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Abstract

The idea of controlling an unstable or unsteady fluid flow in order to optimize its
characteristics in some way (by minimizing the drag on a body, for example) is highly
attractive, and has a wide range of potential applications. However, the implemen-
tation of this concept is contingent on the availability of a model of the flow which is
suitable for control system design. Thus, to date, applications have been restricted to
situations where it is possible to derive simple, heuristic models describing the flow
behavior and control system action. In many cases of interest though, such mod-
els are not available a-priori, and one is faced with the prospect of using expensive
full-scale numerical simulations in the control design process. In this thesis we first
describe the details of development and result for a full Navier-Stokes solver using
the Fractional-Step Finite Element method. Then by performing the Proper Orthog-
onal Decomposition on the data generated by the simulation, a low-order system of
ordinary differential equations is developed. Finally, the low-order system is used as
the basis for the optimal control system design.

Thesis Supervisor: Jaime Peraire
Title: Associate Professor
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Chapter 1

Introduction

1.1 Background

1.1.1 Motivation for the Study of Active Flow Control

Control of fluid systems is currently of great interest in many different engineering

disciplines. For example, aerodynamicists may want to stabilize the flow over an

airfoil in order to achieve a higher lift to drag ratio. In contrast, thermodynamicists

may want to destabilize the flow in engines to achieve better mixing. Nowadays,

active flow control is attractive in a wide range of scenarios including jet engine flow,

bluff body wakes, noise reduction, turbulence and aircraft flows.

To date, active flow control done by the jet propulsion community has been quite

successful. Considerable research has been performed to evaluate the ability of con-

trolling the flow passing through the jet engine. By using active feedback control

in the inlet and the compressor, operating pressure ratio at which engine stalls was

increased, leading to improved engine performance [24].

Preliminary results on active flow control were obtained at the department of

Ocean Engineering at the Massachusetts Institute of Technology. Experimental. in-

vestigation of active vorticity control in bluff body wakes by controlling the motion

of a flapping foil was done by Triantafyllou et al [9, 30, 31]. They found that the

incoming vortices of the Von Karman vortex street generated by a circular cylinder



were repositioned and their strength was changed by the flapping foil, resulting in

new stable patterns downstream from the foil. From analyzing these data, they are

hoping to develop an optimal feedback controller which would reduce the drag on the

system while extracting energy from the wake.

The control of mixing layers [8] and free-shear flow coherent structures [26] are now

a very active research area. Also, some promising experimental results by using active

control were obtained for both cavity flows and for supersonic screech. Issues on gust

alleviation and flutter/buffetting on aircraft flows have many potential applications

by using active flow control.

1.1.2 C. F. D. and Flow Control

Most of the successful flow control done to date has been in cases where linear analysis

works; however, since many other important flow problems involve non-linear aspects

of fluid mechanics, it is desirable to extend applications to non-linear flow problem.

However, in those cases, the application of the available theoretical results (mathe-

matical models) is very limited and in most cases not very practical. As a result,

most flow control analysis nowadays has been done by using either experimental or

computational methods.

In experimental methods, by operating many runs on the setup, suitable data

could be obtained and an optimal controller could be developed. However, the costs

of setting up and running the experiments for many times can be significant, and the

time needed is also of the order of weeks if not months.

In the past two decades, computer speed has been increased by a significant

amount and at the same time, the cost for doing computation is getting lower. Also,

a more rigorous mathematical background for the numerical methods has been de-

veloped and so computations have become more reliable. Thus, the Navier-Stokes

equations may now be solved for complex geometries with a relatively short com-

putational time and a low cost. In other words, after a CFD code is developed and

verified, many runs can be done in a relatively short time and at a much lower running

cost than the experimental method.



In principle, optimal control theory could be used with finite difference or finite

element models but they are very expensive since these models do not have the forms

that are suitable for control tools. For example, both heuristic models with very

simple control laws and "blind" models such as Neural Nets had been investigated by

many researchers in the past. However, all of these approaches are problem dependent

and often suboptimal. The goal of this thesis research is to show that CFD can be

used very effectively to develop flow control strategies not by directly analyzing the

solution by some means, but by deriving a low-order Navier-Stokes equation model

which is very suitable for control analysis.

The low order model, which is a set of ordinary differential equations, is derived

from the numerical simulation by performing a proper orthogonal decomposition on

the flow solution generated by the Navier-Stokes solver, thereby generating a set

of spatial functions which may be used as a basis for a Galerkin projection of the

Navier-Stokes equations. By integrating these equations with respect to time, the

uncontrolled flow can be faithfully reproduced and predicted. It is then possible to

introduce control into the problem, and use the low order model to predict the effect

of the control action.

1.2 Flow Control Considered in This Thesis

In this thesis, we made our effort into controlling the Von Karman vortex street

behind a two-dimensional cylinder by rotating the cylinder as a means of actuation.

Rotating cylinder flow was chosen as our control test case because it is relatively

simple and able to be extended to other real flow applications.

1.3 Overview

This thesis is split into two parts. The first part describes the theoretical background

and results of the full incompressible Navier-Stokes simulation. The second part

discusses the derivation of the low-order system of ordinary differential equations and



how it was used as a tool for the control system design.

Chapter 2 presents the governing mass and momentum partial differential equa-

tions. The arbitrary Lagrangian-Eulerian formulation is also considered because it

takes into account the effect of the moving foil in the flow field. Chapter 3 describes

the fractional step finite element algorithm which was used to discretize the arbitrary

Langangian-Eulerian formulation of the incompressible Navier-Stokes equations.

The discretization of the computational domain by using the unstructured trian-

gulation method from the Felisa system [20] is described in Chapter 4. An algorithm

that can treat realistic motions and deformations of any configuration discretized into

unstructured triangles is also discussed here.

Chapter 5 gives the solution techniques required to solve the set of algebraic

equations A * z = b derived from the governing partial differential equations. Since

the matrix A is a sparse matrix, an iterative method ( Preconditioned Conjugate

Gradient) was used together with the incomplete LU preconditioner.

The results of four test cases including the half cylinder case (inviscid), the full

cylinder case (viscous), the rotating cylinder case and the moving cylinder with mov-

ing foil case are described in Chapter 6. In Chapter 7, we discuss the reduced order

model of the Navier-Stokes equation and how it was used as the basis for developing

and analyzing an optimal control model. Conclusion and future development are then

given in the last Chapter.



Chapter 2

Governing Equations and

Boundary Conditions

2.1 Incompressible Navier-Stokes Equations

In this section we describe the governing equations and boundary conditions for a

two-dimensional, incompressible, viscous, flow of a Newtonian fluid for a stationary

control volume. For a moving control volume, it is necessary to use the arbitrary

Langangian-Eulerian governing equations which take into account the velocity of the

moving control surfaces. This formulation will be discussed in the next section.

In differential form, a viscous, incompressible flow is governed by both the con-

servation of mass equation :
Ou Ov+  = 0 (2.1)

and the momentum equations :

&u Ou &u 10p _ 2u 02u0 + u + v +  0 = V(  + ) (2.2)at Ox Oy p Ox OX2 A 2

dv dv Ov 1 ap 9
2v  02v

+  + v + = ( + (2.3)
at Ox Dy p \ 2 Dy 2

This set of governing equations is written in the 2-D Cartesian coordinate system

(x, y), using primitive variables : u, v which are the x- and y- components of velocity,



and p which denotes the pressure. The kinematic viscosity, v, and density, p, are

assumed to be constant with respect to both time and spatial domain.

2.2 Arbitrary Langangian-Eulerian Formulation

The governing equations described in the last section are suitable for a flow problem

with a fixed control volume. However, these governing equations have to be modified

for a moving control volume. By using the arbitrary Langangian-Eulerian formula-

tion, the motion of the control surfaces is taken into account by fluxes going into and

out of the control volume. Details on the formulation and applications can be found

in the literature [11, 10, 19, 25].

In Cartesian coordinates, let the x- and y- components of velocity of the moving

control volume to be wl and w2 respectively. The conservation of mass for that control

volume now becomes:
a( - W) a(v - w2)+ 2)= 0 (2.4)

9z Oy

and the conservation of momentum equation becomes :

Ou Ou Ou 1 ap a2u a2U
+ (u - wi) + (v - w2) + = V ( + ) (2.5)

at ax ay p ax (z2 ay2

av9 av av 1 ap a2v a2v
+ (U - wi) + (v - w2) + = v ( + ) (2.6)

dt ax ay p ay 8a2 y2

Notice that the momentum equation can also be expressed in a compact form given

in equation (2.7) below:

0u 0u 0u 1+ A + B + - Vp = v V2u (2.7)
at ax ay p

where u = (u, v), and A, B are matrices defined as:

0 U-W, ) 2 V -W2

By using these governing equations, a flow with moving boundaries may be accu-



rately represented.

2.3 Boundary Conditions

The incompressible Navier-Stokes equations have to be solved in a bounded domain,

Q C R, together with velocity and pressure boundary conditions (BC) for all the

outer and inner boundary points. Assume that the boundary can be decomposed in

two complementary parts, Fg and Fh, such that F = F9 U Fh and F, n Fh = 0.

The BC are of the Dirichlet type on F,:

u(x, y) = g(x, y) on F, (2.8)

with g a given vectorial function defined on Fg. Examples are no-slip conditions at

solid walls, u = v = 0, or imposed velocity profiles at a channel inlet, u = un and

V = 0.

