employed
in this survey. This dramatically effects the survey envelope by moving the maximum velocity
constraint towards the lower left. We see that the energy boundary of the survey envelope is now
the limiting factor. The minimum survey is significantly reduced: Emin = 0.22.



the standard Odyssey IIb value. Comparing the shape of the survey envelope to that

of the standard Odyssey IIb vehicle (Figure 5.2(b)), we see that decreasing the hotel

load has also changed the shape of the survey envelope, pushing the energy boundary

of the envelope towards the upper left corner of the plot. However, this does not

result in a reduction in the minimum survey error over that of the standard Odyssey

survey since the minimum error is determined by the vehicle speed constraint for this

example. The minimum survey error is =min = 0.33.

Increased Propulsion Efficiency In Figure 5.3(b), the vehicle's propulsion inefficiency,

(1 - r7), is reduced to 1/4 of its previous value, resulting in an overall increase in

propulsion efficiency. This pushes the energy boundary (upper left) of the survey

envelope toward the left side, allowing some more densely sampled surveys. However,

since the minimal survey errors lie towards the lower left of the plot, the minimum

survey error does not change. These surveys do require less energy to conduct since

the propulsion inefficiency has decreased. This can be beneficial if the field program

calls for more than one AUV survey mission to be completed by the vehicle.

Increased Battery Capacity Next, the vehicle's battery is made four times larger,

Figure 5.3(c). The survey envelope increases towards the upper left corner. Again,

the minimum survey error does not change. The fact that the minimum error does

not change even when a larger battery is used indicates the severity of the maximum

velocity constraint.

Multiple Vehicle Surveys Because it is quite difficult in general to increase an AUVs

maximum velocity without increasing its size or moving to a different energy source

(such as chemical/combustion engines), we examine the use of multiple vehicles in

Figure 5.3(d). Four Odyssey IIb vehicles are employed in these surveys. These vehicles

have reduced battery capacity so that the total energy available for the survey is the

same as if a single Odyssey IIb AUV were being used in the survey. The use of

multiple vehicles dramatically affects the survey envelope by moving the maximum

velocity constraint towards the lower left. We see that the energy boundary of the

survey envelope is now the limiting factor. The minimum survey error is significantly



Area Parameter Etot Aopt (m) Topt (s) Figure
(2km) 2  Hotel 0.29 55.0 9.77 x 103  5.4(a),(b)
(2km) 2  r7, Battery 0.25 33.1 1.22 x 104  5.4(c)
(2km) 2  Four AUVs 0.22 37.2 8.51 x 103  5.4(d)

Table 5.3: Total survey errors for surveys of the example process of Section 5.2 with modified
vehicle parameters for a fast vehicle, i.e., Vma --+ 2Vmax. The example process has correlation
length and time scales of Ao = 256 meters and ro = 6 hours, respectively. We compare these survey
analysis plots with that of a survey of the same example process using a single Odyssey IIb AUV.

reduced: 6 min = 0.23.

Table 5.2 also gives the minimum survey error for a survey scenario in which four vehicles are

used to survey the example process over a domain of size A = (3km)2 . The total survey error

for this survey is just slightly more than the errors for the single modified AUV surveys in the

smaller domain. Thus, four vehicles are required to achieve equivalent survey performance

when the survey domain is increased by a factor of 2.25. This demonstrates again that the

choice of the size of the survey domain dominates the overall survey performance for grid

surveys.

We see from the analyses of Figure 5.3 that any technique which can be used to increase

an AUV's maximum speed will result in lower minimum survey errors. In light of this fact,

we have repeated the analysis of Figure 5.3 using a hypothetical vehicle which is twice as

fast as the standard Odyssey IIb vehicle (i.e., Vmax = 5 meters/second). These survey

analysis plots are shown in Figure 5.4 and the minimum survey errors and corresponding

(As,opt, Ts,opt) for these surveys are given in Table 5.3. In Figure 5.4(a), the fast vehicle's

hotel load, H, is reduced to 1/4 of the standard Odyssey IIb value. Comparing the shape

of the survey envelope to that of the fast Odyssey IIb vehicle (Figure 5.2(d)), we see that

decreasing the hotel load has increased the survey envelope towards the upper left. The

minimum survey error is the same as for the unmodified survey envelope for the fast vehicle:

emin = 0.29. In Figure 5.4(b), the fast vehicle's inefficiency is reduced to 1/4 of its standard

value. This pushes the energy boundary (upper left) of the survey envelope toward the left

side, with the consequence that the maximum velocity constraint now controls the minimum

survey error, which decreases slightly: emin = 0.25. The vehicle's battery is made four times

larger in Figure 5.4(c). The energy boundary of the survey envelope continues to increase
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Figure 5.4: Survey analysis plots for modified parameters for a fast vehicle. The analyses of
Figure 5.3 is redone with a vehicle which is twice as fast as the standard Odyssey IIb vehicle (i.e.,
Vmax = 5.0 meters per second. (a) The fast vehicle's hotel load, H, is reduced to 1/4 of the
standard Odyssey IIb value. Comparing the shape of the survey envelope to that of the standard
Odyssey IIb vehicle (Figure 5.2(d)), we see that decreasing the hotel load has increased the survey
envelope towards the upper left. The minimum survey error is the same as for the unmodified survey
envelope for the fast vehicle: Emin = 0.29. (b) The fast vehicle's inefficiency, (1-rl), is reduced to 1/4
of its previous value. This pushes the energy boundary (upper left) of the survey envelope toward
the left side, with the consequence that the maximum velocity constraint now controls the minimum
survey error. This error decreases slightly: E in = 0.25. (c) The vehicle's battery is made 4 times
larger. The energy boundary of the survey envelope continues to increase towards the upper left
corner. Since the minimum error is determined by the maximum velocity constraint, the minimum
error is still Emin = 0.25. (d) Four fast vehicles are employed in this survey. The maximum velocity
constraint is no longer relevant. The energy boundary again controls the minimum survey error.
This minimum error is reduced to Emin = 0.22. Note that the reduction is not nearly as significant
as that seen for the standard Odyssey IIb surveys, Figure 5.3.
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towards the upper left corner. Since the minimum error is determined by the maximum

