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ABSTRACT

Differential GPS (DGPS) positioning is used to accurately locate a GPS receiver based
upon the well-known position of a reference site. In utilizing this technique, several
errors sources contribute to position inaccuracy. This thesis investigates the error in
DGPS operation and attempts to develop a statistical model for the behavior of this
error. The model for DGPS error is developed using GPS data collected by Draper
Laboratory. The Marquardt method for non-linear curve-fitting is used to find the
parameters of a first order Markov process that models the average errors from the col-
lected data. The results show that a first order Markov process can be used to model
the DGPS error as a function of baseline distance and time delay. The model's time
correlation constant is 3847.1 seconds (1.07 hours) for the mean square error. The dis-
tance correlation constant is 122.8 kilometers. The total process variance for the
DGPS model is 3.73 meters2 .
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Chapter 1

Introduction

1.1 Motivation
The Global Positioning System (GPS) is used for navigation and associated tasks

in a wide variety of applications. One of the primary modes of GPS operation is differ-

ential GPS. Differential GPS allows more accurate positioning than stand-alone GPS.

Many new applications are possible because of the increased accuracy obtained

through differential GPS. For instance, a cruise missile operating with differential GPS

can be guided very accurately to its target destination.

The benefits of differential GPS are apparent, but it must be well understood in

order to maximize this benefit. There is a need, therefore, to determine the positioning

errors that are associated with differential GPS operation for a variety of cases, then

the user can make knowledgeable decisions on the implementation of the differential

technique.

1.2 GPS Description
GPS signals are transmitted from the satellites at two different frequencies, L1 at

1575.42 MHz and L2 at 1227.60 MHz. The Ll frequency is modulated by two pseu-

dorandom noise codes, C/A-code at 1.023 MHz and P-code at 10.23 MHz. The L2 car-

rier is only modulated by the P-code. Since the wavelength of the P-code is 30 meters

compared to 300 meters for the C/A-code, the P-code provides much better accuracy

for positioning. The P-code became known as the Y-code when it was encrypted so

only authorized users could access it. A P(Y)-code capable receiver must be "keyed"

with the proper information to decode the incoming signals and obtain P-code accu-

racy. [7]



For C/A-code users, the performance is degraded due to a purposeful degradation

in the quality of broadcast orbits and satellite clock dithering. This degradation is

called selective availability (SA). [24] An advantage of P-code operation is that per-

formance is not affected by selective availability.

Positioning is accomplished by determining the time it takes for the GPS signals

from each satellite to reach the receiver. This time provides an estimate of the distance

from satellite to receiver, and "triangulating" using the signals from four or more satel-

lites provides the receiver's position in three dimensions. The transmit and receive

times are corrupted by clock errors, so a true range measurement is not possible.

Therefore, the distance measurement from the receiver to each satellite is called the

pseudorange.

The "triangulation" is not perfect, because the satellites are not located optimally

with respect to the receiver. Additional error is contained in the navigation solution

due to the position of the satellites. The instantaneous measure of this error is called

the Geometric Dilution of Precision (GDOP). It represents the rms error realized in the

navigation solution for unit error in the triangulation measurements. GDOP accounts

for dilution of precision in three dimensions and time. GDOP can be broken down into

the following components: vertical (VDOP), horizontal (HDOP), time (TDOP), posi-

tion (PDOP). PDOP reflects the dilution of precision in three dimensions. [20] This

can be further decomposed into XDOP, YDOP, and ZDOP.

Incoming GPS signals are delayed when they pass through the earth's atmosphere.

The ionosphere is one of the primary causes for this delay. A P-code receiver can track

both the L and L2 signals. Since these signals are at different frequencies, the iono-

spheric delays will be different for each. An estimate for the ionospheric delay can be

obtained utilizing the difference between the L1 and L2 delays. Thus a P-code receiver



provides a dual-frequency ionospheric correction term that is subtracted from pseudo-

ranges. Since the L1 and L2 delays are obtained from tracking loops on the signals,

additional noise enters the navigation solution when the dual-frequency correction is

used. [10]

GPS satellites broadcast almanac files that contain the orbit parameters required to

predict the satellites' positions. These files are updated every week in order to main-

tain the accuracy. All GPS data is referred to by week. The system clock is reset to

zero every week on midnight Saturday, so the correct date is found by referencing the

GPS week in the data files.

