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Abstract

The human visual system solves an amazing range of problems in the course of everyday
activities. Without conscious effort, the human visual system finds a place on the table to
put down a cup, selects the shortest checkout queue in a grocery store, looks for moving
vehicles before we cross a road, and checks to see if the stoplight has turned green.

Inspired by the human visual system, I have developed a model of vision, with special
emphasis on visual attention. In this thesis, I explain that model and exhibit programs
based on that model that:

1. Extract a wide variety of spatial relations on demand.

2. Learn visuospatial patterns of activity from experience.

For example, one program determines what object a human is pointing to. Another learns
a particular pattern of visual activity evoked whenever an object falls off a table.

The program that extracts spatial relations on demand uses sequences of primitive oper-
ations called visual routines. The primitive operations in the visual routines fall into one
of three families: operations for moving the focus of attention; operations for establishing
certain properties at the focus of attention; and operations for selecting locations. The three
families of primitive operations constitute a powerful language of attention. That language
supports the construction of visual routines for a wide variety of visuospatial tasks.

The program that learns visuospatial patterns of activity rests on the idea that visual
routines can be viewed as repeating patterns of attentional state. I show how my language
of attention enables learning by supporting the extraction, from experience, of such patterns
of repeating attentional state.

Thesis Supervisor: Patrick Winston
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Rodney Brooks
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Chapter Outline

This thesis is the result of a desire to build a robot with human-like abilities.

This chapter

* Discusses some of the approaches to building a human-like robot.

* Outlines some promising new directions.

* Describes the two problems that this thesis deals with.

* Summarizes the contributions of the thesis.

* Gives a brief outline of the thesis.

1.1 Building a humanoid robot

Building a robot with human like capabilities has been one of the holy grails of Artificial

Intelligence. After more than 40 years of trying to do this we are still far from the goal.

During this period, the two main approaches that have dominated our efforts to build

intelligent machines are the "Symbol Systems" and "Behavior based" approaches. A brief

review of the contributions of these approaches will help us formulate some key questions

that still remain to be answered.

1.2 The Symbol System Approach

The "Symbol Systems Approach" of classical Artificial Intelligence is based on the sepa-

ration of reasoning from perception and action. It assumes that knowledge and the ma-

nipulation of knowledge, can and should be separated from the particular details of the

physical body (the sensors and effectors). The framework in which traditional Artificial



Intelligence works is that perception delivers a symbolic' description of the world in terms

of a fixed set of predicates like ON(A, B), or LIKES(X, Y). The "reasoning module" usually

contains hand-crafted knowledge about the world expressed in some knowledge represen-

tation language (e.g. if-then rules, frames, scripts, or declarative statements in some form

of mathematical logic). This knowledge, and the world description, are used by a problem

solving mechanism to achieve some goal. The solution is passed to an execution module

that performs actual actions in the world to achieve the goal. This is the basic framework.

This approach to achieving cognition arose from a conjunction of two factors - a somewhat

restricted view of human intelligence, and a bias of what the available technology (digital

computers and programming languages like LISP) was good at doing - symbol manipulation.

The influence of our models of computers on our models of thought, or how the problem

was defined to fit the tools, is well described by Brooks[8]. So we will briefly consider the

other major influence, namely what the early researchers wanted when they said "human

like intelligence". Human intelligence was characterized by the ability to solve certain kinds

of "difficult problems" - like solving a problem in formal logic [37], proving mathematical

theorems, discovering scientific laws from data [36], and multicolumn subtraction [49]. The

choice of these problems as representative of human cognition is interesting - it reflects a folk

view of intelligence, most of humanity hardly ever engages in these tasks and the few who do

are usually the ones regarded as "intelligent", hence (the reasoning went) investigate these

"high order intellectual processes" and you have the key to human intelligence. The tool

for investigating these "high order intellectual processes" was introspection. For example a

student would be given a problem in formal logic and asked to speak his/her thoughts aloud

while constructing the proof. These verbalizations would be recorded and then analyzed for

clues about the problem solving process [37]. After analyzing the problem solving process

in the other problems too, it was found that if you strip away the particulars of the problem

then you could explain problem solving in these limited class of problems as search in some

space of symbols. This fact in conjunction with the bias of the available technology led

to the introduction of "symbol manipulation" into a definition of intelligence. A physical

symbol system was defined as a bunch of symbol structures (tokens, expressions) and some

processes to create and modify the structures. The Physical Symbol System Hypothesis

states that a physical symbol system has the necessary and sufficient means for general

intelligent action [38]. The main problems with the traditional approach are:

* Building representations for particular tasks instead of representations that could sup-

port a variety of tasks. Consequently we end up with a collection of separate programs

that play chess, prove theorems, or do medical diagnosis. There is nothing wrong with

this if our intention is to build tools that can assist humans, however we should not

fool ourselves into thinking that the collection of these programs says anything about

cognition.

* It evades knowledge acquisition. It does not address the basic issue of how the knowl-

edge (e.g. rules of chess, or behavior of liquids) is acquired in the first place. The

practice of isolating domains and hand-coding facts about them is clearly evading

the issue and one of the factors responsible for the performance of these systems not

scaling.

SThere are many different notions of "symbol". In this particular case "symbol" is used in a very narrow
sense similar to the tokens and expressions of LISP.



* The abuse of Abstraction. Brooks [9] points out that coming up with descriptions like

ON(A, B) from a scene (both the choice of that particular feature, and the detection

of that feature) is the essence of intelligence and the hard part of the problem. He

says

Under the current scheme the abstraction is done by the researchers leaving

little for the AI programs to do but search.

* Weak Inference. In spite of the emphasis on problem solving, the systems exhibited

very weak inference capabilities, they could hardly infer anything beyond what they

were told. For example, if the system is trying to build a tower of blocks by putting

B on C (described as ON(B,C)), and then A on B (described as ON(A,B)), and each

block happens to be skewed a little to the right because of some error in positioning.

The tower collapses and the description of the history (ON(A,B), ON(B,C)) contains

no information about what went wrong. The description is in fact identical to de-

scriptions of towers that did not collapse. The tendency of the knowledge engineer is

to make the symbolic primitives more elaborate; by introducing degrees of ON-ness

in the description, for example. This is just a temporary fix, and does not address

the source of the problem. The weak inference stems from two sources. The first

source of weak inference is that only one kind of representation is being used - the

symbolic representation used in the previous example can only make certain types

of information explicit (a qualitative representation of ON-ness) and will break when

you attempt to use it for tasks for which it it is not suited. The second source of

weak inference is the artificial separation of perception from reasoning. Prematurely

throwing away the perceptual representation of the image without knowing what's

important in it for some task is a mistake. Certain kinds of reasoning (about why

the tower collapsed) may be best performed using "perceptual" representations and

processes.

* All Knowledge may not have to be represented explicitly. A robot can behave in a

manner such that a human might attribute some knowledge and goals to it, but that

doesn't mean that the robot should be built with an explicit representation of that

knowledge or goals.

1.3 The Behavior Based Approach

The more recent approach to building intelligent systems is the behavior based approach

pioneered by Brooks [9, 8, 7] as a reaction to the problems of the Symbol Systems Ap-

proach. The main motivation of the behavior based approach is that the ability to perceive

and act evolved long before, and took much longer to evolve, than the abilities of playing

chess, or proving theorems. Hence it is worthwhile to investigate simple perception action

loops because they might give you some insight into more complicated forms of intelligent

behavior.

In the behavior based approach one attempts to build robots that perform simple tasks in

complex environments. The hope is that it is easier to start with a complex environment

and some simple tasks, and then gradually start increasing the complexity of the task,
rather than the other way around. The chief insights of behavior based A.I are:



* Embodiment and Situatedness - Investigate intelligence by working in the real world

with real physical robots that directly sense the world. This prevents you from deal-

ing with artifactual problems in simulated environments, and also lets you exploit

constraints in the real world.

* Exploiting the complexity of the environment - There is a way to design robots that

can lead to complex behavior with non-centralized representations of the world. The

complexity of the behavior is a product of the dynamics of the interaction of the

robot with a complex environment rather than some complicated internal represen-

tation of the world. The trick to designing robots that exploit the complexity of the

environment is by designing a collection of behaviors that interact with each other via

the environment. The behaviors themselves are very simple independent perception

action loops tightly coupled to the environment.

* The world is it's own best model - The world is sensed continuously instead of main-

taining and updating some complicated internal model.

With these insights the behavior based approach has been successful in developing a sub-

sumption architecture methodology for incrementally building collections of behaviors.

However, there is a still a large gap between the cognitive abilities of the most compli-

cated behavior based systems to-date and the human like robots that we would like to

build. To be fair, it has never been claimed that the principles of subsumption architec-

ture were alone sufficient either as an explanatory device, or as a constructive recipe for

human-like intelligence. However, the question must be asked if a collection of hundreds of

human-like behaviors, like looking preferentially at human faces, imitating gestures, e.t.c

bring us any closer to understanding or building human-like intelligence. This brings us to

the key question of what we want when we say "human-like intelligence"?

1.4 What exactly do we want?

What is it about the human brain that makes it so unique in the animal kingdom? How

did human intelligence evolve? Can we find a way to understand how the differences in

brains and bodies between species corresponds to the different cognitive landscapes that

they inhabit? For instance, why is it that even a "genius" fly or frog could never be able

to contemplate the solar system or plan for next week? In the context of the evolution of

cognition these questions strike at the core of what it is to be human.

In the remainder of this section I will take a particular position on the question of what

distinguishes human cognition. Doing so will help us pose some questions which must be

answered if we are to build a humanoid robot. This thesis itself is a first step towards

answering these questions.

1.5 A platform that supports rich representation and infer-
ence

The most striking aspect of human intelligence is the astonishingly broad range of things

that we can represent and infer. For example we can have concepts like "solar system",



or understand how a bicycle pump works, or prove a theorem in mathematics. One truly

appreciates how peculiar it is that we can do these things when one observes that the rep-

resentational capabilities of most animals are very tightly coupled to the environmental

niche in which they evolved. Homo Sapiens on the other hand can represent things like

"atom" or "striped elephant" - things that it may never have perceived, or may not even

exist. The key point to remember is that it is not our questionable expertise at any one of

the tasks mentioned above, but that we can do them at all and that we can do so many of

them that characterizes human intelligence. Therefore, a fundamental question in Artificial

Intelligence which we must answer if we are to build robots with human like intelligence

is what is the source of this representational power? How can we engineer powerful rep-

resentational and inference capabilities in a robot? It cannot be stressed enough that the

idea is not to build specialized representations for individual task domains, but rather to

build a representational platform that will allow the robot to learn to play chess, or answer

a question about how toasters work without a human having to handcode any representa-

tions particular to game playing or qualitative physics. This, then is what I want when I

say "human like intelligence".

1.6 Origins of representational power

An important clue to the origin of representational and inference capabilities in humans

lies in our evolutionary history. It seems unlikely that in the course of evolution we sud-

denly developed specialized neural substrates devoted to playing chess, or doing arithmetic.

From an evolutionary standpoint it seems much more likely that such abilities are purely

accidental byproducts of more basic previously evolved capabilities like representing space,
manipulating objects, natural language syntax, and a representation of social relations [42],

[5] - representations and processes that evolved as a response to the pressures of being em-
bodied, and being in the company of other similarly embodied humans. The implication

of this simple hypothesis is that you may be solving an integral for example2 , by using

visuospatial operations on spatial representations of some symbols, and imputing syntactic

categories and anthropomorphic roles to the components of the expression. Whether you

believe this particular example or not is not important. The point is that some such expla-

nation of our abstract cognitive abilities in terms of representations and processes meant

for more mundane activities must exist. Clearly, ants, frogs, and monkeys have visual, mo-

tor, and communication systems too. Yet we know that even the smartest of them cannot

even begin to grasp the concept of an atom - a concept that is well within the reach of an

adult human. We need a deep understanding of what is special about our representational

systems and their interactions that lets us do things that other species cannot.

If we somehow understood what it is about embodied representations and pro-

cesses and their interactions that gives rise to the "accidental" byproducts of

being able to do calculus or think about atoms, then we would be well on our

way to understanding the source of human cognition.

In order to gain such an understanding, we need to

21 choose this example because doing mathematics is considered to be one of the abstract cognitive feats
of the human brain.



1. Pick a small set of representations and processes that that originally evolved to facili-

tate certain tasks like navigating through space, or manipulating objects, or for social

interaction.

2. Explain what it is about each of them that makes it flexible enough to be re-used in

novel ways.

3. Explain how interactions between different representations (e.g. when a visuospatial

pattern of activity gets re-expressed in a syntactic representation as an atomic symbol)

creates a whole new level of complexity that we label as "higher-level" cognition.

I believe that pursuing such a research program will be very rewarding in our efforts to

understand natural intelligence, as well as in building human-like intelligence. As a first

step, in this thesis I look at some visuospatial representations and processes from the point

of view of the program described above.

1.7 Visuospatial underpinnings of human cognition

What is vision for? The kinds of tasks that leap to mind are recognizing people, places,
locating objects, deciding where to put down your coffee cup, driving, ... etc. So many

everyday tasks involve vision that it is harder to find tasks for which one does not need

any vision. Recognizing objects, and directing action are important functions of vision

no doubt, however, visual processes may also be play an important part in understanding

language, understanding how a device works, doing arithmetic, or planning a trip. In other

words visual processes may be deeply intertwined with the kinds of things that we would

characterize as "high-level" cognition.

The next natural question is how? What are the common underlying representations/processes

in our visual system that support both the mundane tasks of getting about the environment,
as well as the more "abstract" tasks like the ones mentioned above? The following three

processes are likely candidates:

1. Detecting spatio-temporal regularities: The regularities or patterns that we see in the

spatio-temporal behavior of objects form our model of the physical world. A vast

repository of such patterns constitutes what we call common-sense knowledge about

space. These patterns also form the metaphors into which we fit future experience

(Johnson[23]). Therefore, it is important to have mechanisms that detect spatio-

temporal regularities.

2. Extracting spatial relations on demand: Visual processes that evolved to direct action

should not be tied to extracting only particular features of the environment. While

they should be capable of serving the visual needs of various behaviors such as tracking,
or grasping, they should not be limited to only extracting the visual features required

by those behaviors. The visual machinery needs to be more powerful, and capable

of extracting a potentially unbounded number of visual features that go well beyond

what the hardwired behaviors require. The spatial analysis machinery in humans

has this kind of flexibility, thereby lending itself for use not only on a variety of real

world spatial problems (e.g. does the equator pass through Zaire on a map? or what



is the human pointing to?), but also synthesized spatial descriptions (e.g. a spatial

representation of your schedule for the day).

3. Synthesizing spatial descriptions on demand: This capability allows the application

of the visual problem solving machinery to a hypothetical situation formed from the

precedents and defaults that have been learned.

The following example illustrates how these three capabilities might work together. When

given the problem:

John is taller than Mary, and Mary taller than Susan. Is John taller

than Susan?

A child might synthesize a visual description of John, Susan, and Mary standing next to

each other, and then use her learned regularity of what it means for one object to be taller

than the next to drive a visual routine - a specific sequence of operations that are applied

to the image to extract the spatial relations of interest.

It is my view that the three capabilities of learning spatial regularities from experience,
extracting spatial relations on demand, and synthesizing spatial descriptions, work together

to create a very powerful and flexible mechanism that plays a major role in representation

and inference in humans.

1.8 Two Problems

The goal of this thesis is to propose and demonstrate mechanisms for the first two problems

mentioned in the previous section - extracting spatial relations on demand and learning
spatial regularities from experience.

