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Abstract

Competitive pressure in the automobile industry has yielded many studies in improving the vehicle sound
quality. As the complexity and the size in transmission gear systems grew, the need for quiet gear train sys-
tems has also grown, resulting in numerous research in the reduction of noise/vibration level of gears. The
main source of gear noise and vibration is the transmission error, which is mainly caused by imperfect sur-
face finish and geometric errors in gear manufacturing processes. The conventional approach is to reduce
this transmission error through precision machining and finishing of gear manufacturing, the cost of which
rises exponentially as the level of precision increases. Here we take a different approach by introducing
bimetallic structure in gear teeth. Reduction in gear vibration and noise is achieved through increased
internal damping due to the material and structural modifications in gear teeth.

As gears mesh, the gear teeth deform under the applied load. When the load is suddenly removed, vibration
energy is generated, creating structure-born noise. This vibration of the gears can be reduced if the energy
is dissipated by internal damping. To increase internal damping of gear teeth, design modifications are
made; slots are machined in gear teeth parallel to the direction of loading and filled with a damping mate-
rial (i.e., a metal with a low yield stress), which bonds the separated segments of the tooth. Since the gear
teeth are not uniformly loaded, the softer damping material in the slots will undergo elastic and plastic
deformations and therefore, consume more energy than conventional gears when the gear teeth are
engaged. This results in the attenuation of gear noise and vibration.

Therefore, this thesis mainly focuses on the study of understanding the damping characteristics of bimetal-
lic structure. Theoretical cyclic energy loss analysis and empirical findings of larger damping coefficient
reveal that the internal damping of the bimetallic structure is higher than the conventional structure. Also
two experiments on modified bimetallic gears reveal a small decrease in the vibration and noise level from
original conventional gears.

By understanding the damping characteristics of the bimetallic structure, it is possible to make gears with
higher internal damping which will induce a decreased level of noise and vibration.

Thesis Supervisor: Thesis Supervisor: Z. C. Feng
Title: Assistant Professor in Mechanical Engineering
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Chapter 1

Introduction

1.1 Project Objective

The objective of this project is to design silent high-performance gears, mainly for automobile

industry applications. Due to heavy-load and high-speed operating condition in high-performance

gears, the effects of gear transmission and profile errors caused by either gear manufacturing

processes or by wear during operation are amplified, producing greater vibration and noise than

conventional gears. Therefore, the goal of this project is to reduce the vibration and noise level of

high-performance gears.

1.2 Project Motivation

Competitive pressure in the automobile industry has yielded many studies in improving the vehicle

sound quality. As the quietness of vehicles has been continually improved in recent years [1], the

need for quiet gear train systems has become more crucial. Lighter vehicle bodies for higher fuel

efficiency provides less noise attenuation for transmission systems. Furthermore, the complexity

and size in transmission has grown due to the improvement in its performance qualities, such as

automatic transmission or extra gear ratio for manual transmission, raising transmission noise

contribution to overall vehicle sound quality.

Numerous efforts have been made to reduce transmission gear noise. The typical approach is

to minimize the transmission errors of gears through precision machining with optimized gear

parameters and gear tooth profiles, reducing the excitation forces of individual gears. However,

even though the gear quality is within manufacturing tolerance and design constraints, the noise

level of the gear train is still unacceptable in many cases due to highly sensitive gear train

dynamics [2]. Moreover, the manufacturing costs for precision gears with minimum tolerance is

extremely high [3], and therefore, different approaches are contemplated for gear noise reduction.

Recent design approaches focus on the modification and improvement of overall gear train

system dynamics instead of individual gears. For example, several researchers of Nissan Motor

Co. Ltd., adopted a finite element method in analyzing gear train vibration in an attempt to reduce

the noise of overall gear train [1]. H. Opitz of the University of Aachen proposed the sound and

vibration isolation method by increasing the vibration impedance of gear blanks and gear housings

------ ~ -L- -.II ̂ --I~--~ -- .,lr- r-r^--C"^~----- L"-----~I--CI-L--ilY- LL~ Y_-I*-~I~PPXIII111 1 -~-_1~----- --- --~II



with damping material as shown in Fig. 1.1 [4]. For this project, however, the attention has been

brought back to the dynamics of individual gears in reducing the vibration and noise of gears.

damping material

Figure 1.1: Sound and Vibration Isolation Method proposed by H. Opitz [4]

1.3 Project Description

The design concept of this project is to increase the vibration impedance near the source of

vibration, at the gear teeth. Naturally, an increase in the vibration impedance in both the gears and

their housing will decrease the overall gear noise, but the focus of this project is on individual

gears and their teeth.

As gears mesh, the gear teeth deform under the applied load. When the load is applied and

suddenly removed, vibration energy is generated, and as it is transmitted to the surrounding

structures, structure-born noise is created. This vibration of gear teeth can be reduced if the

vibration energy is dissipated by internal damping, decreasing the noise level of the gear system.

gear tooth material
(beams) \; damping material

/ (dampers)

\ uneven load

relative displacement

Figure 1.2: Design Concept of Bimetallic Composite Gear Tooth

Shown in Fig. 1.2 are the modified gear teeth. the modified gear teeth or bimetallic composite

gear teeth are made by cutting thin slits in the gear teeth and filling them with damping material or



a low-strength metal alloy. This modification increases the internal damping of gears and

dissipates the vibration energy during the loading and unloading cycles. Uneven loading across the

width of gear teeth occurs as gears mesh due to various loading conditions, such as multiple tooth

contact, different loading points across the width, and local load concentration caused by surface

imperfections. The uneven loading causes relative displacements among the separated segments of

gear teeth, which are referred to as beams throughout this paper. The vibration energy generated

by gear mesh is to be dampened by the deformation of the inserted damping material, we call

dampers. This relative displacements results in the overall reduction of vibration and noise.

1.4 Thesis Description

The objective of this thesis is to report the progress of this research in evaluating the effectiveness

of the design concept in gear noise reduction, and thereby recommend future steps for the design

of silent high-performance gears.

This thesis consists of six chapters. Following the project introduction in Chapter 1, Chapter 2

explains the general background informations regarding gears and their noise. The following three

chapters are the main body of this thesis. Chapter 3 explains the preliminary experimental analysis

performed using bimetallic composite bevel gears. The investigation on bimetallic composite

helical gears follows in Chapter 4 with detailed description of the composite gear manufacturing.

Theoretical analysis of the cyclic energy loss due to the partial plastic deformation of the damper

is also explained in this section. Chapter 5 describes the gear tooth modeling performed using a

bimetallic beam structure. Detailed explanation for the experimental damping coefficient

measurement of beam structures is also presented in this section in order to understand the

dynamics of gear teeth. Finally, in Chapter 6, all the chapters are summarized, and several

recommendations for the future study of this project are made.
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Chapter 2

Analysis on Gears and Gear Noise

2.1 Gears and their Nomenclature

A gear is defined as "a toothed machine part that meshes with another toothed part to transmit

motion or to change speed or direction [5]". In general, gears may be divided into two broad

classifications based on the arrangement of the axes of the gear pair: (1) parallel axes (spur,

helical) or (2) nonparallel axes (straight bevel, spiral bevel, hypoid) [6].

A spur gear has its teeth parallel to the axis of the rotation. A helical gear is similar to a spur

gear except that the teeth are cut on a spiral that wraps around the gear body. Helical gear teeth

produce smoother action and therefore, tend to be quieter than spur gear teeth because they

progressively enter the meshing zone where they mesh with the teeth of the other gear. Straight

bevel gears are used in nonparallel axis applications, and their teeth are not parallel to the axis of

the rotation [5]. Most of gear teeth are made in involute because it generates the most constant

angular velocity. The involute is described as the curve traced by a point on a taunt string unwound

from a base circle [7].

tooth profile (involute)
pitch circle

Si dedendum pressure
angle
angle working

clearance \ ' depth
base circle depth

outside GEAR -, PINION

dia. - - -- root
\1 _dia.

SA,, '- whole depth

center distance

Figure 2.1: Spur Gear Nomenclature [8]
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There are some key terms that need to be identified in order to understand gears. For spur gears

[8],

* addendum is the height by which a tooth projects beyond the pitch circle or pitch line.

* backlash is the amount by which the width of a tooth space exceeds the thickness of the

engaging tooth on the pitch circles.

* contact ratio is the number of angular pitches through which a tooth surface rotates from the

beginning to the end of contact.

* dedendum is the depth of a tooth space below the pitch line. It is normally greater than the

addendum of the mating gear to provide clearance.

* gear is a machine part with gear teeth. When two gears run together, the one with the larger

number of teeth is called the gear.

* pitch circle is the circle derived from a number of teeth and a specified diametral or circular

pitch. Circle on which spacing or tooth profiles is established and from which the tooth

proportions are constructed.

* pinion is a machine part with gear teeth. When two gears run together, the one with the

smaller number of teeth is called the pinion.

* pressure angle is the angle between a normal to the tooth profile in that plane and the line of

intersection of that plane with the corresponding planes. In involute teeth, pressure angle is

often described also as the angle between the line of action and the line tangent to the pitch

circle. Standard pressure angles are established in connection with standard gear-tooth

proportions.

* root diameter is the diameter at the base of the tooth space.

* whole depth is the total depth of a tooth space, equal to addendum plus dedendum, equal to

the working depth plus variance.

* working depth is the depth of engagement of two gears; that is, the sum of their addenda.

-- axial plane
normal plane plane

5, -- ' normal circular pitch

helix angle

axial circular pitch

Figure 2.2: Helical Gear Nomenclature [8]

For helical gears [8],

* helix angle is the angle between any helix and an element of its cylinder.

* lead is the axial advance of a helix for one complete turn, as in the threads of cylindrical



worms and teeth of helical gears.

* normal diametral pitch is the diametrical pitch as calculate in the normal plane

2.2 Gear Noise

Although it is often overlooked, gear noise is a very important gear design consideration. Due to

increasing consumer awareness and noise regulation, the concern has grown more pronounced

over the years. Gear noise is characterized by discrete high frequency components caused by the

dynamics of gear teeth, which is amplified by the gear train structure [2]. Therefore, the resulting

noise mainly depends on the resonance of gear train structure and the meshing frequency (MF) of

the gears. The source of the vibration is the gear contact which causes the direct air-born noise

from the source. However, most of the vibration is transmitted to the surrounding structure, further

resulting in structure-born noise. Part of this vibration energy passes through the base, causing

floor noise-radiation, or "secondary noise" as shown in Fig. 2.3, and is not specifically related to

the gear unit and depends only on its mounting and floor characteristics [4].

Z noise excitation

-.... structure-borne sound

primary sound radiation

- - secondary sound radiation

Figure 2.3: Radiation of Gear Noise [4]

In most cases the gear sound originating from the gear mesh are due to non-perfect or non-

conjugate action of the gears. This non-perfect action results in dynamic forces at the gear teeth,

which in turn excite vibrations of gears. As dynamic forces in the gear mesh are transmitted

through the shafting and bearings to the housing panels, they serve as the "speakers" that

propagate the gear noise heard by the listener [9].

2.2.1 Gear Noise Analysis

Gear noise is characterized by frequency components at the gear mesh frequency (MF) and its

harmonics, and by modulations of MF or "sidebands" [9]. MF is the frequency of gear tooth

______ 1 I 1 _I~..I. 1-_~ --I- ttl ~_ II. ^-1--- ^1~ 11_~1~- .. ~--- 1____~~_~~~1_ _~I



contact, and it is given by,

mesh freqency [Hz] = rotational speed [rpm] - number of teeth (2.1)mesh freqency [Hz] = (2.1)60

fl: input shaft gear frequency

f2: output shaft gear frequency

f fm: gear meshing frequency
f2

fm frequency [Hz] 2fm

Figure 2.4: Dominant Frequency Components in Typical Gear Noise [9]

Harmonics occur at integer multiples of the ME. Side bands, which are commonly spaced at

the input and output shaft frequency, occur about both the MF and its harmonics as in Fig. 2.4.

Shaft frequency is the frequency of shaft rotation, and therefore it is,

shaft freqency [Hz] = rotational speed [rpm] (2.2)60

2.2.2 Gear Noise Factors

There are four major factors affecting gear noise: (1) transmission error, (2) mesh stiffness, (3)

frictional force, and (4) gear tooth impacts [9]. Transmission error is the most important factor in

the generation of gear noise. It is "the difference between the actual position of the output gear and

the position it would occupy if the gears were perfectly conjugate", and may be expressed in

angular units or as a linear displacement along the line of action. There are two types of

transmission error. The first is the manufactured transmission error (MTE), which is obtained for

unloaded gear sets when rotated in single flank contact. The second is loaded transmission error

(LTE), which is similar in principle to MTE but takes account tooth deflections due to load.

When gears are unloaded, MTE results from manufacturing inaccuracies such as profile errors,

spacing errors, and gear tooth run-out, which is a "plus" amount of material added to either a

pinion tooth or gear tooth which will cause a positive transmission error. When loaded, the

changes in deflections due to mesh stiffness variations must be accounted for in the evaluation of

LTE because tooth deflections cause the output gear to lag behind the input gear and result in



negative transmission error. The time-varying component of both MTE and LTE is periodic at

tooth MF, and it has shown to be related to gear noise amplitude. In fact, it has been shown that the

transmission error of spur gears, which have large changes in mesh stiffness, can be reduced

significantly by applying appropriate profile modifications. Unfortunately, for spur gears these

modifications are usually an optimum for one load level, and gears operating away from this

design load will have increased noise.