On Fh, derivative type (Neumann) BC can be specified. The specific form of these

BC depends on the weak weighted residual formulation of the governing equations.

In this solver, they are written as follows:

a -n = h(x, y) on rF (2.9)

with n = (nx, ny) the unit outward normal on Fh, and h a given vectorial function

defined on Fh. The traction force tensor, a, is given by:

1" = ax ay (2.10)
Pax~ -p +pay

with, [L, the dynamic viscosity. For example, one could apply zero traction forces,

o -n = 0 at the inlet and outlet of a channel in the x-direction, n, = 1 and n, = 0.

In the discussion above we generalized the boundary conditions to any flow field



described by using the governing equations mentioned in the last section. However,

more specific BC will be discussed in the test cases chapter with regard to the actual

examples considered in this thesis.



Chapter 3

Finite Element Solution

Algorithm

3.1 Finite Element Method

The Finite Element Method (FEM) is a general description of many variant methods

existing for numerical discretization, all of which have-some characteristic procedures

in common. Therefore, it is actually more appropriate to speak about Finite Element

Techniques instead. In the remainder of this section we will describe the history and

the general procedures for the finite element techniques.

The Finite Element Techniques originated from the field of structural analysis as

a result of many years of research, mainly between 1940 and 1960. The concept of

'elements' can be traced back to the techniques used in stress calculations, whereby a

structure was subdivided into small sub-structures of various shapes and re-assembled

after each 'element' had been analyzed. After having been applied with great success

to a variety of problems in linear and non-linear structural mechanics it soon appeared

that the method could also be used to solve continuous field problems (Zienkiewicz

and Cheung, 1965). From then on, the finite element method was used as a general

approximation method for the numerical solution of physical problems described by

field equations in continuous media. In the past two decades this method has become

popular for researchers working in the field of computational fluid dynamics. An



excellent introduction to the subject can be found in [22].

The first step for the FEM is to discretize a computational domain by subdivi-

sion of the continuum into elements of arbitrary shape and size. Since any polygonal

structure with rectilinear or curved sides can finally be reduced to triangular and

quadrilateral figures that later are the basis for the space subdivision. Within each

element a certain number of points are defined, which can be positioned along the

straight sides or inside the element. These nodes will be the points where the numer-

ical value of the unknown functions, and eventually their derivatives, will have to be

determined. The total number of unknowns at the nodes, function values and even-

tually their derivatives are called the degrees of freedom of the numerical problem, or

nodal values.

Secondly, the field variables are approximated by linear combinations of known

basis functions (also called shape, interpolation or trial functions). In standard finite

element methods the interpolation functions are chosen to be locally defined poly-

nomials within each element, being zero outside a considered element. A detailed

description of the piecewise linear trial function can be found in the next section.

Finally, the most essential and particular step of the finite element approximation

is the definition of an integral formulation of the physical problem equivalent to the

field equations to be solved. The most popular method is the weak formulation, or

method of weighted residuals. The details of this formulation for our incompressible

Navier-Stokes equations can be found in the last section of this chapter.

In conclusion, the FEM can be seen as a tool to transform a continuum problem

governed by a set of PDE's into a system of non-linear algebraic equations which can

be solved by using a computer.

3.2 Linear Piecewise Trial Function

Our flow problem is described in two-dimensional Cartesian coordinates and so it

consists of three function values u, v and p on each point (x,y) of the domain, Q,

and its boundary, F. As in general no analytical solutions u(x,y), v(x,y), p(x,y) can



be obtained, and so the flow equations are discretized and the approximate solution

function fu(x, y),i9(x, y) and p(x, y) are being searched for. A finite number of points

in the domain is selected and the unknowns of the problem are defined to be the

velocity components and the pressure at these points. In this solver, the unknowns

are located at the vertices [n,],=1,3 of the triangular elements. As a result, there are

9 unknowns in each element, namely, [ui, v, v Pp]i=1,3.

The shape of the approximate solution functions is also prescribed when using

the FEM. In this solver, piecewise linear functions are chosen, both for the velocity

components and the pressure. In finite element terminology, this is referred to as the

use of Pi/P1 elements. Note that, the [u]=1, 3 values in an element are sufficient to

describe the linear variation over the element of the approximate solution it(x, y), and

that the same goes for i(x, y) and j3(x, y).

The piecewise linear approximation solutions can be written as a linear combina-

tion of specific piecewise linear interpolation functions. These functions form a basis

from the trial solution function space. Hence, they are sometimes called the 'basis

functions'. To each point j at which unknowns are stored, a 'tentshaped' interpolation

function N, (x, y) is associated. This is illustrated in figure (3-1).

Nj (x,y)

x 2 D Grid

Figure 3-1: Piecewise Linear Interpolation Function Nj(x, y)

Hence the vertices of the elements are called interpolation nodes. Notice that in

a P1/P1 element the interpolation nodes coincide with the geometrical nodes used

to describe the geometry of the triangle. The piecewise linear interpolation functions



are defined only in the elements to which the corresponding node belongs. Further-

more, they have a unit value at that particular node, vary linearly in its surrounding

elements and are zero at all other nodes:

I (X7 ,y) = 23, (3.1)

for any two nodes i and j. The approximate solution functions can then be written

as follow

in which the coefficients u,, v, and p, are the unknowns of the discretized problem.

The derivatives of the piecewise linear approximation functions are also defined.

For example, the x- and y- derivative of the pressure field p can be represented as:

function N (x, y), which are constants for each element.
function N, (x, y), which are constants for each element.



3.3 Fractional Step Algorithm

3.3.1 General Principle

The incompressible mass and momentum equations are simulated using a finite ele-

ment discretization [12] of the following three-fractional-step time-marching scheme

U* - U (n ) = -(n ") Vu(n) + V 2 U(n )  
(3.7)

At

2p(n) = PV. * (3.8)
At

(n+i) _- u* Vp(n)
(3.9)At p

Here u (n) consists of the x- and y- components of velocity and p(n) represents the

pressure. The superscripts denote the time level of each variables, p and v are the

fluid density and kinematic viscosity respectively, and At is the time step.

By solving equation (3.7) with the known values of u at time level n, we obtain the

solution for u*. Substituting it into equation (3.8), we obtain the pressure solution

at time level n. And by using the pressure solution p(n), equation (3.9) solves for the

velocity vector components at time level n + 1.

Notice that steps (3.7) and (3.9) together represent an explicit time-stepping so-

lution to the Navier-Stokes equations;

0u Vp= -u. Vu - -- + vV 2u (3.10)
Ot p

while the pressure calculation in step (3.8) enforces the incompressibility condition

V - u = 0. Stability of the convective term is accomplished by including a higher

order approximation to the time derivative in step (3.7), which appears on the right

hand side in the form of an artificial viscosity.



3.3.2 Weak Formulation

In this section we describe the weighted residual method used to formulate the three

equations shown in the last section.

Step One :

The Tavlor series of u"fl can be expressed as:

0u n At 2 2U n
~+ l = u"+ At + A + O(At') (3.11)

at 2 at2

However, by truncating the higher order terms and substituting -u and u which

are evaluated by using equation (3.7), we obtain an intermediate updated value u*

as :

n- )  u u 2U 02U
u*- "= -~t[A + B (- + - )] +

Ox Oy OX 2 0y2

At 2  a Ou Ou a Ou Ou
[A (A + B )+ B (A + B )] (3.12)

2 ax Ox ay Oy x Bay

where

u 0 v 0
A , B=

Now we can use the weighted residual method to solve for the unknown u*. The

left side of equation (3.12) becomes :

S(u* - u(n)) N, dQ (3.13)

Notice that both for here and the rest of the formulations the weighting function will

be chosen as the piecewise linear shape functions. By substituting u* and u(n) as the

linear trial function described in equation (3.2), (3.3) and (3.4), the Galerkin form of

the left hand side can then be expressed immediately as

K D = RHS (3.14)



where 4 is a column vector consist of the unknown values u* - u (") for each node.

In our finite element algorithm, instead of storing the matrix K itself, we simply

calculate and store each element's contribution to the K matrix. When solving the

matrix equation by the PCG method, we just need to sum up the contributions

at each node from its neighboring elements by using information provided by the

connectivities for each element. For the rest of this chapter, we will discuss the weak

formulation for each of our triangular elements which consists of three nodes.

By using equation (3.13) the contribution to matrix K from each element can be

expressed as:

K if I=m
Kim- 6 (3.15)

[ if I m

where Ae is the area of a specific element being considered. The unknown velocity

vector for a given triangular element is

S= (u1 v1 U2 V2 U3 V3)T (3.16)

in which the indices 1, 2 and 3 are the three vertices of an element while u and v are

the x- and y- components of velocity.

By using the same weighted residual method, and the linear trial function for

u and v in shown equation (3.2) and (3.3), the right hand side of equation (3.12)

becomes:

9 0u Ou d2U 2u

RHS -At (A + B -) N d + v At ( + ) N dQ +
Oz dy 192 192

91 9 2

At2 a OU OU a OU OU2 J[A ax(A + B y)+B (A x+ B )] Nz d (3.17)

y3



First, the integral denotes as I in equation (3.17) can be simplified to

S= -At [A (Z u + B ( un )] N dQ (3.18)
2 xay

Since the variables inside the integral is constant within the element, we can write it

as :

x-component: - At [ (u, 31 + un 32 + U' 33) +

S(u y1 + un 72 + u3 Y3)1 (3.19)

y-component: - At [f ( +n 2 + +33) +

S1 (v + v3 72 + V3 73)] (3.20)

where u, v are defined as:

u = u1 + Ul + U2 + U3  (3.21)

= v+ + v + 2 + V3  (3.22)

Note that the subscript 1, 2, 3 denotes the three vertices for a given triangular

element. The subscript 1, 1 = 1, 3 denotes the difference in the equations when con-

sidering contribution from each of the three nodes in a triangle. The values for [/,],=1,3

and [Yi]z=1,3 are the derivatives of the piecewise linear function with respect to x- and

y- coordinate as described in the last section. Finally the superscript n is the time

level that the variables are evaluated at.