The first problem that I deal with is to find a spatial analysis mechanism that is robust and

versatile enough to handle a wide variety of spatial tasks, Figure 1-1(a) shows a schematic.

The second problem is to suggest a visuospatial representation for concepts like "fall" or

"more", and show how such representations might be learned from experience. Figure 1-

1(b) shows a schematic. The representation of these spatial concepts will in fact drive the

spatial analysis machinery that sought as part of the first problem.

1.9 Contributions of the thesis towards Problem #1

The main contributions of this thesis towards finding a robust spatial analysis machinery

that can solve a wide variety of spatial problems, are as follows:

1. A Language of Attention. The machinery for extracting spatial relations and the

mechanisms of visual attention are closely linked. I present a specific proposal for

a spatial analysis architecture, the core of which is a new language of attention.

Figure 1-2 shows a schematic. All procedures for extracting spatial relations are

constructed by picking primitive operations from the three classes of operations. A
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Figure 1-3: Expectations about an object passing behind an occluder may be in terms of
changes of attentional state

typical procedure (called a visual routine) involves moving the focus of attention to
a location, establishing certain properties and performing some operations at that
location, selecting location(s) based on the properties just established, moving the
focus of attention to one of those locations, and starting the cycle all over again.

2. Attention is more than selection. The proposed architecture extends and enriches prior
models of Attention. The function of visual attention has traditionally been seen as
"Selection", where one region is selected from many. In the proposed architecture (as
shown in Figure 1-2), Selection is just one of the classes of operations, and is effective
in spatial problem solving only in conjunction with the other classes.

3. A versatile architecture for real-images. As far as I are aware this is the first attempt

to construct an architecture for real images with the explicit goal of being able to
handle a very wide variety of spatial problems.

1.10 Contributions of the thesis towards Problem #2

The main contributions of this thesis towards finding a perceptual representation for con-
cepts like "fall", and learning such representations is as follows:
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Figure 1-4: Regularities in the world and attentional biases repeatedly drive the atten-

tional state through patterns. High frequency patterns become expectations. Expectations

generate visual routines to check for the predicted part of the pattern.

1. Patterns in Attentional State I make a specific proposal for the perceptual represen-

tation underlying many visuospatial concepts, namely that it is in changes of "At-

tentional State". While Niyogi[39] has recently made a similar proposal, and demon-

strated it in a simulated world of simple geometric shapes, I present a model for

real-world images, and also show how recurring patterns in attentional state may be

learned. Figure 1-4 shows a schematic. Structure in the world and biases in attention

lead to certain repeating trajectories in attentional state space. These patterns can

be learned and constitute the perceptual representation for the event (e.g. an object

falling), and also act as the expectation for future events.

2. A novel parsimonious view of Cognitive Development. Figure 1-3 shows a sequence

where a ball passes behind an occluder and emerges on the other side. It has been

shown by Spelke[52] and Baillergeon[3] that children have strong expectations for such

events by the age of 4 months, and that a violation of these expectations (for instance

if the ball were to emerge from behind another occluder which is some distance away)
causes surprise. The question of interest here is what is the regularity that the child

has learned and how is this represented? Spelke and Baillergeon's explanations rely on

something called "object-concepts" and knowledge of some sort of "intuitive physics".

I propose a much simpler explanation in terms of changes of attentional state, and

show how such expectations can be learned.

3. A promising candidate for perceptual grounding. The question of "perceptual ground-

ing", i.e. if there is some perceptual representation that concepts like "fall", or "more"

bottom out in, has always been of great interest in Artificial Intelligence. The "pat-

terns of attentional state" proposal made in this thesis is a concrete candidate for

such a representation. I think that "patterns in attentional state" constitute a good

representation because they are expressed in terms of the "language of attention", the

same language that is used to check for these events in a top-down manner. In other



words the representation of the regularity is in a form that makes it easy to check for

it in the future.

1.11 Outline of the Thesis

In Chapter 2 I introduce the problem of extracting spatial relations on demand. I describe

Ullman's [58] visual routines proposal, and review subsequent efforts to implement this

proposal in various domains. I concentrate on a system by Mahoney[29] for extracting

spatial relations from binary images. While static binary images are a very different domain

from the dynamic gray-scale/color images of real scenes, the binary image domain will serve

to illustrate the compositional feature of my solution for real-world images.

In Chapter 3 I present a novel model of visual attention for generating visual routines. Visual

routines are sequences of operations for extracting spatial relations, or more generally (as

we shall see) patterns of activity in attentional state. This is the core chapter that lays out

the families of spatial representations and operations used by my system. I compare my

model of visual attention to models of visual attention in psychophysics, neuroscience, and

machine vision.

In Chapter 4 I present a scheme for learning visual routines from experience. Whereas in

Chapter 3 the focus is on the primitive operations of visual routines and how they can be

strung together to extract different spatial relations, the focus in Chapter 4 is on how visual

routines automatically come about from experience.

1.12 Summary

The long-term motivation is to build human-like cognition. Abstract cognitive feats may be

accidental by-products of previously evolved representations and processes that evolved to

support more mundane activities. A central challenge therefore, is to understand/model/dissect

these representations to understand what makes them versatile and re-usable. I propose

that the combination of 3 visuospatial mechanisms makes a very powerful and flexible sys-

tem for the representation of "common-sense" spatial concepts, and spatial inference. In

this thesis I will propose models for two of these mechanisms: extracting spatial relations

on demand, and learning "common-sense" spatial regularities from experience.



Chapter

Visuospatial problem solving

Chapter Outline

In this chapter introduces the problem of extracting spatial relations on

demand. I describe Ullman's [58] visual routines proposal, and review sub-

sequent efforts to implement this proposal in various domains. concentrate

on a system by Mahoney[29] for extracting spatial relations from binary

images. While static binary images are a very different domain from the dy-

namic gray-scale/color images of real scenes, the binary image domain will

serve to illustrate two important features:

* The power of composing visual routines by repeatedly choosing prim-

itives from a small set of operations.

* The fact that visual routines work by repeatedly setting up successive

frames of reference.

These two features will carry over to my visual routine architecture for real-

images described in Chapter 3.

2.1 The need for a flexible spatial analysis mechanism

The human visual system is remarkably adept at solving spatial problems that arise in

the course of everyday activity. Whether it is finding place on the table to put down a

cup, or selecting the shortest checkout queue in a grocery store, visuospatial problems are

constantly being solved in order to guide our next action. Figure 2-1 shows a small sample

of problems that our visual system may be presented with during the course of a day. In

Figure 2-1(a) one must determine the locations of the humans and the table and check for a

particular spatial relationship between them. In Figure 2-1(f) segmenting the wedges is the

hard part of the problem, because there is no clear demarcation between them. In Figure

2-1(h) one has to not only locate the plates and cups, but also keep track of which one goes

with which, based on spatial proximity. In Figure 2-1(b) one has to somehow count only

the regions that the equator passes through, and the counting process has to keep track of



the regions already counted.

Even though the problems may look very different the common thread running through

all of them is that one must be able to extract some regions in the image, and establish

certain spatial properties between them. The selection of the regions themselves may be

because of their spatial relationship with respect to other regions (e.g. when you want to

find some chalk, you may look in the vicinity of a blackboard which is easier to find). In all

of these examples "Object recognition" is not the crux of the problem, any hard-to-recognize

object in these pictures can always be replaced by a blob without changing the essence of

the problem. It is the establishment of spatial relations that is the focus here. There is

widely cited evidence from Ungerleider and Mishkin [33] about two distinct pathways in the

primate visual cortex - one devoted to object identity, and the other to object location, and

spatial relations. The majority of the literature in machine-vision has been skewed towards

object recognition with relatively little attention to the spatial mechanisms.

What kinds of visual mechanisms in humans make it possible to handle the spatial tasks in

Figure 2-1 ? Ideally one would like to take a very simple problem (e.g which of two blobs is

larger) and be able to trace the mechanisms all the way from early visual representations in

V1, through the spatial selection mechanisms in V4, spatial transformations in the parietal

cortex, behavioral short term memory in the prefrontal lobe, to the final motor intention of

pointing to the bigger blob 1. Unfortunately, we do not know about the mechanisms at this

level of detail. One of the problems that many different areas in the brain are involved in

even a "simple" visuospatial task, and multicellular recording techniques are still in their

infancy. In 1967 Yarbus [22] recorded the eye-movements of subjects after showing them

images like the one in Figure 2-2 and presenting them with a specific question about the

image. The sequence of foveations reveal several interesting features like the tendency to

return repeatedly to a prior foveation point, however they shed no light on the kinds of

computations performed at a particular point of foveation, or the kind of state maintained

across foveations.

Presently we do not have a reasonable computational model for visuospatial problem solving,
but it is imperative to come up with one because these tasks are ubiquitous in everyday

life, these are typical of the variety of tasks that we would expect a humanoid robot visual

system to deal with from moment to moment and use the results to guide its actions.

This chapter and the next one deal with the problem of finding spatial analysis machinery

that can account for this competence, i.e the ability to extract different kinds of spatial

relations on demand.

Before exploring the problem in more detail we need to lay some issues to rest.

2.1.1 Can't we simply build a special purpose solution for each task?

It is certainly possible - albeit after some work - to come up with algorithms for each

individual task. In fact, if one is building a well defined application where a small fixed set

of spatial tasks is required, and known in advance, it is practical to handcode individual

solutions for each task. However, the main goal of this thesis is to make progress on the

1This is of course a crude caricature of one pathway, there are doubtlessly other forward and back-
projection pathways involved



(a) Is the table between
the two people?

(d) How many cups
are there on the green
book?

(g) Is the blue ball
falling?

(b) How many countries does
the equator pass through in
this map?

(e) What is the human
pointing to?

(h) Does every plate
have a cup?

(c) Is the green rod
touching the red box?

(f) Which is the small-
est wedge in this pie-
chart?

(i) Which person is
closer to the door?

Figure 2-1: Examples of visuospatial problems



(a) "The unexpected visitor" (b) Examine the picture (c) Estimate the ages of the
people

Figure 2-2: Yarbus [22] showed subjects a painting, asked them various questions about it,
and recorded their eye-movements

issue of building a visual system for a humanoid robot or intelligent room that like the

human visual system can handle an open-ended set of spatial problems. In other words, the
goal is to find a common framework that solves all these problems as they arise. It is this
insistence on an open-ended system that makes the problem hard.

2.1.2 Why should we insist on a common framework?

There are two good reasons why we should:

1. Scalability: A humanoid robot or intelligent room may have to deal with thousands
of spatial problems in the course of a day. Writing a different program for each one is
just not practical.

2. Learning: If we want to learn to detect different spatial events and relations, having
a common vocabulary to express the commonalities is essential.

2.2 The framework of a solution: Ullman's visual routines

Shimon Ullman [58] initially proposed the problem of finding a versatile spatial analysis
mechanism and also described the framework of a solution. The essence of his solution
is that there exists a set of elementary operations that when combined in different ways
produce different visual routines for doing various spatial tasks. The elementary operations
therefore form a kind of basis set for visual routines.

Ullman suggests that visual processing is divided into two stages. The bottom-up, spatially
uniform, viewer-centered computation of the base representation (like the 2 1/2 D sketch)
followed by the extraction of abstract spatial properties by visual routines. Visual routines

define objects and parts, their shapes and spatial relations. The formation and application
of visual routines is not determined by visual input alone but also by the specific task at



hand. The elementary operations are not all of the same type, some of them operate in

parallel across the entire image, others can be applied only at a single location at a time.

It is suggested that these characteristics of the operators reflect constraints inherent to the

computation they perform, not because of a shortage of resources. The structures computed

as a result of the application of various visual routines are incrementally pieced together

so that subsequent processing of the same image can benefit from the intermediate results

of previous computations. For example when asked to count the number of red objects in

a scene, the intermediate result of the locations of the red objects is maintained to help

answer a later question about the biggest red object.

Ullman suggests the following as plausible elementary operations:

1. Shift of Processing focus: A process that controls where an operation is applied.

2. Indexing: Locations that are the odd-man-out in the base representation (e.g an island

of blue in a sea of red), attract the processing focus directly. They are called indexable

locations and serve as starting points for further processing.

3. Bounded activation or Coloring: The spreading of activation in the base representation

from a location or locations. The activation is stopped by boundaries in the base

representation.

4. Boundary Tracing: Moving the processing focus along one or more contours.

5. Marking: Remembering a particular location so that processing can ignore it or return

to it in the future.

2.2.1 Key issues in making the proposal work

Composing a basis set of elemental spatial operations to solve spatial tasks is an attractive

idea. Clearly this kind of explanation is far more plausible than having specialized feature

detectors like "the smallest object inside the big circle". However in order to flesh out the

details of the visual routines proposal one has to deal with two key issues:

1. Choice of a set of primitives: What is a good set of elementary operations?

2. Composition: Given a set of primitives how do they get strung together to perform

some spatial task? Is there a need for an explicit sequencer?

In the remainder of this chapter I will review some work on the topic of visual routines

by Horswill, Chapman, and Mahoney & Rao. At the end of the chapter we will be in a

position to assess their contributions in the light of the issues mentioned above, and see

what are the open problems in coming up with a computational model for visuospatial

problem solving. The next two chapters, which form the core of the thesis, directly address

these open questions.
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Figure 2-3: The attention system and enumeration oracle

2.3 Jeeves - A VRP for a blocks world domain

"Jeeves" is a Visual Routine Processor constructed by Ian Horswill [21] for performing

"visual search" to answer simple conjunctive queries in a blocks-like world. In a typical

instance the system examines a scene of colored blocks and finds a block "X" that satisfies

a query like: green(X) A vertical(X) A on(X, Y) where Y is some other block. The system

also computes some simple spatial relations like "On".

2.3.1 An overview of Jeeves

Figure 2-3 shows a schematic of the architecture of the system. The early-level vision

consists of a set of color maps (R,G,B, R/I, G/I, B/I), intensity, and Laplacian edges. A

preattentive segmentation stage carves the scene into regions of uniform color. A set of task-

specific pixel-by-pixel control weights is used to compute a saliency map. The "attention"

uses the saliency map to modulate the segmentation map, and selects the region with the

highest integral of salience. The bounding box, centroid, and average low-level map values

of the winning region are computed. Two important pieces of attentional state are a set of

markers which hold the centroids of some regions, and the "Return Inhibition Map" which

is a retinotopic map that masks out regions that should not be selected.

Given a query like green(X) A vertical(X) A on(X, Y) The expression is preprocessed to

indicate the variables that need to be enumerated and fed to an "enumeration & backtrack-

ing" automaton. The control logic of the automaton causes it to backup over the literals

if a particular variable binding fails. The reader is referred to [21] for the details. The

important points to note are that the logic variables are implemented by markers (which

are essentially pointers to regions in the image), and that backtracking state (values of a

variable that have already been tried) are maintained by the return inhibition map. After

enumerating the various variable bindings, the solution to the query - if one exists - is left

as a set of markers (regions) that satisfy the query.