Mesh stiffness is the ratio of the force to tooth deflection along the line of action, and it varies

as the gear teeth rotate through a mesh cycle. In spur gears where tooth contact alternates between

single-tooth-pair contact and double-tooth-pair contact, the mesh stiffness by alternating between

the stiffness of a single-tooth-pair and the stiffness of double-tooth-pair in parallel, changes by a

factor of two as gears rotate. For helical gears the mesh stiffness is roughly proportional to the sum

of the lengths of the respective contact lines.

Frictional force due to gear tooth sliding provides a MF excitation as well. The meshing gear

teeth is a combination of rolling and sliding; as the gear teeth enter contact as in approaching

action, sliding is at a maximum. It decreases to zero when it reaches the pitch point where pure

rolling exists. Then, the sliding direction reverses as contact progresses past the pitch point. This

change in sliding direction at the pitch point causes a sudden reversal in the direction of the

frictional force causing gear excitation.

Gear tooth impacts occur when tooth deflections and spacing errors cause tooth contact to

occur prematurely at the tooth tip. This premature contact occurs off the line of action due to a

velocity mismatch normal to the tooth contact, resulting in an impact at the tip of the driven tooth.

This impact generates large dynamic forces, which not only can cause large MF noise levels, but

can also significantly decrease gear tooth fatigue life. These impacts can be minimized by

providing adequate tip and root relief and tooth crowning. Even with proper relief, however, there

is a sudden shear force due to the instantaneous sliding that occurs at the initiation of contact. This

can become a source of noise.

Although the applications of gears differ widely, the sources of gear noise remain more or less

the same. Therefore, some general statements can be made concerning design trends that yield

quieter gears. Based on the flow of acoustic and vibration energy, several approaches may be taken

to reduce gear noise [9]:

1. Reduce the excitation at the gear mesh.

2. Reduce the dynamic force paths and the vibrations between the gear mesh and the housing.
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3. Reduce the housing's acoustic radiation efficiency.

4. Modify the environment in which the gearbox is placed.

2.2.3 Gear Noise Measurement

L = length of gear unit

H = height of gear unit

W = width of gear unit
D = distance of microphone perpendicular of unit,

as specified in standard for size

h = height of microphone perpendicular to floor (H/2)

d = distance of microphone from corner of unit (1/2 or W/2)

Figure 2.5: Single Microphone Location in AGMA Standards [9]

Fig. 2.5 shows a recommended location of the microphone for measurement of noise from a

gearbox by the American Gear Manufacturers' Association (AGMA). Full-load experiments

require quite elaborate and therefore, expensive experimental setups. The cost of the input motor

and the load mechanism themselves can be quite expensive as the gear's rated horsepower gets

high. Also, the drive for these motors is very expensive especially when the variable speed control

is necessary .

1. More information on the components of the experimental apparatus is explained in Appendix A.



Chapter 3

Investigation on Bimetallic Composite Bevel Gears

3.1 Bimetallic Composite Bevel Gears

lead dampers

steel beams

Figure 3.1: Bimetallic Composite Bevel Gear Teeth'

In order to verify the design idea of a low-noise bimetallic composite gear set, a preliminary test is

performed using a R1211 1.5 speed-ratio straight right-angle bevel gear drive from Boston Gears.

After full measurement of the vibration and noise level of the original gear set, it is modified to be

a bimetallic composite gear set.

The housing of the test gearbox is made of fine-grained, gear-quality cast iron, providing

maximum strength and durability. The gears are made of high-grade nickel chromium

molybdenum steel for superior heat-treating of gears [8]. Because the surface of the gears is heat-

treated or hardened for the maximum durability and stiffness, the conventional steel tools cannot

penetrate through the surface, and therefore, an alternative method is used for machining.

Aluminum oxide grind wheels of 2 mm thickness are used to cut the slits. As a result, two slots

of about 3 mm thickness are made in all 16 pinion teeth and 24 gear teeth along the line of loading

as shown in Fig. 3.1. Then the slots are mechanically filled with a damping material, lead.

1. The pictures are shown in Appendix B.

~--~-~1.. I-- ---~-*rr~--------- ^_r^-. --- - ---I- .--- 11^111--LI-IC l- .- --- ^-II ^ III*II~IPIIC~^- --C~~~-- -r~



3.2 Experimental Analysis

3.2.1 Experimental Apparatus and Procedure

signal amplifiers
signal analyzer

Figure 3.2: Experimental Apparatus for Bimetallic Composite Bevel Gears

Shown in Fig. 3.2, a simple experimental apparatus is set up. The test gearbox is mounted to an

experimental setup with a 1 hp AC motor attached to the pinion of the gear set. A v-belt is used for

power transmission between the motor and the gearbox.

An accelerometer and a microphone are mounted on top of the test gearbox in order to

measure the vibration and noise level of the gears. The vibration signal is then amplified by an AC-

powered signal amplifier, and the noise signal is amplified by a battery-operated signal amplifier.

Both vibration and noise signals are then processed using an AC-powered signal analyzer.

Table 3.1: Key Frequency Components in Bevel Gear Experiment Settings

MF SF BF

Fig. rotational speed mesh frequency shaft frequency bearing frequency a

[rpm] [Hz] pinion [Hz] gear [Hz] pinion [Hz] gear [Hz]

3.3 300 80 5 7.5 70, 90 105, 143

3.4 600 160 15 10 140, 190 210, 285

3.5 900 240 15 22.5 210, 285 315, 428

a. one frequency for the bearing with 14 balls, the other with 19 balls



The level of both vibration and noise is measured for the input-shaft rotational speed settings

of 300, 600 and 900 rpm. These are 80, 160, and 240 Hz, respectively in terms of mesh frequency

(MF). Listed in Table 3.1 are the key frequency components of the experimental settings, all

related to the test speed. Shaft frequency (SF) is the frequency of axis rotation, which can be

calculated by dividing rotational speed in rpm by 60 seconds, and bearing frequency (BF) is SF

times the number of balls in the bearings. Each axis of the test gearbox is supported by two ball-

bearings; one has 14 balls, and the other 19 balls.

3.2.2 Experimental Results

The experimental data of the vibration/noise level of both original gears (OG) and bimetallic

composite gears (CG) are presented in the following three figures, Figs. 3.3, 3.4 and 3.5, each

consisting of four graphs. Graphs (a) and (c) on the left side, represent the vibration level, and

graphs (b) and (d) on the right side, the noise level. Graphs (a) and (b) show the frequency

components of the experimental data measured at the sampling frequency of I kHz, and graphs (c)

and (d) show the components measured at a 10 kHz sampling frequency.

In all the graphs, the dotted line represents the data of the original gears (OG), and the solid

line represents those of the modified bimetallic composite gears (CG). All of the harmonics of the

MF's are indicated by the corresponding harmonic numbers, e.g., one for the fundamental MF, two

for the second harmonic of the fundamental MF, and so on.
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Figure 3.3: Vibration and Noise Frequency Spectra of Bevel Gears at 300 rpm

Fig. 3.3 shows the experimental data at 300 rpm or at 80 Hz MF. Besides the marked

harmonics of the MF, graph (a) shows strong frequency components at 120, 180, and 360 Hz

indicated by the arrows. Because they are not the harmonics of the MF, they are assessed to be the

amplified harmonics of AC electrical noise at 60 Hz. They are most likely entered into the output

signal through the AC-powered signal amplifier and signal analyzer. The fact that the vibration

level is higher at the third harmonic of the MF at 240 Hz in OG data than at the fundamental MF

also confirms the existence of strong noise in the output signal because is it also the fourth

harmonic frequency of the AC electrical noise. Therefore, the frequency components below 400

Hz are disregarded in the data analysis.

Graph (c) shows two peaks at 2640 and 3100 Hz in the OG data and two peaks at 2960 and

3200 Hz in the CG data. Those peaks are considered to be the counterparts of one another, leading

to an observation that about 3 to 5 dB drops are established in the vibration level due to the

modification of the gear teeth.

Graph (d) shows that at 500 Hz, the noise level of the CG data is about 2 dB higher than that of

the OG data, yet at 1880 Hz, the CG noise level is about 3 dB lower than the OG noise level. At

0 100 200 300 400
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1200 Hz, both data indicate that they are at about the same level. At 2700 Hz, the CG noise level is

almost 10 dB lower than that of the OG noise level. Therefore in terms of the noise level, the

improvement of the modification is found to be negligible at or below 300 rpm.
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Figure 3.4: Vibration and Noise Frequency Spectra of Bevel Gears at 600 rpm

Fig. 3.4 shows the experimental data at 600 rpm or 160 Hz. Graph (a) confirms the strong

influence of the electrical noise in the vibration signal under 400 Hz. There are three peculiar

frequency components at 80, 270, and 410 Hz in both graphs (a) and (b) indicated by the question

marks. The sources of these components can be several. They perhaps originates from the

harmonic excitation of BF or SE When the source of the signal is not clear, it is regarded as ghost

noise. The ghost noise is thought to be a surface-finish-related noise [9], since it often cannot be

ascertained from profile and lead measurement.

Graph (c) indicates about 2 to 5 dB drops in the vibration level in the CG data and graph (d)

indicates about 3 dB drops at 480 and 1880 Hz frequency components.
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Figure 3.5: Vibration and Noise Frequency Spectra of Bevel Gears at 900 rpm

The experimental data at 900 rpm or at 240 Hz MF are shown in Fig. 3.5. Again, graphs (a)

and (b) indicate the strong influence of the noise signal at 120 Hz and a ghost signal at 80 Hz.

The presence of a peak at 80 Hz at the output signals of both 160 and 240 Hz MF, indicates

that this frequency component is independent of the test speed. Therefore, its source should be a

non-moving source, most likely caused by the natural frequency of some structure in the

experimental setup.

We again see about 2 dB drop in the vibration level of the CG data at 3102 and 4200 Hz in

graph (c). The noise data in graph (d) show 2 dB drops at 480 and 1880 Hz, and a 10 dB drop at

2700 Hz although the noise level is raised about 1 to 3 dB at 1200 and 3120 Hz.
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3.3 Conclusions

Experimental results indicate an overall vibration and noise reduction of about I to 3 dB at several

dominant MF harmonics due to the modification of the gear teeth. However, the electrical noise

signals at 120, 240 and 360 Hz are identified in the output signals, and therefore it is recommended

to raise the signal-to-noise ratio by introducing a load component in the experimental setup. As the

gear teeth experience the gear load, the increased vibration from the increased load force will not

only amplify the signal-to-noise ratio but also it will eliminate the gear rattle noise. Furthermore,

the load is expected to increase the damping effect of the bimetallic composite gear teeth due to an

increased deflection difference among the beams of the gear teeth.

The choice of MF's turns out to be also important. In order to fully map out the vibration and

noise response characteristics of the test gears and the experimental setup, distinctive sets of MF's

are required. However, because three chosen MF's are the harmonics of one MF in this

experiment, it is difficult to distinguish the sources of some frequency components.
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Chapter 4

Investigation on Bimetallic Composite Helical Gears

4.1 Bimetallic Composite Helical Gears

H

a pinion

I damper layers

/////////////// d W

Figure 4.1: Bimetallic Composite Helical Gears.

Table 4.1: Dimensions of the Beams and the Damper

unit length, L height, H width, W thickness, d

[mm] 2.2 3 2.8 0.4

[in] 0.088 0.12 0.112 0.016

From the preliminary experiment described in Chapter 3, several improvements are

recommended for the experimental setup. The recommended experimental settings of higher mesh

frequency (MF) and heavier load necessitate a new apparatus consisting of an input motor, an

output load, and a test gearbox.

For test gears, even though spur gears are preferred for the ease of theoretical modeling,

helical gears are chosen for two reasons. One is that spur gearboxes can only be purchase through

custom orders because helical gears are used in most of the gearboxes due to their advantages of

quieter and smoother operation over spur gears. The other is that helical gear teeth induce larger

load difference across the gear face since its teeth are angled against the load line, which may

amplify the damping effect of the bimetallic structure.

_ X^III1 _II_1 _*_I_ ~_ II______II_ ~^^lil- I_-- CYI^(I.---LI~ I111 LliYI~-m~--(I~-^--FI-~I~--~lp~l-.~^~Y-C I- -~~~~~-~I~---~-;IEl_-~--



A gearbox rather than a gear set is purchased for the quality of gear axis alignment. Since the

gear noise and its dynamics are highly sensitive to the gear axis alignment, it is important to have

precisely aligned axes for gear noise experiments in order to avoid any possible noise source other

than the gear contact.

Two gearboxes of 601A 1.6 foot-mounted single-reduction non-flanged speed-reducer from

Boston Gears are chosen to be test gearboxes due to the proper size of its gears. In order to load the

gears significantly, small gear teeth are preferred so that the power requirements of the input motor

and the output load are easily met with a relatively small and affordable experimental setup. At the

same time, if their size is too small, it becomes difficult to modify them to be bimetallic composite

gear teeth, so careful consideration is given in the test gear selection. Shown in Fig. 4.1 is the

helical gears1 . Key dimensions of the beams and the damper are labeled in Fig. 4.1 and listed in

Table 4.1.

