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Abstract

Time-accurate Reynolds-averaged Navier-Stokes simulations have been carried out to
investigate the impact of upstream rotor wakes and tip leakage vortices on the loss of a com-
pressor stator. The objective is to (1) identify the unsteady flow mechanisms responsible for
performance changes, (2) quantify these changes, and (3) extract useful design information.

There are two generic mechanisms with significant impact on performance: reversible
recovery of the energy in the disturbances (beneficial) and non-transitional boundary layer
response (detrimental). For both wakes and tip leakage vortices, the impact of these mech-
anisms can be described in the same two-dimensional terms. In presence of unsteady flow,
the efficiency of the design under consideration is 0.2 points higher than that obtained using
a mixing-out steady flow approximation (0.5 points recovery benefit minus 0.3 points from
boundary layer response). The effects of tip vortices and wakes are of comparable importance.

The impact of stator interaction with upstream wakes and vortices depends on the follow-
ing parameters: axial spacing, loading, and the frequency of wake fluctuations in the rotor
frame. At reduced spacing, this impact becomes significant. For a spacing of 0.07 chords,
stage efficiency is 0.6 points higher relative to the steady flow (1.2 points recovery benefit
minus 0.6 points from boundary layer response). About 1/2 to 2/3 of the efficiency gain ob-
served experimentally can be attributed to the interaction with upstream wakes and vortices.
In the relative frame, wakes fluctuate in time. For fluctuation frequencies between 0.3-0.8
times the blade passing frequency, recovery does not occur, and there is a significant differ-
ence between the effects of fluctuating and steady wakes (with the same ensemble-averaged
properties). The most important aspect of the tip vortex is the velocity defect, which is
perceived by the stator in the same manner as a wake.

A model of recovery and boundary layer response in an embedded stage indicates that a
mixing-out steady flow approximation underestimates stage efficiency by 0.3-0.5 points (for
typical designs) and by 0.6-1.0 points (for closely-spaced blade rows). A region in design
space exists where interaction has a beneficial and relatively constant impact on efficiency.
Outside this region, interaction benefits rapidly disappear. For a typical blading diffusion
factor of 0.45, the beneficial region is approximately delimited by the de Haller criterion. The
detrimental aspects of boundary layer response may be mitigated by (a) selective removal of
boundary layer fluid from the suction surface, or (b) tailoring of the blade loading to reduce
loss in the front part of the blade.

Thesis Supervisor: Dr. Choon S. Tan
Title: Principal Research Engineer
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Notation Viii

Notation

a, Reversible velocity attenuation factor

A Passage cross-sectional area

Aj Velocity excess of the upstream disturbance "jet" in the stator frame

A, Velocity defect in the relative rotor frame (as fraction of V2,)

A + (s) Pressure gradient function in the Baldwin-Lomax model.

AOXoy Elemental integro-differential operators

Ajkpq,i() Elemental quadratic integro-differential operator

AR Blading aspect ratio (H/c)

B~abc Local third-order integral operator

Bpk,i() Elemental surface integral operator

B.pkq,i() Elemental auxiliary surface integral operator

Bjpkq,i Elemental pseudointegral operator

c, cs Stator blade chord

cR Rotor blade chord

cX Length of the chord projection on the x-axis

Cd Drag coefficient

CK, CW Constants in the Baldwin-Lomax model (Cw = 0.25; CK = 0.3)

C, Elementally condensed global system matrix

Cgg...Cee Subpartitions of the elemental system matrix

CG,m Condensed global system matrix for m-th mode

Clkpq,m Elemental system matrix for m-th mode and i-th element

Ci m  Elementally condensed partition matrix for m-th mode and i-th element

CP Dimensionless static pressure coefficient, C = 2p-

Cp Working fluid specific heat at constant pressure

Ct Dimensionless total pressure coefficient, Ct = 2p t - p' i

PUoo
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Co

Co,l,, Co,2,
d

DG

D j k

DF

e

E

f
F

F(n)

Fm

FK

Fw

(G)'e

G

Gm

h

hn

H

I

(i,j, k)

J

k

K1, K2

Lile

Ljkrs,i

rie

mn

MML

Mjk,i,m

nc

Absolute axial velocity

Absolute tangential velocity

Absolute tangential velocities at the inlet and exit of the rotor

Axial gap between rotor and stator

Condensed global system matrix diagonal

Discretized local differential operator

Diffusion factor (Cumpsty 1989, p.153)

Neper constant, e = 1 + 1 + 1/2 + 1/3 + ... 1/n

Exit boundary of the computational domain

Upstream disturbance profile function

Convective forcing vector

Shape function appearing in the Baldwin-Lomax model.

Velocity eigenfunctions

Klebanoff intermittency factor

Wake factor

Global pointer table

Dissipative forcing vector

Pressure eigenfunctions

Specific enthalpy

N-th order Lagrangian interpolating polynomial

Hub-to-casing height

Inlet boundary of the computational domain

Axial/tangential/spanwise unit vectors in the absolute frame

Jacobian of the (r7, () blade-to-blade elemental coordinate system

Von Karman constant (k=0.41)

Constants in the Baldwin-Lomax model (Ki=0.0168; K 2 =1.6)

Length of disturbance segment at entrance/exit of blade row

Elemental x-y Laplacian operator

Dimensional mass flux vector

N-th moment of the upstream disturbance profile

Average mass flux through passage

Mach Number

Discretized boundary source term

Cross-over locus of inner and outer regions



Notation x

N Order of the local spectral expansion in the blade-to-blade plane

NB Global matrix bandwidth

NE Number of spectral elements in the blade-to-blade plane

NH Number of spectral elements in the axial direction

NI Number of spectral elements along the inlet boundary

NM Number of spanwise modes (NM = Nz - 2)

Np Number of spectral elements along the blade surface

NRIs Number of rotor or stator blades

Nv Number of spectral elements in the blade-to-blade direction

Nz Order of the global spectral expansion in the spanwise direction

P,, p, Static pressure

Pt, pt Total pressure

(P)ik Set of spectral collocation points on the blade-to-blade plane

Q, q Dynamic head

Q Rate of heat addition or removal

re Vortex core radius

R Perfect gas constant

R Computational Reynolds Number (§A.4)

Re Cascade Reynolds Number

Ra Dimensionless annulus radius

s Specific entropy

(s, n, b) Streamwise/vortical normal/binormal coordinate system unit vectors

S Blade-to-blade spacing at pitchline

S, 6S, dS Control surface, boundary and infinitesimal element thereof

t Dimensionless time (cf.§A.4)

tw Wake thickness (at 99% velocity in relative frame)

t* Characteristic thickness of the incoming disturbances

to Instant of wake interception

T Temperature

Tk Unsteady vorticity production terms

Tjk Coordinate transform matrix

Tn N-th order Chebycheff polynomial

Tu Turbulence intensity

(u, v, w) Dimensionless axial/tangential/spanwise velocity vector components



Notation xi

U

(Ur 5 Vr 9 Wr)

(Ut, Vt, Wt)

U, V, W,v,w
U00

Ue

Urn

Ux, U, 00

V, 6V, dV

VR

V1,V2

(X,y, z)

(t, Zt, z)

X

(Z)1,(z

Greek Symbols.

/3 Stagger angle at pitchline

71,r/71,r Disturbance centerline inclination at the inlet/exit of the rotor

71,s/72,a Disturbance centerline inclination at the inlet/exit of the stator

r Circulation

bu, 6v, Sw Biases added to the upstream disturbance (§G.1)

6* Boundary layer displacement thickness

rmn Kronecker Delta function

(ACP)+  Peak amplitude of the leading edge static pressure pulses

AP Pressure rise

At Dimensionless time step

AVn Local time-averaged velocity disturbance normal to the boundary layer

(, q) Elemental coordinate system in the blade-to-blade plane

rl Stage adiabatic efficiency

0 Gaussian distribution angle in the local (77, C) coordinate system

01,r, 02,r Relative flow angle at the inlet/exit of the rotor

Dimensionless absolute velocity vector

Velocity components in the rotor exit relative yawed coordinate system (§G.1)

Velocity components in the rotor exit relative axial coordinate system (§G.1)

Base flow axial/tangential/spanwise velocity components

Reference total velocity component upstream of stator

Mixed-out velocity components downstream of cascade

Velocity at the edge of the boundary layer

Mean absolute velocity in the blade row

Reference axial velocity component upstream of stator cascade

Control volume, boundary and infinitesimal element thereof

Rotor blade tangential velocity at pitchline

Relative velocities at the inlet and exit of the rotor blade row

Absolute cartesian coordinate system (centered at stator midspan LE)

Rotor exit relative yawed coordinate system (§G.1)

Rotor exit relative aligned coordinate system (§G.1)

Midgap-to-midgap axial length of the blade row

Spanwise collocation spectral planes
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01,s, 02,s Relative flow angle at the inlet/exit of the stator

Am,v, Am,p Velocity/Pressure eigenvalues

Y Working fluid viscosity

v Dimensionless net viscosity (v = 1/R + Vt)

Vt Dimensionless eddy viscosity

EH, =V Arclength ratio matrices

7r* Stage total pressure ratio

II Stator static pressure recovery coefficient

IIm(z) II from mixing the flow at station "x" of the stator passage

II, II between inlet and exit of the stator passage

p Working fluid density (here constant=poo)

Od Characteristic length scale of the upstream disturbance

Qe Characteristic size of the computational subdomains

a Blading solidity (c/S)

o k~,,m  Discretized pressure/velocity source terms

7 Dimensionless time

7* Kolmogoroff time scale

Stage flow coefficient at pitchline

, L Line integral over L (§C.10)

X Disturbance impingement angle relative to stagger direction

Stage pressure coefficient defined as APt/pV2

SStage pressure coefficient defined as APt/1/2pU2

TN Flux or surface integral of type "N" (§C.11-C.14)

w Scalar magnitude of vorticity

W Absolute vorticity vector

w, w , Normal vorticity vector and magnitude thereof)

O, ws Streamwise vorticity vector and magnitude thereof)

wX, wy, wz Axial, blade-to-blade and spanwise vorticity components

fl Base flow spanwise vorticity

fr, Rotor dimensionless angular velocity

Calligraphic Symbols.

C" Continuity of n-th derivative

E(X) Integer part of z.
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6 Disturbance secondary kinetic energy

SReal-to-modal mapping in the spanwise direction

H(X) Heavyside step function

I Inlet boundary of the computational domain

Im Non-stationary mixing loss term

I Arclength

M(u,p, t) Turbulence model

ML Dimensionless mass flux through the domain defined by £

( Exit boundary of the computational domain

P Pressure surface of the stator blade

7z Stage reaction

S Suction surface of the stator blade

Tp Blade passing time period

Time period of fluctuations within vortices and wakes

Y Time and mass averaged total pressure loss coefficient (§1.1)

Yi Y from mixing the flow at the inlet of the stator passage

Ye Y from mixing the flow at the exit of the stator passage

YP y between inlet and exit of the stator passage

PG,m Condensed global source term for m-th mode

Subscripts and Superscripts.

()avg Area-averaged quantity at the inlet of the stator

()b Referring to a node on the periodic boundary of the computational domain.

()c.V. Referring to control volume boundaries

()e Referring to the e-th internal node in a given spectral element

()9 Referring to the g-th global node in a given spectral element

()g,i Unique global index of the g-th global node on the i-th element

()G Referring to the G-th uniquely-indexed global node

()i, ()' Referring to the inlet boundary of the computational domain.

()i,. Referring to the subindex set "*" on the i-th spectral element

()jk Referring to the (j,k)-th node in a given spectral element

()0 Referring to the 1-th spanwise collocation plane

()L Referring to the hub (lower endwall)

()LE Referring to the leading edge



()m Referring to the m-th spanwise mode

()m Referring to a mixed-out flow quantity

()minjmax Referring to the minimum or maximum value of a variable.

()o, () Referring to the outflow boundary of the computational domain

()P Limited to the stator passage

()R Designates a flow quantity relative to the rotor

()0 Designates a flow quantity in the steady (base) flow

()s Designates a flow quantity relative to the stator

()t Stagnation quantity

()PS Relative to the pressure surface

()ss Relative to the suction surface

()TE Referring to the trailing edge

()S Designates a flow quantity in the unsteady flow

()O Referring to the casing (upper endwall)

()1 Designates a quantity at the inlet of the blade row

()2 Designates a quantity at the exit of the blade row

()oo Referring to mixed-out flow conditions upstream of the stator

()i Referring to the spectral element i.

()" Referring to the flowfield at time step n.

()' Randomly fluctuating quantity (in turbulent flow).

()' Final state following an isentropic process (§2.2)

()" Second spanwise derivative

()* Referring to the outcome of the convective step

()** Referring to the outcome of the pressure step

()+ Normalized in the law-of-the-wall sense (White, 1974)

Operators and Special Notation.

() Spanwise mode of operand

() Spectral expansion mode of operand in blade-to-blade plane

() Time-averaged value of operand

() Spanwise-averaged value of operand

()T Transpose of operand

<> Ensemble average of operand

II Cartesian norm

xivNotation
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6 Variational operator

A() Difference operator between unsteady and base flows (cf.§F.1)

V Gradient operator

VO,i Discretized elemental partial differential operators

ZiE Sum taken over all the spectral elements in the set Q

tijr t.., i j k 1

qi ql + q-

A -- B Transition from state "A" to state "B"
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Acronyms

BL Boundary Layer

BLD Boundary layer distortion

LE Leading edge

LHS Left-hand side of an equation

LSRC Low-Speed Research Compressor

N-BLD Boundary layer disturbances containing normal vorticity

PS Pressure surface

RHS Right-hand side of an equation

S-BLD Boundary layer disturbances containing streamwise vorticity

SS Suction surface

TE Trailing edge

TL Rotor tip leakage vortex

SW Rotor streamwise vortex

ID Inviscid design-point base flow

VD Viscous design-point base flow

VH Viscous high-loading base flow

VS Viscous high-shear base flow

xviNotation
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Chapter 1

Introduction

1.1. Background and Motivation.

It has been known for almost three decades that the performance of axial compressors

depends on the axial spacing between blade rows. Smith (1970) obtained a one-point effi-

ciency gain and a two to four percent stage pressure rise increase in a low-speed research

compressor, by reducing blade row spacing from 0.37 to 0.07 chords. Similar results were ob-

tained later by Mikolajczak (1977), while Hetherington and Moritz (1977) achieved a 2-point

efficiency gain by increasing the spacing in front of the the rotor blade rows in a multistage

compressor. As shown in Figure 1.1, the experiments of Smith and Mikolajczak suggest

that reduced spacing improves performance, while Hetherington and Moritz' work indicates

that increased spacing may be also beneficial. Such behavior is not limited to compressors.

Data for axial turbines also shows the existence of optimal spacing with regard to efficiency

(Gostelow 1984).

The unsteady flow arising from the interaction between moving and stationary blade rows

is thought to be the most likely cause for these observations. One of the earliest connections

between performance and blade row interaction was established in Smith's (1966) model

of wake recovery. In essence, the recovery process can be described by assuming constant-

density, inviscid flow. As shown in Figure 1.2, upstream wakes undergo an increase in

length when convected by the core flow in the passage. By virtue of Kelvin's theorem, the

velocity non-uniformity and the thickness of the wake decrease in inverse proportion to the

increase in length. In this manner, some of the secondary kinetic energy in the wakes is

reversibly converted into pressure.
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Figure 1.1. Variation of compressor efficiency (top row) and pressure rise (bottom row)

for closely (dashed lines) and widely (solid lines) coupled blade rows. In modern core

compressors, the spacing is typically between 0.20 and 0.40 blade chords, and primarily

determined by structural and mechanical reasons.
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Figure 1.2. Smith's (1966) reversible attenuation and recovery mechanism for 2D wakes.

Stretching of the wake segments causes a proportional decrease of their velocity non-

uniformity without an increase in entropy. Therefore, the mixing loss of a wake that has

passed through the stator is decreased.
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The effect of recovery on efficiency can be assessed by considering the mixing loss as-

sociated with the wakes. Wake mixing represents 20-25% of the total loss produced by a

cascade, and up to 75% of the wake mixing loss is realized within half a chord past the

trailing edge (Denton 1993). The potential benefit from recovery is therefore significant. It

is not clear though what fraction thereof is actually achieved, since viscous dissipation of

the wakes starts immediately at the trailing edge and is present throughout their transport.

A recent discussion by Smith (1996) indicates that reversible wake attenuation accounts for

only 25 to 50 percent of the efficiency gains observed in the 1970 experiments.

Given the complexity of blade row interaction, there is no shortage of other mechanisms

that can be invoked to provide alternative explanation for the data. Table 1.1 lists some

of the unsteady flow mechanisms that have been associated with compressor performance in

the past. Despite the substantial experimental and computational work reviewed in §1.2, it

is still unclear (1) how most of these mechanisms lead to changes in performance, (2) how

significant is their effect in a given compressor. and (3) how this effect depends on design

and operating parameters. This is particularly true with respect to three-dimensional and

transitional aspects of the unsteady flow.

Table 1.1. Unsteady flow mechanisms resulting from blade row interaction and possibly
influencing axial compressor performance. The first two mechanisms operate primarily in
the upstream direction, while the rest involve the action of upstream vortical disturbances
on downstream blade rows.

A number of engineering problems arise from this lack of knowledge. Traditionally, com-

pressor design has been based on boundary-layer/streamline curvature methods with ex-

tensive use of published (Lieblein et al. 1953, NASA 1965, Koch and Smith 1976, Adkins

and Smith 1982) and proprietary correlations to account for viscous and three-dimensional

effects. The initial design is followed by scaled component testing (Wisler, 1985) prior to

Mechanism Discussed in

1. Boundary layer response to backpressure variation §1.2.2

2. Tip leakage flow response to backpressure variation §1.2.2

3. Unsteady (bypass) transition in boundary layers §1.2.3

4. Passage-scale boundary layer disturbances §1.2.4

5. Unsteady vortex shedding from blades §1.2.4

6. Transport of upstream wakes (Figure 1.2) §1.2.5

7. Transport of upstream vortices §1.2.5

8. Induction of unsteady secondary flows §1.2.6
9. Alteration of endwall and corner flows §1.2.6
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engine integration. Computational fluid dynamics (CFD) is an increasingly important ele-

ment of the design process. Recently, CFD has been successfully used to shorten the design

cycle and validate innovative design ideas leading to substantial performance improvement

(LeJambre 1995, Rhie et al. 1995). However, it is still not feasible to directly account for

unsteady flow in design CFD codes on a sound physical basis. A number of steady-flow

approximations are currently used instead (Adamczyk 1985 and 1992, Dorney and Sharma

1996). Mixing-out the non-uniform flow in the space between the blade rows is an example

of such a frequently-used approximation.

It is not clear how well such approximations represent actual blade row performance in

the presence of the unsteady phenomena listed in Table 1.1. This uncertainty may limit the

confidence in new designs. Furthermore, it remains to be shown that enhanced knowledge

about unsteady flow can be translated into improved performance. Therefore, elucidating

the impact of the unsteady flow phenomena in Table 1.1 on performance may help in the

development of more efficient multistage compressors.

1.2. Unsteady Flow and Compressor Performance: A Review.

In the following, the term "performance" shall be used to denote stage adiabatic efficiency

and pressure rise. Early investigations of blade row interaction by Kemp and Sears (1953,

1955), Von Karman and Sears (1938), Horlock (1968) and Hawthorne (1970) provided much

useful insight regarding blade loading and lift fluctuations. This work was subsequently fol-

lowed upon by Gallus (1979), Capece and Fleeter (1987), Schultz et al. (1990b) and Wisler

(1992). The effect of unsteady flow on other figures of merit, such as durability or aerome-

chanical robustness, is discussed by Greitzer et al. (1994).

1.2.1. Sources of blade row interaction in compressors.

Blade row interaction is primarily the result of individual blades encountering the flow

non-uniformities produced by other blade rows. According to the type of non-uniformities

involved, it is useful to distinguish between potential, vortical and shock-wave interaction

(Dorney and Sharma, 1996). The three types of interaction are described below, with a

particular emphasis on vortical interaction, which is the subject of this thesis.

Potential interaction is associated with the influence of the pressure field of individual

blades on other blade rows. Since static pressure gradients are usually highest in the leading

edge region, the blade row immediately downstream is considered the principal source of

potential interaction. According to Graf (1996), the peak-to-peak backpressure fluctuation

at the rotor-stator midgap location can be a significant percentage of the core flow local
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dynamic head (0.20% at mid-span, up to 0.40% near casing for the compressor considered).

TIP LEAKAGE nP LEAKAGE
VORTEX VORTEX

FLOW VORTEX

Figure 1.3. Ensemble-averaged relative velocity contours at the exit of a compressor
rotor. Left: from Silkowski (1995). Right: from Nikolaou et al. (1996) adaptation of
Wagner et al. (1983) data. Rotor wakes, tip vortex and corner vortices are clearly visible.
Wakes and tip vortex fluctuate in the relative frame.

Vortical interaction involves wakes and vortices shed from upstream blade rows. Fig-

ure 1.3 provides a typical illustration of these disturbances in the rotor relative frame, based

on ensemble-averaged flow data.

Wakes. Ensemble-averaged measurements of compressor rotor wakes have been ob-

tained by Stauter et al. (1991), Prato and Lakshminarayana (1993), Zierke and Okiishi

(1982), Lakshminarayana and Ravindranath (1982), and Manwaring and Wisler (1991)

among others. The wake profile can be characterized by a relative velocity defect and

thickness, which depend primarily on how far behind the rotor the data is taken. At

the mid-gap axial location, measured mid-span defects in different research compres-

sors range between 15-33% of the core flow velocity. Based on the data, the "average"

mid-gap mid-span wake has a 20% defect and a thickness of 0.2 chords. The variation

of wake defect as a function of axial distance has been quantified by Schlichting (1968,

isolated cascade) and Stauter et al. (1991, multistage compressor) among others. The

data indicates that the wake defect decays substantially over a distance of half a chord.

Wake decay rates are highest immediately behind the rotor, and decrease rapidly in

the downstream direction.

Time-resolved data indicates that (1) there may be substantial variability from wake

to wake, and (2) the wake defect fluctuates in time. Gertz (1986), and Kotidis and

Epstein (1991), have proposed that these fluctuations are due to a vortex street in the

wake. The amplitude of the fluctuations may be as large as the ensemble-averaged

defect (Brookfield 1996). The fluctuation frequencies may be between 3 to 8 times the

blade passing frequency. It appears that one frequency component of the fluctuations

is related to the Strouhal number based on trailing edge wake thickness.
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In swirling flows, vorticity disturbances such as wakes are coupled to pressure distur-
bances, and may show oscillations as a function of downstream distance (Kerrebrock
1977, Tan and Greitzer 1986).

* The rotor tip leakage vortex is the principal flow non-uniformity in the tip region
(Wisler, 1985). The structure and physics of this flow have been investigated by Hunter
and Cumpsty (1982), Storer and Cumpsty (1991), Khalid (1995) and Nikolaou et al.
(1996) among others. For unshrouded blades, the tip leakage flow downstream of the
rotor appears as a slowly swirling core of low-velocity fluid. This core is the result of
mixing between the leakage flow and the free-stream. The core bears more similarity
to a wake than to a streamwise vortex, a fact that can be appreciated in Figure 1.3.
The blockage associated with the core is a function of tip loading and tip clearance
(Khalid 1995), and the velocity defect can be a substantial fraction of the relative ve-
locity (-50%). The velocity defect component is about twice as large as the leakage
crossflow component in the present case.

Recent unsteady calculations by Graf (1996) indicate that the tip vortex is modulated
by the periodic fluctuations of backpressure from the downstream stator. The vortex
response has a time period between 1.6-1.8 times that of the stator blade passing. Thus,
the total pressure defect of the tip vortex core in the rotor frame also fluctuates in time.

* Rotor streamwise vortices may be present at the hub of the rotor in some axial fans.
They appear as a round core of swirling flow (Nurzia and Puddu 1994). An idealized
representation of such a streamwise vortex has been considered here as an interesting
contrast to the above tip leakage vortex.

Shock-wave interaction is caused by the shock system of a given blade row extending

into neighboring passages. Shock wave interaction may influence boundary layer develop-

ment (Johnson et al. 1990). Although shock waves and compressibility are important in

aeronautical turbomachinery (Kerrebrock, 1992), the flow in the embedded stages of core

compressors is usually subsonic (Wisler, 1985). For this reason, low-speed or incompressible

models are often used in compressor studies.

1.2.2. The effect of backpressure fluctuations.

Simulations of unsteady flow in a core compressor stage by Graf (1996) indicate that

backpressure fluctuations influence performance and tip leakage flow development. The tip

vortex low-Pt core is modulated by the stator at a frequency that is 1.6-1.8 times smaller

than the relative blade passing frequency. Rotor midspan wakes are also modulated to

some extent, but at the same frequency. From a performance standpoint, the tip vortex

modulation is linked to a reduction of the loss in the tip region of the rotor. However, the

imposed backpressure fluctuations also lead to a higher rotor midspan loss. The net effect

of the downstream stator is thus to increase the time-averaged loss of the rotor with respect
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to the case where a mixing plane is used between the blade rows. Relative to the same case,

the time-average entropy production in the stator passage also increases in presence of the

rotor. These unsteady phenomena are present over a wide range of design parameters.

From a design standpoint, these results indicate that increased unsteadiness is beneficial

in the tip region of a compressor rotor, and detrimental in the midspan. However, they also

suggest that the efficiency gain observed by Smith (1970, 1996) cannot be attributed to the

influence of the downstream stator on the rotor.

1.2.3. The effect of unsteady transition.

Early work by Walker (1974) and Pfeil et al. (1983) revealed that boundary layers undergo

forced transition under the effect of upstream wakes. Substantial progress has since been

achieved in describing wake-driven bypass transition (Dong and Cumpsty 1990, Addison and

Hodson 1990b in turbines, Mayle's 1991 turbulent intermittency unified approach, Walker

1993, Orth 1993, Halstead et al. 1994). Nevertheless, its impact on compressor performance

remains unclear (Walker 1993).

Dong and Cumpsty (1990a, 1990b) surveyed the undisturbed and wake-excited boundary

layers in a facility designed to reproduce the Reynolds number and loading on a represen-

tative supercritical (controlled-diffusion) compressor blade. Wakes create a self-sustaining

"turbulent spot" where they impinge on the blade. The spot grows and propagates at a

slower velocity than the free-stream. In spite of causing early transition, wake interaction

has a stabilizing effect on the boundary layer, thus extending the region of laminar flow on

the suction surface. In the absence of wakes, boundary layer development is influenced by

the level of freestream turbulence. For levels below 1 percent, laminar separation occurs on

the suction surface at 0.32 chords, followed by transition and re-attachment. At a turbu-

lence level of 6 percent, laminar separation is suppressed and transition starts at about 0.2

chords. This suggests that bypass transition might be irrelevant at free-stream turbulence

levels representative of an embedded stage.

Recent multistage compressor boundary layer surveys by Halstead et al. (1994a,b) in a

multistage research compressor, show the existence of a calmed region in the boundary layer.

This region is apparently generated by transitional strips initiated at the leading edge by

the penetration of wake turbulence. Such regions are known to occur immediately behind

turbulent spots (Schubauer and Klebanoff, 1956) regardless of the origin of the turbulence.

They are resistant to flow separation due to elevated shear stress and low shape factor. A

comparison of shear stress distribution on the suction surface between the first and third

stage rotors indicates that the calmed regions are effective in suppressing flow separation
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and delaying the onset of transition. This result agrees with Dong and Cumpsty (1990)

observations. The effectiveness of the calmed region appears related to the level of intermit-

tency in the turbulent strips induced by the wakes, and their closeness to the leading edge.

At lower Reynolds numbers, transition via laminar separation increasingly replaces bypass

transition as the calmed region weakens.

On a quantitative basis, the performance effects of wake-induced bypass transition are still

unknown. Although suppression of laminar separation is beneficial in principle, Dong and

Cumpsty (1990a, 1990b) found that the boundary layer parameters at the suction side trailing

edge were similar in both the undisturbed and wake-excited cases; and rather insensitive to

wake frequency, blade solidity or free-stream turbulence within the range of the experiment.

The authors concluded that midspan loss levels for supercritical compressor blading are not

significantly affected by the interaction between wakes and the boundary layer. On the other

hand, Schultz et al. (1990a) have observed that wakes cause up to 30% midspan loss increase

in a downstream compressor stator.

There is better quantitative information of wake effects on loss in a turbine-like environ-

ment. Measurements by Speidel (1951-1957) indicate that upstream wakes cause the profile

loss to increase, while data by Yurinskiy and Schestachenko (1974) indicates that the in-

crease is largest for closely-spaced blade rows. Hodson's (1990) area-based model is capable

of capturing the trends in Speidel's loss data.

1.2.4. Non-transitional aspects of boundary layer response.

To a compressor blade row, upstream wakes appear as "jets" directed away from the

suction surface (Kerrebrock and Mikolajczak 1970, Hodson's "negative jet" 1985). This

jet imposes a peak velocity on the boundary layer sometimes exceeding 20 percent of the

bulk flow (cf.§F.3). Such strong disturbances may influence boundary layer properties by

mechanisms unrelated to transition. For instance, boundary layer thickness and skin friction

on a flat plate can be significantly altered by perpendicular flow disturbances associated

with an upstream longitudinal vortex (Sankaran and Russel, 1990). The role of similar

non-transitional, wake-driven disturbances on profile loss has not been addressed.

In a three-dimensional context, Navier-Stokes simulations by Dawes (1994) show that the

tip leakage vortex causes an increase of boundary layer thickness and loss in the tip region

of a downstream stator (relative to midspan). As much as 29% of the stator endwall loss

was attributed to unsteady flow. Dawes observed a three-dimensional vortical disturbance

associated with the interception of the rotor tip vortex by the stator, and conjectured that it

constitutes a 3D equivalent of the boundary layer distortions (B-vortices) predicted by Valkov
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and Tan (1993) in a two-dimensional simulation. Experimentally, Howard et al. (1994) found

that the loss in the tip region of the stator significantly increases when the tip clearance of

the upstream rotor is increased from 1.2% to 3% chord. This increased stator loss causes

30% of the stage efficiency reduction associated with increased tip clearance.

Boundary layer vorticity is shed from the trailing edge of the blades in response to the

time-varying blade circulation. Losses occur when the kinetic energy associated with this

vorticity is dissipated. Fritsch (1992) found that such "unsteady circulation" losses are

negligible for a two-dimensional compressor cascade.

1.2.5. Transport of wakes and vortices.

The transport of wakes and vortices can have an impact on performance by mechanisms

other than boundary layer response. The efficiency benefit from Smith's (1966) mechanism

of reversible wake recovery depends on the balance between attenuation by stretching and

attenuation from turbulent mixing. To date, it is not known how much of the energy recov-

ery benefit suggested by Smith's inviscid description is actually realized in the presence of

turbulent mixing. Annular cascade data by Poensgen and Gallus (1991a) indicates that in

the presence of a downstream stator, wakes are attenuated twice as fast as without a stator.

This suggests that reversible recovery effects are significant even when turbulent mixing is

present.

Another aspect of wake transport is the migration of wake fluid and the segregation of

total temperature downstream of the stators. These phenomena were first identified by Ker-

rebrock and Mikolajczak (1970), and do not appear to have a substantial effect on efficiency.

A third aspect of wake transport has been recently proposed by Adamczyk (1994). It involves

the rectification of rothalpy non-uniformities, and is associated with the interaction between

wakes and the leading edge pressure field. The effect of rothalpy rectification on compressor

efficiency is not clear.

It is reasonable to assume that upstream vortices also undergo some form of reversible

processing. Denton (1993) notes that stretching a streamwise vortex filament amplifies its

secondary kinetic energy proportionally to the stretching squared. Such amplification is

detrimental for performance, because the energy taken from the core flow in this process may

be irreversibly dissipated by turbulent diffusion of the vortex. However, rotor tip leakage

vortices are structurally more similar to wakes, for which stretching recovers part of the

kinetic energy. It is not known whether some of the tip vortex secondary kinetic energy can

be recovered or not.
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1.2.6. The effect of unsteady secondary and corner flows.

Adamczyk (1992) noted that tilting and stretching of unsteady vorticity lines through

their interaction with the unsteady velocity field can result in the production of time-average

secondary vorticity, and conjectured that a significant portion of secondary flow development

in a multistage machine may be due to unsteady flow. Tip leakage vortices were identified

as likely candidates for this process. The effect of secondary flow induced by upstream rotor

disturbances on stator performance is presently unknown.

The use of bowed stators has been successful in virtually eliminating stator corner flow

separation (LeJambre et al. 1995). In more traditional designs though, corner separation

may be a significant source of loss. Schultz et al. (1990a) have observed that cylinder rotor

wakes cause stator endwall losses to decrease in a manner that reduces overall passage loss

by up to 40%. This improvement was attributed to reduced stator hub corner separation,

possibly linked to energizing of the separated region by wake turbulence. Poensgen and

Gallus (1991a,b) confirmed the decrease in loss, but pointed out that unsteady secondary

flows can also explain the reduction of corner stall.

1.3. Problem Statement and Research Objectives.

This thesis examines the impact of upstream rotor vortical disturbances on the per-

formance of a representative core compressor stator. This investigation has the following

objectives:

* Quantify the effect of upstream rotor tip leakage vortex and wake on the loss of the
stator (relative to the commonly used steady flow approximation in which wakes and
vortices are mixed out in the space between blade rows).

* Identify the unsteady phenomena of significance and explain how they cause loss to
increase or decrease.

* Determine what parameters influence the performance impact of wakes and tip vortices.

* Translate this knowledge into design recommendations. In particular, find (1) which
design choices lead to enhanced performance, and (2) what are the potential benefits.

A number of yet-unresolved questions in compressor aerodynamics has been addressed during

the course of this work:

* Is the rotor tip vortex recovered or not? What is the effect on loss from transporting
the tip vortex through the stator?

* What is the effect on loss of the non-transitional response of the stator boundary layer
to upstream vortices and wakes?
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* What is the effect of wake and tip vortex fluctuations on loss, relative to considering

ensemble-averaged wakes and vortices?

* What is the effect of unsteady secondary flows on loss?

* How much of the energy in upstream disturbances is actually recovered by Smith's

(1966) dispersion mechanism? Do the mechanisms considered here add up to the

amount of efficiency benefit measured by Smith (1970)?

The issue of unsteady transition and its relation to performance is beyond the capability of

the numerical experiments executed. This investigation focused instead on the unknown and

important three-dimensional and non-transitional aspects of rotor-stator interaction.

1.4. Contributions of Thesis.

Mechanistic understanding. The unsteady flow computations conducted here provide

for the first time a detailed picture of how upstream rotor vortices and wakes influence the

loss in a core compressor stator. Two generic causal mechanisms, with significant impact on

performance, have been identified. These are reversible recovery of energy in the disturbances

(beneficial) and non-transitional boundary layer response (detrimental).

* Tip vortex recovery constitutes a new finding. It involves intrinsically three-dimensional

vorticity kinematics. However, the energy benefit from tip vortex recovery scales in the

same manner as that associated with wake recovery, and can be thus described on a

2D basis. Wake recovery is not new, and occurs in the manner postulated by Smith

(1966). For a stator such as the one examined here, most (70-80%) of the energy in

the upstream wake/tip vortex is recovered.

* Non-transitional boundary layer response is a new loss mechanism, that can be de-

scribed in the same 2D terms for both tip vortices and wakes. The mechanism involves

the normal displacement of boundary layer vortex lines under the "suction" effect of

the upstream disturbances. The resulting redistribution of vorticity leads to an increase

in passage loss.

Importance and parametric dependency. The effect of upstream wakes and vortices

on stator loss has been quantified. This effect is important, and depends on the following

parameters: axial spacing, loading and the frequency of wake/vortex fluctuations in the

relative frame.

* At design point, interaction between the stator and the rotor wake/tip vortex results

in an efficiency that is 0.2 points higher than obtained using the forementioned steady-

state flow approximation. This number represents the sum of 0.5 points efficiency

benefit from recovery and 0.3 points efficiency drop from boundary layer response. The

individual effects of the wake and of the tip vortex are comparable.
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* The effect of tip vortices and wakes on stator loss becomes significantly more important
at reduced axial spacing. For a spacing of 0.07 chords, stage efficiency is 0.6 points
higher relative to the steady flow (1.2 points recovery benefit minus 0.6 points from
additional loss due to boundary layer response).

* For the present geometry, an increase in loading redistributes boundary layer vortical
fluid in a manner that decreases the additional loss from boundary layer response.

* The role of fluctuations within the wakes has never been considered before. There is a
range of fluctuation frequencies (-0.3-0.8 times the blade passing frequency) for which
recovery does not occur. Outside this range, there is no difference between the effects
of fluctuating and ensemble-averaged wakes.

* The most important aspect of the tip vortex is the velocity defect, which is perceived
by the stator in the same manner as a wake. Stator flow three-dimensionality is not an
important parameter.

Design implications. A model of recovery and boundary layer response has been used

to explore how the blade row interaction effects change from design to design. The model

considers the effects of rotor wake/stator, rotor tip vortex/stator, and stator wake/rotor

interaction in a repeating embedded stage environment. It was found that:

* Steady flow approximations based on mixing the disturbances between the blade rows,
underestimate stage efficiency by 0.3-0.5 points (for typical designs) and by as much
as 0.6-1.0 points (for designs with closely-spaced blade rows).

* A region in design space was identified where interaction has a beneficial and rela-
tively constant impact on efficiency. Outside this region, interaction benefits rapidly
disappear. The extent of this "beneficial" region is determined by the choice of blad-
ing diffusion factor DF. For typical values of DF.0.45, the "beneficial" limits coincide
approximately with the de Haller criterion (Cumpsty, 1989).

* The detrimental aspects of boundary layer response may be mitigated by (a) selective
removal of boundary layer fluid, or (b) by tailoring the blade loading to reduce steady-
state losses in the front part of the blade. For typical designs, the maximum efficiency
gain from such measures is about 0.3 points.

Bearing in mind that this is not a back-to-back comparison with Smith (1970) compressor,

the results indicate that about one-half to two-thirds of the efficiency gain observed by

Smith can be attributed to interaction with upstream wakes and vortices. This suggests the

existence of other mechanisms with strong impact on performance. Corner flow response is

one such mechanism deserving examination.
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1.5. Organization of Thesis.

The main body of the thesis presents the central ideas and results of the investigation in

seven chapters, listed below, plus a final chapter of conclusions and recommendations.

Chapter Topic

Method for assessment of unsteady effects on performance. Derivation of fig-

2 ures of merit and mechanistic relationships. Validation of the computational

procedure. Description of the computational experiments.

3 Unsteady flow and impact on performance from 2D upstream rotor wakes.

Unsteady flow and impact on performance associated with upstream rotor

4 tip leakage (TL) and streamwise (SW) vortices in a baseline inviscid flow

situation. Addresses the effects of vortex transport.

Unsteady flow and impact on performance associated with upstream rotor

5 TL and SW vortices in fully viscous flow at design point. Focuses on non-

transitional boundary layer response and its effect on loss.

Sensitivity study, considering the effect of flow three-dimensionality and op-

erating point.

Implications for compressor design. Efficiency impact of generic flow pro-

7 cesses across the design parameter space. Mitigation of detrimental unsteady

mechanisms.

Supporting material developed in the course of the investigation is presented in the fol-

lowing appendices.

Appendix Topic

A General Electric Company LSRC/E 3 compressor geometry, coordinate sys-

tem and dimensionless units.

The NS3D spectral element computational procedure: validation and as-

B-E sumptions, discretization of the flow equations, efficient implementation and

turbulence modeling.

F Disturbance flow, its governing equations, and numerical implementation.

Description of the time-varying inlet boundary conditions representing the

G-H effect of the upstream rotor; and of the stator base flows serving as a medium

for the propagation of the disturbances.

Mechanistic relationships for time-averaged changes in stator loss and pres-

sure rise in terms of disturbance flow features

J Modeling of the generic unsteady flow mechanisms and their effects.
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Chapter 2

Method of Investigation

This chapter describes (1) a framework for assessing the effects of upstream disturbances

on blade row performance, (2) the selection of a representative compressor geometry, (3)

the computational procedure, and (4) the computational experiments to be carried out. For

reasons of clarity, most details and supporting data are included as Appendices A to I.

2.1. Framework for Assessing the Unsteady Flow Effects.

In the multistage environment, the flow in a given blade row is influenced to some extent

by all other blade rows upstream and downstream of it (Figure 2.1, top). It would be

difficult to get a clear answer to the questions of interest if all the interactions taking place

in the compressor were represented. For this reason, the study considers the case of a single

stage, where the stator is subjected to the vortical disturbances from the upstream rotor,

but no information from the stator reaches the rotor (Figure 2.1, middle).

Such a simplification is commonly employed (Dorney and Sharma, 1996), on a basis

that the rotor immediately upstream is the strongest source of vortical disturbances to the

stator. However, it cannot capture two aspects of unsteady interaction: (1) fluctuation of the

wakes/vortices due to the stator pressure field, and (2) disturbances from blade rows other

than the upstream rotor. The first aspect is accounted herein by oscillating the velocity

defect of the wakes. The second aspect is not accounted for, and might be noticeable. For

instance, Huber et al. (1995) have observed that clocking of the first vane of a blowdown

turbine with respect to the second vane leads to efficiency variations of about 0.3 points.

In order to assess the "effects of unsteadiness" on stator performance, the time-averaged

figures of merit in the unsteady case need to be compared to reference values relevant to
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design. A commonly used approximation of blade row interaction is to mix out the flow non-

uniformities in between blade rows (Dorney and Sharma, 1996). As shown in Figure 2.1, the

unsteady results obtained here shall be compared against this steady-state approximation.

Multistage I
Environment

Loss and pressure rise all along axis

Rotor->Stator
Unsteady S
Flow

S Y2,P Y2,E

Mixing-Plane
Steady Flow

I I I

YM YIP Y,E

Figure 2.1. Unsteady interaction in the multistage environment (top), effect of rotor
on stator as considered here (middle), and reference steady flow (bottom). The figures
of merit used in the comparison are also shown, as well as the mid-gap mixing planes.
Steady and unsteady flow quantities are denoted as (), and (), hereafter, while their
difference is represented by the symbolic operator A().

Time-averaged loss (y) and pressure recovery (II) coefficients, defined in §2.2, are used

in the comparison between steady and unsteady stator performance. For instance, the loss

change due to unsteady flow within the stator passage is quantified by the difference Ayp =

Yp,, - Yp,, between time-averaged unsteady and steady-state loss coefficients.

The secondary kinetic energy of upstream wakes and vortices may be recovered in the

stator without an increase in entropy (Smith 1966, cf.§1.1). Vortices shed in response to

upstream disturbances carry kinetic energy that is eventually dissipated. The performance

effects of recovery and vortex shedding are not captured by the passage loss change coefficient

Ayp above. These effects can be quantified by comparing the time-averaged disturbance
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mixing losses between the exit and the inlet of the stator, and are embodied in the coefficient

AYm shown in Table 2.1 below. The net effect of upstream wakes and vortices on stator

loss is thus obtained by adding AYp and AY,.

Measure of unsteady effect Physical meaning

Change in loss associated with additional en-
tropy rise within the stator passage

Change in "potential" loss associated with at-

AYm = Yi,u - (Ye, - Ye,a) tenuation (or amplification) of the unsteady

flow non-uniformity secondary kinetic energy

Ay, = AYp - AYm Net loss change due to upstream disturbances

Table 2.1. Two complementary measures of stator loss changes due to upstream distur-
bances used here, and definition of net effect. Figure 2.1 shows the locations at which
the component loss coefficients are evaluated. The same method is applied to the stator
pressure recovery coefficient.

The stage geometry used in this investigation is that of the General Electric Low Speed

Research Compressor. This geometry is representative of an embedded stage in a modern

aeronautical compressor (Wisler 1985). It is described in Appendix A, along with informa-

tion on the coordinate system and on the dimensionless units used here.

There has been a substantial interest in explaining Smith's (1970) efficiency data in

a quantitative manner. The framework presented in Figure 2.1 is not identical to that

underlying Smith's experiments. Smith compared the performance at design axial gap (0.37

chords for the present LSRC geometry) against the performance at significantly reduced

axial gap (0.07 chords). Such small gaps are not used in practice (typical jet engine axial

gaps are usually between 0.2 and 0.4 chords). Herein, the performance at design axial

gap is compared against a steady state approximation that is equivalent to an infinite gap

between the blade rows. This approach is motivated by the need to assess the importance

of unsteadiness relative to a simplification commonly used in the design practice, and to

determine if improvements are possible within the constraints of practical axial gaps.

Nevertheless, the present framework does not preclude investigating the effects of axial

spacing and connecting them to Smith's (1970) data. This has been accomplished by using

two categories of wakes and vortices - baseline and "strong". Baseline wakes and vortices have

a velocity profile that corresponds to blade rows separated by a distance of 0.37 chords (the

same as in Smith's baseline experiment). This value is in the upper range of axial spacings

used in existing compressors (typically between 0.2-0.4 chords). "Strong" wakes and vortices

have a velocity profile that corresponds to a blade row separation of 0.07 chords.
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2.2. Figures of Merit in Unsteady Flow.

The purpose of this section is to derive stator loss and pressure recovery coefficients that

are (1) physically related to the compressor efficiency and pressure ratio, and (2) used in the

design practice. The details of the derivation can be found in §I.1. It was found that at low

Mach numbers, the mass and time-averaged total pressure loss coefficient :

YI-E = 1 [ uctdA - vc-dA] (2.01)

provides an adequate measure of compressor adiabatic efficiency based on entropy rise of the

working fluid between inlet (I) and exit (E). Specifically, the drop in stage efficiency due to

irreversible flow in the stator is given by :

(1 - 77)s = Pt,avg,stator inlet - Pavg,stator inlet y (2.02)
Pt,avg,stage inlet - Pt,avg,stage exit

In steady flow, (2.01) yields the total pressure loss coefficient traditionally used in cascade

testing and stage design (Lieblein et al. 1953, Cumpsty 1989, Kerrebrock 1992, Denton 1993).

Equation (2.02) can be used to determine the effect of unsteadiness on compressor efficiency,
denoted as A77, by inserting AY for Y.

The stator does not perform mechanical work leading to pressure rise, but serves to reduce

the swirl from the rotor and convert it into static pressure. In unsteady flow, this capability

can be quantified by a time-averaged pressure coefficient:

= ffE dA - ffI, dA ffE -pdA - ff, CpdAII - (2.03)
Qavg, stator inlet A

For steady cascade flow, (2.03) is equivalent to the pressure coefficient used to charac-

terize diffuser performance (Kerrebrock, 1992). This correspondence is appropriate, since a

compressor stator is basically a curved diffuser. Mass-averaging of static pressure coefficients

it not justified from momentum conservation standpoint (cf. §1I.4).

It is to be noted that the effect of unsteadiness on compressor pressure rise '0, is related

to the change in stator loss (Ay) and not to the change in static pressure coefficient (AII).

This is so because the pressure rise of the machine is the result of work done on the fluid by

the rotors. The stators do not perform work, but total pressure losses therein are equivalent

to reducing the work done by the rotors. In this light, a change in stator loss Ay leads to a

proportional change in stage pressure coefficient given by:

AO = A (2.04)
PU2
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For this reason, changes in static pressure coefficient AII are examined in less detail than

changes in stator loss.

2.3. Mechanistic Relationships.

For incompressible adiabatic flow, the above loss and pressure coefficients can be expressed

in terms of unsteady vorticity and velocity fields. The resulting mechanistic relationships are

helpful for identifying and modeling those unsteady flow features that impact performance.