Low level maps



2.3.2 A critique of Jeeves

The main focus of the Jeeves architecture is the control mechanism for variable enumer-

ation and backtracking during visual search for regions that satisfy a certain conjunction

of attributes. My main criticism of Jeeves as a viable architecture for a visual routine

processor is that the control architecture is not the hard part of most real-world spatial prob-

lems. To illustrate this point consider the problem in Figure 2-1(e) of determining what

the human is pointing at This problem would have to be presented to Jeeves as the query

Pointing(Y, X) A Human(Y). Jeeves would then try to enumerate over different regions in

the image to find the ones that satisfy the expression, the implicit assumption here is that

somehow there exist "procedures" for determining the predicates "Pointing()", and "Hu-

man()". But coming up with visual operations for determining the truth of these predicates

is the essence, and the hard part of the visual routines problem! The Jeeves architecture

has little to say about this matter because it's focus is on the enumeration of arguments of

the predicates, and not as much on the robustness/versatility of the mechanisms for deter-

mining the truth of the predicates. Finally, let us briefly focus on the spatial mechanism

that Jeeves does use for determining the truth of predicates like On(X, Y). Jeeves drops a

ray downward from the marker for region X and checks to see it crosses a region Y, directly

below. How versatile are such ray tracing methods for establishing different kinds of spatial

relations? (Chapman [10] too heavily relies on ray tracing methods to establish spatial

relations). The answer is that they are certainly useful for establishing a coarse spatial

relationship between regions, but they are not sufficient for capturing somewhat finer local

spatial relationships. For instance in Figure 2-1(c) drawing a ray between the centroids of

the box and the rod is not going to help answer the question.

2.4 Sonja - A concrete-situated context for the application
of visual routines

David Chapman's "Sonja" [10] is a system that plays the video game Amazon. In this game

the player controls the actions of a video icon that has to battle ghosts and demons while

trying to pick up various objects in its two dimensional world.

2.4.1 An overview of Sonja

The machine's inputs are a symbolic abstraction of a 2D world and occasional instructions

from a human. The two major components of the system are a set of peripheral visual

operators and a central system that controls application of the operators. At any given

instant the peripheral operators compute various geometrical properties of the world. Figure

2-4 shows the inputs and outputs to a visual operator in Sonja. The central system specifies

some of the operands of the visual operator and also a control signal that tells the operator

to execute or not. The intermediate state that is referenced and updated by the operator

is accessible to all the operators.

The central system consists of units called proposers and arbiters. Each proposer proposes

the application of a particular visual operator with certain parameters. Each proposer has a

condition under which its proposal is valid. There may be different proposers with different
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Figure 2-4: A visual operator from Sonja

suggested parameter settings for the same visual operator. If the conditions of all these
proposers happen to be true then an arbiter implements some fixed override scheme on the
various proposals to select one of them (a set of operands) for the visual operator. The
central system is therefore a large unmodular net of proposers and arbiters whose input
is from the visual operators and whose output at a particular time is the application of a
visual operator with some set of arguments.

Figure 2-5 shows the interaction between the world, the visual operators, and the central
system during the operation of Sonja. The x-axis multiplexes time and space. The trape-
zoids represent the entire central system. Only the operator that is finally chosen and its
inputs and outputs is shown in the figure. The triangles represent delay elements that store
information within the central system between clock ticks. The key point made here by
Chapman is that Visual Routines are interactional patterns, NOT programs. In the figure
some aspect of the world gets noticed by the bottom up visual operator OP26 which reports
it to the central system. Based on this new development and the past history the central
system directs another visual operator OP37 to report on some aspect of the scene. The
information from OP37 and past history is used to take some action (OP99) which affects
the world, and simultaneously give some instructions to OP37. Thus, Chapman points out
the notion of a visual routine is an abstraction that an observer can make while looking
at the interaction. In other words, nowhere in the central system is there a specification
that the sequence OP26 - OP37 - OP99 - OP37 should be applied under some conditions,
nor is it the case that some single unit planned this sequence of application of operators.
This pattern of interaction just happened to dynamically arise given the states of the central
system and the states of the world.

2.4.2 A critique of Sonja

The main purpose of Sonja is to demonstrate various aspects of the concrete-situated ap-
proach (e.g, situatedness, routine activity, dynamics of interaction) in a simple simulated
world. Visual routines per-se are not the focus of the work, so it is not surprising that the
mechanisms for extract spatial relations in Sonja do not scale to real-world spatial problems.
The set of spatial relations between markers computed by the peripheral operators are not
rich enough to handle many of the problems in Figure 2-1 for instance.
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Figure 2-5: Visual routines are interactions, not programs.

However, Chapman makes two important contributions to the issue of composition of visual
routines.

1. He emphasizes that there might be no central box that sequences or plans visual
routines, but that the sequence of applications of various operators emerge from the
interaction of the central system with the world. The very same observation was made
by Brooks [6] in his criticism of traditional views about Planning. The behavior based
approach that he used to build insect like robots does not have central representations
of plans. Instead, it has a collection of mostly independent perception-action loops
that are tightly coupled to the environment. The similarity between Chapman's in-
sight about visual routines and Brooks's insight about planning can be seen clearly
if we view each of the peripheral operators as a behavior and flatten out the central
system as the various excitations and inhibitions between behaviors.

2. Chapman stresses the "routine" aspect of visual routines. Namely, the dynamics of
the interaction between an agent and the environment give rise to certain routine
patterns the agent falls into.

Finally I review a visual routine language developed by James Mahoney [29] for extracting
spatial relations from Binary Images, and also some specific examples of visual routines
written in this language implemented by this author.

2.5 The RG system: Visual Routines for Binary Images

The "Reverse Graphics" system developed by Jim Mahoney is a versatile set of spatial
analysis primitives which can be combined together in different ways to implement a host

t=O0 t=l t=2 t=3



of applications. Figure 2-6 shows some of the applications implemented by Rao using a

common set of primitives.

In Figure 2-6(a) the input to the system is a crude hand-drawn sketch of a pie-chart.

The system analyzes the sketch to extract the relative sizes of the wedges and renders an

equivalent pie-chart. Note that the system is not simply a rendering program that "cleans

up" edges. It is extracting the wedges from the sketch in spite of the fact that there is no

clean demarcation between the wedges.

In Figure 2-6(b) the input to the system is a crude hand-drawn sketch of a directed graph.

The system analyzes the spatial relations between the elongated components and the circular

ones to distinguish between edges, vertices, and edge-labels. The system distinguishes an

edge label of "0" from a vertex by its relative position with respect to the edges. The system

can use the graph structure extracted to control some application or simply render it as

shown.

Figure 2-6(c) shows a "layout" application. The input to the system is a set of panels with

a unique number of dots on each one, and a master page which contains a crude sketch of

the desired layout. The system segments the master page into different regions and pairs

each region with an input panel based on a count of the number of dots. Finally the panels

are laid out in the corresponding regions.

Figure 2-6(d) shows an "editing" application. A transparent slide is overlayed on a doc-

ument, and editing marks are made on it (e.g, delete, move, rotate). The slide and the

document are scanned in, the system analyzes the marks, determines the portions of the

document that are being reffered to, and applies the transformations.

As mentioned before, the important point here is that each of these applications was written2

using the same set of primitives. The following sections describe the set of primitives, and

go through the complete visual routine for the pie-chart example in Figure 2-6(a).

2.5.1 Primitives of the RG system

All primitive operations of the RG system are defined over three types of quantities.

The first type of quantity is called a Property Map. Property maps show the values that

a particular property takes on at every location in the image. Orientation is one such

property, for example. Property maps are defined across scales in a positionally exhaustive

way. That is, moving to a coarser scale only increases the local area over which the property

is computed, it does not change the number of locations at which the property is computed.

Property maps are represented by heirarchichal levels of integer arrays.

The second type of quantity is a Location Map. Location maps show the locations at which

some property assumes a certain value, for example all locations in the image that are

red, or all locations in the image that are inside some region. One can perform Boolean

operations over the domain of Location Maps. Location maps are represented by bitmaps.

The third type of quantity is a Summary Value. It is the result of applying a summarizing

function over particular regions of property or location maps. The perimeter is one such

2all these applications were hand-coded by the author, there were not automatically generated by the

system
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Figure 2-7: The area operator. Each location is labeled with the area of the region to which
it belongs.

summarizing function. A mapping between regions and summary values is obtained as a
result of applying the summarizing function.

There are three classes of elementary operations defined over the three basic data types.

1. LocationMap -+ PropertyMap

2. PropertyMap -4 LocationMap

3. PropertyMap x LocationMap x Summarizer -+ SummaryValue

The first class of operators establishes properties at locations, the second class selects lo-
cations from Property Maps, and the third class summarizes property values over selected
regions.

Establishing properties: Location map -+ Property map

This class of operations takes a location map and at every location computes some property
to yield a property map. There are several types of properties computed.

Region limited properties. A region is a set of connected locations on a location map.
This class of operations compute some global property that is a function of all the locations
that constitute a region, and then produces an image with each location of the region labeled
with the "global" property. The Area operator for instance simply finds the areas of the
regions in the location map. Each pixel of each region is labeled with the area of that region
as shown in the schematic in Figure 2-7. Other examples are of region limited properties
are elongation, connected components, and the angle of the axis of least inertia.

Diameter limited properties. At each location a property of all the locations within
some constant radius around that location is computed. Orientation, size, and density are
examples of such properties.

Relative Spatial properties. This class of operators computes one or more links at
every location. A link from location A to B indicates the association of pixel A with pixel B
because of some property, for example B might be the region nearest to pixel A. The Nearest
Neighbor operator for instance takes a location map as input produces an image where each
location has a link to the nearest location of the region nearest to it, as shown in as shown
in the schematic of Figure 2-8. The positionally exhaustive link information is very useful
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Figure 2-8: The Nearest Neighbor linking
nearest occupied location.

(a)

operator. Each location forms a link to the

Figure 2-9: Left: The location map. Right: The Vornoi diagram obtained from Nearest
Neighbor links and Connected Component information

in computing other properties like grouping. For example, the link information and the
connected Components information could be used to compute a Vornoi diagram in one step
in the following trivial way: Each location labels itself with the connected-component label
of the location it is linked to. Figure 2-9 shows an example of a location

Selecting locations with certain properties: Property map -+ Location Map

Select locations that have a particular property value This operation selects all
locations that have a particular value from a property image as shown in the schematic of
Figure 2-10.

Property Map

Value

Location Map

SelectLocations>
Figure 2-10: Only locations that have a particular value are selected.
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Figure 2-11: Only regions colored by the seed locations are selected.
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32

Figure 2-12: A summarizer function computes the summary over regions and delivers a

mapping between region and value

Coloring This operation selects locations that are connected to a particular bunch of seed

locations. This is accomplished by coloring from the seed locations and stopping at the

boundaries defined by the regions. Figure 2-11 shows a schematic.

Computing the aggregate of a property over a region: Property Map x Location
Map -+ Summary Values

The third class of operations summarizes information over regions to yield a mapping be-

tween regions and values. Any function that maps many values to one can be used as the

summarizer function, for example area, perimeter, mean, mode, AND, OR e.t.c.

2.5.2 An example of a visual routine in the RG language

In this section I show an example of a visual routine implemented with the primitives

described in the previous section. Figure 2-13(a) shows an image of a pie-chart. The

problem is to "find the smallest wedge in the pie-chart". The main goal of going through

this example in detail are:

* To introduce the idea of a visual routine being a sequence of operations chosen from

a small family of operations.

* To show the compositional power of the basis set of operations in the RG system.



(a) The input (b) The Size property (c) The result of se-
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Figure 2-13: The first two steps of

this pie-chart

(a) The
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distance

Figure 2-14: The last four steps of
this pie-chart

the visual routine for extracting the smallest wedge in
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(b) The cen-
ter

(c) Direction

the visual routine for extracting the smallest wedge in

Areas: LocationMap -+ PropertyMap The first operation takes the location map and

computes an "Area" property map. That is, each black pixel in the location map is labeled

with the area (a number) of the connected component to which the pixel belongs, giving

the result shown in Figure 2-13(b).

Select Max Size: LocationMap +- PropertyMap Having computed the "size" property

we now select the component that has the maximum size. This operation yields the perime-

ter of the pie-chart as shown in Figure 2-13(c).

Distance: LocationMap -+ PropertyMap Having extracted the perimeter of the pie-chart,
we apply the "distance" property to the perimeter location map. The result as shown in

Figure 2-14(a) is that each white pixel gets labeled with its distance from the closest black

pixel.



(a) Selection of direc- (b) Areas (c) Areas
tion ranges

Figure 2-15: The final steps of the visual routine for extracting the smallest wedge in this

pie-chart

Select max distance component: LocationMap +- PropertyMap The component with

the maximum values of the distance property is selected. This is done by looking at the

distributions of the distance property over each connected component and selecting the one

with the highest mean. The result as shown in Figure 2-14(b) is that the center of the

pie-chart is selected.

Direction: LocationMap -+ PropertyMap Applying the direction property to the loca-

tion map containing only the center component of the pie-chart yields a property map where

each white pixel is labeled with its direction from the nearest center pixel. The result of

this operation is shown in Figure 2-14(c).

Select ranges of direction: LocationMap +- PropertyMap Each of the components now

has a distribution of directions from the property map computed in the previous step. The

components with unimodal distributions are selected, this yields the elongated spokes of

the pie chart. Each of these spokes has a dominant mode in direction. All the pixels with

directions between successive values of the modes of the spokes are selected thus yielding

each individual wedge, as shown in Figure 2-15(a)

Areas: LocationMap -- PropertyMap Having extracted the locations of each of the wedges,

we apply the Area operator again (but this time on the wedge locations, not the locations in

the original input of Figure 2-13(a). This yields the property map shown in Figure 2-15(b)

with each pixel labeled with the area of the wedge to which it belongs.

Select min Area: LocationMap +- PropertyMap Finally we simply select the pixels with

the minimum value from the area property map just computed, yielding the locations of

the smallest wedge as shown in Figure 2-15(c).

2.5.3 A critique of the RG system

In section 2.2.1 we listed two key issues that a visual routines proposal must deal with.

Mahoney squarely focuses on the first issue, namely of assembling a rich, expressive set of

C



primitives. How successful has he been at doing this?

As mentioned in section 2.5 the RG system has been used by this author to write visual

routines for several document processing applications. The language is expressive, in that

the programs for extracting spatial relations and properties are compact. For instance the

program for computing the Vornoi regions of an image is less than five lines.

As demonstrated by the example in 2.5.2 the RG system derives its effectiveness from one

simple but powerful idea: Spatial relations can be extracted by selecting locations, using

them as a "frame of reference" to establish certain properties, then selecting other locations

based on those properties and repeating this cycle over and over again. As we will see in

the next chapter this idea also carries over to real images - albeit with different kinds of

selection operations and properties.

2.6 What is a visual routine?

There are a several different notions of the term "visual routine" that have been used in

the works described above.

The original definition of visual routines by Ullman [58] views them as a sequence of "prim-

itive" operations drawn from a fixed basis set in order to extract some spatial relation from

a scene. Mahoney and Rao's visual routines for binary images are consistent with this

definition. Chapman on the other hand views visual routines as patterns of visual activity

that emerge due to interaction with a changing environment. He uses the word "routine"

literally in the sense of habit, as rote or repeating activity, for example my tendency to look

at the top-left corner of my screen every time I hear a beep, to check if the mailbox icon

has changed color, is one of the routine visual activities that I engage in. Both Ullman's

and Chapman's perspectives on visual routines are important and even though they may

seem different from each other they are in fact very closely related and simply emphasizing

different modes of visual attention3

Chapman's emphasizes the "pattern of visual activity" rather than the "extraction of spatial

relations". My visual routine for checking to see if I have email does not have much of a

spatial component to it (other than looking at the top-left corner of my screen). On the

other hand my visual routine for checking to see what somebody is looking at does need to

have some spatial sophistication, in that I will have to locate the persons head, the eyes, get

the gaze direction, and then look along that direction for some salient object. The point here

is that in both of these examples of visual routines, Chapman's emphasis is simply on the

fact that they are both patterns of visual activity. Ullman on the other hand is concerned

with fleshing out the spatial machinery of the visual routines that make it possible to locate

the top-left corner of the screen or the gaze direction of the eyes.