By using Green's theorem, the integral denoted as T2 in equation (3.17) can be



2 V= - uAt ( 0 r u N

V At ( OU T
fr OX

&u &N1Ou ON +
Ou

x + au y) N dF
-F-

in which nx, n, are the x- and y- normals of the control surfaces. This can further be

approximated as:

2 = - At Ae u, ( ,3 + ~-Y %i)+

(3.24)
S

v At 5 U, (02 i, + y)

where S is the boundary length of the element. Note that the second term in equa-

tion (3.24) is the natural boundary condition and we only apply it for boundary

nodes which do not have zero stress.

Finally, the integral denotes as XII3 in equation (3.17) can be approximated as

x-component:

y-component:

rhs1 -
At 2

2 Ae (E 01 + f) ,)U (U1 1 + Un 02 + U' 03) +

At 2
h, = - --- ~A, ( ji , + f j,) [u (v' j + v' + ; P3) +

rhS2  2 + 2 + V3 3)

S(v 7i + v 72 + V33)1

Step Two :

The integral formulation for the second step can be written as:

V 2 p N, dQ = P
At

written as :

(3.23)

(3.25)

(3.26)

(un + u + UnY 3)]_ Y1 + U''Y 37)

V u* N, dQ (3.27)



By using Green's theorem, the left hand side of equation (3.27) can be written as:

J( X z Op ON
+ ) d +

dy By

n, +Op ny) N, dF (3.28)

By using the linear trial function for pressure described in equation (3.4), the

integral equation now becomes:

PZt( 3 ( , i+ A = -P ( z , + IU 2 ) +

I nP dF
r on e

(3.29)

As a result, the left hand side contribution to the symmetric matrix K from each

element is :

2 + 2 01 32 3/21 12

/2 01 +72 71

/33 /1 + 73 71

22 22

3 2 + 73 72

/1 /3 + -71 73

02 03 +-72 73

/ 32 2 3
3 +73

The right hand side can be written as:

rhs = - p (ui + u /3+ v'+ 2)
-At On e

(3.31)

where the gradient of p can be derived by using the third step [equation(3.9)], the

result is:

p n i* - un+) n

On Ate
(3.32)

in which i* is the average of the u* values at the two boundary nodes of the element,

namely,

ut + u

2 (3.33)

K = Ae (3.30)



Step Three :

Equation (3.9) can be expressed as:

uz N, N d = J uN N, d -

t _N _N

t n+ ( i + j) NI dQ (3.34)

where i and j are the unit vectors for the x- and y- Cartesian coordinates. The left

hand side can be expressed as:

K = A, 12 -1 (3.35)
12 6 12

The x-component of the right hand side can be represented for each node of an element

as:

Ae At A 12 An+ (336)
Node 1 (2 u3 + u- + u ) e 2 P+- 3P3) (3.36)

12 3
Ae At A e  1 pn+l 3n+l

Node 2 (u + 2 u + u*) - P( p +3 +3 ) (3.37)

Node 3: (u* + u + 2 u) - (3 p+1  + 2 P +3 n+1) (3.38)
12 31 3

Similar expression can be written for the y-component of the right hand side with v

in place of u and y in place of 3.

In conclusion, by using the finite element formulation described in this chapter,

our incompressible Navier-Stokes solver called 'NSV.f' was written and used for both

simulating the cylinder/foil flow cases and deriving the low order model of the Navier-

Stokes equations. Details of the solutions obtained by this code will be presented in

the later chapter concerning examples. The accuracy of our formulation is comparable

to the codes that had been reported in the literature.



Chapter 4

Mesh Generation and Movement

4.1 Grid Generation - The Felisa System

The mesh for our cylinder/airfoil problem is generated by using the Felisa system [20].

By specifying the inner and outer boundary node points, and also the grid density

in specific regions, the Felisa system uses the advancing front triangulation method

to discretize the computational domain into numbers of unstructured triangles. The

unstructured triangular mesh is characterized by data sets including node coordinates,

element connectivity, and boundary node numbering. This information is essential

for both the plotting program and the incompressible Navier-Stokes solver.

4.2 Grid Movement

4.2.1 Methodology

Many Euler or Navier-Stokes codes use a computational grid with a fixed underlying

geometrical structure. These algorithms just keep on iterating until a steady state

solution for which the residual become smaller than a given tolerance is reached.

However, many other fluid problems, as in our low Reynold's number cylinder and

foil flow problem, address the relationship between the dynamical behavior of the

structure and the fluid flow. The computation for this class of problems requires a



mesh that is capable of movement.

In this research, the cylinder wake was controlled by an airfoil moving behind it.

Thus there was a need to be able to move the mesh at each iteration. The mesh

movement algorithm described by Batina [10] was used for our 2-D mesh movement.

To move the mesh in our cylinder/airfoil test case, the boundary nodes were held

fixed and the interior nodes were moved in such a way that the only change in the

characteristic of our unstructured mesh is just the coordinates of each node. In other

words, we keep the connectivities for each element to be the same at every iteration

and the prescribed motion of the nodes on the surface of the foil simply becomes a

forcing function which governs the displacement of the interior nodes.

The constraint on the movement of each node is set up by using a spring analogy.

Imagine the outer boundary grid points are fixed and form a rigid frame box. All the

interior edges of the mesh are represented as springs and the nodes are the connec-

tions among the springs. The moving objects (the cylinder and the foil) which are

characterized by the structured interior boundary nodes act as if they are the weights

which were held in equilibrium by the whole spring system. As a result, when the

objects (interior boundary node points) are moved by an external force of some sort,

all the springs and the connecting nodes will also displace with them in order to reach

an equilibrium state. The actual displacement of a given node depends on both the

stiffness of the nearby springs and also on how close the node is to the moving objects.

The whole spring system can be formulated by using Newton's Second Law of

Motion in the x- and y- direction, namely,

m m
Fx~ =x, E km = km 6xm (4.1)

:=1 J=1

m m
F, =k 6y : km = km 6 ym (4.2)

j=1 3=1

where Fx and F, are the x- and y- component of forces, 6J and 6, are the displacements

of a given node, and k is the spring stiffness assigned to each edge. Since the variables

we want to solve are the displacement of each node, we could rewrite the equation in



the more convenient form:

=1 m6 m= km Sm (43)=m, km

-= ]=Ikm (4.4)
Em- km

where i is the node being considered and j, ranging from 1 to m, are the neighboring

nodes. In figure (4-1) below, node z is being considered so that the stiffness km

and the displacement 6, and 6, of the neighboring seven points are substituted in

equation (4.3) and (4.4).

4 5
3

6

1

Figure 4-1: A Control Volume
The stzffness and the displacement of the nezghborzng edges are used to determne

the movement of the center node.

The spring stiffness for a given edge i - j is taken to be inversely proportional to

the length of the edge as

km= (4.5)k M - Oj - X')1 + (y_ -) (4.5)

By using this definition, the static equilibrium equations (4.3) and (4.4), which

resulted from a summation of forces for every node, form an implicit algebraic system

of equations because the displacement of a given node depends on the displacement of

all the neighboring nodes. In other words, we have two matrix equations with dimen-

sion equal to the total number of nodes. By solving these two system individually,

the unknown x- and y- displacement arrays can then be computed.

To solve these sparse matrix problems, a predictor-corrector procedure is used. It



first predicts the displacements of the nodes by extrapolation from grids at previous

time levels according to:

6, 26 - (4.6)

Y = 26n - 6n-1 (4.7)

These displacements were then corrected by using several Jacobi iterations described

in equation (4.3) and (4.4). Then the displacements 6n+ and 6n+1 of the nodes could

be obtained and the new locations of the interior nodes could then be updated by the

following equations

n+1 = Z" + 6n+ (4.8)

yp+1 = yn + 6 n +  
(4.9)

This predictor-corrector procedure was found to be very efficient for our problem.

Since the airfoil was moved by a very small amount for each time level, two Jacobi

iterations were found to be sufficient for the grid points to come to equilibrium.

4.2.2 Examples

In this section we discuss the results of our mesh movement computation. The original

cylinder and airfoil(NACA 0012) mesh is shown in figure (4-2) below. Notice that the

elements around the cylinder and the airfoils have to be sufficiently small so that the

unsteady and viscous effects near the objects could be captured by the incompressible

Navier-Stokes solver accurately.

By zooming into the vicinity of the airfoil, we can see clearly how the elements

are arranged near the surface of the foil in figure (4-3). The foil could be moved and

rotated by using the techniques described in the previous section. For example, start-

ing from the original position, by setting the moving foil in a sinusoidal translational

and rotational motion, after a quarter of the sinusoidal cycle, the airfoil has moved

upward 0.667 unit length with respect to the center line of the geometry and has an

angle of attack of 30 degrees with respect to the one-third chord point. The resulting

mesh is displayed in figure (4-4).