The first relationship, derived in §I.2 connects the time-average passage loss coefficient to

the unsteady vorticity field in the stator. It states that the only source of time-averaged loss

is the vorticity in the boundary layers, secondary flows and upstream disturbances:

AY = WRe/ 2dV (2.04a)

Equation (2.04a) is applicable to both laminar and turbulent unsteady flows, provided

that the vorticity in all small-scale eddies is taken into account. In engineering applications,

it is often impractical to resolve these small eddies. A Reynolds-averaged form of the Navier-

Stokes equations (cf. §B.3.1) is used instead, in which the dissipative effect of small eddies

is represented through the use of an eddy viscosity. In this case, the loss depends also on the

distribution of eddy viscosity:

Ayp -2 fjv V2dV (2.04b)

Time-average losses from mixing the unsteady non-uniform flow to a uniform state are

computed by means of a mass and momentum balance under constant area conditions

(cf.§I.3). This method of mixing was selected among several available (Greitzer, 1994)

because it is physically realizable in the interblade environment. The second mechanistic

relationship expresses mixing loss in terms of velocity and pressure fields:

AYm(() = D (p + 2U2 - )dA - u(C + 2 + v2 + 2)dA

(2.06)

+ u1{ udA + uDA{/J uwdA}

Equations (2.04)-(2.07) are useful for expressing loss and pressure coefficient changes due

to unsteadiness in terms of the fluctuating part of the flowfield. For instance, the change in

passage loss Ayp of Table 2.1 can be directly related to the time-average vortical structure

of the unsteady flow, expressed as a disturbance relative to the base flow:
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4 2
AA = Re JwS, AdV - ReJJ (A)2dV

AAyp -6111 vw, - AwdV - 2 / v(Aw) 2dV

(Exact)

(2.07)

(Reynolds-averaged)

The loss benefit from attenuating (or detriment from amplifying) upstream disturbances

in the stator, Ay, (Table 2.1), is related to the energy thickness of velocity fluctuations

before and after the stator :

AAm (1+ Au)(Au 2 + Av 2 + Aw 2 )dA - (1+ Au)(Au 2 + A 2 + 2 )dA

+ { (1 + Au)AvdA} - { ( + Au)AvdA

+ (1+ Au)AwdA} - (1 + Au)AwdA} 2

(2.08)

The net static pressure recovery coefficient change (passage+mixing) due to unsteady

flow in the stator is directly related to a change in time-average blade axial force. The latter

is due to static pressure and skin friction redistribution:

H/2 [(ACp)Ps - (AC)ss] dydz
-H/2

- LX JH/2 (Awz)Ps - (Awz)ss] dxdz

Re [-2 w] ddy

2 Xe PS

Re- f (AWO)L - (AWy)Ul dxdy

(Pressure redistribution)

(Blade friction redistribution)

(Endwall friction redistribution)

(2.09)

The utility of (2.08)-(2.10) shall be illustrated in Chapters 3-6, in which unsteady flow

features are connected to changes in performance. It is the first time that such a unified

approach to treating the effects of unsteadiness on blade row loss has been presented. It

is to be noted that the relationships are strictly valid for incompressible flow, and are in

dimensionless terms (e.g. the density, p=l, has been omitted from the notation). In unsteady

flows where the Mach number approaches or exceeds unity, there are new mechanistic aspects

AAII, =
zzy
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to loss and pressure rise not addressed in the above. Such cases are beyond the scope of the

present investigation.

2.4. Computational Approach.

It is often difficult to characterize a specific unsteady flow aspect from multistage data,

because of the many interrelated factors and flow features involved. In addition, the short

time scales of the phenomena, and the high cost of operation place logistical constraints on

experimental work. Carefully controlled numerical experiments are free of such complexities,

and form the basis of this investigation.

Several methods for calculating inviscid and viscous unsteady flow in turbomachinery

have been developed over the last two decades (Erdos et al. 1977, Koya and Kotake 1985,

Whitehead's 1987 LINSUB, Rai 1987a 1987b, Gibeling et al. 1988, Ni and Sharma 1990,

Chen and Chakravarthy 1990, Saxer 1992, Giles and Haimes' 1993 UNSFLO, Dawes 1992).

Time-accurate spectral-element techniques for direct simulation of viscous flows have also

emerged in the last decade (Patera 1984, Korczak 1985, Tan 1989, Renaud 1991). The

computational method employed here is an extension of these high-order techniques.

2.4.1. Numerical method.

At free-stream turbulence levels, Mach, and Reynolds numbers typical of embedded core

compressor stages, the unsteady flow in the stator passage can be adequately described by

means of the time-dependent Reynolds-averaged Navier-Stokes equations (cf. §B.3.1):

Bu
-- ux w = -VPt+V(Vu) ; V.u=0 (2.11)

The present investigation is concerned with the unsteadiness of the flow, which can be

represented as a disturbance flowfield, superimposed upon the pre-mixed steady (base) flow

used as a reference:

Au(x, y, z, t) = u(X, y, z, t) - u , (X, y, z)

(2.12)

Ap(a, y, z, t) = p,(z, y, z, t) - p,(z, y, z) ...etc.

The computational procedure employed here does not solve (2.11) directly. Instead, the

disturbance flow is obtained by solving the following form of the Navier-Stokes equations

(derived by inserting 2.12 into 2.11), and added to the base flow to obtain the full viscous

unsteady flow.
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OAu
5t = u,xAw + Auxw, + AuxAW - VApt + V [(V, + Av)VAu + AvVus] (2.13)

Equation (2.13) is mathematically and numerically equivalent to solving the full Navier-

Stokes equations (2.11). Unlike standard linearised perturbation approximations, this equa-

tion takes fully into account non-linear and viscous effects. The base flow employed must

be a solution of the Navier-Stokes equations. For these reasons, the time-average of the

disturbance flow (Au, Ap) will not be nil in general.

A fractional time-stepping procedure, using fully-spectral expansion in the spanwise direc-

tion and spectral-element expansion in the blade-to-blade plane, is employed to solve (2.13).

It is based on the idea of dividing the computational domain into a number of regularly-sized

regions, and then proceeding to a high-order expansion of the flowfield within each region to

achieve both geometric flexibility and higher accuracy. As described in Appendices C and

D, the procedure also solves the full-flow Navier-Stokes equations.

2.4.2. Application of the computational tools.

The use of the disturbance form of the Navier-Stokes equations (2.13) offers several ad-

vantages in terms of isolating and manipulating specific aspects of blade row interaction.

In particular, the unsteady flow obtained in each computational experiment is completely

defined by the following two inputs:

* A representative disturbance profile from the upstream rotor (e.g. a tip leakage vortex)
at the inlet of the stator. The parameters of this disturbance (e.g. displacement
thickness) can be held constant or varied independently of other parameters.

* A steady base flow in the stator, obtained beforehand at given operating conditions.
Aspects of the base flow (such as loading, three-dimensionality or presence of boundary
layers) can be precisely controlled or altogether eliminated to reveal the role of a specific
mechanism (e.g. boundary layer interaction) in altering the stator performance.

The disturbances and base flows used here are described in §2.5 and §2.6 respectively.

The combinations of these as computational experiments addressing issues of interest, are

presented in §2.7. For each computational experiment, disturbance flow visualization shows

the principal features of the unsteady flow, while the mechanistic relationships of §2.3 explain

their role in changing stator performance. Useful design information can be obtained by con-

sidering which aspects of the steady flow maximize the beneficial aspects of the unsteadiness.

This thought process, shown in Figure 2.2, forms the core of the study.
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Compressor Stage Design:
Velocity triangles,geometry, blading. -- - - -

(Appendix A)

Steady Flow in Disturbance Flow
the Stator Passage from Upstream Rotor

(Appendix H) (Appendix G)

I I

Disturbance Flow in Stator Passage
(Theory: Appendix F, Results: Chapters 3-6)

Change in Stator Loss and Stator
Pressure Rise due to Disturbance Flow - - - - -
(Theory:Appendix I, Models:Appendices J/K)

Figure 2.2. Causal relationships between compressor design parameters, unsteady flow,
and performance impact thereof. Solid lines indicate links that are understood in principle
and can be quantified. Dashed lines are links that remain to be elucidated.

2.4.3. Validation and assumptions.

Ideally, CFD results should be validated by comparison with experimental data taken

in a representative environment. Qualitatively, the results of this investigation agree with

observations made by Smith (1970) and Howard et al. (1994), as well as with simulations

by Dawes (1994) and Graf (1996). However, there is no experimental data about the un-

steady flowfield inside the stator that allows direct confirmation of the unsteady mechanisms

identified. For this reason, three issues have been addressed to ensure that the results are

representative: (1) solver accuracy, (2) the effect of eddy viscosity on the computed results;

and (3) the effect of simplifying assumptions.

For reasons of conciseness, supporting material from this assessment has been placed in

Appendix B. Section B.2 demonstrates the instrinsic accuracy of the computational proce-

dure. Section B.3 justifies the use of a turbulence model by comparing scales of unsteadiness

and turbulence, and by examining the role of free-stream turbulence levels on transition in

embedded stages. This section also considers the sensitivity of the results to the particular

turbulence model used. Eddy viscosity does not appear to be an important parameter, given
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that (1) recovery occurs over a shorter lengthscale than diffusion, and (2) those unsteady

mechanisms that impact performance are of convective nature.

Certain assumptions have been made to make the problem tractable. These assumptions

are (1) incompressible flow; (2) planar cascade; (3) straight stator blades; and (4) one-to-

one rotor/stator blade ratio. Section B.4 concludes that the essential effects of wakes and

vortices can be captured under these assumptions. To fully appreciate the discussion, the

reader should first become familiar with the unsteady flow results in Chapters 3-6.

2.5. Inlet Disturbances.

Three generic types of inlet disturbances, described in Appendix G, are used in the

investigation: wakes, rotor tip leakage vortices, and simple streamwise vortices. These dis-

turbances are based on observations of the interblade unsteady flow environment.

* Rotor Wakes are represented by a Gaussian velocity defect profile in the rotor frame.
The profile is characterized by a peak relative velocity defect (A,) and by a 99% velocity
thickness (t,). In a first set of computations, A, and t, are kept steady in time but
varied from experiment to experiment in a manner representative of different degrees
of "mixedness" of a baseline LSRC rotor wake at nominal loading (Table 2.2). This
approximates the effect of changing the axial separation between blade rows.

A, (%) 12 25 37 50 65

t, (chords) 0.33 0.20 0.15 0.12 0.10

Table 2.2. Set of mid-gap wake defects and 99% thicknesses used to characterize inter-
action with ensemble-averaged wakes. Axial spacing decreases left to right.

In a second set of computational experiments, the wake defect is varied in time with
a time period ranging from 1/7 to 2 times the rotor blade passing period. This sheds
light on the role of velocity fluctuations within the wakes.

* Rotor Tip Leakage (TL) Vortices are represented as a core of steady, slowly-swirling
low-energy fluid. Two TL vortices are used in the computational experiments: "nom-
inal" and "strong". The "nominal" vortex velocity profile is extracted from Khalid's
(1995) Navier-Stokes simulation of tip leakage flow in an isolated LSRC rotor at design
loading with 3 percent tip clearance. The peak Pt defect in the nominal vortex core at

the exit of the rotor is 45% of the local dynamic head. The core extends roughly over

60% of the blade-to-blade spacing and over 15% of the span.

The "nominal" and "strong" vortices differ by the magnitude of the velocity defect in
the vortex core. For the strong vortex, this defect is scaled up by using a wake decay
relationship proposed by Stauter et al. (1991). Since the inlet computational boundary
(where disturbances are prescribed) is fixed at 0.25 chord units ahead of the stator,
this scaling helps simulate the effect of reducing axial spacing.
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e Rotor Streamwise (SW) Vortices are represented by an exponential viscous core

with a diameter of 15% of span and dimensionless circulation of 0.45 units. Such vortices

are not seen in core compressors, but may be present in other types of turbomachinery

(Nurzia and Puddu, 1994). In addition, they illustrate how tip leakage vortex processing

differs from what Denton (1993) conjectured.

It is to be noted that these disturbances assume a different appearance when passing from

the rotor into the stator frames. This is due to the relative stacking orientation between rotor

and stator blade sections. In a compressor stage such as that of the LSRC, rotor and stator

blades are approximately perpendicular. As a result, rotor disturbances associated with

blockage (wakes, TL vortex core) appear as "jets" directed away from the suction surface

and towards the pressure surface of the stator. On the other hand, crossflow disturbances in

the rotor frame (SW vortex) appear to the stator as fluctuations in the plane of the blade.

This situation is shown in Figure 2.3.

Rotor Pt/Blockage Disturbances Rotor Crossflow Disturbances

0 Wakes * SW Vortex

* TL Vortex coe * Leakage crosaflow

VR V V

CG,2 CO,2

Figure 2.3. Two generic types of disturbances perceived by a downstream blade row:

normal "jets" (total pressure/blockage in the rotor frame) and planar perturbations
(crossflow disturbances in the rotor frame). Note that the disturbance flow shown is

invariant under change of reference system.

2.6. Steady (Base) Flows.

The foregoing disturbances propagate and interact with the following four steady (base)

flows in the stator passage, described in detail in Appendix H:

e Nominal base flow (denoted by "VD") at a flow coefficient of 0.45 and a Reynolds

number of 250,000 (design). The spanwise velocity distribution at the inlet of the stator

is based on an idealized representation of Khalid's (1995) circumferentially-averaged

rotor solution. The midspan inlet flow angle is 460, and the diffusion factor is 0.43.
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* High-loading base flow (denoted by "VH"), at a flow coefficient of 0.38. As shown in
Figure A.1, this is close to the peak of the characteristic but the flow is not stalled.
At midspan, the inlet flow angle is 51 degrees, and the diffusion factor is 0.52.

* Embedded-stage base flow (denoted by "VS"). The nominal flow above is not highly
three-dimensional. In this respect, it differs from the core flow in a deeply embedded
stator. The "VS" base flow has the same loading characteristics as "VD" flow above,
but is obtained using an inlet shear profile that is more representative of the flow at
the inlet of an embedded stage.

* Inviscid base flow (denoted by "ID") at the same flow coefficient as flow ("VD") above.
This flow is irrotational, and thus free of loss, secondary flow and boundary layers.

The viscous base flows are obtained by means of the three-dimensional Reynolds-averaged

Navier-Stokes flow solver described by Adamczyk et al. (1989). The inviscid flow is obtained

by stacking PCPANEL (McFarland, 1984) solutions in the spanwise direction.

2.7. Computational Experiments Performed.

The computational experiments are described in terms of inlet disturbances and base flows

used. Three groups of computational experiments have been carried out. In the first, the

wakes described in §2.5 interact with a midspan section of the stator on a two-dimensional

basis and at design point conditions. The purpose of the wake calculation is to answer unre-

solved issues about the amount of wake recovery and the role of non-transitional boundary

layer response. Moreover, the wake calculations shall prove helpful in understanding better

some aspects of tip leakage vortex interaction.

The second group of computational experiments is summarized in Table 2.3. Its pur-

pose is to identify key loss-producing mechanisms associated with tip leakage and streamwise

vortices. The first two calculations shown in Table 2.3 are inviscid in the sense that (1) the

base flow is inviscid; and (2) the disturbances propagate in a slip-free manner. Turbulent

diffusion is still retained in the bulk of the disturbance flow however. This allows to distin-

guish losses due to mixing of the vortex from losses associated with boundary layer response

in the subsequent viscous flow calculations.

The third group of computational experiments explores the sensitivity of TL vortex in-

teraction to operating parameters, vortex structure and axial spacing. The experiments are

described in Table 2.4. The 2D/TL experiment deserves particular attention. Baseline cal-

culations strongly suggest that the effects of tip vortex-stator interaction can be described on

a locally two-dimensional basis, similar to that of wake interaction. The 2D/TL experiment

is designed to verify this claim by using a two-dimensional formulation of the disturbance

equations of motion, in which each computational plane is independent (cf. §C.17).
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Designation Description and Purpose

Interaction of a streamwise vortex (SW) with an inviscid base flow

ID/SW (ID). Determine loss impact from transport of streamwise vortices

without the complications due to boundary layer response.

Interaction of a tip leakage vortex (TL) with an inviscid base flow

ID/TL (ID). Find if the vortex energy is reversibly recovered without the

complications due to boundary layer response.

Interaction of a SW vortex with a viscous base flow at design load-

ing (VD). Compare to ID/SW to show (1) how SW vortex transport
VD/SW is affected by the boundary layer, (2) how the boundary layer re-

sponds to the disturbance, and (3) what are the loss effects thereof.

Interaction of a TL vortex with a viscous base flow at design load-

ing (VD). Compare to ID/TL to show (1) how TL vortex transport

VD/TL is affected by the boundary layer, (2) how the boundary layer re-

sponds to the disturbance, (3) what are the loss effects thereof un-

der baseline conditions, and (4) how interaction with the tip vortex

differs from that with a streamwise vortex.

Table 2.3. Computational experiments aimed at revealing key features and mechanisms
of interaction with upstream rotor tip and streamwise vortices.
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Designation Description and Purpose

Interaction of a nominal TL vortex with a high-loading base flow
(VH). Compare to VD/TL to show (1) how vortex transport is af-

VH/TL fected by loading, (2) how higher pressure gradients affect boundary
layer response. Note that the vortex strength is the same as in case
VD/TL.

Interaction of a nominal TL vortex with a viscous base flow with
high-shear inlet profile (VS). Compare to VD/TL to show (1) how

VS/TL vortex transport is affected by base velocity gradients, (2) what is
the effect of unsteady secondary flows, and (3) what is the effect of
increased base flow three-dimensionality.

Interaction of a "strong" TL vortex with a design-point loading
VD/TS viscous base flow (VD). Compare to VD/TL to determine the effect

of reduced axial spacing on unsteady flow and losses.

Interaction with a tip vortex, from which the crossflow component
in the rotor frame has been removed. Compare to VD/TL in order

VD/TP to separate the effects associated with the blockage in the vortex,
from those due to leakage crossflow and streamwise vorticity. De-
termine what is the most important aspect of the tip vortex.

Locally two-dimensional interaction of a TL vortex with a design-
point viscous base flow (VD). The disturbance equations of motion

2D/TL are solved over a stack of independent blade-to-blade planes. De-
termine whether TL interaction is truly a three-dimensional phe-
nomenon, or whether is can be explained in locally 2D terms.

Table 2.4. Computational experiments used in a sensitivity study of stator and up-
stream tip leakage vortex interaction.
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Chapter 3

Two-Dimensional
Wake/Stator Interaction

This chapter examines the unsteady flow arising from the two-dimensional interaction

of upstream wakes with a midspan section of the stator. The purpose is to identify the

mechanisms by which wakes influence time-averaged performance, and quantify the impact

thereupon. Three issues are addressed: (1) the role of non-transitional boundary layer re-

sponse, (2) the importance of wake recovery in the presence of mixing; and (3) the effect

of fluctuations inside the wakes. This information shall be of use later, given the similarity

between wakes and tip leakage vortices.

Two series of computational experiments are carried out at a design flow coefficient of

0.45, Reynolds number of 300,000, and time step of 0.0005. The first series consists of five

computational experiments, using the same wake at different degrees of "mixedness". In

these experiments, the wake relative defect A, at the inlet of the computational domain

is varied as shown in Table 2.2 (but is kept steady in time). This series of experiments

shows the effect of changing the blade row axial spacing. The 25% wake is representative

of interaction at design axial spacing in the LSRC geometry used here (0.37 chords). The

50-60% wakes are representative of Smith's (1970) closely-coupled blade row interaction in

the same compressor.

In the second series of experiments, the wake has constant ensemble-averaged properties,

but the defect is sinusoidally varied in time at a fraction of the blade passing frequency. This

is a simplified representation of wake fluctuations seen in data (Kotidis and Epstein 1991,

Waitz 1996, Brookfield 1996). It is sufficient for the purpose of identifying trends. The role

of wake fluctuations has never been considered in interaction studies.
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3.1. Constant Wakes: Unsteady Flow Features.

The instantaneous disturbance velocity field associated with the wakes appears as a "jet"

directed against the pressure side of the stator blade. Upon interception of this "jet", pressure

pulses that are a significant fraction of the inlet dynamic head, appear on the leading edge.

As shown in Figure 3.1, the pulse on the pressure surface (PS) is positive, while that on

the suction surface (SS) is negative.
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Figure 3.1. Disturbance static pressure isocontours and disturbance velocity field at

interception time to. Note the (+/-) pressure regions on each side of the leading edge

and the "jet" of the upstream wake (baseline 25% wake case).

The static pressure pulses are a potential flow effect, observed in both Navier-Stokes

and inviscid calculations (Valkov, 1992). They constitute the most important aspect of the

unsteady loading on the blade. Their duration is comparable to the time necessary for the

wake to be "cut" by the leading edge. The peak value of the static pressure pulse on the

pressure side, (ACp), can be described in quasi-steady inviscid terms as the additional

pressure resulting from bringing the "wake jet" to a stagnation point:
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(ACp)+ = 2 tanO1Aj + A2 (3.01)

where Aj is the peak velocity in the wake "jet", and 81 is the inlet flow angle. As shown in

Figure 3.2, this simple model, derived in §J.2.4, agrees well with the CFD results.
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Figure 3.2. Comparison between (ACp)+ from the simulation and from the quasi-steady

inviscid-impingement models in §J.2.4.

According to Equation (2.07), it is useful to describe the unsteady flow in terms of

disturbance vorticity Aw, defined as the difference in vorticity between the unsteady flow

and the steady base flow. Instantaneous disturbance vorticity fields are shown in Figure

3.3 for baseline 25% wakes, and in Figure 3.4 for 65% wakes. The baseline wakes are

essentially transported in the manner conjectured by Smith (1966). Individual wake segments

are stretched. Their SS and PS ends travel at different speed, and leave the stator with a

shift relative to the other wakes. The 65% wakes are characterized by a more pronounced

migration.

Figures 3.3 and 3.4 also show vortex shedding from the trailing edge and non-transitional

vortical disturbances in the boundary layer. For the present geometry, vortex shedding is not

an important source of loss. This can be appreciated by comparing the velocity fluctuations

in the boundary layer to the velocity fluctuations associated with the wake in Figure 3.10

(right). On the other hand, the suction side boundary layer disturbances (referred to as

BLDs in the following) are the leading source of passage loss change. This section focuses on

the origin of BLDs, while §3.3.2 examines their connection to loss.
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Figure 3.3. Upstream wakes are convected by the core flow while inducing vortical disturbances near
the blade surface. Isocontours of disturbance vorticity at the moment of wake interception (t = to,
top) and between interceptions (t = to + T/2, bottom). Baseline wakes (25%), two dimensional
Navier-Stokes simulation at Re=300,000.
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Figure 3.4. Isocontours of disturbance vorticity at the moment of wake interception (t = to, top)
and between interceptions (t = to + T/2, bottom). Strong wakes (65%), two dimensional Navier-
Stokes simulation at Re=300,000.
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The boundary layer disturbances (BLD) seen in wake interaction calculations have a

characteristic structure, illustrated in Figure 3.5. Each BLD originates on the leading edge

at the moment of wake interception. It is composed of two thin regions of high negative and

positive shear respectively. These regions are lifted away from the suction surface by the

wake jet, and are convected at the edge of the boundary layer.
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Figure 3.5. Disturbance vorticity isocontours at the leading edge for baseline wakes
slightly past interception (t = t o + 0.1T), showing one incipient and one fully developed
BLD (from a previous wake). Vertical scale is exaggerated.

Three computational experiments, where a specific aspect of the unsteady flow dynamics is

altered, have been carried out to determine the origin of the BLDs in Figure 3.5:

(1) Inviscid base flow + linearized slip-free disturbance equations.

No BLDs are observed (Valkov, 1992).

(2) Viscous base flow + linearized slip-free disturbance equations.

BLDs similar to those above can be observed (Valkov, 1992).

(3) Viscous base flow + non-linear viscous disturbance equations from which the BL dis-

tortion term T 1 below has been removed. No BLDs are observed.

T 1 = -(Au - V)w, (3.02)
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These calculations suggest that the vortical disturbances shown in Figure 3.5 originate

from displacement of the boundary layer vortex filaments under the suction effect of the

wakes. Calculation (3) provides the strongest support for this conclusion. Calculation (3)

is identical in all points to a Navier-Stokes simulation, except that the vortex filaments in

the base flow boundary layer are not allowed to move under the effect of the "negative jet"

intthe upstream wake. The only mechanisms responsible for disturbance vorticity in such a

flow are (a) production and diffusion of vorticity on the blade surface due to fluctuations of

the velocity at the surface, and (b) changes in turbulent eddy viscosity due to unsteadiness.

As Figure 3.6 shows, these mechanisms alone do not lead to appreciable boundary layer

disturbances (although shear stress fluctuations remain appreciable).
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Figure 3.6. Disturbance vorticity isocontours at the leading edge for baseline wakes
slightly past interception (t = to + 0.1T) from a disturbance calculation from which the
BL distortion term (3.02) has been removed. In comparison to Figure 3.5, no significant
BLDs are present in this flow.

A simplified model for the distortion of boundary layer vortex filaments is derived in

Appendix J. The model is based on the premise that the distortion process is an essentially

convective process, that occurs on a scale local to the boundary layer, and is governed by

the following equation:
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Aw uAw vAw (3.03
+ U 0A + V - Av (3.03)it ax By ey

transport production

This model embodies a balance between transport of disturbance vorticity Aw, and "pro-

duction" thereof from convective redistribution of base flow boundary layer fluid under the

effect of a transverse velocity disturbance Av. The model helps explain why (a) BLDs are

primarily produced in the boundary layer/bulk flow interface over the foremost part of the

blade, and (b) the primary BLDs contain negative disturbance vorticity. A model for the

unsteady losses can be derived on the basis of (3.03) and (2.07). As shown in Figure 3.7,
this model captures the trend in the CFD results.

It is difficult to obtain such a clear illustration of the boundary layer response if the

unsteady flow is described in terms of velocity instead of vorticity. For this reason, published

compressor flow data cannot be used to provide direct evidence for BLDs. Some indirect

evidence can be found in data presented by Wilder et al. (1990). The authors have used time-

resolved LDV measurements to infer the vorticity distribution around an airfoil interacting

with upstream spanwise vortices. This situation is similar to wake interaction to the extent

that the unsteady velocity field has a component normal to the blade. The experimental

results show a vortical disturbance in the suction side boundary layer at the moment of

vortex interception.

3.2. Constant Wakes: Effects on Performance.

Interaction with constant-strength wakes has two opposite effects on stator loss. First,
wakes cause the time-average passage loss to increase by an amount denoted as AYp. This

increase, shown in Figure 3.7, is small for the 25% (baseline-spacing) wakes but becomes

noticeable for the 50% (close-spacing) wakes.

On the other hand, mixing the unsteady flow leaving the stator entails less loss than

mixing the wakes prior to the stator. The resulting loss benefit, Ay,, is shown in Figure

3.8. It is relatively small for the 25% wakes, but becomes important for the 50% wakes.

This benefit is due to a reduction of the non-uniform velocity in the wake. The magnitude of

Aym can be captured well by a simplified kinematic model of wake transport and recovery

(dashed line in Figure 3.8), derived in §J.2.
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Figure 3.7. Increase in time-averaged stator passage loss Ayp for various states of a baseline rotor
wake (4 = 0.45, k = 0.65, Re, = 3 x 105). Circles+solid line: Navier-Stokes simulations+linear
regression. Crosses+dash line: boundary layer distortion model+linear regression.

0.6

0.5

0.4

0.3

0.2

0 1
10 20 30 40 50 60 70

Inlet wake velocity defect in the relative frame (%)

50

45

-(n 4040

35

o 30

25
C

- 20
o

C 15

M 10

5

0'

Figure 3.8. Mixing loss benefit from wake processing AYm for various states of a baseline rotor

wake (0 = 0.45, 0 = 0.65, Re, = 3 x 105). Circles+solid line: Navier-Stokes simulations+quadratic
regression. Crosses+dash line: Transport model+quadratic regression.
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In the range of wake defects surveyed, the benefit from wake recovery AYm outweighs the

passage loss increase AYp. Consequently, the net effect of wakes on loss, Y" = Yp + Y,, is

beneficial. The net benefit depends on the degree to which the wake is mixed out, as shown

in Figure 3.9. Three observations can be made from this figure.

* The 25% baseline wake has a negligible net effect on loss (- 0.1 efficiency points). This
wake is representative of interaction at design point axial spacing (0.37 chords) for the
selected geometry. A steady-state approximation of rotor-stator interaction, where the
wakes are mixed prior to entering the stator, is adequate in this case.

* For 50-60% wakes (axial spacing of 0.07 chords), wake interaction has a noticeable net
effect on stator loss (- 0.3 efficiency points). This value represents only a fraction of
the one efficiency point gain observed by Smith (1970) for a similar reduction in blade
row separation, and confirms recent estimates of the effect of wakes (Smith, 1996).

* If the increase in passage loss can be mitigated somehow, only the mixing loss benefit
shown in Figure 3.8 would remain (0.2 pts efficiency gain at baseline spacing, 0.5 pts
efficiency at close spacing).
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Figure 3.9. Net effect of wake processing (Ayp + AYm) for various states of a base-
line rotor wake (4 = 0.45, 0 = 0.65, Re, = 2.5105). Circles+solid line: Navier-Stokes
simulations+quadratic regression. Crosses+dash line: Models (§J.2-J.3)+quadratic re-
gression.
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3.3. Causal Mechanisms for the Changes in Performance.

3.3.1. Reversible recovery.

Figure 3.10 shows instantaneous velocity profiles in the blade-to-blade direction on the

leading and trailing edge planes respectively. It is apparent that the wakes are strongly

attenuated during their transport through the stator in terms of velocity and thickness. This

is the principal cause for the mixing loss benefit AYm.
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Figure 3.10. Instantaneous tangential velocity distribution on a crossflow "plane" at
the leading (left) and trailing (right) edges. The
artifact from wake turning. Baseline 25% wakes.

presence of two wakes at the exit is an

In principle, wake attenuation is the result of two processes: reversible recovery (Smith

1966) and irreversible mixing. Only the first process is beneficial. What fraction of the wake

energy is recovered has been so far an open question. Our results indicate that virtually

all of the wake energy is recovered. This finding can be explained by noting that recovery

generally occurs over a shorter lengthscale than wake turbulent diffusion.

Recovery lengthscales. A simplified kinematic model of reversible recovery has been

developed in Appendix J to determine recovery lengthscales. The model assumes inviscid

flow and embodies the mechanism proposed by Smith (1966). The exact expression for

mixing loss benefit is rather lengthy, but it can be approximated in the following manner:
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where AY i is the mixing loss of the wake at the inlet, and a, is an attenuation factor (given

by the stretching of the wake segments Li/Le). This model is in accordance with recent work

by Adamczyk (1994), and captures well the computed mixing loss benefit (Figure 3.8).

Algebraically, the attenuation a, is a function of the flow angles, wake ingestion angle

and solidity (§(J.2.3)). Physically, a, is mainly a function of the flow turning in the passage.

This is shown in Figure 3.11. This figure indicates that, for a typical stator, most of the

wake energy is recovered over a distance of 0.25 to 0.33 chords. For instance, in the present

stator the flow turns by 10 degrees over the first 0.2 chords. According to Figure 3.11,

about one-half of the wake energy is recovered in this distance.
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Figure 3.11. The fraction of wake energy AYm/Y 2,i recovered in inviscid flow is mainly
a function of the flow turning in the stator. Flow turning is representative of the axial
distance traveled by the flow. Most of the wake energy is recovered in the front part of
the stator. For this figure, the wake is kept perpendicular to the blade (ti = 8i).

Diffusion lengthscales. The distance required to dissipate the wake energy by means

of turbulent diffusion alone, depends primarily on the velocity defect in the wake. For wakes

in the asymptotic stage (Abramovich 1965, Schlichting 1968), this distance may be several

times the blade chord. For wakes at a typical distance behind the rotor (e.g. 25% baseline

wake), this distance appears to be of the order of the blade chord (based on Carta et al.

1991 data). In this case, most of the wake energy is recovered over a shorter distance in the

front part of the stator, and turbulent diffusion is not an important loss mechanism. This is

indicated by the good agreement between the inviscid recovery model and the Navier-Stokes

results in Figure 3.8 for wake defects of 35% and less.
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Even for strong wakes, the inviscid model predicts a recovery benefit that is fairly close to

the Navier-Stokes results. For such wakes, energy diffusion lengthscales may be initially as

short as those associated with reversible recovery. However, mixing scales are very sensitive

to the wake defect, while recovery scales are not. Reversible recovery attenuates the wake

defect quite rapidly, and thus outcompetes turbulent diffusion for the energy in the wake.

For this reason, wake diffusion is not a significant loss mechanism over the range of wake

defects considered (12-65%). Most of the wake energy is recovered without a significant

increase in entropy. As shown below, boundary layer response is the leading cause for the

observed passage loss increase.

3.3.2. Boundary layer response.

Regions of increased passage loss can be identified by examining the time-averaged total

pressure difference (ACt) in Figure 3.12. This quantity is practically equivalent to the time

and mass-averaged total pressure flux (AuCt) used to compute loss. Figure 3.12 shows two

features. First, two regions of high and low ACt respectively develop in the aft part of the

passage. Second, there is a thin band of significant low-ACt over the suction surface. This

band coincides with the trajectory of the BLDs described in §3.2.
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Figure 3.12. Isocontours of time-averaged total pressure difference ACt between un-

steady and reference steady flows. Note high-loss band over the suction surface of the

stator. Baseline 25% wakes.
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Figure 3.13 shows that these total pressure changes are due to the redistribution of

passage vorticity on a time-averaged basis, denoted symbolically by Aw,. The connection

between ACt and vorticity redistribution is embodied by the following form of the Navier-

Stokes equations, derived in §1I.7:

O9AC,
O -2UAw (3.08)On

Figure 3.13 also shows that the largest passage loss changes occur over the suction

surface of the stator. It was established in §3.1, that the vorticity fluctuations in this

region are due to the distortion of the boundary layer vortical filaments by the "jet" velocity

associated with the upstream wakes.
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Figure 3.13. Comparison between B (solid line) and -2U, Aw (dashed line) from
the Navier-Stokes results at two different axial locations. Total pressure changes are due
to redistribution of vorticity. Baseline 25% wakes.

In physical terms, the "suction" effect of the wake "jet" transports high-entropy boundary

layer fluid from near the wall towards regions of higher mass flux. Mass-averaged entropy

flux thus increases, and so do the time-averaged passage losses. This process is essentially

convective in nature. Its effect on loss can be captured by a relatively simple model, based

on vorticity dynamics, and derived in §J.3:

6 jTE dYps 2AV,

CDUE de e cos 01
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This model states that the time-average increase in passage loss under the effect of a "jet"

disturbance is depends on the base flow passage loss Yp,,, and is proportional to the time-

average transverse velocity disturbance AV, at the edge of the boundary layer. The latter

is roughly proportional to the wake displacement thickness at the inlet of the stator and

to the wake reduced frequency. As Figure 3.7 shows, the model compares reasonably well

with the Navier-Stokes simulations and captures the linear trend in the CFD results. This

model, along with the mechanistic understanding of passage loss increase, shall prove useful

in describing the effects of tip leakage vortices later on.

3.3.3. Performance of the stator as a diffuser.

The ability of the stator to convert kinetic energy to static pressure is measured by the

pressure coefficient II derived in §2.3. Upstream wakes cause this coefficient to increase by

an amount AIll, shown in Figure 3.14. The increase is modest, and is due principally

an augmentation of the loading on the leading edge. This augmentation, shown in Figure

3.15, is a time-averaged effect of the pressure pulses on the leading edge described at the

beginning of the chapter.
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Figure 3.14. Increase in stator pressure coefficient relative to pre-mixed steady flow
assumption. (0 = 0.45, ip = 0.65, Re, = 3 x 105).
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Figure 3.15. Time-average blade surface distribution of static pressure change relative
to pre-mixed flow (ACp, dash line) and shear stress change (vAw x n, solid line). Baseline
wakes.

3.4. Effect of Fluctuations Within the Wakes.

So far, the wake properties were held constant in time. This is equivalent to "ensemble-

averaging" the wakes prior to interaction with the stator. Experimental data shows however

the presence of velocity fluctuations within compressor wakes. These fluctuations may be

a substantial fraction of the wake velocity defect, and occur at a scale comparable to the

wake thickness (Waitz 1996, Brookfield 1996). It is thought they are due to discrete vortical

structures in the wake (Gertz 1988,Kotidis and Epstein 1991).

A second series of computational experiments addresses the role of such fluctuations on

rotor-stator interaction. Two specific questions are addressed: (1) are the two mechanisms

identified of §3.2 still valid in the presence of a time-varying wake velocity defect; and (2)

what is the effect on performance relative to the "ensemble-averaged" case?

The wakes used for this purpose share the same "ensemble-averaged" profile and proper-

ties (33% wake relative defect, 0.15 chords thickness at mid-gap, axial gap of 0.2 chords). For

each wake, the defect is sinusoidally varied in time with an amplitude equal to the "ensemble-

averaged" value, and with an a time period Ti ranging between 1/7 and 2.0 times the blade

passing period Tp. The choice of amplitude is representative of fluctuations seen near the

rotor trailing edge (Brookfield 1996). The ratio lT/Tp takes fractional values ensuring that

a fixed point on the blade does not experience the same disturbance at every interaction.
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Small Z/T ratios (1/7-3/7) constitute a simplified representation of measured wake fluctu-

ations (Kotidis and Epstein 1991, Brookfield 1996). Large ratios (4/3-2) are meant to be

representative of fluctuations in the tip vortex seen by Graf (1996).

3.4.1. Unsteady flow features.

Figures 3.16a-d illustrate the vortical structure of the unsteady flowfield for Z/T

(wake fluctuation timescale/interaction timescale) increasing from 1/5 to 2. This parameter

influences the dynamics of the wake during its transport through the stator. Three regimes

can be distinguished : low-frequency (/ p _ 1.3) intermediate-frequency (1/5 < T/ <

1.3) and high frequency (T/Tp _ 1/5) fluctuations.

For high-frequency fluctuations, the individual vortices comprising the wake appear to

coalesce into a steady wake, that is transported through the stator much in the same way as

described above (Figure 3.16a). For low-frequency fluctuations, the lengthscale over which

wake properties vary is larger than the blade-to-blade spacing, and the individual wake seg-

ments are also transported as described above (Figure 3.16d). For intermediate frequen-

cies however, the wake fluid forms passage vortices that persist far downstream (Figures

3.16b,c). Boundary layer disturbances (BLDs), similar to those seen with ensemble-averaged

wakes, are present over the suction surface for all frequencies.

3.4.2. Effect of wake fluctuations on loss.

Figure 3.17 shows the net loss change for the stator in the presence of fluctuating wakes,

and compares it to that obtained for an ensemble-averaged wake. It is apparent that the

timescale ratio parameter T/Tp has an important effect on the amount of benefit to be

expected from wake interaction.

In the low-frequency regime (T/iT > 1.3), fluctuating and ensemble-averaged wakes have

basically the same impact on loss. This is because the lengthscale over which wake properties

vary is larger than the local scales over which the mechanisms identified in §3.3 operate.

In the high-frequency regime (/T2, _ 1.3), fluctuating and ensemble-averaged wakes

also have similar effects on loss, although the latter produce somewhat higher benefit. This

is due to the coalescence of small vortices seen in Figure 3.16a, which effectively smooths

out variations along the wake. However, there is some loss associated with the coalescence,

which slightly reduces the benefit from interaction.
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Figure 3.16a(top)/3.16b(bottom). Instantaneous contours of disturbance vorticity in a calcu-

lation with time-varying wake defect. Top: /Tp=1/5. Bottom: T/Tp=2/5.
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In the intermediate-frequency regime (1/5 < T/iT < 1.3), fluctuating wakes have a

different effect from that of ensemble-averaged wakes. In this regime, wake interaction is

detrimental for stator performance albeit by a small amount. This is due to the formation of

passage vortices (Figures 3.16b,c), which prevent recovery of the wake energy. As Figure

3.18 shows, in this frequency range, the wakes leave the stator while retaining a substantial

part of their kinetic energy.

3.4.3. Static pressure fluctuations.

Static pressure fluctuations associated with wake interaction are important in engine

noise. The present simulations indicate that ensemble-averaged and fluctuating wakes result

in different patterns of static pressure fluctuations. The differences can be appreciated by

comparing Figure 3.19a (steady-defect wakes) to Figure 3.19b (fluctuating-defect wakes

with the same ensemble-average).

The first difference is associated with the break-up of the wakes into discrete vortices,

discussed above. Every vortex core carries a region of low static pressure. Such low static

pressure regions are present throughout the stator passage in Figure 3.19b.

The second difference appears to be associated with the timing of velocity fluctuations on

the blade surface. As shown in Figure 3.19a, steady-defect wakes result in a regular train

of static pressure fluctuations along the blade surface. These fluctuations have a precise and

relatively simple periodicity (Valkov, 1992). On the other hand, fluctuating-defect wakes for

which p is not an integer multiple of T, are associated with increased irregularity of the

blade surface static pressure disturbances.
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3.5. Summary.

The foregoing computational experiments addressed three issues that had been previously

unresolved with regard to wake-stator interaction: (1) the role of non-transitional boundary

layer response for loss, (2) the importance of wake recovery in the presence of mixing, and

(3) the effect of wake fluctuations.

* There are two opposing mechanisms by which ensemble-averaged wakes influence per-

formance : reversible recovery and boundary layer distortion. In a stage geometry

such as the GE/LSRC, the benefit from reversible recovery is relatively small at typ-

ical axial spacings (-0.1-0.2 efficiency pts, 25% wakes), but becomes significant with

tightly-coupled blade rows (-0.5 efficiency pts, 50% wakes). The recovery occurs in the

manner proposed by Smith (1966). Almost all of the kinetic energy of the ensemble-

averaged wakes is recovered.

* Boundary layer distortion leads to an increase in passage loss that partly reduces the

benefit from reversible recovery. In the LSRC geometry, this loss increase is relatively

small at typical axial spacings (-0.1 efficiency pts, 25% wakes), but becomes non-

negligible with tightly-coupled blade rows (-0.25 pts, 50% wakes). The loss increase

is due to "lifting" of high-loss boundary layer vortical fluid into regions of higher mass

flow by the "suction" effect of the wakes. A kinematic model of boundary layer vortical

filament displacement can capture reasonably well the amount of increase, and shows

that it is depends on the steady loss and on the wake displacement thickness.

* For the present stator, the recovery benefit is larger than the passage loss increase. As a

result, there is a small net benefit from wake interaction at typical axial spacings (-0.1

efficiency pts, 25% wakes), and a moderate benefit with tightly-coupled blade rows

(-0.3 pts, 50% wakes). Mixing-plane steady-state approximations to wake interaction

are thus adequate (at least for the LSRC geometry employed). Only about 0.25 points

of the 1 point efficiency gain observed by Smith (1970) in the LSRC can be attributed

to rotor wake-stator interaction alone.

* The level of benefit from wake recovery depends on the frequency of fluctuations in

the wake, expressed as a timescale ratio 7/Tn between fluctuation period T and blade

passing period T,. There is an interval of T/Tp where the wake forms discrete vortices

and no recovery occurs. Outside this interval, wake interaction is beneficial and can

be captured using an ensemble-averaged form of the wakes. Experimentally observed

values of T/il, appear to be between 1/8 and 1/3. This range partly overlaps with the

interval where recovery does not occur.

Representativeness. Two external factors affect the degree to which the above results

can be considered indicative of wake interaction in an actual stage. The first is the use of a

turbulence model. In this regard, the flow mechanisms having a practical impact on stator

performance (boundary layer distortion and reversible wake attenuation) are convection or
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pressure-driven. Turbulent viscosity does not appear to play a substantial role in these

mechanisms.

The second factor is the assumption of two-dimensional flow. In practice, wakes may

contain a spanwise velocity component (Prato and Lakshminarayana, 1993). The wake fluid

migrates radially (Kotidis and Epstein, 1991). Blade geometry and flow conditions may be

such that wake interception by the stator occurs at different times depending on spanwise

location. However, the mechanisms identified here occur on a local basis, and are thus

unlikely to be radically different in a three-dimensional situation. This is supported by direct

3D Navier-Stokes simulations of wake-stator interaction at low Reynolds number (2000).

In these computations, the unsteady flow over the middle two-thirds of the span is funda-

mentally similar to that in the 2D case. In the outer 15-20% of span though, the wakes distort

and develop a core of streamwise vorticity. This can be attributed to differential convection

of wake fluid within the endwall boundary layer, which tilts the wake vortex filaments away

from the spanwise direction. Upstream tip leakage vortices are however the dominant forms

of disturbance in this part of the span (e.g. Wisler, 1985). The three-dimensional unsteady

flows associated with these vortices are the subject of the next three chapters.
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Chapter 4

Inviscid 3D
Vortex/Stator Interaction

This chapter examines the unsteady flow and performance changes arising from the inter-

action between upstream vortices and a stator cascade with an inviscid base flow at design

point flow coefficient. Two calculations, each using a different vortex, are carried out

* ID/SW. Interaction with an upstream streamwise vortex (SW) with a core radius of

15 percent span and a circulation of 0.5cU,. The results are described in the first half

of this chapter (§4.1-4.2).

* ID/TL. Interaction with a tip leakage (TL) vortex, based on Khalid's (1995) computed

flowfield at the exit of an isolated LSRC rotor at design loading and 3% tip clearance.

The results are described in the second half of the chapter (§4.3-4.4).

Denton (1993) pointed out that the transport of streamwise vortices through a cascade

has a deleterious effect on performance. The primary purpose of the present calculations is

to determine whether this applies to rotor tip leakage vortices as well.

The unsteady flows are obtained by means of a slip-free disturbance formulation about

an inviscid stator base flow (cf. §F.4). The turbulent diffusion term has been retained in the

disturbance flow (F.09). In this manner, the vortices are allowed to mix out while interacting

in a setting that is free of boundary layers. This approach (1) allows to determine how much

of the tip vortex energy is recovered in the presence of mixing; and (2) provides a basis

against which subsequent viscous results can be compared to reveal the effects of boundary

layer response.
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4.1. Case ID/SW: Features of the Unsteady Flow.

4.1.1. Transport of the vortex core.

As shown in Figure 4.1, the SW vortex core is transported across the stator without

significant change in shape. The vortex core is stretched by an amount (Le/LL = 1.7)

consistent with the kinematic transport model originally developed for 2D wakes (§J.2).

According to §J.4.1, the vorticity in the core should be intensified in proportion to this

stretching. Figures 4.2 and 4.3 show however that the peak core vorticity at the TE plane

is less than that at the inlet (by about 15%). This suggests that turbulent diffusion exerts a

noticeable effect during the transport of the SW vortex.
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Figure 4.1. Location of vortical fluid in the stator passage at the moment of vortex
interception. Perspective view of the entire stator passage in the spanwise direction
towards the hub. The SW vortex cores are visible as regions of negative -IAwI.

Figures 4.2 and 4.3 show the vorticity components at successive cross-sections of the

vortex. At the inlet of the stator, the SW vortex core contains virtually no streamwise
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vorticity. This can be explained by the relative orientation between the rotor relative and

stator absolute coordinate systems (cf.§2.5). Further downstream however, a streamwise

vorticity component appears and grows at the expense of the normal component. This is

due to the change in angle between the bulk flow and the vortex core. Another consequence

of the change in angle is the existence of two vortex cores at the exit of the stator. These

are in fact two successive rotor vortices.
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Figure 4.2. Isocontours of normal vorticity on successive crossflow planes, anchored at
the axial locations indicated (LE at x=0, TE at x=1). Only the outer quarter of span
is shown, since no significant vorticity is present below. Two stator passages are shown.
The vortex cores are visible as regions of positive Aw,. Shed vorticity is also visible on
the cross-section at the bottom, as a band of positive Aw, along the trailing edge.