Unlike the previous mechanically-filled damper in the bimetallic composite bevel gears, the

damping material is soldered into the slot for the helical gears in order to ensure the solid bonding

of the beams and dampers. MG 120 Low Temperature Soft Bearing Solder, which is composed of

95% tin and 5% of silver, is chosen as damper material for its affordability and availability as well

as its low yield strength. Its technical data are listed in Table 4.2.

Table 4.2: Technical Data of MG 120 Low Temperature Soft Bearing Solder

tensile strength up to 15,000 psi (10 kg/mm 2)

working temperature 430 F (221 c)

hardness (HB) 15

Previously, because the gear teeth are hardened by surface heat-treatment for durability and

strength, aluminum oxide grind wheels were used for machining of the bevel gears. However,

because the thickness of the resulting slots from the grind wheels is too wide for the chosen helical

gears, a wire electro-discharge machining (wire EDM) is employed, resulting in three narrow

strips of slots of about 12 to 15 thousandth inch, or 0.4 mm.

The basic principle of the wire EDM is to melt the material locally by an electrical connection

between the cutting wire and the material. Therefore, only the conductible material can be cut by

wire EDM. A thin electrified wire, whose size varies according to the size of the cuts to be made, is

1. Their detailed dimensions are listed in Tables B. 1 and B.2 of Appendix B, the first defined by
ANSI system, and the latter by international metric system.



used for the cutting. As the material gets close to the electrified wire of high voltage, sparks occur

between the wire and the material, locally raising the temperature of the material to its melting

point. A stream of coolant water surrounding the cutting wire washes the melted parts as the wire

melts through the material. One major problem caused by wire EDM is that because the melting is

followed by rapid cooling within the stream of water, oxidation occurs, resulting in rust film over

the cut-surface. This film is mechanically and chemically cleaned with a wire brush and acid

cleaner before the soldering process to ensure solid bonding of the beams and dampers.

It is very important not only to fill the gap, but also not to change the involute profile of the

gear teeth; soldering must not cause any defects on the gear tooth surface because any defects will

affect the noise of gears. First, hot-bath method is tested; the gear surface is covered with epoxy

crust, which has cuts along the slots in order to prevent the oxidation and bonding of solder on

unwanted gear surface. Then, the gear is heated to the solder-melting temperature and submerged

to the melted solder bath. However, this method fails to fill the gap because the solder material

could not flow into the slots since the melted solder does not wet the epoxy surface. Hence, direct

soldering is chosen to fill the slits with solder material, and the undesirable solder material on the

tooth contact surface is cleaned mechanically after the soldering.

As for the soldering, the gear is mounted on the lathe and heated by a torch. The solder is

melted on the gear teeth by the raised temperature of gear teeth from the torch. Because the heat

attracts the liquid solder, local heating is also applied to direct the flow of the melted solder with a

small soldering gun.

Cleaning is performed with very fine sandpaper wheels to remove the excess solder material

between the teeth. Also, careful hand-filing is performed to clean up the surfaces. Therefore, small

changes or defects in the surface finish and/or in the profile of the involute gear tooth are

unavoidable through the modification process.
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4.2 Theoretical Analysis

4.2.1 Loading Condition in Helical Gears

Figure 4.2: Loading Condition of Helical Gears

Table 4.3: Key Values of Loading Condition

PB PC PD Op (Pp Oroot eroot

5.57 mm 2.47 mm 2.61 mm 60 20 23.70 4.940

First, it is necessary to understand the loading condition of helical gears, especially, the load

difference among the beams in a helical gear tooth. As gears mesh, loading occurs along the

contact line CD, as shown in Fig. 4.2. The contact line is defined as the line where the gear contact

occurs, and it partially coincides with the line AB, which tangentially meets the two base circles of

a gear set. For a constant torque operation, the loading force is constant along the contact line.

The orientation of the gear teeth changes as the tooth contact progresses through the contact

line. Fig. 4.2 shows the loading condition of a pinion tooth when the tooth is loaded at the tip at

point C and at the root of the gear tooth at point D.



In order to calculate the angle of the loading force, or loading angle, the orientation of the gear

tooth has to be identified. Simple geometric analysis yields the loading angles with respect to the

gear tooth.

First, the length of PC and PD are calculated using the second cosine law of the trigonometry

[10],

PC = [(Rpp sino) 2 + (a 2 + 2 a Rpp)]l/ 2 _ (Rpp. sin ), (4.1)

PD = [(Rpg sino) 2 + (a 2 + 2 a - Rpg)] / 2 - (Rpg. sino). (4.2)

Here, Rpp is the pitch radius of the pinion, Rpg is the pitch radius of the gear, 0 is the pressure angle

of the gear set, and a is the addendum of the gears. The angle between the root and the tip is

approximated as one third of the overall gear angle,

20
20= (4.3)

where

S 360 (4.4)p 2Np

Here Np is the number of the pinion teeth. With the base radius of the pinion Rbp and the length of

PB,

PB = Rpp sin4 , (4.5)

the loading angles at the root ,oot and at the tip Otip can be calculated,

(PB- PD)
Oroot = a- 0 = atan RP )- (4.6)

Otip = + (P-Op = atan( P B ,, + P-O (4.7)

Evaluation of the above equations with the appropriate value of the helical gear dimensions1

yields 23.70 of the tip loading angle and 4.90 of the root loading angle.

1. See Appendix C.
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loading cases:
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beam (4)

pitch radius

Figure 4.3: Different Loading A

Table 4.4: Key Values ol

PB PC PD

5.57 mm 2.47 mm 2.61 mm

Feq

(d)

Oroot section (4)

ngles on Helical Gear Teeth

Loading Condition

Op pp (root Oroot

60 20 23.70 4.940

From the discrete analysis of the loading conditions for the helical gears, the four cases of

loading can be established for a gear set whose contact ratio is unity, as shown in Fig. 4.3. All the

loaded area is indicated by the shaded area, and each loading case is labeled alphabetically.

Loading case (A) shows the case when the load is only applied to the first beam of the gear

tooth. In this case, the load is only applied on section (1) as indicated in case (a). Loading case (B)

is the case when the load is applied to the first two beams of a tooth, where beam (2) experiences

the load in section (1) in case (a), and beam (2) experiences the load in section (2) in case (b), and

so on. With the average value of the loading angles at the mid-point of each section, the equivalent

tangential load is calculated, and they are listed in Table 4.4. Note that these tangential load are the

equivalent values of the load on each corresponding sections of a beam shown in cases (a), (b), (c),

and (d), when the load is assumed to be applied at the tip of the tooth profile.



According to Table 4.4, the maximum tangential load difference of about 249.76 N occurs in

loading case (B) between beam (2) and (3) because beam (3) does not experience any loading. For

loading case (A), the maximum difference of 246.46 N is loaded between beam (1) and (2). For

loading case (C), the difference of 247 N between beam (3) and (4). For loading case (D), the

maximum difference of only 3.3 N is loaded between beam (1) and (2), and between beam (2) and

(3).

4.2.2 Modeling of Bimetallic Composite Beam

L L

Figure 4.4: Square Beam Simplification for an Involute Composite Gear Tooth

A bimetallic composite gear tooth with an involute profile is modeled with a rectangular composite

gear tooth of two steel beams and one tin damper as shown in Fig. 4.4.

Table 4.5: Dimensions of the Beams and the Damper

length, L height, H width, W thickness, d

2 mm 2 mm 2 mm 0.4 mm

The deflection of a non-slender beam can be calculated with the following equation,

y(F, x) = FL 3 
(-

3 + 3X 2) + x, (4.8)
6Eslb AbGs

where F is the load, Es and Gs are Young's modulus and shear modulus of steel, and Ab and Ib are

the cross-sectional area and the cross-sectional moment of the beam. When the beam is not

slender, meaning that its height is larger than one tenth of its length, the deflection y has an extra

term of A Fx from the shear deflection of beam.
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Figure 4.5: Deflection of a Non-Slender Beam

Here, i is a Timoshenko beam constant, which is 1.5 in the cases for a square cross-sectional area,

and it is based on the assumption that the shear load is evenly distributed across the cross-sectional

area [11].

This deflection equation can also be expressed with the deflection at the tip, 8, and the bending

profile function of the beam, f(x),

y(F,x) = 8(F, L)-f (x) = FL3 +FL AbGx3 + 3AbGL + 6Es (4.9)
3EsI b AbGs 2(AbGL 3 + 3EsI,L

and they are,

6(F) = y(F, L) = 3E + AG F, (4.10)

AbGX 3 +3AbGsLx 2 + 6rlEs (4.11)
f(x) = (4.11)

2(AbGsL3 + 3,qEs bL)

4.2.3 Idealization of Stress-Strain Curve

O 
Efracture point

I plastic region I plastic region

EY Ey

(a) real curve (b) elastic-perfectly plastic curve

Figure 4.6: Idealization of Strain and Stress Curve

As a piece of metal experiences elastic deformation, its stress rises linearly proportional to its

strain. However, above a certain level of stress called yield stress or yield strength, the stress is no



longer linearly dependent on its strain, but follows the non-linear curve shown in Fig. 4.6(a) until

the piece fractures at the fracture point. The region above the yield strain is called the plastic

region, and it is very difficult to predict the deformation behavior of a material in this region.

Therefore an approximation of elastic-perfectly plastic stress and strain relationship is made, as

shown in Fig. 4.6(b), that the stress stays constant as the strain rises above the yielding point.

In evaluating three dimensional deformation, Mises equivalent stress a is used [12],

(Gx - oj)
2 + (o\l - (yz)

2 + (Z - (Yx)
2

= t " + 3([2Y 
+

T
2
-

+
T2 (4.12)

where ox, oy,, 'z , t , and rz indicate the tangential and shear stresses in the x, y, z directions.

Using the linear relationship between the stress and strain in the elastic region,

o = EE, t = Gy, G= E
2(1 +-u)

(4.13)

a = Poissons Ratio = 0.3

the equivalent strain increment de becomes,

(E - E)2 + (E - z)2 + (z -- ) 2 3 2 + yz + y2
9 3

Table 4.6: Material Constants for Steel and Tin

steel tin

items
symbol value symbol value

density [kg/m 3] Ps 7.8x10 3  Pt 8.0x10 3

Young's Modulus [N/m2 ] Es 200x10 9  Et 50x10 9

shear modulus [N/m2 ]  Gs 77x 109  Gt 19x109

yield strength [N/m2] y,s 1000x10 6  y, t 14x10 6

yield shear strengtha [N/m2] y, s 577x10 3  ty, 8x10 3

yield strain y, s 5 x10 -3  ty, 0.28 x10 -3

yield shear strain Yy, s 7.5 x10-3 Yy, t 0.42 x10-3

a. yield shear strength is calculated

equivalent stress formula, Eq. (4.12

(4.14)

by a, = A3ty, using Mises

The material constants of the beam and the damper are listed in Table 4.6. Because most of the

damper material consists of tin, the material constants of tin are used for those of the damper. Note
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that Young's modulus of steel is about four times larger than that of tin, which means that it

requires four times stronger force to elongate a steel piece to a certain amount than to elongate a

tin piece. Also, the yield strength of tin, which is less then one fifth of that of steel, indicates that

one fifth of force is capable of inducing plastic deformation of tin. In fact, one can easily deform a

2 cm by 2 cm tin bar plastically.

4.2.4 Damper Deformation

x Zx

zH

6L

(a) real deformation of the damper (b) simplified deformation of the damper

Figure 4.7: Simplification of Damper Deformation

As one of the beams in a gear tooth experiences the input load, the damper undergoes a

complicated three dimensional deformation as shown in Fig. 4.7(a). Here, 6 is the resulting

deflection on the side of the loaded beam, and 8' is the deflection on the side of the unloaded beam.

Here we assume that 8' is very small, and therefore, the damper deformation is approximated as 6

as shown in Fig. 4.7(b). Deformation profile in the z direction is approximated as straight.

Then, only v, the y directional deflection, is non-zero, and it is

z 6(F)
v(F, x, z) = dy(F, x)= d zf(x). (4.15)

If we apply this equation to the strain definitions,

Bu av =w =u +v av +w aw u (4.16)

and if we assume that the normal strain in the x direction Ex is negligible with respect to the shear

strain in the x and z directions, we find that only two components of strain become non-zero, which

are,

=(F) d , 8(F)f(x)
Yxy d zdxf(x)Y z d (4.17)



Therefore, the equivalent strain of the three-dimensional damper deformation can be evaluated

with the following equation,

(F z + Y z 8
E(F, x, z) = .- (f (x)) 2 + (f(x)) 2 . (4.18)

In above equations, 8 is the deflection at the tip and f'(x) is the first derivative of f(x), which is the

bending profile function, and they are previously defined in Eqs. (4.10) and (4.11).

