

Lomonosov Moscow State University

Status of ATLAS Preparations for B-physics Measurements Sergey Sivoklokov On behalf of the ATLAS Collaboration

ICHEP'06 Moscow, July 26 – August 2,2006

Introduction

- b-production at LHC ($\sqrt{s} = 14 \text{ TeV}$)
 - σ_{tot} = 100 mb σ_{bb} = 500 μb (2×10¹² bb pairs/year @ lumi L=10³³ cm⁻²s⁻¹
 - about 2x10¹⁰ b-quark pairs selected after trigger selections for analysis
 - luminosity periods: early <10³³, low 2x10³³, nominal 10³⁴
 cm⁻²s⁻¹ (100 fb⁻¹/Year)
- The startup period in 2007 may contain a comissioning run at \$\s=900 GeV\$ followed by 14TeV physics run with the aim of few fb⁻¹ integral luminosity to the end of 2008
- ATLAS is a general-purpose experiment with emphasis on high-Pt physics beyond the Standard Model
- Nevertheless the ATLAS B-physics program is rich and exploiting the strong points of the detector (precise tracking and vertexing, calorimetry and muon detection) expected to extend the ATLAS discovery potential in physics beyond the SM:
 - measurements the CP-violation parameters (small in SM)
 - very rare decays (b->(s,d)l⁺l⁻) (BR, A_{FB},possible enhancement)
 - topics, not accessible for B-factories (B_s, b-baryons etc.)
- ATLAS has a well defined program for all LHC operation stages from startup to the nominal luminocity

Measurements overview

$B_{d} \rightarrow J/\psi K_{s}^{0}(\pi\pi)$ $J/\psi \rightarrow \mu\mu/ee$ $B^{+} \rightarrow J/\psi(\mu\mu)K^{+}$ $B_{d}^{0} \rightarrow J/\psi(\mu\mu)K^{*0}(K^{+}\pi^{-})$	sin(2β)		
$B_{s} \rightarrow J/\psi(\mu\mu)\varphi(KK)$	$\Delta\Gamma_{s}=\Gamma_{H}-\Gamma_{L}$, Γ_{s} ,the weak phase ϕ_{s}		
$B_s \rightarrow D_s \pi$; $B_{s,d} \rightarrow D_s a_1$ $D_s^- \rightarrow \varphi \pi^-$; $\varphi \rightarrow K^+ K^-$	$\Delta m_s = m_H - m_L$		
$B_{s,d} \to \mu^+ \mu^-; B^0_d \to K^{*0} \mu\mu$ $\Lambda_b \to \Lambda \mu\mu; B^0_s \to \varphi^0 \mu\mu$	Precise measurements of the branching ratios and asymmetries		
radiative rare decays			
$\Lambda_b \to J/\psi(\mu\mu)\Lambda(p\pi)$	Asymmetry parameter $\alpha_{_{b}}$, P $_{_{b}}$, life time measurements	by this	not cov
$B_c \rightarrow J/\psi\pi$; $B_c \rightarrow J/\psi\mu\nu$	Precise determination of B_c mass, B_c life time		/ered
	$B_{d} \rightarrow J/\psi K_{s}^{0}(\pi\pi)$ $J/\psi \rightarrow \mu\mu/ee$ $B^{+} \rightarrow J/\psi(\mu\mu)K^{+}$ $B_{d}^{0} \rightarrow J/\psi(\mu\mu)K^{*0}(K^{+}\pi^{-})$ $B_{s} \rightarrow J/\psi(\mu\mu)\varphi(KK)$ $B_{s} \rightarrow D_{s}\pi; B_{s,d} \rightarrow D_{s}a_{1}$ $D_{s}^{-} \rightarrow \varphi\pi^{-}; \varphi \rightarrow K^{+}K^{-}$ $B_{s,d} \rightarrow \mu^{+}\mu^{-}; B_{d}^{0} \rightarrow K^{*0}\mu\mu$ $\Lambda_{b} \rightarrow \Lambda\mu\mu; B_{s}^{0} \rightarrow \varphi^{0}\mu\mu$ radiative rare decays $\Lambda_{b} \rightarrow J/\psi(\mu\mu)\Lambda(p\pi)$ $B_{c} \rightarrow J/\psi\pi; B_{c} \rightarrow J/\psi\mu\nu$	$\begin{array}{c} B_{d} \rightarrow J/\psi K_{s}^{0}(\pi\pi) \\ J/\psi \rightarrow \mu\mu/ee \\ B^{+} \rightarrow J/\psi(\mu\mu)K^{+} \\ B_{d}^{0} \rightarrow J/\psi(\mu\mu)K^{*0}(K^{+}\pi^{-}) \end{array} \qquad $	$\begin{array}{c} B_{d} \rightarrow J/\psi K_{s}^{0}(\pi\pi) \\ J/\psi \rightarrow \mu\mu/ee \\ B^{+} \rightarrow J/\psi(\mu\mu)K^{+} \\ B_{d}^{0} \rightarrow J/\psi(\mu\mu)K^{*0}(K^{+}\pi^{-}) \end{array} & sin(2\beta) \end{array}$ $\begin{array}{c} sin(2\beta) \\ B_{s} \rightarrow J/\psi(\mu\mu)\varphi(KK) \\ B_{s} \rightarrow J/\psi(\mu\mu)\varphi(KK) \\ D_{s}^{-} = \Gamma_{H} - \Gamma_{L}, \Gamma_{s}, the weak phase \phi_{s} \\ B_{s} \rightarrow D_{s}\pi; B_{s,d} \rightarrow D_{s}a_{1} \\ D_{s}^{-} \rightarrow \phi\pi^{-}; \varphi \rightarrow K^{+}K^{-} \\ B_{s,d} \rightarrow \mu^{+}\mu^{-}; B_{d}^{0} \rightarrow K^{*0}\mu\mu \\ \Lambda_{b} \rightarrow A\mu\mu; B_{s}^{0} \rightarrow \varphi^{0}\mu\mu \\ radiative rare decays \\ A_{b} \rightarrow J/\psi(\mu\mu)A(p\pi) \\ B_{c} \rightarrow J/\psi(\mu\mu)A(p\pi) \end{array} & Precise determination of B_{c} mass, B_{c} life time \\ \end{array}$