Besides the SW vortex core, the only other vortical feature of significance is the shedding

of spanwise and trailing streamwise vortices from the trailing edge. These vortices can be

seen at the bottom of Figures 4.2 and 4.3 respectively. Spanwise vortices are shed in

response to time-varying circulation about the blade sections. Losses associated with such

2D vortex shedding were investigated by Fritsch (1992) and found to be negligible.
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Figure 4.3. Isocontours of streamwise vorticity on successive crossflow planes, anchored
at the axial locations indicated (LE at x=0, TE at x=1). Only the outer quarter of span
is shown, since no significant vorticity is present below. Two stator passages are shown.
The vortex cores are visible as regions of positive Aw,. Shed vorticity is also visible on
the cross-section at the bottom, as a band of negative Aw, along the trailing edge.

Streamwise vortices are shed in response to spanwise variation of blade circulation. In

the present case, the circulation around these vortices is 0.16Uc, which is significant when

compared to the circulation around the upstream vortex core itself (0.27Uc). Therefore, the

kinetic energy in the shed streamwise vortices is about one-fourth to one-third that of the

incoming SW vortices. Thus, the contribution of 3D trailing vortices to loss is substantially

larger than that of 2D shed vortices investigated by Fritsch (1992),

The SW vortex core does not exhibit the behavior observed by Graf (1996) for rotor

tip leakage vortices. Graf found that the tip vortex in a full stage moves with a period

between 1.6-1.8 times the blade passing frequency. Herein, the period of motion of all vortical

structures is precisely equal to the rotor blade passing period.
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4.1.2. Pressure fluctuations.

SW vortex interaction leads to a distinctive pattern of static pressure fluctuations in the

passage and on the blade surface, characterized by (1) a leading edge pressure pulse, and (2)

a train of "tornado-like" regions of low-P, sweeping over the blade surface. These are shown

in Figure 4.4.

The pressure pulse appears near the casing at the moment of vortex interception. It can

be attributed to the local disturbance velocity component normal to the blade. The time-

averaged effect of this pulse is to unload the leading edge over the outer 15-20% span. The

train of low-P, regions sweeping the blade is a reflection of the low static pressure in the SW

vortex core (the core is maintained in equilibrium by a static pressure gradient balancing the

centrifugal forces associated with vortex swirl).
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Figure 4.4. Disturbance static pressure contours and disturbance velocity vectors on the
blade suction (top) and pressure (bottom) surfaces at the moment of wake interception.
The LE pressure pulse and the "tornado" disturbances sweeping the surface are visible.

4.1.3. Validation of the free-slip conditions.

Free-slip boundary conditions have been imposed with the purpose of preventing the

disturbance from "adhering" to the solid surfaces, and producing vorticity there. Figure

4.5 suggests that this has been achieved to an adequate degree in the computed solution. The

average RMS spanwise vorticity on the blade surface (excluding interelement boundaries) is



Chapter 4. Inviscid Vortex Interaction

0.523U/c. This low value indicates that the disturbance flow is slip-free from a practical

standpoint. Similar verification (not shown) has been carried out on the endwalls.
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Figure 4.5. Disturbance velocity vectors and spanwise vorticity isocontours in the 91%
span blade-to-blade plane, showing that the disturbance flow is slip-free.

A moderate amounts of aliasing noise is present in the vorticity fields shown above. The

origin of the noise lies in slight C' discontinuities between spectral elements in the blade-to-

blade plane (cf. §C.4). In the present case, these discontinuities may become apparent upon

differentiation of the flowfield at the inter-element boundaries, However, they are too weak

to affect losses, velocity and total pressure fields.

4.2. Case ID/SW: Time-Average Performance Changes.

Table 4.1 shows the change in performance due to SW vortex interaction in the present

inviscid context. The figures of merit chosen to quantify the change are described in §2.1.

Overall, SW vortex interaction is detrimental for the stator performance, increasing the net

loss by about 0.2 efficiency points. Approximately two-thirds of this loss increase is associated

with the increase in secondary kinetic energy of the unsteady flow leaving the stator. The

other third is due to mixing of the vortex.
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Table 4.1. Change in time-average stator performance for case ID/SW
relative to the pre-mixed steady flow. Beneficial changes (leading to increased
efficiency) are shown as positive quantities.

The increase in secondary kinetic energy of the unsteady flow leaving the stator is as-

sociated with (a) stretching of the SW vortex cores and (b) shedding of trailing vorticity

from the TE of the stator blade. Vortex stretching is the dominant mechanism leading to

performance deterioration. Figure 4.6 shows how vortex stretching in the stator causes the

mixing loss of the vortex to increase.

x 103

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Axial position, chord units

Figure 4.6. Approximate time-average secondary kinetic energy E of the unsteady flow
at different axial locations. Mixing of the vortices causes E to decrease (x<0.2 or x>1),
stretching causes E to increase (0.2<x<1) (LE at x=0, TE at x=1, vertical axis shows
constant-area mixing loss coefficient).

Processing of SW vortices also decreases the static pressure recovery coefficient lIn by

about 3 percent. As shown in §2.3, this coefficient is directly determined by the axial force

Change Change Change (% of
Figure of Merit (At/Q) (efficiency pts) steady value)

Passage loss AYp -0.0011 -0.07 -3.8

-0.0023 -0.15 -7.8
(AY = 0.0038)

Net loss change

Ay, = Ayp + Aym -0.0034 -0.22 -11.6
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on the stator blade. This force decreases because the pressure pulses from vortex interception

(cf. §4.3.3) decrease the leading edge loading on a time-averaged basis.

4.3. Case ID/TL: Features of the Unsteady Flow.

4.3.1. Unsteady velocity field.

The velocity disturbance associated with the tip leakage vortex is quite different from

that of the streamwise vortex above. At the inlet of the stator, the tip leakage (TL) vortex

appears as a core of axial velocity deficit and tangential velocity excess, shown in Figure

4.7. In this sense, the incoming disturbance resembles a thick wake limited to the outer 15%

of span. Therefore, the TL vortex appears to the stator as a jet of fluid directed away from

the suction surface towards the pressure surface. The overall shape of the jet changes little

in time. The most significant aspects of the vortex transport appear to be (a) attenuation
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Figure 4.7. Disturbance axial velocity isocontours and disturbance crossflow velocity
vectors on successive crossflow planes, anchored at the axial locations indicated (LE at
x=0, TE at x=1). Only the outer third of span is shown, as no significant features are
present below. More than one vortex core may be present at the exit, owing to change
in the vortex tile angle 7..
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of the core velocity non-uniformity, and (b) migration of vortical fluid towards the pressure

surface. Both aspects can be appreciated in Figure 4.8, which emphasizes the wake-like

nature of the unsteady flow in the passage. The attenuation mechanisms shall be discussed

in the next section. Figure 4.8 shows that the peak velocity disturbance in the vortex is

attenuated by a factor of three between the inlet and the exit of the stator. This attenuation

is somewhat higher than that of wakes, and indicates that some recovery of the vortex energy

is taking place.
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Figure 4.8. Disturbance axial velocity isocontours and disturbance velocity vectors on
the blade-to-blade plane at 91% span (passing approximately through the TL vortex
core). The velocity field associated with the tip leakage vortex is similar to that of a
wake (cf.Figure 3.1).

The migration of vortical fluid is due to the excess tangential velocity of the jet in the

stator frame. This excess is equal to 0.38Uo, at the inlet of the stator. The physical meaning

of this value is that for every 0.1 distance units traveled, the SS "end" of the TL vortex

should migrate by 0.038 distance units towards the pressure side.

4.3.2. Structure and recovery of the vortex.

The vortical structure of the tip vortex follows from its appearance as a three-dimensional
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jet, noted above. Figures 4.9 and 4.10 show respectively the normal and streamwise com-

ponents of the vortex. At the inlet, the normal vorticity component is similar to that of

a wake, while the streamwise vorticity component appears as two opposite-sign layers near

the casing. Given that the base flow is inviscid and uniform in the spanwise direction, this

structure is transported without much distortion.

To help understand how the vortex is attenuated, it is useful to consider the normal and

streamwise vortical components separately. The disturbance velocity associated with the

normal vorticity component is attenuated in essentially the same manner as a wake (i.e. in

proportionality to stretching of the vortex, cf. §3.3). The disturbance velocity associated

with the streamwise vorticity component is attenuated in a different manner, illustrated

schematically in Figure 4.11. The slowing of the flow in the stator leads to "shortening"

of the streamwise vortex filaments. This leads to attenuation of the streamwise vorticity

component itself. An analogy to a line vortex going through a diffuser, indicates that the

attenuation of streamwise vorticity is proportional to the vortex stretching Li/Le (cf. §J.4.2).

From a quantitative standpoint, this analogy means that the recovery of the tip vortex

scales in the same manner as that of wakes (3.04). This is an important finding, implying

that (1) transport of tip vortices is beneficial; and (2) most of the kinetic energy of the vortex

can be recovered in the stator. These implications shall be developed further in §4.4, where

the contribution of turbulent diffusion to loss is also considered.

The attenuation of streamwise vorticity is the most notable aspect of the unsteady vortical

flow in the ID/TL case. As shown in Figures 4.12a-b the vortex is simply and cleanly cut

by the blade. In itself, this is useful because it will help identify vortical features associated

with boundary layer response in the fully-viscous calculations of Chapter 5. The period of

motion of all vortical features is precisely equal to the rotor blade passing period.

The SW vortices in §4.1-§4.2, appear as "tornado-like" disturbances sweeping the surface

of the blade. On the other hand, TL vortices appear as 3D jets of fluid directed towards the

pressure side of the stator. Both are convected by the base flow without significant distortion,

and are cleanly "chopped" in segments by the blades.
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Figure 4.9. Spanwise component of the disturbance normal vorticity, k • A,,, on
successive crossflow planes, anchored at the axial locations indicated (LE at x=0, TE
at x=1). The reasons for showing k Aw,,, instead of IAw,, are as follows: (a) it is a
signed scalar, (b) it is pertinent to the wake-like nature of the flow under consideration.
Instant of vortex interception (t = to), outer one-third of span.
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Figure 4.10. Disturbance streamwise vorticity contours on successive crossflow planes,
anchored at the axial locations indicated (LE at x=O, TE at x=1). Instant of vortex
interception (t = to). Only the outer one-third of span is shown.
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Figure 4.11. Schematic model of recovery associated with the absolute streamwise
vorticity component in the incoming tip vortex.
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Figure 4.12a (top)/4.12b (bottom). Top: Spanwise component of the disturbance normal

vorticity k -Aw,, on the 91% span blade-to-blade plane shortly after interception (t = to + 0.25T).

Bottom: disturbance streamwise vorticity at the same location and time. The plane chosen passes

approximately through the center of the vortex, which is cleanly cut by the blade.
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4.3.3. Pressure fluctuations.

The upstream tip vortex induces a pattern of static pressure fluctuations that is confined

over the outer 15-25% of the span and that is similar to that seen for 2D wakes. This pattern is

characterized by a positive pressure pulse on the leading edge PS, and by a negative pressure

pulse on the leading edge SS, at the time of vortex interception. Figure 4.13 shows the

unsteady static pressure field at this time. The peak value of the disturbance static pressure

at the location shown (0.84 dynamic heads) matches that from the 2D impingement model

in §3.1 (0.93 dynamic heads, using a local jet velocity of 0.38 units). The net effect of the

pulses is to increase the blade loading in the leading edge region of the tip of the stator.
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Figure 4.13. Disturbance static pressure contours near the leading edge at the moment
of vortex interception. Location: 91% span blade-to-blade plane (passing approximately
through the TL vortex core). Low and high Cp regions and jet impingement are clearly
visible. Compare to Figure 3.1.

4.4. Case ID/TL: Time-Average Performance Changes.

Table 4.2 shows the change in performance due to TL vortex interaction in the present

inviscid context. Overall, TL vortex interaction is beneficial for stator performance. The gain

in efficiency is about 0.25 points relative to the mixing-plane steady flow approximation.
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Change Change Change (% of
Figure of Merit (APt/Q) (efficiency pts) steady value)

Passage loss Ayp -0.0010 -0.06 -3.3

AYm = AYe - +0.0043 +0.28 +14.5
(AY, = 0.0049)

Net loss change

AYn = Ayp + AYm +0.0044 +0.22 +11.0

Table 4.2. Change in time-average stator performance for case ID/TL rel-
ative to the pre-mixed steady flow. Beneficial changes (leading to increased
efficiency) are shown as positive quantities.

This gain is due to the reversible recovery of energy in the vortex jet, which scales in the

same manner as that of a 2D wake (despite the uniquely three-dimensional aspects discussed

in §4.3.2). Since turbulent diffusion is retained in the core flow, the value of Ayp (first

line of Table 4.2) represents the contribution to loss from mixing of the tip vortex within

the stator. This contribution is not important. Most of the kinetic energy of the vortex is

recovered without an increase of entropy. This can be explained by the argument developed
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Figure 4.14. Top: Time-averaged disturbance total pressure ACt and disturbance
crossflow Ai on the inlet and exit plane respectively (LE:x=0,TE:x=1). Note segregation
of low-Pt vortical fluid.
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for 2D wakes - recovery occurs over shorter lengthscales than turbulent diffusion.

There is one aspect of tip vortex interaction that cannot be directly appreciated from

the time-resolved data. Time-averaging of Pt fluctuations at the inlet of the stator yields a

distribution that is nearly uniform circumferentially. However, as shown in Figure 4.14, a

core of low-Pt fluid appears in the pressure side casing corner at the exit of the stator. This

"segregation" of total pressure correlates to within a few percent with the time-averaged

redistribution of normal vorticity, and is the result of tangential migration of vortex fluid.

This redistribution of total pressure in the flow constitutes a three-dimensional equivalent to

Kerrebrock and Mikolajczak (1970) total temperature segregation of rotor wakes. It is not

however a source of loss by itself, as the first line in Table 4.2 shows.

4.5. Inviscid Vortex-Stator Interaction: Summary.

Two computational experiments are carried out, in which upstream TL and SW vortex

disturbances propagate in an inviscid steady base flow without adhering to the solid surfaces.

Turbulent mixing of the disturbances is retained however. This approach allows to determine

the effect of vortex core transport on loss in the presence of turbulent diffusion. It was found

that the effects of SW and TL vortices are markedly different:

* Most of the TL vortex energy is recovered in the stator without an increase in entropy.
In the ID/TL case, this yields a 0.25 point efficiency enhancement with respect to the
mixed-out steady flow approximation.

* On the other hand, transport of SW vortices is detrimental for stator performance. (by
0.20 efficiency points for the ID/SW case).

* Recovery of the TL vortex energy is due to stretching of the TL vortex. The recovery
process is three-dimensional in nature (it involves compression of streamwise vortical
filaments) but happens to scale in the same way as 2D wake recovery. Thus, recovery
of wakes and tip vortices can be described in 2D terms. Turbulent diffusion of wakes
and tip vortices is far less important for loss than previously thought (resulting in a
loss of 0.06 efficiency points in the ID/TL case). This is because recovery lengthscales
are shorter than diffusion lengthscales, and independent of the velocity non-uniformity.

* Stretching of the SW vortex core is the primary reason for efficiency degradation in
the ID/SW case. This is in accordance with Denton (1993). While unsteady vortex
shedding might not be important in a 2D flow (Fritsch 1992), this is not the case for
the present 3D flow. In the ID/SW case, shedding of streamwise vorticity from the TE
of the blades is a noticeable source of loss.

The next chapter considers how these conclusions hold in fully viscous flow. In particular,

the role of vortical structures arising from boundary layer response shall be examined.
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Chapter 5

Viscous 3D

Vortex/Stator Interaction

This chapter examines the unsteady flow and performance changes in a stator cascade sub-

jected to the following two types of upstream vortices at design point loading and Reynolds

number (Figure A.1, 0=0.45, Re=3.10 5):

* Nominal tip leakage (TL) vortex, based on Khalid's (1995) computed flowfield at the

exit of a single LSRC rotor at design loading and 3% tip clearance. This computational

experiment is designated as case VD/TL. The results are discussed in §5.1-5.2.

* Simple streamwise vortex (SW) with a core radius of 12 percent span and a circulation

of 0.5cU,. in the rotor frame. This computational experiment is designated as case

VD/SW. The computed results are discussed in §5.3

The difference between the computational experiments in this chapter, and their ID/TL

and ID/SW counterparts in Chapter 4, is the presence of boundary layers. A back-to-

back comparison with ID/TL and ID/SW shall be used to show (a) how vortex transport is

affected by the presence of boundary layers, (b) how the boundary layer responds to vortices

and (c) what the effects on stator performance are at design point conditions.

5.1. Case VD/TL: Features of the Unsteady Flow.

This section focuses on the vortical features of the unsteady flow. The pressure fluctua-

tions induced by the upstream tip leakage vortex are similar in nature and amplitude to those

seen in the "inviscid" ID/TL (cf. §4.3), and appear primarily as an instantaneous increase

of the loading on the leading edge in the stator tip region upon vortex interception. This
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confirms that the unsteady pressure fields are in large extent a potential flow effect from the

interference between the blade and the upstream velocity disturbances.

5.1.1. Structure and attenuation of vortex cores.

In viscous flow, the vortex core velocity non-uniformity is still strongly attenuated in

the stator. There are two differences with respect to the inviscid ID/TL case however: (1)

distortion of the vortex core and (2) more pronounced migration. Both can be attributed to

the presence of an endwall boundary layer in the base flow.

Distortion. Vortex core "filaments" closer to the casing are convected at a slower rate

than those away from it. This leads to "skewing" of the TL vortex core in the crossflow

plane, illustrated in Figure 5.1. Albeit interesting, this "skewing" does not appear to be

important as far as vortex energy recovery is concerned (cf. §5.2). It is to be noted that all

vortical structures in the flow move with a period equal to the rotor blade passing period.
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Figure 5.1. Disturbance streamwise vorticity isocontours at t = to. Crossflow planes are
selected to avoid intersection with BLDs (to give a clearer image of the core structure).
A comparison with Figure 4.10 shows skewing of the TL vortex core.
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Vortex migration can be appreciated by comparing Figure 5.2 to Figure 4.8. The

same representation of the tip vortex is used in the ID/TL and VD/TL cases. However, at

the spanwise location shown in Figure 5.2, the base flow velocity in case VD/TL is about

25% less than in case ID/TL. Therefore, the vortex fluid in case VD/TL migrates closer to

the pressure surface for the same distance traveled.
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Figure 5.2. Disturbance axial velocity contours in the 91% span blade-to-blade plane.
This plane passes though the vortex core and is immersed in the endwall boundary layer.

5.1.2. Non-transitional boundary layer response.

The interaction between the tip leakage vortex and the boundary layers results in vortical

disturbances not seen in the inviscid case. These disturbances originate on the leading edge

at the time of vortex interception, and are located in the tip region of the stator blade

(-75%-95% span). Each disturbance has normal as well as streamwise vorticity components.

Each of these will be examined separately.
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Figure 5.3a/5.3b. Spanwise component of the disturbance normal vorticity k. AW and velocity
vectors Au on the 91% span blade-to-blade plane, passing approximately through the center of the
vortex. Similar features are observed between 80-95% span. Outside this range, the flow is virtually
free of vortical fluctuations. Top (a) at time t = to. Bottom (b) at time t = to + 0.25T Compare to
Figure 4.12a.
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Figure 5.3c/5.3d. Spanwise component of the disturbance normal vorticity k • Aw, and velocity
vectors Au on the 91% span blade-to-blade plane. Top (c) at time t = to + 0.50T. Bottom (d) at
time t = to + 0.75T. Compare to Figure 4.12a.
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Figure 5.4a/5.4b. Disturbance streamwise vorticity Aw, levels and velocity vectors Au on the
91% span blade-to-blade plane. Top (a) at time t = to (defined as moment of wake interception).
Bottom (b) at time t = to + 0.25T. Compare top to Figure 4.12b.
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Figure 5.4c/5.4d. Disturbance streamwise vorticity Aw, levels and velocity vectors Au on the
91% span blade-to-blade plane. Top (c) at time t = to + 0.50T. Bottom (d) at time t = to + 0.75T.
Compare top to Figure 4.12b.
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Normal vorticity disturbances are the component of Aw that is perpendicular to the

local flow direction. Figure 1.3 (Appendix I) shows the convention used to decompose the

vorticity vector into streamwise and normal components. Figure 5.3 shows the spanwise

component of the normal vorticity disturbances, k - Awn, at four successive time instants

within one vortex passing period. This is the dominant component of the disturbance normal

vorticity, and the most appropriate one to illustrate the wake-like nature of the flow.

In this context, the disturbances shown in Figure 5.3 are morphologically similar to

the boundary layer distortions (BLDs) seen in two-dimensional calculations with wakes. For

this reason, these disturbances shall be referred to as N-BLDs (short for "normal vorticity

boundary layer disturbances"). N-BLDs are present over both pressure and suction surfaces.

Pressure side N-BLDs remain flattened against the blade surface. Suction side N-BLDs on

the other hand, are more prominent. They are lifted away from the surface, and are convected

in the downstream direction behind the suction side end of the tip vortex. Each N-BLD has

a characteristic vortical structure, that consists of two opposite-sign vortical regions. The

positive region is closer to the blade surface and somewhat smaller than the negative region.

Streamwise vorticity disturbances originate on the suction side leading edge upon

vortex interception. These disturbances are shown in Figure 5.4. They appear as an

elongated core of positive Aw,, transported under the suction side end of the TL vortex.

These disturbances shall be referred to as S-BLD in the following.

5.1.3. Mechanisms for boundary layer response.

From a theoretical standpoint, any change in the vorticity field can lead to a change in

loss (Equation 2.07). In the present case, the foregoing N-BLDs do lead to a noticeable

increase in passage loss (cf. §5.2.1). It is therefore useful to elucidate what mechanisms

are involved in their production. The similarity between N-BLDs and disturbances from 2D

wake calculations, implies that the redistribution of boundary layer vortical filaments is one

such mechanism. This hypothesis shall be verified by comparing the contributions of the

four mechanisms through which disturbance vorticity can appear in the flow (cf. §F.6):

(1) Normal distortion of the base flow boundary layer vortex filaments under the effect of
velocity disturbances associated with wakes and vortices. This mechanism is present
in both 2D and 3D flows, and is represented by the following term:

T1 = (Au V)wl (5.01)

(2) Stretching and tipping of base flow boundary layer vortex filaments by the same velocity
disturbances. Although similar to above, this mechanism exists only in 3D flows, and
is represented by the following term:

T2 = (w - V)Au (5.02)
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(3) Stretching and tipping of vortex filaments present in the upstream disturbances by
the base flow velocity gradients. This mechanism also exists only in 3D flows, and is

represented by the following term:

T3 = (Aw. V)(ui + Au) (5.03)

(4) Diffusion of additional vorticity produced on the solid surfaces and changes in vorticity

diffusion rates due to velocity disturbances from wakes and vortices. This mechanism

is represented by the following term:

T4 . vVxAw + AvVxw, (5.04)

The above hypothesis can be verified by extracting these terms from the unsteady so-

lution, and comparing their magnitude throughout the flowfield. This is done in Figures

5.5-5.8 at the instant of vortex interception. A comparison between these figures indicates

that normal displacement of the base boundary layer vortical filaments (mechanism "1"

above) is the leading cause of disturbance vorticity production from blade-vortex interac-

tion. Tipping and stretching of disturbance vortical "filaments" (mechanism "3" above) is a

close second contributor, while tipping and stretching of base boundary layer vortical lines

(mechanism "2" above) is somewhat less important. At the other extreme, diffusion does

not appear to be a factor in the dynamics of the unsteady vortical features.
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Figure 5.5. Isocontours of IT1I on the 92% span blade-to-blade plane at time to. This quan-
tity represents the rate of disturbance vorticity production by means of normal displacement
of base flow vortical "filaments". Such production occurs near the blade surface (involving
spanwise filaments), and to a lesser extent near the casing (involving endwall BL vortex fil-
aments). A correlation with Figure 5.3 shows this term to be dominant in regions that
produce normal vortical disturbances.
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Figure 5.6. Isocontours of IT2 l on the 92% span blade-to-blade plane at time to. This quantity
represents the rate of disturbance vorticity production by means of tipping and stretching of
base flow vortical "filaments". Compare to Figure 5.5.
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Figure 5.7. Isocontours of IT3s on the 92% span blade-to-blade plane at time to. This quantity
represents the rate of disturbance vorticity production by means of tipping and stretching of

disturbance vortical "filaments". Figure shows that such production occurs at the SS leading
edge, near the PS, and within the TL vortex core. Correlate with Figure 5.3 and compare to
Figure 5.5.
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Figure 5.8. Isocontours of IT4 1 on the 92% span blade-to-blade plane at time to.
This quantity represents disturbance vorticity production by means of diffusion of the
fluctuating shear stresses on the blade surface. Compare to Figure 5.5.

This comparison does not allow to identify which vortical filaments in particular are dis-

torted to give rise to the vortical disturbances. Such information can be however obtained

by comparing the components of T 1 ...T3 in the spanwise and streamwise directions respec-

tively. The comparison in the spanwise direction indicates that N-BLDs are produced by

redistribution of spanwise vortical filaments in the blade boundary layers under the "suc-

tion" effect of the TL vortex "negative jet". This mechanism is essentially the same as in

2D wake interaction. It explains (1) the morphological similarity between 2D and 3D dis-

turbances, and (2) the absence of such disturbances in computations where the base flow is

inviscid (Figure 4.12a). The comparison in the streamwise direction shows that S-BLDs

are produced primarily by tipping of spanwise vortical filaments in the vortex itself by the

velocity gradients in the endwall corner of the base flow.

5.2. Case VD/TL: Time-Average Performance Changes.

Table 5.1 shows the change in performance due to interaction with the tip leakage vortex

at design point conditions. The principal difference with respect to the ID/TL case is that

the passage loss difference between steady and unsteady flow, AYp, increases from 0.0010 to

0.0033 units of APt/Q. This can be seen by comparing Table 5.1 to Table 4.2.

Both ID/TL and VD/TL cases use a turbulent diffusion model to account for mixing of

the disturbances during their transport through the stator. However, they differ because of
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the presence of boundary layers in case VD/TL. Therefore, the additional 0.0023 points of

loss relative to ID/TL is associated with the response of the boundary layer.

Change Change Change (% of
Figure of Merit (APt/Q) (efficiency pts) steady value)

Passage loss Ayp -0.0033 -0.20 -11.0

AYm = AYe +0.0045 +0.29 +15.0
(AY, = 0.0049)

Net loss change

AYn = Ayp + AYm -0.0012 +0.09 +4.0

Table 5.1. Change in time-average stator performance for case VD/TL
relative to the pre-mixed steady flow. Beneficial changes (leading to increased
efficiency) are shown as positive quantities.

As shown in Figure 5.9, the increase in passage loss is confined to the tip region of the

stator (75-95% span). Locally, the increase is rather significant (-30-50%), and warrants a

more detailed analysis of the underlying causes. Howard et al. (1994) have noted a similar

increase in stator tip loss when the tip clearance of the upstream rotor is opened up. From

a qualitative standpoint, their observations supports our results.

The passage loss increase nearly cancels the loss benefit from reversible recovery of the

tip leakage vortex. As a result, there is only about 0.1 efficiency points difference between

the time-averaged unsteady flow and the steady flow obtained by mixing the tip vortex at

the mid-gap axial plane.

5.2.1. Role of boundary layer response.

There is a strong resemblance between tip leakage vortex and 2D wake interaction, noted

above in terms of boundary layer vortical response. The change in time-averaged total

pressure ACt, is also very similar to that due to 2D wakes when examined on blade-to-blade

planes between 80-95% span. This can be appreciated by comparing Figure 5.10 to Figure

3.12. Both figures show the existence of (a) a band of high-loss fluid over the suction side of

the stator, and (b) two wide regions of high and low-loss fluid that progressively develop in

the middle of the passage. These features are localized between 75-95% span. No significant

vortical or total pressure disturbances occur below 75% span. In the ID/TL case, where no

boundary layers are present, only feature (b) is observed.

In the 2D wake interaction case, total pressure changes and the subsequent increase in

passage loss were attributed to redistribution of spanwise vorticity in the stator passage (cf.
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§3.3.2). For the present tip vortex interaction case, the same explanation, written below in

symbolic form:

dACt ?
-2u, Aw (5.05)

dy

fits the computed results very well. The agreement is shown in Figures 5.12a-c at several

axial and spanwise locations, and holds even fairly close to the casing. Figures 5.11a-

c confirm that the total pressure changes in Figure 5.10 are due to a re-arrangement of

vortex filaments normal to the flow direction. On the basis of correlating total pressure and

vorticity changes using (5.05), two mechanisms involving different vortex filaments can be

identified in the unsteady flow:

1) Spanwise vorticity fluctuations in the suction surface boundary layer (N-BLDs, §5.1.2)

are associated with a high-loss band over the suction surface of the stator.

2) Migration and piling of vortical fluid against the pressure surface of the stator leads

to the two regions of low and high Pt that progressively develop in the middle of the

passage. It leads to segregation of high-entropy vortex fluid in the circumferential

direction.

Mechanism (2) above is present in both ID/TL and VD/TL computational experiments,

while mechanism (1) is present in the VD/TL case only. This indicates that normal distortion

of the suction side boundary layer is the cause for the noticeable passage loss increase in case

VD/TL. In physical terms, the "suction" effect of the tip leakage vortex transports high-

entropy boundary layer fluid from near the wall towards regions of higher mass flux. This

leads to increased loss in the tip region of the stator.

The normal distortion mechanism is the same as the one responsible for the passage loss

increase in 2D wake interaction. In the VD/TL case, this mechanism appears to be operating

on a locally two-dimensional basis. The common origin of passage loss increase suggests that

the 2D model of §3.3.2 can be extended to the three-dimensional tip vortex interaction. This

extension, carried out in §J.4.2, relates the increase in passage loss AYp, to the steady flow

loss distribution on the blade yp, and to the time-average disturbance velocity transverse to

the boundary layer AVn:

AVn
AYP 2 - Y, (5.06)

From a design standpoint, it can be shown that AVn is proportional to the clearance-

related blockage Ab/Ae as defined by Khalid (1995). It also depends on the angle between

the vortex core and the stator stagger axis (5.07).



Chapter 5. Viscous Vortex Interaction 82

n 0...

85

701

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05
Time and blade-to-blade mass average of Ct at stator exit

Figure 5.9. Distribution of time and blade-to-blade mass averaged flux of total pressure f uCtdy
leaving the stator at various spanwise locations, for both unsteady and steady pre-mixed flows.
Large negative values are indicative of high loss. Note the increase of loss in the tip region in the
unsteady case.
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Figure 5.11a.
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Right: Blade-to-blade profile of ACt at 91% span and 25% axial chord. Left :
time-averaged redistribution of spanwise vorticity A~z for the profile at right.
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Figure 5.11c. Right: Blade-to-blade profile of ACt at 91% span and 85% axial chord. Left :
Correlation with time-averaged redistribution of spanwise vorticity AO' z for the profile at right.
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Ab
AV, V2 sin X (5.07)

Ae

In the present case, Ab/Ae = 0.04, sinX ' 1, Yp, = 0.03. With these values, (5.06)

yields a passage loss increase of 0.0021 units of dynamic head. This is reasonably close to

the increase computed here (0.0033 units, from which 0.0010 units due to vortex turbulent

diffusion need to be taken out). Equation (5.06) can be used to determine how Ayp scales

with changes in design. For this purpose, one may use Khalid's (1995) finding that the tip

clearance flow blockage in compressors scales (a) proportionally to tip clearance size, and (b)

as a power of a rotor tip loading parameter.

5.2.2. Role of unsteady secondary flows.

The foregoing analysis indicates that the main mechanism for passage loss increase, AYp,

in the VD/TL case is the normal distortion of spanwise vortex filaments. This section shows

that unsteady streamwise vorticity in the stator is not important for loss production. This

is accomplished by splitting the vorticity vector in streamwise and normal components, and

making use of (1.46) to separate their contributions to AYp.

Ady = AvwdA + Avw,2dA (5.08)
d A

The ratio of normal to streamwise vorticity terms in (5.08) can be used to express the

relative importance of unsteady streamwise vorticity for loss. Figure 5.12 shows the distri-

bution of this ratio as a function of axial location.
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Figure 5.13. Absolute value of ff A , dA/ ff Avw 2dA vs. axial location.
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Over the critical front third of the stator, the contribution of A , is 2-10 times larger than

that of A j,, despite the presence of significant streamwise vorticity fluctuations. Equation

(2.07) provides an answer to this apparent paradox. When disturbance vorticity vectors are

aligned with the base flow vorticity, their contribution to loss may be far larger, relative

to the case where disturbance and base flow vortex filaments are at right angles. Although

normal and streamwise vorticity fluctuations observed in the flow are of similar magnitude,

the latter are perpendicular to the boundary layer vorticity. As a result, the contribution of

streamwise vorticity fluctuations to passage loss is relatively small.

5.2.3. Role of reversible recovery.

Recovery of the tip leakage vortex energy is the main beneficial aspect of rotor-stator

interaction. The performance benefit from recovery in the VD/TL case is virtually identical

to that in the ID/TL case. The loss figures indicate that this recovery is not significantly

affected by turbulent diffusion of the vortex core, or by distortion of core vortical filaments

due to the presence of endwall boundary layers.

It is to be noted that recovery of the vortex energy proceeds at the same rate as that of 2D

wakes (cf. §4.3.2). This explains the recovery of a substantial fraction (-75%) of the kinetic

energy present at the inlet in the TL vortex. For 2D wakes, Figure 3.11 indicates that

most of the energy is recovered over a lengthscale of about 0.25 chords. On the orher hand,

distortion takes place over lengthscales comparable to one chordlength. Therefore, vortex

energy is recovered before distortion can significantly change the dynamics of recovery.

A similar, albeit subtler, argument can explain why turbulent diffusion does not affect

recovery. The argument relies on the assumption that TL vortex diffusion proceeds at a

rate similar to that of wakes. Stauter et al. (1991) surveys indicate that the lengthscale

over which turbulent diffusion alone would significantly dissipate wakes entering the stator

is of the order of 0.5-1.0 blade chords. Therefore, vortex energy is recovered faster than it is

dissipated. These considerations offer a plausible explanation for the almost full recovery of

the energy in upstream wakes and tip leakage vortices observed.

5.3. Case VD/SW: Time-Average Performance Changes.

The effects of upstream streamwise vortices on stator performance are radically different

from those of tip leakage vortices. As shown in Table 5.2, streamwise vortices lead to a pas-

sage loss increase of about 0.3 efficiency points. While this value is similar to the "inviscid"

ID/SW case, a comparison between Table 5.2 and Table 4.1 reveals two significant differ-

ences. First, the vortex is attenuated instead of being amplified (AYe > AYi for ID/SW,
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AYe < AYj for VD/SW). Second, the passage loss increase due to unsteadiness, Ayp, is

substantially larger with respect to the ID/SW case.

Change Change Change (% of
Figure of Merit (APt/Q) (efficiency pts) steady value)

Passage loss Ayp -0.0062 -0.38 -21.0

+0.0019 +0.12 +6.5
(Ay = 0.0045)

Net loss change

Ay, = AYp + AYm -0.0042 -0.26 -14.6

Table 5.2. Change in time-average stator performance for case VD/SW
relative to the pre-mixed steady flow. Beneficial changes (leading to increased
efficiency) are shown as positive quantities.

5.3.1. Role of vortex transport.

The presence of endwall and blade boundary layers is the only difference between the

ID/SW and VD/SW cases. While the vortex core was clearly delineated and stretched in

the ID/SW case, this does not occur in the VD/SW case. With a viscous base flow, the SW

vortex core appears "smeared" in the blade-to-blade direction (Figure 5.13). Differential

convection rates for vortex filaments inside the endwall boundary layer are the most likely

explanation for the vortex core distortion.

This change in core structure makes vortex stretching less effective in adding kinetic

energy. As a result of diffusion, the mixing loss at the exit of the stator, Aye, decreases with

respect to the ID/SW case. This is shown in Figure 5.14, and explains the apparent mixing

loss benefit from passing the vortex core through the stator.

5.3.2. Role of boundary layer response.

The increase in passage loss Ayp in the VD/SW case is about six times larger than that

in the ID/SW case. Since the same core flow diffusivity is retained in both cases, this increase

suggests that SW vortex interaction induces boundary layer disturbances that lead to net

loss. The time-averaged streamwise and normal vorticity components of these boundary layer

disturbances are shown in Figures 5.16 and 5.17. In these figures, the disturbance vorticity

AlID from the ID/SW case, has been subtracted from the viscous flow disturbance vorticity

AWVD. In this manner, only boundary layer disturbance vorticity remains.

Figure 5.15 shows that the BL disturbances induced by the SW vortex are inherently

three-dimensional in nature. A strong streamwise vortex is present over the suction surface
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of the stator. The spanwise location of this feature is coincident with the position of the SW

vortex core (which has been deliberately made "invisible" in the manner described above). A

normal vortical component (not shown) is also present along with the streamwise component.

A possible explanation for these features is the uplifting of boundary layer vortical fila-

ments by the "tornado-like" velocity and static pressure fields associated with the SW vortex

core.
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Figure 5.13. Disturbance normal vorticity Aw, and crossflow velocity vectors Au at
five successive crossflow planes at the time of vortex interception. Compare to Figure
4.2 to appreciate the distortion of the streamwise vortex core.
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5.4. Viscous Vortex-Stator Interaction: Summary.

The interaction between upstream vortices and base flow boundary layers has an im-

portant effect on stator performance and unsteady flow features. Interaction with simple

streamwise vortices is detrimental for performance. Rotor tip leakage vortices are processed

in a manner different from the simple streamwise vortices. For the geometry and operating

conditions considered, it was found that:

* Most of the tip leakage vortex energy is recovered during its transport through the
stator (-75% in the present case). This results in a loss benefit of 0.3 efficiency points.
The recovery scales in the same way as that of a 2D inviscid wake (Smith, 1966), and
is not significantly affected by diffusion or vortex core distortion.

* A noticeable increase in passage loss (-0.2 efficiency points) occurs in the tip region of
the stator in the presence of a tip leakage vortex. Such an increase is not observed in
calculations where the base flow is inviscid. The increase is due to normal displacement
of high-entropy boundary layer vortical fluid by the "negative jet" velocity of the tip
leakage vortex. This mechanism is identical to that in 2D wake-stator interaction.

* This passage loss increase nearly cancels the benefit from vortex energy recovery. The
overall stator passage loss decreases by about 0.1 efficiency points, relative to the mixed-
out steady flow assumption. From design standpoint, this is a small effect.

There is no time-resolved flowfield data that allows to assess the computed results. Some

indirect assessment is possible though, provided one is careful when using data obtained

under different test conditions. The spanwise extent and the magnitude of passage loss

increase computed here are in accord with Howard's (1994) measurements of stator loss

behind a rotor for two different tip clearances. Dawes' (1994) unsteady simulations indicate

the existence of boundary layer disturbances, similar to those shown here. Graf's (1996)

full-stage computational study shows a stator passage loss increase relative to the averaging-

plane steady flow case. The increase is small at baseline loading, and noticeable (-30%) at

high stage loading.

From a loss standpoint, the upstream tip leakage vortex interacts with the stator in

the same manner as a two-dimensional upstream wake. This important finding suggests a

unified treatment for those upstream disturbances primarily associated with velocity defect

in the relative frame. Processing of such disturbances by the downstream blade row has

two opposite aspects. The first is beneficial, and consists of the recovery of the disturbance

energy without significant entropy increase. The second is detrimental, and involves an

increase of passage loss due to motion of boundary layer vortex filaments normal to the main

flow direction under the effect of the disturbance jet-like velocity field. The next chapter

examines the sensitivity of these mechanisms to operating parameters and vortex structure.
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Chapter 6

Sensitivity Study of

Vortex/Stator Interaction

The purpose of this chapter is to examine the sensitivity of tip leakage vortex interaction

to axial spacing, vortex structure and stator operating parameters. The following five com-

putational experiments are carried out for this purpose. In each experiment, only a single

parameter is changed with respect to the VD/TL case of Chapter 5. The VD/TL case

corresponds to design-point viscous flow interaction, and serves as a basis for comparison.

* VD/TM. Parameter: The disturbance velocity prescribed at the inlet is scaled up

by a factor of 1.41 with respect to case VD/TL. Purpose: Assess the effect of axial

spacing.

* VD/TP. Parameter: Crossflow velocity component of tip leakage vortex in rotor

frame set to zero. Purpose: Assess the relative importance of crossflow versus velocity
defect in the vortex core for stator loss.

* VH/TL. Parameter: Stator loading increased (0 = 0.38, midspan 81 =51', DF=0.52).
Purpose: Assess the ffect of loading on vortex-stator interaction. Note that the TL

vortex is the same as in the baseline VD/TL case.

* VS/TL. Parameter: Inlet profile to stator (at design point loading). A profile with

high shear, representative of an embedded stage, is used. Purpose: Assess the effect of

base flow three-dimensionality on interaction.

* 2D/TL. Parameter: Solver modified to execute two-dimensional simulations of vor-

tex interaction on independent planes stacked along the span. Purpose: Verify the

hypothesis that 3D tip leakage vortex and 2D wake interaction with the stator can be

described in the same terms.
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6.1. Sensitivity to Tip Leakage Vortex Parameters.

6.1.1. Case VD/TM : closely-coupled blade rows.

Since the position of the inlet boundary of the computational domain is held fixed, reduc-

tion of axial spacing between the rotor and the stator is represented by scaling the disturbance

velocity prescribed at the inlet of the stator in the VD/TL case by a factor f,:

fX = exp [-2.295 dreduced2 ddes (6.01)

This equation is based on the assumption that the tip leakage vortex diffuses at the same

rate as rotor wakes, and uses a correlation proposed by Stauter et al. (1991) for wake decay

in a research compressor. Wake data is used to determine the amount by which the nominal

vortex needs to be scaled, since (a) no such information could be found for tip leakage

vortices, and (b) tip leakage and wake flows appear to be related (Khalid, 1995). Equation

(6.01) shows that a factor of 1.41 is required to simulate the reduction in axial spacing from

0.37 to 0.07 chords in Smith's (1970) experiment. The scaled-up tip leakage vortex is then

used as inlet boundary conditions in the computation.

The effects of the stronger tip vortex on stator performance are shown in Table 6.1.

First, the amount of energy that is reversibly recovered is significant (,0.5-0.6 efficiency

points). However, the increase in passage loss is also appreciable (,0.3-0.4 efficiency points).

As a result, the net performance effect of processing the tip leakage vortex remains small

(-0.2 points relative to the case where the vortex is mixed at the mid-gap axial plane).

Figure of Merit Change Change Change (% of
(APt/Q) (efficiency pts) steady value)

Passage loss AYp -0.0062 -0.39 -20.0

AYm = AYe - +0.0094 +0.59 +31.3
(Ayi = 0.0100)

Net loss change

AYn = AYp + Am +0.0034 +0.20 +11.3

Table 6.1. Change in time-average stator performance for case VD/TM
relative to pre-mixed steady flow. Beneficial changes (leading to increased
efficiency) are shown as positive quantities. Compare to Table 5.1.

Examination of the disturbance vorticity and total pressure fields indicates that the larger

performance changes in case VD/TM, relative to the baseline case VD/TL, are simply due
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to the larger velocity non-uniformity in the vortex, and not to new causal mechanisms. This

is illustrated by comparing Figure 6.1 to Figure 5.3a. The comparison shows unsteady

vortical fields that differ in magnitude but not in nature.
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Figure 6.1. Disturbance spanwise vorticity Awz on the 91% span blade-to-blade plane
at the instant of vortex interception. Case VD/TM (strong vortex). The flowfield is
qualitatively similar to that shown in Figure 5.3a (baseline vortex).

In summary, the VD/TM case indicates that bringing the blade rows closer together

increases the importance of tip vortex/stator interaction. The increase is however small, and

makes up for only a fraction of the overall improvement observed by Smith (1970).

6.1.2. Case VD/TP : effect of TL crossflow.

The purpose of the VD/TP computational experiment is to prove that the velocity de-

fect associated with the vortex core is the main cause for changes in performance. This

hypothesis is strongly suggested by the unsteady mechanisms identified in Chapter 5. In

the VD/TP case, the leakage crossflow associated with the tip vortex in the rotor relative

frame is removed. Only the velocity defect is retained, so that the vortex velocity profile is

identical in nature to that of a wake.

The effects of the altered vortex can be assessed by comparing the results in Table 6.2

to those in Table 5.1. The increase in passage loss, Ayp, is not significantly different from
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that in the baseline VD/TL case. This is in accord with the model proposed in §5.2.1,

which links AYp to the velocity disturbance normal to the boundary layer, AV. Given the

relative orientation between rotor and stator blades, crossflow disturbances in the rotor frame

appear parallel to the stator surface, while velocity defect disturbances are perpendicular to

the surface. Removing the crossflow component of the vortex does not significantly affect

AV,. Consequently, boundary layer vortical disturbances (Figure 6.2) and the resulting

passage loss changes are similar to those in the baseline VD/TL case.

Change Change Change (% of
(APt/Q) (efficiency pts) steady value)

Passage loss AYp -0.0040 -0.24 -13.0

AY = AYe - +0.0030 +0.19 +10.0
(AY, = 0.0036)

Net loss change

Ay, = Ay, + Am -0.0010 -0.06 -3.0

Table 6.2. Change in time-average stator performance for case VD/TP

relative to the pre-mixed steady flow. Beneficial changes (leading to increased

efficiency) are shown as positive quantities.
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Figure 6.2. Disturbance spanwise vorticity Awz on the 91% span blade-to-blade plane

at the instant of vortex interception. Case VD/TP (rotor frame crossflow component in

vortex core removed). Compare to Figure 5.3a .
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On the other hand, the crossflow component accounts for about one-third of the energy

in the vortex at the inlet of the stator (second line of Table 6.2 and 6.1). As a result, the

benefit from reversible recovery is not as large as in the baseline VD/TL case.

In summary, the VD/TP computational experiment indicates that the velocity defect in

the tip leakage vortex is the most important factor in inducing unsteady flow and in affecting

the performance of the downstream stator.

6.2. Sensitivity to Base Flow Parameters.

6.2.1. Case VH/TL : increased stator loading.

The purpose of the VH/TL computational experiment is to determine the effect of stator

loading on the unsteady flow and the performance changes due to upstream tip leakage

vortices. This is achieved by using a steady stator base flow at loading that corresponds

to unstalled operation near the peak of the characteristic (0 = 0.38, midspan 01 =510,

DF=0.52, cf. Figure A.1). This base flow is described in §G.5. It is characterized by

increased boundary layer thickness at the suction side leading edge, and by increased loss

relative to the design-point VD base flow.

In practice, increasing the stage loading also results in a "stronger" tip leakage vortex.

Here however, the upstream vortex is kept the same as in the baseline VD/TL case. In this

manner, stator loading effects are separated from other changes in the flowfield.

Change Change Change (% of
Figure of Merit (APt/Q) (efficiency pts) steady value)

Passage loss AYp -0.0016 -0.1 -5.0

AYM = Aye - Ayj
(AY = 0.0052) +0.0048 +0.3 +16.0
(Ay, = 0.0052)

Net loss change

Ay, = Ayp + AYm +0.0032 +0.2 +11.0

Table 6.3. Change in time-average stator performance for case VH/TL
relative to the pre-mixed steady flow. Beneficial changes (leading to increased
efficiency) are shown as positive quantities.

