EPJ Web of Conferences 245, 01001 (2020) https://doi.org/10.1051/epjconf/202024501001
CHEP 2019

Fast and Efficient Entropy Compression of ALICE Data us-
ing ANS Coding

Michael Lettrich!-*, for the ALICE collaboration
ICERN, Technische Universitit Miinchen

Abstract. In LHC Run 3, the upgraded ALICE detector will record 50 kHz
Pb-Pb collisions using continuous readout. The resulting stream of raw data to
be inspected increases to ~1 TB/s - a hundredfold increase over Run 2 - must
be processed with a set of lossy and lossless compression and data reduction
techniques to decrease the data rate to storage to ~90 GB/s without affecting
the physics.

This contribution focuses on lossless entropy coding for ALICE Run 3 data
which is the final component in the compression stage. We analyze data from
the ALICE TPC and point out the challenges imposed by the non-standard data
with a patchy distribution and symbol sizes of up to 25 Bit. We then explain
why rANS, a variant of Asymmetric Numeral System coders is suitable for com-
pressing this data effectively. Finally we present first compression performance
numbers and bandwidth measurements obtained from a prototype implementa-
tion and give an outlook for future developments.

1 Introduction

ALICE (A Large Ion Collider Experiment) [1] is a heavy-ion collision detector at the LHC
(Large Hadron Collider) [2] at CERN, built to study the physics of strongly interacting matter.
Throughout the Long Shutdown 2 (LS2) of the LHC, the ALICE detector will receive a
substantial upgrade [3]. The upgraded detector will record Pb-Pb collisions at a rate of 50
kHz using continuous readout. This is necessary to cope with the increased Pb-Pb interaction
rate and thus exploit the full scientific potential of the LHC after LS2. As a direct consequence
the volume of data to be inspected increases by a factor 100. In order to decrease the raw
data rate of ~3.5 TB/s to the targeted storage rate of ~90 GB/s, a sequence of highly effective
compression and data reduction steps are applied by the new ALICE Online-Offline (O?)
software [4]. Most of these steps perform lossy compression based on replacing raw data with
results of reconstruction methods such as track finding, clusterization and pattern recognition
without affecting physics.

In this paper we will focus on entropy coding, the final stage in the compression chain
where input data is transformed in a lossless and reversible manner that reduces the required
space in permanent storage [5]. After briefly introducing general concepts and notation, we
will discuss the challenges imposed by our data. This will be followed by a concise summary
of our literature search and explain why we believe that rANS - a variant of Asymmetric
Numeral System coders suits our needs best. We then will present compression performance

*e-mail: michael.lettrich@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 01001 (2020) https://doi.org/10.1051/epjconf/202024501001
CHEP 2019

numbers and bandwidth measurements obtained from a prototype implementation to back the
theory and give an outlook for future developments.

2 Variable Range Entropy Coders

In order to compress data, an entropy coder reduces the redundancy contained in the source
data without altering the information content. This is generally achieved by interpreting the
source data as a message consisting of a concatenation of symbols s; from a finite alphabet
A of length n (e.g. the Latin alphabet or the signals provided by a sensor). Counting the
frequency of each symbol f; with Y f; = M, where M is the length of the message, we

can determine the probability of each symbol Pr[s;] = % occurring in the message. It is
then possible to construct a coding function C which will transform the source symbol into a
representation in a (binary) variable length coding alphabet X where highly probable source
symbols are assigned a shorter length code x; than less probable symbols [5]. The best know
example for this is Huffman Coding [6].

The lower bound of bits needed to represent a message is called Shannon entropy [7],

defined as

H=-) Pr[sjllog:(Prls;]) W

1

The closer the length of the coded message is to the entropy of the source message, the
more efficient is the coder. The difference is called redundancy R.

3 Description of the Environment and Source Data

The raw detector data of the ALICE detector coming from continuous readout will be split
into so called time frames of 20 ms and processed inside an Event Processing Unit (EPN),
a heterogeneous CPU and GPU server within 30 s. The resulting, compressed time frame
(CTF) is then entropy coded on the same EPN within 35 s before going to storage. The data
passed to the entropy coder are flat structures of arrays containing unsigned integer values
- i.e. the arrays can can be interpreted as columns of a table. Each row of this table then
describes an object [4].