Yet another characterization of visual routines views them as a sequence of operations to

accomplish visual "search". For example searching for conjunctions of features like a blue

L among a field of green L's and blue T's [14]. Viewing a visual routine as a procedure for

"visual search" is popular in the machine-vision literature. However, "search" is just one of

the functions of visual routines. It would be hard and artificial to cast many of the spatial

31 will have more to say about this point in the next two chapters.



problems of Figure 2-1 as "search".

2.7 Open issues

My criteria for evaluating a visual routines proposal are

* Is it a proposal for real-world images?

* How versatile is the spatial analysis machinery at extracting different kinds of spatial

relations?

* Is there a scheme for automatically generating visual routines?

Among the works reviewed in the previous sections "Jeeves" is the only one that deals with

real images. However, as we saw, the focus there was on the control architecture (enumer-

ation and backtracking of logic variables) rather than on the mechanisms for extracting

spatial relations. Mahoney and Rao do focus on spatial mechanisms, but their mechanisms

do not carry over very well to real images because of the difficulty of figure-ground segmen-

tation and the dynamic nature of the real world. Neither Horswill, nor Mahoney & Rao

deal with the issue of how visual routines might be composed or automatically generated.

Chapman has demonstrated some novel ideas about situated activity that provide an al-

ternative approach to "composing" visual routines, namely visual routines just "emerge"

from interaction with the environment. However his architecture for visual routines is very

specific to the simulated world of the Amazon video game where the spatial relations that

need to be extracted are known in advance.

In the following chapters:

* I present an architecture for visual routines for extracting a wide variety of spatial

relations from real-world dynamic images. Another way of looking at this is a kind of

"language of visual attention" that can be used to construct programs (visual routines)

for extracting spatial relations.

* I also directly address the issue of how visuospatial concepts/expectations can be

learned from experience and thereafter generate visual routines.

2.8 Summary

In this chapter we discussed the problem of finding a spatial analysis machinery for real-

world visuospatial problems. The important requirement was that the machinery be ver-

satile enough to deal with a variety of problems. The are several reasons for insisting on

a common framework to handle all these problems: scalability, learning, and the fact that

there is something that is common to all the tasks listed in Figure 2-1. We adopted a

"visual routine" framework proposed by Ullman, and reviewed some of the work on visual

routines. We saw that there are still several open issues regarding the construction of a

versatile mechanism for real images. However the following ideas from the reviewed work

do carry over to the solution that we discuss in the following chapters:



* The power of composing visual routines by repeatedly choosing primitives from a

small set of operations.

* The fact that visual routines work by repeatedly setting up successive frames of ref-

erence.

* The fact that visual routines may emerge from interaction with the environment,
rather than being planned.



Chapter 3

An Architecture for Visual Routines

Chapter Outline

In this chapter I present a language of visual attention for generating visual

routines. Visual routines are sequences of operations for extracting spatial

relations, or more generally patterns of activity in attentional state. This

chapter lays out the families of spatial operations, and illustrates their use

with some examples of visual routines. Finally, I compare my model of

visual attention to other models of visual attention in psychophysics, and

neuroscience.

3.1 Visual routines for real images

In the following sections I describe the architecture and primitives of a system for construct-

ing visual routines, and then use this visual routine language to construct visual routines for

some spatial tasks. In what sense is the proposed model a language? The word em language

is used because the model is generative in the same way that one generates sentences of a

language by stringing together elements of syntactic categories. The only difference is that

the sentences in the language of attention are procedures for extracting spatial relations.

A visual routine for even a "simple" task like deciding which of two objects is bigger,

exercises many visual as well as non-visual faculties. In order to build an architecture that

supports visual routines for a variety of spatial tasks one cannot avoid confronting many

of the hard problems in vision like figure-ground segmentation, feature tracking, and shape

recognition, to name only a few. One way of avoiding some of these problems is to simplify

the environment by using children's blocks, or painting the walls, or recording images from

a clean desk, or a rotating turntable, or restricting the kinds of events that can take place.

I have tried to avoid such simplifications. Instead, I have tried to use crude approximations

to the hard problems. Another factor that has made the architecture design hard is that

this is not a system with a specific task or goal. In fact, the whole point of this enterprise

is to build a substrate that can support a variety of goals and spatial tasks like the ones in

Figure 2-1.



How then should one evaluate the architecture that is going to be presented? The bottom

line is how expressive are the set of primitives presented? That is, how large is the set

of spatial tasks for which one could write visual routines using these primitives? We will

return to this question towards the end of the chapter.

Figure 3-1 is an overview of the architecture of the system. The system can be divided into

three distinct levels. At the first level (starting at the bottom) early-visual and preattentive

properties are computed. The defining characteristic of this level is that the image properties

are computed independent of the task at hand. The preattentive properties computed at

this level are available to next one. The second level, which is the main focus of this chapter,
shows the machinery for visual routines. At this level the top down goals and bottom-up

information from the preattentive stage are used to fashion a specific visual routine. A

visual routine in my framework, as mentioned earlier, is a sequence of operations drawn

repeatedly from a basis set of operations. The third layer of the system consists of a

collection of primitive behaviors each of which have specific biases about where to look

next.

The following sections describe the first two levels of the architecture. The third level, which

involves exploratory behaviors and mechanisms for learning patterns in visual activity, is

the subject of the next chapter.

3.2 Early Vision

The early visual representation of the scene consists of the following components:

1. A 20 dimensional vector at every point in the image. This vector is obtained by

applying 5 spatial filters across 4 different scales to the gray-scale component of the

image.

2. A 60 dimensional vector at every point in the image. This vector is obtained by

applying 5 spatial filters across 4 different scales to each of the 3 normalized color

components of the image.

3. Motion information consisting of the location and direction of motion.

4. A color saliency map - indicating blobs of high color contrast

The above choice of features may be characterized as "blob-vision", because it makes explicit

blobs of various sizes and orientation, and their direction of motion. The decision to make

blobs rather than regions (of arbitrary shape and size) explicit, is because blobs are much

easier to compute and localize. Furthermore, segmenting an image into regions must require

some top-down biases about the task. Segmenting the image into regions at an early stage

may not only be hard but also ill-defined with purely bottom-up information (we return to

this point in our discussion of color-segmentation later in this section).

The rest of this section describes the five components listed above and also the tradeoffs in

making this particular choice of early visual features.
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3.2.1 Spatial derivatives

For the spatial filters I use the steerable first and second order Gaussian filters as described

by Freeman & Adelson [13]. The Gaussian function (shown with a sigma of 1 for conve-

nience) is:

G(x, y) = e- (X2 +y 2 ) (3.1)

The first order derivatives in the 0 and 90 degree directions, i.e. derivatives with respect to

x and y are:

G1l = -2xe-(2 y2 ) (3.2)

G1, = -2ye-_( 2+y 2 ) (3.3)

The x and y derivatives completely span the space of all first order directional derivatives.

In other words the directional first derivative in any arbitrary direction 0 can be synthesized

as a linear combination of the x and y derivatives:

Glo = cos(0)G1l + sin(O)Gly (3.4)

The second order derivatives Gx, Gxy, and Gyy can be similarly computed. From these

partial derivatives the directional derivatives in the 0, 60, and 120 degree directions can be

calculated. The Go, G60, and G120 responses span the space of all second order directional

derivatives.
G20 = ki(0)Glo + k2 (0)G2 60 + k3 (0)G2120  (3.5)

where
k(0) = [1 + 2 cos(2( - Oj))] (3.6)

using 01 = 0, 02 = 60, and 03 = 120

The G1x, Gly, G2 0 , G260, and G2 120 filters are applied to the image at different scales.

The G1 and G2 filters correspond to edge and blob detectors respectively. Figure 3-2(b)

shows the 5 filters and the result of applying them to an image at 4 different scales. Each

point in the image therefore has a response vector of 20 elements. The feature vector at a

point of interest in the image (shown with green cross hairs) is shown as a vector in Figure

3-2. These feature vectors are identical to the ones used by Rao & Ballard [47], except that

their vectors have an additional set of four G3 responses at each scale.

Figure 3-2 shows the application of the spatial filters to the gray-scale component of the

image. The same filters are also applied to the normalized color components of the image,
that is to the R/I, G/I, and B/I images, where I = (R + G + B). The 20 responses for each

of these three color components is lumped together into one 60 dimensional vector.

Edge-detection. I have preferred to work with the raw spatial derivatives rather than

edges, firstly because thresholding introduces unwanted parameters at an early stage, and

secondly I am assuming that any regions of interest will be picked up by the blob detectors.

True, this is an assumption about the environment, however the alternative of finding edges

and stitching them together correctly to derive the boundary of a region is an unsolved

problem, see Sha'ashua and Ullman[50], Alter and Basri[2] for such approaches. The choice

that I have made does well for the minimal amount of computation it requires.
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(f) The result of applying the 5 filters in (a)-(e) across 4 different scales. From left to

right we have responses to the first derivative w.r.t. x, first derivative w.r.t. y, blob
detector at 0 degrees, blob detector at 60 degrees, and blob detector at 120 degrees

(g) The image and a
point of interest

(h) The 20 dimensional
feature vector at the
point of interest

Figure 3-2: Early vision: spatial filter responses are computed across many scales



(a) The image (b) First difference (c) Flow direction, col-
thresholded orcoded. Green indi-

cates upward movement

Figure 3-3: Early Vision: Motion information

3.2.2 Motion

The motion component of the early visual representation is shown in Figure 3-3. A sim-

ple correlation scheme is used to compute optical flow, as follows: after finding the first

difference in brightness and thresholding it we get the locations in the image where there
has been a significant change of brightness as shown in Figure 3-3(b). At each of these

locations we grab a fixed sized patch centered on the first difference location in the previ-

ous image and search for that patch around that location in the current image. In other
words we are establishing a correspondence between the previous image and the current
one only at locations with significant changes of brightness. The correspondence gives the

displacement vectors for the flow. The chief drawback of this method is that for very fast

moving objects (or more precisely, when the displacement of object patches between frames

is more than the search radius for the patches) the method gives totally erroneous results.
One way to address this is to look at motion at multiple scales (just as we do for the spatial
derivatives). I have not implemented a pyramidal scheme for motion computation but the

reader is referred to Bergen and Hingorani [4] for such an approach. The multiple scale flow

computation picks up large displacements at coarse scales, and propagates the flow down to

finer scales. The correlation scheme that I use is only applied at a single scale but suffices

for my purposes because I am interested in only the gross direction of motion of the patches
on the object, not the precise magnitude of the displacement.

3.2.3 Color saliency and segmentation

Finally I compute a bottom-up measure of color saliency to highlight blobs of high color

contrast. An example is shown in Figure 3-4. The color saliency is computed simply by

adding together the response of the blob detectors to the color components of the image.

This is clearly very simplistic, a more sophisticated measure of saliency would find the color

gradient everywhere, do some form of color segmentation and take the contour integral of

the gradient for each region, yielding a measure of saliency of the region. Horswill [21] uses

such a method in his Visual Routine Processor architecture.

See Pal[40] for a review of color segmentation techniques. Color Segmentation - the bottom-

up segmentation of the image into a bunch of uniform color regions, is something I did ex-



Figure 3-4: Bottom-up color salience

plore but discarded as being too unreliable. There are two reasons why color segmentation

of the whole image at an early stage is not a good idea. Firstly we do not have a good

understanding of color perception - the human visual system extracts something that is

experienced as "color" which remains remarkably invariant to changes in illumination. In

machine vision we are still far from extracting that invariant from the RGB signal, con-

sequently color segmentation algorithms are still very sensitive to changes in illumination.

Secondly, segmenting the image into regions before we know the task at hand is wasteful

because the location(s) of interest for the task may not be any of the bottom-up color seg-

ments (for instance it may be where the tip of your pen meets the paper - rather than the

paper or the pen by themselves). I feel that color salience is a more robust property at the

early-vision level.

The decision about what kind of method should be used to compute color saliency, or

whether we should do any color-segmentation clearly depends on what we want to use the

results for. In the case of this system, the color saliency is computed just to suggest where

next to look at. As the localization of regions is not my goal, using the responses of the

color blob detectors to suggest hot spots where attention should be diverted, suffices for my

purposes.

3.2.4 Depth

The system currently does not extract any depth information. Depth/Gradient informa-

tion would certainly have been very useful for figure/ground segmentation [17], detecting

occlusion, or making surfaces explicit [16]. However, given that making a visual routines

architecture for 2D images is hard enough, I did not want to burden ourselves with the

computation of depth/gradient information.

3.2.5 Grouping of low-level features

There has been considerable work on perceptual grouping [50][2][28] - the grouping of low-

level features like a bunch of line terminators that are aligned, into a high-order feature.

Such processes would have produced a richer early-visual representation. However I did not

explore this avenue because I wanted to start with a simple set of features.
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Figure 3-5: Framework for organizing the primitive operations

3.2.6 Choice of the early visual representation

So far in this section I have described the five components that make up the choice of the
early visual representation that is passed on to higher stages. There is clearly a tremendous
simplification here compared to the kinds of features that have been suggested (see the
classic text by Marr [30] for instance) as components of a 21D sketch.

There are many other well known early vision features that have been omitted from the
choice that has been made. Treisman [14] and her collaborators have designed a "pop-out"
paradigm for testing if a particular feature is part of the early-visual representation or not.

The feature in question is presented in an array of distractors. If the feature "pops-out"
i.e. clearly draws attention to itself irrespective of the size of the distractor array then it is
regarded as being part of the early-visual/preattentive representation. A long list of such
features is being compiled. Clearly the nature of the early visual representation is still an

active area of research, and I have tried to choose as simple a set as possible without getting
bogged down at this stage because the main focus of this thesis on the next stage where
task-specific visual routines are synthesized.

3.3 The visual routine architecture

In this section I describe the visual routine primitive operations and their organization. It
is at this stage in the architecture that a top-down task specification and the bottom-up
early visual information result in the synthesis of a visual routine from the set of primitive
operations.

Before I describe the individual primitive operations, a high-level overview of the organi-
zation of the primitives is in order. Figure 3-5 shows a simple framework for organizing
the primitive operations. All visual routines can be viewed as a sequence of operations
chosen from three broad families of operations. One class of operations moves the focus of

attention. Another class of operations establishes properties at and with respect to the focus

of attention. A third class of operations selects locations by selecting ranges of values of
the scene properties just established. The attentional state consists of scene properties that

have been established during prior foveations.



A typical visual routine follows the flow of control indicated in the schematic, where we

move the focus of attention to a new location, then establish one or more scene properties,
then perhaps store some of these scene properties in attentional state and also if necessary

compare the current scene properties to previously stored properties in the attentional state.

Then we select some location(s) in the image based on the scene properties just established,
move to the new location ... and the cycle continues (with not necessarily the same choices

of scene properties and selection operations of course).

The preceding description of a visual routine simply stresses the sequential nature of visual

routines and the three classes of operations. The following is a higher-level non-mechanistic

view of what these sequences of operations are doing.

* Visual routines establish local contexts, and use them as a local frame of reference to

select the next place to look at. For example a visual routine to locate a person's hand

may first locate the person, and use the size, position of head, and torso to constrain

the locations where the hand may be found.