1.3 Differential GPS
As shown in Figure 1.1, positioning using differential GPS (DGPS) involves the

use of two GPS receivers. One receiver is located at a fixed position that is accurately

surveyed, while the other is allowed to move around. The goal is to accurately deter-

mine the position of the "roaming" receiver.

4 GPS Satellites

GPS Signal

Baseline length = b
Receiver B

.. ."Roaming"
y Use Pseudorange Correction From A

Receiver A
Surveyed Position

Calculate Pseudorange Corrections

Figure 1.1 Differential GPS



Since the position of receiver A is surveyed, corrections can be determined for the

pseudoranges that generate the GPS position. These corrections are then sent to

receiver B. The roaming receiver uses the corrections from receiver A to update or

correct its position. This procedure is highly accurate with small baseline lengths.

Errors increase as the baseline increases or as a time delay is introduced between the

measurement and use of the corrections. Such a time delay can be the result of the

desire for covert operation.

Using DGPS can help to eliminate errors due to the satellite clock drift, ephemeris

errors, and propagation delays. Errors remaining include receiver interchannel biases,

receiver noise and quantization errors, multipath, residual propagation delays, and

errors due to time delays in the pseudorange corrections. [4]

1.4 Previous Work
Several sources were found that discussed DGPS errors. Most of the previous

work was performed with C/A-code receivers. Error budgets are cited in [4, 15, 17]

and depend on the type of receiver being used. For the most part, these budgets were

the specifications for the devices or analytic estimates which do not always correlate

with actual performance. The next section provides one of these error budgets. An

analytic development of the individual error sources was provided in [9].

Two references were found that model GPS and DGPS errors as first order Markov

processes. [7, 23] A Markov model was chosen because many physical phenomena

exhibit behavior that fit such models reasonably well. No GPS data was used in deriv-

ing these models.

One reference used simulated data because receiver data for the desired scenarios

was unavailable. [14] Some studies used C/A-code data for their analysis, including



data found on the Internet. [5, 13] One study did use P-code receivers, but this study

examined the DGPS errors for a specific geometry and did not develop a model. [25]

This thesis utilizes data segments with common satellites and processes them inde-

pendently. This prevents jumps in the solutions due to satellite switches from affecting

the results. A statistical model for the DGPS errors is provided.

1.5 Error Budgets and Modeling
Errors for a P-code receiver are typically cited at about 10 meters RMS in each

axis. Table 1.1 shows the error budgets for static GPS operation, and Table 1.2 shows

an error budget for Differential GPS. These budgets are specifications for performance

for co-altitude receivers at a separation of 50 nmi (92.6 km). They were published by

the Air Force GPS Range Applications Joint Program Office. [4, 15]

Table 1.1: GPS Static Error Budget

C/A-Code Predicted Error P-Code Predicted Error
(meters) (meters)

Satellite Clock Error 3.05 3.05

Ephemeris Error 2.62 2.62

Ionospheric Delay Error 6.40 0.40

Tropospheric Delay Error .40 0.40

Receiver Noise 2.44 0.24

Receiver Interchannel Bias 0.61 0.15

Multipath 3.05 1.22

UERE (RMS) 8.54 4.25

RMS Horizontal Position 12.81 6.37
Error (HDOP = 1.5)

RMS Vertical Position 21.34 10.62
Error (VDOP = 2.5)

Total RMS Error 24.89 12.38



Table 1.2: Differential GPS Error Budget

C/A-Code Predicted Error P-Code Predicted ErrorError Source
(meters) (meters)

Satellite Clock Error 0 0

Ephemeris Error 0 0

Residual Ionospheric/Tro- 0.15 0.15
pospheric Delay Error

Receiver Noise 2.44 0.24

Receiver Interchannel Bias 0.61 0.15

Multipath 3.05 1.22

UERE (RMS) 3.95 1.26

RMS Horizontal Position 5.93 1.89
Error (HDOP = 1.5)

RMS Vertical Position 9.88 3.15
Error (VDOP = 2.5)

Total RMS Error 11.53 3.68

The DGPS errors will change as a function of baseline distance and the time delay

in the correction inputs. Previous work has estimated the change with baseline dis-

tance to be a linear relationship. [13] One of the major challenges in this project will

be estimating long term behavior from many segments of short term data.