For the sake of simplicity we restrict ourselves to the analysis of the source data from
the ALICE Time Projection Chamber (TPC) as with an expected overall contribution of over
92% , it will account for the majority of recorded data [4]. Furthermore the principles can be
transferred easily to the other sub-detectors.

The TPC data is a structure of 23 arrays of unsigned integers that describe 5 different
objects of which only 4 will be relevant to us. Each array has a specified range of values
between 8-25 Bits. To make assumptions on how well this source data can be compressed
we look at a sample dataset of O(107) objects from the processing of 130 Pb-Pb interactions
simulated under LHC Run 3 conditions - the biggest dataset available to us at that point.
Creating per array frequency tables and plotting the resulting symbol distributions, leads to
the following observations:

e The sample data does not follow any common probability distribution.

o In most cases the distribution is patchy, i.e. only a fraction of the values from the value set
are taken, despite the O(107) samples.

To rule out insufficient statistics or simulation parameters as a root cause for these obser-
vations, cross checks with actual LHC run 2 TPC data have been conducted. The results
show significant similarity for almost all parameters and deviations can be explained by the

EPJ Web of Conferences 245, 01001 (2020) https://doi.org/10.1051/epjconf/202024501001
CHEP 2019

AttachedClusters - sPadSTime

Tracks - time

14000 1

120004 4000000 {

10000
3000000 1

2000000 I I |
1000000 I |
0f

8000 1

Count
Count

6000 1

4000

2000 1

0 I waud | v r T r
1 0 2500 5000 7500 10000 12500 15000
0 200000 400000 600000 800000 1000000 Symbol

Symbol

Figure 2: 2072849 symbol samples from
Run 3 simulation containing 419 unique val-
ues in a 16 Bit symbol range for object
AttachedCluster, array sPadSTime. En-
tropy of sample data is 6.06 Bit. Visualized
with 100 bins.

Figure 1: 482419 symbol samples from Run
3 simulation containing 344987 unique val-
ues in a 24 Bit symbol range for object
Tracks, array time. Entropy of the sample
data is 18.24 Bit. Visualized with 100 bins.

’ Objects H Count \ Fields \ Bit/obj \ H [Bit/obj] \ Hconcat [Bit/obj] ‘
AttachedClusters 21072849 4 41 17.15 15.75
AttachedClustersRed || 20590430 4 55 17.60 17.59
Tracks 482419 5 73 53.90 53.90
UnattachedClusters 50745911 5 81 39.77 38.37

Table 1: Description of Sample Dataset. Entropy H of the samples can be reduced by con-
catenation of correlated fields.

changed running conditions between Run 2 and Run 3. Furthermore experiences from pre-
vious runs show that the distributions of source symbols stay rather static and only have to
be recalculated if run parameters change. As we can see in figures 1 and 2, not all values
within the symbol ranges have occurred neither in our sample dataset nor the run 2 data we
compared it to despite the large amount of samples. Nevertheless all values in the specified
range are possible and need to be accepted by the entropy encoder.

As can be expected from looking at the distributions, the calculated entropy (see table 1)
shows a high redundancy and indicates, that data can be compressed by a factor 2-3 by an
optimal compression algorithm. A further reduction of the entropy is possible by identifying
correlated arrays and concatenating the individual entries i.e. C[i] = A[i] o BI[i].

A suitable entropy coding algorithm thus should be able to efficiently compress source
data with non-standard, patchy distribution of up to 25 Bit per symbol and is able to process
data in the foreseen time window of 35 s. Since each array can be individually encoded,
we can parallelize over the arrays. An algorithm that can additionally make use of SIMD
vectorization or even the GPGPUs of the heterogeneous EPNs is preferable.