* Visual routines monitor changes in attentional state. The representation of many

abstract spatial concepts like "picking up something" or "falling off" is in terms of

changes in certain spatial properties that are monitored.

For the next several sections you will see explanations of the individual pieces of Figure 3-5.

While these descriptions are essential to understand the core of the system, it is easy to get

lost in the detail and lose track of the fact that these operations work together to make a

visual routine. Concrete examples of visual routines will be presented after the descriptions

of the primitive operations.

3.4 Moving the focus of Attention

There are three ways in which the focus of attention of the system can be moved:

1. Saccading to a location. The focus of attention simply jumps from one point to another

with an arbitrarily large displacement.

2. em Tracing a feature. A feature like a curve is continuously traced, i.e with very short

displacements in the focus of attention.

3. em Tracking. The focus of attention continuously follows an object as it moves about.

3.5 Establishing properties at the focus of attention

While the early visual properties are computed everywhere, all the time, there are some

operations that are applied only at the focus of attention (FOA). As mentioned in section

2.1, the eye-movement experiments of Yarbus tell us very little about what is going on at

the focus of attention. In Figure 2-2(c) for instance when the focus of attention jumps from

the central woman to the child seated at the table (or the other way around, the trace is not



Scene Properties at/w.r.t Associated Operations

the Focus of Attention

1 Figure 1 figure-ground_motion

2 figuregroundfv

2 Figure Attributes 3 getsize
4 getdirection

5 getorientation

3 Local Region 6 match-local-context

Spatial Relations 7 match_regionsrelative

4 Relative Marker Distributions 8 matchmarker_distributions

Table 3.1: Eight operations which can be applied at the focus of attention, divided into

four classes by the scene properties that they are associated with.

labeled with time), what kinds of scene properties are being extracted at each location? In

this particular case the size of the individuals may be extracted as clues to their age. The

point here is that we have little idea about the computations being performed at the focus

of attention to accomplish the task at hand. However, a specification of the vocabulary

of operations at the focus of attention, that are available to the visual system, is essential

for any realistic model of visual attention1 . In this subsection I describe my choice for the

vocabulary of properties and operations at the FOA.

A note about my use of the terms "properties" and "operations": properties refer to the

kind of thing being extracted, for instance the "figure" at the FOA, or "the local spatial

context around the figure". Every property has one or more associated operations to extract

it. Furthermore there are operations to compare properties (e.g. an operation to compare

local spatial contexts). Table 3.1 shows a list of scene properties established at the focus of

attention and the associated operations. The value in separating properties from operations

is that even though future models of attention may propose different sets of operations, I

believe that the properties with which they will be associated, will not be very different

from the ones proposed here.

I now describe the operations of Table 3.1 in more detail.

3.5.1 Establishing the Figure at the FOA

Separating the figure from ground has been one of the major problems of machine vision. I

take the position that there are several independent candidates for the figure at the focus

of attention, and that it is up to the task to decide which one should be used. The system

currently uses two independent bottom-up methods to determine the figure.

figureground_motion: Motion information is particularly valuable for figure/ground seg-

mentation. The first temporal derivative in image brightness is thresholded to obtain the

location of the moving points (actually only the edges), and then a connected components

algorithm is run over the binary location image to segment the points into different groups

based on their proximity to each other. The group/figure that is closest to the current

1I discuss this important point at the end of the chapter, where existing models of attention are reviewed.



(a) An image from a se- (b) Motion figure at the
quence focus of attention

Figure 3-6: figure ground candidate from motion information

Figure 3-7: figure ground candidate from motion information: The dominant component of

the filter response suggests the size and orientation of the figure at the FOA

point of foveation is chosen as the current figure. However, this group/figure is closer to

the silhouette of the figure we really want because first the temporal derivative only yields

information near spatial edges. An additional step is necessary to identify the points in-

side the moving figure. The phenomenon by which points inside a moving figure inherit

the motion of the edges of the figure is known as "motion capture". I use the heuristic of

common-fate to implement motion-capture - points that are surrounded by moving points

that belong to the same figure, are also labeled as part of the figure. Figure 3-6(b) shows

an example of the result of the motion capture algorithm. The approximations used in the

figuregroundmotion primitive have several limitations. First difference locations are not

indicative of the motion locations for fast motion (large displacements) and the local prox-
imity rule used to get the connected components is very sensitive to noise. It would be better

to connect some higher-level feature (edge segments based on smoothness, or patches) rather

than points to make it more robust. In spite of these problems the figureground_motion

primitive gets the silhouette of the moving feature most of the time.

figureground_fv: If one views the image as a collection of blobs and edges of different

sizes and orientations, then the dominant blob or edge at a particular point in the image

is a crude but perfectly good candidate for the figure at that point. This blob or edge may

be part of a larger figure, the arm of a human for instance. The dominant blob or edge at

the point of foveation is trivial to extract; it is simply the maximum component of the 20

dimensional feature vector at the point of foveation. Figure 3-7 shows an example. I define

whatever this returns as the figure at the focus of attention.

Clearly the two procedures for bottom-up figure-ground described above are selecting very

different kinds of figures. The first one is selecting entire moving objects, the second one



is selecting salient blobs or edges, whether they are moving or not. Both the motion and

spatial feature-vector candidates for the figure are available, the task will decide which one

gets used.

An important bottom-up candidate for the figure which I have not implemented comes

from selecting edges of the same disparity at or near the focus of attention. Grimson,

Lakshmiratan et al, [17] show that the true role of stereo may not be to extract absolute

depth (for which the error increases rapidly with error in angle of vergence) but to suggest

which edges may belong to the same figure based on having disparity values close to the

disparity value at the point of vergence.

Besides ignoring the other bottom-up candidates for figure-ground segmentation, I am also

ignoring the role of top-down biases exerted by object models on figure-ground segmen-

tation. It may not be correct to assume that figure-ground segmentation must precede

object-recognition. The two processes may be closely intertwined, with bottom-up figure

candidates selecting some object models which in turn insert top-down biases that "fill-in"

parts of the figure. A discussion of these important issues is outside the scope of this thesis.

The two bottom-up candidates of figure described above should suffice for my purposes.

Having established the figure at the focus of attention, we establish some attributes of the

figure.

3.5.2 Establishing Figure attributes at the FOA

getorientation The orientation of the figure is the dominant orientation of the spatial

feature vector.

getsize The size of the figure is simply the scale at which the dominant orientation exists.

getdirection Assuming that the figure has been tracked for the past few frames, the

direction of motion of the figure is the average direction over the past few frames.

Note that all the figure attributes are of the dominant blob/edge extracted by figureground_fv.

We now move on to discussing two families of operations: one for extracting spatial re-

lations between regions, and the other for spatial relations between features that can be

approximated by point markers. Figure 3-8 motivates the need for two types of operations

for capturing relative spatial relations. Figure 3-8 shows two regions that are in different

spatial configurations. In the case of (a) when the regions are "far" apart, the distance and

direction between the centroids of the regions is sufficient for capturing the spatial rela-

tionships between the regions. However, when the regions are close together as in (b), the

centroids are poor replacements for the regions, a different representation will be needed.

One way of looking at the two types of operations is in terms of local versus global measures

of spatial relations, where "local" is defined with respect to the size and extent of the region

of interest.

3.5.3 Establishing Local Spatial Relations between Regions at the FOA

One class of operations at the FOA is devoted to establishing local spatial relations between

Regions in the image. In particular we will consider the local spatial context - the portion

of the image in the immediate vicinity of (and including) the figure. The size of the local



(a) Markers are good at (b) Pairwise brightness
capturing relative spa- ratios are good at cap-
tial positions of regions turing relative spatial
that are far apart relations when the re-

gions are close together

Figure 3-8: Two kinds of spatial mechanisms are needed for capturing global and local
relations between regions.

context is decided by the size of the figure. In the case of the figure from motion the
bounding box of the figure is used as the local context, as shown in Figure 3-6(a). In the
case of the figure returned by figure_ground fv, the local context is the bounding box
of the dominant spatial filter. Figure 3-9 shows several examples of local contexts around
motionfigures.

Why is the local spatial context important? It is an empirical fact about our world that
it has repeating local structure. Several spatial relations like being "on" something, or
"touching" something, or "inside" something, are examples of purely local spatial relations,
in the sense that the spatial extent of the receptors needed to detect these relations between
two regions, does not grow with the size of the regions.

One way of capturing local structure, i.e. the distribution of "stuff" around the point of
foveation, is to compute pairwise brightness ratios between patches, as used by Sinha[51].

Figure 3-9(b) shows a schematic. The image is divided into a mosaic of patches, and the
ratios of the brightnesses between every pair of patches is computed, giving a cross-ratio
matrix as shown in (c).

match_local_contexts: The ratio-matrix acts as a template for the patch, and can be used
for matching. Figure 3-9(c) shows the top fifty matches to the image in (a). All of these
local contexts were acquired autonomously by the system during scene exploration2 . Note
that the template does a good job of retrieving humans in similar postures. The retrieval
of the blue-ball in the last few images is understandable given that the silhouette of the

rising person matches the silhouette of the ball. The use of ratio-templates was proposed
by Sinha[51] as a representation for objects.

2I will discuss scene exploration in the next chapter



(a) (b) (c) The
ratio-
template for
(a)

(d) The best matching local contexts

Figure 3-9: Matching local contexts: A sample local context is shown in (a), and the

corresponding ratios matrix of this context is shown in (c). The image in (a) is matched to

several previously acquired local contexts, the best matches are show in (d)
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Figure 3-10: Markers on salient features are useful for monitoring their gross relative posi-

tions

Selector description

1 selectcolor Select locations that match a
particular color

2 select _fv Select locations that match a

feature response vector

3 select_blob atscale Select all blobs at a particular scale

4 select motion Select all locations moving in a particular direction

5 select regionrelative Select locations that are in a particular

spatial configuration with respect to a region

6 select _marker-relative Select the likely locations for a marker based

on its relative position to other markers

Table 3.2: Selection operations

3.5.4 Global spatial relations between markers

Another class of operations at the FOA is devoted to establishing global relative spatial

relations between widely separated regions in the image. As mentioned earlier, sometimes

regions may be simply characterized by a single "point-marker", and the relative spatial

relations by the distance and direction between point markers. Figure 3-10 shows an exam-

ple where markers on the head, arm, and object, are used to characterize a "pickup" event.

The relative positions of markers is useful in capturing certain invariances in scenes and

events. The relationship between the markers shown in Figure 3-10 is not very different

even in different instances of "picking-up" objects.

3.6 Selecting Locations

Operators that select locations in the image take a property image, and a range of values

as input and and simply selects locations in the property image that fall within that range.

Table 3.2 shows the selection operations used by the system. Selection operations may be

composed - for example one can select all blobs of a particular size within a certain distance

and direction of the point of foveation.



3.7 Attentional State

Attentional state consists of:

1. The current figure, its direction of motion, and its local context.

2. Previously selected regions, their figure attributes, and their local global spatial rela-

tions with respect to the current figure.

This concludes the description of the architecture of the system. We are now finally ready

to see how the families of operations described in the previous sections work together.

3.8 Examples of visual routines

In this section I present some examples of visual routines which will use the operations

described in the previous section. While the tasks may appear to be different, the visual

routines described in this section all use the same framework (shown in Figure 3-5) of

foveating to a location, establishing some properties with respect to the point of foveation,
selecting certain locations, and then moving on to the next foveation while monitoring

changes in attentional state.

It should be clarified that in the following examples the sequence of operations that make up

the visual routine were programmed, they were not automatically sequenced by the system.

The automatic composition of visual routines by learning from experience is the subject of

the next chapter. The emphasis in this chapter is on the basic attentional framework for

visual routines.

3.8.1 Example 1

Figure 3-12 shows two scenes where a human is trying to direct the attention of the

robot/room to a particular object. The task is to construct a visual routine that will direct

the system to the object being pointed to, by stringing together operations described in the

previous sections. Figure 3-11 shows a schematic of the order in which the operations are

applied. The goal here is not to construct the best pointing-gesture-recognition-program,
but to show the utility of the particular choice I have made for the language of attention.

This example highlights a point made earlier in this chapter (in section 3.3) about what

visual routines do: they establish local contexts, and use them as a local frame of reference

to select the next place to look at.

Find the human I At first the system must find the human in the scene. It uses a "human

template "that is formed out of G1G2 kernel feature vectors. Figure 3-13(a) shows the points

that make up the template (each point has a G1G2 feature vector associated with it). Such

templates are very similar to ratio-templates [51] and are in a form suitable for learning

from experience. Figure 3-13(c) shows the results of applying the template to all locations

in the image in (b). The red locations in (c) indicate a high match at the center of the

human.



motion in expected area
at expected scale

Saccade to salient obj

Figure 3-11: This schematic shows the composition of the operations
that is being pointed to

for detecting the object

(a) (b)

Figure 3-12: The system has to determine the object that the human is pointing to and
look at it.

Saccade to the human

- get size ot the human
- use size to determine

scale of arm
- use size to select

region w.r.t. body
where arm might move.

Saccade to Arm

- get orientation of arm
- use orientation to select

portion of room
- select the most salient
region in that portion.



(a) The human template (b) The image (c)

Figure 3-13: A "human template" is applied everywhere, the high value locations indicated
in red suggest the locations at which a human might be present

Saccade to the human Figure 3-14(b) shows the system saccading to the location with
the highest match.

Having isolated the human, the next task is for the system to isolate the hand with respect
to the body, and then shift attention to the hand.

The next task is to detect if the human is in the process of pointing at something. The
system attends to motion within a certain radius of the point of foveation. Furthermore, it
uses the size of the human it is looking at to select the scale at which it must search for the
arm.

Figure 3-14(d)shows the area around the point of foveation being monitored for motion.

Figure 3-14(e) Shows the subset of monitored locations at which motion is detected.

Select "arm-scale" blobs in the motion region I The size of the human determines
the scale at which the arm is likely to be detected. Only blobs at this lower scale (at which
the arm is likely to be detected) are attended to in the moving regions. Figure 3-14(g)
shows the likely locations of the arm.

Saccade to the arm Figure 3-14(i)shows the system at its new point of foveation on
the arm. Having saccaded to the arm - which is now the focus of attention - the orientation
of the arm is determined.

Select a region in the room Figure 3-15(d) shows the region selected in the room. The
system's attention now shifts to the selected region of space. Within this space it selects a
blob that is salient in its color contrast. Figure Figure 3-15(e) shows the bottom-up color

salience everywhere in the image. Figure 3-15(g) shows the system finally saccading to the

most salient location within the selected region. In this particular example the location

.... - .... J- 4,,..
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Figure 3-14:
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Figure 3-15: The system uses the hand orientation to select an area of the room and saccade

to the most salient blob there
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(b) Detect and saccade
to the human

(c) Detect and sacade to
the hand

(d) Use the hand orien-
tation to select a por-
tion of the room

(e) Select the most
salient blob in the se-
lected area

(f) saccade to the blob

Figure 3-16: An example of pointing where the system
low bottom-up saliency.

finally saccades to an object with

finally saccaded to happens to be the most salient in the image, however as Figure 3-16

shows this need not be the case. Even though the bottom-up saliency of the calendar in

the left of the image is low compared to other parts of the image, the selected cone shaped

region can be viewed as imposing a top down modulating effect leading to the selection of

the calendar as the most salient location.

The previous example of a visual routine emphasizes the framework described in Figure 3-5.