Passage loss. The most significant effect of increasing the stator loading is to reduce

the increase in passage loss, AYp, due to the upstream vortex (Table 6.3). The reduction

is not substantial, but (at first sight) runs contrary to the simplified loss model for AYp
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proposed at the end of §J.3. This model states that AYp is proportional to the average

velocity disturbance normal to the blade, AV (identical in cases VD/TL and VH/TL) and

to the base flow loss, yp,, (higher in VH/TL than VD/TL). According to (6.02), AYp,, should

increase at high loading. A comparison between Table 6.3 and Table 5.1 shows however

the opposite.

AVn
Ay A 2 yP,, (6.02)

This contradiction is resolved if one considers how and where the additional loss AYp

is created. According to §5.2.1, AYp arises when the velocity field of the upstream vortex

distorts the boundary layer, lifting high-entropy fluid away from the surface into the free-

stream. This happens mostly in the front part of the blade where AVn is largest. Figure 6.3

shows that the VH base flow has actually a lower loss than the VD base flow over that part of

the blade. Therefore, the boundary layer distortion process above has less of a performance

impact with the VH base flow. The passage loss degradation AYp at high loading is thus

smaller than that at design point loading.
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Figure 6.3. Distribution of steady flow passage loss Yp,, as a function of axial distance
into the stator, at high and at design-point loading.

This finding suggests that the passage loss increase due to wakes and tip leakage vortices

can be reduced by tailoring the loss distribution on the blade. All other parameters being

equal, the passage loss increase would be smaller for geometries where most of the steady-

state loss is generated in the aft portion of the blade section. This dependency can be

captured by the full equation from which the simplified model (6.02) is derived. The full

equation takes into account the axial variation of the loss production rate, dl/dx.
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6 TE dyp,
ay, z j A V"(X) "- dXU fL"E dx

(6.03)

Recovery of tip leakage vortices. In principle, the benefit from recovery of wakes

and tip vortices is also linked to loading in an indirect manner, through the amount of flow

turning. A larger portion of the disturbance energy is recovered for high flow turning angles.

With the present geometry however, most of this energy is already recovered at design point

flow turning. Therefore, Table 6.3 shows no change in the mixing loss benefit, AYm, with

respect to the design-point VD/TL case.

Unsteady flow features. From a qualitative standpoint, the disturbance flowfield (Au, Aw)

is similar to that at design-point loading. This is illustrated in Figure 6.4, and suggests

that no new unsteady loss mechanisms arise for highly-loaded unstalled blading.
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Figure 6.4. Disturbance spanwise vorticity Awz on the 91% span
at the instant of vortex interception. Case VH/TL (high stator
Compare to Figure 5.3a .
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blade-to-blade plane
loading, 4 = 0.38).

In summary, the high-loading computational experiment shows that the increase in pas-

sage loss depends on the steady state loss distribution, and that the latter can be tailored to

reduce this detrimental aspect of rotor-stator interaction.
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6.2.2. Case VS/TL : increased base flow three-dimensionality.

The inlet profile to the stator, used to obtain the baseline VD base flow, is relatively

uniform. This profile is based on data from a low-speed research compressor, which has four

stages. In multistage machines however, the inlet velocity profiles to embedded blade rows

can exhibit substantial spanwise variation (Cumpsty, 1989).

The purpose of the VS/TL computational experiment is to determine the effect of such

variation on interaction with tip leakage vortices. This is done by changing the inlet profile

of the steady base flow. The inlet profile used, shown in Figure H.1, is representative of

an embedded stage. The resulting base flow is characterized by stronger secondary flows

(produced as the non-uniform flow at inlet is turned by the stator) and by more pronounced

spanwise loading variation than the design-point base flow.

The performance effects of the upstream tip leakage vortex with this highly "three-

dimensional" base flow are not significantly different from the baseline case. This can be

seen by comparing Table 6.4 to Table 5.1. The somewhat larger passage loss increase is

due to a higher base flow loss in the tip region of the stator in the VS base flow used. This

is in accordance with the unsteady loss passage model discussed above.

Figure of Merit Change Change Change (% of
Figure of Merit (AP/Q) (efficiency pts) steady value)

Passage loss Ayp -0.0056 -0.35 -19.0

AYm = AYe - +0.0051 +0.32 +17.0
(AY = 0.0054)

Net loss change

AYn = Ayp + AYm -0.0005 0. -2.0

Table 6.4. Change in time-average stator performance for case VS/TL
relative to the pre-mixed steady flow. Beneficial changes (leading to increased
efficiency) are shown as positive quantities.

Except for minor changes due to spanwise variation of the velocity at which the vortex is

convected, the unsteady flow features are also similar to those observed in the baseline VD/TL

computational experiment. This is illustrated by Figures 6.5a-b in terms of spanwise

and streamwise disturbance vorticity components respectively. It is to be recalled that the

disturbance spanwise vorticity is the dominant normal component of the boundary layer

disturbances for the unsteady flows considered.
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Figure 6.5a (top)/6.5b (bottom). Disturbance flow vortical structure on the 91% span blade-
to-blade plane at the instant of vortex interception. Case VS/TL (non-uniform velocity inlet profile
to the stator). Top: disturbance spanwise vorticity, compare to Figure 5.3a. Bottom: disturbance
streamwise vorticity, compare to Figure 5.5a.
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In summary, the VS/TL computational experiment indicates that the effect of the tip

leakage vortex on stator performance is not very sensitive to the three-dimensionality of the

base flow. The results also indicate that the detrimental effects of tip vortex interaction

might be larger in stators having high tip region loss.

6.3. Effect of Tip Leakage Vortex Fluctuations.

In the results so far, the tip leakage vortex was held steady in the rotor relative frame.

However, Graf's (1996) computational study indicates that the vortex core fluctuates in a

manner similar to that used in Chapter 3 for unsteady 2D wakes. For 1:1 blade count, the

fluctuation period is 1.6-1.8 times the stator blade passing period.

Due to computational constraints. the effect of such tip vortex fluctuations on the stator

performance cannot be assessed in the same direct manner employed for wakes. An indirect

argument, drawing on the similarities between wake and tip vortex interaction mechanisms,

indicates that such fluctuations are not important with regard to stator performance (It is

to be noted that these fluctuations are important for rotor performance, Graf 1996).

Insofar as 2D wake interaction performance effects are concerned, there is no difference

between using fluctuating and ensemble-averaged wakes at fluctuation periods larger than

1.5 times the blade passing period (cf. §3.4.2). This is so because the wake properties in such

cases vary over a distance larger than the lengthscales associated with the most significant

unsteady flow phenomena (reversible recovery, boundary layer distortions).

The results in Chapter 5, as well as the VD/TP, VS/TL and 2D/TL computational

experiments, suggest that the most important effects of tip leakage vortices on stator per-

formance occur through the same two-dimensional mechanisms that are involved in wake

interaction. In this case, the large-period fluctuations in the vortex core would not influence

the interaction with the stator. Therefore, the use of an ensemble-averaged vortex that is

steady in the rotor frame, is likely to be representative of the effects of interaction with a

fluctuating vortex.

6.4. Stacked-Plane Two-Dimensional Approximation.

The purpose of the 2D/TL computational experiment is to confirm the hypothesis that

the most important effects of tip leakage vortices on stator performance occur through the

same two-dimensional mechanisms that are involved in wake interaction.

This is accomplished by confining the unsteady flow in the stator to a collection of blade-

to-blade planes at discrete spanwise locations. While the inlet boundary conditions vary

Chapter 6. Sensitivity Study
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from plane to plane, the flow on each plane is strictly two-dimensional. This representation

of the interaction still retains the three-dimensional geometry of the incoming vortex, but is

essentially two-dimensional from a mechanistic standpoint. Thus, the 2D/TL and VD/TL

cases differ only in the equations of motion used.

In the aspects relevant to unsteady performance, the unsteady flowfield obtained in this

manner is very similar to that of the fully three-dimensional VD/TL simulation. The vortex

is attenuated during its transport through the stator. This confirms the conjecture of §4.3.2

that tip vortex recovery can be described in a quasi two-dimensional context. As shown in

Figure 6.6, the unsteady flow over the suction surface is characterized by spanwise vortical

disturbances similar to those discussed in §5.1.2. These disturbances are responsible for the

passage loss increase that partly mitigates the benefit from tip vortex recovery.
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Figure 6.6. Disturbance spanwise vorticity Awz on the 91% span blade-to-blade plane
at the instant of vortex interception. Case 2D/TL (disturbances propagate in a two-
dimensional manner). Compare to Figure 5.3a .

The 2D/TL computational experiment confirms that the tip leakage vortex interacts with

the stator in the the same manner as an upstream two-dimensional wake. Together with the

results from the VD/TP and VS/TL computations, this finding suggests that unsteady 3D

flow phenomena are not significant from a loss standpoint.
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6.5. Conclusions from Sensitivity Study.

This chapter examined the sensitivity of tip leakage vortex interaction to axial spacing,

vortex structure and stator operating parameters. A representative, unstalled stator geome-

try was used. The following conclusions can be drawn from this examination:

* The unsteady flow mechanisms through which upstream tip leakage vortices influence
stator performance are generic. These mechanisms consist of (a) recovery of disturbance

energy by means of vortex stretching (b) increase in passage loss due to boundary layer
distortion by the upstream disturbance velocity field.

* Vortex recovery is beneficial for performance. Its benefit is significant (-0.3-0.6 effi-
ciency points relative to the mixed out steady flow approximation).

* Vortex recovery benefits are mitigated to a large extent by the passage loss increase,
which amounts to a loss of 0.2-0.4 efficiency points. As a result, the net effect of tip
vortex interaction relative to the mixing-plane steady flow approximation, is between
0.0-0.2 efficiency points over the range of parameters considered.

* Blading design changes may reduce the passage loss increase, and thus capture a larger
portion of the recovery benefits. All other factors being constant, stators in which the
steady losses are "concentrated" in the tip region or in the front part of the blades will
experience a higher passage loss increase from tip leakage vortex interaction.

* The above unsteady flow mechanisms can be described on a locally two-dimensional
basis. In this sense, the most important aspect of the tip leakage vortex is the ve-
locity defect associated with the vortex core. Unsteady secondary flows and spanwise
variation of steady inlet profiles do not affect these mechanisms and their performance
impact in a significant manner.

These conclusions are at the basis of the parametric study in Chapter 7. The study

examines the influence of compressor design on the performance effects of upstream wakes

and tip leakage vortices, and places bounds on these effects.
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Chapter 7

Implications for Compressor

Performance and Design

The purpose of this chapter is to (a) identify design options leading to enhanced per-

formance by leveraging rotor-stator interaction, and (b) estimate the expected benefit in

terms of efficiency. This is accomplished by examining how stage design influences the effi-

ciency change, Ay, associated with interaction between rotors and stators. The interaction

in question involves rotor and stator wakes, as well as rotor tip leakage vortices.

The calculation of A7 for a given design has two aspects. First, the wakes and vortices

for this design are characterized using simple correlations. Second, the effect of these wakes

and vortices on blade row loss are estimated using models of recovery and boundary layer

response based on Chapters 3-5 and derived in Appendix J. These models are be applied

in the relative frame of both the rotor and stator blade rows.

The first part of this chapter introduces a framework for making use of such A77 calcula-

tions. The second part shows how AI varies throughout the compressor design space. The

variation is broken down in terms of individual contributions from wake recovery, tip vortex

recovery ...etc. A third part considers design options to maximize Ar. The implications for

compressor design are summarized in Chapter 8.

7.1. Design Framework.

There is no established framework for translating unsteady fluid mechanics knowledge

into design insights. Three issues have been considered to arrive at such a framework here:

(1) how to simplify the interaction in the multistage environment, (2) what design parameters

to vary, and (3) how to describe the design space.
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Simplified representation. We shall consider blade row interaction in the embedded

stage shown in Figure 7.1. This stage is assumed to be one of several identical upstream

and downstream stages. In this manner, the number of design variables is greatly reduced,

while the essence of the problem is retained.

Stage BoundaryI----- - ------ ..

2s

YIr ~2r r

DBLDr 0 2r

lis

s DBLR

01s

S4 tR5 S5 'R6

Figure 7.1. Embedded stage used in determining the effect of stage design on "unsteady
performance". Flow angles are measured relative to the axial direction, disturbance
ingestion angles are measured relative to the tangential direction.

The following interactions are considered (a) stator wake with downstream rotor, (b) rotor

wake with downstream stator, and (c) rotor tip leakage vortex with downstream stator. The

effect of upstream stator hub leakage vortices has not been considered. Each interaction

has a beneficial effect on the loss in the downstream blade row (associated with reversible

recovery), as well as a detrimental effect associated with boundary layer distortion. These

two effects are quantified for each interaction, using models described in Appendix J.

Selection of design parameters. Two unsteady flow mechanisms affecting stator per-

formance were identified in Chapter 6 - wake/vortex recovery and boundary layer distortion.

The parametric study in Chapter 6 also indicates that these particular mechanisms are not

sensitive to the stator flow three-dimensionality, and that their effects can be described on

two-dimensional terms, common to both wakes and tip leakage vortices. For this reason, the

design parameters selected for the study are those of a two-dimensional cascade. Two types

of design parameters are considered - variable and constant.

Variable parameters are (1) flow coefficient 4, (2) stage pressure coefficient 0, (3) reaction

7, and (4) blading solidity a. Once these are specified, the flow angles, wake angles, diffusion
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factors and steady losses are readily determined (cf. §J.1). Constant parameters represent

geometry features that are normally fixed, such as rotor tip clearance r, axial spacing d and

blading chordlength c. Except as noted, these are held constant while moving around the

design parameter space.'

Design parameter space. Herein, a simplified design approach described by Cumpsty

(1989) has been adopted to explore feasible regions of design space. Of course, this is not

the only possible approach. In the present case however, it helps to arrive at a useful

conclusion about how design influences the performance impact of rotor-stator interaction.

The approach utilises two constraints. The first is to fix the blading diffusion factor:

D cos01 cos0,

DF = 1- + o (tan 0 - tan 2 ) (7.01)
S cos 02  2a

A useful working range for DF is between 0.35 and 0.6 (Cumpsty, 1989). Herein, a design

point pitchline diffusion factor of 0.45 is adopted for both rotor and stator. This choice

is representative of modern designs (e.g. Wisler, 1985), and provides a first constraint for

exploring the {, , , 7, } design parameter space. The second constraint is provided by a

form of the de Haller criterion mentioned by Cumpsty (1989):

COS2 1
1 < 0.44 (7.02)

Cos 2 02

R=63% R=63%

697 00.9

6 96 S0.8

c'j 1 20.6
0.8 0.6

0.6' 0.4 0.5
Psi 0.2 Phi 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Flow coefficient (phi)

Figure 7.2. Left: 2D steady-state efficiency for DF=0.45 and 63% reaction as a func-
tion of design flow and pressure coefficient. Right: contour map of the surface at left
within the de Haller limit (7.02). This plotting convention is used throughout the
chapter. Reaction does not affect the steady efficiency significantly (Cumpsty, 1989).

Cumpsty (1989) points out that the upper limit of (7.02) corresponds approximately to

typical stage loading at design. With constraints (7.01-7.02), the design parameter space is

1c, = 1.12, c, = 1.0, r = 0.03, d = 0.32 (Wisler 1985, Manwaring and Wisler 1992)
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restricted to a sub-region of the (0, 0) plane, where the 2D stage efficiency peaks. Such a

region is illustrated in Figure 7.2, and can be explained as follows. For a fixed diffusion

factor and reaction, higher pressure rise designs require higher solidity. However, this leads to

lower efficiency, since loss coefficients for unstalled blades are primarily a function of solidity

(Y , 0.014o/cos0 2, Cumpsty 1989). The onset of the rapid decrease in efficiency coincides

with the boundary of the de Haller criterion. This can be appreciated by correlating the left

and right plots in Figure 7.2. Later in this chapter, we shall see that there is a relation

between the de Haller criterion and the effects of rotor-stator interaction.

7.2. Impact of Stage Design on The Effects of Blade Row Interaction.

In this section, the influence of design on the performance impact of blade row interaction

shall be examined in the following manner. The diffusion factor DF, tip clearance r and blade

row axial spacing d are held fixed. Using the models of Appendix J, the change in stage

efficiency, A77, due to interaction is computed and shown in the (4, ') plane for a given

reaction 1R. The results are presented first in terms of individual contributions from each

mechanism. This is followed by a summary of their net effect, as shown below.

* §7.2.1. Ar7 due to recovery of wake energy only

* §7.2.2. Aqr due wake/boundary layer interaction only

* §7.2.3. Net Aqr due to wakes

* §7.2.4. Aqr due to recovery of tip vortex only

* §7.2.5. Aq due tip vortex/boundary layer interaction only

* §7.2.6. Net Aq due to tip leakage vortices

* §7.2.7. Total Ay due to wakes and vortices

7.2.1. Efficiency benefit from wake recovery.

Figure 7.3 shows the variation of the efficiency benefit Aq from reversible recovery of

rotor and stator wakes. Representative blading diffusion factor (DF=0.45) and blade row

spacing (d=0.3 chords) are used for this figure. It should be noted that the contour lines at

the right show A77 within the limits of the de Haller criterion, while the surface plot at the

left covers a more extensive region of design space (limited by a solidity criterion, r < 2.5).

This plotting convention shall be used throughout Chapter 7.
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Figure 7.3. Stage efficiency benefit Alhn (relative to pre-mixed steady flow) from the
recovery of rotor and stator wakes in an embedded stage as a function of design point
(DF=0.45,d-0.32,c,-=1.12,c=1.0) Reactions of 50% (top) and 73% (bottom). Plots for
reactions of 50-P% and 50+P% are identical by virtue of symmetry. At high reactions,
most of the benefit comes from recovery of rotor wakes by the stator.

Within the approximate limits of the de Haller criterion, stage design has a relatively small

effect on the benefit from wake recovery. For low pressure and flow coefficients however, wake

recovery benefits rapidly disappear. This finding can be explained as follows. The loss benefit

Aym from wake recovery is proportional to the wake energy thickness C and to the square

of the wake stretching ratio a,. = Le/Li (cf. §3.3).

Ay 0 .(1 - a ) (7.03)

It follows that the benefit from recovery is highly sensitive to the value of a,, which

primarily depends on the flow turning angle (§J.2.3). For low (/, 4), high stagger blading

with relatively low turning is required. In this case, the wakes are not significantly stretched

in the downstream blade row, and a, is close to unity. The benefit of recovery for such

designs is almost non-existent.designs is almost non-existent.
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7.2.2. Efficiency loss due to wake/boundary layer interaction.

The second generic mechanism by which wakes influence blade row performance is the

normal displacement of boundary layer fluid under the effect of the wake disturbance velocity

(cf. §3.3,§5.2). This displacement of high-entropy fluid causes passage losses to increase. The

resulting efficiency degradation is shown in Figure 7.4.
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Figure 7.4. Stage efficiency deterioration Arp (shown as positive percentage relative to
pre-mixed steady flow) from wake/boundary layer interaction in a full embedded stage
(DF = 0.45, d = 0.32, c, = 1.12, c, = 1.0).

Figure 7.4 indicates that the efficiency deterioration due to wake/boundary layer in-

teraction is small and constant within the limits of the de Haller criterion. Outside these

limits however, this deterioration increases to significant levels (-0.5 efficiency points). This

can be explained as follows. According to §3.3.2, the increase in loss is proportional to the

steady-state loss of the blades. Steady-state losses increase outside the limits of the de Haller

criterion. The efficiency deterioration due to wake/BL interaction increases correspondingly.

It is to be noted that this aspect of the model does not take into account the precise chord-

wise distribution of loss along the blade, which was shown in §6.2.1 to be important. This

simplification is compatible with the exploratory role of the design study in this chapter.
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7.2.3. Net efficiency change from interaction with wakes.

The net change in stage efficiency due to wake interaction Ay?7,, is equal to the benefit

from recovery minus the deterioration associated with boundary layer response. This net

change is shown in Figure 7.5.

R=50% R=50%
0.9

0.5

0, 0 0.2o 0.0.8 0..0.4
0.3 0.7

90.2 0.2
00.1 0.6

0.6.2

S3 0.0.0.5

0.4 0.5.4

Psi Phi 0.3 0 .4 0.5 0.6 0.7 0.8

a00.2

)0.3
0. 0.8 0

0.6

Psi Phi 0.3 0 0.0.5 0.6 0.7 0.8



Chapter 7. Design Implications

layer distortion. Despite their confinement to the tip region of the stator, their effect on

performance can be described on a locally two-dimensional basis (cf. §6.4). Appendix J

addresses the problem of scaling the tip vortex for different designs on the basis of Khalid's

(1996) findings.

This section examines the stage efficiency benefit from recovery of the rotor tip leakage

vortex (stator leakage vortices exist, but are not considered). As shown in Figure 7.6,
rotor tip vortex recovery is associated with benefits between 0.1-0.6 efficiency points. The

benefits are largest at high pressure and flow coefficients. For a design such as the LSRC,

the estimated benefit from the model is 0.25 points (in accordance with the Navier-Stokes

results).

R=50% R=50% 0.55

R=75% R=75%
0.91

0. 0.6 U.0
Psi 0.4 0.2 Phi .3 0.4 0.5 0.6 0.7 0.8

Figure 7.6. Stage efficiency benefit, Alm, from recovery of rotor tip leakage vortex in
the stator as a function of stage design point (2% chord tip clearance, DF = 0.45, d =
0.32, c, = 1.12, c, = 1.0).

7.2.5. Efficiency loss due to vortex/boundary layer interaction.

Figure 7.7 shows the efficiency deterioration A77p due to stator boundary layer response

to the upstream tip leakage vortex. From a qualitative standpoint, Ar7p behaves much in

the same way as that associated with wake/boundary layer interaction. Within the limits

of the de Haller criterion, A77p is small (,0.1 efficiency points) and relatively independent of

design. Outside these limits, A7p grows to significant levels (-0.5 efficiency points).
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This behavior occurs for the same reason as that involved in wake/boundary layer in-

teraction (§7.2.2). For a fixed diffusion factor, high-0 designs are achieved by increasing

solidity and therefore steady-state loss (Cumpsty, 1989). Since A,7p is proportional to the

steady loss, this increase is reflected in larger efficiency drop from vortex/BL interaction.
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Figure 7.7. Stage efficiency deterioration, A77p, from tip leakage vortex/boundary layer
interaction as a function of stage design point (2% chord tip clearance, DF = 0.45, d =
0.32, c, = 1.12, c, = 1.0). Unsteady losses increase sharply outside the approximate
limits of the de Haller criterion.

7.2.6. Net efficiency change from interaction with the tip vortex.

The net change in stage efficiency due to tip leakage vortex interaction, is equal to the

benefit from recovery minus the deterioration associated with boundary layer response. This

net change is shown in Figure 7.8. Within the approximate limits of the de Haller crite-

rion, tip leakage vortex interaction yields a modest efficiency improvement that is relatively

constant and comparable to that of wakes (,0.1-0.3 efficiency points).

Outside the approximate limits of the de Haller criterion, vortex interaction benefits

disappear. For high-pressure rise, low-flow coefficient designs, vortex interaction may become

detrimental. The reasons for this behavior are explained in §7.2.4-§7.2.5 above, and are

essentially the same as for wakes.
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Figure 7.8. Net effect of rotor tip leakage vortex interaction on stage efficiency as
a function of stage design point (2% chord tip clearance, DF = 0.45, d = 0.32,c, =
1.12, c. = 1.0).

7.2.7. Total efficiency change due to blade row interaction.

So far, individual blade row interaction mechanisms were considered separately. This

section discusses the sum total of performance changes from these mechanisms, and considers

how it is affected by axial spacing and by the choice of blading diffusion.

Figure 7.9 shows the change in stage efficiency due to blade row interaction (wakes+tip

leakage vortex) for a nominal axial spacing of 0.32 chords. Within the approximate limits

of the de Haller criterion, blade row interaction is moderately beneficial (A) 7 -0.5 points),

and relatively insensitive to stage design. Outside these limits, blade row interaction benefits

rapidly disappear. This is due to (a) increase of the loss associated with boundary layer

response to unsteadiness, and (b) decrease of the benefit associated with wake recovery.

Blade row interaction effects are moderately sensitive to the choice of diffusion factor.

Repeating the efficiency calculations with DF=0.52 yields results that differ from those in

Figure 7.9 by about 0.1-0.2 point. However, the subregion of (0, ') in which interaction is

beneficial, is extended in the direction of higher pressure rise and lower flow coefficient.
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Figure 7.9. Sum total of efficiency changes due to wake and tip vortex interaction in a
repreating embedded stage (2% chord tip clearance, DF = 0.45, d = 0.32, c, = 1.12, c, =
1.0). Efficiency changes shown are with respect to pre-mixed steady flow.

Blade row spacing is an important factor. As shown in Figure 7.10, reducing the spacing

from 0.32 chords to 0.07 chords increases the net efficiency benefits from blade row interaction

to significant levels (-1 point).

Comparing the efficiencies in Figures 7.9 and 7.10 at the GE/LSRC compressor design

point (0=0.45, 0=0.65, R=63%) indicates that a reduction of the blade row axial spacing

from 0.37 to 0.07 chords yields an efficiency improvement of 0.5-0.6 points. Although the

blading and tip clearance used by Smith (1970) are not exactly the same as those chosen

above, this difference still does not account for the 1 point efficiency gain in his experiment
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(unless the wakes carry twice the amount of energy of the wakes from the correlations used

in the model).
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Figure 7.10. Sum total of efficiency changes due to wake and tip vortex interaction for
closely-spaced blade rows (2% chord tip clearance, DF = 0.45, d = 0.07, c, = 1.12, c, =
1.0). Efficiency changes shown are with respect to pre-mixed steady flow. Reduced axial
spacing improves stage efficiency, but by a lesser amount than observed by Smith (1970).

This suggests that other mechanisms (see Table 1.1) may affect performance signifi-

cantly. One likely such mechanism is the reduction of corner flow separation in the presence

of upstream wakes. Schultz et al. (1990a) have observed that rotor wakes cause stator endwall

losses to decrease in a manner that reduces overall passage loss by up to 40%. This improve-

ment was attributed to reduced stator hub separation. The impact of corner separation on

efficiency in Smith's compressor is not known.
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7.3. Analysis of Design Options.

The results in §7.2 show that the design parameter space can be divided into two regions.

The relative extent of these regions depends on the blading diffusion factor. For a typical

DF=0.45, the boundary between these regions coincides approximately with the de Haller

criterion (7.02).

Within the limits of this criterion, the impact of blade row interaction on efficiency

is moderately beneficial with respect to the mixing-plane steady flow approach (,0.4-0.6

points). There is relatively little variation in efficiency benefit from design to design (,0.1-0.2

points). Outside the limits of this criterion, blade row interaction benefits rapidly disappear.

Therefore, the primary design option is whether to place a design inside or outside these

limits. According to §7.1-§7.2, designs where high pressure ratio is achieved by means of

increased solidity might fall outside the region where interaction is beneficial.

Some efficiency improvement can be achieved by mitigating the detrimental effect of non-

transitional boundary layer response. For the LSRC design examined here, the maximum

potential improvement is of the order of 0.3-0.4 efficiency points. This value assumes that

the 0.2 points deterioration from BL response to the rotor tip vortex, and the 0.1 points

deterioration from BL response to rotor and stator wakes, can be completely eliminated.

Two methods are available for mitigating the effect of boundary layer response. The

first method is suggested by the results in §6.2.1, where a two-fold reduction in the passage

loss increase AYp was achieved while increasing the loading. This method consists of using

sections for which the loss is "moved" from the front towards the back of the blades.

The second method is suggested by the results in §5.2.1. It consists in the removal of

boundary layer fluid from the front portion of the blade suction surface. This eliminates the

cause for passage loss increase (normal redistribution of vortical lines in the boundary layer

under the effect of upstream velocity disturbances). The suction method entails increased

mechanical complexity, as well as losing a certain fraction of the mass flow. At this point, a

cost-benefit study of suction is recommended.

Since tip vortex/boundary layer interaction in the tip region of the stator contributes the

most to the increase in passage loss, a promising strategy is to apply suction over the outer

75-95% of stator span. The mass flow removed from the stator surface may be used as bleed

air. The proposed cost-benefit study should focus on this strategy.
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Chapter 8

Conclusions and Recommendations

8.1. Summary and Conclusions.

Time-accurate Reynolds-averaged Navier-Stokes simulations have been carried out to in-

vestigate the effect of upstream rotor wakes and tip leakage vortices on the performance of

a typical stator, relative to the steady flow approximation of mixing out such disturbances

between blade rows. The objectives of this work are to (1) identify the unsteady flow mecha-

nisms responsible for performance changes, (2) quantify these changes, and (3) translate this

information into design insights.

Two generic mechanisms with significant impact on performance have been identified.

These are the reversible recovery of the energy in the disturbances (beneficial), and the non-

transitional boundary layer response (detrimental). These mechanisms appear to be generic.

* Tip vortex recovery involves intrinsically three-dimensional vorticity dynamics. How-

ever, the energy benefit from tip vortex recovery scales in the same manner as that

associated with wake recovery, and can be described in the same 2D terms.

* Non-transitional boundary layer response involves the normal displacement of boundary

layer vortex lines under the "suction" effect of the upstream disturbances. The resulting

redistribution of vorticity leads to an increase in passage loss. For tip vortex interaction,
the loss increase occurs in the tip region of the stator (in accordance with Howard et

al. 1994).

* Both mechanisms are associated with the velocity defect of the disturbances in the

relative frame. The effects of these mechanisms can be described in the same two-

dimensional terms for both wakes and tip leakage vortices.

Quantitative effect and dependency. The effect of the upstream wakes and vortices on

the stator loss is important. It depends on the following parameters: axial spacing, loading

and the frequency of wake fluctuations in the relative frame.
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* For the present design, passing the rotor wakes and vortices through the stator results
in a stage efficiency that is 0.2 points higher than that obtained using the steady flow
approximation (0.5 efficiency points recovery benefit minus 0.3 points from boundary
layer response). Individually, the effects of rotor tip vortex and wake are comparable.

* The effect of tip vortices and wakes becomes significantly more important at reduced
axial spacing. For a spacing of 0.07 chords, the stage efficiency is 0.6 points higher
relative to the steady flow (1.2 points recovery benefit minus 0.6 points from boundary
layer response).

* For the present geometry, an increase in loading redistributes boundary layer vortical
fluid in a manner that decreases the additional loss from boundary layer response.

* There is a range of fluctuation frequencies (-0.3-0.8 times the blade passing frequency)
for which recovery does not occur. Within this range, there is a significant difference
between the effects of fluctuating and steady wakes with the same ensemble-averaged
properties. Thus, the use of ensemble-averaged wakes in interaction studies is not
necessarily correct. Tip vortices are thought to fluctuate at a low frequency outside
this range.

* The most important aspect of the tip vortex is the velocity defect, which is perceived
by the stator in the same manner as a wake. Stator flow three-dimensionality and
unsteady secondary vorticity are not important as far as the performance effects of
stator/tip vortex interaction are concerned.

Design implications. A model of recovery and boundary layer response has been used

to explore how blade row interaction effects change from design to design. The model con-

siders interaction in a repeating embedded stage environment, and indicates that:

* Steady flow approximations based on mixing the disturbances between the blade rows,
underestimate stage efficiency by 0.3-0.5 points (for typical designs) and by as much
as 0.6-1.0 points (for designs with closely-spaced blade rows).

* A region in design space exists where interaction has a beneficial and relatively constant
impact on efficiency. Outside this region, interaction benefits rapidly disappear. The
extent of the beneficial region is determined by the choice of blading diffusion factor
DF. For typical values of DF-0.45, the beneficial limits coincide approximately with
the de Haller criterion.

* The detrimental aspects of boundary layer response may be mitigated by (a) selective
removal of boundary layer fluid, or (b) tailoring the blade loading to reduce steady-
state losses in the front part of the blade. For typical designs, the maximum efficiency

gain from such measures is about 0.3 points.

Although differences in compressor design prevent a back-to-back comparison, our results

suggest that 1/2 to 2/3 of the efficiency gain obtained by Smith (1970) can be attributed
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to interaction with upstream wakes and vortices. Future work should be focused on other

mechanisms that may have a strong impact on performance, such as corner flow response.

8.2. Recommendations for Future Work.

This study demonstrates the potential of CFD for connecting complex flow processes to

turbomachinery performance and design. Future research should be directed at:

* Physical experiments, to assess the performance trends and flow features found herein.

The CFD results indicate what to look for in the data. Time-resolved velocity mea-

surements in the suction side boundary layer should be carried out with a degree of

resolution sufficient to visualize the unsteady vorticity fields. Such data can be used

to assess the role of non-transitional boundary layer response. Measurements of tip

leakage vortex velocity profiles as a function of downstream distance with and without

stators would be useful in assessing vortex recovery.

* Investigation of the response of separated corner flow to upstream disturbances. Exper-

imental data suggests that upstream wakes can reduce the extent of corner separation

in a significant manner (Schultz et al. . 1990a). Elucidating the causes and the magni-

tude of this effect would be a useful contribution. Reduction of corner separation could

be one of the factors behind Smith (1970) observations.

* The results indicate that the effects of fluctuating and steady wakes with the same

ensemble-averaged properties might be different, depending on the period of fluctua-

tions. It would be useful to (1) characterize the time scales and amplitude of these

fluctuations in the core compressor environment, and (2) verify experimentally the role

of the fluctuation period.

Wake interaction is one of the major sources of broadband and tonal noise in jet engines

(Waitz, 1996). The unsteady wake calculations of Chapter 3 can be used to explore the

role of wake fluctuations in generating broadband noise. The results from such a study

would be useful for current work in the field of aeroacoustics, and may lead to strategies for

controlling broadband noise.
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Appendix A

Geometry and Units

A.1. Compressor Geometry Used.

The geometry used in the present investigation is based on the General Electric Company

Low Speed Research Compressor configuration, as described by Wisler (1985). This config-

uration is an aerodynamically scaled model of stage VII of the 10-stage, 23:1 pressure ratio

NASA/GE E3 compressor. Its blading is characterized by tailored loading, high hub/tip

ratio, low aspect ratio and high solidity (Table A.1).

Table A.1. Stator geometry in the present investigation (left) and for stage VII of the
23:1 pressure ratio NASA/GE core compressor. After Wisler (1985).

The design LSRC rotor tip clearance is 1.35% of height (Wisler, 1985), which works out

to 1.8% of chord. The tip leakage vortex used herein is from a Navier-Stokes simulations of

rotor flow with a clearance of 3.0% chord. This clearance is larger than the design value, but

still representative.

Parameter Present stator Stage VII high speed stator

Inlet Mach Number 0.11 0.55

Reynolds Number 247,000 n/a

Stage Reaction 63 % 68%

Hub/Tip Ratio 0.85 0.89

Solidity 1.67 1.67

Aspect Ratio 1.34 1.37

Stagger 320 n/a
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Axial spacing between rotor and stator is represented here in an implicit manner, by

prescribing the velocity amplitude of wake and tip vortex disturbances. Two axial spacings

are represented: 0.37 and 0.07 chords. These values correspond to the ones used for Smith

(1970) data. The 0.37 chords axial spacing is considered nominal. This is reflected in placing

the computational domain inlet boundary at 0.185 chords upstream of the leading edge.

A 1:1 blade ratio is used in the present investigation. This is in contrast to the non-integer

blade ratios used in practice (54:74 rotor-stator blade ratio in Manwaring and Wisler's 1992

work). This simplification is justified, given that the unsteady flow mechanisms identified

here take place on lengthscales local to the passage.

Recent stator designs are able to eliminate corner stall, and yield a locally two-dimensional

attached flow over the entire stator span (LeJambre, 1995). A departure from the stacking

used in the LSRC has been made here to arrive at steady (base) stator flows that corresponds

to this description. For this purpose, a straight (non-twisted) stator blade is employed in

the present investigation. For the sensitivity study, radial gradients and secondary flows are

induced instead by varying the base flow inlet profile to the stator (cf.§6.2.2).

A.2. Operating Points Considered.

The present investigation considers design-point and high-loading operating conditions, as

shown in Figure A.1 and Table A.2. Low-loading calculations were not deemed necessary.
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Figure A.1. Location of the DP (design) and HL (high-loading) stator operating
stage-average pressure rise characteristic (Manwaring and Wisler, 1992).
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Figure of merit Design Point High-Loading

Flow coefficient 0.45 0.38

Stage pressure coefficient b 0.65 0.73

Stator inlet air angle 81 46.0 50.7

Stator exit air angle 82 21.0 n/a

Stator diffusion factor 0.41 0.51

Table A.2. Pitchline stator operating parameters (Manwaring and Wisler 1992).

The GE/LSRC has been extensively used to tackle a variety of compressor flow problems

(Wisler, 1985). Insofar unsteady flow is concerned, Manwaring and Wisler (1992) used the

facility to characterize the first rotor wakes by means of hot-wire transducers in the first

stage rotor/stator gap. The authors also instrumented the midspan of the first-stage stator

pressure transducers, and used the unsteady pressure data to evaluate the ability of CFD

codes to predict the harmonic content of the unsteady aerodynamic loading induced by the

wakes. Silkowski (1995) measured rotor stall characteristics and visualized the rotor exit

flowfield over a wide range of flow conditions. Recently, Halstead et al. (1995) obtained

detailed transitional data on the midspan boundary layers throughout the compressor.

A.3. Coordinate System.

A Cartesian coordinate system originating at

out this investigation (Figure A.2).

the midspan leading edge, is used through-

x

Figure A.2. Coordinate system, computational domain, and flow/geometry scales used to make
the problem dimensionless.
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Full-span calculations (not discussed here) have shown that the flow in the lower half of

the stator passage is virtually free of unsteadiness. Changes in overall performance come

from the unsteady flow induced by the upstream rotor vortices near the extremity of the

blade. For this reason, the computational domain covers only half of the stator span. The

"full-passage" unsteady figures of merit are inferred from the "half-passage" computed figures

of merit by means of proportionality :

Ys,full = 2Y.,half

Yu,full = Y,half + Yu,half
(A.01)

HIl,full = 2 II.,half

HI,full = II,,half + II',half

In the blade-to-blade plane (xy-plane), the computational domain extends for 0.2 axial

chord units upstream of the stator blade trailing edge (mid-gap between rotor and stator),
and 0.6 chord units downstream of the stator blade trailing edge. The latter distance is

sufficient to prevent interference between the outflow boundary and the blade.

A.4. Dimensionless Units.

Dimensionless units are used throughout this work to present both the computed results

and the flow models. The following reference quantities have been used for making the

problem dimensionless.

* Distances. All distances are scaled with respect to the axial projection "c," of the

stator blade chord "c". For the present blading, this distance is 2.85 inches. It is

related to the blade chord and stagger by

cX = ccos/3 (A.02)

* Velocities. All velocities are scaled with respect to the pitchline circumferentially-

averaged axial velocity component U,,oo at the mid-gap axial location. At design point,

this velocity is estimated at 93 ft/s.

* Times. The reference time, tref = c,/Ux,oo follows from the above. A unit of di-

mensionless time corresponds roughly to the time required for a particle to traverse

the stator passage, and is thus referred as a convective time unit (CTU). At baseline

(4 = 0.446), the rotor blade passing period is approximately 0.35 CTUs.
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* Densities. The density of the fluid is normalized by the pitchline circumferentially-

averaged density p, at the mid-gap axial location. Given the incompressible flow

assumption, the dimensionless density throughout the flowfield is unity. For this reason,

the density symbol is omitted from some equations.

* Pressures. Technically, the reference dynamic head follows from the above selection of

reference velocity and density. Thus the raw pressures computed from the NS3D code

are in units of pooU 2,. It is however common practice to normalize pressures by the

total dynamic head upstream of the cascade pooU 2 . To conform to this practice, all

pressure coefficients throughout this work are computed according to :

C,= 2 [Pt - Pt,avg]code
Poo cos U2,oo

(A.03)

= 2 [P - Pavg]code

poo cosU1 0,oo

In this manner, the loss coefficients computed based on the above C, and Ct also

conform to cascade conventions.

* Viscosities. The baseline Reynolds number of the stator is Re=247,000, based on

midspan inlet velocity and chord. In light of the above reference velocity and chord

however, it follows that the internal computational Reynolds number R = 1/vi is

not equal to this value. A careful reader might notice that, internally to the NS3D

computational procedure, the passage is scaled so that the hub and casing endwalls are

located at z = +1. It follows that R is given by:

H
R = cos /cos O1 Re (A.04)

2C

The transformations of raw computational units implied by (A.02)-(A.04) have been carried

out "transparently", so that the results conform to the cascade design practice. However,

future users of the NS3D family of computational tools should be aware of these internal

conventions.

135



Appendix A. Geometry and Units 136



Appendix B. Validation 137

Appendix B

Selection and Validation

of the Computational Approach

The quality of the present computational experiments depends on three factors - underlying

assumptions, modeling of turbulence and intrinsic accuracy of the method. The effect of

these factors shall be examined after a brief introduction of the computational method.

B.1. Selection of Computational Method.

The central problem of computational fluid mechanics is the accurate representation and

operation upon continuous fields characterized by high-gradient regions such as boundary

layers or shock waves. Several methods have been devised for this purpose :

* Probabilistic methods, illustrated by Monte-Carlo or particle-path simulations. These
are rarely used in turbomachinery CFD.

* Finite element/volume/difference methods (Book 1981, Girault 1986, VKI 1987). These
use expansions in local, low-order basis functions over small subdomains. A solution
to the problem is obtained by means of a weighted-residual or a variational formula-
tion applied to the discrete values of the flow variables at the collocation points. The
strength of these methods lies in their geometric flexibility. The low-order expansions
however result in a low-order (algebraic) convergence, and are associated with artificial

dissipation of energy (numerical viscosity).

* Fully spectral methods (Gottlieb and Orszag, 1977), where an expansion in truncated

global functions over the entire computational space is employed. The problem is

solved by finding the series coefficients by means of weighted-residual techniques ap-

plied at properly selected collocation points. Spectral methods are characterized by

a convergence rate that is exponential in the order of the expansion. However, the

computational domain is limited to simple geometries.
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* Hybrid methods divide the computational domain into a number of regularly-sized

regions. A high-order expansion of the flowfield within each region is then carried out,
thus achieving both geometric flexibility and high accuracy.

The NS3D computational procedure is based upon a spectral element method which belongs

to the last category. The base algorithm was developed by Patera (1984) and Korczak

(1985). Tan (1989) used a spanwise eigenvalue decomposition allowing to represent three-

dimensional internal laminar flows as series of independent two-dimensional problems in

modal space. Renaud (1991) applied this method in an investigation of loss mechanisms in

turbines. Reynolds-averaging and unsteadiness were included by Valkov (1992). Recent work

at the M.I.T. Gas Turbine Laboratory has extended the computational procedure to address

rotating centrifugal geometries, density fluctuations, and direct simulations of turbine airfoils

at high Reynolds numbers (-100,000).

B.2. Assessment of Intrinsic Accuracy.

Intrinsic accuracy is the ability to obtain a correct discretized solution to the Navier-

Stokes equations for representative conditions. Since no exact analytical solutions are avail-

able for turbomachinery unsteady flow, the intrinsic accuracy is verified in three steps. Sec-

tion B.2.1 establishes the accuracy of the computational procedure basic building blocks for

simple cases with known analytical solution. Section B.2.2 demonstrates the local accuracy

in a typical unsteady flow situation. Section B.2.3 demonstrates the global accuracy of the

scheme in terms of passage figures of merit.

B.2.1. Comparison to steady analytical solutions.

Three cases are considered : (1) fully developed 2D steady laminar Poiseuille flow between

two parallel plates, (2) turbulent 2D flow in a convergent-divergent sinusoidal channel, and

(3) fully developed 3D steady laminar Poiseuille flow in a straight rectangular passage.

Case 1. The computational grid employed for the first case consists of an array of 15x30

7-th order spectral elements. The plate separation is 1 unit, and the length of the computa-

tional domain is 3 units. The dimensionless computational viscosity, v, is 0.001 units. The

analytical solution is (in dimensionless units) :

dp
u=y(1 - y); v = 0; = -8v (B.01)

dx

Using fully-developed flow as inlet boundary conditions, the computed velocity flowfields

agree with (B.01) within a global RMS error of 6.2 x 10 - 5 units. The pressure is constant

within 5.9 x 10-2 percent in the plate-to-plate direction, and the axial pressure gradient is
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equal to -0.00798 units (0.25% off the analytical value). This test establishes that the planar

direct solver (a basic building block of the full unsteady 3D code) is capable of accurately

obtaining viscous flows driven by pressure gradients.

Case 2. The computational grid and geometry for 2D turbulent flow in a convergent-

divergent channel is shown in Figure B. 1. The turbulence model employed in the calculation

is that of van Driest (White, 1974)

v = vi + k 2 y2 w 2 (B.02)

which is essentially the inner part of Baldwin-Lomax' algebraic model (Appendix B). An

intrinsic viscosity of 1/75,000 is used. The computed profiles are compared in Figure B.1

to the following analytical representation of the "law-ot-the-wall"

n+ = u+ + e-5k + - - ku+ - (ku+)22 (ku+)31 2 6] (B.03)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Natural Log of Y+

Figure B.1. Computational domain (inset) and comparison between computed and "law-of-the-
wall" turbulent profiles at assorted axial locations in a 2D convergent-divergent channel.

Equation (B.03) is a generalized composite formula for the inner and the logarithmic

region of a turbulent boundary layer, derived first by Spalding (1961). It is in agreement
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with pipe-flow velocity measurements (White, 1974). Figure B.1 shows how the computed

turbulent solution for a channel compares to (B.03) at various axial locations. The agreement

is excellent to fairly good far away from the wall. Therefore, the turbulent viscous solver is

capable of reproducing the characteristic profiles of a generic turbulent boundary layer.

Case 3. The three-dimensional capabilities of the new code were tested by comparison

with the analytical solution for a fully-developed steady laminar Poiseuille flow in a rectan-

gular channel with a cross-section of 1 x 1 distance units

= 4v dp (-1)(k- 1 )/2 1  cosh(krz) 1S =1,3,5... 1 - sh( /2)] cos(kry) (B.04)
7ri d I: P cosh(kr/2)k=1,3,5...

The computational domain contains an 12 x 24 array of spectral elements and 17 spanwise

modes. The analytical and computed velocity fields agree to 3.8 x 10- 4 units of global RMS

error. This indicates that the spanwise eigenvalue block of the 3D solver is also functioning

correctly. Having verified the accuracy of the basic building blocks of the NS3D computa-

tional procedure (planar, eddy-viscosity and spanwise solvers) in relatively simple situations,

we shall focus on the performance of the whole in a representative unsteady flow situation.

B.2.2. Dynamic consistency of the unsteady solution.

This test shows that the discretized inertial, pressure and viscous force terms sum out to

zero in the case of a two-dimensional cascade interacting with upstream wakes. These force

terms are obtained in the following manner:

a) a u i 1 [u(t - 2At) - 8u(t - At) + 8u(t + At) - u(t + 2At)]jk,iaZ k a at jk,i 12At

a2) (UX)k, = -kxuxW k ,i Z j[V ks,iVrs,i kUrsi.
ijlk xjk,i v ss

(B.05)

a (3) (VCt)jk,i =
Jjk,, r 3

Jjk,i r

If the solution satisfies the unsteady Navier-Stokes equations, and if the discretized differ-

entiation operators in (B.05) are "exact", the sum of these terms should be nil everywhere.