Figure 4-2: Original Mesh
Mesh used in the moving mesh algorzthm.

In the figure, we can clearly see that the resulting mesh is a failure because the

elements at the leading edge overlap with each other. This causes a negative area

for some of the control volume and so this mesh is completely useless for our incom-

pressible Navier-Stokes solver. Notice that even if the elements did not overlap with

each other but were sheared so much that they had very small areas, it would still

not be useful for our solver because the time step limit for our scheme depends on the

size of the smallest element. In other words, if the elements near the airfoil become

very small, the time step has to be reduced significantly in order to make the scheme

stable. As a result, we need a better way to move the nodes around the airfoil.

There were two different methods that we have tried in order to obtain an ap-



Figure 4-3: Enlargement at the vicinity of the cylinder and foil

propriate mesh. The first one was to move the layers of elements around the airfoil

together with the prescribed motion on the foil. This eliminated the problem shown

in figure (4-4). However, we found that the sheared small element problem still arises

for the elements near the layers of elements which have the prescribed motion. The

alternative is to re-assign the stiffness of the edges near the airfoil. By setting the first

layer of edges to have the highest stiffness and the stiffness for the next five layers of

edges to be gradually smaller, we obtain a satisfactory mesh. This mesh is shown in

figure (4-5).

In conclusion, by using a modified spring analogy technique, we are capable of

moving the mesh very efficiently to a very high angle of attack and a long translational

distance. Most of the applications of the moving airfoil require only a small change

in the a.o.a and the translational distance; therefore this mesh movement technique

is quite sufficient.



Figure 4-4: Mesh Movement
Az'rfozl at 0.667 Vertical Dzstance and 30 degrees A.O.A

Figure 4-5: Modified Mesh Movement
Airfol at 0.667 Vertical Distance and 30 degrees A.O.A



Chapter 5

Techniques for Solving Systems of

Equations

5.1 Conjugate Gradient Method

To solve the three matrix equations which resulted from our three-step time-marching

scheme, we have to choose a numerical method which can solve the equations in the

most efficient way. Since the matrices derived by using the FEM are very sparse, an

iterative method is chosen over a direct method. In this section we will discuss briefly

the preconditioned conjugate gradient (PCG) method used in our solver. The purpose

of using preconditioning [1] is to accelerate the convergence of the CG method [14].

However, finding a good preconditioner for solving a given sparse linear systems

sometimes seems to be more of an art than a science and we will discuss it in the next

section. The "Sparskit", which is a collection of computer programs for sparse matrix

computations, developed by professor Youcef Saad at the University of Minnesota was

found very useful for this part of our research.

Conjugate gradient is the most prominent iterative method of solving large sparse

systems of linear equations. The matrix equations have the form

Az = b (5.1)



where x is an unknown vector, b is a known vector, and A is a known, square,

symmetric, positive-definite, n by n matrix. The conjugate gradient method is in the

category of the Krylov subspace methods. These techniques are based on projections

processes, both orthogonal and oblique, onto Krylov subspaces. The mathematical

background of these class of iterative techniques can be found in many linear algebra

text books [7].

The conjugate gradient algorithm can be summarized as:

* Start: Choose an initial guess xo then compute the residual vector ro = b-Axo.

Set po = r0 .

* Iterate: For j = 0, 1, 2, .., until convergence(in which the residual is less than

a given tolerance), do:

(r r,)
I (Ap, ,p,)

2. x,+ 1 = x + ojP3

3. r,+i = r, - a3 Ap,

5. pj+ =- r,+1 + ,pJ

Note that the notation of (a, b) denotes the inner product between two vectors.

The first and the last step of our three-step time-marching Navier-Stokes solver can

be calculated very effectively by using just 8 conjugate gradient iterations while the

second part solving for the pressure field takes more efforts (an average of 60 itera-

tions). In the next section, we will see that by using preconditioning, the number of

iterations required for convergence can be decreased substantially.

5.2 LU Preconditioner

Preconditioning is a technique for improving the condition number of a matrix. Sup-

pose that M is a symmetric, positive-definite matrix that approximates A, but is



easier to invert. We can solve Ax = b indirectly by solving

M-Ax = M-'b. (.5.2)

If the condition number of iM- 1 A is much less than the condition number of A,

or if the eigenvalues of iM-'A are better clustered than those of A, we can iteratively

solve equation(5.2) more quickly than the original problem. However, the catch is

that M-'A is not generally symmetric nor definite, even if M and A are.

The best choice of the preconditioner is the one which can be easily inverted and

also make the condition number to be small. The simplest preconditioner is a diagonal

matrix whose diagonal entries are identical to those of A. The process of applying

this preconditioner, known as diagonal preconditzoning or Jacobi preconditzonzng, is

equivalent to scaling the quadratic form along the coordinate axes. A diagonal matrix

is trivial to invert, but is often only a mediocre preconditioner. The number of

iterations needed for convergence in this case is about 20% lower than the one for

conjugate gradient method without preconditioning.

A more effective and common way to define a preconditioner is to perform an

incomplete LU factorization of the original matrix A. This entails a decomposition

of the form A = LU where L and U have the same nonzero structure as the lower

and upper parts of A respectively. The inverse of the preconditioner LU is simply

U- 1 L - ' which does not take too much effort to compute.

By using the LU preconditioner technique together with the conjugate gradient

technique, the required number of iterations for convergence is much less. In our

solver, the first and the third step take only 3 iterations to converge while the second

part takes about 10 iterations.

5.3 Reverse Cuthill-McKee Graph Reordering

The node numbering of the Felisa mesh generation system is specific, it starts from

numbering all the boundary nodes before the interior nodes are being numbered.



However, this node numbering technique might not be very desirable because node

ordering determines the position of non-zero elements in a sparse matrix. In other

words, by using the node numbering generated by the Felisa system, the bandwidth

of the sparse matrix is not at all optimized and can be very large. This would increase

the cost of performing LU decomposition of a sparse matrix.

Consider grid shown in figure (5-1) as an example. There are 1,182 nodes in the

mesh and the number of non-zero elements in the sparse matrix created by the finite

element formulation for the second part of our three-step method is 8,120. The sparse

matrix resulting directly from the Felisa program is shown in figure (5-2). Notice that

there are many off-diagonal terms around the upper right and lower left corner of the

sparse matrix.

Figure 5-1: Circular Cylinder Mesh

The maximum bandwidth is 1,177 which is almost the same as the dimension of

the sparse matrix. This will significantly slow down and decrease the accuracy of the

LU decomposition on the sparse matrix.



Pressure Matrix

Figure 5-2: Original Sparse Matrix
Sparse matrix resulted from the Felisa system.

In order to minimize the bandwidth of the sparse matrix, the reverse Cuthill-

McKee graph reordering is used. This is a method based on mathematical graph

theory [28]. The triangular grid is considered as a planar graph. Reordering is done

by the constraint that the neighboring vertices must have numbering which are near

by. The steps of performing the Cuthill-McKee reordering is summarized below.

* Find the vertex with the lowest degree of freedom. (A corner outer boundary

nodes is a good choice.)

* Find all the neighboring vertices connecting to the root by incident edges. Then

order them by increasing vertex degree. This will result the first level.

* Form the next other level by finding all neighboring vertices of the previous level

which have not been previously ordered. Order these new vertices by increasing

vertex degree.



* Repeat the previous step if vertices remain.

* After all the vertices had been numbered, just simply reverse the node num-

bers. For example, if we have N nodes in our graph which are numbered as

1, 2, 3, 4...N - 1, N; we just simply reverse the order by counting the node in a

backward fashion, namely, N, N - 1, ..., 3, 2, 1. In other words, node i is now

numbered n - i +1. By doing this reverse process, the bandwidth for the sparse

matrix is minimized.

Figure 5-3 shows the sparse matrix after the reversed Cuthill- McKee graph re-

ordering has been performed. Notice that the maximum bandwidth of the reordered

sparse matrix is just 108 which is far less than the bandwidth of the original sparse

matrix. In conclusion, by using the Cuthill-McKee node reordering technique, the

LU decomposition described in the last section could be performed in a very efficient

way.

Figure 5-3:

Pressure Matrix

Sparse Matrix after Reversed Cuthill-McKee Reordering



Chapter 6

Results

In this chapter the performance of our algorithm is being investigated by applying

it to four different test cases including the inviscid half circular cylinder case, the

viscous full circular cylinder case, the viscous rotating cylinder case and the moving

cylinder and airfoil case.

6.1 Half Circular Cylinder (Inviscid)

Figure 6-1: Half Circular Cylinder Mesh



The first example investigated was an inviscid flow over a half circular cylinder. This

inviscid flow problem was chosen because the numerical solution obtained from our

Navier-Stokes solver, with viscous term setting to zero, could be compared with the

analytical solution; and thus the accuracy of our solver could be estimated. Figure (6-

1) was used for this inviscid flow problem.

The radius of the cylinder is set to unity. The Dirichlet boundary conditions are

illustrated in figure (6-2) below. The x-component velocity of the incoming flow has

a magnitude of one and the pressure at the outflow boundary is set to zero. All the

boundaries except the one on the cylinder have their y-component velocity setting to

zero.

V=0

u=1
p-=0

v-0 v=O0

v=0 v=0

Figure 6-2: Boundary Conditions

After running the solver for about two hundred time steps, the flow field converges

to a steady-state solution. The velocity and pressure contour are plotted in figure (6-

3) and (6-4).