1.6 GPS Data
Several data sets were utilized in this thesis. Draper Laboratory collected all the

data. Three data collections were performed: East Coast experiments, West Coast

experiments, and zero baseline, rooftop experiments. The first two experiments were

performed under a previous effort. They provide GPS data at locations with varying

separations so several baselines are available. The experiment names refer to the



region where the experiments were performed, and the objectives for both were the

same. The rooftop experiment was performed as part of this thesis. The primary bene-

fit was to be a characterization of the receiver noise. An unexpected benefit was char-

acterization of errors due to multipath. This is possible because the baseline is zero,

and both receivers take inputs from the same antenna. These experiments will be

described in more detail in Chapter 2. The results from all three experiments will be

combined to form a DGPS model from many different cases.

1.7 Thesis Objectives
This thesis will examine the errors in differential GPS as a function of baseline dis-

tance between the two receivers and the time delay between when the corrections are

computed and when they are used. The final results will include data from P-code

receivers only. A model for the errors will be developed and analyzed to determine

how well it fits the errors observed in actual differential GPS experiments.

The thesis is organized as follows. Chapter 2 discusses the experiments and the

data obtained. Chapter 3 presents methods used in the processing of the data and mod-

eling of the errors. In Chapter 4, the results from each experiment is shown including

the performance of the models developed. Chapter 5 is a summary of the thesis and

conclusions drawn from the results. Suggestions for future study are also discussed.
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Chapter 2

Data Collection and Formats

This chapter describes the data that was used to develop the model for DGPS

errors. All of this data was collected by Draper Laboratory. Much of it comes from

keyed P-code receivers that is unaffected by selective availability.

2.1 Draper Rooftop Experiments

2.1.1 Experiment Description
The goal of the rooftop experiments was to obtain data with a zero baseline and to

get an estimate of receiver noise. A GPS antenna was placed on a tripod on the rooftop

of Draper. Two Trimble TANS receivers in a laboratory on the 4th floor received the

inputs from the single antenna. Since the receivers were getting the exact same inputs,

the only difference in their solutions was due to the receivers' internal processing. The

baseline is zero meters, and the time delay errors were examined independently of

baseline dependent errors. Data was recorded every 10 seconds.

The TANS receivers are keyed P-code receivers which are resistant to selective

availability. The position errors are expected to be well within the specified value of 16

meters. A bug in the translation program written for the TANS receivers caused errors

in the recorded ephemeris data. A Novatel receiver was positioned on the rooftop to

collect data for the same periods as the TANS receivers. The Novatel translation pro-

gram worked, so it was used as the source of broadcast ephemeris data.



2.1.2 Data Description

The first set of data was taken on Monday, November 14th, 1995, 23:44:50 to

Tuesday, November 15th, 22:33:10. This was GPS week 775. This set contains

approximately 24 hours of data. Unfortunately, one of the computers controlling the

TANS receivers failed to store the collected data. All data from one receiver was lost.

It was thus not possible to estimate receiver noise from this data. However, the data

from the remaining receiver is very useful for the time delay error analysis, because

the data can be copied and shifted in time. In many trials comparing receiver A vs.

receiver B (two different receivers) with receiver A vs. receiver A (the same receiver),

the time shifted errors are statistically identical. Using the same receiver for the time

delay study eliminates any sample mean in the data.

The second set of data was taken on Thursday, November 17th, 1995, 17:02:38 to

22:13:40. This was also GPS week 775. This set contains approximately 5 hours of

data. This time both computers stored the data, so comparisons between the two

receivers could be performed. Unfortunately, a gap of about 1.5 hours occurred in the

middle of the data. The gap occurred when neither receiver was able to maintain signal

lock on more than three satellites. The reason for the gap has not been determined.

Possible explanations include objects blocking the line of sight to the satellite, an inac-

tive GPS satellite, or a satellite that was not correctly transmitting at that time. It is

unlikely, however, that any nearby structure could have blocked the satellites for 1.5

hours.

The receivers were configured to track the same four satellites. This was done so

the position solution from both receivers would have common error sources. Using

solutions from different satellites would mask the differences we are trying to observe.



The receivers were also configured to hold a set of four satellites until the GDOP

became greater than 6. At that time, both receivers switched to a new set of four satel-

lites.

2.2 East Coast Experiments

2.2.1 Experiment Description
The East Coast experiments were conducted in December, 1993. These experi-

ments included both C/A and P-code receivers. Table 2.1 shows the location and type

of the receivers used. Data collected from Ft. Stewart, Georgia was not used due to

Table 2.1 East Coast Receiver Locations and Types

Receiver
Receiver Location

Type

Cambridge, MA P-code

Portsmouth, NH P-code

Langley AFB, VA P-code

Willow Run, MI C/A-code

problems with the data collection. The East Coast baselines are shown in Table 2.2.