Therefore, the norm of the discretized relative residual error can be used as an indicator of

the numerical accuracy of the unsteady solution :
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Ila(') + a(2) + a(3) + va(4),k (B.06)
Et I a(t)l i,jk

Figure B.2 shows the distribution of this residual at the moment of wake interception,

when unsteady pressures are at their peak. The peak residuals occur in the free-stream

uniform flow, where the denominator of (B.06) is virtually zero. In regions of vortical flow,

Ei,jk is usually less than 0.01 percent. The overall residual error is in accordance with the

global accuracy of the fractional time-stepping scheme, which is of O(At). The residuals near

the blade are in accordance with the boundary error of the scheme, which is of O(vl/At).
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Figure B.2. The relative residual (B.06) in a typical unsteady flow problem is virtually zero
in regions of vortical flow. The residual may be larger in regions of uniform flow where (B.06)
assumes un undeterminate form of the type 0/0. Top passage : vorticity contours at the moment
of wake impingement. Bottom passage : contours of residual Ei,jk at the same time. Scale at right
applies to residuals and is in percent. NACA 0812 cascade (o = 2.0, / = 50, 01 = 13o). Upstream
moving wakes (VR = 1, A = 0.5, t = 0.3). Direct laminar simulation at R = 1500, At = 0.001.

Finally, comparative tests between the full and disturbance formulations of the same

unsteady problem (E 3 blade interacting with wakes, Re = 104, At = 0.001) have been carried

out. The unsteady flowfield from the disturbance NS3D code and the unsteady flowfield from

the full Navier-Stokes NS3D code are identical within an absolute RMS error of 1.3 x 10- 4.

The material in this section shows that the NS3D computational scheme has a spatial and

time accuracy that is appropriate for research purposes.
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B.2.3. Time-averaged loss consistency of the unsteady solution.

The purpose of this test is to examine the consistency between time-averaged total pres-

sure losses and vorticity in a representative 3D case. Equation (2.05) states that the time-

average rate of loss production should be exactly given by:

A dY (f) = v 2dydz (B.07)
dz : =con t.

Figure B.3 compares the RHS and LHS of (B.07), based on the computed unsteady

total pressure and vorticity fields in a rectangular 3D cascade of unit-length plates ingesting

a streamwise vortex. Considering the manner in which (B.07) combines the high gradients of

the flow variables, the consistency shown can be qualified as very good. This is especially true

around the leading edge, where the rates of loss production are maximum. The consistency

in the inlet region is however weaker, due to the presence of some noise. The noise results

from the relatively low resolution used in this example. It is not present in the compressor

computations to a significant extent.

b e 1 <-- Effect of noise

S-0.05 -

0DO 1
E -0.15 -

-0.2a-

2 -0.25

-0.1 -0.05 0 0.05 0.1 0.15 0.2
Axial coordinate (LE at zero, TE at one)

Figure B.3. Solid line: Time-averaged enstrophy integral (RHS of B.07). Dashed lines and dots:
Axial derivative of time-averaged loss coefficient (LHS of B.07). Three-dimensional flat plate
cascade (o- = 2.0, AR = 0.5) centrally ingesting a streamwise vortex (r = 0.3, r, = 0.2). Direct
NS3D simulation using a 12x20 blade-to-blade domain and 9 spanwise modes (v = 0.002, At =
0.005), no-slip endwalls..

Intrinsic numerical accuracy requirements are met. The effect of turbulence model and

assumptions shall be considered next.



B.3. Assessment of the Effects of Eddy Viscosity.

Eddy viscosity effects shall be discussed in four stages. The use of Reynolds averaging

in the present unsteady flow situation is examined in §B.3.1. The selection of an algebraic

turbulence model is discussed in §B.3.2, while §B.3.3 justifies the use of eddy viscosity over

the entire boundary layer. The sensitivity of the unsteady flow features and loss mechanisms

to the levels of eddy viscosity is assessed in §B.3.4.

B.3.1. Reynolds averaging in unsteady flow.

Conceptually, the unsteady Navier-Stokes equations, written below in tensor notation,

can describe fluid motion across the laminar, transitional and fully turbulent regimes.

O 0; D-u + 1 a Oni +  U (B.08)
824 Dt a;i Re Oi zaxi Ox;

In practice however, (B.08) cannot be used to simulate transitional and turbulent flows

at high Reynolds numbers. In such flows, energy dissipation takes place at small spatial

and time scales (Kolmogoroffmicroscales) that decrease inversely with the Reynolds number

(Tennekes and Lumley, 1972):

rl* ~ R-3/4* R3  
(B.09)

7* ' R - 1 / 2

Therein lies the problem for computation of turbulent and transitional flows such as those

in turbomachinery. For instance, a simulation at a Reynolds number of 500,000 needs to be

able to resolve flow features as small as 0.00005 chords in order to correctly capture the

dynamics of the flow. In practical applications, this problem is circumvened by splitting

the flow into two components. The first is a deterministic velocity field Ui of engineering

interest. The second component, u's, contains the intermittent fluctuations of the turbulence,

and satisfies the following criteria with respect to the ensemble-averaging operation :

< u 1i > = 0

(B.10)

<Ui + u' >< Ui + u'j > = UiUj+ < uliulj >

Ensemble-averaging the full Navier-Stokes equations yields what is commonly known as

the Reynolds averaged form of the Navier-Stokes equations :

DU- - P + 1 Oui+ ou < Ui > (B.11)
Dt Ox Oxi Re Oaj Oi ) J
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The closure of (B.11) is provided by expressing the turbulent shear stresses < u'iu' > as

the product between the deterministic flow gradients and an eddy viscosity field vt:

< u'iu'j >= = (B.12)

The Reynolds-averaged Navier-Stokes equations and their derivation are well-known.

They have been restated herein for the purpose of questioning the application of the Reynolds-

averaged form to a flow where the deterministic components are themselves unsteady. It is

straightforward to prove that a sufficient condition for (B.11) is:

< Uiu'j >= Ui < u'j >= 0 (B.13)

Even when the deterministic component Ui varies in time, (B.13) holds provided that

the time scales associated with the unsteady "deterministic" flow are larger than the time

scales associated with turbulent fluctuations (B.09). In the case of unsteady flow induced by

upstream rotor vortices and wakes, we can distinguish two deterministic time scales. The

first is associated with the blade passing period, herein approximately 0.3 convective time

units. The second scale is associated with the interception of the vortical disturbance by

the stator blade leading edge. It is approximately equal to the thickness of the disturbance

divided by the inlet velocity. Herein, this scale is of the order of 0.1 convective time units.

Compressor blading Reynolds numbers are usually between 200,000 to 1,000,000 (Mayle,

1991). This corresponds to a turbulence time scale of the order of 0.001 time units, which

is much shorter than both of the above deterministic scales. Therefore, the use of Reynolds

averaging and turbulent viscosity in the present investigation is justified.

B.3.2. Selection of turbulence model

The use of eddy viscosity makes the Reynolds-averaged Navier-Stokes equations compu-

tationally tractable, since /nut is usually an order of magnitude or more larger than the

physical viscosity 1/Re. The eddy viscosity is given by semi-empirical relationships involv-

ing only the deterministic flow components, and commonly referred to as a turbulence model.

There is no turbulence model specifically tailored to the unsteady flow from rotor/stator

interaction. For this reason, the following two commonly used turbulence models have been

considered:

e The Baldwin-Lomax algebraic model (Baldwin and Lomax, 1978).

e The K-E model (e.g. Launder and Spalding 1983; Benocci, 1991).
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The K-E turbulence model is based on a rational representation of the dynamics of the tur-

bulent quantities. However, its computational implementation is fragile, and rather sensitive

to the several empirical constants appearing in the E equation (Benocci 1983).

The Baldwin-Lomax model is robust. It is based on mixing length and shear layer con-

cepts (Prandtl 1925, White 1974), that seem appropriate for wake and overtip leakage flows.

The model has been extensively applied to boundary-layer, separated and shear flow problems

with reasonable accuracy (e.g. Sedlar 1993, Degan and Schiff 1986). Since the more complex

K-E model offers no particular advantages here, it was decided to use the Baldwin-Lomax

formulation for computing the turbulent viscosities.

B.3.3. Time and spatial ranges for eddy viscosity.

In the present work, turbulent viscosity is used at all times and points of the boundary

layer. The rationale for this choice is as follows. Experiments by Dong and Cumpsty (1990a),

as well as Schlichting and Das (1970), indicate that the entire SS boundary layer may be

considered turbulent when the free-stream turbulence level exceeds a certain critical value.

For the cascade used by Schlichting and Das (1970), which is fairly similar to the one here,

this critical turbulence level is about 2.5 percent (Figure B.4).

0
Chordwise
distance 0.2 -
x/c Laminar

0.4 - Turbulent

0.6

0.8

1 2 3 4 5 6 7 8 9
LaminarbuLaminare T Turbulence %
bubble crit

Figure B.4. Positions of separation, reattachment and transition versus free-stream
turbulence intensity (Tu) for a NACA65 cascade (o = 1.0, 01 = 500,3p = 400). Reynolds
number of 160,000. Reproduced from Cumpsty (1989)..

In the multistage environment, free-stream turbulence levels are likely to be above this

critical value. Wisler et al. (1987) have measured turbulence levels of 5% in an embedded
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stage at design speed away from the casing and the wakes. These levels increase to 10%

at reduced mass flow to the left of peak efficiency. Near the endwalls and in the wakes,

turbulence levels as high as 20% have been observed. In light of Figure B.4, such data

indicates that the global use of eddy viscosity is justified for embedded stage simulations.

B.3.4. Sensitivity to eddy viscosity.

The use of turbulence modeling leads to some uncertainty in the computed flows, that

stems directly from the empirical nature of the correlations used to compute the eddy vis-

cosity. It is important to assess the degree to which eddy viscosity variations impact the

unsteady flow and the loss changes associated with upstream wakes and vortices.

Computational experiments using the baseline turbulence model, indicate that two generic

mechanisms are responsible for changes in stator performance. The first is recovery of up-

stream wakes and tip vortices. The second is normal displacement of boundary layer fluid

under the effect of the normal velocity disturbance associated with these wakes and vortices.

Both mechanisms are of convective nature. In principle nevertheless, their effect can be

influenced by turbulent diffusion. The likelyhood for this shall be assessed individually for

each mechanism, as follows.

Sensitivity of Recovery. As shown in §3.3 and §5.3, most of the wakes/tip vortex

energy is recovered, because recovery occurs over a shorter distance than required for dis-

sipation with the present turbulence model (based on mixing-length/shear layer concepts).

Hypothetically, recovery benefits might be reduced if turbulent diffusion rates are sufficiently

high.

This possibility has been assessed by carrying a calculation of tip leakage vortex interac-

tion identical in all points to case ID/TL of Chapter 4, except that the overall eddy viscosity

level is held to 1/1000. This corresponds to approximately two-fold increase in turbulent dif-

fusion rates with respect to the calculation used to demonstrate tip vortex recovery. This

constitutes a sufficient upper bound for the uncertainty. The performance effects of recovery

in the high-diffusivity case are compared to the baseline ID/TL case in Table B.1.

The passage loss numbers in Table B.1 indicate that a two-fold increase in diffusivity

with respect to the value given by the Baldwin-Lomax model does not prevent the recovery

of the tip vortex. This low sensitivity is due to the short lengthscale over which recovery

occurs (-0.25 chords) relative to turbulent diffusion. As discussed in §3.3, experimental

data indicates that diffusion lengthscales at a representative distance behind the rotor are

larger than this value. Therefore, our findings with respect to recovery are not dependent
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upon the particular turbulence model used.

Baseline Increased

Loss effect ID/TL diffusivity
(Chapter 4) vt=10- 3

Passage loss increase Ayp -0.06 pts -0.08 pts

Mixing loss difference AYm +0.28 pts +0.29 pts

Table B.1. Passage loss increase and inlet-to-exit mixing loss difference for baseline and
increased-diffusivity ID/TL cases. A low-diffusivity calculation is not necessary for the
purpose of assessing the sensitivity of recovery to the turbulence model.

Sensitivity of Boundary Layer Distortion. As shown in §3.3 and §5.2, the perfor-

mance effect of boundary layer response is tied to the magnitude of the spanwise vortical

disturbances induced by the wakes/tip vortex. The term-by-term examination in §5.1 indi-

cates that turbulent diffusion plays almost no role in the production of these disturbances.

Normal displacement of vortex lines is the primary mechanism for disturbance production.

In this light, there is an indirect connection between eddy viscosity and vortical dis-

turbances. Eddy viscosity determines the amount and distribution of base vorticity in the

steady flow boundary layers. In turn, this determines the magnitude of vortical disturbances

arising in the boundary layers. This dependence is captured for instance by the high-loading

computational experiment in §6.2.1.

The insensitivity of boundary layer response to the choice of turbulence model (base flow

being held constant) is shown by a numerical experiment identical to the baseline VD/TL

case except that (a) eddy viscosity is reduced by 50% with respect to the baseline; and (b)

the density of the computational grid has been increased by a similar factor. The increase

in grid resolution was not sufficient to prevent aliasing noise from the lowered diffusivity.

This noise prevents exact comparison of losses, but not of unsteady flow features, which are

virtually identical to those from the baseline calculation. This can be appreciated by com-

paring Figure B.5 to Figure 5.3. Because of the increased resolution, this computational

experiment represents a substantial investment in computational resources, and could not be

repeated to eliminate the noise.

In summary, boundary layer response effects are not influenced by the choice of turbulence

model, provided the base flows used have realistic boundary layers. This has been verified

in Appendix H.
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Figure B.5. Disturbance spanwise vorticity Awz on the 91% span blade-to-blade plane
from a 50% decreased-diffusivity, increased-resolution calculation otherwise identical to
VD/TL. This case: 585 element, 33 plane grid. Case VD/TL: 380 element, 17 plane
spectral grid.

B.4. Assessment of the Constitutive Assumptions.

A number of assumptions have been made that allows to reduce the problem of interaction

with upstream rotor vortices to its essentials. These are (1) planar stator cascade. (2) rotor-

stator blade ratio of 1:1, (3) incompressible flow, and (4) straight stator blades.

Since these assumptions constitute a departure from the environment in aeronautical

compressors, their impact on the computed changes in performance shall be considered in

the same order. The use of a straight stator is a constraint imposed by the computational

approach. The flow angle at the inlet is set to maintain constant incidence to the stator blade.

The resulting base flow is free of corner separation, while retaining features typical of 3D

compressor flows (spanwise velocity component, streamwise vorticity). These are discussed

in Appendix G.

B.4.1. Annulus curvature.

Swirl and annulus curvature in typical compressor take values that make centrifugal

and Coriolis forces important in general terms. The role of these forces in the interaction
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between stator and wakes/tip vortices is a priori unknown. The use of a planar cascade in

the present investigation precludes explicit consideration of centrifugal and Coriolis effects.

The computed results can be however interrogated to indicate their significance.

In an annular coordinate system (r, 0, z), the centrifugal and Coriolis accelerations acting

on a fluid particle are :

2 vrve
acentrifugal = acoriolis + (B.14)

r 7

The centrifugal and Coriolis forces associated with the presence of unsteady flow can be

expressed in terms of disturbance flow quantities :

2veAve + (Ave) 2
aacentrifugal = - Ra e

(B.15)

Av,ve + v,Ave + Av,Ave
Aacoriolis = + Ra e

Ra

Equation (B.15) states that regions of non-uniform swirl, such as wakes and tip vortices,

are subjected to additional radial forces. Radial motion of fluid in these regions causes

tangential drift by virtue of Coriolis forces. The disturbance centrifugal and Coriolis forces

are largest at the inlet of the stator (highest base flow swirl). Their magnitude can be

estimated using (B.15) and the unsteady flowfield computed with a planar cascade (This

involves the assumption that curvature effects do not lead to radical changes in the unsteady

flowfield). Figures B.6a-b show the magnitude of these disturbance centrifugal and Coriolis

forces. An aggressive value of 5.0 chords for the annulus curvature radius Ra is used in this

estimate (Ra = 10 for the LSRC).

Figure B.6a indicates that the disturbance centrifugal force is the largest in the tip

vortex core (as expected). The force is however too small to substantially affect recovery

(which occurs over a distance of 0.25-0.33 chords) or boundary layer response (which occurs

on a scale local to the boundary layer). Figure B.6b indicates that the disturbance Coriolis

force is even smaller. Therefore. the planar cascade assumption is adequate for the flow

problem under consideration.

It is to be noted that swirling flows also exhibit other dynamic phenomena of interest.

Kerrebrock (1977) has shown that small-amplitude shear disturbances in strongly rotating

flows are not convected; rather they propagate slowly and exhibit oscillations with a period

comparable to the rotation period of the bulk flow. At high subsonic Mach numbers, Greitzer

and Tan (1986) have shown the presence of significant non-convected disturbances coupled

to circumferential non-uniformities such as wakes.

Appendix B. Validation 149



Appendix B. Validation 150

.55

.150

.132

.114

.095
.33

.077

.059

.041

.023

.12
.005

-.014

.032

.050

-. 10
.55

.100

.087

.075

.062
.33

.049

.036

.024

.011

.12
-.002

.015

-.027

-.040

-. 10
-.25 .02 .28 .55

Figure B.6a/B.6b. Estimate of Aacentrifugal (top) and Aacoroils (bottom) on the 91% span blade-
to-blade plane. This plane passes approximately through the center of the tip vortex (thus showing
the strongest disturbance accelerations associated with radius curvature). Estimates are based on
the disturbance flowfield from case VD/TL.



B.4.2. Blade count ratio.

With a 1:1 rotor-stator blade count, every stator passage "sees" a single, identical rotor

disturbance at any given time. This allows clear identification of the unsteady phenomena,

with a minimum of computational effort. Aeronautical compressors however, have non-

integer blade ratios for the purpose of reducing tonal noise. The unsteady flow in this case

is different from the 1:1 case, because of a circumferential variation in the timing of wake

interception. This leads to a pattern of unsteady flow over the annulus, that has a period

that is a multiple of the blade passing frequency.

The unsteady flow mechanisms shown here to cause a change in performance are however

of a local nature. Individual unsteady flow features (boundary layer vortices, vortex cores) do

not interacting with each other, or with those in the next blade row, to a significant extent.

Therefore, the performance impact of each individual wake (or a vortex) is not influenced by

that of the other wakes (or vortices).

As a result, the changes in performance for non-integer blade ratios can be inferred from

those computed for an 1:1 ratio by simply accounting for the different average number of

unsteady features per stator passage. This is equivalent to scaling the results computed here

by the blade ratio NR/Ns.

B.4.3. Compressibility.

The present investigation assumes incompressible flow. The flow in the embedded stages

of core compressors of interest here, is usually subsonic (Wisler 1985, M 1=0.55 for stator

VII of the E3 engine). In the subsonic regime (M 5 0.7), cascade losses are practically

independent of the Mach number (Cumpsty, 1989). Actual pressure and potential fields

can be inferred from the incompressible solution by means of the Prandtl-Glauert trans-

form. For compressor stages operating in this range, incompressible flow constitutes a valid

approximation.

However, for engine components operating in the transsonic/supersonic regime (front

compressor stages, turbines), shocks can bring aspects of blade row interaction not captured

in the present study.
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Appendix C. Computational Procedure 153

Appendix C

The NS3D

Computational Procedure

Time and Spatial Discretization

Appendices C to F describe an efficient and accurate computational method, referred to as

NS3D, for solving the unsteady, three-dimensional incompressible Navier-Stokes equations

S- ux w = -Vpt + V(vVu)
(C.01)

V-u = 0

Subject to the following boundary conditions :

solid surfaces

inlet boundary

periodic boundary

exit boundary

: u = u,(s)
Vps n = 0

: u =u(y,z,t)

Vp,. n = 0

: u(', Y + S, z, t) = u(, , z, t)

pt(X, y + S, z,t) = pt(, y, z, t)

: Vp, - n = 0

Equation (C.01) encompasses both the Reynolds-averaged and direct-simulation cases by

representing the viscosity field as follows:

(C.02)
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v = 1 + M(up, pt) (C.03)
R

Where M is an algebraic turbulence model used to calculate the eddy viscosity in the

case a Reynolds-averaged solution is desired. Setting M = 0 executes a direct simulation

of the full Navier-Stokes equations. Available computational resources limit the Reynolds

number that can be achieved in direct simulations. To date, 3D stator unsteady flow direct

simulations have been carried for Reynolds numbers up to 10,000.

The NS3D computational procedure can also perform two-dimensional simulations as

a special case (§C.17). Direct 2D flow simulations have been carried out for Reynolds

numbers of up to 100,000 in compressors (wake-stator interaction, Valkov 1995) and 80,000

in turbines (steady flow, Bury 1996). Extensions of the NS3D computational procedure have

been used in studying blade loading response to upstream density non-uniformities (Deregel

1995, Ramer 1996), and simulating micro-engine passage flows using a cylindrical coordinate

system formulation.

The NS3D computational procedure is described in four appendices. Appendix C

presents the time and spatial discretization upon which the procedure is based. Appendix

D describes implementation innovations that allow turbulent and direct 2D/3D simulations

to be performed using modest computational resources. Appendix E outlines the algebraic

turbulence model used to study the problem of vortex(wake)-blade interaction. Finally,

Appendix F presents a disturbance technique for unsteady problems that is equivalent to

solving the Navier-Stokes equations (C.01), but provides better insight and control of the

flow mechanisms.

C.1. Distinctive Features of the NS3D Procedure.

The NS3D method is based on the isoparametric spectral element scheme developed by

Patera (1984) and Korczak (1985) for direct solution of the two-dimensional Navier-Stokes

equations, and later extended by Tan (1989) to laminar three-dimensional flows. The new

method builds upon this previous work in two respects :

* Size and efficiency. A relatively large number of x-y spectral elements (300 - 600)

and spanwise planes (17 - 33), is necessary to capture the details of the highly three-

dimensional unsteady flow under investigation. Traditional spectral element algorithms

require substantial computer resources for problems of this size. This is due to the large

operator matrices present in the traditional formulation.
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The NS3D method reduces the memory requirements by a factor of N2 , and the

number of FLOPs by a factor of N, thereby making the present study feasible from a

practical standpoint. The memory savings are illustrated in the following table

* Variable viscosity. The formulations of Korczak (1985), Patera (1984) and Tan

(1989) assume that the viscosity of the fluid is constant. This is adequate for direct

flow simulations. However, when solving the Reynolds-averaged equations of motion,

the viscosity field may vary by several orders of magnitude over short distances. The

NS3D method takes this variation into account.

In order to reduce the complexity of the presentation, we shall assume a priori knowledge

of the viscosity field "v", until the turbulence model is introduced in Appendix E. We shall

first focus on the spanwise discretization of the flowfield, which has two distinct stages - a fully

spectral expansion in the spanwise direction, followed by a spectral element discretization in

the x - y plane (Figure C.1). The spanwise discretization takes advantage of the lack of

geometric variation along the span of the blades (cf.§A.1), and shall be described first.

C.2. Spanwise Discretization.

The spanwise discretization is based on a fully spectral eigenfunction expansion of the

flow variables (Tan, 1989):

Nz-2

u(z,y, z) = fitm(, y)F, (z)

Nz-2 (C.04)

p(z, y, z) = 3m(, y)Gm(z)

Operator matrix class Traditional implementation NS3D implementation

Elemental operators size - 8NEN 4  not required

Condensed matrices size - 6NzNEN 4  size - 5NEN 4

Solver matrices size , 8N(NEN) 2 size - 4(NEN) 2
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This expansion allows to reduce the three-dimensional Navier-Stokes problem into a set of

independent two-dimensional problems that are less intensive numerically. For this purpose,

the modal functions F, and G, are chosen to be solutions of a classical Sturm-Liouville

problem :

dF A X Fm (C.05)

with the appropriate boundary conditions

Fm =0 z = ±1.

(C.06)
dGm

= 0 z = +l.
dz

The analytical solutions of (C.05)/(C.06) are the ordinary sine and cosine functions. The

positive sign on the right-hand side of (C.05) requires to cast these in complex notation :

F,(z) = cosh(Am,v,z) m > 0

AM'v = t-I M) > 0

G,(z) = cosh(Am,pz) m 0 (C.07)

Am,p = zm r m> 0

A transformation to extract the modal content from a given spanwise distribution is nec-

essary to use the expansion (C.04). This implies the use of a Fast Fourier transform applied

to a set of collocation planes that are uniformly spaced in the z-direction. Instead, it is de-

sirable to cluster the collocation planes near z = +1 in order to resolve the endwall unsteady

boundary layer in a more efficient way. Given this consideration, it is more appropriate to

expand the modal functions themselves in series of Chebycheff polynomials :

Nz

Fm(z) = Z fimTi-_(z) (C.08)
i=1

Under this expansion, a choice of collocation planes that satisfies the discretization error

minimax criterion (Korczak, 1985), is the set of Gauss-Lobatto Chebycheff points in the

[-1; 1] interval. The Gaussian point distribution is illustrated in Figure C.01 and computed

according to :

ZI = - cos - r ;  = 1...Nz (C.09)
(N - 1)
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Figure C.1. Gauss-Lobatto Chebycheff distribution in one dimension (left,z-axis,index
"l") and in two dimensions (right,x-y plane,index "jk").

Taking the the value of a given flowfield variable ul(z, y) on the N collocation planes

zi, makes it possible to determine the N - 2 spanwise modes iim(z, y) in (C.04) by means

of an FFT-based linear transformation (Tan, 1989). In shorthand, this transformation shall

be represented by the operator S,. When applied to a collection of discretized values along

the spanwise direction, ,m returns the m-th mode of the distribution. The entire collection

of modes can be obtained according to :

m=1..Nz-2

= (lm
The above operation shall be referred to as real-to-modal transformation, and can be

implemented as a fast [.] matrix-times-vector multiplication. The inverse, or modal-to-real

transformation allows to obtain the values of u at the collocation planes from the modes :

{Ui} = [z- ] fm}

Z

y

z=N =+1

=Nj=N

=Nj=N-1
j=N- * * * * j

0 Pjk 0

z-0 j=3

j=2 * 0
x

j=k=l k=N

k=2 k=N-1

1=2
1=1 z k=3

il

l= 11..Nz

(C.10)

(C.11)
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For reasons of computational efficiency, it is necessary to use Nz = 2n + 1 collocation

planes in the spanwise direction. In general, 17 to 33 collocation planes are required for

representing the unsteady flow of interest here. It is to be noted that the number of z-modes

is equal to the number of planes less two, since the two endwall boundary conditions have

already been accounted for by an appropriate choice of the modes (C.06).

C.3. X-Y Plane Discretization.

To represent the distribution of a given flow variable ul(x, y) over a computational x-y

plane, the latter is divided into a number of sub-elements of approximately regular shape.

These elements are clustered in regions of high flow and geometrical gradient. A local curvi-

linear coordinate system ((, i) is associated with each element, as shown in Figure C.02.

Inside each such element, the distribution of the flow variable is represented as a direct

expansion in series of N-th order Lagrangian interpolants :

NN

u((, 7) = j =k,ihj(C)hk() (C.12)

j=1 k=1

To determine the series coefficients ujk,i, an array of NxN collocation points ((, r)jk,i is

used within each element. Although the placement of these points can be arbitrary, the use

of the Gaussian distribution shown in Figure C.02 results in the following property :

(Cn) hm(7n) = n;j 1 i: j (C.13)

Equation (C.13) implies that :

iki = U(C3 'k)i (C.14)

i.e., that the coefficient of the (j, k) mode is equal to the value of the variable at the local

coordinate point ((j, Gik). This is a very useful result, which allows to cast the x-y expansions

in terms of real values. Thus, real-to-modal transformations are not required on the x-y

planes. Property (C.14) also guarantees a CO continuity between adjacent elements, and

allows to interpolate geometry and flow variables in the same fashion.
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Figure C.2. Collocation points and local coordinate system used for expansion of the
flow variables inside a spectral element.

Since the collocation points follow a Gaussian distribution, the Lagrangian interpolants

can be constructed as series of orthogonal Chebycheff polynomials :

hm(C) = tmnTn- ( )
n=1

(C.15)

where :

2
tmn = Tn-l(Cm)

(N - 1)Cm C

C 1; Ci = 1

12

m 1,N

m = 1, N
(C.16)

It can be shown that the above discretization has a convergence rate that is still exponen-

tial in N, albeit slower than that of a fully spectral expansion (Korczak, 1985). In practice,

the best results are achieved when the order of the elemental expansion, N, is odd and com-

prised between N = 5 and N = 9. For N < 3, the convergence rate becomes algebraic. For

values of N of 11 or more, high-order terms truncation error compromises the accuracy. In

the present work, a seventh-order expansion has been used throughout.

159



C.4. Construction of a Spectral Element Grid.

The accuracy of low-order methods such as finite-element (FE) or finite-volume (FV) is

strongly dependent on the density of the grid over which the flowfield is being discretized.

Therefore, it is not surprising that traditional mesh generation has been extensively studied

as a means to obtain more accurate and efficient solutions. With the present method, proper

spectral element gridding of the x-y plane is equally important, albeit for subtler reasons.

The behavior of the spectral element method versus grid resolution is quite different from

that of FE/FV methods. In simple terms, one can distinguish between "good" and "bad"

spectral grids. At a given Reynolds number, any "good" grid leads to the same solution,

which attests for the accuracy of the method. As the Reynolds number is increased, a "good"

grid becomes "bad". This can be easily detected by visual inspection, which shows saw-tooth

oscillations at the element boundaries. This phenomenon, shown in Figure C.03 is due to

the aliasing of high-order modes, which are necessary to resolve increasingly smaller flow

scales at high Reynolds numbers.

.200

.100

.000

-.100

Vorticity contours on midspan plane -22:4:22

.000 .100 .200-.100 .300

Figure C.3. Aliasing noise resulting from insufficient spectral resolution at a given
Reynolds number (direct simulation, Re=10,000).
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"Bad" grids cannot be improved by simply increasing the order of the local expansion

beyond N = 7. Such an increase affects mostly the intrinsic accuracy at the element bound-

aries, but does little for the resolution at the element center. Instead, it is necessary to

cluster the elements in regions of high gradient, and reduce the elemental size overall.

Conceptually, it is possible to produce a "good" grid by simple "proliferation" of spectral

elements. In practice, one is limited by the available computational resources. Thus, it be-

comes increasingly difficult to adequately subdivide the computational domain into spectral

elements at high Reynolds numbers. The following set of rules can help with this task:

* Use small, clustered elements in regions of high geometrical gradient such as the leading
edge. The characteristic element size "g" there should be comparable to rle, where rie
is the radius of curvature of the leading edge.

* Use thin layers of elements in the boundary layer region. The elemental thickness at
the surface should be comparable to that of the viscous sublayer, i.e. 0+ , 10.

* In the Reynolds-averaged case, use a characteristic size of the order of rd for the rest
of the elements (rd is the smallest macroscopic length scale present in the upstream
disturbance, i.e. wake thickness). For rotor vortices and wakes, an rd between 0.05c
and 0.10c is usually adequate to resolve the bulk flow.

* Keep the element edge angles as close to 90 degrees as possible. This requirement is
especially important in regions of high gradients.

* Use an orderly arrangement of the elements, based on the presence of common bound-
aries. This is necessary to minimize the size of the condensed system matrices (cf.
§D.5).

* Use the same abscissa for opposite collocation points on the upper and lower periodic
boundaries. This allows to implement the periodicity boundary conditions by using
the same global node index for such points.

The spectral grid used in the NS3D computational scheme is based on an arrangement

known as H-grid. The alternative "C" and "0" arrangements cannot be made to meet rule

# three above. Hybrid arrangements do not allow efficient ordering of the elements.

A grid generation package, NG2, has been developed that automatically generates spec-

tral H-grids around a variety of compressor and turbine geometries according to the foregoing

rules. The grid generation package is an essential element of the NS3D computational pro-

cedure. It uses a fast, robust and original algorithm, based on metric-preserving Euclidean

transformations, rather than on conformal mappings or Laplace solvers. Thus, it is of interest

to describe the NG2 algorithm, which proceeds as follows :
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A) Specify the computational domain dimensions and boundary geometry. Specify the

desired grid density in the four major domain regions : inlet, blade-to-blade, exit and

boundary layer.

B) Construct a rectangular template having NH vertical and Nv horizontal dividers as

shown in Figure C.04a. The vertical dividers cut the horizontal dividers into into

NH x Nv horizontal segments of length IH,i,j. Reciprocally, the horizontal dividers

cut the vertical dividers into into Nv x H vertical segments of length lv,i,j. Within

a rectangular template, it is easy to position the dividers in such a manner that the

matrices of segment arclength ratios :

[-Hri,j = IH,ij/ E H,j

(C.17)

[1],j = LVj , ,j

corresponding to the desired spectral element densities in each of the four major domain

regions. The periodicity boundary condition requirements are met by setting :

[ *]i,1 = [EkiNH (C.18)

C) Make an arbitrary NH X Nv meshing of the computational domain, such as the one

shown in Figure C.04b.

D) Determine a set of points Qi,j along each vertical divider "j", such that the arclength

ratio matrix of the resulting vertical arcs

[=Q],j ij Lij (c.19)

is equal to [E*]. Reconstruct the "i" horizontal dividers along the set of points Qi=c,j

using cubic spline interpolation (Figure C.04c).

E) Determine a set of points Pi,j along each horizontal divider "i", such that the arclength

ratio matrix of the resulting horizontal arcs

[Hj = H,ij pHiJ (C.20)
i

is equal to ['E]. Reconstruct the "j" vertical dividers along the set of points Pi,j=c

using cubic spline interpolation (Figure C.04d).

F) Calculate the arclength ratio matrix for the new horizontal segments [EQ]. Repeat

steps (D), (E) and (F) until the following criteria are satisfied :
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(C.21)
Im[z-] - [] I E<

max([*] - [EQ]) _ ,

A B
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Figure C.4. Metric-preserving algorithm for the subdivision of the computational do-
main into spectral elements.

Usually, this scheme converges to residuals of 10- 5 to 10- 4 in a few iterations. It has also

the extra benefit of weakly preserving the right angles in the template, thereby resulting in

spectral elements that are rectangular nearly everywhere.

The second stage of the spectral gridding is to position the collocation points (P)k,i

inside the elements. This operation is no less critical, because if a collocation point lies

a few percent off its exact Gauss-Lobatto Chebycheff locus in the local coordinate system,

there will be similar error in the calculation of the local first-order derivatives. This renders

the intrinsic accuracy of the spectral expansion meaningless, and can be easily observed in

numerical tests.

While it is straightforward to position the collocation points in rectangular elements

(cf. Figure C.01), there is no direct analytical way to do so for a general element. The

NG2 package solves this problem by applying the above metric-preserving technique within
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each spectral element. In this case, the target arclength ratio matrices are set to contain a

Gaussian distribution scaled from the [-1, +1] interval to the [0, 1] interval :

[-t]i,j = cos (N-)
PV*i'j 2 2 (N-1) [i,j] e [1, N]2

The final stage of the spectral gridding is to index the ensemble of collocation points. In

the following, collocation points shall be referred to as nodes. Five indexes are constructed,

according to a scheme illustrated in Figure C.05 :

F EC: Periodic Boundary
1 .9 11 1 2.A 2

C
27 29
- b 39

j=N Z 1419 24 30 O 0 15

3 00 0 8 0 o 1

s O O OO2 B

j=2 2 01 6 0 0 43 46

1 7
j=1 27 29

9 - 25
k=1 11 13 15 23 A S Global Node

E k=2 k=3 k=N O Internal Node

FA=EC: Periodic Boundary 23 Global index of Global Nodes

AB : Suction Side 10 Elemental index of Global Nodes
A=C: Leading edge 8 Elemental index of Internal Nodes

Figure C.5. Indexing scheme for elements, nodes,
Note the indexing of the periodic boundary.

global nodes and internal nodes.

* An elemental index ()'k referring to the ((C, 7k) node on the i-th spectral element. This
index provides the most direct manner to access a spectrally discretized value. The

size of this index is NEN2

* An elemental global node index ()', referring to the g-th global node on any element
i. Global nodes are nodes on the element boundaries, and are shared between two and
four elements. The size of this index is approximately 4N - 4.

* An elemental internal node index ()', referred to the e-th internal node on any element
i. Internal nodes are local to the elements. The size of this index is (N - 2)2.

(C.22)
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* A global index of global nodes (), which provides a unique pointer to each global

node. The size of this index is approximately 2NEN.

* A pointer table (G)g,i, linking the the elemental global node index () on element i to
the global index of global nodes ()G.

* An index, (),, containing the indices of those global nodes at which velocity Dirichlet
boundary conditions shall be prescribed. Such nodes usually belong to the blade surface
and the inlet. The size of this index is approximately (2Np + N 1 )(N - 1).

The last five indexes are used for static condensation and for efficiently solving the global

system equations (cf. §D.1-D.4). The global node indexing scheme shown in Figure C.05

serves the purpose of minimizing the diagonal bandwidth of the global system matrices. More

efficient, but complex, indexing schemes are possible.

C.5. Three-Step Time-Marching Technique.

A fractional time-splitting scheme (Orszag and Kells [34]) is used to advance the Navier-

Stokes equations forward in time. Using the flowfield u" at time t, the scheme permits to

obtain the flowfield un + l at time t + At in three fractional steps :

(1) Convective step, which extrapolates the change in velocity from time t to time t + At
due to convective effects only :

t+At
u* = un+t u x wdt (C.23)

(2) Pressure step, which corrects the velocity update from the convective step

u** = u* - Vpdt (C.24)

using a pressure field pn+l such that the updated velocity satisfies continuity.

(3) Viscous step, which corrects the velocity update from the pressure step to take into
account dissipation effects, and which imposes the Dirichlet boundary conditions.

u + 1 = u** + V(vVu)dt (C.25)

A solution of the Navier-Stokes equations is obtained by starting from an approximate

velocity field uo, and advancing the solution with a global time step At until a steady state

or a periodic unsteady flow is achieved.

The time error of the fractional scheme depends upon the accuracy with which the individ-

ual integrals in (C.23) to (C.25) are evaluated in the time domain. The NS3D computational
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procedure uses a time discretization scheme which provides an accuracy of order O(vv/,t)

near the boundaries, and of order of O(At) elsewhere.

The time step used in the present work is dictated by the need to resolve motion at the

fine scales. For Reynolds-averaged simulations, At must be an order of magnitude less than

the leading edge radius of curvature rle. This results in time steps between 10 - 3 to 2 10 - 3 .

The viscosity field "v" takes values of the order of 10- 4 to 10- 3 . Consequently, the time error

in the NS3D solutions is within acceptable ranges. Therefore, it was not deemed necessary

to use higher-order time discretization for the pressure and viscous steps.

C.6. Time Discretization of the Convective Step.

A fourth-order Runge-Kutta scheme is used to evaluate the integral in equation (C.23).

This allows to calculate the spatially-discretized updated velocity, Ujk,i,l over all the nodes

(P)jk,i and planes (z)I, in an explicit manner :

n+1/4 n At
Ukil = k,, (un kil

n+1/2 = k, At (un+1/4 X w(On+1/4) (C.26)

uk,4 = U k,i,l + At(un+1/2 X Wn+l/2)jk,i,l

uk,, = + (u x )n + 2(u x w)"+1/4 + 2(u x )n+1/2 + (U X W)n+3/4 j
Ujki,1 = Ui,i,l - ±k'i'l

Given that the spectral expansion in the x-y plane is continuous to order Co, the vorticity

at the element boundaries might present a discontinuity. In practice, this is overcome by

averaging the z and y partial derivatives at the boundary between two adjacent elements.

C.7. Time Discretization of the Pressure Step.

A backward Euler scheme is used to evaluate the time integral in the pressure step (C.24)

u** = u* - AtVp n +l  (C.27)

The pressure field in (C.27) is determined by the requirement for the updated velocity to

satisfy the continuity equation :

V. u** = 0 (C.28)
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In practice, u** cannot be obtained explicitly since the pressure does not appear in the

continuity equation. The lack of coupling between velocity and pressure is one of the major

issues in solving the incompressible Navier-Stokes equations. One way around it is to use of

a control volume technique, which is based on the following identity :

ff V -(pu**)dV = JJ PV ** udV + ** VpdV (.29)

By virtue of the continuity equation, the first right-hand term of (C.29) is identically

zero. The Co integrand continuity, allows to apply the divergence theorem to the left-hand

side of (C.29), thereby yielding:

f u** VpdV = pu** -dS (C.30)

By substituting the expression for u** from equation (C.27) into the above, we obtain a

well-posed, three-dimensional integral equation for the pressure field :

- ff At(Vp"+i)
2dV =

(C.31)

-ff u* Vp+dV + pf + u* -dS - At p+ 1Vp' . dS

Equation (C.31) is subject to the boundary conditions (C.02), which basically make the

last left-hand term drop out. It is furthermore possible to reduce this problem to a set

of NM independent two-dimensional problems by using the eigenfunction expansion of the

flow variables in the spanwise direction from §C.2. For this purpose, components of (C.32)

containing spanwise derivatives shall be first integrated by parts :

2L/ 2 dV = - p d=+1 dV

(C.32)

- w dV = - dxdy =+1 + p dV
f Z z=-1 8

It is to be noted that the terms in square parenthesis above drop out by virtue of the

boundary conditions (C.02). Substituting (C.32) into (C.31) allows to write the 3D integral

equation for the pressure in the following form :
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-fdz At 2 + y -p , 2p P ddy =

(C.33)

- dz f pn ' pn+l + p ddy +O dz pn+lu* .dn

Substituting the expansion (C.04) into (C.33), and multiplying the resulting equation

by the ,m operator defined in (C.10), casts the pressure integral equation into the modal

domain. Using the fact that the expansion modal functions Gm(z) are eigensolutions of

(C.05) allows one to factor out from this equation the z-summation term :

NM NM

fGmi Gm2 (z)dz... (C.34)
ml m2

Owing to the orthogonality of the modal functions, this term is non-zero only when

mi = m2 = m. As a result, the modal-domain 3D pressure integral equation can be collapsed

into a set of NM independent two-dimensional integral equations for the modes "Pm" of the

pressure variable, taken over the spectral x-y plane "S":

Vm = 1..NM;

At )
2 + )2 - A2,(pm+1) 2 ddy = (C.35)

y ,0Jm mm +t m +Pm O2m} daedy+f Pm m* . dn

These equations shall be spatially discretized in §C.15 and solved for the modes of the

pressure variable. Using the inverse transformation 2- 1 allows to map the modes back in

the real domain and obtain the spatially discretized total pressure distribution pjk,i,1. Albeit

somewhat complex, this method offers a substantial computational advantage in comparison

to solving (C.33) directly.

C.8. Time Discretization of the Viscous Step.

In previous work (Tan 1989), the time-discretized viscous step has been implemented

using an implicit Crank-Nicholson scheme. However, an explicit forward Euler scheme was

found to be just as adequate. It was thereby used in the NS3D code, where it offers substantial

streamlining of the computational process. With a forward-time Euler discretization, to
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obtain un+ l one needs to solve the following three-dimensional vector diffusion PDE, subject

to the Dirichlet boundary conditions (C.02) :

u"'1 = u** + V ("Vu"+) At (C.36)

In practice, a standard variational formulation (Jeffreys & Jeffreys, 1972) of (C.36) allows

to improve the the global accuracy of the discretized velocity update in the sense of the

minimax criterion. Thus, the NS3D computational procedure solves, for each component

"un+li' of the velocity vector "u+ 1"', the following problem :

6ffJJ VAt (Vu"n')' + (Un+1)2 dV = 6 JJ 2unl u**dV (C.37)

The direct solution of this equation is quite a formidable task from a computational stand-

point. In the NS3D computational procedure this is accomplished by casting the problem in

the modal domain and, reducing it to a set of NM two-dimensional variational problems for

the velocity modes un+ '. This process is very similar to the one employed in the pressure

step. It starts by the following sequence of integration by parts, the purpose of which is to

make the first left-hand side term of (C.37) amenable to an eigenmode expansion :

(vu )dV = dz v ( ddy
2 2 (C.38)

+]dz]JV(j 2 dxdy + dz v(On ) dxdy

IdzJ V ( n+) 2 dJdy dz vun+1 d(2.3)
0z 2 (C.39)

d z - dzdy
d +l Ory Ou - 1 dzE' + Oz O

dzz O ddy dz] (u n+) 2  
2 ddy (C.40)

Equations (C.39) and (C.40) allow to re-write the variational form of the viscous step

(C.37) as follows :

8JJJI (U On+1 )2 (u n+1 ) 2 - AtUn1 n+1
vat )+y Oz2

(C.41)

+ 1+ 2 ) (un ) dV = 6 2n+**dV
2 O2 ( I V 6fff 2n+u*dV
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The integrands in the above shall be expanded in terms of spanwise modes using equation

(C.04). Using the fact that the modal functions satisfy (C.05) allows to rewrite (C.41) in the

following manner :

NM NM NM 1 f Zin+1 n+

_ -_ Fl (z)Fm2 (z)Fm3 (z)dz J At jl 2  m,3

ml m2 m3 1

+1 a2fi n +1  1 2 1 )-n+l -n+l

+ i 3 + - m1iA 2 ,, + 3 dn dy (C.42)+ i Oy Oy At 2 /" m

NMNM +l1

S1 Fm2(z)Fm3 (z)dz6 2Un+2 Ui 3 dxdy

m2 m3

It is not as straightforward as in (C.34) to factor-out the summations along of the eigen-

modes Fm. The complication arises from the presence of the triple product between modes

in the L.H.S. of (C.42), which makes it impossible to exploit eigenmode orthogonality. On

the other hand, the integral of this triple product satisfies the relationship :

+1 f $0 m1 = i m 2 
- m 3 ;m l 1

+Fml(Z)Fm2(z)Fm3 (z)dz M = ; 1 (C.43)
-1 = 0 otherwise

Inserting (C.43) into (C.42) and factoring out the orthogonal terms on the right-hand

side yields a set of NM independent variational problems for each of the unknown velocity

modes un
+ 1

Vm = 1..NM;

6ff At {V +( 2 ( +(1 + 1 p1") ( il)} dy (C.44)
( ex ( 2 At1 dzdy (C.44)

= 6ff 2fi i i l i dxdy

Where the term

+ 1  +1 -1

= 1±m2±m3 Fm2(Z)Fm3 (z)dz F F(z) (C.45)
m2 m3 -1 M

can be recognized as being the spanwise mean value of the viscosity field at the particular

(x,y) location. The modal-domain viscous step equation (C.44) basically states that the
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higher modes diffuse at a faster rate, as given by the term VA ,,. Any spanwise variation of

the viscosity field also modifies the diffusion rate of the m-th mode via the term i".

Before applying the x-y spatial discretization to the set of minimax problems in (C.44), it

is convenient to take the variational operator 6 inside the integrals. This yields the following

set of integral equations :

Vm = 1..NM;

At {m o + 4+1 +16)
s O (C.46)y y

+ + )i bin+& } dxdy = 6ff 60 '**dxdy

After solving (C.46), the velocity modes are mapped back to the computational domain

using modal-to-real transformation Q-1. This yields the discretized velocity distribution

jkil at time t + At and completes one time cycle.

C.9. Spatial Discretization: Partial Derivatives.

To implement numerically the time-marching algorithm outlined in §C.6 to §C.8, one

must address the issue of spatial discretization. This issue has two distinct aspects :

* Calculation of the discretized partial derivatives, needed for the convective step (C.26).

* Calculation of the various integral forms in (C.35) and (C.44) on the x-y spectral plane

in terms of discretized variables.