velocity constraint, the minimum error is still emin = 0.25. Next, four fast vehicles are

employed in Figure 5.4(d). We see that the maximum velocity constraint is no longer

relevant. The energy boundary again controls the minimum survey error. This minimum

error is reduced to 6 min = 0.22. Note that the reduction is not nearly as significant as that

seen for the standard Odyssey IIb surveys, Figure 5.3.

Using analyses such as these, the researcher is able to objectively compare the various

AUV platforms to determine which platform is best suited to a specific scientific program

or field experiment. The analysis plots can also be employed by the vehicle designers to

guide them in making crucial trade-offs during the initial phases of a new vehicle design. For

existing vehicles, the above analysis suggests design modifications which would be beneficial

to the overall vehicle performance. For instance, our analysis for the Odyssey IIb AUV

indicates, at least in the context of this example, that little effort should be spent on

reducing the hotel load of a vehicle since such a reduction is not likely to result in reduced

minimum survey errors or in lower energy consumption. We want to emphasize here that

the error results are valid only within the context of the example random field process of

Section 5.2.

In this section we have demonstrated the use of the survey analysis tool in guiding

the survey and vehicle design processes. In the following section we will apply the survey

analysis tool to the design of an AUV survey of a real oceanographic process.

5.4 Application to Open-Ocean Deep Convection

Open-ocean deep convection plays a key role in ocean circulation. It mixes surface water

with deeper water and thus renews the intermediate and deep waters of the ocean. It is

most likely to occur during prolonged winter storms when the surface heat flux (cooling

by low air temperature and gales) is largest. Labrador Sea is one of only a few deep

convection locations in the world, along with the Greenland Sea and several locations around

Antarctica. Owing to its importance, the Labrador Sea will be intensely studied in the

coming years. Several Odyssey IIb AUVs will be utilized in sampling the convective field.
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5.4.1 Open-Ocean Deep Convection: The Model

The process of interest can be modeled using a non-hydrostatic model [22, 65]. In one

idealized analogue we consider an initially homogeneous and motionless water volume filling

a cubic box of dimensions 9.6 km x 9.6 km in the horizontal and 2 km in depth. The water

is cooled at the top surface, inducing convective overturning in the water column. Heat

fluxes out of the bottom and sides of the model domain are not allowed. The top surface is

subjected to a cooling with a mean temperature decrement of AT = 4.4 x 10- 5 oC/s. This

is equivalent to a mean buoyancy flux of B = 5 x 10- 7 m2 /s 3 , associated with a surface heat

flux of about 1000 W/m 2, which is typical of the loss at the height of a winter-time storm.

To initiate convective instability, the decrement of temperature is modulated by a random

number between 0.5 and 1.5 over the whole top surface.

The model's temporal autocorrelation function for vertical velocity is shown in Fig-

ure 5.5(a). The autocorrelation function has a maximum time lag of 12 hours with granu-

larity of 30 seconds and was calculated as an average of time-series observations at 192 fixed

locations throughout the model domain. We see from this figure that the autocorrelation

function decays to zero after approximately 12 hours. To calculate the horizontal spatial

energy density spectrum of vertical velocity, the model was allowed to evolve for 12 hours

at which time the convection has become well established. We then sampled a horizontal

plane at a depth of 600 m and these observations were used to calculate the horizontal

spatial spectrum shown in Figure 5.5(b). The spectrum exhibits a peak at a corresponding

wavelength of 1000 m, this being the characteristic distance between convective plumes. We

see from Figure 5.5(b) that the spatial structure of the convection process is dominated by

long-wavelength motions which are well resolved by the 50 m numerical grid spacing of the

model. These space and time scales are not atypical of the real process.

Let us now assume, for the sake of an example, that we wish to grid survey over a

fixed square area, A = 1 km 2, using an Odyssey IIb AUV. By numerical integration using

Equations 3.17, 3.20, and 3.21, we combine the spatial and temporal survey errors and form

the total survey error, which is shown in Figure 5.6(a). When combined with the survey

envelope and its underlying energy surface, the resulting survey analysis plots allow us to

analyze several aspects of the survey design process.
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Figure 5.5: Open-ocean deep convection statistics. (a) The temporal sample autocorrelation func-
tion is calculated from observations of an open-ocean deep convection model [22, 65]. We see that
the 1-correlation time is approximately 104 seconds. The temporal sample autocorrelation goes to
zero after approximately 12 hours. The function has the general shape of a decaying exponential.
(b) Spatial frequency energy density spectrum is also calculated from observations of the convec-
tion model. We see a spectral peak at approximately 10- 3 m - 1 , corresponding to the characteristic
separation distance of the convection plumes of approximately 1000 meters. We also see that the
spectrum is isotropic in the horizontal spatial dimensions.