Notice that the numerical solution of the pressure contour shows clearly that the

flow stagnates at the leading edge of the cylinder. In contrast , the static pressure

comes to the lowest value on top of the cylinder while the velocity is maximum at

that point. The analytical solution of an inviscid circular cylinder flow is simply

the potential flow. For a circular cylinder centering at the origin, the potential flow

solution can be easily described in the polar coordinates. The radial and tangential



Figure 6-3: Velocity Contour of the Inviscid Flow Field

Figure 6-4: Pressure Contour of the Inviscid Flow Field



velocity of the flow field outside the cylinder are:

u, = (1 -) cos0 (6.1)
T

1
ut = -(1 + ) sin 0 (6.2)

where r is the distance between a specific point in the flow field and the origin; and 0

is the angle between the x-axis and the radius arm. This is illustrated in figure (6-5)

below.

(x, y)

r

Flow

(0,0)

Figure 6-5: Polar Coordinate of the Flow Problem

By using equation (6.1) and (6.2), the velocity and pressure of the flow field at

any specific field point can be expressed, in Cartesian coordinates as :

u = ur cos 0 - ut sin O (6.3)

v = u, sin O + ut cos o (6.4)

1 sin 2 0 -cos 2  (6.5)
2r 2  r

By using these equations, the velocity and pressure contour of the flow field are

plotted in figure (6-6) and (6-7).

We could see that the analytical solution is very similar to the numerical solution

obtained from our solver. However, in order to compare the two results qualitatively,

we calculate the coefficient of pressure for both the numerical and analytical solution



Figure 6-6: Velocity Contour (Potential Flow)

Figure 6-7: Pressure Contour (Potential Flow)



on the lower boundary of the domain. These values are plotted in figure (6-8) below.

35

3-

25

2 - Analytical Solution

5 - - Numerical Solution
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0-

-05-

-151
-6 -4 -2 0 2 4 6 8

Downstream Location

Figure 6-8: comparision between the Numerical and Analytical Solution

From these data, we can conclude that our Navier-Stokes solver over-predict the

maximum static pressure coefficient occurs at the top of the cylinder. Also, in the

numerical simulation, the static pressure coefficient in front of the cylinder is under-

predicted; but it is over-predicted behind the cylinder. However, the difference is just

in the order of 5 %.

In conclusion, the numerical solution obtained from our solver is very close to

the analytical solution and thus the solver is ready to be extended to the use of the

viscous full circular cylinder test case.

6.2 Full Circular Cylinder (Viscous)

6.2.1 Introduction

In this section, we consider the two-dimensional, incompressible, viscous flow past

a circular cylinder at Reynold's numbers where vortex shedding occurs. This is a

classical example problem for fluid dynamicists and thus the solution obtained from

our Navier-Stokes solver could be compared with many references in the literature.

The characteristics of this fluid flow can be summarized as follows :



* The freestream velocity is relatively low and the corresponding Reynold's num-

ber is in the range of 100 to 500.

* The flow can be treated as an incompressible fluid.

* The large scale separation region and the global unsteadiness of the flow is due

to the viscous effect (no-slip condition) on the surface of the cylinder.

6.2.2 Initial Condition

For the x- and y- component velocities, only the Dirichlet type boundary conditions

are imposed; however, for the pressure term, both the Dirichlet type and the Neu-

mann type boundary conditions are needed. Figure (6-9) summarizes the boundary

conditions.

dp dp
v=dn dnb

u=0

v=O
u= 1.0

p= 0 20
v=0

dp dp dp dp

dndn- dn- dnb

< 25

v =0; dp dplv=0 dp
dn dn b

Figure 6-9: Boundary Conditions
The outer and inner boundary conditions for u,v and p are listed.

The boundary conditions are described in the following figure :

* For the inner boundaries, in order to impose the no-slip boundary conditions,

the x- and y- component velocities are taken to be zero.



* The incoming flow boundary (left side of the rectangle) is taken far enough

so that far-field boundary condition can be applied. In other words, the x-

component velocities are normalized to unity and the y-component velocities

are set to zero at this boundary.

* The lower and upper far-field boundaries have the same boundary conditions.

The x-component velocities are not set. Since these far-field boundaries are

taken to be far enough so that the blockage effect arise from the presence of the

bodies in the flow could be neglected, y-component velocities could be assumed

to be zero.

* The right side of the rectangle is the out-flow boundary of the problem. Both the

x- and y- component velocities are not set in order to eliminate the numerical

problem arises from a reflecting boundary.

* Only the pressure at the outflow boundary is set to be zero. Pressure at all

other boundaries are not known a-priori. As a result, we have to impose the

pressure gradient BC for these boundaries instead.

The cases for the rotating cylinder and the oscillating foil have similar boundary

conditions as described above except that the velocities at the surfaces of the cylinder

and the foil are set to be a prescribed velocity of its rotation and its oscillation

respectively instead of just zero.

6.2.3 Location of the Lateral Boundaries

In many numerical simulations, the computational domain used is often only an

approximation of the actual domain of the physical problem. Many types of boundary

conditions used in practical applications are applicable only if they are sufficiently

removed from the region where accuracy of the solution is important. The desire to

limit computational cost, on the other hand, provides motivation to reduce the domain

size. The best choice of the size of the computational domain can be expected when

these contradictory tendencies are optimally balanced [2].



In our research, many different choices of the distance between the cylinder and

lateral boundaries was experimented and the significant effect on the Strouhal num-

ber, lift coefficient, and mean drag coefficient were found and analyzed. Firstly, we

found that the lateral boundaries should be removed from the cylinder at least by

a distance of 8 cylinder diameters. If this is not the case, the computed Strouhal

number ended up to have an artificially high value. Secondly, the lateral boundaries

farther than 12 diameter distance from the center of the cylinder does not improve

the solution significantly. Thus, the final choice of the lateral boundaries were set to

be 15 diameter length.

6.2.4 Solution

Different meshes were experimented with for different Reynold's number with our

Navier-Stokes solver. It was found that as long as the lateral boundaries are far

enough and the elements near the cylinder are fine enough, the flow solution does not

vary too much. An incoming flow with Reynold's number of 200 was simulated using

the mesh shown in fi ure (6-10) was chosen to be used for illustration purposes in

this thesis.

Figure 6-10: Full Circular Cylinder Mesh



Figure 6-11: Enlargement around the Circular Cylinder

Notice that because it is the cylinder surface where the viscous effect dominated,

in order to sufficiently capture the vortex generated by the cylinder, the elements in

the vicinity of the cylinder have to be very fine. The details on how the elements are

arranged near the cylinder could be found in figure (6-11).

At the beginning, the x-component velocity of the whole flow field was set to unity

except the no-slip boundary condition applied on the cylinder. The flow begins to

develop in the next 40 non-dimensional time until it reaches a state of fully developed

flow. The following are a set of velocity vector figures, figure (6-12) to figure (6-16)

which describe the development of the Von Karman vortex street behind the circular

cylinder. Notice that the symmetric upper and lower vortex get larger and move away

from the cylinder as time goes on. At around 30 non-dimensional time, one of the

vortex starts becoming larger than the other one and the unsteadiness of the vortex

street starts to appear.
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Figure 6-12: Non-Dimensional Time = 1

Figure 6-13: Non-Dimensional Time = 3

Figure 6-13: Non-Dimensional Time =3
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Figure 6-14: Non-Dimensional Time = 7

Figure 6-15: on-Dimensional Time = 20

Figure 6-15: i)on- Dimensional Time =20
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Figure 6-16: Non-Dimensional Time = 30

The lift and drag coefficient history of the developing flow is shown in figure (6-17).

After the flow is developed, the lift and drag coefficients go into a limit cycle having a

period of 5.140 which corresponds to a Strouhal number of 0.1946. The lift coefficient

is centered at the zero lift line and the maximum and minimum lift are ±0.64. The

mean drag for the flow is 1.30 and the maximum and minimum drag coefficient are

1.345 and 1.260 respectively. The lift and drag coefficients for the developed unsteady

flow is plotted in figure (6-18).

Figure (6-19) is the delay plot of the lift coefficient CL(t) - CL(t + T) - CL(t + 2 T)

in which T is one tenth of the period of the vortex shedding. This plot shows how

the trajectories are attracted by a stable limit cycle. It is remarkable that the limit

cycles obtained from different initial conditions literally overlap. This property is a

manifestation of the attractive character of the limit cycle for the continuum problem,

and illustrates the excellent long-term behavior of our fractional step Navier-Stokes

algorithm which accurately replicates this attractor.
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Figure 6-17: Lift Coefficient History of the Developing Flow
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Figure 6-18: Lift and Drag Coefficient History of the Developed Flow
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Figure 6-19: Delay Plot of the Lift Coefficient

The velocity contour, pressure contour and the streamline at time 60 are plotted

in figures (6-20),(6-21) and (6-22). From the pressure contour, we can see that the

large eddies which were generated by the flow separation on the cylinder, travel

downstream. The eddies with positive (counter-Clockwise sense) vorticity which are

those below the center line, travel in a staggered manner with the negative vortices.

This is due to the fact that while the vortex on one side of the cylinder is being shed,

the one on the other side is reforming.

6.2.5 Comparision

There are many calculations of two-dimensional flow over a circular cylinder which

can be found in the literature. By no means would we be able to list them all here, a

few of them are chosen and used as a comparison of results obtained from the research

on which this thesis is based.