The system repeatedly establishes a locus of attention, there it establishes some properties

with respect to the point of foveation, selecting from the range of values of these properties

enables the system to shift its focus of attention to some region of space where it may

monitor a particular event or feature. At another level, we saw that the system repeatedly

sets up successive frames of reference. For example it used the size and orientation of the

human to determine the size and locations at which to search for the hand.

3.8.2 Example 2

In this example I describe a simple visual routine for tracking a moving object even as it

passes behind an obstacle. Experiments with infants [3] show that 3 month old infants

already have strong expectations for such events, for instance that the object is likely

to emerge at the other end of the object, and are surprised when these expectations are

violated. One important and unanswered question is: what is the representation of these

expectations? One of the contributions of this thesis is the concrete proposal that the



representation of the expectation is in terms of changes of attentional state, where the

attentional state and the associated operations are as specified in the previous sections. In

other words, changes of attentional-state are sufficient to explain the behavior of the child

without invoking more abstract "beliefs" about objects or requiring any "intuitive physics".

Such abstract knowledge could arise later, but the point here is that it is not necessary to

explain the behavior of the child.

In the following example the visual routine is hand-sequenced. In the next chapter I show

how expectations can be learned in an unsupervised manner and thereafter generate visual

routines. For now however the point of this example is to show that

* The changes of state of the figure (the ball) and the local spatial context contain

sufficient information for constructing the visual routine that checks for the ball re-

emerging at the opposite edge.

* The set of operators described in previous sections (in particular the operator for

matching local-spatial context described in section 3.5.3) is capable of implementing

this visual routine.

In this example the task is to simply track the ball. Figure 3-17(a)shows a schematic of the

visual routine that tracks even in the presence of occlusion.

[Track Object Figure 3-17(b) and (c) shows a ball and the local context (shown as a large

red rectangle) around it as it is tracked. At every instant the figure (the ball), its attributes

(direction of motion, size, orientation) and the local context around it are being monitored.

Lose ball at the right edge The system waits until the tracker loses the ball (Figure

3-17(c)(e) and the local context matches the local context shown in (d), i.e. a dark edge to

the right of center.

Saccade to the right searching for the opposite edge : Once it loses the ball at

an edge, the system saccades to the right, while searching for a local context that matches

the one shown in (g).

Wait for motion : Having found the opposite edge the system maintains its focus of

attention on this edge while waiting for motion within the current local context (f). When

it finally sees motion here (h) it saccades to the moving object, and starts tracking it again

(i).

The example emphasizes how the kinds of information attended to in the local-context

changes during the course of the event. In frame (b) only the moving figure is being

attended to, in (c) (e) (f) (g) the spatial structure of the local context (in particular the

dark edge to the right, and the dark edge to the left) is relevant. In (h) only the motion

information within the local context is relevant.

3.9 Evaluation of the architecture

The previous sections showed some examples of visual routines implemented in terms of the

proposed language of attention. An empirical way of demonstrating the versatility of the

language is to implement hundreds of visual routines for everyday tasks. While extensive
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Figure 3-17: The system uses its expectation for a change of local context to look at the
appropriate location for the re-appearance of the ball after having lost it.



testing is certainly a high priority, there is another way of evaluating the language, without

trying to enumerate all the visual routines that one can write (which is an impossible task

for a compositional grammar). Visual routine primitives and the visual routines that they

produce (sequences of primitives) are at different levels of complexity, and therefore can be

evaluated independently (even though the routines are constructed from the primitives). In

other words, we can make some requirements of what visual routine primitives should do,

and similarly make some requirements of what visual routines should do and check to see

if these requirements are met.

How robust are the primitives at establishing spatial relationships between re-

gions? There are really two questions here. First, how does one characterize the spatial

relations between two regions? and secondly do the primitives I use capture these spatial

relations? An exhaustive way of characterizing the relative spatial relationship between

two regions (say A and B), is to make explicit the distance and direction distributions

of every point in one region (say A) with respect to every point in B. A little reflection

will show that any relative spatial relation (e.g. all patches in A which have a patch of

B immediately to the right and below) is easily computed from the distance and direction

distributions. I claim that the primitives in my system that capture local region relations

and global marker distributions capture the information in these distance and direction dis-

tributions. As mentioned in section 3.5.3 the local region relations capture the information

in the distributions when the regions are close together, and the global marker relations

between the region centroids capture the information in the (unimodal) distributions when

the regions are far apart. Hence the primitives completely characterize the spatial relations

between two regions.

How robust is the language at constructing visual routines to capture visuospa-

tial patterns of activity? The language that I have proposed is built around two insights

about what visual routines do:

1. Visual Routines establish successive local frames of reference. For example in the

pointing example the size and orientation of the human were used to setup a local

frame of reference, which was used to select expectations about the location of the

hand. Which in turn was was used a frame of reference to select a portion of the

room.

2. Visual Routines monitor changes in attentional state.

Given that the language I have proposed has been explicitly constructed with these two

functions of visual routines in mind, my language is effective in capturing visuospatial

patterns of activity insofar as visuospatial patterns of activity indeed perform the two

functions listed above.

I now look at the proposed language of attention in the light of existing models of visual

attention.

3.10 A review of models of Visual Attention

"Everyone knows what attention is. It is the taking possession by the mind in

clear and vivid form of one out of what seem several simultaneous objects or



trains of thought." - William James (1907)

Hypotheses regarding the role of attention in visual processing have changed little since

William James' 1907 proposal. Attention is viewed primarily as a selection mechanism that

allows the visual system to allocate its limited resources to specific regions in an image

for further specialized processing. To achieve the goal of reducing or constraining overall

input to the cognizer, selective attention may filter out some features while enhancing our

perception of other features. The attentional system, in essence, is entrusted with the task

of controlling the information flow that incessantly impinges on an observer.

Over the past several decades, a host of researchers have elaborated this general theme.

In this section I review some of the empirical data and the most prominent proposals

regarding the role of attention. For more extensive descriptions, the reader can refer to any

of a number of other reviews (Posner [44]; Posner & Petersen [45] Posner & Rothbart [46];

Tomlin & Villa [55]).

The purpose of this review is to establish that the models of attention that have been

developed so far have adopted a rather narrow outlook as to the role of attention in visual

processing. This will serve to highlight one of the main points of this thesis, namely, that

attention is not merely a stand-alone selection process, but is instead a component of the

larger visual routines machinery.

3.10.1 Models of attention as a region/object selection mechanism

LaBerge[26] has been a strong proponent of the selectional role of attention. In his model,
attention is merely an enhancer of the attended area, and a suppressor of the surround.

The attentional machinery can achieve this contrastive effect in one of three ways:

1. Via a greater enhancement of the attended area than that of the surround, or

2. Via a lesser degradation of the attended region than that of the surround, or

3. Enhancement of the attended region and degradation of the surround. In LaBerge's

model, then, attention is what heightens our sensitivity to specific subsets of our
surroundings.

To ground out his model in actual brain structures, LaBerge proposes that attentional

processing is carried out by thalamocortical circuits - by the transfer of information to

and from the cortex from the thalamus. The thalamus serves to selectively amplify the

information coming into the visual system and this amplified information is fed back to the

system. The superior colliculus, he believes, plays a role in determining what location to

attend to.

A proposal that seeks to refine the general notion of attention as a selection mechanism

hypothesizes a role for attention in object selection. The basic idea is that attention fa-

cilitates individual object selection by binding multiple features to objects (Treisman and

Galade [14]) or by putting the features in the correct "object files" (Kahneman and Treis-

man, 1984). Treisman's feature integration theory assumes that the key to the process of

combining preattentive features into objects is focused attention. Such a process comes into
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Figure 3-18: A schematic depiction of Treisman's Feature Integration Theory. Treisman
views attention as the 'glue' that binds features to objects.

play in complex conjunction search situations, wherein the target object may be defined
as a conjunction of multiple attributes. The flow-chart in Figure 3-18 shows how focused
attention is involved in the overall process of object perception according to the Feature
Integration Theory.

3.10.2 Physiological evidence for a selectional role of attention

Researchers have found attentional modulation/selection of neuronal response in several
visual cortical areas. Results from area V4 are particularly striking (Moran and Desimone
[35]; Haenny, Maunsell and Schiller [18]; Haenny and Schiller [19]; Spitzer[54]). In some of
their early work, Moran and Desimone trained monkeys to attend to a colored bar shape
in one location and to ignore a different one in the other location. When both stimuli
were in the receptive field of a cell, the cell responded well if the stimulus to which the
cell was responsive appeared at the attended location but was attenuated significantly if
the stimulus appeared at the unattended location. In general, V4 single-cell data indicates
that cells exhibit a gain in firing rate when a single object is presented and attended to.
However, when two objects are presented and only one of them is attended, cells show no
change in firing rate if the stimulus is a target (preferred) and exhibit attenuation if the
stimulus is a distractor (non-preferred).

3.10.3 Psychophysical evidence for a selectional role of attention

Informal psychophysical evidence for a selectional role of attention comes from several ev-
eryday experiences. An example may be picking out a conversation at a party to listen to
or concentrating on one instrument, say the clarinet, during a musical performance. When
attention is directed to the desired voice or the chosen instrument, the key information
is more easily extracted from the environment, making it available for further processing-
pulling out the content of the conversation or determining the success of the clarinet player,
for instance. The facilitation of some information comes at the expense of the inhibition of
competing information. So, it is difficult to sustain a current conversation when a nearby
one is attended to, and it is hard to keep track of other players when the clarinet is selected
for listening.

There is also a host of formal experimental evidence that supports the selectional role of



attention. For instance, Burkell and Pylyshyn (1995) have built upon the work by Yantis

and Jonides (1984) (who demonstrated that sudden onsets attract "attention" or "priority

tags"). They have found that subjects can separate the subset of search items whose

locations are precued by a late-onset marker from the other tokens in a display. Treisman

and Sato (1990) have also found evidence for the selection role of attention

3.10.4 Current work in modeling attentional processes

A number of research teams are working towards modeling eye-movements and attentional

fixations. Prominent efforts in this regard include (Rao and Ballard, 1995; Rao et al.,

1996; Itti and Koch, 1996). The common underlying strategy in all these pieces of work is

the computation of saliency maps on some pre-specified image attributes such as color or

luminance contrast. Attentional fixations then wander from one image region to another

in the order of their computed saliency. Rao et al., 1996, for instance, build iconic scene

representations using oriented spatial filters at multiple scales. The attentional 'itenary' is

constructed in a coarse-to-fine fashion with higher salience being attached to larger scale

filter responses. Itti and Koch follow a similar strategy. They combine multi-scale image

features into a topographic saliency map. The relative weights of the image features can be

learned.

3.10.5 What's missing in all these models?

It is important to note that all these efforts are concerned only with the control strategy for

determining the loci of attention over time, but say nothing about the processing that hap-

pens at the attended locations. Going back to the Yarbus example in Figure 2-2(c) simply

selecting various parts of the scene does not accomplish the task at hand of estimating the

ages of the people, there is some crucial task-specific computation at each successive focus

of attention. The "attention = selection" view stems directly from viewing attention as an

independent selectional mechanism whose main function is to facilitate object-recognition.

In this thesis, I shall argue that this view-point needs to be expanded and that atten-

tion needs to be viewed as an integral component of the visual routines machinery, and

consequently any realistic model of attention must have a proposal for the vocabulary of

operations that can be performed at the focus of attention. In this more comprehensive

view, selection is just one facet of what attention does; a more important role it plays is

in the establishment/extraction of inter or intra region spatial properties. These properties

are critical for the performance of visual routines.

3.11 Summary

In this chapter I presented the architecture of a system for constructing visual routines,

and showed some examples of visual routines implemented in terms of this language. The

examples highlighted two ways of looking at what visual routines do: namely, establishing

successive changes of frames of reference, and monitoring changes in attentional state. The

proposed language of attention represents a significant step beyond prior models of Atten-

tion. Whereas prior models viewed the role of Attention as just "Selection", I emphasized



two other families of operations which are also crucial to a realistic model of Attention.

I also made some specific proposals about the operations that constitute each family of

operations. While the specific operations may change in the future as we better understand

visual routines, we claim that the families of operations and the types of the operations will

endure.



Chapter 4

Learning Visual Routines

In this chapter I present a scheme for learning visual routines from expe-

rience. Whereas in Chapter 3 the focus was on the primitive operations

of visual routines and how they can be strung together to extract differ-

ent spatial relations, the focus here is on how visual routines automatically

come about from experience. In this chapter I will provide an answer to the

following related questions:

1. If visual routines for extracting spatial relations are not explicitly se-

quenced or composed how do they come about?

2. Event expectations: By the age of six months infants already have

certain expectations about events in the world. Figure 4-2 shows an

example of an event that surprises 4!-month-old infants. How do

these expectations arise?

3. Event recognition: We use terms like "pick-up" or "collide" to describe

certain events even though the details of the individual instances may

differ widely in their details (Figure 4-1 shows two different instances

of "pickup"). What is invariant in different instances of pick-up or

collide that leads us to describe them the same way? And how do we

learn these invariants?

The answers to these questions will hinge on the following ideas: Visual

routines are learned - not planned. Event expectations can be formed by

learning frequently occuring patterns in attentional state. Extracting invari-

ances requires proactive exploration.

4.1 Visual routines are learned - not planned

In section 2.1.2 we saw that there were two important issues that any "basis-set" theory of

visuospatial problem solving must deal with: The choice of a basis set of primitive opera-

tions, and their composition. The previous chapter dealt with the first issue, it described a



(b) (c)

(e) (f)

Figure 4-1: Two patterns of activity (a-c)
common? and how can we learn it?

and (d-f), that are similar in some way, what is

Figure 4-2: 41-month-old infants preferentially look longer at the "impossible event"in the

bottom row, presumably because some expectation was violated. What is the representation

of this expectation? and how was it acquired?.
[31]
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Figure 4-3: Regularities in the world and attentional biases repeatedly drive the atten-

tional state through patterns. High frequency patterns become expectations. Expectations

generate visual routines to check for the predicted part of the pattern.

small family of operations (a kind of "language of visual attention") and showed examples

of how visual routines could be constructed by repeatedly choosing operations from the

family of operations. The visual routines in the examples however were composed by hand,

in this chapter we deal with the remaining important issue, namely how visual routines can

be automatically composed. How can a system know how to put together a visual rou-

tine to determine what a person is pointing at or if one object is touching another object?

This statement of the problem implies an "explicit sequencer", a box that when given a

new visuospatial problem, somehow "knows" how to sequence the primitive operations to

solve that problem. I take the position that there is no such box, no explicit sequencer for

constructing visual routines.

An overview of my approach

The following points list the main features of my approach, a schematic of which is shown

in Figure 4-3.

1. Patterns of visual activity emerge from interaction with the environment (as we saw

in section 2.4 in "Amazon" [10]). Exploration of the environment leaves a "trace"

in attentional state. Regularities in the world (recurring spatial relationships and

events) and biases in attention (the tendency to track moving objects for instance)

cause repeating trajectories in attentional state. The components of attentional state

are as described in section 3.7.

2. These emergent patterns in attentional state can be learned. The repeating "patterns

of activity" in one's attentional state can stand out simply because of the higher



frequency with which they occur.

3. A partial match of the current trajectory (shown in blue) with the learned prior

pattern leads to the prediction of the rest of the pattern (shown in red).

4. The predicted sequence of attentional states generate a corresponding "visual routine"

which is used to check for those states. The transformation of predicted states into

a routine is easy because as shown in Table 3.2 every property has a corresponding

operation to extract it.

5. Exploration must be pro-active. In order to learn certain abstract spatial invariants

(like pick-up) one must actively select regions and monitor properties to notice any

regularities.