104



5.4.2 Surveys of the Convection Model

The error as a function of survey time and grid spacing is shown in Figure 5.6(a). As

expected, Figure 5.6(a) indicates that minimum error surveys are accomplished rapidly,

and with fine spatial resolution. Given the relatively short mission times required by the

temporal autocorrelation (less than about three hours) and a maximum speed constraint

on the vehicle of 2.5 m/s, missions are not constrained by battery capacity. Consequently,

the important survey constraint for this example is maximum vehicle speed. The fact that

the energy constraint does not influence the survey envelope in this instance indicates that

increasing the size of our battery will not effect the shape of the survey envelope and, hence,

we will see no reduction in total survey error.

By superimposing the survey envelope on top of the total error surface (Figure 5.6(b)),

we are able to locate the combination of spatial resolution and total survey time which

gives a minimum total survey error while remaining within the operational capabilities of

the AUV. For this example a survey area of one square kilometer is used. The minimum

survey error is ,min = 0.40 and lies at the point (A, T) = (75 m,5200 s) in the survey

parameter space.

Decreasing the area covered by the survey or increasing the number of AUVs used in the

survey allows the total survey error to be reduced significantly. In Figure 5.6(c), we have

reduced the total survey region to A = (1/2 km)2 . This has the effect of changing the error

surface underlying the survey envelope, resulting in a minimum survey error of Emin = 0.20..

Alternatively, if we use three AUVs to survey the original survey area, A = (1 km) 2, we

can again lower the total survey error, Figure 5.6(d). In this case, the total survey error is

decreased because the collective survey speed of the vehicle is faster, pushing the limiting

edge downward, with a resulting minimum error of emin = 0.25. In all cases, it is important

to note that the optimal survey parameters, (Aopt, Topt), may lie in a region of the survey

parameter space to the left of the region shown. We have not been able to explore this region

because we are limited on the spatial resolution axis by the grid spacing of the convection

model and by our numerical treatment of that model.

From the survey analyses of Figure 5.6 we can better appreciate the trade-offs necessary

in surveying open-ocean deep convection using an AUV. For example, since the characteris-
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Figure 5.6: Survey analyses for open-ocean deep convection. (a) Total Survey Error as a function
of (A, T). Note that minimal error is achieved for surveys which are sampled densely and quickly.
Conversely, Stot is maximized for slow and coarsely samples surveys. (b) Survey analysis plot for a
survey of an open-ocean deep convection process over a square domain of area A = (1 km) 2 . We
see that the energy boundary of the survey envelope is not relevant for this survey. The resulting
minimum total survey error is 8

min = 0.40. (c) Survey analysis plot for a grid survey over a
square domain of area A = (0.5 km) 2 . The survey envelope translates downward, giving access to
surveys with lower total error. The vehicle's maximum velocity constraints the minimal error to be
Emin = 0.20. (d) Survey analysis plot for a grid survey in which three Odyssey IIb AUVs are used
to grid survey a square domain of area A = (1 km) 2 . This survey achieves performance comparable
to that of (c) with a minimum total survey error of Emin = 0.25.
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tic distance between convective plumes is approximately 1000 m, the minimum error survey

of Figure 5.6(c) would give acceptable performance if the scientific objective is, for instance,

to make an accurate estimate of the vertical heat within the interior of a single plume. Al-

ternatively, if the mission goal is gather information about the distribution or formation of

the convective plumes, then the surveys of Figure 5.6(c) would not be well suited because

they are too spatially localized. The minimum error surveys of Figures 5.6(b) and 5.6(d) or

ones over even larger survey domains would be more appropriate for this scientific objective.

5.5 Discussion

The above analyses demonstrate how grid surveys of dynamic phenomena can be optimized

given statistical knowledge of the process under study. Clearly the difficult part of this

exercise is obtaining the statistics. Here we have used a convection model to obtain the

required information. Others sources include prior observations from such platforms as

moorings, drifters, towed bodies, and satellites. Of course there is no guarantee that either

a convection model or the prior observations will be valid for the actual survey run.

For occasions when there is no a priori knowledge of the phenomena, one promising

scenario involves multiple AUV runs. Initial runs would be used to obtain the spatial

statistics, which would in turn allow design of the final survey. However, while the AUV

can readily characterize spatial variability, temporal variability is not so easily obtained.

For the AUV to make such measurements implies a longer mission, and requires the vehicle

to measure the same volume of water repeatedly. This last requirement imposes navigation

demands which may or may not be achievable.

Finally, it is worth noting the difficulty of synoptically mapping a dynamic phenomena.

For the open-ocean deep convection survey designs of Section 5.4, the best synoptic map

one could hope to achieve only covers one square kilometer, even with three vehicles. For

a single towed body behind a ship, however, a synoptic map is probably not achievable on

any scale at the specified 600 m depth. Clearly, further work on survey and platform design

is necessary to enable the collection of synoptic-scale data from rapidly evolving, spatial

phenomena.
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Chapter 6

Conclusion

In this work we have explored the problem of reconstructing spatially distributed, time

evolving process fields with samples from AUV surveys. We have identified general issues

and challenges involved in surveying with AUVs, developed survey performance metrics

which quantify vehicle energy consumption and both spatial and temporal survey errors.

We have then used these performance metrics to gain insight into the design of AUV surveys

of oceanographic processes and to identify useful ways to customize the design of an AUV

to a particular class of processes of interest. These contributions are discussed in greater

detail in Section 6.1. The contributions of this thesis to the general problem of surveying

with AUVs are important because they place the survey design problem firmly within

a quantitative framework. However, significant modifications and improvements to the

current work are certainly possible and will definitely be needed as the use of AUVs in

oceanographic and other settings grows and matures. With this in mind, the discussion of

Section 6.2 focuses on continuations of the work of this thesis as well as new directions and

problems to be explored.