In the following table, the coefficient of lift, drag and Strouhal number obtained

from different methods are listed. The first one listed is the result from our fractional

step Navier-Stokes scheme and the following six are results obtained from other nu-

merical schemes [3]. Then the results in [27] suggest that the continuation of the



Figure 6-20: Velocity Contour at Time = 60

Figure 6-21: Pressure Contour at Time = 60



Figure 6-22: Stationary Streamline at Time = 60

universal curve corresponding to the parallel shedding provide us the results from the

empirical method. Finally, actual experimental studies of the wake of circular cylin-

ders [5],[18] results are also listed. These results provide a good basis for validation

of our two dimensional Navier-Stokes algorithm.

Reference Type Lift Coefficient Drag Coefficient Strouhal Number
Present Computation ± 0.64 1.30 ± 0.042 0.195

Belov Computation ± 0.64 1.19 ± 0.042 0.193
Rogers, Kwak Computation ± 0.65 1.23 + 0.05 0.185
Miyake et al Computation + 0.67 1.34 ± 0.043 0.196

Lecointe et al Computation ± 0.5 1.58 ± 0.0035 0.194
Lin et al Computation 1.17

Henderson Computation 0.197
Roshko Curve Fit 0.190

Williamson Curve Fit 0.197
Kovaznay Experimental 0.19

Roshko Experimental 0.19

Table 6.1: Comparision Among Different Results Presented in the Literature



6.3 Rotating Cylinder (Viscous)

In this section we extend our Navier-Stokes model to simulate flow around a rotational

circular cylinder. There are two examples given in this section including the one with

steady rotation and rotation with varying phase. Both of these examples are done

with a Reynold's number of 100.

6.3.1 Steady Rotation

The flow associated with a circular cylinder which begins its rotational motion impul-

sively in a moving fluid is a rather complex one. It includes the unsteady boundary

layer separation flow which interacts with the thin shear layers and wake flow, and

generates complex unsteady lift and drag forces.

Before rotation begins, the simulation is brought to a steady-state non-rotating

cylinder flow. Then by imposing the velocity boundary conditions on the cylinder

having an angular velocity with a magnitude of two in the clockwise direction, the

vortex street then became affected and started to turn below the center line while

a net lift in the upward direction is created on the cylinder. Figure (6-23) shows

the history of the coefficient of lift and drag before and after the cylinder begins

to rotate. Notice that it takes very short time (about 10 non-dimensional time) for

the transition between when the rotation starts and when the flow comes to a new

steady-state. The velocity, pressure and streamline contour for a rotating cylinder

with angular velocity of two are plotted in figure (6-24), (6-25) and (6-26).

Similar simulations were performed for rotating cylinder having angular velocity

equals to 0.25, 0.5 and 1.0. The following table summarizes the coefficient of lift, drag

and Strouhal number for different values of steady angular rotation. From the table,

we can conclude that the mean coefficient of lift increases with increasing angular

velocity while the mean coefficient of drag decreases. However, the Stouhal number

decreases for small angular velocity but it increases as the angular velocity gets larger.
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Figure 6-23: CL and CD Plot for the Rotating Cylinder (w = 2)

Figure 6-24: Velocity Contour for Rotating Cylinder (w = 2)
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Figure 6-25: Pressure Contour for Rotating Cylinder (w = 2)

Figure 6-26: Stationary Streamline for Rotating Cylinder (w = 2)



Angular Velocity Mean Coeff. of Lift Mean Coeff. of Drag Strouhal Number
0 0.001 1.33 0.1656

0.25 1.99 1.24 0.1603
0.5 2.16 1.22 0.1594
1.0 2.27 1.16 0.1680
2.0 2.41 1.14 0.1766

Table 6.2: Comparison of Characteristic Numbers for Different Angular Velocity

6.3.2 Rotation with Varying Phase

When the cylinder is set into an oscillatory rotation at frequencies close to the natural

shedding frequency, the flow "locks on" (synchronizes with the cylinder rotation) and

the vortex shedding becomes much stronger.

For illustration purpose, a rotating cylinder starts its rotation from the non-

rotating vortex shedding flow initial condition with an angular velocity of:

7 =2 sin ( ) (6.6)
6

in which its amplitude and period of rotation are two and six respectively. The history

of the coefficient of lift and drag is shown in figure (6-27). The velocity and pressure

contour are plotted in figure (6-28) and (6-29). Notice that the mean lift is still zero

because the magnitude of the angular velocity has a sinusoidal shape. However, the

maximum and minimum lift are now at ±2.21 which is four times more than the one

for a non-rotating cylinder. Also the coefficient of drag increases to 2.245 ± 0.22

while the Strouhal number remains the same value as the non-rotating cylinder flow.

6.4 Moving Cylinder and Airfoil (Viscous)

In order to demonstrate that vortices can be controlled directly, in the sense of altering

their position and strength; and also that energy can be extracted from large scale

patterns, in this section we use our Navier-Stokes solver to simulate a flow situation

in which both a circular cylinder and a moving airfoil is present in the flow field.

A NACA 0012 airfoil, with a chord length of two, is placed in the wake of a cylinder
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Figure 6-27: CL and CD Plot for the Rotating Cylinder (w = 2 sin (2 _t))

Figure 6-28: Velocity Contour for Rotating Cylinder (w = 2 sin (2 ))
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Figure 6-29: Pressure Contour for Rotating Cylinder (w = 2 sin (2 6 t))

(diameter = 1.0), sufficiently far behind the cylinder so that it does not interfere with

the vortex formation process. In our case, we chose the distance to be 4 5 so that

our numerical simulation is consistent with the experiment done by Triantafyllou et

al [9]. The grid displayed in figure (6-30) is used for this simulation.

By using the grid movement technique discussed in chapter four, we can simulate

the flow in which the foil performs a heaving and pitching oscillation at a frequency

close to the Strouhal frequency of the cylinder while the cylinder and foil move forward

at Reynold's number of 100. We could then compare our simulation result with the

flow visualization result obtained by Triantafyllou et al.

Before solving the flow solution for a moving airfoil, we first simulate a flow field

with a fixed cylinder and a fixed airfoil with an angle of attack of 10 degrees. The

velocity and pressure contour are shown in figure (6-31) and (6-32) for time equals

to 80 non-dimensional time units. Notice that this simulation starts with initial

condition of unity y-component velocity and zero x-component velocity everywhere,

except for the boundary points on the cylinder and airfoil for which the velocity

components are set of be zero at all time.

From these figures, we could see that the vortices generated by the cylinder were



Figure 6-30: Grid Used for Cylinder/Airfoil Simulation

Figure 6-31: Velocity Contour (A.O.A = 10 degrees)



destroyed by the presence of the airfoil and then the vortices are regenerated by the

airfoil in the downstream. Little information exists in the literature on the behavior

of vortex regeneration behind a cylinder and an airfoil. However, the result from

our Navier-Stokes solver seems to be reasonable and so we are ready to simulate the

moving airfoil flow field.

As in the Triantafyllou's experiment, the airfoil motion consists of a combined

transverse translation (heave) and rotation (pitch). The heave displacement is given

as follows:

y(t) = A sin(2 7 f t + V)) (6.7)

The pitching motion has the same frequency as the heave motion; it has the form of:

0 (t) = 0o sin(2rft + V) + c) (6.8)

The experimental visualization result obtained by Triantafyllou et al were done

with a Reynold's number of 550. They tested with many settings for different choices

of heave/pitch frequency and amplitude. The main result they found was that the

oscillating foil altered substantially the position and strength of the incoming cylinder

vortices. The effect of the foil on the vortices was felt only near and downstream of

the foil, while the near wake of the cylinder was not changed noticeably. Also, they

identified the three distinct stable modes:

* Expanding Wake : When oncoming cylinder vortices pair up with vortices shed

by the foil to form mushroom like structures, drifting away transversely to the

flow.

* Destructive interaction: When oncoming cylinder vortices are repositioned by

the foil and they interact with vorticity of the opposite sign shed by the trailing

edge of the foil to form ultimately weakened vortices, or even vortices of the

opposite circulation.

* Constructive interaction : When oncoming cylinder vortices meet with vortices



of the same sign shed by the foil to form much stronger vortices compared to

their original strength.

In our simulation, we chose the amplitude and frequency of the heaving and pitch-

ing motion to be 0.667 and 0.2 respectively; and V, 6 to be zero and wr/2 respectively.

The velocity and pressure contour for the flow at time unit equals to 12 starting from

the non-moving condition are shown in figure (6-33) and(6-34). These show that the

simulation gives a sensible solution. However, because of the relatively long running

time the Navier-Stokes code requires; it was not too easy to perform the same kind

of visualization procedures done in their experiment. However, the expanding wake

could be found quite distinctively from our simulation. We could see that the vortex

generated by the cylinder joins up with a newly formed foil vortex of the opposite

sign to form a pair, slowly drifting away from the center line of the wake, owing to

the mutual velocity induction. Thus a street of vortex pairs is formed, resulting in an

expanding wake. Unfortunately, the other modes they described in the experiment

result could not be found very clearly from our simulation and this probably is due to

the fact that the Reynold's number that we are running is 100 instead of 550. Also,

a different suitable setting has to be found for our case in which Reynold's number

equals to 100. Due to the limitation of our time, research on this will be done and

reported more extensively in the near future.