The approximation of the integral forms shall be dealt with in §C.10-§C.14. The partial

derivatives in the spanwise direction can be directly found based on (C.04) and our explicit

knowledge of the eigenmodes Fm :

Ou Nz-2

jk,i,l =E fik,i,mFm(zl)

(C.47)

0 2u Nz-2 Nz-2

ZIkil m,vUjk,i,mFm(Z1); VIIjk,i,l =mm()
m m

The partial derivatives in the x-y plane must be first calculated in each element's local

coordinate system (C,) (cf. Figure C.02) and then mapped into the global coordinate

frame using :
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uI 1 - y ¢ u p

{U} Y7 Y ]U} I 
(C.48)

This coordinate transform is local to each element "i". Its discretized Jacobian is given by

Jjk,i = (zCy, - XnYC)jk,i (C.49)

The calculation of the partial derivatives in the local coordinate system is relatively

straightforward. Using an expansion in local interpolants (C.12), and taking (C.13) and

(C.14) into account yields :

Ou aOh

|jk,i = ui,imh(j)- -(k) = Z Dmk i,1m (C.50)
m n - i m

dhj
Djk (sk)

The symbol Djk in (C.50) is the discretized local differential operator, which need be com-

puted only once as shown in bf §D.8. Using the orthogonality of the Kronecker Delta function,

one can eliminate one level of convolution in (C.50). The discretized partial derivatives in

the local coordinate system can be then rapidly obtained from :

(uC)jk,i = Diui,lk

(C.51)

(un)jk,i = DmkUi,jm
m

Since the geometry variables are mapped in the same manner as the flow variables, the

discretized coordinate transform matrix in (C.48) can be also calculated using (C.51). For a

static grid, this needs to be done only once according to :

S DmkYijm - DjYi,lk

[T]i,Ji m kij (C.52)
i,jk - Dmkxi,jm Dlizi,lk

m

Using (C.51) and (C.52), the discretized partial derivatives in the spectral plane can be

obtained in the following straightforward and efficient manner :
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Ou D jUi,k,z
Si,jk,z [T]i,jk I (C.53)J ) E Dmk ui,jm,z

uy i,jk,z I rM

Traditionally, the calculation of partial derivatives has been based on the following global

partial differential operators (Tan 1989):

Vkrs,i = D,j sk(Yn)jk + Dsk6 rj(-yC)jk

(C.54)

VYk,,, = Djbk(-z,)jk + D,k, j(Xc)jk

The set of operators Vjkra,i allows to calculate the partial derivatives directly in the x-y

coordinate system according to :

u ki,1 kr, ,il (C.55)

From a symbolic standpoint, (C.55) is simpler than (C.53), despite the fact that the two

forms are algebraically identical. In addition, the use of (C.55) for deriving discretized ap-

proximations allows to reduce algebraic complexity significantly. For instance, the discretized

3D Laplacian can be simply written as :

1 NZ-2

V jk,i,1 ji jkpiqul q,vjk,i,mFm,(Z) (C.56)

where the global z-y Laplacian operator is shortly :

Lpqim,i = Vj 1  Vqk,i'klm,i Vpqjk,iVjklm,i (C.57)
j k jk,i

Calculation of the discretized Laplacian is required for some high-order formulations of the

viscous and pressure steps. It is also a commonly used test to assess the discretisation error

associated with a particular scheme. To illustrate the accuracy of the spectral expansion,

it is sufficient to mention that (C.56) yields V 2 f within machine precision for exponential

polynomials of degree up to N x N in the x-y plane, and degree Nz in the z-direction. The

Laplacian of "difficult" non-polynomial test functions be calculated with precisions ranging

from 10- 1 1 to 10 - 4 for N = 7 to N = 11.

From computational standpoint, (C.55), (C.57), as well as other subsequent expansions

based on (C.54), are inefficient and wasteful. For this reason, (C.54) will be used only



as a means to reduce algebraic complexity. The NS3D computational scheme uses (C.53)

exclusively. Appendix D presents the basis for the NS3D computational efficiency.

C.10. Spatial Discretization: Line Integrals.

The following type of line integrals, where "L" is part of the x-y spectral plane boundary,

appears at the right-hand side of the pressure equation (C.35) :

S L(pm, u m) = fLPmm -dn = L pmumdY - LPmVmdz
(C.58)

The evaluation of such integrals is based on integration in the local coordinate system

for each element belonging to "L", followed by a elementwise summation. With the spectral

grid constructed as shown in Figure C.04, there are four distinct cases, determined by the

nature of "L" :

L is the inlet boundary 1:
L is the exit boundary 0:

£ is the suction side S :

L is the pressure side P :

k = 1, = -1
k= N,C= +1

j = 1, r = -1
j =N,7 7 = +1

To begin, let's consider the first case. Along I, the integrands can be locally expanded

as follows :

Um(2, y)= ujk,i,mhj(-lhk() ) = Ulk,i,mhk (q)
jk k

dy =
dy = d77;

ff(-1,) =

d = d77
077

E ("L) hlk(rl)= Z( Dmk.f m)hk(l7)
k 71k k m

Substituting into (C.58) yields :

V(Pm, m) = E] fZ

-1*

Ulr,i,mhr(77) Epla,,mha(7) E E Dmkylm hk(r)d7
a k m

vir,i,mhr() p l a,i,mha() E Dmk xm h k(77)d7
a km

(C.61)

The introduction of the local third-order integral operator :

(C.59)

(C.60)
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Ba,,bc = ha(C)hb(C)hc(C)d (C.62)
-1

allows one to express (C.58) as a convolution sum of local operators and discrete values at

the collocation nodes :

iENI +1

9'(Pm, um) = E E] Z > j ZPla,i,mDmkBrak (UlrYlm - VlrXlm}i,m (C.63)
-1 a km

Approximations to (C.58) for the remaining three cases are obtained in a similar manner:

iENo +1

4O' (Pm, U r) = 1 f EZ Z PNa,i,mDmkBrak {UNrYNm - VNrXNmli,m
-1 a km

iENs +1

I)S (Pm, n ) = E f S E E Pal,i,mDmkBrak {UrlYml - VrlXml}i,m (C.64)
J- r a km

iENs +1

P(pm, (um) = ] - PaN, i,mDmkBrak {UrNYmN - VrNXmNNi,m
r a k m

Although (C.63) and (C.64) constitute an efficient manner to calculate line integrals per

se, they cannot be directly used in the spatial discretization of the pressure step. Indeed,

the structure of the convolution sums in (C.63) and (C.64) does not allow one to construct

a well-posed linear equation for the pressure variable. As it shall become apparent in §C.15,

proper convolution sums exhibit the following structure :

E Pjk,i,m....( .) (C.65)
j k

The Kronecker Delta function can be used to convert (C.63) and (C.64) to the proper

form above. This yields :

' (pm' Um) = E5Pjk,i,m ,k,1 DqpBrjp(uryqi - vyrql)i,m
j k rp q

( Pm, Um) E Pkim 6kN DqpBrip(UrNYqN - VrNX)i,m
jk r p q

(C.66)
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iENs

SS(pm, Ur) = P Z Pjk,i, 61j Z DqpBrkp(UlrYlq - Vlrt q)i,m

3k p q

iENp

4 (P,Um)= PjkY,im 6NJ DqpBrkp(UNrYNq - VNrXNq)im
Sk rp q

(C.66)
For later use, it is convenient to factor out the quantities in braces, and use the following

shorthand notation :

iENI

4'(P, n) = Z pjk,i, Mjk,i,m;
j k

iENo

0'Np m , "i) = Pjk,i,M)jkC,i,rm
j k

iENs iENp

'~(Pm, um) = : ~II Pjk,i,mMk,i,m; Pm ) = E Pjk,i,mMj,i,m
j k j k

(C.67)

It is to be noted that factored-out Mjk,i,m are directly related to the mass fluxes M through

the four physical boundaries of the computational domain :

+1 iEN

M'Z= M Mk,i,m Fm(z)dz;

+1 iENs
s = MSk,i,mFm(z)dz;

-13 k

M +1 iENo
Zo=Mk,i,mFm(z)dz

j k

+1 iENp

Mzz= M ,i,mjFm(z)dz
j k

(C.68)

In order to prevent deterioration of global mass flow conservation due to accumulation of

truncation errors over time, the computational procedure imposes an additional constraint :

MI + Mo + + P = (C.69)

Since the fluxes at the inlet, pressure and suction side boundaries are fixed in practice, this

constraint is met by by adding a small, constant term to MO-,i,m before using (C.67).

C.11. Spatial Discretization: Type I Surface Integrals.

The following type of integrals, where "S" is the entire x-y spectral plane, appears on

both sides of the discretized pressure and viscous steps.
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I(um, pm) = /JS um(z, y)pm(x, y)dxdy (C.70)

The evaluation of such integrals is based on an integration in the local coordinate system,

followed by elementwise summation. This is implemented by means of a change of variable

dzdy = IJId(dy i = 1..NE (C.71)

After expansion of the integrand in terms of local interpolants, (C.70) becomes :

iENE +1 +1

(umPm) = f Ujk,i,mhj(C)hk( ) z Ppq,i,m hp(C)hq(,q)
S-k p q (C.72)

x E IJrs,h,r(C)h,()dC(di
7r

Rearrangement of the terms and introduction of the local integral operator (C.62) yields :

iENB

V'(Um,Pm) E = ECik rr fjpr&Asp l' (C.73)
jk p q r s

Further manipulations of forms like (C.73) shall be motivated by the need to reduce

them to the "proper" convolution structure of (C.65) that is required to obtain well-posed

discretized pressure and viscous step equations. In previous work, this has been accomplished

by introducing the elementwise surface integral operator Bpkq,i

B;pkq,i = J8,jBpr [kq. (C.74)
r a

Storage of this operator requires NEN4 memory units, and allows to calculate Pm using

3NEN4 operations :

iENB

(um pm) E EZ U3k,i,mB pkq,iPq,i,m(C.75)

1k p q

Although operators like (C.74) are not used in the NS3D computational procedure (cf.

Appendix D), they shall be retained for a while for the sake of algebraic simplicity.

C.12. Spatial Discretization: Type II Surface Integrals.

The following type of integrals, where "S" is the entire x-y spectral plane, appears on

the left-hand side of the discretized viscous step.
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II (v, um,Pm) = /j v(x, y)um(x, y)pm(Z, y)dxdy (C.76)

The approximation of "i'I" is similar to that of "I " above. The difference lies in the

expansion in interpolants, which combines IJI and /nu in order to conserve proper nesting

of the convolution sums.

iENE p+1 +

"(z, Um,Pm) = uijk,i,mhj(C)hk (7) ppq,i,m p (Cq ()
( U k P q (C.77)

x E vs,IJIj,jh"(C)hq(7l)dCdy7
r B

The elementwise surface integral operator now depends on the scalar field distribution

"v". In principle, it must now be evaluated for each mode at each time step during the

course of the simulation :

B3pkq,i(V) = l V,ilJr,ilBjpr kq (C.78)
r a

Given (C.78), discretized type II surface integrals can be considered as a generalization of

type I surface integral :

iENB

T"(v, umPm) = Z Z ujk,i,m pkq,m Ppi, 9

Although operators like (C.78) are not used in the NS3D computational procedure (cf.

Appendix D), they shall be retained for a while for the sake of algebraic simplicity.

C.13. Spatial Discretization: Type III Surface Integrals.

The following type of integrals, where "S" is the entire x-y spectral plane, appears on

the right-hand side of the discretized pressure step.

I (UmVm,)= J (Um +Vm ) dxdy (C.80)

Using the local coordinate system transforms (C.48) and (C.71) allows to cast (C.80) in the

following form :
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iNE +1 l IJI

"(u,,m,,,Pm) = {U(ypC - yCp,) + v(-,pC + Z(p,)}i,, dCdY (C.81)

The expansion in local interpolants of (C.81) can be simplified by introducing the global

partial differential operators defined in (C.54). This yields :

iENB +1 +1(um, vmPm) = 1 -1 J /1 JE sign(Jab,i)hahb

a b

{ upq,i,mhphq V.krsPrs,i,m+ (C.82)
P q jkr s

Z Z vpq,i,mhphq E Z 1 VijkrsPrs,i,m dCdii
p q k r s

As before, this particular expansion has been selected because it satisfies the requirement

for a proper convolution structure (C.65). In raw discretized form, (C.82) can be written as

iENB

T'III(um, VmPm) = E E 1 E 1 E 1 E sign(Jab,i)BapjBbqk
j k p q r a a b (C.83)

X { ,jkr pq,i,m + V,'jkrVpq,i,m Prs,i,m

A direct application of (C.83) requires of the order of N 8 operations to estimate qmI'.
The raw form is also unsuitable for further algebraic use due to its complexity. However, it

is straightforward to reduce (C.83) into a N 4 convolution structure similar to that used for

TI and 121.

iENB

"'(um, mPm) = jq,i,mA+k,iUjk,i,m Pk,i,m Ap jk,ipqim} (C.84)

The global integro-differential operators A" and AOY appearing in (C.84) are constructed

themselves as convolutions of the global pseudointegral operator Brpsq,i

A ;jk,i = Z Bpq,iV:sjk,i
r 8

(C.85)

Bropsq,j = s ign(Jab,i)apjbqk
a b
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Equation (C.85) is an example of intermediate convolution that leads to a reduction of the

number of operations required to evaluate a discretized term. The principle of intermediate

convolutions is used to an extreme in the NS3D computational procedure, which bypasses

completely the use of operators such as (C.85) to achieve both speedup and reduction in

storage.

C.14. Spatial Discretization: Type IV Surface Integrals.

The following type of integrals, where "S" is the entire x-y spectral plane, appears on

the left-hand side of the discretized viscous and pressure steps.

S( , m) = ]Jv + I dxdy (C.86)

Using the local coordinate system transforms (C.48) and (C.71) allows to cast (C.86) in the

following form :

ieNB +f 1

T"IV(, V nmU) = Z LI' -yCU) 2 + (-_iUC + 2cu 7)2} d(Cd (C.87)

Again, the expansion in local interpolants of (C.81) can be simplified by introducing the

global partial differential operators (C.54). This yields :

IV NB f+ 1 i+1 Vab,i hahbdCdri7
V(V, Urn,-n)1 , b IJlab,i

{ Z Z ~ 3j Vrspq,iupq,j,rhrhs xa X VCOCik,iUjk,i,mhjhk+ (C.88)
r s p q c d j k

Z S S Vijapq,jUpq,imre X 55Ujkih mh }
r s p q c d j k

As before, this particular expansion has been selected because it satisfies the requirement

for a proper convolution structure (C.65). In raw discretized form (C.88) can be written as :

iEN

?IV(V U, Urn) = E Y255 S EEUpq,i,rUjki'm
S p q C d j k a b (C.89)

x i spqi ab,ilrspqiV'TC~~i Vrspq,i 'Cd~k,i I JI ab,i
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The raw form of TIV presents the same problem as (C.83) - too much complexity and

too many algebraic operations required. Likewise, it is relatively straightforward to reduce

(C.89) into a proper N 4 convolution structure similar to that used for the other integral

forms :

iENE

'IV(v Ur, U, ) = E E E E E Ujk,i,mA(V)pqjk,iUpq,i,m (C.90)
ik p q

This is accomplished by means of introducing the global quadratic integro-differential operator

A(v)pjk,i, constructed as follows:

A(v)pqjk,i=EEJ V spq,iB-(V)rscd,iV ajk,i +Vspq,i (V)sCd,iV jk, (C91)
r a C d

Although operators like (C.91) are not used in the NS3D computational procedure (cf.

Appendix D), they allow to reduce the algebraic complexity when writing the fully dis-

cretized pressure and viscous equations.

From a numerical standpoint, the approximation of type IV integrals is the stage that is

most sensitive to (1) machine precision; and (2) to errors in the placement of the collocation

points away from their exact Gaussian loci (cf. Figure C.01). This is due to matrices

such as V" x V", which are intrinsically ill-conditioned. Simple caution is however sufficient

to avoid numeric problems. For instance, using double precision instead of single precision

arithmetic can reduce the discretization error by four orders of magnitude for a given Tv.

The full discretization of the convective step (C.26) is trivial, since it only involves explicit

invocation of (C.53) to calculate the vorticity. This is not the case for constructing a fully

discretized representation of the pressure (C.35) and viscous step (C.46). This is the subject

of the remainder of Appendix C.

C.15. Spatial Discretization: Pressure Step.

The pressure step equation (C.35) can be written in terms of the above integral forms.

After multiplying both sides by -1, this yields :

Vm = 1..NM

(C.93)
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Substituting the discrete approximation derived in §C.10-§C.14 into (C.95) yields a set

of fully discretized quadratic forms for the pressure modes :

Vm = 1..NM

iENB iENB

S jk,i,mA(1)pqjk,ipq,i,m - ,p E Pk,i,lB pkq ,i, =
k P q J k p q

iENB (C.94)
EN mp jk,i,m Apqjk,i Upq,i,m + jk,i,m Pqjk,i ,m (.94)

iENE AE[I,O,S,P] iENA

-E ji Pk,,mBqi -pq,i,m jk,i,mMk,i,m
j k p q j k

Equation (C.94) is not suitable for numerical implementation. However, it can be reduced

to a linear form by factoring out the (j, k) convolution sums in the following manner :

iENB iENE

E S E jk,i,m*pk,,m = jPk,i,m S... (C.95)
jk P q jk P q jk,i,m

In the general case, Pjk,i,m is not identically zero. This implies that the quantities within

parenthesis on the left and right-hand sides of (C.95) must be equal for all indexes ()jk,i,m.

Therefore, the discretized spanwise modes of the pressure variable can be obtained by solving

the following set of NM independent linear systems :

Vm = 1..NM

iENB (C.96)

5 :[Cjkpq,i,m pq,,m = "Pk,i,m
P q

Equation (C.96) above constitutes the system equation for the pressure step, as imple-

mented in the NS3D computational procedure. The elemental system matrices, Cjkpq,i,m, are

constructed as follows :

Cjkpq,i,m = A(1)pqjk,i - A?,pB+(1)jpkq,i (C.97)

The right-hand side term of (C.96), aok,i, also referred to as pressure source term, is

constructed based on the convective step velocity update u* :
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jENE Ox - + ,~ _

Uji~kir = +X Z {Ap Sqi + AOYi,:, m BI pkqr JZpq,,m

k q O( C .9 8 )

AE[I,O,S,P] iENA

+ Z MAim

Solving (C.96) numerically yields the NM discretized spanwise modes of the pressure

variable. The modes are then mapped into real space using the modal-to-real transform

'-1 (C.11). The resulting discretized static pressure distribution p+ is used to obtain the

pressure step velocity update u~j*, by means of an an explicit implementation of (C.27) :

U' = Ukil - t jk,i,l \ / jk,i,l jk,i,l (99)

The partial derivatives appearing in (C.99) are calculated using (C.47) and (C.53). It is

to be noted that the NS3D computational scheme does not use the A(1)jkpq,i and B+(1)jpkq,i

operators to construct the pressure equation elemental matrices Cjipq,i (cf. Appendix D).

Nevertheless, they are convenient from a conceptual standpoint.

C.16. Spatial Discretization: Viscous Step.

The viscous step equation (C.46) can be also written in terms of the foregoing integral

forms. This yields :

Vm = 1..NM

(C.100)
T4(at, + ~ n+l) + T 2 (1 - 7AtA2 , + 2y, ,n M

Substituting the discrete approximation derived in §C.10-§C.14 into (C.95) yields a set

of fully discretized quadratic forms for the new velocity modes :

Vm = 1..NM

8 - m L Ajkpqi(vlAt) +jB .(1 - PA2 At +At -n+
Sk q j,i, jkpq,i mv 2 rn) pqs,i,m (C.101)

iENB

= q (mBj i),im
jk p q
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Calculus of variations states that the variation 6un '+ is not identically zero. This allows

to factor out the convolution term Ej Ek 6k .1' and eliminate it in a manner similar to that

employed for (C.95). Therefore, the discretized spanwise modes of the new velocity can be

obtained by solving the following set of NM independent linear systems :

Vm = 1..NM

iEN (C.102)
C C~Cjkpq,i,miim = -V

p q

Equation (C.102) above constitutes the system equation for the viscous step, as imple-

mented in the NS3D computational procedure. The elemental system matrices, Cjkpq,i,m, are

constructed for each mode in the following manner :

Cjkpq,i,m = Ajkpq,i(vAt) + Bj(kpq,i (1 m ,vat + (.103)

The right-hand side term of (C.102), Tjk,i, also referred to as viscous source term, is

constructed based on the pressure step velocity update u** :

iENV E (C.104)
Ujkim = LLJ k ,i( ipqm

p q

It is to be noted that the NS3D computational scheme does not use the A(v)jkp,i and

B+ ()jpkq,i operators to construct the pressure equation elemental matrices Cjkpq,i (cf. Ap-

pendix D). Nevertheless, they are convenient from a conceptual standpoint.

Solving (C.102) for each velocity component yields the NM discretized spanwise modes

of the new velocity. The modes are then mapped into real space using the modal-to-real

transform .- 1. This completes one cycle of the time-marching scheme, and advances the

velocity forward to time "t + At". A new cycle can be started by using this velocity as an

input to the convective step (cf. §C.5).

C.17. Obtaining Two-Dimensional Flow Solutions.

Two-dimensional flow solutions can be obtained as a special case of the spanwise dis-

cretization algorithm, where

Nz = NM = 1 (C.105)
l,p = X,v = 0
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This eliminates the need for working in the modal domain. For reference, the resulting

integral forms of the pressure and viscous steps are :

At 2 2 drdy =Op + v- ddy - opu* dn (C.106)

f VsAt(Vun1)2 + (u"+ )' - 2un+1 . u** ddy = 0 (C.107)

The corresponding discretized pressure step system equation is :

iENB

Z LL Ajkpq,i(1)ppq,i - Ujk,i
p q

(C.108)
1 iEN AE[I,O,S,P] iENA

pk,i =- 4Ap qjkj U +,i + Ak,iVNi ki
p q

The corresponding discretized viscous step system equation is :

iENB
{kpqi( v at)+ Bt() Un+l -V

p fAjkpqi + pkq,i1 pq 1 ki
p q

(c.109)
iENB

o = Bjk,i(1)u, i

p q

It is to be noted that the NS3D computational scheme does not use the A(v)jkpq,i,

B+(*)jpkq,i or Cjkpq,i matrices. Although such matrices are useful from a conceptual stand-

point, in practice their use is wasteful. Appendix D shall describe the efficient implemen-

tation behind the NS3D computational procedure.
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Appendix D

The NS3D

Computational Procedure :

Numerical Implementation

This appendix describes the improvements made to the numerical implementation of the

spectral element method. These improvements accelerate the solution procedure by an order

of magnitude, and reduce memory requirements by two orders of magnitude with respect to

previously used methods (Tan 1989, Renaud 1991). The resulting computational procedure,

referred to as NS3D, allows unsteady turbulent 3D simulations to be carried out on an average

engineering workstation (IBM RS/6000 models 550/370).

D.1. Overview of the NS3D Algorithm.

The major improvements in the NS3D computational procedure are (1) the use of an

iterative "matrixless" static condensation technique to solve the system equations and (2)

local assembly of the spectral operators and source terms via minimally-mapped convolutions.

These improvements are tied to the following algorithm.

[0] Precomputing stage:

Construct the Dii and BjAk operators.
Construct the Q and Q-1 mapping matrices.
Construct the transformation [T]ijk and Jacobian Ji,jk matrices.
Construct the initial velocity flowfield ujk,i,l.

[1] Turbulence model:
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Construct vjk,i,l based on uji,i,l.

[2] Convective Step:

For each element (along index ()i).
For each node (along indezes ()jk).

Apply (C.26) along the spanwise D.O.F. (along indez 1).
Local storage required is thus only (NzN2 ).
Store results back into ujk,i,l once done with element.

At the end, ujk,i,l contains uHk,i,1.
Average ujk,i,l across adjacent boundaries.
Prescribe inlet boundary conditions.
Prescribe blade surface boundary conditions.

[3] Pressure Step:

Calculate source term Ojk,i,l in real space using ujk,i,l
For each element (along indez i).
For each node (along indezes jk).

Apply (C.10) along the spanwise D.O.F. (along indez 1).
Store results back into Ujk,i,m once done with element.

At the end, jk,i,l contains the modes o-fk,i,m'

For each odd mode (along indez m).

For each element (along indez i).

Calculate the operator B+(1)jipq locally
Calculate the operator A(1)jikpq locally
Calculate the elemental system matri Cjkpq for this mode.
Perform x-y static condensation on Cjkpq locally.
Store the results into [Cg]i, [Cpp]i and [Ce,]i.

Perform z-y static condensation on the source term for mode m.
Solve the system equation at the global nodes (mode m).
Solve the system equation at the internal nodes (mode m).

At the end, the modes pjk,i,m are obtained.

For each element (along indez i).
For each node (along indezes jk).

Apply (C.11) along the spanwise D.O.F. (along indez 1).
Store results back into pjk,i,, once done with element.

At the end, pjk,i,m contains the real pressures Pjk,i,l.

For each element (along indez i).
For each node (along indezes jk).

Apply (C.99) along the spanwise D.O.F. (along indez 1).
Local storage required is thus only (NzN2 ).
Store results back into ujk,i,l once done with element.

At the end, uj ,i,l contains u**
Average Ujk,i,l across adjacent boundaries.
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[4] Viscous Step:

For each velocity component C = u, v, w
Calculate source term ojk,i,l in real space using Cjk,i,l
For each element (along indez i).
For each node (along indezes jk).

Apply (C.10) along the spanwise D.O.F. (along index 1).
Store results back into ojk,i,m once done with element.

Store -jk,i,, into Cjk,i,l.
At the end, Cjk,i,l contains the modes 0 jk,i,m

Compute the field Fjk,i,m = (1 - At + T4)jk,i

For each mode (along index m).

For each element (along index i).

Calculate the operator B+ (F)jpk q locally
Calculate the operator A(=At)jkpq locally
Calculate the elemental system matriz Cjhpq for this mode.
Perform z-y static condensation on Cjkpq.
Store the results into [Cg]i, [Cpp] and [Ce,]i.
Get the diagonal of the global system matrix DG.

For odd modes only:
Restore ujk,i,l into jk,i,m.

Perform z-y static condensation on the source term for mode m.
Solve the system equation at the global nodes (mode m).
Solve the system equation at the internal nodes (mode m).
Store the solution in Ujk,i,l.

For odd modes only :
Restore vjk,il into rjk,i,m.
Perform z-y static condensation on the source term for mode m.
Solve the system equation at the global nodes (mode m).
Solve the system equation at the internal nodes (mode m).
Store the solution in vjk,i,l.

For even modes only :
Restore Wjk,i,l into 'jk,i,m.

Perform x-y static condensation on the source term for mode m.
Solve the system equation at the global nodes (mode m).
Solve the system equation at the internal nodes (mode m).
Store the solution in wjk,i,l.

At the end, [u, v, w]jk,i,l contains the modes [u, v, wjjkm

For each component C = ujk,i,l vjk,i,l Wjk,i,l.
For each element (along indez i).
For each node (along indezes jk).

Apply (B.11) along the spanwise D.O.F. (along indez 1).
Local storage required is thus only (NzN 2 ).
Store results back into Cjt,,i,l once done with element.

At the end, Ujkl,i,l contains the real jkm"
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[5] Control:

Optionally save results.
Increment time counter by At and goto step [1].

The NS3D computational procedure requires the permanent storage of six discretized

flowfield variables [u, v, w,p, V, r]jk,i,l (4NEN 2 Nz reals) and a single set of x-y static conden-

sation matrices (NEN 4 + NENIN 2 reals). The unsteady calculations in Chapters 4-6 show

that rotor vortex interaction effects are localized in the tip region of the stator. For this rea-

son, the NS3D computational procedure assumes that the unsteady flowfield is symmetrical

about the midspan plane. This assumption allows to bypass the calculation of the following

half of the spanwise modes:

[u, v, p]m - 0 if m mod 2 = 0
(D.01)

w, - 0 if m mod 2 = 1

The "full-passage" unsteady time-averaged figures of merit are obtained from the "half-

passage" computed figures of merit in the following manner :

Yl,full = 2Yl,half
(D.02)

Y2,full = Yl,half + Y2,half

The following sections describe the constituent elements of the NS3D algorithm. The

solution of the pressure (C.97) and viscous (C.102) system equations is described in §D.2-

§D.5. The local assembly of the elemental system matrices is described in §D.6, while that

of the source terms is covered in §D.7. Finally, §D.8 provides closed-form expressions for

the discretized local operators. In the discussion, the terms "elemental" and "local" refer to

matrices local to each spectral element.

D.2. Solving the System Equations: Static Condensation.

Consider the example of a medium-sized discretization with 17 collocation planes and

350 7x7 elements per plane. In each system equation, there are 17,150 unknowns per mode.

Each time step, 60 such system equations need to be solved (for 15 pressure modes and 3x15

velocity modes). If this problem were treated using simple matrix algebra, 30 distinct system

matrices of size 17150 x 17150 would have to be stored. The problem of matrix storage is

even more acute for 2D high Reynolds number direct Navier-Stokes simulations, where up to

150,000 unknowns per system equation may be required ( 2 x 1010 reals per matrix!). Clearly,

a direct approach to solving the system equations (C.97)/(C.102) is not practical.
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Static condensation is used as a first step towards reducing the system equations to a

tractable size. With this technique, each system equation is solved only for the unknown

values at the global nodes ()G (cf. §C.4). The unknown values at the remaining internal

nodes ()' are inferred on an elemental basis from the values at the global nodes. To illustrate

this process, let's consider a system equation for a single-element spectral grid:

[Cjkpqq" = 1{0qjk} (D.03)

The unknown vector "up," and the left-hand side vector "jk" shall be partitioned in

such a manner that the values associated with the global nodes ()g on this element come

first. This partitions the elemental system matrix "Cjkpq" into four submatrices as shown

below :

Cjkgpq, jkgpqe UPq (D.04)
CjkePqg Ujkepqe ] pq, ) 0jke

In the above, the sub-indexes ()jkg and ()jke differentiate between those nodes ()jk that

are global and internal respectively. For reasons of clarity, the following shorthand notation

shall be used onwards in lieu of (D.04) :

C99 Cge U9 } { (D.05)
Ceg Cee Ue ) 'e r

An LT decomposition of (D.05) dissociates the unknown values at the global nodes "u,"

from those at the internal nodes "ue" :

[C: - CeCCeg]. - Ug} = (g} - [CgeCA'] {7e}

(D.07)

{ue} = [C ] {Le - [Ceg]Ul}

It is straightforward to prove that the elemental system matrices in (C.97) and (C.103) are

symmetric. It follows that :

[Cge] = [Ceg]T

(D.08)

[CgeC ] = [CCeg]

Defining the elementally condensed global system matriz [Cg] and the elementally con-

densed partitioned matrices [Cpp] and [Cee] - 1 as follows :

Appendix D. Computational Procedure 191



Appendix D. Computational Procedure 192

[C,] = [CeeCI]

(D.09)

[C,] = [Cg - CgeCp]

allows one to rewrite (D.08) using only three submatrices per element :

[Cl] {ug} = {} - [Cp] T {e}

(D.10)

{(e} = [C-] {Oe}- [C,] T ({u}

The partitioning scheme (D.10) can be applied to the ensemble of spectral elements for

each eigenmode. Since global nodes may be shared between several elements, the elemental

system equation (C.96)/(C.102) coalesces into one linear equation for the unknowns at the

global nodes ()O

ZiENB [C 9 ]i. {Ugi j= ZiENB {ag _ [Cpp]T-e}1

4 (D.11)

[CG] {uG} = {PG}

The bottom part of (D.11) shall referred to as the global system equation, "[CG]" shall be

referred to as the condensed system matriz, and "PG" shall be referred to as the condensed

source term. The process leading to (D.11) is known as static condensation. It offers the

advantage of reducing solver matrix size, while automatically insuring C' continuity between

adjacent elements.

To judge the benefits of static condensation, let's re-consider the illustrative example at

the beginning of this section. For this case, there are approximately 2NE(N- 1) global nodes

in the spectral x-y plane. The resulting global system equation has about 4,200 unknowns.

Thus, the (symmetric) condensed matrix [CG] has 4, 200 x 2, 100 = 8.88106 reals versus

2.94108 reals for the uncondensed form.

Although this represents a substantial improvement, the problem is still too large for

straightforward implementation. Furthermore, it can be easily seen that for direct 2D simu-

lations (NE - 103), the statically condensed matrix [CG] contains of the order of 108 reals.

For this reason, an iterative method has been adopted for solving (D.11). The principal

advantage of this method is tied to the property that the matrix-times-vector product :
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{YG} - [CG] {xG} (D.12)

can be evaluated without actually knowing the elements of the condensed matrix [CG].

Since iterative methods use repeated evaluations of such products to solve linear systems, it

is possible to solve the system equations without storing the [CG] matrix. This ingenious

trick is the primary reason for the efficiency of the NS3D computational procedure. The

"matrixless" MVM and the particular iterative method used are described in the next section.

D.3. Solving the System Equations: Iterative Approach.

The following diagonally-preconditioned conjugate gradient algorithm is used to solve the

global system equations (with the exception discussed in §D.5):

Input the condensed source term vector PG
Input the approximate solution uo (e.g. from t - At).
Set rl = p- [CG]uO
Set r 2 = 0.0; quadz2 = 0.0; p = r
Repeat

Calculate zl = rl//D
Calculate T1 = z1 -rl
Calculate T2 = z2 • r2
Calculate 3 = T/T2
Update p +- z1 +3p
Calculate T3 = p[CG]p
Calculate a = T1/T3
Calculate un = uo + ap
Calculate e = ju - uoIun
Update r2 - rl
Update rl rl - a[CG]p
Update z 2 Z- ~

Until e < 10- .

At this stage u' contains the solution to (D.11).

This algorithm converges in about 20 to 50 iterations per system with a typical 400-

element, 17-plane grid required for compressor stator turbulent flow simulations. The rapid

convergence is due to (1) periodic updates in directions perpendicular to the direction of

steepest descent, and (2) preconditioning by the diagonal of the condensed system matrix

D = DG, which reduces the spread in the system matrix eigenvalues.

The iterative algorithm uses repeated evaluations of matrix-times-vector products of the

type y = [CG]x. As mentionned above, such products can be evaluated without knowing

[CG]. This is made possible by the indexing scheme, which allows to assemble y directly
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from the elementally condensed global matrices [Cg]e (D.09). The assembly is performed as

follows:

Set YG = 0 VG
For all elements (along indez i)
For all global nodes on this element only (along index gl)
For all global nodes on this element only (along index g2)

rows = G(gl,i) (global node index of global node gl on element i).
cols = G(g2,i) (global node indez of global node g2 on element i).

ro = Y- ros + [Cg]g1,g2,iColi

The storage of the matrices [Cg]i,[C,]i and [C-1]i is trivial, especially considering that

they can be rapidly constructed on an "as-needed" basis. Most important, the above "matrix-

less" multiplication algorithm requires only (4N- 2) 2NE operations to execute what amounts

to an (2N - 1)NE matrix-time-vector multiply. Combined with the rapid convergence of the

preconditioned C-G iterative scheme, this leads to fast and efficient solution of the pressure

(C.96) and viscous (C.102) system equations for the ensemble of global nodes.

The following set of NE independent linear equations are solved to obtain the solution at

the remaining internal nodes. This is trivial in terms of computational resources.

{Ue} = C . {e} - [CP,] {ug} i E [1..NE] (D.13)

The preconditioner used in the iterative scheme is the diagonal of the condensed system

matrix. It can be assembled using a variation of the "matrixless" multiplication algorithm:

Set DG = 0 VG.
For all elements (along indez i)
For all global nodes on this element only (along index g)

DG(g,i) = DG(g,) + [Cg]g,g,i

D.4. Solving the System Equations: Boundary Conditions.

The vonNeuman boundary conditions for the pressure step are implicitly contained in

the discretized source term (C.98), which "descends" from the integral formulation (C.31)

of the problem. However, this is not the case for the viscous step. One simple and efficient

way to implement the Dirichlet boundary conditions is during static condensation. This is

accomplished by mapping the prescribed velocity values along the inlet boundary and blade

surface unto the Dirichlet nodes index (), defined in §C.4. The elements of the corresponding

row of [CG] are padded with "0" and "1" accordingly :
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p, = u,; [CG]rs = 6rs (D.14)

Since the condensed matrix is not constructed in practice, (D.14) is implemented via the

following change into the "matrix-less" multiplication algorithm when solving for velocities :

Set YG = 0 VG
For all elements (along indez i)
For all global nodes on this element only (along index gl)
For all global nodes on this element only (along index g2)

rows = G(gl,i) (global node indez of global node gl on element i).
cols = G(g2,i) (global node indez of global node g2 on element i).
if rows E (), then yow, = ,ow, + [Cg]g,g2,ixcos

Set YG = UGVG E (),

D.5. Solving the System Equations: First Pressure mode.

The convergence rate of iterative methods depends on (1) the size of the matrix (loga-

rithmic dependence in in the case of the above algorithm), and (2) on the ratio Re between

the largest and smallest matrix eigenvalues. Due to the hard-coded Dirichlet boundary con-

ditions, all the NM viscous step global matrices are well conditioned. On the other hand,

the condition number of the pressure matrix increases as the modal number decreases. It

is straightforward to demonstrate that the first mode condensed pressure matrix, [C,m=],

is in fact singular. The singularity has a physical basis, since in incompressible flow, the

pressure is indeterminate by a constant.

As a result, fi1 cannot be obtained by the iterative method. A direct solver, exploiting

the band-diagonal structure of the global system matrix, is used for this purpose. Figure

D.01 shows the location of the non-zero elements of [CP'm=1]. The diagonal bandwidth NB

depends on the largest difference between global node indexes on each side of the periodic

boundary. Thus, the bandwidth can be decreased by judicious indexing and ordering of the

spectral grid. While the gridding scheme in Figure C.05 may not be the most efficient in

this respect, it is simple to implement and provides an adequate bandwidth of:

NB = (N - 1)N +1 (D.15)
2

Since [C m = l] is symmetric positive definite, it may be stored in a packed, half-diagonal

form [CG]Pd, using the algorithm below. The packed form can be prefactored using LIN-

PACK's SPBCO, and the the global system equation solved using LINPACK's SPBSL (Don-

garra et al. 1979). This requires 2(N - 1) 2NENI storage elements. In comparison, the
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iterative scheme requires essentially no storage but for the elementally partitioned matrices

(D.09). Currently, storing the packed pressure matrix is the limiting factor for 2D direct

simulations. In the future, this limitation might be removed by exploiting the sparseness

within the diagonal band of the system matrix, or by applying a pressure Dirichlet boundary

condition at one node.

Set [CG]Pd = [0]
For all elements (along indez i)
For all global nodes on this element only (along indez gl)
For all global nodes on this element only (along indez g2)

ir = G(gl,i) (global node indez of global node gl on element i).
ic = G(g2,i) (global node indez of global node g2 on element i).
If (ir < ic) (element above diagonal)

[CG]cd-ir+1,ic = [CG] '%d-r+,ic + [Cg]g1,g2,i

0 100 200 300 400 500 600
columns

Figure D.01. Distribution of the non-zero elements in

700 800

the condensed system matrix.

D.6. Efficient Local Assembly of the System Matrices.

The NS3D computational procedure dispenses from storing the elemental system matrices

Cjkpq,i,m by calculating their constituent operators Ajkpq(v) and Bpkq() for each element

on an as-needed basis. The resultant storage savings are particularly important for direct

2D simulations, where the number of elements can be of the order of few thousands.
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Unfortunately, equations (C.78) and (C.91) do not provide an efficient basis for such

assembly. While simple from a conceptual standpoint, their direct implementation requires

N 6 (for C.78) and N 8 (for C.91) floating point operations per element. By going back to the

raw convolution forms (C.73) and (C.89), a substantially faster assembly algorithm can be

derived. The algorithm is based on intermediate convolutions. It constructs the viscous step

elemental system matrix C kpq,i,m in the following manner :

m = 1, NM

i = 1,NE

W+(F)pkm

W-(=At)pk,

L+(F)jlkm

L- (At)jlkm

A(At)lmr

Cjkpqli,m

= Fpq,iIJlpq,iBkmq
q

- piAtplJlpjBkmq
q

E W+(F)pkmB jlp
P

= W- (At)pkmB p
P

= 1: DijDpL- (=At)jpm, {(Y,i)jm(Y,)p + (z,7)jm(X 7 )ps}

+ E DmkDqL-(At)rkq {(YC)lk(YC)rq + (2z)k(XC)rq}
k q

- E 1 D jDqL-( At).mq {(Yn)jm(C)rq + (Xi7)jm(Xz)rq}

j q
- E DmkDrpL-(At)pks {(YC)lk(Y7)ps + (x)lk(x,)ps}

k P

= A(DAt)jkpq + AtL+(F)jpkq

The same algorithm is used for assembling the pressure step elemental system matrix.

Equation (D.16) above is optimal, in the sense that further speed gains cannot be achieved

by a different reshuffling of the summation order. The optimal convolution order has been

determined via Karnaugh mapping, which is a technique used in the functional optimization

of microprocessors. Further acceleration of (D.16) is however still possible. For instance,

exploiting the symmetry of elemental matrices, [*]abcd,i,m = [*]cdab,i,m, results in a speedup

by a factor of two. Likewise, the permutability of the local integral operator:

=ijk = Bjik = Bkji = Bikj (D.17)

can be leveraged to accelerate (D.16) by 15 percent.

for

for

(D.16)
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D.7. Efficient Local Assembly of the Source Terms.

The right-hand sides of the pressure (C.98) and the viscous (C.104) step equations contain

terms of the form :

iENB

f,i,m = Z + Bjpkq,i(1)Upq,i,m
P q

(D.18)
iENB

EzEzz IEJIjab,iAjpa-kqbUpq,i,m
a b p q

and of the form :

iEN
fk,,m = E E A Ikiu ,i,l

P q

(D.19)
iENB

= Vr' k,isign(Jab,i)BapjBbqkUIVpq,i,l

p q r a a b

Such terms can be rapidly calculated using intermediate convolutions. An efficient sub-

stitute to (D.18) is :

for m = 1, NM

for i = 1,NE

Waqk = J Ilab,iBbqk (D.20)
b

Wqj = Upq,i,,mBapj
b

/Waim qk Wqj
a q
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An efficient substitute to (D.19) is :

for m = 1, NM

for i = 1, NE

WOqk = sign(J)ab,iBbqk
b

Wqj = U pq,i,mBapj
b

Wqj = Vp,i,mBapj (D.21)
b

k = W~aqk aqj
a q

ok = W 1 kW 2q
a q

fkim QkDp (yn)Qpk + jqDkq (-yC)jq
P q P q

fjkli, = Z Z Qk Djp (-x,)pk + j Q qDk 1 (xC)jq
P q P q

The number of floating point operations is reduced thereby by two orders of magnitude,

while the need for storing the precomputed Ao /IY and B + matrices is eliminated.

D.8. Exact Forms of the Local Operators.

The local system differential operator Dij can be constructed analytically. This is ac-

complished in a more straightforward manner when the indexes are ran from 0..N - 1 rather

than 1..N. With this convention in place, we have :

m=N-1
1mHim sin mO t

mim ; J ;0, N - 1
m=O sin j

dh; m=N
Did3  d;=cos 0 = m 2 Him; j = 0 (D.22)

mn=N

E(-1)m+lmH2m; j = N- 1
m=0

Likewise, the local system integral operator fijk is best constructed in the following manner
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B3ijk = HaHjbHk cos aO cos bO cos cO sin OdO
a b c

+F(a + b + c +1)
8 +F(a+bc+ 1)S+T(a bH c + 1)

+8 +(a- b + c + 1)

+.(a-b- c+ 1)

-F(a + b + c - 1)
-F(a + b- c- 1)

-. F(a- b + c -1)

-F(a-b - -1)

2 1 ijr
He - cos

SN- 1 CiCj N - 1

1 - (-1)n.
F(n) = F(0) = 1

where :

(D.23)

(D.24)

(D.25)
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Appendix E

The NS3D

Computational Procedure :

Turbulence Modeling

This appendix presents a method for estimating the values of the turbulent viscosity field

"v" for a three-dimensional, unsteady, vortex driven flow in a turbomachinery passage. The

method is an extension of the original algebraic Baldwin-Lomax turbulence model (1978),

modified to account for the fact that distinct turbulent mixing flow processes may be at work

in different regions of this complex flowfield.

E.1. Flowfield Regions.

The original Baldwin-Lomax model (1978) cannot be directly used to study the unsteady

flow produced by incoming wakes and vortices for the following reasons:

* The presence of free vortical disturbances outside the boundary layer biases the calcu-

lation of the thickness parameter nmax. This is illustrated in Figure E.2, and leads

to values of the eddy viscosity that are disconnected from flow physics.

* The original model requires to continuously monitor the location of the wakes/vortex

centerline from which the local n coordinates are measured. Given the complex con-

figuration of the flowfield here, such monitoring is not practical.

For this reason, the Baldwin-Lomax model has been modified here to resolve these dif-

ficulties, while retaining the physical principles underlying the calculation of eddy viscosity.

The modified model distinguishes three flowfield regions shown in Figure E.1.
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In each region of Figure E.1, the calculation of eddy viscosity proceeds differently as

described below. It is to be noted that this description is made using the dimensionless

convention established in §A.4. In contrast, most turbulence models in the literature are

formulated in dimensional terms.

Figure E.1. The turbulence model distinguishes three flowfield regions: boundary layer,

wake and free-stream vortical region. The boundary layer region is further divided in

two subdomains - inner and outer.

E.2. Eddy Viscosity in the Disturbed Boundary Layer Region.

The calculation of eddy viscosity in the disturbed boundary layer region (Region A in

Figure E.1) is based upon a coordinate system measuring the distance from the nearest solid

wall "n". The use of the quantities at the nearest solid wall for three-dimensional geometries

has been suggested by Vaughan and Turner (1987).

The Baldwin-Lomax model divides the boundary layer region into inner and outer sub-

domains, shown in Figure E.2. Different formulas are used to estimate the eddy viscosity

in each of the subdomains. To insure a continuous distribution, the eddy viscosity in the

inner and outer subdomains is patched according to :

Region B:
Blade Wake(B.L.Fluid)
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Figure E.2. Nearest-wall based coordinate system used by the modified Baldwin-Lomax
model, and typical profiles of F, vi,t and vo,t. The two subdomains of the boundary layer
(inner and outer) are shown in gray.

V t t,

Iv
n < nR

n > nc
(E.01)

where the cross-over distance nc is the smallest distance from the surface at which the values

from the inner and from the outer formulas are equal. This is illustrated by the left set of

curves in Figure E.2. The eddy viscosity in the inner subdomain is computed using the

Prandtl-Van Driest mixing-length formulation:

Vt,i = 121 W (E.02)

The mixing length is calculated according to :

1 = kn [1 - e-n+ /A+ ]

The dimensionless law-of-the-wall coordinate n + is given by

u
n+ = nRe

in n-o

F,V

(E.03)

(E.04)
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The function A+(s) represents the effect of pressure gradients on the boundary layer :

, -1/2
A+(s) = 26 1 + 11.8 Re( O)3 (E.05)

n=O

In the outer subdomain, the following formula is used for computing the eddy viscosity

vt,o = KlK 2Fw(s)FK(n) (E.06)

where the FK(n) is the Klebanoff intermittency factor, given by

FK(n) = 1 + 5.5CK n )] (E.07)

and where the wake factor is defined as :

Fw(s) = min nmaUFma }(E.08)
The quantity nmax is the locus of the closest to the wall maximum Fma of the function:

F(n) = nwl [1 - en+ /A+] (E.09)

In the absence of external vortical disturbances, this definition is fully equivalent to that

from the classical model. In the presence of these, the use of the first maximum gives a value

of nma which is more representative of the physical meaning of this quantity - boundary

layer thickness. Had the original formulation been used in presence of wakes, one would

obtain a value of nma, outside of the boundary layer (cf. Figure E.2).