Table 2.2 East Coast Baselines

Receiver A Receiver B Baseline Length
Location Location (km)

Cambridge, MA Portsmouth, NH 84

Langley AFB, VA Cambridge, MA 740

Langley AFB, VA Portsmouth, NH 820

Langley AFB, VA Willow Run, MI 838

Willow Run, MI Cambridge, MA 1022

Willow Run, MI Portsmouth, NH 1052



The C/A-code receiver at Willow Run was a Novatel 951R. The selective availability

in the data from this receiver was removed by Aerospace Corporation. The P-code

receivers were Trimble 4000SSE unencrypted receivers. The P-code receivers were

able to track P-code even though unencrypted, because P(Y)-code encryption was not

yet in effect.

2.2.2 Data Description
Seventeen different sessions of data were collected. All the receivers were oper-

ated at the same time. Some of the sessions were lost due to data collection problems.

The data was searched for segments where all receivers had at least twenty-five min-

utes of time tracking the same four satellites. Five such segments were found in ses-

sions 8, 10, 14, and 16. These five data segments were used to form time delay

differences as well as to estimate the differences due to the six baseline separations.

2.3 West Coast Experiments

2.3.1 Experiment Description
The West Coast experiments were conducted in March, 1994. Keyed P-code Trim-

ble 4000SSE receivers were used at all locations. Only two such receivers were avail-

able, however, so each baseline had to be instrumented separately. Data was collected

from four baselines as shown in Table 2.3.

Table 2.3 West Coast Baselines

Receiver A Receiver B Baseline Length
Location Location (km)

San Diego, CA Long Beach, CA 149

Stockton, CA Fallon, NV 282

Ft. Irwin, CA Fallon, NV 496

San Diego, CA Fallon, NV 758



2.3.2 Data Description
Sixteen sessions of data were collected on the west coast, including four sessions

per baseline. Data collection problems resulted in the loss of two sessions. For the

remaining sessions, data segments of 25 minutes or greater with the two receivers

tracking the same four satellites were selected. Each session had from 1 to 5 such seg-

ments. These segments were again used to form the time delay differences and to esti-

mate the error due to the four baseline separations.

2.4 Data Anomalies
Several interesting qualities or anomalies have been observed in the collected data

sets. These are documented to stimulate future discussion and investigation. The gap

in the 5-hour, zero baseline rooftop data has already been mentioned. From discus-

sions with experienced GPS users, satellite outages have occurred on occasion.

The GPS navigation solution jumps at every satellite switch. This is an expected

attribute, since it is a function of all four satellites being tracked. One of the primary

goals of the data reduction was to deal appropriately with these jumps. Figure 2.1

shows the data from a zero baseline 5-hour rooftop session. The graphs show the com-

ponents of the difference between one receiver's solution and presumed truth. The ver-

tical lines show the places where the satellite switches occur. Notice the jumps in the



output solution at the satellite breaks. Also note the large data gap in the middle of this

set.
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Figure 2.2 shows a close-up of the last satellite break in the zero baseline data.

Note the fairly large jumps in both x and z directions.
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Figure 2.2 Satellite Break, Zero Baseline Data

Figure 2.3 shows a close-up of another session of zero baseline data. The vertical

lines here are not the satellite switches. They mark each measurement made by the

GPS receiver. These occur every 10 seconds. A satellite switch occurred at 114.32 sec-

onds. Note the data gap before the switch. This occurred several times in the collected

data, and is presumably due to a delay in locking onto the new satellite.

The errors often exhibited cyclic behavior. A change in the frequency and magni-

tude of these oscillations is observable at the satellite switches. The oscillations will be

primarily attributed to multipath. The changes in the oscillations make sense since the



new satellite set provides a new multipath geometry. This will be discussed further in

the next chapter.
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Figure 2.4 shows a sample of the West Coast data. Again the vertical lines mark

each satellite switch. Jumps in one or more components are apparent at each satellite

switch.
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Figure 2.4 Sample West Coast Data

Figure 2.5 shows a close-up of the West Coast data. The vertical lines mark each

GPS measurement. Data was taken every 30 seconds. A satellite switch occurred at the
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jump in the middle of the data set at 63.25 seconds. Note once again the jump in the

solution that occurred at the satellite switch.
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Figure 2.5 Close-up of West Coast Data