Figure 6-32: Pressure Contour (A.O.A = 10 degrees)

Figure 6-33: Velocity Contour for the Moving Airfoil case



Figure 6-34: Pressure Contour for the Moving Airfoil case
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Chapter 7

Active Flow Control

7.1 Introduction

With the advent of high speed micro-electronics, the concept of active control of

the properties of a fluid flow has become accepted as a technical possibility, with

many potential benefits and significant advantages over conventional, passive control

methods. To date, much of the work in this area has been directed towards the

suppression of instabilities using a simple heuristic model [23] or neural network

techniques [29]. However, many fluid problems are highly non-linear and they are too

complex for the heuristic approach to model.

In these cases, a well established technique for extracting the dominant features

or degrees of freedom from a sample data set is the proper orthogonal decomposi-

tion(POD) which yields a set of orthogonal basis functions which are optimal in the

sense of energy captured from the data set [15, 16, 17]. These functions may then be

used as a basis for series expansions of the flow variables, and a Galerkin projection

of the governing equations subsequently yields a set of ordinary differential equations

representing the system.

This approach has been employed extensively in turbulence studies [4], and also

in examples of larger scale unsteadiness [6]. However, with some exceptions, previous

work has been largely descriptive, in that the low order model has generally been used

to simulate the flow which gave rise to it. The technique will thus require development



for our purposes.

The test case we choose is the two-dimensional flow past a circular cylinder, with

control action achieved via cylinder rotation. The flow data is obtained by the Navier-

Stokes code we have discussed in the previous chapters.

In this chapter, we will first discuss the POD process and the results of the de-

composition obtained for our test cases. Then we will discuss how we use the POD

results to generate a set of low order models to simulate our flow solution. Finally, we

will illustrate the application of the resulting low order models to the optimal control

problem.

7.2 Proper Orthogonal Decomposition of the Cylin-

der Flow

7.2.1 Introduction

In recent years, the Proper Orthogonal Decomposition (POD) has become popular

as means of extracting dominant energy-containing structures from flow field data

and, by using these structures as basis functions, generating low order dynamical

models for the associated systems. Many of the studies in this area have been in the

field which originally motivated the POD, for instance, turbulence flow; however, the

technique has also found application on a number of larger scale flows [4, 6]. A very

good reference for the subject can be found in the paper by Sirovoch [15, 16, 17].

In this section, we briefly describe the general POD approach and then in the next

section we will discuss the result for our cylinder test case.

Given a set of flow realizations, u(x, t)j,j = 1...N , the 'snapshot' form of the

POD generates N basis functions ('modes'), 42(x) which are mutually orthogonal.

These basis function together with the mean flow form the following approximate

representation of the flow field.

N

u(x, t) = um(x) + y y(t)V(x) (7.1)
z-'l



This representation is optimal, in the sense that it maximizes the captured unsteady

energy, Iu(x,t) - u(x) 12 . In other words, given a data set, the POD extracts the

main energy-containing structures in that data set.

In this sense, the POD has a purely descriptive nature. However, the basis func-

tions it produces may be used to generate a predictive model via a Galerkin projection

of the Navier-Stokes equations described as follows :

du
(- + u -Vu + Vp - vV2 u, Ob) = 0 (7.2)

Note that the inner product is defined as:

(a, b) = a a. b d (7.3)

Since the basis functions V, are divergence-free by construction, equation (7.4)

equals to zero for typical boundary conditions.

j - 7pd = pi -.n dF (7.4)

Notice that p and n denote the pressure and the boundary normal respectively. Sub-

stitution of equation (7.1) into equation (7.2) then yields a set of evolution equations

for the mode amplitudes y,(t), which may be used to predict the time history of

the flow from a given initial condition. Often the number of degrees of freedom re-

quired for this low order model to be accurate is small and a significant decrease in

complexity is achieved in comparison of the original system.

7.2.2 POD for Stationary Cylinder Flow

Derivation of POD Basis Functions

In this case, by using technique described in the previous section, we derive the POD

basis functions using the "method of snapshots" [6]. Here we take a number of flow

realizations (snapshots) and, having subtracted their average value (the mean flow),
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Figure 7-1: Eigenvalue Spectrum

form a correlation matrix whose entries consist of the inner products of snapshot

pairs. The eigenvalues of this matrix then represent the energies of the POD modes

present in the snapshots, and the elements of the associated eigenvectors give the

relative weightings to be used in constructing the modes form the snapshots.

Figure (7-1) shows the eigenvalue spectrum from the correlation matrix formed

from a set of 15 snapshots of the cylinder flow, taken over two vortex shedding periods.

Clearly, most of the fluctuation energy is captured by the first two modes alone, and

if six modes are taken the remaining eigenvalues account for less than 0.1% of the

unsteadiness energy in the snapshots. The decomposition of the flow achieved here

is thus highly efficient. These results are in agreement with those of Deane el al [6],

and the associated basis functions also correspond satisfactorily. Velocity contours

for the first four are plotted in Figure (7-2) to (7-5).

Note the pairing of similar patterns, shifted spatially, a result of the convective

nature of the flow. The amplitudes of these basis functions present in the snapshots

are plotted in figure (7-6), from which it is clear that the basis functions correspond

very closely to the coefficients of a temporal Fourier series expansion of the periodic



Figure 7-2: Velocity Contour of the First Mode

Figure 7-3: Velocity Contour of the Second Mode



Figure 7-4: Velocity Contour of the Third Mode

Figure 7-5: Velocity Contour of the Fourth Mode



flow. This correspondence would be exact for a perfectly convective flow; here it is

remarkably close to being so, even for the higher basis functions/Fourier coefficients.

An interesting corollary is that the mean flow is very nearly orthogonal to the basis

functions and may be found as a mode if the correlation matrix is formed without

first subtracting it from the snapshots.
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Figure 7-6: Basis Function Amplitudes for the First Six Modes

Low Order Model for the Flow

Having determined the basic functions for this flow, normalized so that (Z,, tz) = 1,

we can now obtain a low order model of the circular cylinder flow from the Galerkin

projection give by equation (7.2). Note first that V - n = 0 on the inflow, upper,

lower and cylinder boundary points; and p = 0 on the outflow boundary surface; so

that by equation (7.4) the pressure term drops out. The resulting N coupled ordinary

differential equations can then be written as follows:

= a, + biy, + csj3kYYk
dt

(7.5)



Note that, summation over repeated indices ranging from 1 to N is assumed. The

coefficients are given by the following expressions:

a, = -(, (uM, V)u) + (VZ, V2 um) (7.6)

b -(, (. V)um) - ( um, (u. V),02) +* ('I, V 2,o/) (7.7)
Re

cik = -(Vh, (VIII V)4'k) (7.8)

For numerical implementation, these expressions are further simplified by using Gauss'

theorem to reduce the order of the Laplacian operator in the viscous terms. After

forming the coefficients from the first six basis functions, equation (7.5) is readily

integrated from a given set of initial conditions. By employing a fourth order Runge-

Kutta scheme, we can obtain a set of predicted time histories for the mode amplitudes

which may be compared with the projection of the numerical simulation onto these

functions. As shown in figure (7-7), the integrated time histories for the first two

modes match the observed results extremely well, while the amplitudes of the higher

modes are less accurately predicted. This again agrees with the results of Deane et al

[6]. As a result, we conclude that a six mode model provides an entirely satisfactory

description of the long term dynamics for this case.

7.2.3 POD for the Locked-On Flow Past a Rotating Cylin-

der

As illustrated in the last Chapter, when the cylinder is set into an oscillatory rotation

at frequencies close to the natural shedding frequency, the flow "locks on" and the

vortex shedding becomes stronger. On performing the POD as described previously,

we find that the eigenvalue spectrum is still concentrated around the first few modes.

The eigenvalues distribution can be found in figure (7-8). Also the modes have similar
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structure to those derived for the stationary cylinder. One might thus expect to be

able to form a low-dimensional model exactly as before. However our cylinder is now

rotating, so that the velocity expansion in equation (7.1) is not a valid candidate for

u in the Galerkin projection. In other words, equation (7.2) no longer automatically

satisfies the boundary conditions for any arbitrary set of mode amplitudes y2. This

problem is the first indication of the difficulties involved in applying t he POD to active

control of fluid flows. Since it arises from the presence of non-homogeneous boundary

conditions, it will inevitably crop up in any situation where control is applied at the

boundaries. Thus in the following section ,we consider how this difficulty may be

addressed.

A further issue which should be raised initially at this point is the extent to which

the extreme optimality of the POD basis functions derived here may be a disadvantage

in control applications. Once control action is applied to the flow it may be expected

to diverge from its steady state, and the ability of the low order model to capture

that divergence will be crucial to successful control. Thus a set of basis functions

which is perfectly tuned to the steady state is likely to be unsatisfactory, as we shall
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find subsequently.