6.1 Contributions

In Chapter 1 we asked the questions: Given an oceanographic process of interest with

its associated spatial and temporal scales, what are the AUV survey trajectories which

give the best survey performance in terms of some performance metric? What should
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this performance metric be? In this thesis, we have addressed these questions within the

context of the field estimation problem. The contributions which we have made towards

these problems are described below.

6.1.1 Exploration of Issues

In Chapter 2, we examined several issues and challenges inherent in surveying with AUVs.

These issues were necessary context for the development of later chapters. They also point

to areas in which further exploration is required. In particular, the lack of computationally

efficient inversion algorithms for spatially distributed data is a difficulty which goes to the

heart of the whole sampling problem. We will see in Section 6.2 that new and promising

spatial data processing techniques are on the horizon. The application of these techniques to

the AUV survey sampling problem has the potential to revolutionize the way that oceanog-

raphy is practiced through the realization of fully functional coupled observational/modeling

systems. However, for this to be possible, many of the engineering challenges identified in

Chapter 2 must also be addressed. Power management and improved battery technologies

will be vital to the implementation of autonomous ocean sampling networks, as will the

development of reliable and fast underwater communication and navigational networks. Fi-

nally, advances in the area of reactive and adaptive survey design will be necessary as an

enabling technology of the AOSN paradigm.

6.1.2 Performance Metrics

In Chapter 3 we reviewed the energy economics of surveying with AUVs and created the

survey "envelope" which quantifies AUV energy consumption for a given survey domain

in terms of the survey's spatial resolution, As, and the total survey time, rs. We also

explored the errors inherent in reconstructing a spatial field from temporally blurred survey

samples. Two error metrics were developed, one of which measures the error due to spatial

undersampling of the phenomenon of interest. The second metric estimates the errors due

to the temporal evolution of the process field over the course of the survey. These error

metrics were combined into a single total survey error metric. In developing these metrics,

we made several simplifying assumptions in order to make the problem tractable. These
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assumptions were:

1. The process of interest is temporally stationary and spatially homogeneous. Although

spatial isotropy was not a requirement, per se, imposed by Equation (3.17), it was

nevertheless assumed in the development of following chapters in order to simplify the

computations.

2. The frequency and wavenumber spectra (or, equivalently, the spatial and temporal

autocorrelation functions) of the process of interest were assumed to be known. It

was further assumed that these spectra (autocorrelation functions) were separable

functions of frequency and wavenumber (time and space). This was a consequence

of the assumption that the temporal and spatial error metrics were uncorrelated (see

Section 3.3.3) and placed restrictions upon the class of processes for which the total

survey error metric would be valid.

3. Errors due to AUV positional uncertainties were assumed to be negligible. This

stipulation is equivalent to claiming that the uncertainties in the position of the AUV

are much smaller that the spatial resolution scale of a given survey. This seems

reasonable given some external navigational aid such as an acoustical long-baseline

system [61], which can give positional uncertainties as low as 1-10 m.

4. The process of interest was assumed to be the only oceanographic phenomenon at

play in the survey region. This assumption excludes, for example, ocean currents and

tides. As discussed Chapter 2, the presence of currents can severely impact the quality

of AUV sampled data.

5. Errors due to the finite length of the AUV surveys (i.e., truncation errors) were also

assumed to be negligible. While this may be a reasonable assumption for densely

grided surveys, it will be an increasingly poor assumption for low-resolution surveys

as the number of tracklines across a survey domain decreases.

6. All survey trajectories were considered to be "mow-the-lawn" (grid) patterns. No

irregular trajectories were considered. While this constraint could certainly be ac-
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commodated by the researcher, there are also situations in which grid surveys would

be less efficient in terms of the amount and quality of data which they generate.

Problems that meet these assumptions can be addressed with the framework of error metrics

developed in Chapter 3.

6.1.3 Simulations and Verification

In Chapter 4, we developed a simple space-time random field simulation based on the

method of sampling from the spectrum. This technique is powerful in that it does not require

unnecessary computation and is flexible in terms of the size and shape of the survey domain

as well as its ability to compute field values along arbitrary space-time survey trajectories.

Even though it was not necessary for the experimentation undertaken in this work, a slight

modification of simulation equation, Equation (4.14), could allow us to incorporate dynamics

to couple the spatial and temporal evolution of the resulting random fields.

Having developed the random field simulation, we employed this capability in the gener-

ation of simulated AUV surveys of the random fields. We employed these simulated surveys

in the verification of the survey error metric of Equation (3.21). We found good agreement

between the errors from the simulated surveys and the theoretical errors. This agreement is

not surprising since the assumptions made in formulating the total survey error metric are

met by the formulation of the simulated random fields. The most profound of these assump-

tions is that the wavenumber-frequency spectral density function is a separable function of

wavenumber and frequency (or, equivalently, that the space-time autocorrelation function

is a separable function of space and time lags). These assumptions were included in the

formulation of the simulation so that the errors derived from the simulated AUV surveys

of the random field could serve to validate the total survey error metric. However, this

particular stipulation has the effect of precluding any coupling of the spatial and temporal

evolution of the random field. Thus, the dynamics of the simulated fields are not represen-

tative of realistic oceanographic phenomena. If we were to simulate a random field which

incorporated a dynamical constraint (such as a dispersion relation) on the space-time evo-

lution of the field, we would find that the total survey error metric was no longer accurate,

although it would still be useful for providing insight into the design of AUV surveys of real
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oceanographic phenomena. This is an area in which further research is required.

6.1.4 Survey Design and Vehicle Customization

The performance metric was employed in the analysis of AUV surveys of random fields in

Chapter 5. These analyses gave insight into the process of survey sampling with AUVs.