The quantity UD represents the difference between the maximum and minimum total

velocity in the boundary layer profile at that axial location :

U2 = (IUIma, - lulmin)2  (E.10)

For unseparated boundary layers, the IUlmin term is taken to be zero. For separated

boundary layers, one must take into consideration the change of flow direction in the above

definition of |Ulmin. It is to be noted that the product nmazFmaz is equivalent to 6*Ue in the

Clauser equilibrium formulation (White, 1974). Therefore, nma(s) is physically representa-

tive of the local thickness of the region of vortical flow.
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E.3. Eddy Viscosity in the Disturbed Wake Region.

The calculation of the eddy viscosity in the disturbed wake region (Region B in Figure

E.1) proceeds in a manner identical to that in the outer subdomain of the boundary layer

(E.06-E.10), except for the manner in which the shape function F is defined :

F(n) = nlwI (E.11)

In the wake region, the origin for the coordinate n is the center of the wake, and thus lies

on the curved sheet formed by the points of largest velocity defect behind the stator blade.

Technically, the quantities F,ma and n,,, required for the outer eddy viscosity should be

calculated based upon this origin. Therein lies a major practical difficulty, since tracking the

position of this sheet in unsteady flow is a quite complex task. However, if one assumes a

linear disturbance velocity profile (reasonable assumption given the velocity profiles in wakes

and tip vortices) n,ma and Fma, can be found in a straightforward manner :

tw
nma = 2 (E.12)
Fmaz = IU ma - IUlmin

where t is the thickness of the wake. Upon substitution of (E.12) into (E.08), the wake factor

can be determined in an equally simple manner :

FW(s) = Cw UD = (E.13)
2 4

Examination of the Klebanoff intermittency factor, shown in Figure E.3 reveals that

FK is essentially unity inside the wake, and decays rapidly to zero outside it. It follows that

the eddy viscosity in the wake region is approximately proportional to the local vorticity :

t2

vt = K1K 2Cw WW (E.14)
4

Equation (E.14) is efficient, since local vorticity values are readily available in the (x-y-z)

stator coordinate system. Before its incorporation in the computational scheme, one needs

however to examine the realism of the underlying linear velocity profile assumption. From a

physical standpoint, this assumption is equivalent to neglecting the effect of small-scale fea-

tures in the wake profile upon turbulent diffusion. Valkov (1992) developed a form of (E.14)

which assumes a Gaussian velocity profile distribution in the wake. Despite its complexity,

this form yields essentially the same values for vt as (E.14), provided that the vorticity re-

mains below 30-40 U/c. Above this threshold, (E.14) overpredicts the eddy viscosity. The

rotor wakes and vortices used in the present investigation satisfy this limit.
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n/nmax

Figure E.3. Variation of the Klebanoff intermittency factor FK as a function of the
normalized distance n/nma, from the wake centerline. The edge of the wake is at
n/n max = 1.

From a different standpoint, Equation (E.14) states that the "mixing length" in the wake

region is constant, which is substantiated by experimental evidence (White 1974). In fact,

upon closer examination, (E.14) can be found to be equivalent to Clauser's eddy viscosity

scaling law for wake-like structures (White 1974, pp.477). Thus, considering the empirical

uncertainty underlying the use of turbulence modeling, Equation (E.14) is appropriate for

obtaining the eddy viscosity in the wake region.

E.4. Eddy Viscosity in the Freestream Vortical Flow Region.

By analogy, equation (E.14) can be used to calculate the eddy viscosity associated with

upstream rotor wakes, provided the appropriate characteristic thickness is used. The up-

stream rotor tip leakage vortices appear to have a velocity profile similar to thick wake

localized near the upper endwall (Khalid 1995). For this reason, the eddy viscosity in the

regions external to the blade boundary layer (regions B and C in Figure E.1) shall be

calculated according to the following approximation of (E.14):

O = 0.0017(t*)2w (E.15)

Equation (E.15) is a simplified version of the outer formulation of the Baldwin-Lomax

model, valid for regions of free shear flow. It offers the significant advantage of using the

readily available local vorticity, instead of tracking the centerlines of the vortical disturbances

in the complex flow geometry of our problem.
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The characteristic thickness parameter t* used in (E.15) depends upon the inlet boundary

conditions used for a particular simulation. Based on the material in §G.2, t* - 0.1c for

upstream rotor wakes. For upstream rotor tip leakage vortices, the spanwise thickness of

the total pressure defect region is used, thus t* - 0.1 - 0.2c. The constants appearing in

(E.01)-(E.15) are those obtained by Cebeci, and used by Baldwin and Lomax (1978):

Constant Cw CK k K 1  K 2

Value 0.25 0.3 0.4 0.0168 1.6

Table E.1. Constants appearing in the Baldwin-Lomax model.

These constants have been empirically determined for the case of compressible flow. No

specific values for the case of incompressible flow have been found in the literature. VKI

lecture materials (1991) suggest that the values for compressible flow can be used in the

incompressible case.

E.5. Patching of Eddy Viscosity between Flow Regions.

The NS3D computational procedure requires a CO continuity of the eddy viscosity field

between and within the three flow regions shown in Figure E.1. Continuity within the dis-

turbed boundary layer region (Region A in Figure E.1) is guaranteed by (E.01). Continuity

within and between the free shear flow regions (Regions B and C in Figure E.1) is ensured

by (E.15). Continuity between the free shear flow regions and the disturbed boundary layer

region is achieved by patching (E.01) and (E.15) at the closest location n, to a solid surface

where they are of equal value. The free-shear layer flow eddy viscosity approximation (E.15)

is used beyond this location.

The foregoing patching process is more flexible than trying to find the edge of the bound-

ary layer. It allows to account for deformation of the boundary layer region envelope under

the effect of the upstream rotor disturbances. It also maps the proper values of disturbance

vorticity into eddy viscosity, regardless of whether the vortical fluid originated at the stator

or at the rotor blade surface.
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Appendix F

Disturbance Flow :

Concept and Application

This appendix presents the useful concept of disturbance flow and the details of its imple-

mentation in the NS3D computational procedure. The use of the disturbance flow technique

offers several advantages from both computational and conceptual standpoint, such as:

* Disturbance flow features are easy to visualize and identify.

* Changes in performance can be directly related to disturbance features (Appendix I).

* The effects of viscosity, non-linearity, three-dimensionality and other complex factors

can be easily separated.

* The solution of the disturbance formulation of the Navier-Stokes equations requires less
computational resources.

Given these advantages, the present investigation uses a disturbance formulation of the

equations of motion (F.06) that is equivalent to the full Navier-Stokes equations (C.01).

F.1. Disturbance Flow Concept.

The disturbance flow is defined as the difference between an unsteady flow and a reference

(or base) flow taken at all points of the computational domain. Herein, the unsteady flow is

due to the interaction with upstream rotor tip leakage vortices or midspan wakes. The base

flow is the "steady" flow that would exist in the stator passage had those vortices (or wakes)

been mixed out at the mid-gap axial plane.
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Au(, y, z, t)= u~(, y, z, t) - u,(z, y, z)

Ap(, yy,Z, t)= p,(z, y, z, t) - p,(, y, z) (F.01)

Aw(X, y, z, t) = W,(z, y, z, t) - W,(r, y, z)

The disturbance flow contains explicitly those features of the unsteadiness associated with

upstream vortices (or wakes) and their interaction with the stator blade. The "steady" base

flow can be unsteady itself, for instance owing to vortex shedding from the stator trailing

edge. However, unless there is massive boundary layer separation, the unsteadiness in the

reference flow is small and its effect negligible. In the present investigation, the base flow is

independent of time.

The concept of disturbance can be extended to any other flow quantity of interest. For

this purpose, it is convenient to introduce the disturbance operator A, which can be applied

to yield the difference for any flow quantity Q between unsteady and "steady" base flows

AQ = Q, - QS (F.02)

For instance, the time-averaged loss in unsteady flow can be expressed as a change in loss

with respect to the base flow :

Y, = Y. + Ay (F.03)

where Ay is the loss explicitly due to the effect of the upstream rotor disturbances. As

shown in Appendix I, this term can be directly related to the disturbance vorticity Aw.

The disturbance operator introduced above is linear with respect to addition, multiplication

by a constant, and other linear operators :

A(aP + bQ) = aAP + bAQ (a, b) E R 2

AP = AP

(F.04)

VAP = AVP; AP = A P

However: A(PQ) APAQ !

It is to be noted that in general, the time-average of the disturbance flow quantities is
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not zero. This distinguishes the disturbance approach from the conceptually similar linear

perturbation techniques.

Au # 0; Ap $ 0... (F.05)

As an aside, the disturbance concept can be applied to any situation where one is in-

terested in describing the changes brought by a particular flow phenomenon. One such

application is the propagation of density non-uniformities through a blade row.

F.2. Governing Equations.

Using (F.01), the incompressible, Reynolds-averaged Navier-Stokes equations can be cast

in a disturbance form that allows to compute the disturbance flow (Au, Aw, Ap) for a spec-

ified (1) steady base flow and (2) inlet disturbance profile:

V - Au = 0

BAu (F.06)
OAU = u,xAw + Auxw, + AuxAw - VApt + V[(v , + Av)VAu] + V(AvVus) (.06)

I II III IV V VI

The boundary conditions to the disturbance equations of motion (F.06) are slightly dif-

ferent from those for the full Navier-Stokes equations :

* Surfaces. The disturbance velocity and pressure gradient at the solid surfaces are nil

even in the presence of steady fluid suction/blowing:

Au= (F.07)
AVp-n = 0

* Inlet. The inlet boundary conditions carry information only about the moving distur-

bances from the upstream rotor:

Au = u, (a, y, z, t) - u,(oi, y, z) (.09)
AVp n = 0

The disturbance inlet boundary conditions are determined based on previous computa-

tional and experimental studies of the flow leaving the rotor (discussed in Appendix G).

Equations (F.06) is used to obtain the unsteady flows in the present investigation (as a

sum of disturbance and base flows). The disturbance formulation of the Navier-Stokes equa-

tions is a useful conceptual tools for understanding the mechanics of blade row interaction.
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This is due to the presence of base flow and upstream disturbances as two input parameters

that completely specify the resulting unsteady flow response in the stator.

For instance, the boundary layers in the base flow can be removed. Comparing the result-

ing disturbance flow to the disturbance flow obtained with a normal base flow clearly shows

the effect boundary layer response. The same approach can be used to identify the role of any

parameter, such as stator loading or flow three-dimensionality. The inlet disturbance profile

can be also manipulated for this purpose. For instance, the effect of reducing blade row spac-

ing can be simulated by increasing the strength of the upstream disturbances while keeping

the base flow constant. The crossflow velocity component of the upstream tip vortex can be

removed, to determine which aspect of the vortex vortex structure is responsible for changes

in stator performance. Such clear dependencies are difficult to isolate by experimental or

traditional computational means, which yield the "complete" flow variables.

F.4. Physical Basis of the Disturbance Equations.

Each individual term in (F.06) represents a specific physical process in the unsteady flow

that can be individually examined as follows :

(1) Term I represents the simple convection of the disturbances by the base flow. The

transport of the upstream wake fluid by the bulk flow in the stator passage is an

example of this mechanism.

(2) Term II represents the distortion of the base flow vorticity by the unsteady disturbance

flow. This mechanism is significant in regions where the base flow is rotational. It is

responsible for the boundary layer disturbances in described in Chapters 3-6.

(3) Term III represents the non-linear self-advective processes affecting the disturbance.

The motion of a curved vortex filament under the effect of its self-induced velocity, or

the migration of the rotor wakes, are examples of this mechanism.

(4) Term IV accounts for the coupling between pressure and velocity fluctuations. In is to

be noted that, since the disturbance flow is incompressible, the base pressure "p," does

not explicitly influence the unsteadiness.

(5) Term V accounts for the dissipation of the disturbances under the combined effects of

the steady and unsteady viscous and turbulent shear stresses. The diffusion of a wake

in otherwise uniform flow is an example of this mechanism.

(6) Term VI accounts for the dynamic effects of turbulent eddy viscosity fluctuations. This

term is present only in Reynolds-averaged situations, and its effects are negligible in

the present case.

Each of these terms can be manipulated to reveal specific mechanistic aspects of blade row

interaction. For instance, the disturbances may linearized by setting term III in (F.06) to zero
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in the computational procedure. Another simplified instance of the disturbance equations

of motion is the slip-free, non-linear inviscid base flow formulation used for the results in

Chapter 4. This formulation is useful for (1) assessing the role of recovery, and (2) isolating

the dynamics and impact of boundary layer response:

3Au= uxAW + AuxAW - VApt +VV 2 Au

I III Iv (F.09)

Surface B.C : Au - dn = 0

Term II is absent from (F.09) because the base flow is inviscid. Turbulent diffusion is

however retained in the disturbance flow. In this manner, the upstream wakes and vortices

are allowed to mix out, while interacting with the stator in an otherwise inviscid setting.

The retention of turbulent diffusion in the disturbance flow serves two purposes. First, it

suppresses the intrinsic instability of the inviscid equation. Second, it allows to assess the

relative importance of recovery in the presence of turbulent diffusion. The latter point is

important, since the recovery benefit from purely inviscid models may not be achieved in

practice (Smith, 1996).

F.5. Computational Implementation.

The implementation of the disturbance equations of motion (F.06)/(F.09) in the NS3D

computational procedure is relatively straightforward. First, no changes in the time dis-

cretisation or spatial discretization are required. For this reason, the implementation of the

pressure and viscous steps is identical to that discussed in Appendices C-D.

The discretized convective step (C.23) is however different as shown below. This is due

to (1) the different convective terms in the disturbance equations of motion; and (2) to the

presence of the V(AvVu,) term (term VI of F.06). Although this term is of viscous origin, it

acts like a body force from an algebraic standpoint. Therefore, it has been implemented in the

convective step by means of an explicit backward-Euler scheme. A fourth-order Runge-Kutta

scheme is however used for the purely convective effects.

n+1/4 n At n
ujk,i,l = uk,i,l + Fkil ... et c.

G, V(AnVu )jk,i,l (F.10)

n At F n+1/4 n+1/2 Fn+3/4j + AtGnk,i,l
Ujk,i, = Uk,i,'l + J+ k,i,l
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The convective forcing function F depends on the desired nature of the unsteady solution:

Non-linear : Fjk,i, = uS xAWt + Autxw + t ki,
(F.11)

Linearized : Fk,i,l = u xAWt + Autxw }jk,i,l

Thus, given the appropriate boundary conditions and viscosity field, the NS3D compu-

tational procedure described in Appendices C-D can be used for solving the disturbance

flow equations without modification except as noted above.

F.6. Disturbance Vorticity Dynamics.

The vorticity form of the full Navier-Stokes equations states that there are three mecha-

nisms through which vorticity can be introduced in a flow:

w 1 1
+ (u- V)w = (w -V)u- VpxVp+ -V (F.12)

O- P2 R
Transport D V

B V

* Since vortex lines move with the flow, their tilting and stretching introduces new vortic-

ity components or alters the strength of the existing ones. This mechanism, represented

by the term labeled "D" in (F.12), does not exist in two-dimensional flows.

* Baroclinic torque, represented by the term labeled "B" in (F.12). This mechanism

does not exist in the incompressible flow situation investigated here, and is usually not

significant in subsonic flows. Therefore, it shall not be considered further.

* Diffusion of vorticity produced at solid surfaces. This mechanism is represented by the

term labeled "V" in (F.12).

In subsonic unsteady flow, changes in time-average loss are directly related to changes in

vorticity (§2.3). Thus, it is of particular importance to understand the mechanisms through

which disturbance vorticity (Aw) is introduced in the flow. The production of disturbance

vorticity is a more complex phenomenon than described above. For this reason, the simpler

two-dimensional situation will be examined first. Three-dimensional effects later shall be

added later. In two-dimensional incompressible flow, the disturbance vorticity is is governed

by the following equation, derived by applying the A operator to (F.12):

+ (u , . V)Aw + (Au V)Aw = -(A V)w, + vV 2 Aw (F.13)

TLC TNC T1 T4
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The left-hand side of (F.13) represents the transport of disturbance vorticity in unsteady

flow by the combination of bulk flow (linear convective term designated by TLC) and distur-

bance flow (non-linear advective term designated by TNC). The right-hand side represents

two distinct mechanisms for introducing disturbance vorticity:

* Production of disturbance vorticity by normal "distortion" of existing vortex lines in

the base flow. The lines in question are spanwise vortex filaments that are being moved

in the blade-to-blade plane by the velocity disturbance. This mechanism, represented

by the term T 1 (F.13), has no counterpart in steady flow. Examination of this term

indicates that this mechanism is most important in regions regions where the base

flow vorticity has large gradients (e.g. boundary layer edges). It has been found that
normal distortion is the primary mechanism involved in boundary layer response for
the unsteady flow under consideration. Its effects on loss are noticeable.

* Diffusion of disturbance vorticity produced at the solid surfaces (term T 1 in F.13). It

is shown in §5.1.3 and §3.1, that this mechanism does not contribute to the change in

stator loss in a significant manner.

In three-dimensional unsteady incompressible flow, there are two additional disturbance

vorticity production terms, as shown below:

+(u. - V)Aw+(Au V)Aw = -(Au V)w,+(w . V)Au + (Aw V)(bu, + AU) ±vV2AW
at

T 2  T3

Both of these terms are associated with stretching and tipping of vortex filaments. The

term labeled "T 2 " accounts for disturbance vorticity introduced by stretching/tipping of

base flow vorticity filaments by the action of the disturbance velocity field. On the other

hand, the term labeled "T 3 " accounts for disturbance vorticity resulting from the stretch-

ing/tipping of disturbance vorticity filaments due to non-uniform base velocity (linear effect)

and disturbance velocity (non-linear effect) fields.

The distinction between sources of disturbance vorticity in the computed solution is

important, since it points to those flow mechanisms responsible for changes in loss. Identifi-

cation of these mechanisms is useful in proposing design actions that exploit or mitigate the

performance effects of upstream rotor disturbances.

215



Appendix F. Disturbance Formulation 216



Appendix G. Inlet Disturbances

Appendix G

Input Elements:

Inlet Boundary Conditions

Wakes, tip leakage vortices and streamwise vortices from the upstream rotor are rep-

resented as moving velocity disturbances, prescribed on the inlet boundary of the stator

computational domain. This appendix describes the coordinate system (§G.1) and the inlet

boundary conditions (§G.2-G.4) used for this purpose.

G.1. Method of describing rotor vortical disturbances.

Rotor disturbances are specified as a disturbance velocity field (Au,, Av,, Aw,) in a yawed

frame moving with the rotor. This frame, referred to as REY (rotor exit yawed) frame, is

shown in Figure G.1. The yaw angle is determined by the velocity triangles at the exit of

the rotor.

tan 02,  , V (G.01)
Ux

An intermediate, moving frame is used for the purpose of transferring the disturbances

specified in the REY frame, onto the stationary inlet boundary of the computational domain.

This frame, referred to as REA (rotor exit axial) frame, is also shown in Figure G.1.

The disturbance velocity components in the REA frame, (Aut, Ave, Awt), are obtained

from (Au,, Av,, Aw,) by means of a linear transformation:
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Figure G.1. Data on wakes and tip vortices is usually presented in the rotor relative
frame (REY frame). To translate this information into the stator absolute frame (SA
frame), an intermediate REA frame is used. This frame is aligned with the SA frame,
but moves with the rotor blade.

Aut(y,/ coS 02,,, z) cos 02,, sin 0,, 0 A] u(y,, z)

Avt(Y,/cos0 2 ,r, ) = -sin0 2 ,, cos02,, 0 • Av,(y,, z) (G.02)

Awt(y,/ cos 02,,, z) 0 0 1 Aw,(y,, z)

Except for the relative tangential motion between the REA and SA frames, equation

(G.02) also describes the disturbance velocity profile at the inlet of the stator (Au, Av, Aw).

Therefore, the disturbance inlet boundary conditions at the inlet of the stator computational

domain are given by:

Au(y, z, t) = Aut(yt, z) + usbu

Av(y, z, t) = Avt(t, z) + u,Sv (G.03)

Aw(y, z, t) = Awt(Yt, z) + U,w

In the stator frame, the upstream wakes and vortices appear as a train of periodic dis-

turbances, moving in the tangential direction with speed equal to the rotor wheel speed VR.

Mathematically, this is achieved by means of the following mapping:

y =-- yi - min(yi) - tVR - SC S tR (G.04)

The adjustment velocities (6u, 6v, 6w) in (G.03), represent a steady bias added to the

disturbance so that the unsteady flow at the inlet has the same time-averaged mass flux and
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momentum as the base flow. This satisfies the premise that the base flow is the steady flow

that would exist in the stator passage if the upstream disturbances are mixed out between

the blade rows. The adjustment velocities are obtained by solving the following system of

equations :

L(Aut + u u)dydz = 0

(u, + AUt + uu)(v + Avt + u,8 v)dydz = Ju v,dydz (G.05)

I (us + AUt + u,u)(w, + Awt + u,6w)dydz = Jf uwdydz

The multiplication by u, in (G.03) and (G.05) allows to satisfy the non-slip endwall

boundary conditions (u,=1 in 2D flow). The adjustments to preserve mass and momentum

are applied to the unsteady flow rather than to the base flow, since the base flow velocity

forms the basis for non-dimensionalization. The adjustment velocities are typically small

(few percent of the free-stream velocity).

The disturbances seen by the stator may appear quite different from their original de-

scription in the REY frame locked to the rotor (cf. §2.5, Figure 2.3). This is due to the

transformation (G.02). The disturbance velocity field is not affected by the transformation

between moving and stationary blade rows. The following sections describe the three base-

line types of upstream rotor disturbances used in the present investigation (wake, tip leakage

vortex, streamwise vortex) in the originating REY frame.

G.2. Description of the upstream rotor wakes.

A relatively large amount of data, obtained primarily in large-scale research compressors,

is available for characterizing the ensemble-averaged properties of the rotor wakes. Relative

velocity profiles taken in the rotor-stator gap are given by Silkowski (1995), Prato and Lak-

shminarayana (1993), Wisler (1992), Stauter, Dring and Carta (1991), Zierke and Okiishi

(1982), and Gallus (1979) among others. The velocity profile across the wake is generally

asymmetric, and reflects the difference in boundary thickness between the rotor blade suction

and pressure sides.

Most of these experimental studies indicate that a two-dimensional representation of the

wake geometry is adequate over most of the span. For instance, Wisler (1992) and Silkowski

(1995) observe that the wake velocity defect is nearly constant between 20-80% of the span

(the wakes become stronger near the hub, possibly owing to the higher loads on the rotor
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blade there). The wakes appear as relatively straight spanwise columns of lower total pressure

fluid. Experiments by Poensgen and Gallus (1991) support this observation.

It is to be noted however that a noticeable radial velocity component is generally present

in the wakes (Prato and Lakshminarayana 1993, Kotidis and Epstein 1991, Nurzia and Puddu

1994). The effects of this radial component are not considered in the present study. The

objective here is to elucidate the key role of the relative velocity defect. For this reason, the

wakes used herein are described by a symmetrical, two-dimensional Gaussian velocity profile

in the REY frame:

Au,. = -A,rV2 exp In l00A 2y, - A,V 2 exp -inl00A 2(S, - y,)(

(G.06)

Av, = ; Aw, = 0

Table G.1 summarizes ensemble-averaged properties of the wake (relative velocity defect

A, and 99% velocity defect thickness t,) measured in research compressors. Wake properties

depend on design, on how far behind the rotor the data is taken and on operating point.

With the present configuration, a relative defect of 20-25% can be considered representative

at design point operation.

Source Axial spacing Probe location A, t,

(% of chord) (% of gap) (%V2,) (%S)
Stauter, Dring and Carta (1991) 48 4.0-71.0 0.47-0.23 16-25
Manwaring and Wisler (LSRC, DP) (1992) 40 50 0.17 30

Silkowski (LSRC, q = 0.35, HL) (1995) 40 50 0.30 18
Silkowski (LSRC, 0 = 0.38, DP) (1995) 40 50 0.16 20

Silkowski (LSRC, q = 0.31, LL) (1995) 40 50 0.17 30

Poensgen and Gallus (1991, cylinder rods) 50 50 0.15 30

Capece and Fleeter (1987) n/a n/a 0.15-0.30 25-40

Gallus (1979) 50 33 0.20-0.45 15

Table G.1. Ensemble-averaged midpsan wake properties from several experimental
studies (DP=design point,HL/LL=high/low loading).

Wake decay as a function of downstream distance behind the rotor, and fluctuations of

the wake properties in the time domain, are two other important wake parameters that shall

be discussed presently. Wake profile measurements by Stauter et al. (1991) past the second-

stage rotor of the UTRC LSRR2 provide information on how fast the rotor wake defect is

attenuated in the space between blade rows. This data, shown in Figure G.2, is used in
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this study to determine the "strength" of the wakes arriving in the stator as a function of

the axial spacing between blade rows.

. 82=0.266
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Figure G.2. Left : Measured ensemble-averaged wake profiles at five different locations
past the rotor TE. Right : Measured velocity defect decay A,/A,.,,ma behind the rotor
(dots and solid lines) and comparison to Schlichting (1968) correlation (dashed line).
Location labeled "4" is near the mid-gap. From Stauter et al. (1991).

The above results are presented on an ensemble-averaged basis. In practice, the wake

properties fluctuate in time. There is not sufficient data to characterize these fluctuations

fully in terms of frequence and amplitude. In the introduction to his vortex-street model,

Gertz (1988) pointed out that such fluctuations are present in some compressors and virtu-

ally absent in other designs. Available data indicates that the period of the fluctuations is

comprised between 1/8 and 1/3 of the blade passing period (Brookfield 1996, Kotidis and

Epstein 1991) and possibly related to the Strouhal number for vortex shedding based on local

trailing edge properties. Near the rotor trailing edge, the amplitude of the fluctuations can

be as large as the defect itself.

Since the effect of such fluctuations has not been considered in previous studies, the

present investigation opens the subject by using a simplified model thereof. In this model,

the wake velocity defect A, is oscillated sinusoidally in the time domain with an amplitude

equal to the ensemble-average A,, and at a fraction Ti/T, of the blade passing period T,.

A, (t) = A, 1 + sin (2r T )] (G.07)

As noted in §2.5, the disturbance velocity associated with the wake appears as a jet is

directed against the pressure surface of the stator blades. This jet carries an excess of total
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pressure, tangential momentum and incidence relative to the core flow. This can be seen in

experiments where the data is taken in the stator frame of reference (e.g. Cherrett et al. ,

1994). Compared to the core flow velocity in the stator frame, the wake disturbance can be

quite strong. Capece and Fleeter (1987) have measured "gusts" between 20-50 percent of

absolute velocity, thereby putting linearized wake interaction theory in question.

G.3. Description of the upstream rotor tip leakage vortex.

The flow near the outer casing behind a compressor rotor is characterized by three-

dimensional, low-total pressure structure commonly referred to as a tip leakage vortex. The

baseline tip leakage vortex used in the present study is illustrated in Figure G.3 in terms

of crossflow (left) and relative velocity defect (right) in the REY frame. It is based on the

computed exit flowfield by Khalid (1995) for an isolated LSRC rotor at design point loading

and tip clearance of 0.03 chords. The flowfield shown in Figure G.3 is representative of

ensemble-averaged data taken in research compressors (e.g. Khalid 1995, Wagner 1983).

To obtain the disturbance flow for of the tip vortex, (Aur, Avr, Awr) as required by the

code, the flowfield shown in Figure G.3 is circumferentially mixed out, and the resulting

average removed. The wakes are also removed in order to avoid confusing their effects with

that of the tip leakage flow. The resulting disturbance flowfield has two components:

* A region of velocity defect Au, qualitatively similar to that in a wake. This region is
associated with the low-energy, blockage fluid in the tip leakage vortex.

* A jet-like crossflow disturbance (Av, Awr) associated with the flow from the high-
pressure towards the low-pressure side of the overtip clearance.

At the exit of the rotor, the crossflow disturbance is about half as large as that associated

with the velocity defect. The studies of Hunter and of Hunter and Cumpsty (1982), Storer

(1991), Storer and Cumpsty (1991) and Khalid (1995) among others have contributed towards

understanding how the tip leakage vortex arises and what parameters control the process.

Khalid (1995) established that the blockage associated with the tip leakage vortex is directly

propotional to the tip clearance and varies as a power of the rotor tip net loading parameter.

Furthermore, Khalid noted similarities between the tip leakage flow and wake flows. These

results are used in the present investigation to approximately scale the tip vortex at operating

points and for axial spacings other than the baseline.

It is to be noted that for very small tip clearances (less than a percent) or for no clearance

at all, no tip leakage vortex is observed. Instead, the flow in the aft part of the rotor tip

separates (Storer and Cumpsty 1991). However, for clearances of engineering interest, the

pattern of swirling, low-Pt described above is observed at the rotor exit.
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Figure G.3. Tip vortex flowfield in the REY frame used to derive disturbance inlet
boundary conditions in the present investigation. Left: crossflow velocity vectors, show-
ing the secondary flow structure associated with the vortex. Right: relative velocity
contours, showing the strong velocity defect associated with the vortex. From Khalid
(1995) computation for an isolated LSRC rotor at design loading and 0.03c tip clearance.
Vortex is assumed to be steady in the rotor frame. This assumption is not necessary
correct (Graf, 1996) but its effect can be assessed by examining results from fluctuating
wakes.

G.4. Description of the upstream rotor streamwise vortex.

The foregoing tip leakage vortex is quite different from a purely streamwise vortex in

the rotor relative frame. A "perfect" streamwise vortex can be described as a a "bundle"

of vortex filaments aligned with the flow leaving the rotor, It is associated with a strong

swirling point-flow in the rotor exit crossflow plane and no relative velocity defect.

The majority of flow data shows no evidence for such "perfect" streamwise vortices in

research compressors (e.g. Silkowski, 1995). In fact, only one investigation shows such a

"perfect" streamwise vortex (Nurzia and Puddu, 1994). In this case, the most apparent

secondary flow feature at the exit of the rotor is an intense almost-perfect streamwise vortex

core at the hub. Nurzia and Puddu's work is on an industrial fan and not on a research

compressor. The blading at the hub of this fan is more similar to that of a helicopter rotor

than to a compressor, which explains the presence of a well-delineated streamwise vortex.

Despite its limited practical significance, stator interaction with such streamwise vortices

is useful from a fundamental standpoint. It showcases differences in the performance effects
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of streamwise vortices and tip leakage vortices, and can identify which structural aspects of

the tip leakage flow are the important one. For this reason, the third type of upstream rotor

disturbance used herein is a vortex with a circular viscous core of streamwise vorticity. The

inlet boundary conditions at the inlet of the stator are obtained by considering an array of

images of a classical viscous vortex core (White, 1974).

Au, = 0

=r =+o m= oz + -(4m + 2)H 1 -e-1.26r

2V r = Z 2 1
i=-00 m=-0o im

/=+oo n=+oo
r 1 Z, - zC- 4nH 1- e-1.26r2 /r

2=-oo=- n (G.08)

S =+o+oo =+oo - 1.2/r2

=-00 n=-0 -

S=+o m=+oo Yr - Yc - ISr 1  e-1.26r' I
27r r2

l=-oo00 =-oo Im

The index "l" in (E.12) accounts for tangential periodicity, whereas the indexes "m" and "n"

account for the CW/CCW images and images-of-images with respect to the hub and casing.

The distance offsets rim and rIn in (G.08) are given by :

r1 = (y, - y, - IS,) + (z, - z, - 4nH)2

(G.09)
rim = (y, - e - IS,) + (z, - z, - 4mH - 2H)2

With the present stage design, the vortex filament described by (G.09) is roughly per-

pendicular to the main flow streamlines at the entrance of the stator. The core radius r,

of the streamwise vortex is governed by the balance between convective and diffusive time

constants. Based on Nurzia and Puddu (1994) data, a vortex core radius of 0.15 blade spans

appears to be a reasonable choice. The circulation of the core is taken equal to the rotor

blade bound circulation (0.45U/c), based on the similarity between the vortex core visible in

Nurzia and Puddu's (1994) data and the trailing hub vortex of a helicopter rotor.
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Appendix H

Input Elements:

Steady Base Flows

This appendix describes the base flows used in the present investigation. The base flow

is the steady flow that would exist in the stator passage if the upstream rotor disturbances

are mixed-out at the inlet. The base flow serves as a propagation and interaction medium

for the upstream disturbances. Four different base flows are used:

H.1. Computational method.

The inviscid base flow is obtained by means of the PCPANEL code developed by McFar-

land (1984). PCPANEL is based on a discrete singularity representation of a single blade

row. Two-dimensional inviscid solutions are obtained at design-point incidence, and stacked

in the spanwise direction to obtain an inviscid three-dimensional flowfield without spanwise

flow or gradients. This limitation is acceptable, given that the purpose of the inviscid solution

is to isolate unsteady flow features associated with the boundary layer response.

The viscous base flows are obtained by means of the Adamczyk et al. (1989) three-

dimensional Navier-Stokes flow solver. This is a proven research code that has been success-

fully employed in several turbomachinery investigations, including Khalid's (1995) study

Base flow Designation

Inviscid design-point base flow ID

Viscous design-point base flow VD

Viscous high-loading base flow VH

Viscous high-shear base flow flow VS
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of tip leakage flow in a compressor rotor. For steady-state flows, this code yields ade-

quate flowfields much faster than the NS3D computational procedure. It solves the steady

Reynolds-averaged form of the mass, momentum, energy and state equations discretized on

a cell-centered H-grid in the cylindrical-coordinate relative frame of a single stator blade

row. The eddy viscosity and heat transfer coefficients are obtained using the Baldwin and

Lomax (1978) turbulence model for wall-bounded flows, without special treatment of the

wake region. The stability of the scheme is maintained by means of a linear combination of

second and fourth order artificial viscosities (Jameson et al. 1981). To preserve the overall

incompressible nature of the simulation, the base flows are computed at a Mach number of

0.2 (the lowest Mach number for which a relatively smooth solution can be obtained).

H.2. Inlet Profiles.

The circumferentially-averaged flow properties in turbomachinery may exhibit consider-

able spanwise gradients, that are associated with the development of endwall boundary layers

along the annulus and with the manner in which the rotors transfer energy to the working

fluid. Such spanwise profiles are of considerable interest, given their bearing on overall per-

formance and pressure rise. Since the base flows used herein are computed for a single stator

blade row, it is particularly important to prescribe inlet spanwise profiles at the entrance of

the stator that are representative of the conditions in a typical embedded stage.

Profiles from Silkowski/Khalid Profiles used herein
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Figure H.1. Left: Normalized axial velocity profile at the inlet of an LSRC stator
from Silkowski (1995) measurements and from Khalid (1995) single-rotor computations.
Right: Axial velocity profiles used to generate the base flows in the present investigation.
The normalization ensures that U. = 1 at midspan (§A.4).



Measurements in modern compressors have shown that spanwise profiles of velocity and

temperature settle down to a relatively constant pattern after three or four stages (Cumpsty

1989, Smith 1970). This pattern appears to be composed of (1) casing boundary layer

extending over the outer 10-15% of span. (2) a largely inviscid core flow characterized by

a velocity gradient such that the axial velocity near the casing is usually smaller than that

near the hub, and (3) a hub boundary layer over the inner 10-20% of the span.

Based on this situation, two velocity profiles are used to generate the viscous base flows

in the stator passage. The first profile, labeled "A" in the left side of Figure H.1, has a

uniform core flow. As shown on the right side of Figure H.1, this profile is representative

of the flow behind an isolated or front-stage rotor The second profile, labeled "B" on the left

side of Figure H.1, is constructed using the largest velocity gradient found in the surveyed

literature (Rhie et al. 1995 multistage calculation for Pratt & Whitney core compressor).

The use of these different inlet profiles allows one determine the role of steady flow spanwise

gradients on the performance changes brought by upstream wakes and vortices (cf. §6.2.2).
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Figure H.2. Isobars of static pressure coefficient and velocity vectors
blade-to-blade plane in the inviscid (ID) base flow.
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H.3. Inviscid base flow (ID).

The inviscid base flow is obtained using a design-point midspan incidence of 46 degrees
(Manwaring and Wisler, 1992). The computed flowfield is shown in Figure H.2. The
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computed stator static pressure coefficient (2.03) is 0.490, which is nearly equal to the exact

theoretical value of 0.506. The computed passage and mixing loss coefficients are nil.

H.4. Viscous design point base flow (VD).

The design-point operating conditions for which the VD base flow is obtained are defined

in Appendix A. Some of the important performance parameters computed at this point

are summarized in Table H.1. The values of these parameters are comparable to what is

currently used in the design practice.

Parameter Value

Midspan inlet angle 46.00

Midspan exit angle 21.00

Midspan diffusion factor 0.41

Net static pressure recovery coefficient (entire passage) 0.402

Total pressure loss coefficient (entire passage) 0.033

Total pressure loss coefficient (midspan only) 0.020

Table H.1. Key stator performance parameters for the design-point base flow.

Cumpsty (1989) presents the following generic 2D profile loss correlation, based on em-

pirical data for several families of airfoils under unstalled flow conditions:

2<
y, H 0.007 (H.01)

For the present geometry, (H.01) yields a loss coefficient of 0.023. This value is in good

agreement with the computed midspan passage loss coefficient in Table H.1. This indicates

that the dissipative flow processes in this region are well captured in the VD base flow.

Figure H.3 compares the computed midspan static pressure distribution with data taken

by Manwaring and Wisler (1992) at the same location. The computed loading distribution

is in reasonably good agreement with the data.

No experimental data is available for more detailed assessment of the base flow features.

Despite this, it is still possible to make a critical examination of the computed base flow.

Figure H.4 shows the midspan velocity contours, revealing a flowfield typical of modern

stator blading. The suction side boundary layer progressively thickens, but remains attached

almost until the trailing edge.

As shown in Figure H.5, the computed boundary layer velocity profile fits the law of

the wall (White, 1974) in the unseparated flow region. This is a useful confirmation, given
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that the base flow vorticity distribution is an important factor in determining the profile loss

(§6.2.1, also Appendix J).

Suction Side

0.5o
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Figure H.3. Dots: Measured midspan static pressure distribution (adapted from Wisler,

1992). Solid line: Computed midspan static pressure distribution. Design-point opera-

tion (0=0.45,b=0.65).
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Figure H.4. Isovelocity contours on the mid-span blade-to-blade plane in the computed

design-point base flow.
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Figure H.5. Dots: Envelope of suction-side boundary layer profiles between 0.2 and
0.5 chords from the computed VD base flow. Solid line: Law of the wall (White, 1974).
Design-point operation (0=0.45,0=0.65).

The secondary flow vortical structure of the VD (design-point) base flow are shown in

Figure H.6 Near the leading edge, the computed flow is characterized by the two legs of

the horseshoe vortex. This feature is normal, and can be explained by the deformation of

the endwall boundary layer vortex filaments by the leading edge (Figure H.7, left). Further

downstream however, the endwall flow streamwise vorticity comes to be dominated by the

effects of enwall boundary layer turning (Figure H.7, left).

Streamwise vorticity is present in the blade boundary layer as well. Its presence can be

explained by the "tilting" of the spanwise vortex filaments therein brought by the slowing of

the flow near the casing, which is in turn due to the presence of swirl (Figure H.7, right).

The magnitude of the computed streamwise vorticity in agreement with the Winter-Squire

equation. This reinforces the conclusion that the VD base flow is representative of the actual

flow in the stator.

It is to be noted that the base flow streamwise vorticity accounts for only about 15% of

the total pressure loss. The remaining 85 percent are due to normal vorticity, under the form

of boundary layers on the blade and on the endwalls. Considering the moderate flow turning

in the stator, this finding is not surprising.
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Figure H.6. Design-point base flow streamwise vorticity field in the outer half of the
crossflow plane. (left:immediately before the leading edge, center:shortly after the leading
edge, right:midchord).

Figure H.7. The streamwise vorticity pattern shown in Figure H.6 can be explained
in terms of turning of the base flow boundary layer vortical filaments.
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H.5. Viscous high-loading base flow (VH).

The high-loading point is at the right of the compressor characteristic peak (Figure A.1,

Appendix A). The midspan flow angle at the inlet of the stator of 51 degrees. As shown in

Figure H.8, the flow at this point is unstalled. However, the boundary layer thickness and

the extent of the separated region have increased with respect to the design point case.
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Figure H.8. Isovelocity contours on the mid-span blade-to-blade plane in the computed

design-point base flow.

This results in an increased overall passage loss in the stator passage, that can be ap-

preciated by comparing Tables H.1 and H.2. The static pressure recovery coefficient of

the stator has also increased. The performance parameters below are representative of a

highly-loaded but yet-unstalled blade row.

Parameter Value

Midspan inlet angle 51.00

Midspan exit angle 21.00

Midspan diffusion factor 0.51

Net static pressure recovery coefficient (entire passage) 0.402

Total pressure loss coefficient (entire passage) 0.044

Table H.2. Key stator performance parameters for the high-loading base flow.
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H.6. Viscous high-shear base flow (VS).

The most notable feature of the high-shear base flow is a more pronounced secondary flow

pattern (Figure H.9). This can be explained by the turning of a flow that has increased non-

unformity at the inlet. Otherwise, the VS base flow is qualitatively similar to the design-point

base flow (the VD and VS base flows are obtained at the same incidence).
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Figure H.9. Design-point base flow streamwise vorticity field in the outer half of the

crossflow plane. (left:immediately before the leading edge, center:shortly after the leading

edge, right:midchord).
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Appendix I

Mechanistic Relationships for

Unsteady Loss and Pressure Rise

This appendix has a two purposes. The first is to define time-averaged figures of merit

for unsteady flow that are (1) physically related to compressor performance and (2) familiar

to designers. The second is to derive mechanistic relationships between figures of merit and

those flowfield features that can be observed by means of computation or experiment.

This study is concerned with subsonic flows. In such flows, compressibility does not exert

a radical impact on the flow features or on the production of vorticity and total pressure loss.

For this reason, the relationships have been derived on an incompressible basis. This leads

to simple expressions that contain the essence of the problem.

1.1. Figures of Merit.

This section derives a loss coefficient related to the time-averaged compressor efficiency:

Isentropic work of adiabatic compression for a given total pressure ratio (I.01)
= Actual work of adiabatic compression for the same total pressure ratio

For this purpose, the unsteady compression process is treated as a collection of fluid

particles undergoing a change in state within an insulated control volume, illustrated in

Figure I.1. Only the average value of the shaft work is of practical interest. It can be

computed by application of the first law to each particle, followed by summation over a large

number of particles. If the unsteady process is periodic (i.e. there is no net accumulation of

energy or mass in the compressor stage over a given time period), the average work is:
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Figure 1.1. Processing of fluid particles within a control volume around the device,
and associated change of state in the H-S diagram.

W.. = f iht -dS = Jf rhhtdA - f i hhtdA (1.02)

As shown in Figure 1.1 (right), the actual stagnation enthalpy rise for a fluid element

"dm" going though the real compression process will be higher than in isentropic compression.

If the variations in pressure due to unsteadiness and losses are small relative to the absolute

value, one can use the local slope of the Pt lines:

S = Tt 
(1.03)

to relate the difference between real and ideal exit stagnation enthalpy of a fluid particle to

the increase in specific entropy:

ht,e - he,e = Tt,e(se - si) (1.04)

The above quantity represents the specific power required to bring a fluid particle to its

isentropic state. Summation of fluid particles over the flow area and time period, together

with (1.02), leads to the following expression for time-averaged efficiency:
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Sff rhTt(se - si)dA

ff rh(ht,e - ht,i)dA

Equation (2.05) is an extension of the well-known steady formula (Denton 1993, Kerre-

brock 1992) for unsteady non-uniform flow. It states that the only rational measure of loss

is entropy flux (in this case, mass and time-averaged). Our computational procedure does

not provide entropy levels directly, but total pressure distributions are readily available. For

this reason, (1.05) shall be cast in terms of Pt by making use of the following perfect gas

relationship:

se - si = Cpln(Tt,e/Tt,i) - Rln(Pt,e/Pt,i) (1.06)

For adiabatic flow through a stationary blade row the stagnation temperature is constant,

and the stagnation pressure ratio is close to unity. A Taylor series expansion of (1.06) yields:

Tt(se - si) .0 Pt', (1.07)
Pt,i

Considering incompressible flow, substitution of (1.07) into (1.05) yields the following

relation between the non-uniform total pressure field and the drop in time-averaged stage

efficiency associated with entropy rise in the stator:

(1 - 7)o (UiPt,i - UePt,e)dA (1.08)
(1 - 77)tator "(U.08)

UPt,stage inlet - UPt,stage exit

A dimensionless loss coefficient shall be used to represent this drop in efficiency:

(1 - /)s.tator Pt,stator inlet - Pstator inlet YI-E (1.09)

Pt,stage inlet - Pt,stage exit

where:

YI-E = [JJi dA - JjiucedA (I.10)

In steady flow, the loss coefficient given by (I.10) is identical to that used in cascade testing

and stage design (Lieblein et al. 1953, Cumpsty 1989, Kerrebrock 1992, Denton 1993):

Mass averaged APt across cascade (SteadyFlow) (I.11)

Qinlet
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1.2. Connection between Passage Loss and Flow Variables.

To extract Yp, the full Navier-Stokes equations shall be cast in the following form:

Ou 2
VCt = -2 + 2uxw - Vxw (1.12)

Ot R

Multiplying both sides by u and observing that u - uxw = 0 yields :

ou 2  2
u. VCt = - - u. (Vxw) (1.13)at R

By virtue of continuity, the left-hand side of (1.13) can be written as :

u. VCt = V. (uCt) - Ct(V. u) = V. (uC) (1.14)

Integrating (1.14) over the passage control volume, and applying the divergence theorem

to the left-hand side of the resulting integral yields:

(uCt) -dn = -J + u - (Vxw) dV (1.15)

In absence of fluid suction or blowing from the solid boundaries, the left-hand side of (1.15)

has the same form as the dimensionless passage loss coefficient Yp. Inserting the identity:

V. (ux) = w . (Vxu) - u. (Vxw) (1.16)

into (1.15), and applying the divergence theorem to the V. (...) terms in the right-hand side

thereof, yields:

A (uC) -dn = u2 dV + (uxw) dn - 2 f J w 2dV (1.17)

K.E. F.F. V.D

Each term in the above can be connected to a particular physical process. The term

labeled "KE" represents the rate of change of kinetic energy of the fluid contained in the

control volume. The term labeled "FF" represents the net flux of frictional work across the

boundaries of the control volume. The term labeled "VD" represents the rate of work done

by frictional forces within the control volume. Time-averaging (1.17) yields the passage loss

coefficient Y, of interest on the left-hand side. On the right-hand side, it is straightforward to

show that the time-average of the kinetic energy term is zero for periodic flows. Furthermore,
It is easily shown that the FF term in the computed flowfields here is about an order of
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magnitude smaller than the VD (viscous dissipation term). As a result, the time-average

loss coefficient is function only of the total enstrophy field w 2 inside the passage:

AY = ~ w dV (1.18)

Equation (1.18) is useful. The unsteady flow phenomena here can be described and

understood in terms of vorticity redistribution. Equation (G.07) provides the desired direct

link between changes in time-averaged loss coefficient and the underlying changes in the

flow vortical structure. For instance, the difference in time-average passage loss between the

unsteady flow and the steady pre-mixed flow can be written as follows:

AYp,U - AYp,, = - (w + w,) - (w, - w,)dV (I.19)

The vorticity field of the base flow, w, is essentially constant in time. Using the "Delta"

notation, introduced in §F.1 to represent differences between unsteady and steady base flow,

allows to write (1.19) in the following manner :

AAY = R Jw . AwdV - (Aw) 2 dV (1.20)

Equation (1.20) is used to determine the change in passage loss associated with boundary

layer disturbances. The first term on its right-hand side represents additional dissipative

work due to the presence of vortical disturbances within a vortical base flow. The second

(non-linear) term represents the increase in dissipative work associated with the disturbance

proper. In the cases examined here, it is found that this term can be neglected.