Figure 2.6 shows an example with only the y direction plotted. Note that satellite

switches occurred at 86.8 and 87.1 seconds. The changes in amplitude and frequency

of the oscillations in the navigation solution are more observable in this case. Analysis
will show that primary oscillation periods change from 71.4 seconds to 90.9 seconds
will show that primary oscillation periods change from 71.4 seconds to 90.9 seconds



to 125 seconds for the satellite switches in this example. This was determined by

applying a fast Fourier transform to the data.
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Figure 2.6 Raw Data Oscillations, East Coast Data

87.2

The GPS navigation solution was observed to jump at points other than satellite

switches. In one case, a jump in z position of 7 meters, y of 3 meters, and x of 0.75

meters was observed. Such jumps were rare, and the cause is unknown. One explana-

tion is that the satellite ephemeris was updated at those points. Figure 2.7 shows a



close-up of a jump in the solution when there was no satellite switch. The reader may

have noticed this jump in Figure 2.1, towards the very end of the data set.
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Figure 2.7 Navigation Solution Jump Without Satellite Switch

Another anomaly of note was an occasional large and sometimes persistent differ-

ence between the position solution from the two receivers. Given that the receivers

were being driven by the same antenna, the difference had to have arisen from some

internal difference between the two receivers. Sometimes these differences only lasted

for one measurement, sometimes they lasted for 100 seconds (10 measurements). A

GPS receiver is a complex non-linear device. Such behavior is not surprising and

could arise for a number of reasons. Included are low S/N for a particular satellite or

some receiver moding change. The level of process noise being introduced into the

receiver Kalman filter was such that they were essentially delivering point solutions.

This was done, of course, so that no "artificial" time correlation would be introduced

into the data. The persistence of the anomalies cannot thus be blamed on the naviga-



tion filter. It should be remembered that the receivers were being forced to hold onto a

set of satellites until the GDOP had risen to 7. This would tend to make the solution

more sensitive to pseudo-range errors than would normally be the case.

The ephemeris data collected by one of the Trimble receivers was missing some of

the satellite information. It appeared to start taking data correctly, but then ephemeris

records would show only information from about three of the satellites. Fortunately,

the ephemeris from the Novatel receiver was available, so this loss did not affect the

results. However, no reason for the data loss has been determined. All other elements

of the data from that receiver seemed fine.

The Novatel receiver ephemeris changed GPS week from 775 to 776. This

occurred on Thursday, November 17th, at 6:00 p.m. The change in GPS week was

expected at midnight on Saturday. The results looked fine and confirmed that the

change had actually been made. The almanac data from week 776 was used, and the

times from -55 to -49 hours corresponded to 113 to 119 hours of GPS week 775. It is

noted that in the Novatel ephemeris file, the almanac entries read week 776, while the

navigation solution entries still read week 775.
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Chapter 3

Data Processing

3.1 Introduction
The goal is to observe and model the time and distance correlated behavior of

DGPS errors. One such model is a first order Markov process,

MSE = GcPs  - e (3.1)

where MSE is the mean square error, aGPS is the variance of the Markov process, t is

the time correlation constant, and x is the distance correlation constant. A notional

plot of this model is shown in Figure 3.1. We will focus for the most part on Markov

models because of their utility in navigation error analysis. The basic underlying phe-

nomena which cause these errors may introduce correlation between the time and dis-

tance behavior. An example would be a traveling ionospheric disturbance. Over an



ensemble of cases, however, the correlation is expected to be zero. It will be so

assumed for this study.
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3.2 Inputs to the Processing
The first step in the processing was to remove corrections for ionospheric delay.

This eliminates the noise from the L2 channel, reducing the noise level by a factor of

. Differencing outputs from the two receivers will cancel the ionospheric errors to

the extent that they are the same. This is a common practice in DGPS operation. Fur-

ther characterization of this residual ionospheric error is one of the goals of the study.

Removal of the ionospheric correction was actually done prior to the start of this study.

[10] The format for the data is shown in Table 3.1.

Table 3.1 GPS Data File Format

1 2 3 4 5 6 7 8 9

Time X Y Z # Sats Prnl Pm2 Pm3 Prn4

10 11 12 13 14 15 16 17 18

Pm5 Pm6 GDOP PDOP HDOP VDOP TDOP Status Clock



The measurements from the two receivers A and B were edited by deleting mea-

surements for which the time tags could not be matched. In addition, measurements

were used only when the receivers indicated that the solution was good (status flag =

1).