4 Entropy Coding Algorithms using rANS

There are different types of entropy coding algorithms available. Huffman coding - one of the
most widely used entropy coding algorithms - constructs a prefix-free binary code c; for each

EPJ Web of Conferences 245, 01001 (2020) https://doi.org/10.1051/epjconf/202024501001
CHEP 2019

source symbol s;. It can be shown that this c; is the shortest code with an integral amount
of bits that can be uniquely decoded [6]. Furthermore both coding and decoding can be
implemented very efficiently without the need for costly arithmetic operations. The drawback
of this algorithm however is that it is only optimal if —log,(Pr[s;]) € N. Information theory
tells us that the shortest code for a source symbol —log,(Pr[s;]) € R is real valued though and
thus would require "fractional bits". This leads to an inefficiency of Huffman coding of up to
one Bit per symbol.

This inefficiency is overcome by Arithmetic coding [8], where the coding function C :
A — [0, 1) encodes all M symbols of the message to a single, real valued number x in the
[0,1) interval. The gain in efficiency comes at a cost in complexity though: to keep x within
the bounds of finite precision floating point arithmetics, renormalization steps are needed and
Arithmetic coding - as the name suggests - requires arithmetic operations which will naturally
result in slower compression/ decompression compared to Huffman coding. Finally the legal
situation in the past has been difficult since parts of the algorithm were protected by patents.

A new family of variable range entropy coders called Asymmetric Numeral Systems
(ANS), has been introduced [9] [10]. Comparable to arithmetic coding the coding func-
tion C : A — N encodes all M symbols of the message into a single state variable x which
in the case of ANS is a positive integer. This state variable grows with the probability of the
encoded symbol, i.e. x;;; = x;/Pr[s;]. The coding function C(x;, s;) by construction has the
property that the decoding function D(x) inverts the coder such that D(C(x;, s;)) = (x;, s;).
This property requires that the coder operates in LiFo order, i.e. it runs backwards from the
last to the first source symbol such that the decoder can output the symbols from first to last
again.

Similarly to arithmetic coding, renormalization is needed as otherwise x; will grow be-
yond the bounds of what can be efficiently handled by a computer. For ANS, the state variable
is kept within a range I and bits are streamed out if the upper limit is surpassed during encod-
ing and streams in when the lower limit is surpassed during decoding.

There are two variants for ANS that have gained interest in the community: rANS (range
ANS) and tANS (table ANS). tANS works with a coding table and constructs a finite state au-
tomaton that works without costly arithmetic operations. It is favourable for small alphabets
and can even be implemented efficiently in hardware [11]. Since it delivers almost the speed
of Huffman Coding at the compression of arithmetic coding, tANS is being used in more and
more applications. rANS on the other hand works more like arithmetic coding and uses a
simple, easy to implement arithmetic formula that can be applied on large alphabets. The
advantage rANS has over arithmetic coding is that its decoding function exactly reverts the
step done by its coding function. This concept opens the door to performance optimizations
such as interleaved encoders, SIMD vectorization and GPGPU [12] or functional additions
such as handling incompressible data.

Based on literature research, rANS was therefore chosen as a candidate to replace the
Huffman entropy coder used in Run 2 [13] for Run 3 and will undergo further evaluation. The
necessity of this step becomes evident if we consider that the yearly volume of compressed
timeframes is in the range of 40 Pb [4]. Even improvements in compression rate in the range
of one percent will in total save hundreds of TB of storage space and bandwidth.

5 Benchmarking rANS on ALICE TPC Data

To understand if the strong points rANS has shown in the literature research translate into
practice, we tested a prototype implementation of rANS on the ALICE TPC data discussed
in section 3. Starting from the ryg_rans rANS implementation in C++ [12] [14] and re-
engineering it to suit our needs, our testing and benchmarking scenario (depicted in figure 3)

EPJ Web of Conferences 245, 01001 (2020) https://doi.org/10.1051/epjcont/202024501001
CHEP 2019

] Objects H H [Bit/obj] \ rANS [Bit/obj] \ rANS/H \ BW [MiB/s] \
AttachedClusters 15.75 15.75 1.00 649.70
AttachedClustersRed 17.59 17.64 1.00 776.06
Tracks 53.90 53.90 1.00 365.56
UnattachedClusters 38.37 38.37 1.00 589.80

Table 2: Performance of rANS entropy coding for the ALICE TPC sample data.

Build Symbol
Distribution

Preparation Il Check
Checks Correctness

Figure 3: Testbed for benchmarking rANS on the ALICE TPC sample data.