Several trade-offs of spatial resolution vs. total survey time were discovered and their

implications for AUV survey design were discussed. We also demonstrated the optimization

of a uniform grid survey over a square domain of a simple random process field. The spatial

resolution, A,, and total survey time, rs, parameters indicated by this analysis were shown

to be optimal in the sense that they minimized the expected survey error while constraining

the survey to lie within the survey envelope.

The analyses of Chapter 5 also demonstrated that grid surveys of real, dynamic oceano-

graphic phenomena can be optimized, given statistical knowledge of the process under study

by employing the survey performance metrics developed earlier. Clearly the difficult part

of this exercise is obtaining accurate statistics for the oceanographic process. We used a

model of the convection process to obtain the required information. Others sources include

prior observations from such platforms as moorings, drifters, towed bodies, and satellites.

Of course there is no guarantee that either a convection model or the prior observations

will be valid for the actual survey run.

Finally, we employed the survey performance metrics in an analysis of several vehicle

design parameters, such as propulsion efficiency, hotel load, and battery size (total available

energy). We also considered using several AUVs to conduct a single survey. We found, not

surprisingly, that methods which allow an AUV to move more quickly through the water

give the most dramatic decreases in total survey error. Thus, increasing battery size and

using multiple vehicles were found to be the most beneficial and straightforward methods

of improving overall survey performance. The insight gained from these simple vehicle

redesign experiments indicates that survey analyses such as these can be a powerful tool

for tailoring the design of an AUV to a particular class of oceanographic problems or for

improving the design of existing AUVs.
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6.2 Future Work

In the course of this thesis, we have uncovered several new and potentially fruitful areas in

which further research is needed. Not the least of these is the desire to extend the devel-

opment of the work contained herein. Extentions to the survey error metric of Chapter 3

and to the simulation environment of Chapter 4 are considered in Section 6.2.1, below.

In Section 6.2.2 we examine the use of multiscale processing techniques to address cer-

tain algorithmic and computational issues in the modeling of ocean processes and in field

inversion techniques.We examine adaptive survey strategies in Section 6.2.3 and the idea

of adaptive sampling is itself expanded upon in Section 6.2.4, where we discuss coupled

model/observational systems. Finally, we discuss the use of AUV surveys for the purpose

of spectral estimation of ocean fields in Section 6.2.5.

6.2.1 Extensions

The development of the survey error metric in Chapter 3 relied on the assumption that the

spatial and temporal components of the evolution of the process field were uncorrelated.

This assumption was made to reduce the difficulty of the problem at hand. However, this

is a particularly poor assumption for many dynamic ocean phenomena. Thus, research into

extending the survey error metric to account for the coupled spatial-temporal evolution of

the process fields is necessary. Within the framework of this thesis, additional work must

also be done to update the process simulations to include more realistic process dynamics.

Simulations

A dynmical relationship between wavenumbers and frequencies, such as a dispersion rela-

tion, is required to couple the spatial and temporal evolution of a simulated field. If we have

a an arbitrary dispersion relation, w = f(k), then the simulation framework of Chapter 4

can be modified to exhibit the required spatial and temporal dynamics. In the specific

case of a linear (wave equation) dispersion relation, w = clkj, the random field simulation
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equation becomes

M

y(x1,x 2 ,t) = M cos[ki(x cos ai + x 2cosi) + it + Oi
i=1

M

= MNE COS[ki(xi CO COS +2 COSca + Ct) + Oi], (6.1)
i=1

where we have the used the dispersion relation to formulate the temporal evolution in terms

of the same series of random wavenumbers which governs the spatial evolution.

Error Metrics

The total survey error metric of Chapter 3 assumed that the spatial and temporal compo-

nents of the evolution of the process field were uncorrelated. From Equation (6.1) we see

that this is no longer a valid assumption for our simulated random field. Unfortunately,

we cannot undo this assumption of uncorrelatedness in the error metric nearly as easily as

it was done for the simulation fields. If we attempt to insert a linear dispersion relation

into our development of Chapter 3, we radically alter the nature of the error metric in ways

which are not desirable.

Recall the development of the spatial survey error metric in Section 3.3.1. We related

the spatial error to the effects of undersampling. If we were to blindly apply the dispersion

relation to our spatial survey error to yield a new temporal survey error metric we would, in

essence, be measuring the error due to temporal undersample of a single point in the survey

domain. While this would be valid for some observational systems, such as moorings, this

new error metric would fail to capture the fundamental nature of sampling with AUVs, i.e,

temporal blurring of spatial samples. Further work is needed to sort out these issues.

6.2.2 Multiscale Stochastic Processing

When surveying with AUVs, we want to find ways of allocating our scarce observational

resources to maximize the information content of the collected data. For this reason, we

want to be able to adaptively alter the AUV survey trajectory to respond to non-stationary

features observed in the survey domain. To facilitate this, an interpolated map of the
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process based on the available observations and a measure of uncertainty for the interpolated

values is desired. Unfortunately, current algorithms for generating such interpolated maps

are extremely computationally intensive [55],[24] and usually do not allow for an efficient

calculation of estimate uncertainty. Thus, it is not possible to adaptive survey in real-time

using traditional field inversion methods due to the long computation times necessary to

run these algorithms.

However, the recently developed theory of multiscale stochastic processes [63],[56] and

the estimation framework which accompanies it [64],[66],[67],[68] allow such field inversion

problems to be addressed in a scale-recursive manner, leading to dramatic reductions in

computational requirements. The key notion which gives this theory such great power is

the realization that multidimensional systems can often be represented by models which

are Markov in scale [47] (analogous to the Markovianity of time-series problems - note that

scale is a scalar variable, independent of the number of dimensions of the problem domain).