In the following sections I first explain the motivation and issues surrounding each of these

points before delving into the specific instantiation in my system.

I first clarify what I mean by the first point.

4.2 Situated patterns of activity, and interactive emergence

In his book Catching Ourselves in the Act Horst Hendriks-Jansen [20] examines the role

of natural selection in the explanation of human behavior and the nature of explanatory

models of human intelligence. His main message is that patterns of emergent activity are

the only basis for an explanation of natural intelligence. A brief discussion of his work will

shed light on the idea of "patterns of activity" which as we have seen is a useful way of

thinking about visual routines.

Jansen does a thorough job of analyzing the implicit assumptions that underlie various com-

putational theories/explanations/recipes for human-like intelligence including the symbol-

systems approach, connectionism, and behavior-based A.I. While this is not the place to

detail Jansen's numerous well-crafted arguments, there is one point that recurs in his criti-

cism of existing explanations of intelligence:

Deliberately designed computational models do not have explanatory power because they

they do not reveal anything more about the-thing-being-modeled beyond what was put in.

He says (of the deliberately designed models):

They require clearly defined parameters that delineate the similarities between

the model and the explicandum right from the start. The model does not help

to define the parameters, and it has no power to reveal previously unsuspected

causal and structural relations. These need to have been defined before the

model is ever built, since it is built in terms of those parameters in an attempt

to prove that certain formally specified relations exist in the explicandum just

as they do in the model.

Jansen concludes that the "natural" kinds for explaining intelligence must therefore come

from some other place than the model itself. He suggests that the patterns of activity that

a system exhibits when it interacts with the environment are a good candidate for these



"natural kinds". An example of such a pattern of activity is the wall-following behavior

that a robot exhibits when its low level reflexes of Avoiding obstacles, Aligning to some

direction, Strolling, and Correcting (see [31] for the details) interact with an environment

that happens to have walls. the important point that Jansen makes is that the "wall-

following" activity is not a predetermined series of movements, it emerges from both, the

presence of the wall and the low-level reflexes, and has a structure that lies above the reflexes

that produce it. Furthermore, the notion of a wall does not have an internal representation

inside the robot, and no formal description of the wall is necessary to produce the activity.

What do visual routines have to do with all this?

A lot. The concept of frequently occurring traces in attentional state is identical to Jansen's

"patterns of activity" (in fact I use the same phrase). I feel that I have built upon Jansen's

notion of patterns of activity in one important way. Jansen would like find out what the

natural kinds are for humans and how these "natural kinds" arose via natural selection. To

him that would constitute a valid explanation of intelligence. My goal is to use the natural

kinds to construct intelligence. I would like to suggest that one could build a system that can

notice and grasp the patterns of activity that it goes through, and use them as a vocabulary

or scaffolding for higher-level cognition.

4.3 Why learn emergent patterns?

We now move on to the second point mentioned in the outline of section 4.1, namely that

the emergent patterns of visual activity are learned. A reasonable question here is "If visual

routines emerge from interactions with the environment, why bother learning them?" After

all, won't they just happen automatically when needed? It is important to understand why

this argument is flawed.

4.3.1 Visuospatial patterns lead to expectations that impose top-down

bias on behavior

Suppose someone is trying to get a child to look at some object in the environment. In

some situations, pointing at it works because the object is very salient to begin with, and

the child's attention shifts from your hand (or gaze direction) to the object purely due to

bottom-up biases (i.e. without using the direction of the hand as a cue). However, there

will be other situations where the object is not very salient, and having learned the relation

between hand orientation and object position from prior situations makes all the difference

in being able to locate the object. In fact these are the situations where the pointing

gesture really has function. Putting it another way, learning the correlation when the signal

is "strong" helps you in situations when there is noise and the signal is weak, because now

you have a model. Another example is the visual routine that you go through of looking

both ways before crossing the road. Sometimes you may be driven through this routine by

a bottom-up behavior of looking at a looming stimulus in the periphery. Noticing that this

pattern happens a lot on roads, remembering the pattern, making it an expectation, and

pro-actively looking left and right before you cross a road, has clear survival value. The



bottom-up behavior is still in effect, but it may be too late by the time it is triggered, or

it may not be triggered at all if portions of the road are not in your peripheral vision (e.g.

you're at an intersection).

The reason for learning emergent patterns discussed above is essentially arguing for the

benefit of having expectations, in that expectations about your interaction with the world

constitute a kind of model of the world, which can drive behavior in a top-down manner

to pro-actively extract signal from noise. There is another different but equally important

reason for learning emergent patterns in experience: patterns in visual experience form the

basis for "higher-level" concepts that can be used for communication between agents that

share the same set of patterns by virtue of having the same or very similar visual routine

architecture.

4.3.2 Visuospatial patterns form the basis of language, and reasoning

Consider the following significant aspects of human cognitive development:

1. Children learn regularities in the environment well before they can speak, [52] [3].

2. Children are rarely supervised in their learning of visuospatial concepts.

3. When they are supervised, for example when an adult describes something that's hap-

pening (e.g. "look at that ball falling"), children learn the concept with surprisingly

few examples, compared to the large number of examples that current supervised

learning programs need.

4. Children make systematic errors in reasoning that indicate a visuospatial basis for

concepts and reasoning. In one experiment a child's concept of "more" is tested. The

child thinks that there is "more" water in a tall narrow glass than when the same

water is poured into a short broad glass. The conservation experiment is one of many

experiments which indicate that initially "abstract" concepts and reasoning have a

strong perceptual bias.

In the light of such facts, I would like to suggest that:

1. A vast number of visuospatial patterns are extracted at a very early stage in child

development in an unsupervised manner.

2. Subsequent supervised learning only requires a few examples because the child almost

has the concepts, and the supervised learning is simply helping label a pattern that

has already been learned.

3. The visuospatial patterns are required for language development, and must necessarily

be acquired before spatial words can be learned.

4. The visuospatial patterns are used for higher cognitive functions( like reasoning about

quantity).

In the next few sections I describe the details of the instantiation of the approach described

in 4.1 in my system, and show the visual routines generated as a result of exploration and

learning.
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Figure 4-4: Biases about where to look and what to do at the focus of attention are necessary

for exploration.

4.4 Attentional traces during exploration

In the examples of the previous chapter the hand-coded visual routine, together with

the scene, decided where the system looked, and what properties got monitored across

foveations. During free exploration however, i.e. when the system is not trying to solve any

particular problem, it must have biases about where to look next, and what to do at the

focus of attention.

A system of simple behaviors shown in Figure 4-4(a) implements bottom-up biases about

where to look. One behavior tracks moving blobs, another one looks at the largest moving

blob. A third behavior looks at color-salient objects if nothing is moving. At present the

behaviors have been individually tested but the subsumption structure (indicated by the

dashed lines in the figure) has not.

Apart from where to look, there must also be biases about what to do at the focus of at-

tention, and what state to maintain across foveations, during free exploration. Throughout

the thesis I have emphasized that any realistic model of attention must take into account

what happens at the focus of attention. A large part of the previous chapter was devoted to

a description of the properties and operations at the focus of attention. These operations

could be used to establish different kinds of spatial properties at the FOA depending on

the task at hand. However, what does one do during exploration? There are a couple of

possibilities:

* One possibility is to always extract certain properties. For instance the figure at-

tributes, and the local spatial context around the figure may be important properties

to extract and monitor across foveations regardless of the situation.

* Another possibility (not mutually exclusive) is to have other representational systems

and motivations suggest tasks. What does this mean? So far I have only talked about

the visuospatial machinery for a humanoid robot, but clearly the visuospatial machin-

ery doesn't exist in isolation, but is a vehicle for a variety of goals and motivations

that need to check for certain situations in the environment. To take just one ex-

Biases about what to do
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ample; A drive to look for people, and check to see who is next to whom may be a

high priority to parts of the brain concerned with social interaction, so there may be

a strong bias to put markers on people (as opposed to other objects) and monitor the

relative spatial positions of these markers during exploration of a scene.

Given that I have been considering the visuospatial machinery in isolation, and because I

want to start with a simple scheme, I've adopted the first option, of always monitoring a

fixed set of features (listed below). Furthermore in all of the examples in this chapter I have

used a blue ball as the object of interest, so as not to mix in the issue of object recognition

and obscure what I am trying to show, namely that it is possible to learn visuospatial

patterns of activity using the local and spatial representations described in the previous

chapter.

Summarizing the conditions under which the learning experiments were conducted: A blue

ball was used, and this fact was used to aid in the tracking. During tracking the properties

monitored (the attentional state) was restricted to the following components:

1. The direction of motion of the figure.

2. The presence or absence of the figure (i.e. is the size of the figure non-zero)

3. The immediate spatial context around the figure.

In other words I will not for the moment consider the other components of attentional state

described in 3.7.

Figure 4-5(a) shows some snapshots of the ball being automatically tracked as it is pushed

over the edge of the table. The local context around the ball (shown as a large red square)

is scaled to a fixed size of 40x40. Figure 4-5(b) shows the full trace of the local context,

from left to right in row major order, the ball is pushed, it rolls to the edge of the white

table, falls over and bounces. Note that the direction of motion of the figure, and presence

or absence of the figure is also part of the state but has not been shown in Figure 4-5.

4.5 Activating similar attentional traces in memory

Multiple instances of events involving the ball that may be described as "falling", "collid-

ing", "bouncing", "passing-behind", and "picking-up" were recorded. Attentional traces

for each of these events were stored as in memory, forming different trajectories in the at-

tentional state space. Trajectories of "similar" events should be close together in the state

space.

As it is hard to depict the entire state space and highlight the trajectories that cluster

together (as shown in the schematic of Figure 4-3), I will adopt another way of showing

the same information. I will match a segment of an attentional trace to all segments

of attentional traces of all examples, and display the best matches. If the choice of the

attentional state space has been a judicious one, then we should expect to see segments of

attentional traces of "similar" events.

For now I use a very simple-minded method for matching trajectories; I match trajectories

based solely on the absolute values of the figure attributes, (i.e. the direction of motion of



Figure 4-6: The top row is the query segment of a "falling" ball, the next 10 rows show the

10 closest trajectories to the query trajectory in attentional state space.

the ball, and whether it was being tracked or not). This can be thought of as moving a little

sphere along a trajectory in state space, and considering only trajectories that fall within

the volume swept out in state space. It would be more reasonable to match differences in

attentional state, which would be much more robust. However, this is only a first pass at

demonstrating the approach described in 4.1 and should not be taken as representative of

the full capabilities of the system.

Figure 4-6, shows the 10 closest trajectories in the attentional state space to segments of

a ball "falling to the right". The topmost row shows the new or query sequence, the next

10 rows show the closest trajectories. Time goes from left to right. Some of the matching

trajectories are almost identical to other ones except shifted in time.

Figure 4-7, and Figure 4-8 show the 10 retrieved best trajectories for queries of a ball

"bouncing", and "passing behind" an occluder.



Figure 4-7: The top row is the query segment of a "bouncing" ball, the next 10 rows show

the 10 closest trajectories to the query trajectory in attentional state space.
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Figure 4-8: The top row is the query segment of a ball "passing behind" an occluder, the

next 10 rows show the 10 closest trajectories to the query trajectory in attentional state

space. There was really only one other example in experience that was similar.
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(a) The averaged ratio templates of activated traces of Figure 4-6

(b) A visualization of the averaged ratio templates

Figure 4-9: The top row shows the learned local spatial context for an object falling to the

right. The bottom row shows a visualization of the template. Time goes from left to right

in these sequences.

4.6 Learning an expectation from activated attentional traces

Having activated/retrieved "similar" attentional traces, the recurring pattern is learned by

simply averaging the local spatial contexts of the activated traces. For example, in Figure

4-6 the local context ratio-templates for the 10 traces are averaged to get an "expectation

or template for falling to the right" as shown in Figure 4-9(a).

4.7 Learning visual routines via reinforcement learning

In this section I review an alternative approach for learning visual routines and compare it

to the approach described in this chapter.

4.7.1 An overview of the U-tree reinforcement learning algorithm

McCallum [32] describes a U-Tree reinforcement algorithm for learning visual routines.

Visual routines are viewed as a sequence of perceptual actions to redirect the purposefully

narrow attention window to relevant parts of the environment. The agent's task at every

step is to choose where to look, where to focus covert attention, and which perceptual

computations to perform on the available sensory data. McCallum concludes that learning

a strategy for perceptual actions is an integral part of learning to perform the task. He

then points out that Reinforcement Learning is well suited for learning of attentional shifts

because Reinforcement Learning's chief strength lies in its ability to choose sequences of

actions based on the current state and some policy or reward function. The problem of

hidden state (due to a limited attentional window) is addressed by having some short-term

memory for states and actions in the immediate past.

McCallum presents a new reinforcement learning algorithm called U- Tree. The input to the

algorithm at each time step is a transition triplet of action-just-taken, current-state, reward.

From this time series of triplets the algorithm constructs a decision-tree which takes a new
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Figure 4-10: A schematic of a U-tree decision tree for organizing attentional state space.

From McCallum[32]

triplet and classifies it in a bin. Figure 4-10 shows a schematic of a U-tree along with a

sequence of instances at the bottom. In this U-tree there are two possible actions, -uI, and

[I, which appear at the leaves of the tree along with an estimated utility Q-value (not

shown in the figure). There are three input dimensions which take on values (A, B, C), (,

#, $), and (+, -) respectively. The branches of the U-tree indicate a classification decision

based on perceptual state in the recent past (e.g. 1C asks if the state C was observed 1

time-step ago). Given some new observation like (B $ -) which was reached after taking

the action [-u , the observation is classified by following the branches of the tree from the

root: 0$ because we are seeing $ now, then lu because the last action taken was -, then

1C because C was observed in the previous instance. This leads to a leaf which suggests

that the next action taken be V along with the expected utility of this action.

The U-tree is constructed by starting with one node, and then dividing up the instances

classified by that node into separate nodes under it. The partitioning is done based on

testing the instances for statistically significant differences based on expected future dis-

counted reward. The statistical test applied to check if the instances came from different

distributions is the Kolmogorov-Smirnov test.

McCallum tests the system on a simulation of highway driving. Seven perceptual dimensions

(e.g. hear-horn, gaze-object, gaze-side, gaze-speed, e.t.c.) each with a discrete set of values

are available to the system. The system also receives one of three rewards at each time step:

-10.0 for scraping past a slow truck, -1.0 when a fast truck honks at the agent, and 0.1 for

making progress. Given a seven dimensional input and a reward, the agent must choose one

of five actions: gaze-forward-left, gaze-forward-center, gaze-forward-right, gaze-backward,

and shift-to-gaze-lane. The result of using the U-tree approach is that the system creates

only 143 internal tree nodes, out of a possible state space of 25003.



4.7.2 A critique of Reinforcement Learning

The criticism that follows is not directed particularly at the U-tree method but at the

reinforcement learning framework in general. There is clearly a difference in paradigm

between the reinforcement learning approach described above and my approach to learning

as described in section 4.1. The following are some of the major differences:

Representation is key, abstracting away from it is bad. In any learning approach

there are three questions of paramount importance, what is being learned? In what repre-

sentation is it being learned? and How is it being learned? i.e. what is the learning method

being used? Once we have decided what it is that we want to learn, picking a representation

is key, because picking a good representation that makes important things explicit greatly

simplifies the learning method used. This is the route that I have chosen. In chapter 3 I have

spent some effort in choosing a simple but rich set of properties and operations, so that

when it comes to picking a learning method I can use a relatively simple memory-based

method of noticing high-frequency patterns. Reinforcement Learning on the other hand

abstracts away from the representation and places its emphasis on a complicated learning

method that requires a reward at every step. Delayed reward methods exist, but are even

more complicated because they have to deal with severe credit assignment issues. Notice

that in the highway driving problem above, once the problem was formulated in terms of

7 perpetual dimensions, 3 rewards, and 5 actions, as far as the learning method was con-

cerned it could well have been about trading options in the stock market. The learning

method doesn't care where the problem came from, in fact this is viewed as a "strength"

of Reinforcement Learning, and makes it seductive because it can be used in any domain.