Build Symbol
LUT

Read Column Rescale LUT

is as follows: The source array from the flat structure produced by the previous data reduction
steps and its metadata is read in and a fixed-size encode buffer is allocated. A first pass over
the data determines the distribution of source symbols followed by a rescaling of the later
such that the total count of symbols is a power of two. This allows bit shifts instead of costly
arithmetic operations in the encoder/ decoder. These symbol statistics then are used to build
the actual lookup tables (LUT) needed for encoding and decoding. Once the setup phase
is completed, a timed encoding run is performed and the actual size of the encoded data is
measured followed by a timed decoding run. Finally, the decoded date is compared with the
source data to ensure correct output. For both encoding and decoding, the bandwidth is then
calculated as an average over 5 runs.

The test system is a Ubuntu 18.04 LTS Linux desktop PC with a six core Intel Core i7-
8600k, 32 GB RAM and turbo mode enabled. Both rANS coder and decoder are executed
with a two fold interleaving on a single thread to exploit CPU pipelining but without SIMD
vectorization. The performance of the entropy coding and the bandwidth for the sample AL-
ICE TPC source data (table 1) is shown in table 2. We can clearly see that rANS is capable
to compress the source data close to entropy limit at a very high encoding bandwidth. Ex-
trapolations show that the data contained within a Pb-Pb timeframe can easily be processed
by the entropy coder within the given time envelope of 35 s compressing data by an overal
factor between 2 and 3. Since a simulated and reconstructed ALICE timeframe under Run 3
conditions was not available at the time of writing, we cannot give numbers. The extrapola-
tion however is reasonable as the distribution symbols for the real run is assumed static across
timeframes for production runs and the source data is already available in memory. Therefore
the measured encoding performance is a very good indicator for the production system. For
decoding of course all data has to be read into memory from external sources and prepared,
so decoding performance is just one of the relevant factors.

During our benchmarks it became evident that the rescaling of the symbol statistics used
to construct the encoder/ decoder LUTSs has a major impact on the compression achieved in
the entropy coding as well as the encode/decode bandwidth. Since no references exist for
large alphabets (symbol size >8 Bit), we need to conduct a parameter study to understand
which LUT precision is required for 8 Bit, 16 Bit and 25 Bit symbol alphabets. The LUT

EPJ Web of Conferences 245, 01001 (2020)

CHEP 2019

holds the frequency f; for each source symbol s;. For performance reasons the frequencies f;
are rescaled to f; such that 3 f; = M = 27 as this allows replacing arithmetic multiplication
and division with bitshifts. Logically, M has to be at least the size of our source alphabet
A if each symbol occurs at least once and the better the rescaled frequency table approxi-
mates the underlying symbol distribution the better the compression. This relation shows in
figure 4. What was surprising is that the approximation rANS needed for good compression
could already be achieved by a rather rough LUT resolution compared to the O(107) samples
provided to build the frequency table which we believe is due to the sparse structure of our
data.

The precision of the LUT has only
a small impact on the encoding band-
width as can be seen in figure 5. Instead
we can see, that larger symbols are en-
coded faster than smaller ones. This is
due to the fact that the encoder is bound
by the arithmetic and bitwise operations
per transferred byte and scales almost lin-
early with larger symbols until the prob-

=
W
vl

—4— 8Bit Symbols |
—— 16Bit Symbols
130 \ 25Bit Symbols |

1.25

1.15 \
1.10 \
1.05

- rANS in relation to Entropy
=
)
o
—_—

rANS/H

lem starts becoming memory bound. 1.00 SRSPSERS
For the decoding speed we see the T

contrary effect as for decoding we need to

construct an mverse Loc.)kup tab?e (GLUT) Figure 4: Relation between LUT precision and

which maps the respective fraction of the rANS encoding efficiency.

cumulative frequency back to the original
symbols. Up until this iLUT fits into CPU cache, the decompression bandwidth again is lim-
ited by arithmetic and bitwise operations and drops considerably for all symbol sizes once
cache misses in the iLUT start occurring. It is therefore necessary to come up with a more
compact datastructure for an iLUT array of size M which still has fast access times in prac-
tice. This is also important to decrease the memory footprint of decompression as an iLUT
array for large alphabets is too big for practical applications.