This fact leads to algorithms which have computational complexities which grow linearly

with the number of nodes in the domain of interest, regardless of the dimensionality of

the domain. This is in sharp contrast to most multidimensional algorithms which have

computational complexities which grow exponentially with the dimension of the problem

domain. Furthermore, the multiscale inversion framework is inherently parallelized and

automatically generates estimation error variance maps in addition to the interpolation

maps.

Background: Wavelets and Multiscale Stochastic Processes

Due to the unique ability of the wavelet transform [69],[70] to easily capture (or model)

non-stationary events in signals, this new processing technique has opened the door to a

wide array of new processing algorithms for problems which previously had been poorly

posed. One such success is the recognition that wavelet bases are well suited for describing

1/f-like processes [71],[72]. This result is particularly useful since 1/f-like signals have

been shown to be natural descriptors for a broad range of processes, such as sea floor and

landscape topologies, various geophysical time series, images of natural objects, noise in

electrical systems, and burst errors in communication channels. Signal processing with
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1/f-like signals was not previously practical due to the "lack of a convenient mathematical

characterization" [72] of these processes. Thus, wavelet representations of this class of signals

have engendered a large body of new theory and practice in the signal processing and

estimation community.

Building upon this new signal processing paradigm, the works of Willsky [63] and

Chou [56],[73],[64],[74] have generalized the multiresolution nature of the wavelet trans-

form into a rich theory of multiscale representations of stochastic processes on lattices. The

works of Luettgen [47] on multiscale representations of Markov Random Fields (MRFs)

and of Irving [48] on multiscale realizations and model identification serve to round out the

theoretical framework of multiscale stochastic processes. Several examples of the applica-

tion of multiscale techniques to large-scale estimation problems are given in the literature:

Fieguth demonstrates the application of multiscale techniques to the inversion of satellite

altimetry observations of the ocean surface [66],[68] while Menemenlis [67] demonstrates the

same for hydrographic and other oceanographic data. Tomographic reconstruction using

the multiscale framework is discussed in Bhatia [75] and Miller [76] develops techniques for

multi-sensor inversion problems in the wavelet domain.

Numerical Simulations

One promising approach would be to draw upon previous work in the area of Markov

Random Fields to generate simulations of processes which are qualitatively equivalent to

those which an AUV might be used to study. For instance, we could combine the work

Chellappa [77] on MRFs with the work of Legg, et. al., [78] on numerical simulations of

convection events to create simulations of open-ocean deep convection at various stages

of the process. Specifically, a least-squares algorithm could be employed to estimate the

coefficients of a low order MRF using data from numerical simulations of open-ocean deep

convection. Since it has been shown that all MRFs can be generated with the multiscale

framework [47], the MRF representation of the convection phenomenon would facilitate

the application of multiscale processing techniques to the specific problem of surveying

open-ocean deep convection events with AUVs. The MRF convection simulations would

be carried out on a dense grid in a two-dimensional domain. Since the simulation is based
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upon an FFT method, the simulated fields would be inherently stationarity in time but

could be non-homogeneous and non-isotropic in space. Also, the computational complexity

would be such that numerous simulations could be generated in an efficient manner.

Interpolated Maps

Heuristic survey trajectory algorithms would next be used to simulate an AUV survey

of an oceanographic process. Irregular sampling by the AUV would be accommodated

by taking the survey samples from the nearest grid point of the dense simulation grid.

Using the multiscale processing framework developed by Willsky [63] and Chou [64] and

further extended by Fieguth [66] and Menemenlis [67], we would generate interpolated

maps of the oceanographic process in "real-time". As the vehicle moves through the survey

domain collecting data, an interpolated map based upon all available measurements would

be generated during each trajectory decision cycle. The remarkable computational efficiency

of the multiscale interpolation scheme would allow the algorithm to be implemented on a

real AUV and used to study real oceanographic processes.

Error Analysis

In addition to the interpolated maps created with the multiscale field inversion techniques,

estimation error variances at each interpolation point would be generated during each tra-

jectory decision cycle. The point-wise variances would be combined to form an estimation

error variance map. Such maps would be vital to both the analysis of the quality of the

interpolated map and as a driving force in the adaptive survey trajectory decision process.

Note that error cross-covariances are not automatically provided by the multiscale process-

ing framework of Chou [64], but could be calculated via a model for the error dynamics [79].

This calculation would effectively double the computational load of the algorithm. It is not

yet clear whether knowledge of the cross-covariance is necessary for interpolation map val-

idation or in the adaptive sampling strategy design process. This issue would need to be

explored further.
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6.2.3 Adaptive Sampling

Adaptive sampling strategies attempt to increase the efficiency of a survey by concentrating

measurements in scientifically interesting regions of the survey domain. These strategies

range from fairly unsophisticated techniques (e.g., appropriately sizing grid surveys as in

Chapter5) to complex algorithms (e.g., coupled observation-modeling systems). Between

these two extremes lie various methods by which measurements are concentrated in the

regions of greatest interest (such as areas with high spatial gradients). For example, to

map an ocean front, an AUV might first run a very coarse survey to localize the front, then

concentrate operations in the vicinity of the front. Substantial savings could be realized

in terms of both the expended energy and the time required to characterize the front. To

quantify the benefits of adaptive sampling, consider two scenarios. The first scenario is a

survey with no prescribed completion time and no constraint of the total survey time. This

scenario demonstrates the most conservative estimate of the benefits of adaptive sampling.

The second scenario is a survey which must be completed within a fixed amount of time.