4.2.5 Load Limits

(y, s Fmax

L

Figure 4.8: Stress Distribution of a Steel Beam at the Maximum Loading

The amounts of the maximum and the minimum load can be established by the load assumption

that no part of the steel beam experiences plastic deformation, and a part of the damper has to

experience plastic deformation. As shown in Fig. 4.8, the maximum load is calculated by

considering the critical bending of the beam, where at the root of the beam, the top and bottom

stress reaches the yield strength of the beam material. From the moment equilibrium equation,

H/2
Fmax L 2 2 2-y 2 dy, (4.19)

W H
0

the maximum input load Fmax can be calculated,

WH 2 a
F WH2°, s (4.20)Fmax - 6L

The beam has to deflect a certain minimum amount in order for a part of the damper to

undergo plastic deformation. This minimum deflection condition yields the minimum load limit.

At minimum loading, the strain at the tip of the damper, that is when x = L and z = d, has to be the

same as the yield strain of the damper,
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G 6(Fm n)
' t t 

= t(F,n, L, d) = " (f (L)) 2 + (df'(L)) 2 .
Et, d 4J

(4.21)

Therefore, the minimum force is,

Fmin = d- , 1 (L 3 + l +
Et (f(L)) 2 + (df(L))2 3EsIb AbG

(4.22)

From above Eqs. (4.20) and (4.22), the maximum of 667 N and minimum load of between 7 to

50 N depending on the thickness of the damper, is calculated and graphed on Fig. 4.91. Note that

the maximum load is independent of the damper thickness and the minimum load is dependent on

the thickness of the damper.

50

40 Fmax = constant @ 667 N

z30

E 20

10

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

damper thickness [mm]

Figure 4.9: Maximum and Minimum Load

4.2.6 Cyclic Energy Loss Analysis

0(x) = O(x)
Ekinetic = Utotal

Epotnetlal = 0

6(x) = 0
Ekinetic = 0

Epotenal + Wplastic = Utotal

Figure 4.10: Vibration of a Steel Beam

1. For the calculation, refer to the Matlab program in Appendix C.



As one of the beams experiences loading and unloading cycles of heavy loads, energy loss occurs

due to the partial plastic deformation of the damper. An analysis is performed to calculate the

energy loss amount of a gear tooth as one of the beams undergoes one cycle of vibration from the

initial position of zero deflection to the final position of zero deflection.

S steel
G,s  1'

3' 2, 2 Ey' t

tin

= energy loss ratio

A elastic energy + j plastic energy = total energy

Figure 4.11: Stress and Strain of the Cyclic Energy Loss Analysis

We assume that there are certain amount of mechanical energy at the initial stage all in the

form of kinetic energy. As the steel beam deforms, the existing kinetic energy turns into the

potential energy, stored at the deflected steel beam and the deformed damper. However, due to the

partial plastic deformation of the damper, some of the energy is lost, and therefore, the total energy

of the system at the deflected stage is less than the initial energy at the initial stage.

The energy loss due to damper's plastic deformation continues as the steel beam bounces back

to the initial position, after the deflection to the opposite side of the initial deflection. After one

cycle of the vibration, the strain and the stress of the steel beam and the strain of the damper are

zero, but the stress of the damper is not zero as shown in Fig. 4.11, resulting in residual stress in

the damper.

Two Matlab programs, rundamp.m and damp.m are written in order to calculate the energy

loss of the system over one cycle of the steel beam vibration 1. Here, the initial energy is also

calculated by multiplying the input force with the resulted deflection, if we assume a static loading

of the beam from the initial position.

1. For the programs, see Appendix C.
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First, shown in Figs. 4.12 and 4.13 are the surface deformation shape and corresponding strain

value, calculated from Eqs. (4.15) and (4.18), with the damper thickness of 4 mm and the input

load of 247 N1. According to Fig. 4.12, The maximum deflection of 4.9 gm occurs at the tip of the

damper in the first downward deflection. The maximum deflection of 4.6 gm occurs at the same

point in the second upward deflection.

As for the strain, according to Fig. 4.13, maximum strain of 0.0087, and 0.0082, is calculated

at the tip of the damper in the cases of the downward and upward maximum deflection positions.

The two lines in Fig. 4.13 indicates the critical elastic strain amount of 0.00067, and it is clear that

most parts of the damper experiences plastic deformation, resulting in the energy loss of 22.6% per

one cycle.
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0.015 4 at different
load and d
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0.4lost energy due to
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Figure 4.14: Input Energy and Energy

tic energy of the tooth
conditions of

amper thickness

200
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600

load [NJ

Loss due to the Plastic Deformation

Shown in Fig. 4.14 is the input energy and energy loss due to the plastic deformation of the

damper in various settings of the damper thickness and the input load. The maximum damper

1. This is drawn by another Matlab program, deflect247.m which is also presented in Appendix C.
There are other figures of the damper surface deformation and strain graphs in Appendix C, for the
cases when the damper thickness is 0.4 mm and the input force is 80 and 150 N.
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thickness is chosen to be 1 mm or 50% of the gear beam thickness, and the minimum, 0.1 mm or

5%. The load varies between the maximum and minimum load calculated previously in Fig. 4.9.

80, intermittent occurrence of
about 22.6% energy loss
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Figure 4.15: Energy Loss Percentage due to the Plastic Deformation of the Damper
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Fig. 4.15 shows the energy loss percentage at different damper thicknesses and the input loads

in different view points. Fig. 4.15 (c) shows the loss percentage versus the damper thickness, and

Fig. 4.15 (d) shows the loss percentage versus the load.

The smaller the damper thickness, the more percentage of the input energy is lost during the

deformation cycles according to Fig. 4.15. Although heavier loads induce more plastic energy to

be lost, the lighter loads induce higher percentage of energy loss due to the non-linear stiffness of

the steel beam.

One major weakness of this analysis lies in the assumption that the neighboring beam does not

deflect at all, or in other terms, it does not experience any load from the input load. In reality, the

load is carried to the neighboring beam through the deformation of the damper, resulting in less

amount of the damper deformation than previously calculated. Therefore, the theoretical result of

22.6% energy loss is somewhat unrealistic. Yet, the analysis provides the general damping

characteristics of bimetallic composite gear teeth, especially, the relationship among the damper

thicknesses, the input loads, and the energy loss percentage

Therefore, the improvement of this analysis is to model the deflection of the beam more

accurately. The first step would be to actually calculate the resistance force of the damper against

the deflection of the loaded beam. This can be done iteratively by assuming a certain profile of

deflection, and then calculating the resisting force of the damper using the strain values from the

first assumed deflection. Then, a more accurate profile can be calculated with the revised loading

conditions of the input load and resistant force. This method can be iterated to find the most

realistic profile of the beam bending.

The same iterative method can be used in calculating the resulting deflection of the unloaded

steel beam, and from these revised deflection profiles of the two neighboring steel beams, a more

accurate estimation of plastic deformation, and therefore the energy loss can be calculated.
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4.3 Experimental Analysis

4.3.1 Experimental Apparatus and Procedure

DC voltage/current generator

Figure 4.16: Experimental Apparatus for Bimetallic Helical Gears

Shown in Fig. 4.16, is the new experimental apparatus. A 1 hp DC motor is chosen for the input

motor. V-belts are again used for all the power transmission among the components because they

do not require precise alignments of the axes of the components.

An automobile alternator is used as the output load. Instead of generating electrical power

from the mechanical motion, it is used as a mechanical brake. By supplying direct current into the

stator of the alternator, magnetic fields are induced which resists any kind of rotational motion of

the axis. Therefore, the load size is controlled by the input current supplied by a DC current

generator.

The test gear has 49 teeth, and the pinion, 30 teeth. The input motor is connected to the gear of

the test gears, and the loading alternator is connected to the pinion of the test gears, so that the

gearbox is used as a speed increaser, which is the opposite of its intended use as a speed reducer.

Three pairs of gears are used for the experiment: one pair consisting of the original gear and

the original pinion (OGOP), another of the composite gear and the composite pinion (CGCP), and

the last of the original gear and the composite pinion (OGCP).



The vibration of the test gearbox is measured on top of the gearbox with an accelerometer, and

the output signal is amplified by an AC-powered signal amplifier. The noise is measured using a

microphone above the gearbox, and its output signal is amplified by a battery-powered signal

amplifier. All the data are recorded using an Ono Sokki spectrum analyzer.

Table 4.7: Gear Rating for 601A Helical Gears

max input operating radius
input speed max input max input tangential load onpower torque pinion gear pinion

pinion gear pimon

[rpm] [hp] [lbf in] [ lbf] [in] [in]

1750 4.3 157 245
1.05 0.64

1150 2.95 163 255

[Hz] [Watt] [Nm] [N] [mm] [mm]

29.17 3207 17.74 1090
26.7 16.3

19.17 2200 18.42 1134

According to the specifications provided by Boston Gears in Table 4.7, the maximum torque

that can be applied to the chosen 601A helical gears is about 160 lbf in or 18 Nm. With a 1 hp input

motor, the maximum torque that can be applied to the gears is about 37 lbf in or 4.2 Nm, which is

about 23% of the maximum rated torque; in terms of the tangential load, the rated maximum load

is 1090 N, and the maximum load that can be applied to the test gears is about 57.5 lbf or 256 N.

This tangential load on the gear teeth is coupled to the running speed of the test by the

proportional relationship according to DC motor characteristics 1 . Therefore, rotational speed are

used for the experiment settings.

Seven different settings are used in the experiment. The gears are run in 610, 850, 1100, 1350,

1600, 1850, and 2100 rpm, with corresponding mesh frequencies (MF's) at, 500, 700, 900, 1100,

1300, 1500, and 1700 Hz. In terms of the percentile with respect to the maximum tangential load

of 1090 N, or maximum load percentile (MLP), the settings are 6.1, 8.5, 11, 13.5, 16, 18.5, 21%,

and they are 67, 94, 121, 149, 176, 204, and 231 N, respectively.

Shown in Table 4.8 is the key frequency components of the experimental settings of MF, SF

and BE Both gear and pinion axes have two ball bearings each with 7 balls.

1. For more explanation on DC motor characteristic, see Appendix A.2 Motor Drive.
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Table 4.8: Key Frequency Components in the Experimental Results

shaft bearing

max load percentage mesh frequency frequency frequency
Fig. (MLP) [%] (MF) [Hz] (SF) [Hz] (BF) [Hz]

Pinion Gear Pinion Gear

4.17 6.1 500 10.2 16.3 71.2 113.9

4.18 8.5 700 11.7 18.7 99.2 158.7

4.19 11 900 15 24 128.3 205.3

4.20 13.5 1100 18.3 29.3 157.5 252

4.21 16 1300 21.7 34.7 186.7 299

4.22 18.5 1500 25 40 215.8 345.3

4.23 21 1700 28.3 45.3 245 392

4.3.2 Experimental Results

The experimental data are presented in seven figures for each setting of MF and MLP, each

consisting of four graphs. For all seven figures, from Figs. 4.17 to 4.23, the vibration and the noise

data of OGOP and CGCP are presented in graphs (a) and (b). Graphs (c) and (d) show those of

OGOP and OGCP. All the OGOP data are represented with dotted lines, and those of CGCP and

OGCP are indicated in solid lines. Graphs (a) and (c) on the left side are the vibration data, and

graphs (b) and (d) on the right side show the noise data. Again, throughout the graphs, the

harmonics of the MF are indicated by integers corresponding to the harmonic numbers, and the

known noise is indicated with the arrows.
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Figure 4.17: Vibration and Noise Frequency Spectra of Helical Gears at 6.1% MLP

Fig. 4.17 shows the vibration and noise frequency spectra of helical gears of all three gear sets

of OGOP, CGCP, and OGCP at the load setting of 6.1% MLP, running at 610 rpm with 500 Hz ME

The tangential load that is applied to the gear teeth is 67 N. Both the vibration and noise data show

clear MF components of 500 Hz and their harmonics. The comparison of the OGOP data with both

CGCP and OGCP shows that OGOP has much more distinctive frequency signals. This is because

the surface finish of OGOP is better than that of CGCP or OGCP due to the unavoidable surface

refinish process after the soldering is performed for CGCP and OGCP.

Comparison between the data of CGCP and OGOP in graphs (a) and (b) indicates that the

vibration and noise level of CGCP is higher than that of OGOP, implying that there is no damping

advantage of using CGCP. This is because CGCP has slits on both the gear and the pinion; the slits

of the pinion and gears are supposed to match one another, yet, mismatch among them is

unavoidable due to the modification error, resulting in discrete gear impacts across the gear face,

raising vibration and noise level.

However, OGCP shows a damping effect on both vibration and noise level from OGOP. The

first three harmonics of MF of graph (c) shows the vibration level drop of 3 to 6 dB. Also the noise
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(b) noise @ 610 rpm (500 Hz)



data of graph (d), shows again 3 to 8 dB drop in sound pressure level at the first three harmonics of

MF

(a) vibration @ 850 rpm (700 Hz)
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Figure 4.18: Vibration and Noise Frequency Spectra of Helical Gears at 8.5% MLP

Shown in Fig. 4.18 is the frequency and noise spectra of test gear sets of at 8.5% MLP, running

at 700 Hz ME Again indicated in graphs (a) and (b), the vibration and noise level of CGCP is

greater than those of both OGOP and OGCP. The reduction level of OGCP is smaller compared to

the previous case, showing small damping effect only at the fundamental MF of graph (c). As for

the noise level, only the second harmonic frequency of MF shows about 6 dB drop in graph (d).