Satellite switch times were computed in order to split the data into different sets

that used the same four satellites for the entire set. This intentionally eliminates satel-

lite switching as one on the sources of decorrelation. A negative aspect of this strategy

is that we will be trying to estimate long term behavior from a number of short term

data segments. This will be discussed in more detail later. The data segments were

samples from what is presumed to be a zero mean process. The small sample size

introduced a sample mean into the data. This mean was removed before determining

the correlation between different data sets.

Another strategy for getting as close to the underlying phenomenon as possible,

i.e. errors in the pseudo-ranges, was to normalize the errors in the position solution

components using the dilution of precision in each component, XDOP, YDOP, and

ZDOP. These values were computed by utilizing a GPS constellation simulation and

inputting the measurement times for each set of data and the satellites tracked by each

receiver. [6] The program makes use of the almanac file taken from the Novatel

T 1receivers. The DOP values were obtained from the diagonal of the (H H) matrix.

The resulting DOPs were used to normalize the x, y, and z errors.

For the rooftop, zero baseline data the GPS antenna was not placed at the surveyed

marker. (The marker is in the "shadow" of a large vertical metal wall.) The placement

was in an attempt to minimize multipath effects on the solution. Therefore, the truth

value for the position (x, y, z) was defined to be the average position for all the data

sets. This differed from the surveyed position by xsurv - 5.6590 meters,



ysurv + 5.8299 meters, and zsurv + 18.7744 meters. These values were in the right

direction and distance from the marker - as well as could be determined by eyesight.

No effort was made to actually measure the distance, since it was noted that the survey

marker position was itself only accurate to about a meter. [21]

3.3 Definition of the Error and Difference in Errors
This section defines the errors that were utilized in the autocorrelation processing.

The quantity of interest is, finally, the difference in error between the time shifted

errors from receiver A and/or B.

Xdiff = (Xerr (t + At) - Xerr (t) ) /XDOP (3.2)

The RSS difference is

D2 2 2
DIFFRSS = diff + Ydiff + Zdiff (3.3)

The individual components of the error at each receiver are defined by:

Xerr = Xmsd - Xtrue (3.4)

These individual errors are split into six sets where all the points in a set use the

exact same four satellites. The RSS for each set was found using Equation (3.3).

3.4 Auto and Cross Correlation
The first strategy for characterizing the behavior of the differences was to examine

the correlation in the rooftop data. The cross correlation and the autocorrelation of the

rooftop, zero baseline, differences was computed. Since the two receivers were being

driven from the same antenna, and the receivers were only contributing white noise,

the cross and auto correlation were expected to both be measures of the same thing,



the behavior of the errors in pseudorange with time. This analysis was done for the

component differences and the RSS difference for each of 6 data sets.

The cross correlation between receiver A and B differences was found. The sample

mean was subtracted from the data before the correlation algorithm was applied. Cor-

relations were found for x, y, z, and the RSS differences for each set from 1 to 6 using

Equation (3.2) and (3.3).

2The sigma and tau values were estimated for each set. The variance, 02, is the cen-

ter value, since the inputs were of zero mean. Tau is the value on the x axis that corre-
2

sponds to a y value of _
e

A Markov process has a probability distribution that is dependent only on the

value at one point immediately in the past. The process can be described by

Equation (3.5), where w is white noise and [ is the reciprocal time constant. [12]

S+ (t)x = w (3.5)

The autocorrelation of a zero mean Markov process is given by Equation (3.6).

The correlation time, or lie point, is found at 1/. [12]

xx (~ T ) = o2 e (3.6)

A single variance and time constant for the six set ensemble was found in two

ways: a) by finding the correlation of the weighted average of the data in the six sets,

and b) taking the weighted average of the variance and time constant found from the

correlation of each of the six sets.

The results of the cross-correlation process were disappointing for two reasons.

The first is that a tremendous amount of data is required to get accurate results using



this technique. Brown and Hwang [7] present the limit on experimental autocorrela-

tion as

4
20 4

Var[V x (r) _ T (3.7)

where is the time constant, Vx (r) is the experimentally determined autocorrelation

function, T is the time length of the experimental record, and 02 is the variance of the

process.