Surveys without Time Constraints

Given the total survey distance, L, we can compute the energy, E, required to complete a

survey. For an AUV cruising at its most efficient speed, the total energy required is given

by Equation (3.6).

As stated previously, adaptive surveys concentrate measurements in regions of interest,

thereby reducing the total distance that the survey vehicle must travel. If an adaptive

sampling strategy reduces the distance traveled by a factor f, then the energy required to

complete the adaptive survey, Eas, is simply

E
Eas = - (6.2)

To phrase the benefit in direct terms, an adaptive survey which cuts the overall length of the

survey trajectory by a factor of three provides the same benefit as creating a new battery

chemistry which has a factor of three higher energy density. These results apply to surveys

which have no maximum duration.
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Surveys with Time Constraints

Processes which evolve rapidly in time, such as open-ocean deep convection, require AUV

surveys which are completed quickly so that the process field can be approximated as being

locally stationary. Also, in a coastal environment, tidal forcing might dictate a survey

completion time of six hours or less. Surveys such as these are constrained by a maximum

total survey time. If a survey must be completed in time Tc, then the required survey

velocity is given by

L if Vopt < 

(6.3)

V = , (6.3)
Vopt otherwise

where Vopt is the vehicle's optimal cruising speed, given previously. Thus, the energy to

complete the survey is

H 1 1 pCdSL3 ) if V
EHr + if Vot r (6.4)

as 3LpCdS ) 1/3 otherwise

For the case where the required vehicle velocity is significantly greater than Vopt, propulsion

consumes the largest fraction of the energy. Thus the second term in the expression for

Eas dominates. Here the energy goes as 1, indicating that even small increases in survey

efficiency can dramatically improve overall system performance. For example, a two-fold

decrease in the distance travelled in a survey would correspond to an eight-fold reduction in

energy consumed. This reduction in energy comes from the fact that the vehicle was able

to survey the given domain twice as quickly as a non-adaptively surveying vehicle would

have been able to do.

Adaptive Survey Strategies

There are a number of possible methods by which the overall length of the trajectory might

be reduced. Although very little work on adaptive sampling strategies has been done in

the AUV community, several disciplines have addressed problems of a similar nature. We

have collected references for these contributions in Table 6.1. The problems domain is
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One AUV Multiple Tomo AUVs Comm
AUVs AUVs

Metrics for [11, 80, 26, [80, 26, 37, 82] [26, 82, 83] [80, 26, 82, 83]
Survey 37, 81]

Comparison
Model [11, 12, 84, [88, 84, 85, 86, [90]
Based 85, 86, 52, 37, 52, 37, 59, 89]

Experiment 59, 60, 87]
Design

Reflexive [91, 92, 53, [91, 95] [90, 82, 83] [82, 83, 95]
Survey 93, 94]

Strategies
Model [37]
Based

Adaptive
Sampling

Table 6.1: Adaptive survey strategy problem domain with related references.

grouped by the type of AUV being employed and the broad category of adaptive sampling

being employed. Surveys which employ one or several AUVs, as well as tomographically

and communicationally instrumented AUVs, are considered. References for survey error

metrics and for survey strategies which are predesigned with the aid of a process model

are given in first and second rows of the table, respectively. The third row gives references

for surveys which are able to react to observations of the process field in real-time (such

as gradient following surveys). Although these surveys can react to incoming observations,

they do not have a predictive capacity that would allow them to incorporate the expected

state of the future field into their surveying strategy. References for surveys which do have

this ability are found in the fourth row of the table. The work of this thesis falls into the

first two columns of the first and second rows.

6.2.4 Coupled Model/Observational Systems

The detailed plan for implementing a multiscale processing based adaptive survey de-

sign framework described above in Section 6.2.2 is a simple embodiment of a coupled

model/observational system. The individual vehicle is the sole observational system and

the multiscale Markov Random Field coefficients form the process model. The model and
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observations are combined in the generation of interpolated maps (estimates) of the pro-

cess field. These maps aid in the identification of scientifically interesting features of the

field, such as convective plumes and field gradients. This information, in turn, drives the

adaptive survey trajectory decision cycle, continuously repositioning the vehicle to improve

the scientific relevance of the survey data. In addition, an estimation error variance map is

automatically generated as part of the field inversion process. These maps could be used to

"close the loop" of the adaptive survey strategy, allowing the vehicle to make quantitative

decisions about the relevance of features identified in the interpolation map and to locally

adjust the density of survey coverage as appropriate.

The simple coupled model/observational system described above enhances the current

state of the art in surveying oceanographic processes with AUVs. However, this scheme is

limited by the fact that the vehicle is the only source of field observations and by the implicit

assumption that all model computations must be performed on the AUVs main vehicle

computer. A system which removes these restrictions, incorporating numerous observational

systems and combining several process models, is shown in Figure 6.1. This figure implies

that the an autonomous ocean sampling network (see Section 1.1.3 and Figure 1.2) with

multiple communicating AUVs is employed to gather observations and to organize those

observations so that time-critical information can be relied to the scientist. A system such

as that represented in this figure would require the interconnection of several process models

(with all computation being performed at a central location, such as a mooring or support

vessel). We see that there are three main categories of observational resources: AOSN-

like networks for in situ observations of the process; remote sensing platforms, such as

satellite- and aircraft-based instruments, for broad spatial scale observations; and historical

databases which help identify long time scale trends as well as rapidly evolving features.

These databases are also used to assess the predictive skill of the assembly of process models

employed in the model/observational system.