Trigger issues

Key issue is muons – can be identified cleanly and give a clean flavour tag

- Level 1 trigger: based on Calorimeter and Muon Trigger Chambers ($|\eta|$ <2.4) Decrease data flow from 40 Mhz to 75 kHz.
- $_{\rm \prime}$ Use LVL1 Dimuon Trigger (p__>6GeV (4-3 at lower L)) from first running up to higher luminosities
- For lower luminosities, can also use LVL1 MU+EM or MU+JET

(MU $p_{\mu}^{T} > -6-8$ GeV, EM $E_{T} > -2$ GeV, Jet $E_{T} > -5$ GeV)

- High Level Trigger based on general purpose processors. Further decrease rate to ~1kHz (LVL2) and then to ~200Hz (Event Filter)
- Reconstruction mostly inside Region of Interests identified from LVL1
- Reconstruction of full volume of Inner Detector (tracker) also possible for events with LVL1 muon (where resources and luminosity allow)

CP violation in $B_d \rightarrow J/\psi K_s$ [sin(2 β)]

- Maximum likelihood fit using event by event tag and decay time information
- Experimental inputs: proper time resolution, tag probability, wrong-tag fraction, background composition.

		Number of events after trigger + offline rec. 3y@10 ³³ cm ⁻² s ⁻¹		
		Signal	S/B	
B _d →J/ψ(μ6μ3) B _d →J/ψ(μ6μ5) B _d →J/ψ(ee) +b→μ6	sin(2β)	490k 250k 15k	28 32 16	

- Systematics controlled via $B^{*}{\rightarrow}J/\psi(\mu\mu)K^{*}$
- Physics Technical Design Report layout results
- $\sigma \sin 2\beta \, \text{stat} : J/\psi(\mu 6\mu 3) + J/\psi(ee) : 0.010$, for $J/\psi(\mu 6\mu 5) + J/\psi(ee) : 0.012$
- $\sigma \sin 2\beta$ syst : prod. asym, tagging, background : 0.005

WorldAverage: $sin(2\beta) = 0.685 \pm 0.032$

CP-violation study.B_s->J/ $\psi(\mu\mu)\phi(KK)$

- ${}^{\,\nu}B^{0}_{\,\,s}$ decay proper time and the angular distribution of secondaries carry information about 8 parameters (A_{||},A_⊥, δ_1 , δ_2 , $\Delta\Gamma$, Γ , $\Delta M_s \phi_s$)
- Monte Carlo study performed with a full detector simulation and reconstruction to assess detector performance (decay time resolution, flavour tagging, background rejection). The angular distributions obtained fitted to the theoretical ones.
- \sim The expected precisions (after 30 fb⁻¹ = 3Y@10³³cm⁻²s⁻¹)