For a requirement of 10% accuracy on the estimation of the autocorrelation func-

tion, the experimental autocorrelation should have a standard deviation less than 0.1

2 4 Var Vx (T)
times a , or 0.01 times a . Therefore, Var = 0.01, and the limit becomes

4

T - (3.8)0.01(

for an accuracy of 10%. If the time constant is 1800 seconds, T = 360,000 sec-

onds. In other words, 4.2 days of data is required. In general, the data required for 10%

accuracy equals 200 times the time constant. A time constant of 250 seconds requires

almost 14 hours of data for 10% accuracy. The development of the accuracy limit is

presented in Appendix B.

Figure 3.2 is a graphic expression of Equation (3.7). It shows the plot of amount of

data vs. percent error in the autocorrelation function for a process with a time constant



of 1800 seconds. Again, note that about four days worth of data is required in order to

Amount of Data vs Percent Error for Time Constant of 1800 Seconds
200

180

8 160

u_ 140

- 120

S100

80

60-

_ 40

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Amount of Data (days)

Figure 3.2 Amount of Data vs. Percent Error

obtain about 10% error on the autocorrelation function. For our problem, we must

have data where the satellites are all the same for each set of data. This limits the data

sets to about one hour before a satellite switch occurs. The second reason for abandon-

ing correlation as the analysis method was that it does not easily allow the resolution

of multiple Markov processes. It will be found that there were indeed two separable

Markov processes with, obviously, different time constants.

3.5 Time Delay Error Analysis
An alternative method for observing and characterizing the error inherent in using

a time delayed DGPS correction was developed. It consisted of simply computing the

time delay differences as a function of time delay and fitting those differences to a pre-

sumed model. The time shift ranged from zero to a maximum such that 20 data points

remained in common between the original set and the shifted set. Since the data inter-

val was 10 seconds, this corresponds to an overlap of 200 seconds. Thus a 1500 sec-



ond data set will yield a 1300 second set of time shifted differences. The differences

are the mean square, MS, of the components of the RMS differences at each time shift.

After each shift, the shifted and unshifted errors were differenced. The differences

(at each overlapping point) are functions of the total shift, t. (A shift by an index of

one corresponds to a 10 second shift.) For the discrete case these differences are

Xdiff, = Xerr - Xerr (3.9)

The mean and standard deviation at each shift, m, was found by summing over i

I Xdiff, m

Xdiffm - n (3.10)

X diffm

X diffm - (3.11)
nm

where the sum on i is over the number of overlapping points, nm, at each shift, m.

The mean square, MS, of the x, y, z standard deviations was computed

diffs (T) = x diffm + y diffm + Z diffm  (3.12)

where the mean square difference is expressed in terms of the time delay, tc, corre-

sponding to the shift, m.



Figure 3.3 shows this process in block diagram form. The result of the time delay

error process is a curve of mean square error for differences vs. T.

Figure 3.3 Creating Time Delay Errors

3.6 Relation of Mean Square Differences to Markov Model
Consider the outputs of receiver A and B: (xA, YA, ZA) and (xB, YB, ZB). Taking the

RSS of each provides RSSA and RSSB as in Equation (3.10). The difference is DIFF =

RSSA - RSSB. The variance on the difference is given by

2 2 2
aDIFF = DIFF- DIFF (3.13)

If the difference is a zero mean process, then

GDIFF = DIFF= RSS - 2 RSSA R S S B + RSSB (3.14)

2 2 2 2Assume both A and B are zero mean processes, then RSSA = A, RSSB = OB, and

RSSARSSB = poAGB . This leads to

2 2 2
ODIFF = A- 2PcA B + B (3.15)

Back Out Dual Frequency Ionosphere Corrections I

Find Position Errors: Receiver A, Receiver B (or A) (Shifted by T )

Find Difference in Position Errors: Xdiff,, m = Xerr+m - Xerr,

Find Standard Deviations for X, Y and Z

Find Mean Square: MS



2 2 2Assuming A and B have similar variances, ~A = B2 = GAB resulting in

Equation (3.16).

2 2 2 2
t x DIFF AB -2pAB = 2 GAB( -p) (3.16)

tx t x

Letting p = e C for a Markov process leads to the model function

2 2 r1 xc
GDIFF = 2GAB 1-e (3.17)

which is equivalent to the mean square error if the bias is zero.