There are some other peculiar peaks that exist at around 500, 2500, and 4300 Hz.
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Figure 4.19: Vibration and Noise Frequency Spectra of Helical Gears at 11% MLP

Fig. 4.19 shows the resulting vibration and noise frequency spectra of all the gear sets at 11%

MLP at 900 Hz MI. OGCP does indicate some improvements in the vibration damping especially

at the third harmonic of MF in graph (c). Again, it is shown that there exist peaks at near 500,

2500, and 4300 Hz.

The following Figs. 4.20, 4.21, 4.22, and 4.23 shows the frequency spectra of the test gear sets

at 13.5, 16, 18.5, and 21% MLP. There exist strong frequency response in the ranges of between

200 and 1000 Hz, between 2000 and 3400 Hz, and between 3500 and 4500 Hz, which are most

likely originated from the selective frequency filtering by the resonance characteristics of the

experimental setup itself.

Other signals originating from the axis rotation of motor, gears, and the alternator as well as

the vibration of the rubber v-belts are expected to be in the experimental data, which might be the

causes of the dominant peaks at 500, 2700, and 4200 Hz.

In summary, OGCP shows drops in both vibration and noise level of 3 to 5 dB harmonic

frequencies of MFs.
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Figure 4.20: Vibration and Noise Frequency Spectra of Helical Gears at 13.5% MLP
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Figure 4.21: Vibration and Noise Frequency Spectra of Helical Gears at 16% MLP



(a) vibration @ 1850 rpm (1500 Hz)
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Figure 4.22: Vibration and Noise Frequency Spectra of Helical Gears at 18.5% MLP
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Figure 4.23: Vibration and Noise Frequency Spectra of Helical Gears at 21% MLP
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4.4 Conclusions

Theoretically, energy loss per one deflection cycle is calculated using a basic theory of beam

bending and stress/strain analysis. 22.5% of energy loss is calculated for the modeled case of the

damper of 2 mm by 2 mm by 0.4 mm. This energy loss percentage is accessed as very high due to

the assumption that the neighboring unloaded beam does not experience any load from the

deflection of the damper. If we consider the deflection of the neighboring beam, the deflection

difference between the two steel beams is smaller than the theoretical value.

However, a basic damping characteristic is defined by the analysis that the energy loss

percentage is inversely proportional to the size of the damper thickness and the amount of the load

on gears.

As for the experimental analysis, the vibration and noise level of CGCP turns out to be worse

than that of OGOP due to the mismatches of the slits as gears mesh. Nevertheless, the data of

OGCP indicates about 3 to 5 dB damping effect in both vibration and noise level at certain

harmonics of the fundamental MF's.

Throughout all the experiments, there exist several frequency components, which is not related

to MF's. These components are possibly from SF's and/or BF's or even from the surface finish or

other sources which are unknown at this point. Also, the selective frequency filtering of the

experimental setup makes the source identification difficult, indicating that more rigorous

investigation on the dynamics of experimental setup is need.



Chapter 5

Investigation on Bimetallic Composite Beam

5.1 Bimetallic Composite Beam

In the previous cyclic energy-loss analysis, plastic deformation of the damper was assumed, based

on the premise that the stiffness of the tin layer is negligible; however, the stiffness of the tin layer

does carry the load to the neighboring unloaded beam. This reduces the amount of the damper

deformation, and therefore the damper may not experience any plastic deformation. Yet, even in

the elastic region, hysteresis damping occurs due to the internal friction as the material deforms,

and it is expected that the high internal hysteretic damping of the tin damper layer will reduce the

vibration energy.

W d

(a) original steel beam (b) bimetallic composite beam

Figure 5.1: The Original Steel Beam and the Composite Bimetallic Beam

Hence, two beam structures are made in order to model the gear teeth. One structure is a steel

beam, representing the original, conventional gear tooth, and the other consists of two steel beams

soldered by one narrow strip of tin layer, representing a composite bimetallic gear tooth as shown

in Fig. 5.11

1. For the picture of the beam, see Appendix D.



Table 5.1: Dimensions of the Bimetallic Composite Beam

5.2 Theoretical Analysis

5.2.1 Vibration of Non-Slender Beam

156

Figure 5.2: Vibration of a Non-Slender Beam

First, the vibration of the test beam structure needs to be identified. From the previous discussion

in Chapter 4, the deflection y of a non-slender beam structure can be calculated by Eq. (4.9),

(F) f (x) FL 3  FL).- AbGx 3 + 3AbGLx 2 + 6 E,Ib
( 3EIb AbG) 2(AbGsL 3 + 31rEsbL)

where 8(F) is the deflection at the tip, and f(x) is the profile function which describes the bending

shape of the beam. Even though the test beams are slender beams, the bending equation of a non-

slender beam is used in future applications of the analysis to the non-slender gear teeth.

If we assume that the velocity profile is the same as the displacement profile f(x), the velocity

y becomes,
at

AbGsx 3 + 3AbGsLx2 + 6Eslby(F, x)= 8(F) -f(x) = 6(F) - 2 AbGsx +3AbGLx2 + 6ESIb
tt 2(AbGsL3 + 3EsIbL)

(5.1)

where 8 is the velocity of the beam at its tip. Then, the kinetic' energy of the system can be

calculated [13],

item symbol value

length [m] L 177.8x10 -3

height [m] H 9.398x10 -3

width [m] W 29.5x10 -3

width of Gap [m] d 5.46x 10-3



PsAb A2GL7 - AbGs1EsbL5 + 12E.2EI2L3
62 2 2sab a2 Psbb 1s 5 2

T* = - -m = L )2dx = -y 3 . (5.2)
2 o

rtg 2 Jo- d 2 4(AbGsL 3 + 3rqEsIb)2

The potential energy of the system can also be calculated,

82 Es b t' 2 52 Es b(12A2G2L 3 )
V =-k d = (5.3)

2 orig 2 J0\x = 4(AbGsL 3 + 31EsIb)2

And applying Eqs. (5.1) and (5.2) to the Lagrange's Equation,

n = T*- V; . -- = n , (5.4)

with the non-conservative generalized force E of friction force, c6, and harmonic input force,

Fo cos wt at the input frequency of (o,

E = - c6 + FoCosOt , (5.5)

the equation of the motion is established,

m8 + c + k8 = Focosot, (5.6)

where m and k are equivalent mass and equivalent stiffness of the system defined in Eqs. (5.2) and

(5.3). Here c is the damping constant, and it is related to the damping coefficient , as follows [13],

_ = 2,J . (5.7)

For the composite beam structure, because it consists of two narrow steel beams and one tin

damper, the equivalent Young's modulus Eeq and equivalent shear modulus Geq should be used for

the analysis. This can be calculated by the following equations,

Eeq + Ett A GSAS (5.8)
b eq Ab

(W - d)H 3  dH 3  WH 3

s t 1 ' 12 b 12 (5.9)

As = (W - d)H, A t = dH, Ab = WH, (5.10)

where Et and Gt are Young's modulus and shear modules of the tin damperl, and It and A t, the

moment and the cross-sectional area of the tin damper, and Is and As are the moment and the cross-

sectional area of the steel beams of the composite beam.

1. All the material constants of tin and steel are listed previous in Table 4.6.
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Therefore, the equivalent mass mcomp and the stiffness kcomp for the composite beam are,

33 A 2G2 L7 - 33 AbG qlEqIL
5 + 22 E2 L

eqA 3 5 q 35 AbGeqeqbL + 12 eq

m - nlnd
comp 4(AbGeqL 3 + 3lEeqlb )2 ,

EeqIb(12A2G2 q 3 )
k LoMP = - b (
comp 4(AbGeqL 3 + 3lEeqIb)2

where Peq is the equivalent density of the composite beam structure, which can be calculated,

PsAs + PtA,
Peq Ab (

5.11)

5.12)

5.13)

Also, using the above equations, the resonant frequency or the natural frequency of the beams

can be calculated,

2 1 k 1
f

2
resonant - (2t) - (

(27c)2 m (2Tc)2

and all the values of this

Eeqb(12AG2 L3)Eeqb(12A qL) (5.14)

peqAb 35A2GL7 - 35 AbGeqTlEeqbL
5 + 12112E2qI2L3

35 b eq 35 eq

analysis are listed in Table 5.2.

Table 5.2: Key Values for the Equations of Motion

item symbol value

total area Ab 277.2x10 -6 [m 2]

total moment Ib 2.04x 10-9 [m4]

steel area A s  225.9x10 -6 [m 2]

steel moment Is 1.66x10-9 [m4]

tin area At 51.3x10-6[m 2]

tin moment I t  0.38x10 -9 [m4]

equivalent density Peq 7.84x10 3 [kg/mn3 ]

equivalent Young's modulus Eeq 172x10 9 [N/m2]

equivalent shear modulus Geq 66.3x109 [N/m 2]

morig 87.4x10-3 [kg]
equivalent mass

mcomp 87.8x10 -3 [kg]

korng 211x10 3 [N/m]
equivalent stiffness

kcomp 182x10 3 N/m]

(,



Table 5.2: Key Values for the Equations of Motion

item symbol value

Corig 271.3 [Ns/m]

damping constant 4orig

damping coefficient
comp 252.7 [Ns/m]

Scomp

fresonant, orig 248 [Hz]
resonant frequency

fresonant, comp 229 [Hz]

5.2.2 Vibration Response of Beam under Harmonic Force

If the harmonic forcing F(t) = Focoswt is applied to the equation of motion, as in Eqs. (5.6), the

particular solution of deflection X, is also expected to be harmonic,

xp(t) = Xcos((t - 4) , (5.15)

where X.and 0 are

X = = tan- ( )
[(k - mw2)2 + C202]1/2 ' k - mo2

(5.16)

Then, the undamped natural frequency and the damping coefficient become

On = 2fresonant = cC 2m, = c
rvm cC 2m02,,

C c = 2(o .
m

(5.17)

Using the static deflection under the static force Fo ,

(5.18)8st = 0

and the frequency ratio of

0,
r - m7

O n

we obtain the following equations

(5.19)

X = M

6st 1 -,O 2 + 2] 
1 / 2

Wn (On-

1

(1 -r 2 )2 + (2r) 2
(5.20)
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= tan-{ (O 2 = tan- 1 ( 2 )r , (5.21)

where the quantity M is called the magnification factor amplification factor, or amplitude ratio.

1
For 0 < < - the maximum value of M occurs when

T2

r = /1 - 22 or co = coJ1 - 22, (5.22)

which can be seen to be lower than the undamped natural frequency con and the damped natural

frequency od = (on1 - 22 . The maximum value of X (whenr = /1 - 2 ) is given by

(Xm = 1 - (5.23)

and the value of X at co = con by

= , (5.24)

which means that, in a vibration test, if the maximum amplitude of the response and static

deflection under the static load are measured, the damping ratio of the system can be found using

Eq. (5.24).

For small values of damping ( < 0.05 ), we can assume,

X= 1
- - -2 Q. (5.25)

st ax 6st = n

The value of the amplitude ratio at resonance is also called Q factor or quality factor of the system.

The points R 1 and R2, where the amplification factor falls to Q/'2, are called half power points

because the power absorbed (AW) by the damper, responding harmonically at a given frequency,

is proportional to the square of the amplitude:

AW = nc(X 2 . (5.26)

To obtain the difference between the frequencies associated with the half power points R 1 and R2,

we set X/8st = Q/4f2 so that

1 Q 1
1 - or r 4 - r 2 (2 - 42) + ( - 8 2) = 0. (5.27)

(1 - r2)2 + (2r)2 2gi2v

Then, the solution gives



r,2 = 1-2 2±2j/ 1+2, (5.28)

and for small values of , it can be approximated as

r2,2 = R,2 = (1 2 ) = 1 + 2 , (5.29)

where 0)1,2 = (IR ,R 2 Using the relation

02 = (02 + 0 1)(0 2 - 0 1) = (R22-R2)- 4 0 2 , and (5.30)

02 + 01 = 20,, (5.31)

we can find the bandwidth Aw given by

AmO = 0 2 - 01 - 20,n (5.32)

Combining Eqs. (5.25) and (5.32), we obtain

1 n (5.33)
S2 02 - W1

It can be seen that the quality factor Q can be used for estimating the equivalent viscous damping

in a mechanical system, which is the natural frequency divided by the bandwidth of the half power

points.

x

st

Q

72I

I I .

R 1.0 R2 n
half power points

Figure 5.3: Harmonic Response Curve showing Half Power Points and Bandwidth [13]

Therefore, from the half power points of the harmonic response curve, or the transmissibility

curve, the damping coefficient of each beam can be evaluated using Eq. (5.33). With Eqs. (5.7),

(5.11), and (5.12), the equation of motion of both beam can be defined.
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5.3 Experimental Analysis

5.3.1 Experimental Apparatus and Procedure

Figure 5.4: Shaker Experimental Apparatus

Figure 5.5: Magnified View of the Test Beam Connection to the Shaker

Shown in Fig. 5.4 is the experimental apparatus to measure the damping coefficients of the test

beams. Each of the beams are connected to the shaker through a load cell or a force transducer for

the measurement of the input force, and an accelerometer is attached to each beam as shown in

Fig. 5.5 to measure the output displacement.