S.Sivoklokov SINP MSU

ICHEP'06 Moscow, July 26 – August 2,2006

ATLAS Performance for $B_{d,s} \rightarrow \mu \mu$

- Clear theoretical picture for SM and for BR predictions.
 - − BR($B_s \rightarrow \mu \mu$) ≈3.5×10⁻⁹ (Tevatron limit: <8×10⁻⁸)
 - $\ BR(B_d \rightarrow \mu \mu) \approx 0.9 \times 10^{-10} \ (BaBar(111 \ fb^{-1}) < 8.3 \times 10^{-8} \ Belle(78 fb^{-1}: < 1.6 \times 10^{-7} \)$
- Good potential sensitivity for the SUSY (for example: in MSSM Br ~ $\tan^6\beta$).
- Simple experimental signature
- Preliminary (TDR layout) study shows a possibility to continue $B_{d,s} \rightarrow \mu \mu$ program at nominal luminosity (10³⁴ cm⁻²s⁻¹)

Backgrounds for $B_{d,s} \rightarrow \mu \mu$

Extremely small branching ratio, so many possible BG sources

- combinatorial di-muon background. Main source is bb(cc) $\!\!\!\!\to\!\!\!\!\!\!\!\!\!\to\mu\mu$ processes with muons from semileptonic b(c) decays
- exclusive decays with small BR, but kinemtically contributed to signal $\mu\mu$ mass region
 - example: Br(B⁰_d → π ⁻μ⁺v_µ) ~ 10⁻⁴ but if π misidentified as μ the contribution to B_{d(s)} mass region could be substansial!
 - B->hh (h= π ,K) with typical probability of misidentification of 0.1-0.5% is a potential problem
 - •4-lepton decays with 2*l* missing
- Careful estimation of all possible
 BG sources contributions is an
 important part of very rare decays search
 program in ATLAS

Semi-muonic rare decays

di-muon mass spectra and Forward-Backward asymmetry (A_{FB})show significant sensitivity to new physics effects

More details: Poster Session 8, **ATLAS Preparation for precise measurements in semi-muonic rare B-decays** by K.Toms (3y@10³³cm⁻²s⁻¹)

Beauty with 100 pb⁻¹, first measurements, preparations ("week One")

Inclusive B and Onia	Direct J/ψ(μ6μ3)	1000 k	R = bb →	→ J/ψ / pp → J/ψ	
	$bb \to J/\psi(\mu 6\mu 3) \; X$	400 k	R = pp →	• Y / pp • J/ψ	
	Υ (μ6μ3)	100 k			
	$\begin{array}{l} B \rightarrow J/\psi(\mu 6\mu 3) \ X \ b \rightarrow \\ \mu 5 \ X \end{array}$	25 k	b-b correlations		
Exclusive B Tree decay	B⁺ → J/ψ K⁺	17000	Important reference channel. New channel ($B \rightarrow \mu\mu$) relative to this		
	B⁰→ J/ψ K⁰⁺	8700	Massas	Lifetimes	
	B⁰→ J/ψ K _s	1300	Sensitive checks for understanding Inner Detector		
	B _s → J/ψ φ	900			
	$Λ_b$ → J/ψΛ	260			
	$B_s \rightarrow D_s \pi$	25	Hadronic channels – only prepare method for later measurements		
Rare exclusive B Sensitivity limits	B⁺ → μμ K⁺	23	Belle today 80		
	B⁰→ μμ K⁰*	12			
	B _s → μμ φ	9			
	$\Lambda_b \rightarrow \mu \mu \Lambda$	3			
	Β→μμ	1 * 10 ⁻⁷ 90%CL		Tevatron today 8 10 -8	

Conclusions

- ATLAS B-physics programme is concentrated on measurements that are sensitive to New Physics or set strong constraints on extensions of the Standard Model
- ATLAS has been demonstrated to be capable of extracting signals of all most important rare B-decays of interest at LHC
- With possible achieved sensitivity a detailed study of noncombinatorial background sources (mis-identification, other decays with small BR) is of great importance.
- Some channels with di-muon final states can be followed up to nominal LHC luminocity
- ✓CDF&D0 limits for B_{d,s}→µµ will be reached in one week measurements (after the luminosity 2*10³³ will be achieved) and SM BR will be reached
- ATLAS statistics will allow angular analysis in semileptonic decays that can show evidence for new physics and, in some cases distinguish between different models

Backup slides

The ATLAS trigger system

Level 1 (Hardware based): Defines the Region-of-Interest (ROI) Uses Calorimeters and Muon chambers with coarse granularity. Execution time: 2µS

Level 2 (Software based): Seeded by the Lvl1 ROIs. Uses full detector granularity. Confirms the Lvl1 result and refines the physics object position/energy. Execution time: ~10mS

Event Filter (Software based): Offline algorithms adapted to online environment. Refinment & calibration Execution time: ~1S