A comparison of rANS and Huffman on the same dataset, using a Huffman coder with a
per array code tree as in [13] shows that rANS indeed is able to outperform Huffman for every
single encoded array. While in most cases the difference was in the order of one percent, we

LUT Precission and Coder Bandwith LUT Precission and Decoder Bandwidth
7 T T 7 : 300
—4— 8Bit Symbols —4— 8Bit Symbols
7004 —— 16Bit Symbols —&— 16Bit Symbols
25Bit Symbols 250 \ 25Bit Symbols |
g 600 RSN g 200
2 /‘ z R
£ " £ 150
s 500 s
H H 5 \\
2 2
a8 & 100 N
400 ,\{\
50 N
300 \ttzﬁ
0 + +
8 10 12 14 16 18 20 22 24 26 28 8 100 12 14 16 18 20 22 24 26 28
LUT size [log,] LUT size [log,]

Figure 5: Effects of LUT precision on coding Figure 6: Effects of LUT precision on size of
bandwidth. inverse LUT and decoding bandwidth.

https://doi.org/10.1051/epjconf/202024501001

EPJ Web of Conferences 245, 01001 (2020) https://doi.org/10.1051/epjconf/202024501001
CHEP 2019

could observe that with particular arrays of our dataset, rANS could outperform Huffman
by 8% or even 30% due to its better approximation of the underlying probabilities. The
robustness of rANS to compress all input data we provided, is very close to the entropy limit
irregardless of the underlying symbol distribution is what we perceive as the biggest gain
compared to Huffman coders. This allows us to guarantee that even with changing symbol
distributions caused by changes in running conditions of the physical systems, the data will
be compressed optimally.

6 Conclusion and Outlook

After extensive literature research and a test of a prototype implementation on simulated
ALICE Run 3 TPC sample data we can conclude that rANS is a powerful entropy coding
algorithm that delivers close to optimal compression at high encoding bandwidths also for
large alphabets. These results encourage us to continue work on a production version of a
rANS entropy coder for ALICE in LHC Run 3. To achieve this goal the code robustness has
to be improved and decoding speeds need to be massively increased. Finally a full integration
into ALICE O? is needed including full system measurements and tuning once all input data
is available. Furthermore we would like to increase encoding and decoding bandwidth even
further by vectorization and a GPGPU implementation of the algorithm.

References

[1] K. Aamodt et al. (ALICE), JINST 3, S08002 (2008)

[2] L. Evans, P. Bryant, JINST 3, S08001 (2008)

[3] B. Abelev et al. (ALICE), J. Phys. G41, 087001 (2014)

[4] P.Buncic, M. Krzewicki, P. Vande Vyvre, Tech. Rep. CERN-LHCC-2015-006. ALICE-
TDR-019 (2015), https://cds.cern.ch/record/2011297

[5] D. Salomon, D. Bryant, G. Motta, Handbook of Data Compression (Springer London,
2010), ISBN 9781848829039

6] D.A. Huffman, Proceedings of the IRE 40, 1098 (1952)

7] C.E. Shannon, The Bell System Technical Journal 27, 379 (1948)

8] G.G. Langdon, IBM Journal of Research and Development 28, 135 (1984)

9] J. Duda, Asymmetric numeral systems (2009), 0902.0271

[10] J. Duda, Asymmetric numeral systems: entropy coding combining speed of huffiman

coding with compression rate of arithmetic coding (2013), 1311.2540

[
[
[
[

[11] J. Duda, G. Korcyl, Designing dedicated data compression for physics experiments
within fpga already used for data acquisition (2015), 1511.00856

[12] F. Giesen, Interleaved entropy coders (2014), 1402.3392

[13] J. Berger, U. Frankenfeld, V. Lindenstruth, P. Plamper, D. Rohrich, E. Schifer, M.W.
Schulz], T.M. Steinbeck], R. Stock, K. Sulimma et al., Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment 489, 406 (2002)

[14] F. Giesen, ryg_rans (2014), https://github.com/rygorous/ryg_rans