The shaker is run by a signal generator. However, before the shaker experiment, a hammer

experiment is performed in order to locate the approximate range of the resonant frequency of each



beam. Then, the response of the frequency range above and below 100 Hz are measured near the

recorded resonant frequency.

5.3.2 Experimental Results
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Figure 5.6: Hammer Result for Steel Beam and Bimetallic Beam

First, shown in Fig. 5.6 is the result of the hammer experiment. The steel beam data are plotted

with dotted lines and the composite beam data are plotted with solid lines. Graph (a) shows the

input impact force from the force transducer which is attached to the hammer head. According to

the graph, the impact occurs at time 0.02 second for the steel beam and at 0.41 second for the

bimetallic beam. The response signals of the accelerometer output in graph (b) also agree on the

timing of the impact. In graph (c), the transmissibility curve shows that the resonant frequency of

steel beam lies at around 400 Hz and that of the bimetallic composite beam, at 380 Hz. Therefore,

the shaker experimental frequency range has been set between 300 Hz and 400 Hz considering the

fact that the hammer experiment tends to bring up the natural frequency.
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Shown in Fig. 5.7 is the input force and the output displacement of the shaker experiment.

Three different force settings are used for each beam; the dotted lines indicate the input force of

the steel beam, and the solid lines, that of the bimetallic beam. Note that about 2 to 5 N force are

applied to the steel beam, and 4 to 8 N of force is applied to the composite beam with a standard

deviation of 15 to 20% of the average force, as shown in graph (a). If we compare the input force

data with the displacement data in graph (b) of the 5 to 8% standard deviation, it is clear that the

displacement is fixed at around 35 to 65 pm for the steel beam and at 75 pm for the composite

beam, and the size of the input force has been changed as forcing frequency changes.

Even though the displacement is about the same for the steel and bimetallic beams, nearly one

half of the input force amount is recorded for the composite beam. This indicates that the stiffness

of the composite beam is much weaker than that of the steel beam. Also, a large frequency shift of

the force and displacement of the composite beam as the size of the load changes, indicates a non-

linear relationship between the load and the resonant frequency.
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cc) 0.0269 @ 349.1 [Hz]
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oa) 0.0170 0 373.4 [Hz]
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340 345 350 355 360 365 370 37
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Figure 5.8: Transmissibility Curves of the Test Beams
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Fig. 5.8 shows the transmissibility curves for the test beams in the neighborhood of their

resonant frequencies. Due to the differences in the inertia and the stiffness of the two beams, their

resonant frequencies differ by about 20 Hz, which is expected from the theoretical analysis. From
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the above graphs, half power points are all identified, and with the measured resonant frequencies,

the damping coefficient is calculated using Eq. (5.33),

1 0)n

2 02 ) 1

and they are listed in Table 5.3.

Table 5.3: Summary of the Experimental Result

resonant damping
frequency [Hz] coefficient

371.8 0.0144
steel 372.2 0.0156
beam

373.4 0.0170

349.1 0.0269
composite 355.1 0.0286

beam
337.9 0.0235

Comparison of the damping coefficients of the two beams reveals that the damping coefficient

of the composite beam is about twice as great as that of the steel beam. This indicates that indeed

the damper layer reduces the vibration energy even from the elastic deformation. The frequency

shift of each loading case of the composite beam also indicates a non-linear relationship among

input load, resonant frequency and the damping coefficient as noted before.

5.4 Further Development of Theoretical Analysis

5.4.1 Vibration of Beam

Figure 5.9: Effective Length Decrease due to the Vibration of the Base



There exists a discrepancy of about 100 Hz between the resonant frequency of the theoretical

prediction and that of the experimental result. From a number of experiments with various other

clamping devices, it is verified that the boundary condition of the experimental setup above is not a

free-clamped condition because of the base vibration. The vibration of the base raises the resonant

frequency of the vibration because it shortens the effective length, Leff as shown in Fig. 5.9.

Table 5.4: Recalculated Values for the Equations of Motion

item symbol value

effective length Leff, ong 145

[mm] Leff comp 143

equivalent mass morig 69.2x10-3

[kg] mcomp 68.7x10 -3

equivalent stiffness korig 379x 103

[N/m] kcomp 340x 103

Corig 
324

damping constant orig

damping coefficient
[Ns/m] Ccomp 305

Scomp

resonant frequency fresonant, orig 373
[Hz] fresonant, comp 355

Listed in Table 5.4 are the new values for the equations of the motion in the theoretical

analysis with the calculated new effective length of each beam1 from the experimental resonant

frequency. From the above values and the measured damping coefficients from the experimental

analysis in Table 5.3, transmissibility curves are calculated 2, and are plotted in Fig. 5.10. The solid

lines indicate the transmissibility curve of the theoretical analysis, and the dotted lines indicate that

of the experimental data, showing good agreement with each other.

1. Leff of each beam is different because each beam has different mass and stiffness.
2. See Eq. (5.16).
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Figure 5.10: Transmissibility Curve of Experimental and Theoretical Analysis

5.4.2 Vibration of Gear Tooth from the Cyclic Energy Loss Analysis

Further development of the cyclic energy loss analysis of Chapter 4 can be pursued with Eqs.

(5.11) and (5.12) of equivalent mass and equivalent stiffness.

Also, using Eq. (5.34),

AW = 7,c )X 2 ,

it is possible to complete the equation of motion for the composite gear tooth. From the previous

analysis, the lost energy per cycle, AW turned out to be 0.584x10-3J, which is 22.6% of the total

energy, 2.5x10 - 3 J for the case of 247 N load and 0.4 mm damper thickness. The deflection, X, is

about 4.74 pm, which is the average value of the first deflection and that of the second.



Hence, the damping constant c and damping coefficientf can be calculated, and they are listed

in Table 5.5. It turns out that with 22% cyclic energy loss, the beam does not oscillate at all.

Table 5.5: Dynamic Constants of Bimetallic Composite' Helical Gears

meq keq fresonant Ceq

4.29x10 -12 kg 336 N/m 145x10 3 Hz 5.7 Ns/m N/Aa

a. 1 > 1, therefore it is not defined, meaning no oscillation in the system.

5.5 Conclusions

The damping characteristics of the bimetallic composite gear teeth is investigated using a

bimetallic beam structure for the cases of elastic deformation. Experimental results show that the

damping coefficient of the bimetallic beam is about twice larger than that of the steel beam. From

the measured damping coefficient, the equations of motion and the transmissibility of the

bimetallic beam are established. The transmissibility curve from the theoretical calculation agrees

well with that of the empirical data, indicating the successful modeling of the bimetallic beam

structure.

Also, the connection between the cyclic energy loss analysis of Chapter 4 and the dynamic

damping analysis is made using some of the developed equations.
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Chapter 6

Summary of Results and Future Studies

6.1 Summary of Research

Two experimental investigations are reported: one with bimetallic composite bevel gears and the

other with bimetallic composite helical gears. The experimental results show that the vibration and

the noise level of the bimetallic gears are about 1 to 3 dB lower than that of the original

conventional gears at the harmonics of the mesh frequencies.

In order to understand the dynamics of gear teeth, an experimental model of a simple beam is

used. The results from this modeling show that the damping coefficient of the bimetallic beam

structure is about as twice as that of the steel beam.

The cyclic energy loss of the bimetallic composite gear teeth is calculated using a beam

bending equations and the assumed elastic-perfectly plastic stress-strain relationship. This analysis

reports that about 22% of the vibration energy is lost due to the plastic deformation of a damper of

2 mm by 2 mm by 0.4 mm, when the tangential load is about 40% of the maximum loading. With

the theoretical maximum load of 667 N, about 10% energy loss is calculated from the deformation

of the same damper. Also, this analysis indicates that the energy loss percentage is inversely

related to the thickness of the damper and the amount of the load.

The dynamic damping analysis is also performed to complete the equation of the motion for

the test beams. With the measured damping coefficient, the transmissibility curve of the bimetallic

beam is identified, and it agrees well with that of the experimental data.

In conclusion, the internal damping of the bimetallic beam structure is higher than that of the

conventional beam structure, and the application of the bimetallic beam structure in gear teeth

indeed lowers the vibration and noise level of gears

6.2 Future Works

From the above studies, the basic dynamic analysis of the gear teeth are established. The next step

is to understand the significance of the gear teeth damping effect due to the existence of damper

layers with respect to the overall vibration and noise of the gear blanks.
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Experimentally, clearer evidence of the damping effects due to the bimetallic structure should

be established from the rigorous analysis on the dynamic of each component of the experimental

apparatus. Full-load experiments are also recommended in the gear noise testing, where the

vibration and noise are measured when the gears are running at the maximum load. The increased

load will not only increase the vibration and the noise level of the test gears, but also increase the

damping effect of the bimetallic structure due to the larger damper deformation.

After the full understanding of the damping effect of the bimetallic structure in gears, the

design optimization should be followed in order to maximize the damping effect, yet minimize the

power transmission efficiency loss, which occurs due to the compensated stiffness from the

application of the bimetallic structure.

And finally, an improvement in the manufacturing method of the bimetallic gears should be

studied for economical production of the bimetallic gears.



Appendix A

Experimental Components

A.1 Measuring Devices

A.1.1 Accelerometer and Force Transducer

The most widely used transducer for vibration measurements is the piezoelectric accelerometer. It

exhibits better all-round characteristics than any other type of vibration transducer. It has very

wide frequency and dynamic ranges with good linearity throughout the ranges, and because there

are no moving parts to wear out, it is very robust and reliable so that its characteristics remain

stable over a long period of time. Additionally, the piezoelectric accelerometer is self-generating,

so that it does not need a power supply. Its acceleration proportional output can be integrated to

give velocity and displacement proportional signals as shown below equations.

acceleration acceleration
(frequency) 2, velocity = frequency

The heart of a piezoelectric accelerometer is the slice of piezoelectric material, usually an

artificially polarized feroelectric ceramic, which exhibits the unique piezoelectric effect. When it is

mechanically stressed, either in tension, compression or shear, it generates an electrical charge

across its pole faces which is proportional to the applied force. In practical accelerometer designs,

the piezoelectric element is arranged so that when the assembly is vibrated the mass applied a

force to the piezoelectric element which is proportional to the vibratory acceleration [15].

Force transducers or "load cells" are used in mechanical-dynamics measurement together with

accelerometers to determine the dynamic forces in a structure and the resulting vibratory motions,

in order to describe the mechanical impedance of the structure. The force transducer also uses a

piezoelectric element, which when compressed gives an electrical output proportional to the force

transmitted through it. The force signals can be processed and measured with exactly the same

instrumentation used with accelerometers [15].

A.1.2 Sound Pressure Level and Microphone

In theoretical investigations of sound, it is convenient to express sound pressures in N/m 2 and

sound intensities in Watts/m2. However, in experimental work it is customary to describe these
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qualities through the use of logarithmic scales known as sound pressure levels (SPL). The use of a

logarithmic scale compresses the range of numbers required to describe this wide range of

intensities, which is often encountered in acoustical environment; audible intensities range from

approximately 10-12 to 10 Watts/m 2 . Also, the human ear subjectively judges the relative loudness

of two sounds by the ratio of their intensities, which is a logarithmic behavior.

The sound pressure level (SPL), then, can be expressed as,

SPL = 20- log(PO) (1.2)

where Pe is the measured effective pressure of the sound wave, and Po is the reference effective

pressure. A reference pressure of Po = 0.00002 N/m2 , or the equivalent pressures of 0.0002 dyne/

cm2 or 0.0002 microbar, is commonly used for computing sound pressure levels in air [14].

Piezoelectric microphones employ crystals or dielectrics which upon being distorted by the

action of incident sound waves become electrically polarized and produce voltages linearly related

to the mechanical strains. The acoustic signals also can be processed and measured with the same

instrumentation used with accelerometers. [15]

A.2 Motor Drive

A.2.1 AC and DC Motor Drive Comparison

There are two kinds of drives: alternating-current (AC) drives and direct-current (DC) drives. Both

offer unique benefits and features that may make one type or other better suited for certain

applications. [16] However comparing their benefits in applications, AC drives may be better

because,

* They use conventional, low cost, three phase AC induction motors for most applications.

* AC motors require virtually no maintenance and are preferred for applications where the

motor is mounted in an area not easily reached for servicing and replacement.

* AC motors are smaller, lighter, more commonly available, and less expensive than DC

motors.

* AC motors are better suited for high speed operation (over 2500 rpm) since there are no

brushes, and commutation is not a problem.

* Whenever the operating environment is wet, corrosive or explosive and special motor

enclosures are required. Special AC motor enclosure types are more readily available at

lower price.



* When multiple motors in a system must operate simultaneously at a common frequency and

therefore, speed.

* When the application load varies greatly and light loads may be encountered fir a prolonged

periods. DC motor commutators and brushes may wear rapidly under this condition.

* When low cost electronic motor reversing is required.

However, DC drives may be better because

* DC drives are less complex with a single power conversion from AC to DC.

* DC drives are normally less expensive for most horsepower ratings.