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ in ATLAS

Signal, BG and efficiencies of selection cuts (10 fb⁻¹)

Cuts	BG:bb	→ μμX	B ⁰ _s -	Signal	
Vertexing procedure	CTMVFT	VKalVrt	CTMVFT	VKalVrt	
$p_{T}(\mu) > 6 \text{ Gev}, \Delta R_{\mu\mu} < 0.9$	6.0 ×	10 ⁶ events	50 events		
$M(\mu\mu) = M_{B}^{+140} - 70 MeV$	2×10-2		0.77	_	
Isolation cut: no ch.tracks	5×10-2	5×10-2	0.36	0.36	
\mathbf{p}_{T} >0.8 GeV in cone with $\mathbf{\theta}$ < 15°					
$\sigma < 90 \mu m$, $L_{xy}/\sigma > 15$, $\alpha < 1^{\circ}$	2.8×10-3		0.2		
$L_{xy}/\sigma > 11, \chi^2 < 15$		< 0.7 ×10 ⁻⁴		0.4	
Number of events after cuts	15±10	20±20	3	7	

The basic theoretical description -I

Effective Hamiltonian for $b \rightarrow d$,s transition:

$\mathbf{H}_{\rm eff}(\mathbf{b} \to \mathbf{q}) \sim \mathbf{G}_{\rm F} \mathbf{V}^*_{tq} \mathbf{V}_{tb} \sum \mathbf{C}_{\rm i}(\boldsymbol{\mu}) \ \mathbf{O}_{\rm i}(\boldsymbol{\mu}),$

includes the lowest EW-contributions and perturbative QCD corrections for Wilson coefficients $C_i(\mu)$.

 μ - scale parameter ~ 5 GeV : separates SD (perturbative) and LD (nonperturbative) contributions of the strong interactions.

SM NLO: A.Buras, M.Munz, *PRD52*, *p.182*, *1995* SM NNLO: C.Bobeth et al., *JHEP 0404*, *071*, *2004* MSSM NNLO: C.Bobeth et al., *NPB713*, *p522*, *2005*

Theoretical description of the $B^0_{d,s} \rightarrow \mu^+\mu^-$ decays

$$\Gamma(B_q^0 \to \mu^+ \mu^-) = \frac{(G_F \cdot \alpha_{em})^2}{16 \cdot \pi^3} \cdot |V_{tq}^i V_{tb}|^2 \cdot (f_{B_q} \cdot m_\mu i C_{10A})^2 \sqrt{M_{B_q^0}^2 - 4 \cdot m_{\mu^2}}$$

- 1) There is only one, well known, nonperturbative constant f_{Bq} (~ 5% - 10% accuracy - one of the best results for nonpertubative calculations!).
- 2) The Wilson coefficient C_{10A} in NLO does not depend on scale parameter μ .
- 3) Main uncertainties are contained in CKM-matrix elements (~
 10% for |V_{ts}| and greater for |V_{td}|).

Misidentification and fake rates

<u>Semileptonic B-decay</u>: $Br(B_{d}^{0} \rightarrow \pi \mu^{+} V_{\mu}) \sim 10^{-4}$.

If we will take into account the <u>π-μ misidentification</u>, we get about one of 200 of pions misidentified as muon. Corresponding fake probability is roughly equal to:

Br(B⁰_d → $\mu^{-}\mu^{+}\nu_{\mu}$) • 1/200 ≈ 0.5 • 10⁻⁶.

In order to estimate the fake probability for $B_{d,s}^{0} \rightarrow \mu^{+}\mu^{-}$ we need to reduce this result by a factor of 10 corresponding to soft-neutrino phase space. The effective probability rate for this case ~ 0.5 • 10⁻⁷ can produce a <u>significant BG</u> Br($B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$) $\approx 3.5 • 10^{-9}$.

Other noncombinatorial BG

Significant:

- 1) Another fake rates from $B \rightarrow h_1 h_2$;
- 2) Two-body hadronic B-decays;
- 3) $B^+_{c} \rightarrow \mu^+ \mu^-$ (soft $\ell^+ \nu_{\ell}$) + resonant contribution;
- 4) $B^0_{d} \rightarrow \mu^+ \mu^- (\text{soft } \pi^0);$

Nonsignificant:

- 1) $B^+ \rightarrow \mu^+ \mu^- (\text{soft } \nu_\mu \nu_\mu);$
- 2) $B^{\pm}_{d} \rightarrow \mu^{+}\mu^{-}(\text{soft } \pi^{\pm})$;
- 3) $B^0_{s} \rightarrow \mu^+ \mu^-$ (soft γ).