The observation of the phenomenon of interest comprises the first phase of the three

phase process of adaptive sampling. The second phase involves the processing of these

data to constrain the physical and biological process models which are running in real-time,

concurrent with the collection of the data. Since the data are collected over varying time
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Figure 6.1: A coupled observation/modeling systems for oceanographic research consisting of three
phases. In the initial phase, data is collected both remotely and in the water and combined with
historical quantitative and qualitative knowledge drawn from databases. In the second phase, this
data is fed into a suite of algorithms which assimilate the various data and uses these data to
constrain physical and biological models which are running in real time. In the third phase, the
output of the models are used to update the survey strategies of the available sensor platforms. At
this point the cycle repeats. Figure after Curtin [96].

and space scales, the assimilation of these data into the various process models is a complex

task, as is the combination of the models into a coherent whole. In the third phase of

the adaptive sampling process, the products of the process models are used to inform the

adaptive sampling decision cycle. Nowcasts of the current state of a process are used to

identify features of interest in the process field. The system also makes benificial use of the

predictive skill of the process models by using model forecasts to maintain the observational

assets within interesting features while using a minimum of resources (such as an AUV's

energy).
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6.2.5 Spectral Analysis

We have assumed throughout this thesis that the scientific objective of an AUV's survey

has been to develop a spatial "snap-shot" of the process of interest. There is another

broad class of problems which we could also explore with AUV surveys, specifically, the

estimation of the wavenumber-frequency spectrum of a process of interest. To do this, we

would need to rethink much of the development of this thesis in terms of that problem. It

might seem that estimating wavenumber-frequency spetral from AUV observations would

be less complex than developing interpolated maps of random fields since phase information

is not required in the spectral estimate. Unfortunately, it is even more difficuly to generate

spectral estimates with AUVs due to the coupling of multiple spatial dimensions with the

time dimension through the survey trajectory.

To better understand this difficulty, we consider the case of sampling in a domain which

has one spatial dimension and one temporal dimension. If the speed of the AUV is v and

the sampling period is At, then the spatial sampling period is Ax = vAt. The process

of sampling is described as the convolution of the continuous time signal f(x, t) with a

sequence of two dimensional impulses. The samples are

N-1

fs(n) = f(nAx, nAt) = ~ f(x,t) (x - nAx, t - nAt). (6.5)
n=O

The process of surveying with an AUV on this two dimensional domain is shown in Fig-

ure 6.2. Note that the angle made by the survey trajectory with the spatial axis is a

nonlinear function of the vehicle speed alone. As the vehicle speed goes to zero, the line

of samples in the space-time domain swings toward the time axis. Similarly, when V -+ 00

the line of samples coincides with the spatial axis, i.e., 0 -+ 0. An analogous relationship is

present in the transform domain.

To see this analogous form, first consider the Fourier transform of the sequence of two-

dimensional impulses which describe the sample locations. The Fourier transform reveals

that we are also sampling in the transform domain, with sample locations given by

F(n) = F(n/Ax, n/At) = F(nAk, nAw), (6.6)
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At

0 = tan-1 () = tan- 1 (

Figure 6.2: Sampling in space and time along the survey trajectory of an AUV. The angle 0
between the line of samples and the spatial axis is given by 0 = tan-1 (v- 1 ), where v is the speed
of the AUV. The figure is shown for a survey through a survey domain which has a single spatial
dimension and a single temporal dimension. Hence, the survey trajectory is the straight line shown
with survey samples indicated by +.

where Ak and At are the sampling wavenumber and frequencies corresponding to the

spatial(Ax) and temporal (At) sampling periods, respectively. The samples in frequency-

wavenumber space are parameterized by a single number, n, analogous to the space-time

case. This effect is shown in Figure 6.3. As V -+ 0 the sampling becomes purely temporal

and the sampling line aligns with the frequency axis. Similarly, as V -+ 00 the sampling

line approaches the spatial axis, giving purely spatial samples.

If we now increase the number of spatial dimensions, either to two or three dimensions,

it is difficult to understand the effects of sampling with an trajectory through these mul-

tidimensional domains. The sampling is still parameterized by a single number, n, which

effectively gives the number of the sample (where the first sample corresponds to n = 0).

Further investigation into using AUVs to generate spectral estimates of oceanographic pro-

cesses is much needed and would complement the work contained in this thesis.
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S= tan-(v) = tan-l(_)

Figure 6.3: Sampling in space-time (see Figure 6.2) leads to sampling in the Fourier transform
domain, as well. The angle made by the line of samples with the wavenumber axis is E - 0, and is
thus a non-linear function of the vehicle velocity. The wavenumber-frequency samples are denoted
by + along the survey's "trajectory" through the transform plane.

6.3 Conclusion

The work contained in this thesis begins the process of building a quantitative framework for

the design of surveys of oceanographic processes with autonomous underwater vehicles. This

framework consists of survey error metrics for simple oceanographic phenomena with known

spatial and temporal spectra and also includes a survey analysis tool which aids the survey

designer in making trade-offs of survey spatial resolution and total survey time. We have

also shown that the survey analysis tool can be employed in the vehicle selection/redesign

process to tailor an AUV to a particular class of applications or oceanographic processes.

With these tools, simple AUV surveys of oceanographic phenomena can be made which

also give an estimate of the errors inherent in making these surveys. The author believes

that this capability has not been previously demonstrated for oceanographic surveys using

AUVs.

The progress that has been achieved in this thesis only begins to address the overall

problem of using AUVs in an oceanographic research setting. As mentioned in Chapter 2,

many additional facets of this problem exist and the discussion of Section 6.2 details ways

in which some of these new resarch areas might be addressed. Additional investigation into
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these areas is needed to realize the full potential of the autonomous underwater vehicle as an

oceanographic research platform. It is our hope that the field of AUV-based oceanography

will grow and flourish.
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