* DC motors have a long tradition of use as adjustable speed machines and a wide range of

options have evolved for this purpose.

* Cooling blowers and inlet air flanges provide cooling air for a wide speed range at constant

torque.

* DC regenerative drives are available for applications requiring continuous recrimination for

overhauling loads. AC drives with this capability would be more complex and expensive.

* DC motors are capable of providing starting and accelerating torques in excess of 400% of

rated.

* Some AC drive may produce audible motor noise which is undesirable in some applications.

Comparing the cost and application conditions, DC drives are recommended for gear testing

especially when the rated power has to be more than one horse power.

A.2.2 DC Motor Characteristics

torque hp
i I constant torque-variable

Shorsepower

I (rated field excitation)~ : ._ : torque: :

0 Ll constant horsepower-variable
0. I -torque

(weakened field excitation)

100 200
e% Rated Base Speed

Figure A.1: DC Motor Characteristics [16]

A shunt-wound motor is a DC motor in which the field windings and the armature may be

connected in parallel across a constant-voltage supply. In adjustable speed applications, the field is

connected across a constant-voltage supply and the armature is connected across an independent

adjustable-voltage supply. Permanent magnet motors have similar control characteristics but differ



primarily by their integral permanent magnet field excitation.

The speed of a DC motor is proportional to its armature voltage; the torque is proportional to

armature current, and the two quantities are independent. Armature voltage controlled DC drives

are constant torque drives. They are capable of providing rated torque at any speed between zero

and the base speed of the motor as shown in Fig. 2.6. Horsepower varies in direct proportion to

speed, and 100% rated horsepower is developed only at 100% rated motor speed with rated torque.

Most of motors are rated with power unit of horsepower (hp), and the rotational speed is rated

with speed unit of rotational per minute (rpm), which are related to each other with the following

equation,

horse power [HP] = torque [lbf in] - rotational speed [RPM] (A.3)
63025

Therefore, a 1 hp motor with the base speed of 1750 rpm exerts the torque of 245 lbf in.

A.2.3 DC Motor Drive Types

There are two kinds of drives for DC motors: nonregenerative and regenerative DC drives.

Nonregenerative DC drive controllers are the most conventional type in common usage. In their

most basic form they are able to control motor speed and torque in one direction only. The addition

of an electromechanical (magnetic) armature reversing contractor or manual switch permits

reversing the controller output polarity and therefore the direction of rotation of the motor

armature. In both cases toque and rotational direction are the same.

Nevertheless, regenerative adjustable speed drives, also known as four-quadrant drives, are

capable of controlling not only the speed and direction of motor rotation, but also the direction of

motor torque. The term regenerative describes the ability of the drive under braking conditions to

convert the mechanical energy of the motor and connected load into electrical energy which is

regenerated to the AC power source, working as a generator.

Shown in Fig. 2.7 is the mechanism of regenerative drives. When the drive is operating in

quadrants I and III, both motor rotation and torque are in the same direction and it functions as a

conventional nonregenerative unit. The unique characteristics of a regenerative drive are apparent

only in Quadrants II and IV, where the motor torque opposes the direction of motor rotation which

provides a controlled barking or retarding force. A high performance regenerative drive, is able to

switch rapidly from motoring to braking modes while simultaneously controlling the direction of

motor rotation.



Motor Rotation

I Torque

arrows
same direction

motoring (pulling)

arrows
Sopposite direction

braking (holding)

Quadrant III Quadrant IV

Figure A.2: Regenerative DC Motor Drive [16]

A regenerative DC drive is essentially two coordinate DC drives integrated within a common

package. One drive operates in Quadrants I and IV, the other operates in Quadrants II and III.

Sophisticated electronic control circuits provide interlocking between the two opposing drive

sections for reliable control of the direction of motor torque and/or direction of rotation. [16]

Ouadrant II Quadrant I



Appendix B

Bimetallic Composite Bevel Gears

Figure B.I: Picture of Bimetallic Composite Bevel Gears

Figure B.2: Picture of Bimetallic Composite Bevel Gear Teeth



Appendix C

Bimetallic Composite Helical Gears

C.1 Helical Gear Dimensions

Although the vender is Boston Gears, only the housing is made by Boston Gears, but the gears are

made by a supplier from Germany, who uses metric system for gear manufacturing and refuses to

submit the dimensions of their gears. Therefore, two different calculations are performed.

Table C.1: Gear Dimensions according to the ANSI System

Symbol [in] [mm] Formula*

Speed Ratio 1.633 Ng/Np

Pressure Angle f 21.170 atan (tal

Normal Pressure Angle fn 200 given

Helix Angle y 200 given

Base Helix Angle Yb 18.750 atan(tany - cos )

Diametral Pitch P 23.868 - PncosW

Circular Pitch Pc 0.132 - 7r/P

Base Pitch Pb 0.063 - 2nRb/N

Normal Diametral Pitch Pn 25.4 - given

Normal Circular Pitch Pcn 0.124 - PccosW

Center Distance C 1.69 42.93 given

W
Face Contact Ratio mf 1.095 - tan W

C

Module m 0.021 - Dp/N

Addendum a 0.021 0.54 m

Dedendum d 0.025 0.63 1.15m

Path of Contact 0.103 2.62 ptg+Ptp

*Formula is valid for the ANSI system only
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Table C.2: Gear Dimensions according to the Metric System

Metric
Item Symbol Formula*

Gear Pinion

Normal Module mn  1

Normal Pressure Angle fn [o] 20

Helix Angle y [o] 20

Teeth Number ng, np 49 30

Radial Pressure Angle f atan tan [o 101 21.2
cos4J

Center Distance C (ng + np)m n [mm] 42.0 1.65
2cos

Standard Pitch Diameter dpg, dp n m [mm] 52.1 2.05
cos W

Base Diameter dbg, dbp dpcosl [mm] 48.6 1.91

Addendum a mn [mm] 1 0.04

Whole Depth h 2.25m n [mm] 2.2 0.09

Outside Diameter dog, dop d + 2ha [mm] 54.1 2.13

Root Diameter drg, drp do - 2h [mm] 49.6 1.95

*Formula is valid for the metric system only



C.2 Bimetallic Composite Helical Gears

Figure C.1: Picture of Helical Pinion and Gear

Figure C.2: Picture of the Meshing of Helical Pinion and Gear



Figure C.3: Picture of Original Helical Gear Teeth

Figure C.4: Picture of Bimetallic Composite Helical Gear Teeth

C.3 Matlab Programs for Cyclic Energy Loss Analysis

C.3.1 rundamp.m

This is the matlab program used in the cyclic energy loss analysis. It consists of two parts; the first

part calculates and graphs the relationship among the damper thickness vs. load force vs. energy

loss, and the second part calculates and graphs the deflection of the beam when the damper

thickness is 4 mm, and load is 247 N, which results in 10.4585% energy loss.

clear
N=20;

%%%%% MATERIAL CONSTANT

E_s=200e9;% 200 [GPa]
G_s=E_s/2.6;% 76.923 [GPa]
Y_s=1e9;% 1 [GPa]

E_t=45e9;% 45 [GPa]
G_t=E_t/2.6;% 17.308 [GPa]
Y_t=30e6;% 30 [MPa]

%%%%% GEAR DIMENSION

eta=1.5;
L=2e-3; % 2 [mm]
H=2e-3; % 2 [mm]
W=2e-3; % 2 [mm]

Ab=W*H;
I_b=W*L^3/12;
%%%%%



Fmax=Y_s*H 2/6; % 666.6667 [N]

d=linspace(L/20,L/2,N);
for p=1:N

Fmin(p)=d(p)*sqrt(3)*Y_t/E_t*(6*E s*I_b*Ab*Gs)/
sqrt((2*A_b*G_s*L^3+6*eta*E_s*I_b*L)^2+d(p)A2*(3*A_b*G_s*L^2+6*eta*E_s*I_b)2);
F=linspace(Fmax,Fmin(p),N);
for q= 1:N

[loss_percentage(q,p),initial_energy(q,p),plastic_energy(q,p)]=damp(F(q),d(p));
end

end

figure(1),clg
subplot(2,1,1), plot(le3*d,Fmin)

xlabel('damper thickness [mm]')
ylabel('Fmin [N]')
text(0.1,40,'Fmax = constant @ 667 N')
axis([0,1,0,50])

subplot(2,1,2), plot(le3*d,Fmin)
xlabel('damper thickness [m]')
ylabel('Fmin [N]')
text(0. 1,40,'Fmax = constant @ 667 N')
axis([0,1,0,50])

print -deps helical01l.eps

figure(2),clg,hold on
mesh(d* 1e3,F,initial_energy)
mesh(d* 1e3,F,plastic_energy),grid
xlabel('damper thickness [mm]')
ylabel('load [N]')
zlabel('energy [J]')
axis([0,1,0,700,0,0.02])
view(235,30)
print -deps helical02.eps

figure(3),clg,hold on
mesh(d* 1e3,F loss_percentage),grid
xlabel('damper thickness [mm]')
ylabel('load [N]')
zlabel('loss percentage [%]')
axis([0, 1,0,700,0,80])
view(235,30)
print -deps helical03.eps

figure(4),clg
subplot(2,2,1 ),mesh(d* 1e3,F,loss_percentage),grid

title('(a)')
xlabel('thickness [mm]')
ylabel('load [N]')
zlabel('loss percentage [%]')
axis([0,1,0,700,0,80])
view(60,30)

subplot(2,2,2),mesh(d* le3,F,loss_percentage),grid
title('(b)')

xlabel('thickness [mm]')
ylabel('load [N]')
zlabel('loss percentage [%]')
axis([0,1,0,700,0,80])
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view(135,30)
subplot(2,2,3),mesh(d* 1e3,F,losspercentage),grid

title('(c)')
xlabel('thickness [mm]')
%ylabel('load [N]')
zlabel('loss percentage [%]')
axis([0,1,0,700,0,80])
view(1 80,0)

subplot(2,2,4),mesh(d* 1e3,F,losspercentage),grid
title('(d)')

%xlabel('thickness [mm]')
ylabel('load [N]')
zlabel('loss percentage [%]')
axis([0,1,0,700,0,80])
view(-90,00)

print -deps helical04.eps

C.3.2 damp.m

function[loss_percentage04,total_energy0,d_penergy]=damp(F1 ,d)

%%%%% MESH SIZE

N=10;

%%%%% MATERIAL CONSTANT

E_s=200e9;% 200 [GPa]
G_s=E_s/2.6;% 76.923 [GPa]
Y_s=1e9;% 1 [GPa]

E_t=45e9;% 45 [GPa]
G_t=E_t/2.6;% 17.308 [GPa]
Y_t=30e6;% 30 [MPa]

%%%%% GEAR DIMENSION

eta= 1.5;
L=2e-3; % 2 [mm]
H=2e-3; % 2 [mm]
W=2e-3; % 2 [mm]

A_b=W*H;
I_b=W*L^3/12;

%%%%% DAMPER DIMENSION

%d=.4e-3;% 0.4 [mm]

%%%%% COORDINATES

x=linspace(0,L,N);
z=linspace(0,d,N);

%%%%% FORCE

%F1=70;
k=1/(L^3/(3*E_s*I_b)+eta*L/(A_b*G_s));



deltal=Fl/k;

%%%%% STRAIN & DEFORMATION

for i=1:N
f(i)=(-A-b*G-s*x(i)3+3*A-b*G-s*L*x(i)2+6*eta*E-s*I-b*x(i))/(2*(Ab*G-s*L^3+2*eta*Es*I b*L));
fp(i)=(-3*Ab*G-s*x(i)A2+6*A-b*G-s*L*x(i)+6*eta*E-s*I-b)/(2*(A-b*G-s*L^3+2*eta*Es*Ib*L));
st_deform 1 (i)=deltal *f(i);
st_strain 1 (i)=deltal *fp(i)/sqrt(3);
st_e_energy_d 1 (i)=E_s*st_strain 1 (i)A2/2;
forj=l:N

d_deforml (j,i)=deltal/d*z(j)*f(i);
d_strainl (j,i)=deltal*sqrt(f(i)A2+(z(j)*fp(i))A2)/d/sqrt(3);
if d_strainl(j,i) > (Y_t/E_t)

d_p_strainl (j,i)=dstrainl (j,i)-(Y_t/E_t);
deenergy_dl (j,i)=Y_tA2/E_t;
if d_strainl(j,i) > 2*(Y_t/E_t)

d_p_energy_d2(j,i)= (dstrainl(j,i)-2*(Y_t/E_t))*Y_t;
else

dp_energy_d2(j,i)=0;
end

else
d_p_strain(j,i)=0;
deenergy_dl (j,i)=Et*d_strainl(j,i)A2/2;

end
end

end

%%%%% EVALUATION OF ENERGY

ste_energyl=sum(sum(st_e_energy_dl))*H*L/N*W;
deenergyl=sum(sum(d_eenergy_dl))*H*L/N*d/N;
d_p_energy 1=Y t*sum(sum(d_p_strainl))*H*L/N*d/N;
d_p_energy2=sum(sum(d_p_energy_d2))*H*L/N*d/N;

total_energy0=st e_energyl+d eenergy l+d p_energyl;
total_energy l=st e_energyl+d _e energy l;
total_energy2=total_energy 1-d_p_energy2;
loss_percentage01= 100* (total_energy0-total_energy 1)/total_energyO;
loss_percentagel 12= 100*d_p_energy2/total_energy l;
loss_percentage02= 100*(total_energy0-total_energy2)/total_energy0;