However, this "generality" comes at a very costly price. The learning method now has to

do significantly more work and introduce artificial constructs like "reward" to unreath the

regularity from the data. There is a strong parallel here between the use of Reinforcement

Learning like methods and the promotion of "Search in some space of symbols" as a "gen-

eral" problem solving method in the early days of A.I. because both approaches abstract

away from the representation, the choice of which is the crucial part of the problem.

Notice structure in the world, don't look for a reward at every step. My approach

depends crucially on the fact that there is structure in the world which interacts with the

biases of the system to produce repeating patterns in attentional state. It is artificial to

posit rewards for every time step of every event, firstly because it begs the question of who

is going to come up with a reward structure for every task, but more importantly because

in many situations like observing a ball falling, rewards just don't make sense. Events just

happen. Being able to notice recurring ones, and predict their occurrence is reward in itself.

I am not claiming that rewards have no place at all in learning. In supervised learning, a

gesture of appreciation to a child, or a tidbit of food to a dog, could help reinforce some

behavior. However in most situations adopting a "reinforcement with reward" framework

is not necessary to learn.

Low-level exploratory behaviors incorporate implicit biases, making explicit

rewards unnecessary. Low-level exploratory behaviors like "tracking", or "look-for-

human", implicitly encode biases about what to do next; the tracking behavior is "rewarded"

by continued tracking, and the "look-for-human" by finding a human to look at every time

step. Therefore they already incorporate very specific notions of reward particular to their

goals and do not need explicit and arbitrary measures of reward. Reinforcement Learning



on the other hand by abstracting away from the problem, has no biases about what to do

and has the full panoply of action choices available at every time step. This lack of bias
will be claimed as a virtue because it makes the system more "general", however as biology
shows again and again, presence of biases in low-level behaviors speeds up learning and
leads to the interactive emergence of patterns of activity [20].

4.8 The role of visual routines in cognitive development

In this section I will review some past and recent work on child development, and examine
the exciting implications of visual routines on cognitive development.

4.8.1 A brief overview of Piaget's theory

Any discussion of child development must begin with a summary of Jean Piaget's monu-
mental contributions. The following are the four stages of development as hypothesized by
Piaget:

1. Sensorimotor Stage[0-2yrs]: In this stage sensorimotor schemas of increasing complex-
ity are learned. The world is explored through some very basic reflexes like grasping,
or sucking. At first these reflexes work independently, but soon they start chaining

together into more complex sequences. Behaviors start distinguishing between stimuli
and are subject to reinforcement. The child repeats actions until he/she can repro-
duce them reliably. Exploration becomes more goal-directed as the child tries to do

things to repeat an interesting stimulus. Finally the child moves from sensorimotor
to representational intelligence as action sequences are simulated in the head rather

than by active manipulation (there is evidence that such simulations are possible in

certain motor and visual areas [15] of the brain). The defining feature of this stage is

that the child's concept of the world is completely in terms of its actions upon it.

2. Pre-operational stage [2-7yrs]: The child represent objects and events even in their

absence. Deferred imitation, symbolic play, drawing, and spoken language mature
during this stage. However, Preoperational thought is still strongly tied to perception.
It is egocentric and cannot grasp conservation laws.

3. Concrete operational stage [7-11yrs]: Logical thought is applied to concrete problems.
Thought finally breaks through from perceptual limitations that characterized the

previous two stages, and can now manipulate classes and relations leading to what

Piaget calls "mobility" of thinking.

4. Formal operational stage [11-15yrs]: Piaget believes that logic is the mirror of thought,
rather than the other way around, i.e. the function of formal logic is to make explicit

the mental operations that occur at the highest stage of human cognitive development

[24]. At this stage the adolescent can see abstract structure in discourse, metaphors,
and analogies of all kinds.

What aspects of Piaget's [41] theory are relevant to our efforts to build a humanoid-robot?

There are three aspects of Piaget's theory that stand out in this regard:



* Development = change of cognitive structures: cognitive and intellectual change

is the result of a development process. Cognitive development is a coherent process

of successive qualitative changes of "cognitive structures".

* Active exploration and construction. Development of cognitive structures is

ensured only with active exploration of the environment and social interaction. All

knowledge is a construction resulting from the child's actions. Physical knowledge is

constructed through discovery, whereas logical-mathematical has to be invented.

* Bootstrapping and Subsumption: The stages do not em replace each other in a

sequence, but are layered so that the later stages grows out of and modifies the actions

of the previous ones.

Paiget's main contribution is in the cataloging of the changes of behavior due to cognitive

development. Two big issues that still remain unanswered and are particularly relevant to

someone trying to build human-like intelligence are:

1. What develops? What exactly are the cognitive structures that undergo qualitative

changes?

2. How? What are the mechanisms that bring about the changes?

Piaget's suggests schemas as cognitive structures, and assimilation, and accommodation

as mechanisms of specialization and generalization of schemas. Piaget's schemas (as in-

terpreted by Drescher [11]) are essentially state action state triplets, that denote a state

transition caused by some action. While Piaget's suggestion of a schemas and assimilation

and accommodation mechanisms is a useful beginning, much remains to be done in finding

specific instantiations in terms of brain structures.

I will return to the two issues mentioned above after reviewing some work on cognitive

development that is more recent. One of the most actively researched and debated issues

in cognitive science relates to the somewhat vague notion of object concepts. Specifically,

what kinds of object concepts exist in the brain and how they develop from infancy through

adulthood. Many studies in developmental psychology have attempted to probe these ques-

tions. I review some of the key ones with a view to pointing out a major deficiency that

they all share - a lack of grounding of the cognitive notions into well-defined perceptual

primitives and operations. In fact, I will suggest that the perceptual grounding may, at

least in some cases, obviate the need to posit the existence of ill-defined high-level object

concepts in the developing or adult brain.

4.8.2 Perceptual grounding of object concepts

Spelke and her colleagues have been very active in trying to understand the course of

development of object concepts and physical knowledge [52, 53]. The major themes they

have identified in their empirical results are:

* The cognitive capacities for object perception in adults trace their roots back to early

infancy. Infants seem capable of perceiving, reasoning about and acting upon objects

in a relatively sophisticated manner.



* The capacities to perceive and reason about objects are closely related to one another.

* Infant's perception of objects is based upon fundamental physical constraints set down

in the environment, such as empirical cohesion within boundaries, continuity of mo-

tion paths and inter-object contacts. Since it intuitively seems that the principles of

cohesion, continuity and contact are critical to adult's conceptions of objects, a corol-

lary of Spelke et al's suggestion is that high-level object concepts come into being

relatively soon after birth in human infants (point 1, above).

In short, the developing brain is believed to embody knowledge about physical principles

in the environment. These principles guide object perception and reasoning. Furthermore,

since these principles are rather complex, (for instance, the relations of connectedness are

believed to operate on the underlying three-dimensional structure of the world, rather than

on two-dimensional image information), the object concepts they support are quite sophis-

ticated. Accordingly, the object perception processes are believed to occur late in the visual

system.

Another prominent group that has sought to investigate physical reasoning and object per-

ception in infancy comprises Baillargeon and her colleagues. Baillargeon took as her starting

point Piaget's [1952, 1954] suggestion that the notion of object permanence during occlusion

does not develop until nearly the "advanced" age of nine months. In his experiments with

infants younger than 9 months, Piaget repeatedly observed that children did not search for

objects that they had observed being hidden. Apparently, Piaget reasoned, the children in-

correctly assume that the objects cease to exist when concealed by other objects. However,

Baillargeon and others realized that infants might perform poorly on search tasks simply

because of difficulties inherent in planning a means-end search sequence rather than due

to incorrect beliefs about occlusion events. Using the violation-of-expectation experimental

paradigm (which exploits infant's tendency to look longer at novel than at familiar stim-

uli [Banks, 1983; Olson and Sherman, 1983; Spelke, 1985]), Baillargeon demonstrated in a

series of studies that contrary to traditional claims, even very young infants "appreciate"

that objects continue to exist when occluded. For instance, the infants expressed surprise

when a tall object seemingly disappeared while traveling behind a squat occluder but not

when the object was shorter than the occluder's height. The lack of surprise in the latter

case led Baillargeon to conclude that infants believe that objects continue to exist when

masked by other sufficiently large objects. Baillargeon's other studies have sought to probe

infants knowledge of contact relations as determinants of object stability and their ability

to reason about collision phenomena. In the former, the investigators presented evidence

to support the conclusion that infants acquire the abstract concept of support rapidly and

then progressively refine it over time (to be able to determine how much support is required

for stability). The latter set of experiments effectively tested for the presence of the notion

of conservation of momentum in young infants. Children were surprised upon seeing an

object that had just suffered a collision with a moving object stay stationary. The con-

clusion reached here was that children rapidly acquired the basic notion of conservation of

momentum and then refined it (how far should an object move after collision) gradually.

The empirical studies have made significant contributions to our understanding of the per-

ceptual capabilities of infants. However, important open questions remain regarding what

conclusions can legitimately be drawn from these experimental results. For instance, is it

valid to conclude on the basis of this data that infants do indeed possess a high-level object



concept? Stated differently, is a high-level object- concept critical to explaining these re-

sults? Also, does it suffice to label the infants knowledge as an object concept or a belief in

some physical law? Is it not important to ground out this somewhat vague cognitive notion

in actual computable perceptual primitives and operations?

In this thesis I have proposed a perceptually grounded representation for physical knowledge

about events in terms of changes of attentional state. In comparison to the works discussed

above I would like to emphasize the relative merits of my proposal:

1. A perceptually based representation that implicitly incorporates the observed physical

contingencies, is inherently simpler than an ill-defined high-level construct. Occam's

razor suggests that the former should be the preferred way of accounting for exper-

imental data. Also, by obviating the need to posit high-level object concepts, my

scheme becomes a viable candidate for explaining "object knowledge" in simpler ani-

mals as well.

2. A scheme that embodies a suggestion for how it may be implemented in a real system

is to be preferred over one that is mentalistic and vague.

3. My scheme allows for a uniform explanation of all experimental settings rather than

having to account for each data set by positing knowledge of a different physical law.

4. Perhaps the most important motivator for my perceptually based scheme is that it

relies solely on the observed contingencies rather than on any pre-ordained physical

laws. Experiments have proven over and over again that physics does not govern

perception, the statistics of the environment do.

4.9 Summary

This chapter focuses on the question of how visual routines can be learned. The key idea is

that repeating patterns in attentional state can be learned. Subsequently these learned ex-

pectations generate visual routines to check for the corresponding event. The results shown

were for only a small subset of the attentional state. More work needs to be done to show

learning in the full state space. This paradigm differs significantly from the reinforcement

learning paradigms currently being used. The representation of the learned patterns as

changes of attentional state has exciting implications for the perceptual grounding problem

as well as for theories of cognitive development in children.



Chapter 5

Contributions

Chapter Outline

This final chapter reviews the goals of the thesis. It states what was done,

and describes what remains to be done.

5.1 The two motivating problems

I set out to solve two problems:

1. To find a robust, versatile spatial analysis machinery that can be used to solve a wide

variety of spatial tasks.

2. To learn visuospatial concepts like fall or more, in an unsupervised manner.

The main motivation for the first problem is that a versatile spatial analysis machinery

is necessary not only to deal with a variety of perceptual tasks from moment to moment,

but the same machinery may also be re-used for spatial inference on synthesized/imagined

representations.

The motivation for the second problem is that there must be some notion of fall before the

system can check if an object is falling. I believe that such visuosaptial concepts are learned

from experience in an unsupervised manner.

5.2 Contributions of the thesis

My main contributions towards the first problem are:

* Asserting that a single versatile mechanism for visuospatial analysis is necessary to

build vision system with human level capabilities. An application-oriented approach of

having a collection of disparate programs for extracting various spatial relations will

not suffice.



Proposing a language of attention. I reviewed the visual routines proposal of Ullman

and the related work that has been done since, and took up the two key challenges that

any visual routine theory must address: developing a compact and expressive basis

set of primitive operations, and developing an automatic means of combining them

for a spatial task. I observed that any theory of visuospatial analysis is intimately

related to a theory of visual attention. I proposed a basis set of primitives categorized

into three families of operations. These families of operations constitute a language

of attention in the sense that a visual routine is constructed by stringing together

primitives from each class of operations. The word em language is used because the

model is generative in the same way that one generates sentences of a language by

stringing together elements of syntactic categories. The only difference is that the

sentences in the language of attention are procedures for extracting spatial relations.

How should you evaluate my proposal? The primary requirement of any visual routine

proposal is that it be very robust at handling a wide variety of spatial tasks. The most

convincing way to show that a proposal meets these requirements is by demonstrating that

it can handle hundreds of real world spatial problems. While this acid test has yet to be

conducted, I argue that the system can be evaluated on the basis of the degree to which

it does what visual routines are supposed to do. Namely, visual routines are supposed

to establish spatial relations between regions (at the focus of attention), and at a higher

level (across several shifts of the focus attention) exploit local structure in the world, by

setting up successive local frames of reference. I showed that the primitives of the system

were explicitly designed to establish local and global spatial relationships between regions,

thereby completely characterizing the spatial relations between regions. Moreover at a

higher level, I showed that the system does establish successive local frames of reference,

as demonstrated in the pointing example where the system uses the local context of the

human to find the hand, and then uses the local reference frame on the hand to select a

portion of the room.

The proposed model of attention goes beyond prior models of attention which viewed the

role of Attention as mere selection. While selection is a crucial function of attention, there

are other crucial issues (like the task-specific computations that are carried out at the focus

of attention) that must be accounted for by any realistic model of attention. My model is

a more comprehensive model of visual attention with selection taking its place as one of

several families of operations that work together in the solution of some spatial problem.

If visual routines are to be truly useful they should be automatically composed by the

system, not handcoded by a user. My main contributions with regard to the composition

issue are

* Visual routines are learned and not planned (this idea builds on Chapman's insight

that visual routines emerge from interaction with the world). My approach is to notice

recurring patterns of activity in attentional state, learn those patterns, and use them

as expectations to generate visual routines. I showed some examples demsontrating

the learning of trajectories in attentional state, but much work remains to be done

(see the following section).

* The perceptual representation of visuospatial concepts is in terms of changes of atten-

tional state. In other words I am suggesting a concrete represenation for perceptual



grouding. This has important implications on theories of cognitive development. It

makes the theories simpler and more concrete by explaining infant behavior in terms

of perceptual representations rather than in terms of "object-concepts" or "intuitive

physics".

5.3 Key issues of the future

In this thesis I proposed and demsonstrated the feasability of some new ideas for the synthe-

sis and learning of visual routines. However, it is necessary to go beyond a demonstration

of feasability and extensively test the proposed language of attention and learning scheme,

on a real-time head-eye platform. There is still considerable work to be done to make this

happen, however the prospect of having a system that learns thousands of visuospatial

concepts/patterns-of-activty and uses them as a scaffolding for communication and reason-

ing, is exciting and much closer than before.
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