7.3 Incorporation of Control Surface Motion into

the Low Order Model

To introduce control into the problem, we consider cylinder rotation as a means of

actuation. A similar control idea has been suggested by Burns [32]. In this approach

we remove the inhomogeneous boundary condition on the cylinder by subtracting

a suitable "control function" form each snapshot before generating the POD basis

functions. To retain the divergence-free property of the basis functions, our control

function must also be divergence-free; we additionally require that it satisfy the ap-

propriate homogeneous boundary conditions on all the other boundaries. Beyond

this, the function is arbitrary; however it is convenient to take it to be the flow so-

lution generated by the simulation for the steady cylinder rotation flow with unit

angular velocity; denoting this solution by uc(x), the modified snapshot set can now



be represented as :

uc(x, tz) - y(t,) Uc(x) (7.9)

in which t, is the time of the i th snapshot. The mean flow and the basis functions

are obtained from this modified set in the usual way. The Ti thus generated have

zero velocity on the cylinder surface, and the velocity expansion is then:

U(X, t) = Um(X) + y(t)uc(x) + y,(t) XzI(x) (7.10)

On substituting this expansion into the Galerkin projection in equation

obtain the following system of equations :

dyw = a, + bz3y, + c 3kY3Yk + d - + (e, + fy 3 ) 7 + gy 2

dt dt

where a,, b,,, and CJk are given by equation (7.6) to (7.8), and

d, = -( Z, uc)

(7.2), we

(7.11)

(7.12)

1
z = -(i, (Um V)uc) - (Tz, (u . V)U,) + ( ', V 2 U,)Re

f, = -('Z2, (I . V)uc) - ('2, (uUc . V)q'3)

91 = -(TI, (uc -V)uc)

(7.13)

(7.14)

(7.15)

Given initial conditions on the y's and a prescribed time history for -, these

equations may be integrated forwards to yield predicted y,'s, and hence predicted

flow fields can be obtained by using equation (7.10).



7.4 The Optimum Control Problem

In this section we consider the problem of determining a control -(t) satisfying an

initial condition y(O) = yo that will minimize a given cost function. Of interest here,

are cost functions which can be written in the following general form of

E(y, -) = f(y, 7)dt (7.16)

where y is a vector whose i-th component is the mode amplitude y,. An iterative

algorithm can be devised to evaluate y(t) from a sequence of updates starting from an

initial guess 7y and corresponding solution yo. For each iteration a gradient function

G(yk, yk) satisfying the condition :

6E = G(yk, yk)6 (7.17)

is evaluated. Then, a straightforward steepest descent update :

Yk+1 = k _ akG k  (7.18)

guarantees that E(k + 1 ) < E(yk) for a sufficiently small scalar ak. The iteration

process is stopped when the magnitude of the gradient function becomes smaller

than a prescribed tolerance. Clearly, more sophisticated update algorithms can be

used. In particular if E(7) is a quadratic positive definite form conjugate gradient

directions could be employed.

7.4.1 Continuum Formulation

An efficient calculation of the gradient function in equation (7.17) can be accomplished

using the ideas of Optimum Control Theory [13, 21]. In this approach the equation

set (7.11) is regarded as a constraint on the problem variables y, and y. Introducing

co-state variables {0', i= 1... N} the cost function in equation (7.16) is replaced by



E(y, 7) = fo

6r , - a2 y - bjjky3yk - 7CzjY3 - d - y2ft - 9 -_ h,)dt (7.19)

Clearly, if we restrict ourselves to functions y, satisfying equations (7.11), the min-

imization of equation (7.19) is equivalent to the minimization of (7.16) since the

additional term is identically zero for arbitrary 0' functions.

Taking the first variation of the above equation we can write :

6E(y, -y) =

( d---it

8 f+ O-y)dt -

a,,Jy, - (bz3 k + bz,)y,6yk - 'yczj 3yj -

CZJy,63 7 - dJy - 2-yf,6y - g, dt )dt
dt

(7.20)

which after integration by parts and rearranging leads to the following equation.

6E(y, -y) = T dO f
(- + [a + yc~, + (b,~k + b~)yk ] + )t y dt +

gT(9 dt + [c,jy, + di + 2yf,]¢ + Of dt T [gz6)6 - [ydt 8y]0 -0]o

Since initial conditions are given on y' and 7 we consider only variations such that

6yz(0) = 0 and 67(0) = 0. Therefore, if the functions 0' solve the following problem :

'J4
Of

OyZ
i= ... N (7.22)

where A,, = -[ai, + 7c, + (bi3k + bz)Yk], then equation (7.20) reduces to :

(7.21)

f (y, y)dt -

/ -y,



6E(y,7)= ([gy2A) ~ +cy +d+27]' + -- )6dt (7.23)

Note that the problem in equation (7.22) is a linear initial value problem that

needs to be solved in reverse time for the N co-state functions Qz(t). Once these are

known, it is straightforward to evaluate 6E for an arbitrary variation in the control

e3y using expression (7.23).

7.4.2 The Discrete Problem

In the discrete case, integrals are replaced by summations and the unknown control

function y(t) is parameterized using an expansion of the form :

Nd mt(7.24)
7(t) (0)(1 - ) + 3m sin(- ) (7.24)

The vector 3 k containing the Nd deszgn variables m3 can therefore be updated

using the discrete analogue of equation (7.18)

pk+i = ok -_ kG k  (7.25)

and the components Gk of the discrete gradient vector Gk are computed as

G~ = t L [giAk + Cy + d + 2 kn/f]k + ( )kn
n=O ,

f ,, mirnAt
gi( ) kn sin( 2 )} (7.26)

9y, 2T

where the superscript n denotes time level and Nt = T/At.

7.5 Examples on Control of the ODE System

To illustrate the above procedure some examples are presented. The cost functions

are defined over a time interval T of 30 time units. This corresponds roughly to five



vortex shedding periods. Equations (7.11) and (7.22) are integrated using a four-step

Runge-Kutta timestepping procedure, using 300 timesteps. Note that, this timestep

is ten times larger than the one used for the Navier-Stokes simulation.

We consider a cost function made up of the squared sum of the amplitudes of the

first two most energetic modes:

T
E(y, 7)= (y2 + y2)dt (7.27)

Since the the mode amplitude represents a departure from the mean flow one would

expect that the control that minimizes the above cost function would tend to produce

a flow which resembles the mean flow. Three different cases with Nd = 20, 40 and

60 design variables are considered and for each case 20 steepest descent steps were

performed in the minimization process. In all cases the iteration process was started

assuming a zero initial control. For each descent iteration the value of cak was chosen

using a line search algorithm. Figure (7-9) shows the the normalized cost function

versus the iteration number for the two cases.
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Figure 7-9: Convergence History of Iterative Process

As expected the final value of the cost function decreases for higher values of Nd,

although only minor differences are observed between Nd = 40 and Nd = 60. All



cases appear to be practically converged. Figure (7-10) shows the control functions

obtained in each case. There are still considerable differences between the control

functions obtained for Nd = 40 and Nd = 60. Finally figure (7-11) show the first two

mode amplitudes for the controlled case with Nd = 60. The effect of the control on

the first two modes is readily apparent.
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Figure 7-10: Optimum Control for Nd = 20.
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Figure 7-11: Time Evolution for Modes 1 and 2 for Nad = 60



7.6 Robustness of the Control Strategies

In order to demonstrate the proposed approach, the control derived from the reduced

order model has been applied to a full Navier-Stokes simulation. In the example pre-

sented here the control function is re-evaluated every 12 timesteps of the Navier-Stokes

computation. For practical purposes the maximum angular speed of the cylinder pre-

dicted by the controller has been truncated to one. This control -y(t) is shown in

Figure (7-12). Figure (7-13) shows the amplitude of the six modes of the controlled

Navier-Stokes flow compared to the uncontrolled case. Notice that by using our pro-

posed optimal control strategies, the amplitude of the first two modes which carry

most of the energy of the flow, decrease to less than half of theirs original amplitudes

and hence the vortex shedding is being suppressed by the unsteady rotations of the

cylinder.
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Figure 7-12: Control on the Full Navier-Stokes Simulation
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Figure 7-13: Comparision of the Controlled and Uncontrolled N-S Simulation



Chapter 8

Conclusions and Future

Development

A two-dimensional, incompressible, viscous flow solver has been developed. The

governing equations are written in a Cartesian coordinate system, using primitive

variables. The arbitrary Langangian-Eulerian formulation of the Navier-Stokes equa-

tions is also considered for the case where mesh movement is applied. The continuous

Navier-Stokes equations were discretized by using a fractional step finite element

method, employing piecewise-linear interpolation functions for both the velocity and

pressure components.

The fully coupled and implicit FEM discretization of the equations leads to a non-

linear system of algebraic equations in the nodal velocities and pressures. Since the

matrices are very sparse, an iterative method (Preconditioned Conjugate Gradient)

is used. I order to minimize the time for solving the matrix equations, a reversed

Cuthill-McKee graph reordering technique is performed on the matrices so that the

LU preconditioner could be found more accurately and more efficiently.

Unstructured triangular grids which are generated by an advancing front method

are used. The main advantage of using unstructured grids is that complex geometries

can be generated quite easily. Also, the dynamics movement of the grids can be done

very cheaply.

The results for the test cases were shown and their accuracy are very comparable



to the results obtained by other authors in the literatures. As a result, we conclude

that our discretization technique is reliable and thus the solutions obtained from our

solver can be confidently used as the basis of the development of the proper orthogonal

decomposition techniques required for the control of the flow fields.

The second main thrust of this thesis research is concerned with controlling vortex

production and stabilizing wake development. The theoretical methods reported in

this thesis are also appropriate for many other flow control problems. Modifications

of existing numerical algorithm needed for other types of control problems depend

on performance and design constraints. More investigations on the control strategies

and methods will be performed in the future. For example, by actively controlling

the pitch and heave motion of an airfoil in the wake generated by a cylinder, more

thrust could be produced or the wake could be stabilized by using active control.

It is our hope that this thesis research will represent a forward step toward the

development of computational algorithms for the control of unsteady flow and it will

be useful in some real flow problems in the near future.
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