%%%%% New Force

F3=F1 *(100-(loss_percentage01 +loss_percentagel2)/2)/100;
delta3=F3/k;

%%%%% STRAIN & DEFORMATION

for i=1:N
st_deform3(i)=delta3*f(i);
st_strain3(i)=delta3*fp(i)/sqrt(3);
st_e_energy_d3(i)=E_s*st_strain3(i)A2/2;
forj=1:N

d_deform3(j,i)=delta3/d*z(j)*f(i);
d_strain3(j,i)=delta3*sqrt(f(i)A2+(z(j)*fp(i))A2)/d/sqrt(3);
if dstrain3(j,i) > 2*(Y_t/E_t)

d_p_energy_d4(j,i)=Y_t*(d_strain3(j,i)-2*(Y_t/E_t));
deenergyd4(j,i)=YtA2/E_t;
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else
if d_strain3(j,i) > (Y_t/E_t)

deenergy_d4(j,i)=Y_t^2/E_t/2+(Y_t-d_strain3(j,i))2*E_t/2;
else

deenergy_d4(j,i)=Y_t^2/E_t/2-(Y_t-d_strain3(j,i))A2*E_t/2;
end

end
if d_strainl (j,i) > 2*(Y_t/E_t)

d_p_strain3(j,i)=d_strain3(j,i);
else

if d_strainl(j,i) > (Yt/Et)
d_p_strain3(j,i)=d_strain3(j,i)+dstrainl (j,i)-2*(Y_t/E_t);
d eenergy_d3(j,i)= Y_tA2/E_t/2-(d_stran 1 (j,i)-(Y_t/E_t))^2*E_t/2;

else
d_p_strain3(j,i)=0;
deenergy_d3(j,i)=E_t*d_strain3(j,i)A2/2;

end
end

end
end

st_e_energy3=sum(sum(st_e_energy_d3))*H*L/N*W;
d_e_energy3=sum(sum(d_e_energy_d3))*H*L/N*d/N;
d_p_energy3=Y_t*sum(sum(d_p_strain3))*H*L/N*d/N;
d_eenergy4=sum(sum(d_e_energy_d3))*H*L/N*d/N;
d_p_energy4=sum(sum(dp_energy_d4))*H*L/N*d/N;

%totalenergy2=steenergy3+d e energy3+dpenergy3;
total_energy3=steenergy3+de-energy3;
total_energy4=totalenergy3-d_p_energy4;
losspercentage23=100*d_p_energy3/(st_eenergy3+deenergy3+dp-energy3);
losspercentage03= 100*(total_energy0-total_energy3)/total_energyO;
loss_percentage34= 100*d_p_energy4/total_energy3;
loss_percentage04= 100*(total_energy0-total_energy4)/totalenergy0;

d_p_energy=d_p_energy 1 +dp_energy2+d_penergy3+d_p_energy4;

C.3.3 deflect247.m

clear

%%%%% MESH SIZE

N=10;

%%%%% MATERIAL CONSTANT

E_s=200e9;% 200 [GPa]
G_s=E_s/2.6;% 76.923 [GPa]
Y_s=1e9;% 1 [GPa]

E_t=45e9;% 45 [GPa]
G_t=E_t/2.6;% 17.308 [GPa]
Y_t=30e6;% 30 [MPa]

%%%%% GEAR DIMENSION

eta=1.5;



L=2e-3; % 2 [mm]
H=2e-3; % 2 [mm]
W=2e-3; % 2 [mm]

A_b=W*H;
Ib=W*L^3/12;

%%%%% DAMPER DIMENSION

d=.4e-3;% 0.4 [mm]

%%%%% COORDINATES

x=linspace(0,L,N);
z=linspace(0,d,N);

%%%%% FORCE

F1=247;
k=1/(LA3/(3*Es*I_b)+eta*U(A_b*G_s));
deltal=Fl1/k; % 4.8782e-06 [m]

%%%%% STRAIN & DEFORMATION

for i=l:N
f(i)=(-Ab*Gs*x(i)A3+3*A_b*G-s*L*x(i)A2+6*eta*E-s*I-b*x(i))/(2*(Ab*Gs*L^3+2*eta*E_s*l-b*L));
fp(i)=(-3*A-b*G-s*x(i)A2+6*A-b*G-s*L*x(i)+6*eta*E-s*I-b)/(2*(A-b*G-s*L 3+2*eta*E-s*_b*L));
st_deforml (i)=deltal*f(i);
st_strainl (i)=deltal *fp(i)/sqrt(3);
st_e_energy_d 1 (i)=E_s*st_strain 1 (i)A2/2;
for j=1:N

d_deform 1 (j,i)=deltal/d*z(j)*f(i);
d_strainl (j,i)=deltal *sqrt(f(i)A2+(z(j)*fp(i))A2)/d/sqrt(3);

if d_strainl (j,i) > (Y_t/E_t)
d_p_strainl(j,i)=dstrainl(j,i)-(Y_t/E_t);
deenergy_dl (j,i)=Y_tA2/E_t;
if d_strainl(j,i) > 2*(Y_t/E_t)

d_p_energy_d2(j,i)= (dstrainl(j,i)-2*(Y_t/E_t))*Y_t;
else

dp_energy_d2(j,i)=0;
end

else
d_p_strain(j,i)=0;
deenergy_dl (j,i)=E_t*d_strainl (j,i)2/2;

end
end

end

%%%%% EVALUATION OF ENERGY

steenergy 1 =sum(sum(st_e_energy_dl))*H*UN*W;
d_e_energy 1 =sum(sum(d_e_energy_d 1))*H*L/N*d/N;
d_p_energy I=Y_t*sum(sum(d_p_strainl ))*H*L/N*d/N;
d_penergy2=sum(sum(dp_energy_d2))*H*L/N*d/N;

total_energy0=ste_ energyl +de energyl+d_p_energyl; % 0.0025
total_energyl=steenergyl +deenergyl;
total_energy2=total_energy 1-d_p_energy2
losspercentage01 = 100* (total_energy0-total_energy 1)/total_energy0;
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loss_percentagel 12=100*d_p_energy2/total_energy 1;
loss_percentage02= 100*" (total_energyO-total_energy2)/total_energy0;

%%%%% New Force

if loss_percentage 12==0
loss_percentage01
loss_percentage 12
loss_percentage02
return

end

F3=F l*(100-(loss_percentage01+loss_percentagel 2)/2)/100;
delta3=F3/k; % 4.5919e-06 [m]

%%%%% STRAIN & DEFORMATION

for i=1:N
st_deform3(i)=delta3*f(i);
st_strain3(i)=delta3*fp(i)/sqrt(3);
st_e_energy_d3(i)=E_s*st_strain3(i)A2/2;
forj=1:N

d_deform3(j,i)=delta3/d*z(j)*f(i);
d_strain3(j,i)=delta3*sqrt(f(i)A2+(z(j)*fp(i))A2)/d/sqrt(3);
if d_strain3(j,i) > 2*(Y_t/E_t)

d_p_energy_d4(j,i)=Y_t*(d_strain3(j,i)-2*(Y_t/E_t));
d_e_energy_d4(j,i)=Y_tA2/E_t;

else
if d_strain3(j,i) > (Y_t/E_t)

deenergy_d4(j,i)=Y_tA2/E_t/2+(Y_t-d_strain3(j,i))A2*E_t/2;
else

deenergy_d4(j,i)=Y_tA2/E_t/2-(Y_t-dstrain3(j,i))A2*E_t/2;
end

end
if d_strainl (j,i) > 2*(Y_t/E_t)

d_p_strain3(j,i)=d_strain3(j,i);
else

if d_strainl(j,i) > (Y_t/E_t)
d_p_strain3(j,i)=d_strain3(j,i)+d_strain1 (j,i)-2*(Y_t/E_t);
deenergy_d3(j,i)= Y_tA2/E_t/2-(d_strainl (j,i)-(Y_t/Et))A2*E_t/2;

else
d_p_strain3(j,i)=0;
deenergy_d3(j,i)=E_t*d_strain3(j,i)A2/2;

end
end

end
end

st_e_energy3=sum(sum(st_e_energy_d3))*H*L/N*W;
d_e_energy3=sum(sum(d_e_energy_d3))*H*L/N*d/N;
d-p_energy3=Y_t*sum(sum(d_p_strain3))*H*L/N*d/N;
d_e_energy4=sum(sum(d_e_energy_d3))*H*L/N*d/N;
d_p_energy4=sum(sum(d_p_energy_d4))*H*L/N*d/N;

%total_energy2=stenergy3+deenergy3++ddeenergy3
total_energy3=stenergy3+dsnergy3e energy3;
total_energy4=totalenergy3-dp_energy4;
losspercentage23=1 00*d_p_energy3/(st_e_energy3+deenergy3+dpenergy3);
loss_percentage03= 100*(total_energy0-total_energy3)/total_energy0;



loss_percentage34=100*d_p_energy4/total_energy3;
losspercentage04=100*(totalenergy0-totalenergy4)/totalenergy0;%22.6038 [%]
d_p_energy=dp_energyl+d_p_energy2+d_p_energy3+d_p_energy4; % 5.8403e-04 [J]

figure(5),clg
subplot(2,2,1),hold on

mesh(x*1e3,z*1e3,-d_deforml*1e6)
mesh(x* 1e3,z*1e3,ddeform3* 1e6)
axis([0,2,-0.8,1.2,-10,10])
xlabel('x-axis [mm]')
ylabel('z-axis [mm]')
zlabel('deflection [micron]'),grid
view(110,25)

subplot(2,2,2),hold on
mesh(x*1e3,z*1e3,-d_deforml*1e6)
mesh(x*1e3,z*1e3,d_deform3*1e6)
axis([0,2,-0.8,1.2,-10,10])
xlabel('x-axis [mm]')
ylabel('z-axis [mm]')
zlabel('deflection [micron]'),grid
view(70,25)

subplot(2,2,3),hold on
mesh(x*1e3,z*1e3,-d_deforml* 1e6)
mesh(x* 1e3,z* 1e3,ddeform3* 1e6)
axis([0,2,-0.8,1.2,-10,10])
xlabel('x-axis [mm]')
%ylabel('z-axis [mm]')
zlabel('deflection [micron]'),grid
view(360,0)

subplot(2,2,4),hold on
mesh(x*1e3,z* 1e3,-d_deforml* 1e6)
mesh(x*1e3,z*1e3,d_deform3* 1e6)
axis([0,2,-0.8,1.2,-10,10])
%xlabel('x-axis [mm]')
ylabel('z-axis [mm]')
zlabel('deflection [micron]'),grid
view(90,0)

print -deps helical05.eps
figure(6),clg

subplot(2,2,1),hold on
mesh(x* 1e3,z*1e3,-d_strainl)
mesh(x* 1e3,z* 1e3,d_strain3)
axis([0,2,-0.8,1.2,-10e-3,10e-3])
xlabel('x-axis [mm]')
ylabel('z-axis [mm]')
zlabel('strain'),grid
view(110,25)

subplot(2,2,2),hold on
mesh(x* 1e3,z*1e3,-d_strainl)
mesh(x* 1e3,z*1e3,d_strain3)
axis([0,2,-0.8,1.2,-10e-3,10e-3])
xlabel('x-axis [mm]')
ylabel('z-axis [mm]')
zlabel('strain'),grid
view(70,25)

subplot(2,2,3),hold on
mesh(x*1e3,z*1e3,-d_strainl)
mesh(x* 1e3,z*1e3,d_strain3)
mesh(x* I e3,z* 1e3,-Y_t/E_t*ones(size(d_strain 1)))
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mesh(x* 1 e3,z* 1 e3,Y_t/E_t *ones(size(d_strain 1)))

axis([0,2,-0.8,1.2,- 10e-3,10e-3])
xlabel('x-axis [mm]')
%ylabel('z-axis [mm]')
zlabel('strain'),grid
view(360,0)

subplot(2,2,4),hold on

mesh(x*1e3,z*1e3,-d_strainl)
mesh(x* 1e3,z*1e3,d_strain3)
axis([0,2,-0.8,1.2,-10e-3,10e-3])
%xlabel('x-axis [mm]')
ylabel('z-axis [mm]')
zlabel('strain'),grid
view(90,0)

print -deps helical06.eps

C.4 Damper Deformation Graphs

Figs. C.5 and C.6 are the surface deformation and the strain of the damper of 4 mm thickness when

the load of 80 N is applied to one of the neighboring beam. Figs. C.7 and C.8 are the surface

deformation and the strain of the damper of 4 mm thickness when the load of 150 N is applied to

one of the neighboring beam.
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Figure C.5: Damper Surface Deformation at 80 N Load
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Appendix D

Bimetallic Composite Beams

D.1 Beam Dimensions

Table D.1: Dimensions of Test Beams

item symbol value

length L 177.8x10 -3 [m]

height H 9.398x10 -3 [m]

width W 29.5x10 -3 [m]

width of gap d 5.46x10 -3 [m]
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