1.3. Connection between Mixing Loss and Flow Variables.

The loss from mixing the flow at a given axial location to uniform condition, Ym(z),

is calculated using a constant-area assumption. This assumption has been selected among

others because it corresponds to a physically realizable process. The flow at the exit boundary

of the mixing control volume is uniform, although it may fluctuate in time. We are interested

only in the time-average value of the mixing loss coefficient in the control volume, therefore:

A () = (cp,00 + U2 + v2 + W2)1} dydz - A C + u2 + v2 + 2) dydz

(1.21)

It is to be noted that p = 1 (incompressible flow, dimensionless units) in the above,

which allows to simplify the notation. The flow conditions at the far downstream boundary



(Cp,oo, , vD, VD WD) are determined by means of mass and momentum flux conservation:

-J J pdV + pu.dn= 0

(1.22)

a JJ2pudV + 2puu dn = JJJCdn

The mass conservation equation yields:

UD = M/A (1.23)

where "M" is the mass flux entering the passage, given by the boundary conditions. For

two-dimensional flow, UD -- 1. The three components of the momentum equation yield:

= -2 - udV + J(Cp + 2u)dA

VD = - dV + uvdA (1.24)

A1 vOWfdv 1 A

AUD Jv at AUD A

Substituting (1.24) into (G.21) allows (after some algebra) to express the instantaneous

flux of total pressure across the boundaries of the control volume in the following form :

uC -Ctdn = uD J (Cp + 2u2 -U )dA - JJ u(C, + 4)dA

(1.25)

+1 uvdA 1 + 2 + wdA t)
UDA IA I UDA IA (

where "I(t)" represents terms containing a time derivative :

I(t) = -2UD JJ dV

+]Z V atUDAIIfA IItV at

+ dV2 - 2 uwdA Ow dV
uDA { Iffy at d} UDA JJA J at

The time-average of the L.H.S. in (1.25) is the mixing loss coefficient Ym sought. The first

four R.H.S. terms in (1.25) represent a quasi-steady mixing loss, i.e. the loss that would be
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incurred had the flow been "frozen" at this moment and then mixed to a uniform state. On

the other hand, the time-average of the last term (1.26) is not identically zero. With some

extra algebra, it can be shown that this time-average is:

I= - dV - 1 -dV (1.27)
uDA - uDA t I A V a

Equation (1.27) indicates that the mixing loss of an unsteady flow not only on the flow

profile at the mixing plane, but also on the details of the entire mixing process. The exis-

tence of this non-stationary term is in principle a major obstacle for calculating the mixing

loss, since (1.27) involves an integral over the entire mixing volume (which is infinite) of an

unsteady flow field that is a priori unknown. However, for the flow situations examined here,

it appears that the non-stationary term is can be neglected compared to the quasi-steady

term. This can be shown by plotting the net loss coefficient, Yn, as a function of the locus of

the control plane used to calculate Y,. As shown in (1.28), the net loss is defined as the pas-

sage loss coefficient Yp(x) generated from inlet up to the location "z", plus the quasi-steady

mixing loss of the flow past this location.

Yn(Z) = Yp(Z) + Ym,quasi-steady(Z) (1.28)

Since yp(z) contains both quasi-steady and non-stationary effects, calculating Yn(z) in

(1.28) at different a locations results into a net loss variation that reflects the importance of

the unstationary mixing loss. The result of this experiment is shown in Figure 1.2.

x 103

-1 -

5 -5--Ca
- 6 .. .. . . . . .... ....

0.8 0.9 1 1.1 1.2
Axial location of exit control plane (1=TE)

Figure 1.02. Distribution of Ay,(x) as a function of the axial location of the mixing
control plane. Based on the unsteady flowfield from the VD/TL computational experi-
ment (§5.1, tip leakage vortex-stator interaction, 0 = 0.45, Re=3.104).
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The relatively constant value of AYn() in Figure 1.2 indicates that the non-steady

component of mixing loss is about five times smaller than the quasi-steady component. Only

when the flow is massively separated (in 2D direct laminar simulation of wake-stator inter-

action), we have seen this not to be the case. For this reason, the mixing loss coefficients

herein are calculated using the quasi-steady part of (1.25).

AY, (A) = UD (p + 2u2 - UD)dA - u(CP + u)dA

(1.29)

+ uvdA 2+ uwdA}
UD A IA UDA A

As noted above, (I.29) does not hold true for all types of unsteady flows, but constitutes an

adequate approximation for the type of unsteady flow examined here. A possible explanation

is that flow unsteadiness is mainly here is due to the convection of disturbances which (local

to their own frame) are relatively steady in time.

In the three-dimensional case, the exiting flow does not mix to uniform state due to the

presence of endwall boundary layers. Equation (1.29) can be easily modified to account for

this phenomenon, since the quasi-steady loss coefficient satisfies the following property :

y,(A --+ B) = Ym(A -- U) - Ym(B -- U) (1.30)

where (A --+ B) indicates a mixing process from state "A" to some fully-developed state

"B" with endwall boundary layer; (A -- U) indicates the mixing process to a fully uniform

state used to derive (1.29); and (B -+ U) indicates the mixing loss from the fully-developed

state with endwall boundary layers to the hypothetical fully-uniform flow. Equation (I.30) is

basically a constant-level shift in the computed mixing loss representing the endwall effect.

Since we are interested in the mixing loss difference between unsteady and steady reference

flows Ay,, the correction (1.30) is not essential, although it is used in the computed results.

The difference in mixing loss is obtained in a straightforward manner by applying the A

operator to (I.29)/(I.30):

AAYm(A) = UD (ACp + A2u 2)dA - 2J Au(C, + 4)dA

12 1 A
+A uvdA + uDA uwdA

Equation (1.31) is used to compute the mixing loss benefits presented here. However, it is not

very informative on their causes. A more suitable expression for explaining changes in mixing
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loss can be derived by assuming that (1) UD , 1, and (2) upstream rotor non-unformities are

smaller than the lengthscale over which the core base flow properties change. With these,

(1.31) can be reduced to:

AAym(A) u AuACdA - JJ(1+ A)(Au 2 + 2 + 2 )dA

(1.32)

+ (1 + Au)AvdA} + A (1 + Au)AwdA

Equation (1.32) usually approximates (G.31) within 5-10 percent. It provides a useful

correlation between (a) the change in mixing loss due to unsteadiness, and (b) the disturbance

velocity profile. In physical terms, (1.32) states that the difference in mixing loss between

two flows is given by the difference in work done by the pressure force at the mixing plane,

plus the difference in kinetic energy flux at this plane.

It is to be noted that one should be careful when making further assumptions (such as

Au << 1) in an attempt to further simplify (1.32), since the velocity fluctuations are usually

in phase. This yields non-negligible third-order terms. It is to be noted that (1.32) also

applies to the case of two-dimensional flow by simply letting w = 0.

I.4. Connection between Passage Pressure Rise and Flow Variables.

The static pressure coefficient, representing the capacity of the stator to convert kinetic

energy in the incoming flow to static pressure, can be expressed in terms of flowfield variables

by projecting the momentum conservation principle (1.22) along the axial direction while

including friction forces as well. Using a control volume

stator, this yields:

AIIp() /2 [(C)Ps - C)ss] dydz

+ PS fH/2
+2 I[u2( = 0)- u2(X)]dydz

SS -H/2

2 z H/2

RfXXLB -H/2

[(wZ)PS - w-)ss] dxdz

2 f Ps )R S [(Z-y)L - -y)V] dzdy

between the inlet and the exit of the

Blade Pressure Force

Momentum Recovery

Blade Friction Force

Endwall Friction Force

(1.33)

Equation (1.33) provides a direct connection between the static pressure coefficient of
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the stator on one side, and (1) pressure and friction forces on solid surfaces, and (2) flux of

kinetic energy on the other. At the exit of the stator, the flow is mixed-out to a uniform

state. In addition, a certain amount of static pressure rise occurs when mixing the incoming
vortices and wakes. The pressure rise achieved from mixing an unsteady non-uniform flow is

related to the axial non-uniformity in the flow :

IIm(A) = 2 J (2 - U)dA

(1.34)

AIIm(A) = 4 uAudA + 2" AuddA

Unlike mixing loss, mixing pressure rise does not have an unstationary component. The

net static pressure rise is obtained by adding the pressure rise in the stator passage (1.33) and

the mixing pressure rise above (1.34). When calculating the difference in net static pressure

rise, AII,, the kinetic energy terms cancel. This leaves a particularly simple expression for

the effect of unsteadiness on the stator pressure recovery coefficient:

A(J) (C)Ps - (ACP)ss dydz
ALn.() =[ )-H/2

-2 -L L 1 [(Awz)ps - (Awz)ss] dxdz (1.35)R fxL -H/2

- f : [(iWp)L - (Aw)u] dxdy
R x s

Equation (1.35) equates changes in static pressure recovery by the stator to changes in

the axial force sustained by the blades. In turn, this force can be related to the blade loading

and boundary layer characteristics.

1.5. Reynolds-Averaged Form of the Mechanistic Relationships.

The foregoing relationships are technically valid for both laminar and turbulent unsteady

flows. From a computational standpoint however, we lack the resources to resolve turbulent

flow dissipative phenomena in a direct manner. This limits the utility of the passage loss

equation derived in §I.2.

This difficulty can be overcome by assuming that the Reynolds-averaged form of the

Navier-Stokes equations (C.01) accounts correctly for dissipative phenomena taking place

at turbulent microscales. Integrating these equations over the control volume in a manner

identical to that of §1.1 yields the following expression for the mass-averaged total pressure

flux:
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v(uCt) - dn = - J dV + 2 J u - [V(vVu)]dV (1.36)

Using the identity:

V(vVu) = -vVxw + (Vw - V])u (1.37)

yields the following expression for the passage loss coefficient:

(uC) -dn = - u2dV +2 v(uxw) dn -2 Vw'dV (1.38)
A'_ __at ___ _ , v , _, ___

K.E. F.F. V.D.

Equation (1.38) is thus the Reynolds-averaged equivalent of (1.17) for turbulent flow. Like

in (1.17) the term marked "FF" is negligibly small. Neglecting this term yields an expression

for Reynold-averaged loss that is basically identical to (1.18) except for the presence of

dimensionless eddy viscosity:

S= -2JJ w2dV (1.39)

Equation (I.39) is useful in relating the changes in passage loss due to unsteadiness to

the disturbance vorticity and eddy viscosity fields:

AY = -4 JJ vw. AwdV - 2 f va(Aw)2dV + 2 AV(w, + AW) 2dV (1.40)

The first two terms of (1.40) are equivalent to (1.20). They represent the additional

dissipative work associated with a vortical disturbance in an underlying vortical field, and

the effect of friction within the disturbance itself. The third term represents the effect of

the change in turbulent eddy viscosity due to the presence of flow fluctuations. According to

the mixing length hypothesis, underlying the turbulence model here, these changes in eddy

viscosity are proportional to changes in vorticity:

[. I 12 (1.41)

Substituting (1.41) into (1.40) yields the following expression for the change in passage

loss:

AYP -6 VW, - AwdV - 6 v.(Aw) 2dV - 2 / AvAw 2 dV (1.42)
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It is instructive to compare (1.42) and (1.20). The leading terms of these equations differ

by the coefficient in front of the integral (4 vs. 6). This difference indicates that, in turbulent

flow, a vortical disturbance aligned with the mean vorticity shall produce a loss increment

that is 50 percent larger than the loss increment that would be created in a laminar flow

with the same level of diffusivity. In turbulent flow, the loss effects of vortical disturbances

are therefore "amplified".

1.6. Application of the Loss Equation to Three-Dimensional Flow.

It is useful to describe the vortical structure in the flow using the flow-based coordinate

system shown in Figure 1.3. In this system, the vorticity is decomposed in two components:

streamwise (in the direction of velocity) and normal (the remainder) in the manner shown

in Equation (1.43).

n (

\ /

b

Flow
Streamline

Figure 1.3. Coordinate system tied to the decomposition of vorticity into a streamwise
and normal components. A binormal direction is also defined, perpendicular to the
plane formed by vorticity and velocity. Near the suction surface for instance, the normal
direction is spanwise, and the binormal direction is perpendicular to the suction surface
of the blade. Note that the vortical normal and binormal directions defined in this
manner are not the same as the kinematic normal and binormal directions, which are
based on acceleration components.

S u
lul

WS= (S - WS (.43)

Wn = (sxw)xs = W - W,
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The decomposition (1.43) applies to both steady and unsteady flow. Streamwise vorticity

in turbomachinery is usually associated with secondary flows. Normal vorticity is primarily

present in the blade and endwall boundary layers, as well as in wakes. Inserting (1.43) in

(1.39) yields an expression that allows one to assess the relative contribution of streamwise

and normal vorticities to passage loss:

Yp = -2 l/ wn" wndV -2 JJ /ws w 8dV (1.44)

Streamwise vorticity may be introduced in the flow though several mechanisms, such as

turning of boundary layer vortex filaments, leakage flows, baroclinic torque or turbulence.

Disturbance streamwise vorticity is defined as the difference in streamwise vorticity between

the unsteady and steady flowfields. Inserting this definition into (1.43) yields:

Aw = Aw - s, + w, - As + Aw. As (1.45)

I II III

This equation indicates that unsteadiness can introduce streamwise vorticity in the flow

in two manners. The first is associated with fluctuations of the vorticity vector (term I in

1.45). The second is associated with instantaneous changes in the flow direction (term II in

1.45, term III is a combination of terms I and II). The relative contribution of disturbance

streamwise vorticity to the change in loss associated with unsteady flow can be determined

by splitting (1.42) along streamwise and normal disturbance components:

AYp - -J 6v n,. * A, (Awn)2] dV - fJJJ 6v, . Aw. 8+ (Aw.)2] dV (1.46)

This equation has two interesting implications as far as changes in time-averaged loss

are concerned. First, any vortical disturbance in the flowfield is the source of additional

loss. Second, vortical disturbances with a non-zero time average, that occur in regions of

steady vortical flow where the base vorticity is in the same direction, can be a primary

source of additional loss (in particular when Awol < lbo,|). For instance, spanwise vortical

disturbances in the blade boundary layer (which contains primarily spanwise vorticity) are

more important than streamwise vortical disturbances in the same location.

1.7. Changes in Total Pressure.

Local changes in total pressure due to unsteady flow can be directly related to changes

in the normal and streamwise vorticity fields. To accomplish this, the form (1.12) of the
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Navier-Stokes equations is projected in the binormal direction of the flow coordinate system

defined in Figure 1.3. After time-averaging of the periodic flow, this operation yields:

= 26 n - 2R O (1.47)
Ob O as On

Provided the steady-flow (s, n, b) coordinate system is used to decompose both the steady

and unsteady vorticity vectors, an application of the A operator to (1.47) yields:

OA - 2Autotwn,, + 2utot,,Awn + 2AutotAwn - 2R OAW OnW (1.48)Ob Os On )

Equation (1.48) is quite useful for describing local changes in the time-averaged total

pressure as a consequence of redistribution of vorticity. In the case of wake and tip vortex

interaction, the following simplified form of (1.48) can describe these local changes fully:

OAC,
Ob m +2utot,sAwn (1.49)Ob

Equation (1.49) postulates that changes in time-averaged total pressure due to unsteadi-

ness are due to the redistribution of normal vortical filaments on a time-averaged basis. In

the computed solution, such changes are localized near the blade surface. As noted in Figure

1.3, the normal vorticity there is in the spanwise direction, and the term Fbt represents

variation in the direction normal to the blade surface.
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Appendix J

Modeling the Effects of

Upstream Wakes and Tip Vortices

This appendix derives simplified models for the performance impact of reversible recovery

and non-transitional boundary layer response. The appendix is divided into five sections.

* Section J.1 presents a method for determining upstream wake and vortex parameters

as a function of compressor design. These parameters serve as an input for the models.

* Section J.2 derives a model for the recovery of the energy of a two-dimensional distur-

bance jet, such as that associated with an upstream wake.

* Section J.3 derives a model for the additional loss associated with boundary layer

distortion under the effect of the two-dimensional disturbance jet.

* Section J.4 extends the models to tip vortex interaction, on the basis of similarity with

the two-dimensional wake interaction considered in §J.2-J.3.

* Section J.5 presents a summary of the models and of their application.

J.1. Input parameters.

The models are applied in the geometrical context of a repeating-stage, multistage com-

pressor illustrated in Figure 7.1 (Chapter 7). While not all stages in a typical core com-

pressor are identical, this assumption is usually representative for the effect of nearby stages

and reduces the number of design variables considered. Since the effects of both upstream

wakes and tip leakage vortices can be expressed in the same two-dimensional terms, the stage

design is also described in mostly 2D terms. In particular, the design parameters considered
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are midspan flow coefficient (q), pressure coefficient (0), reaction (7), solidity (o), blading

chord (c), tip clearance (r), and axial gap (d).

J.1.1. Flow and disturbance angles. The relative flow angles at design are deter-

mined by the choice of stage reaction, flow and pressure coefficients:

tan O,R = - + tan0,s = 2

(J.01)

tan 02,R = tan O2,S = R 1-)

The ingestion and discharge angles of vortical disturbances from the upstream blade row in

the relative reference frame of the downstream blade row, are obtained based on assuming

that these disturbances are simply convected by the core flow:

tan71 ,s - 0.5 tan7,R = 0
R - 0.5-0 1 - R - 0.50

(J.02)

tan72 ,S - _tan2,R _

1 - as tan 72,s 1 - R tan 02,R

where (ER, Ss) are rather complex functions of cascade angles and solidity derived in §J.2.2.

It is to be noted that the subscripts ()R and ()s refer to the rotor and stator respectively.

The latter subscript should not be confused with (),, which refers to the steady (base) flow in

absence of disturbances. Unsubscripted variables apply generically to both fixed and rotating

blade rows in the relative frame.

J.1.2. Steady-state loss levels. For each blade row, the steady loss coefficients are

estimated using the following expression :

0  a Cos 01 2

p,) = 2 c 1- (J.03)
c cos 02 cos 02

which holds for a wide range of blade profiles (NACA-65, C4) in attached subsonic flows

at practical Reynolds numbers (Cumpsty, 1989). For diffusion factors (DF) within design

limits, steady loss is a weak function of DF, and depends primarily on solidity.

J.1.3. Wake properties. The wake properties used in Chapter 3 are obtained based

on experimental data discussed in the text. The wake properties used in the design study

of Chapter 7 are obtained in the following manner. First, the wake integral momentum

thickness in the relative frame is computed from the following least-squares fit of data for

NACA-65 and C4 blades at minimum incidence (Cumpsty, 1989):
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Ow = 0.006 + 0.032DF 2  (DF < 0.6) (J.04)

where DF is the section diffusion factor (e.g. Cumpsty, 1989)

[ cos0 1 1 cos01

DF = 1 C os + 2 (tan 0 - tan02) (J.05)
I 81cOS 02 1 2o

The following correlation, obtained by Stauter et al. (1991) in a research compressor, is used

to estimate the rate of wake decay in the interblade gap.

A, = 0.52 exp -2.295- ; 0.03 < - < 0.5 (J.06)
( d dC

For the purposes of modeling, the wake disturbance in the relative frame of the downstream

blade row is approximated by a linear velocity profile "jet" characterized by a peak distur-

bance velocity "Aj" and a geometrical thickness "t,". These are readily related to the wake

parameters in the upstream relative frame:

tw = Ow 1 - ; Aj = A, / cos 02,upstream (J.07)

J.1.4. Tip vortex properties. The tip vortex properties used in Chapters 4-6 are

obtained based on Khalid's (1995) computational study of tip leakage flow for the GE/LSRC

rotor. Unlike for the above wakes, there are no correlations that allow to estimate the tip

vortex properties in detail for different designs. For the purposes of Chapter 7, the velocity

field of the tip leakage vortex of the LSRC computational study (7 = 0.03, 0 = 0.64), is

scaled using the following relationship proposed by Khalid (1995) for the vortex blockage at

the exit of the blade row:

Ab coSle t (J.08)
rs/ sinl3m Q2r

where g is a quadratic fit of Khalid's (1995) computational experiments. Khalid's (1995)

work also suggests a wake representation of the overtip leakage flow can capture the trends

in clearance-related blockage. For this reason, it has been assumed that the interblade decay

of the TL vortex follows the same relationship as that of a wake (J.06). While crude, this

treatment captures to some extent the effect of design point selection on the strength of the

tip leakage vortex.
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J.2. Recovery of a 2D upstream wake jet.

The recovery model is build by (1) deriving an expression for the mixing loss of an idealized

2D wake disturbance jet, (2) determining the change in wake length and thickness due to

transport through the stator, and (3) determining the extent to which these changes reduce

the mixing loss relative to that at the inlet. The velocity defect in the wake is considered

constant in time.

The model makes a number of assumptions that are justified given the vorticity dynamics

observed in the wake interaction simulations of §3.1. The assumptions are as follows: (1)

incompressible inviscid flow, (2) wake thickness small compared to the blade chord so that

wakes can be represented as a straight thin segment of vortical flow convected by the mean

flow in the passage, (3) the vortical flow inside the jet can be approximated by two layers of

uniform, opposite-sign vorticity, and (4) at the inlet of ther stator, there is one rotor wake per

stator passage. The simplified flow situation is shown in Figure J.1. The last assumption

corresponds to a 1:1 rotor/stator blade count ratio. Assuming that the individual wakes

do not interact with each other, the results from the model can be extended to other blade

counts by multiplication by NR/Ns.

I I

I ; A Simplified
SStator Blade

Figure J.1. Simplified model of wake transport through the stator passage. The wake

is represented as two sheets of uniform, opposite-sign vorticity. A linear disturbance

velocity distribution is associated with this vorticity field (inset). The wake is intercepted

at point "A" and time to=O; it is fully ingested at point "B" and time i1 ; it starts leaving

the stator at point "C" and time t 2 and is fully discharged at point "D" and time ts.



J.2.1. Mixing loss of the disturbance jet.

The purpose of this section is to establish an expression for the total pressure loss that

would result if the simplified wake jet of Figure J.1 is mixed out to uniform state. The point

of departure is a form of (1.32) that is reduced to a two-dimensional form, and from which the

static pressure disturbance is eliminated on the basis that such wakes do not carry a static

pressure difference. Given the periodicity of the flow, it is possible to replace time-averaging

with spatial integration executed in an (z, y) frame locked to the moving jet. In this frame,

the velocity disturbance associated with the jet is steady in time, which yields the follwing

expression for the jet mixing loss:

SAYm(X) (1+ Au)(Au 2 + Av2)dy + (1 + Au)Avdy (J.09)

The velocity disturbance can be described by means of a wake profile shape function,

f(s), scaled by the jet velocity excess, Aj, and by the jet thickness, t,:

[- y sin
Au = Aj sin7 [ml - f(y s i T )]

(J.10)
y sin 7

Av = Aj cos 7f( ) + C
t

Given assumptions (2) and (3) above, the profile function here is piecewise linear:

f(s) = (1 - 21sl)H(1 - 21s)sign(s) (J.11)

It is to be noted that the axial disturbance velocity component in (J.10) is constructed

with a constant bias, in order to satisfy global continuity :

S Audy - 0 (J.12)

When condition (J.12) is met, the potential flow bias C in the tangential velocity dis-

turbance (J.10) has no effect on the mixing loss. Therefore, it shall be dropped throughout

the rest of this appendix. The parameter m, in appearing in (J.10) is the jet displacement

thickness, and is the first of a generalized series of profile moments m,:

1 s  t,
m , = SJo ()dy= S(n + 1) sin7 (.)
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Substituting (J.10) into (J.09) yields, after considerable algebra, the following expression

of the mixing loss of the jet as a function of its peak velocity excess Aj, its thickness t,, and

its inclination 7.

AYrn() = (ml - m 2 )A + sin (2m + r - 3mm 2 )A + sin2 7 Cos 2 7(m - m 2) 2 A4 (J.14)

Equation (J.14) provides a good approximation (within 5-10%) of the numerically inte-

grated mixing loss of the Gaussian profile wake used for the CFD results, thereby indicating

that assumption (3) above is justified. It is tempting to eliminate high-order terms from

(J.14). However, careful consideration of the high-order term effects leads to the conclusion

that second or third-order approximations to (J.14) may be as much as 100% in error for

realistic combinations of (Aj, t,, 7).

J.2.2. Geometry of the jet at the exit of a blade row.

To determine the amount by which the mixing loss of the jet is reduced, it is necessary

to estimate the jet parameters (Aj,2 , tw, 2, 72) at the exit of the blade row. This is done by

estimating the transit times tl..3 at which the endpoints of the jet enter and leave the blade

row, and using the property of vortex lines to travel with the fluid to predict the amount of

stretching of the jet.

The transit times are estimated using the geometry of Figure J.1, and assuming uniform

flow. At time to = 0 a wake is intercepted by the leading edge. Because the wake is inclined

with respect to the vertical, it will not be cut into a wake segment until time t 1 , given by:

tl PB cos 08 (J.15)

The suction-side leg of the wake starts leaving the stator passage at a time t 2 given by :

t 2  mrn d (J.16)

The term "Urn" in (J.16) is the mean dimensionless velocity for a flow without circulation,

whereas the term r/2c represents the acceleration of the flow over the suction surface due to

circulation. The pressure side leg of the wake starts leaving the stator passage at a time t 3

given by :

3 c{ Um - c1 d + ti (J.17)
0 6( 2cl -
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After this point in time, the wake is convected by the uniform flow leaving the blade, and no

further changes in inclination 7 take place. Therefore, the length and orientation of the wake

segment leaving the blade can be determined as a function of the difference, At, between the

times at which the pressure side and the suction side legs of the wake are discharged from

the stator.

At = t3 - t2 t + m- dx - Um + -c dx (J.18)

Equation (J.18) can be reduced to a closed form by assuming that Um is constant in the

axial direction and equal to the algebraic mean of the inlet and exit velocities.

tan2 01 + tan2 02
U =1+ 2 (J.19)

The dimensionless circulation about the blade can be determined in a simple manner, by

considering that the flow within the contour ABCD is irrotational. This yields:

r = S(tanO - tan02) (J.20)

It is also convenient to express the dimensionless distance PB in (J.15) in terms of flow and

wake inlet angles, using simple trigonometry. In this manner, a closed-form expression for

the discharge time difference is obtained:

S r
At = + (J.21)

cotanyi + tan o1 Um + P2 /4C2

Equation (J.21) allows one to estimate the distance already traveled by the suction side leg

upon full discharge of the wake from the stator blade row

At
QC = (J.22)

cos 02

This result allows to "close" the triangle CDQ in Figure J.1, and thereby determine

the inclination 72 and the length DQ of the wake segment leaving the blade row:

tan7 2 = (J.23)
1 - ( tan 02

DQ = AP(cos 71 + tan01 sin 7) + + (1 - tan 02 )2  (J.24)

The factor ( appearing in the above depends on the discharge time difference and on the

interblade spacing, S:
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At sin7l cos 01 /S
S cos 0 71 - 7Y Um + r2/4C2

Knowing the percentage elongation of the jet allows one to determine the jet velocity

excess Aj,2 and thickness tw, 2 at the exit of the blade row. Under the inviscid 2D flow

assumption, the vorticity of a particular fluid element, and the circulation around a contour

traveling with the fluid remain constant. The circulation about one of the vortical layers

comprising the wake can be related to Aj in the following manner:

rw = u. dl = LAj = Constant (J.26)

Equation (H.26) states that the attenuation of the jet velocity due to passing the jet through

the blade row is proportional to the stretching of the jet:

_ Aj, 2  AP
a ,- DQ = (cos7y + tan 1 sin 7) 2 + (1 - (tanO2) 2  (J.27)

Since circulation and vorticity are related,

rw = wdxdy = 2 = Constant (J.28)

Equation (J.28) states that the jet thickness also decreases in proportion to the stretching:

tw, 2 = a, (J.29)
Lw,1

For the stator under consideration (26 degrees flow turning) the model predicts an at-

tenuation factor of 1.8-1. This agrees well with the roughly two-fold attenuation seen in the

CFD results (Figure 3.10). The model also predicts well the geometry parameters of the

wake at the exit of the stator, as shown in Table J.1

Parameter Simulation Kinematic model

Wake inlet inclination, 71,, 40.30 40.70

Wake exit inclination, 72,, 56.00 52.00

Exit/Inlet length ratio, L 2 /L 1  1.6-1.7 1.8

Table J.1. The present kinematic model compared to the Navier-Stokes simulation for
baseline wakes in §3.1.
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It is to be noted that Equation (J.27) has been derived assuming a positive inclination

of the wake at the inlet. As evidenced by the results on Figure 7.1, this is usually the case

for wakes coming from the blade row that is directly upstream. On the other hand, wakes

originating from the next-to-immediate blade row upstream may have a negative inclination

relative to the blade row under consideration. By means of an approach similar to the above,

one may demonstrate that (J.27) is valid for both positive and negative wake inclinations,

provided that the factor is calculated in the following manner :

= sign ) {sin 7 cos 0 1  2a 2 (tano, - tan02) (J.30)
cos 01 - q -1 2a 2 + (0.5 + r2 )(tan2 01 + tan2 02) - tan O1 tan 02

Equation (J.30) differs from (J.25) by the factor sign(-y) which accounts for the fact that

the wake inclination at the inlet may be negative. It is to be noted that the expression for

the circulation (J.20) is incorporated in (J.30) explicitly.

J.2.3. Model for ideal mixing loss benefit.

When computing the time-averaged mixing loss at the exit of the blade row AYm, 2 , one

has to consider that the length of the wake segments has increased with respect to that at

the inlet. Therefore, the loss benefit Ay, from passing the wakes through the blade row

has to be computed according to:

AYm = AYm,i - a; 1 AYm, 2  (5.31)

The jet mixing loss coefficient at the inlet, AY,m is calculated by inserting the values

of (Aj, t, 7 )l obtained from §J.1, into (J.14). Likewise, AY 2,m at the exit is calculated

by inserting the values of (Aj, t,7 )2 obtained from §J.2.2 into (J.14). The full expression

for Ay, obtained in this manner is suitable for numerical implementation, but not very

insightful. On the other hand, one might note from (J.14) that:

AYm, 2 M ar3AYm,l (J.32)

which leads to the conclusion that the benefit from passing the wake jet is proportional to

the energy present in the incoming wake, and quadratically proportional to the attenuation:

AYm e (1 - aM)AYm,i (J.33)

This result is in agreement with derivations carried out by Adamczyk (1994). As shown

in Figure 3.8, the predictions from this simplified model agree with the computed benefit
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from the Navier-Stokes simulations over the range of wake defects considered. The param-

eters which determine the degree of attenuation a, can be determined if one carries out a

thought experiment in which the flow angles and wake inlet inclination angle are made in-

dependent (instead of being inter-related as per §J.1.1). In this context, the attenuation

depends primarily on the flow turning in the blade row. As shown in Figure J.2, there is

an approximately linear relationship between 81 - 02 and a,, that holds over a wide range of

the remaining parameters.

0.85
- -- Theta_1=47 deg

S+- - tTheta_1=27 deg
S0.75 - " X - XTheta_1 =67deg

o xo xX '

0.45-

0.35
10 15 20 25 30 35 40

Flow turning (Theta_l-Theta_2)

Figure J.2. Velocity attenuation a, = L1 /L 2 of an upstream wake versus flow turning
for different inlet angles. Cascade solidity 1.6, wake ingestion angle 43.40. The curves
do not collapse so closely when plotted in terms of diffusion factor or circulation.

The relationship between wake ingestion angle 71 and attenuation is more complex. As

shown in Figure J.3, there is an optimum range of wake ingestion angles, providing high

attenuation. This range is quite wide (400 < 71 < 800 for the cascade considered). Strong

attenuation is desirable for closely-spaced blade rows, because it can reduce the entropy rise

from wake mixing at an early stage.

Figure J.3 also shows that some ingestion angles result in wake amplification rather than

attenuation. This is detrimental for performance, because energy is "extracted" from the

flow in order to increase a wake non-uniformity that may be eventually mixed out. Figure

7.1 shows that this occurs when the wake is aligned with the flow direction at the blade

row entrance. Such an orientation is impossible for the wake from the blade row directly

upstream. However, wakes from two blade rows upstream may be ingested in this manner

for certain compressor designs. This matter is given further consideration in §J.5.
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1.6- .. .... . . ..... :Rotor.Wake. in Stator
:-~ .Stator Wake in Rotor.

S.. O for LSRC at design1.4 - ... . .
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Figure J.3. Velocity Attenuation a, = L1/L 2 of an upstream wake in a typical stator

(solid line) and in rotor (dashed line) across the full range of wake ingestion angles. Not
all of those angles actually occur in practice. Cascade parameters: O1R = 59.50, 02R =

44.40, aR = 1.25, 81s = 47.60 , 2S = 21.0', 0s = 1.66. Circles show wake ingestion angles
by the LSRC stator at design point (0 = 0.445, o = 0.64, 7~ = 63%). Values of a, < 1
indicate reversible attenuation, and correspond to a loss benefit from processing.

J.2.4. Model for the leading edge pressure pulse.

This section proposes a simplified model for estimating the magnitude of the high-pressure

pulse appearing on the leading edge pressure side at the moment of wake interception (cf.

§3.1). The model assumes that the high-pressure region is the result from bringing the wake

jet to a stagnation point at the surface.

The peak pressure, (ACp)+, is computed in a quasi-steady manner, i.e. by using the

steady form of the Bernoulli's equation along a streamline associated with the jet. Let

(), and ()f denote the stagnation and free-stream ends of the streamline respectively. The

velocity vector at the () end is u, = u,i + v,j (only the disturbance jet is brought to rest,

not the base flow itself). The velocity vector at the ()f end is uf = u,i + (v, + Aj)j. The

peak pressure pulse is approximated by the difference in static pressure between these two

points on the same streamline. In quasi-steady-terms, this yields:

(ACp)+ 2 (Po - pf)pU2  (u.i + (v, + Aj)j) 2 - (u,i + vj)2

(J.34)

2v,Aj + A



This estimate of (ACp) + does not include the time-dependent term of the unsteady

Bernoulli equation. However, the good agreement between (J.34) and the CFD results in

Figure 3.2, suggests that this term is not important for the flow under consideration.

J.3. Boundary layer response to a 2D upstream wake jet.

The points of departure for calculating the increase in passage loss AYp, due to boundary

layer distortion by the wake jet, are (1) a linearized two-dimensional form of the mechanistic

relationship between total pressure loss and vorticity (2.07)/(I.42):

Ap -6ff V AwdZdy (J.35)

and (2) a two-dimensional linearized inviscid form of the equation governing the disturbance

vorticity in the flow (F.13):

aAw
0- + (u, - V)Aw = -(Au - V)w, (J.36)

The use of the linearized form (J.35) is based on the observation that Aw < w in the

disturbed boundary layer region contributing to increased loss in the CFD solution. The

inviscid form (J.36) of the vorticity equation is used because the computational experiments

discussed at the end of §3.1 indicate that viscous terms are not a significant factor in the

response of the boundary layer to the jet (it is to be noted that the base flow is viscous and

rotational though, thus w, $ 0). The vorticity equation (J.36) is also linearized, since com-

putations with linearized slip-free disturbance flow about a viscous base flow yield boundary

layer vortical disturbances similar to those from the full Navier-Stokes simulations. In sum-

mary, the simplifications behind (J.36) ensure that the only source of disturbance vorticity

is the distortion of base flow boundary layer vortex filaments by the velocity field of the jet.

In addition, these equations are applied to a simplified representation of the suction side

boundary layer, shown in Figure J.4, that makes the problem of calculating Ayp mathe-

matically tractable. This representation neglects the curvature of the surface, and assumes a

thin boundary layer in which the streamwise variation of base and disturbance flow quantities

occurs on a much longer scale than the one associated with transverse variation. Removal of

high-order terms from (J.36) in virtue of the latter assumption, yields the following equation

for the disturbance vorticity:

OAw 9Aw OAw 0_ (J.37)
+ U + V - Av (J.37)

transport production
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Equation (J.37) embodies the balance between production (right-hand side) and convec-

tive transport (left-hand side) of disturbance vorticity. It is to be noted that capital letters

have been used to denote the steady base flow velocity components (U, V) and vorticity f in

the context of the simplified geometry in Figure J.4. Examination of (J.37) reveals that dis-

turbance vorticity is produced in regions of high base flow vorticity gradient. For law-of-the

wall profiles, "n " is positive and takes its largest value where the boundary layer is thinnest

(leading edge), and at the "knee" of the velocity profile (near the edge of the boundary layer).

This explains why the boundary layer vortical disturbances described in §3.1 and in §5.1.2

appear to be produced at the leading edge upon wake interception. Equation (J.37) also

explains why these disturbances contain negative-sign spanwise vorticity (Av and dfl/dy are

both positive).

y,V
Base Flow

U(y) Disturbance

------ Av

x,U

Figure J.4. Simplified representation of boundary layer distortion under the effect of
a wake jet. The boundary layer (BL) is approximated by a uniform sheet of spanwise
vorticity. The highest vorticity gradients are at the knee of the BL profile. This is in
accordance with the law-of-the wall velocity profile.

Although (J.37) is analytically tractable, four further simplifications thereof have been

made. First, one may set V = 0 while retaining the essence of the mechanism that is being

modeled (motion of boundary layer vortex filaments under the effect of Av). Second, to

determine the change in loss due to the wake jet (J.35), only the time-average of Aw is

required and not the time-accurate solution. Since (J.37) is linear, Aw can be obtained by

first time-averaging the equation and then solving it. In combination with V = 0, time-

averaging (J.37) yields the following equation:

dAw Av dfl
S(J.38)

dx U dy

Despite its appearance (J.38) is a partial differential equation given the relationship be-
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tween Aw and Av. The third simplification consists in prescribing a simplified profile for

Av. Noting that at the surface Av=O, and that at the edge of the boundary layer Av=v,(t)

(where v,(t) is the velocity imposed by the wake jet), a linear profile is used for Av:

Av = AV, (J.39)

where 6 is the thickness of the boundary layer; and where AV, is the time-averaged transverse

velocity imposed by the wake jet at the edge of the boundary layer:

Ajt sin X
AV, = vn(t) A (J.40)

2S

The resulting differential equation for Aw:

dAw yAV d(J.41)S~ (J.41)
dz EU dy

can be solved by assuming a given profile for the steady (base) flow boundary layer. The

profile assumed here is linear, and one in which the boundary layer thickness varies as /(f).

This yields:

f - ref- (J.42)

Inserting (J.42) in (J.41) and integrating yields:

2yAVn dfl
Aw = z + constant (J.43)

S U dy

Both sides of (J.43) shall be multiplied by 6vQj and integrated over the boundary layer

with respect to the normal coordinate y. This yields:

6 vQAwdy -0 -12X T Uv -dy + constant (J.44)

In light of (J.35), the LHS of (J.44) can be recognized as the rate of increase of the

additional passage loss induced by the wake jet:

6 vt d dy = dA (J.45)
fo dx dz

After integration by parts, the RHS can be recognized to be proportional to the rate of

increase of the steady (base) flow passage loss in the axial direction:
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-12V , dy = -6zps (J.46)

U o dy 6 U dx

Equating (J.45) and (J.46) and integrating with respect to x yields:

AYp = 6 A - 'dz  + constant (J.47)
U o dX

The integration constant is zero, since Ayp = 0 when AVn = 0 by definition (no increase in

loss in absence in wakes). Equation (J.47) states that the increase in profile loss due to the

upstream wake jet/boundary layer interaction depends only on the chordwise distribution

of profile losses of the steady flow, and is proportional to the average transverse velocity

imposed by the wake jet on the edge of the boundary layer. This is a useful and insightful

relationship that is not qualitatively affected by the foregoing assumptions. It can be further

simplified by assuming a linear rate of increase of the base flow loss. This yields the following

simplified relationship:

AV,
Ay, 2 Y,,, (J.48)

As shown in Figure 3.7, equation (J.48) agrees to a reasonable extent with the CFD

results for the geometry and operating point considered. In particular, the CFD results also

show a proportional relationship between Ayp and AVn. However, the material in §6.2

indicates that (J.48) may fail when a different loading distribution is considered. In this

case, only the complete equation (J.47) is capable of capturing the trends in the Navier-

Stokes simulation.

J.4. Three-dimensional aspects of tip vortex processing.

J.4.1. Transport of a streamwise vortex lines.

The purpose of this section is to quantify the changes in streamwise and blade-to-blade

vortex lines as they pass through the stator. An inviscid-flow diffuser analogy, illustrated in

Figure J.5, is employed for this purpose.

Streamwise vortex filament. The evolution of vorticity in the vortex line at the left

side of Figure J.5 can be represented by the following form of (F.12):

Dw OU
d- = W- (J.49)
dt Ox
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Streamwise vortex filament
in stator from rotor tip
leakage vortex

Normal vortex filament in
stator from rotor SW
vortex

x

Figure J.5. Diffusor analogy for the transport of vortex filaments through the stator.
Left: Streamwise vortex filaments (vorticity decreases). Right: Blade-to-blade vortex
filaments (vorticity increases).

Given the geometry of the diffuser:

U = U, 1 + tana

(J.50)

OU tanaUi1 +ta -
Oa tana 1 + tan -2

L I L1

Using (J.50) and t = dz/U allows to re-write (J.49) as:

dw _ tan a 1 + tana w

d.+ L1 L1
(J.51)

Solving this equation yields:

Inw = -n (1 + tana + constant (J.52)

Which is equivalent to:

w 2  L 1
w L 2 (J.53)

Equation (J.53) indicates that the slowing of the flow in the stator causes the vorticity

in an upstream streamwise vortex line to decrease in proportion to the stretching that an

upstream wake perpendicular to the incoming flow would undergo. This implies that the
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velocity field associated with this vortex filament is also attenuated in the same manner.

Therefore, the jet associated with the simplified tip leakage vortex structure shown in Figure

4.11 is attenuated to the same extent as a 2D wake passing through the same stator. Thus,

the fraction of energy recovered from such a vortex and from a 2D wake are the same, and

should scale in the same manner.

Blade-to-blade vortex filament. When the vortex filament is perpendicular to the

streamlines, as shown at the right of Figure J.5, the vorticity is amplified instead. Such

vortex filaments are associated with pure streamwise vortices in the upstream rotor frame.

In the simplified case here, the vorticity is governed by:

Dw OV= w (J.54)
dt ay

Given the geometry of the diffuser:

V = Utan Y (J.55)
L

Using (J.55), (J.50) and t = dx/U allows to solve (J.54) and obtain:

w2 L2W2 - L2  (J.56)
wl L1

In this case, the vorticity is amplified in proportion to the vortex stretching, and the loss

associated with mixing of the vortex increases in a quadratic manner. This result is in

agreement with remarks by Denton (1993).

J.4.2. Boundary layer response.

Section 5.2.1 established that the increase in loss due to tip vortex/boundary layer inter-

action occurs through the same mechanisms involved in 2D wake/boundary layer interaction.

This result was further confirmed in §6.4, which shows that the disturbance vortical flow

can be described in the blade-to-blade plane on a locally 2D manner. Therefore, the increase

in passage loss due to the upstream tip leakage vortex can be estimated by dividing the

blade in individual sections of thickness dz, and by applying the 2D model of §J.3 to each

section considering the jet parameters at the immersion under consideration. This yields the

following extension of (J.47):

AYp = 6 AV(Z) dYp,s(z) dzdz (J.57)
U o0 dX 2D

The simplified form of (J.57) is identical to (J.48):
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Ay, 2 cY,,, (J.58)

In the case of (J.58), the transverse disturbance velocity, AV, comprises a spanwise as well

as a time average. Based on continuity, it is possible to relate AVi to the tip leakage blockage

AA in the rotor frame as defined by Khalid (1995). This yields:A,

Ab sinX
A V, = Ab sin (J.59)

Ae cos 02,

J.5. Synthesis.

This section summarizes how the foregoing expressions are applied in the context of the

multistage interaction model of Figure 7.1 (Chapter 7), to estimate the change in efficiency

due to blade row interaction for different designs.

The first step of the model is to estimate the "strength" of the upstream wakes and

vortices using the material in §J.1. This is followed by computing the attenuation coefficient

a, for the design under consideration in the following manner:

a. = (cos7 + tan0 sin 7) ~ 2+ (1 - tan02 ) 2

where:

= sign(-) sin 7i cos 01 2a2(tan01 - tan 02 ) (J.6)

( cos 01 - 71 2a 2 + (0.5 + a2)(tan 2 01 + tan2 0 2 ) - tan01 tan 0 2

tan7 2 =
1 - tan 02

The loss benefit from recovering upstream wakes in the frame of the downstream blade

row is then estimated using:

AYm = AYm(Aj,I, tw,1, 7 1) - a?- 1 AYm(a A j , , a,rtw,1, 7 2) (J.61)

where AYm is the function embodied by (J.14). The loss benefit from recovery of the tip

vortex is computed according to

(J.62)
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The increase in passage loss from each wake/boundary layer and tip leakage vortex/boundary

layer interaction is computed according to the simplified form of (J.47):

2Avn

a 1y, - U , (J.63)

where:

AV At,, sin x Wake
2S (J.64)

AV = Sinx TL vortex
A cos 02,

The above loss changes are computed in loss coefficient relative to the reference frame

of the downstream blade row. They are converted to efficiency figures by using the relative

dynamic head in front of each cascade and the stage pressure coefficient: (note that the flow

is considered incompressible)

[ = (A + A Y)rOto, +(Ay P + AY)stat ] (J.65)

Y10 I cos 01,R cos 01,s

The equations derived in this Appendix implicitly assume a 1:1 rotor-to-stator blade

count ratio. In this case, there is one rotor wake entering a stator passage per wake passing

period. Given that wakes and vortices do not appear to interact strongly with each other

in the CFD simulations, and under the assumption that wakes and vortices do not interact

with annulus-scale unsteady flow phenomena, the change in loss for other blade count ratios

q = NR/Ns is related to the time averages for 1:1 blade count by means of:

AYq = qAy,:, (J.66)

As noted in §J.2.3, wake-like disturbances originating in the second upstream blade row

can be amplified for certain compressor configuration (e.g. third rotor wake can be amplified

in the fourth rotor passage). Figure J.6 shows that such amplification occurs in designs

with low pressure rise and high flow coefficient. A reaction of 50% minimizes the extent of

unconstrained design space where amplification can occur. As reaction increases, there is

a wider range of designs in which the stator wakes may be amplified in the next stator. If

reaction is decreased, the same can be said about the rotor wakes processing in the next

rotor. Overall however, the amount of amplification is not sufficient to cancel the benefits of

attenuation in the preceding stage.
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Figure J.6. Isocontours of max(a,,R, a,,s) of wakes from blade row N into blade row
N+2. Values above 1.0 correspond to wake amplification, and occur at high flow coeffi-
cients and low pressure coefficients. The plots have a symmetry about the 50% reaction
point.

For the compressor considered here, such amplification does not occur, but neither is

there much attenuation by the second blade row. Since most of the wake energy is recovered

in the first downstream blade row, the lack of subsequent attenuation in the second blade

row is not important from loss standpoint.

268



Appendix J. Modeling of Unsteady Effects 269