3.7 Marquardt Method
The Marquardt Method is a non-linear curve fitting routine that enables the fit of

an exponential to a set of data. This is the means of obtaining the estimates for the

DGPS model parameters. The inputs to the model include arrays of the independent

and dependent data points, along with the standard deviations for each data point. The

algorithm determines the standard deviation and correlation constant for the first order

Markov fit, along with a covariance matrix that can be used to generate error bounds

for the model.

The process defines a chi-squared (X2 ) merit function and determines best-fit

parameters by minimizing the merit function. For the nonlinear case, the minimization

is performed iteratively. The procedure is repeated until x2 effectively stops decreas-

ing. The selected limit for the difference between consecutive X2 values was 0.1. [22]

The Marquardt method is described in more detail in Appendix A. The Marquardt

method is used to determine independently the errors due to baseline distance and time

delay.



3.8 Pseudorange Error Processing

All previous processing was performed using the navigation solutions that are pro-

vided by the GPS receiver. Due to the satellite switches, the data sets are limited in

length. In an effort to obtain longer data sets, the possibility of obtaining pseudorange

errors was investigated. The pseudorange from a single satellite could cross over sev-

eral satellite switches and provide a source of continuous data for use in the process-

ing.

Equation (3.18) is used to obtain the pseudorange errors.

r -r
p - = H -meas -rtrue (3.18)
meas true Atmea - AttrueLmeas true

where H is given by Equation (3.19).

T
91 1

T

H = (3.19)
T

-3 1

T
ul
-4 1

The line of sight vector to each satellite is given by ulT. The vector pmeas contains

the measured pseudorange for each of the four satellites. The output GPS navigation

solution vector is r . The receiver's true position vector is r . The user clock
meas -true

bias estimate is At . The true user clock bias is At . The line of sight vector tomeas true

each satellite is obtained by using post-processed ephemeris data downloaded from the

Internet. The ephemeris data is obtained at 15 minute intervals, and an interpolation

routine called polint.m is used to find the true ephemeris for all data points [22].



The problem with the pseudorange processing is that while we have a value for

rtrue, the true clock bias in Equation (3.18) is not known. If the error in the user clock

bias, At - Attrue , is forced to be zero, the pseudorange errors obtained will havemeas true

jumps in them at each satellite switch. This is shown in the top half of Figure 3.4. If

this jump is attributed to the change in Atmeas due to the satellite switch, a correction

term can be obtained which indeed allows the three continuing pseudoranges to be

continuous. An example is shown in the bottom half of Figure 3.4.

The actual clock error, however, is still unknown. We have simply found the

change in its estimate due to the satellite switch. The difference between the measured

and true clock error is a contributor to the pseudorange error, and cannot be ignored. It



may however be possible to estimate the contribution of this term statistically based on

the TDOP. This will be discussed in Section 5.2.
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-50.68

3.9 Multipath

As GPS signals are reflected off objects before entering the receiver antenna, a

false pseudorange is created. This happens because the reflected signal has traveled a

different path length than the direct signal. As noted in the previous section, cyclic

behavior can be observed in the GPS position output which may be attributable to this

"multipath" effect.



Oscillations are also observed in the time delay errors formed by shifting one

receiver's data in time and differencing this with the other receiver's output. Figure 3.5

illustrates the point by showing the time delay error results from six data sets in the

zero baseline case. Note the oscillations that occur in each set.
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After noting similar frequencies in each set, the average period was identified by

taking the fast Fourier transform (FFT) of each set shown. Figure 3.6 shows the FFT

outputs from each of the six sets. The FFT output is very similar for all the sets with

the tallest peaks occurring from 300 seconds to 600 seconds. Peaks off the scale were

attributed to taking the FFT of a finite set of data. Peaks are expected to occur at 700 to

1500 seconds because that's how long the individual data segments lasted. The pre-
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dominant periods which can reasonably be attributed to multipath are between 300

seconds and 600 seconds.
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A scenario was developed which results in the multipath frequencies observed for

the satellites in the zero baseline, 5-hour data set. The user selects a position offset
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from the receiver for the location of the reflector. The true range and satellite position

are used to determine the multipath frequency. The scenario is shown in Figure 3.7.

Nearby
d2 Buildingd,

Antenna on Tripod

Figure 3.7 Signal Multipath

As shown, d1 is the direct path from satellite to receiver. Two possible reflective

paths, d2, were considered as examples. Note that d2 includes the path before and after

the reflection or the total from the satellite to the antenna. One was a reflection off a

nearby building. The position offset used was 20 meters north and 20 meters up. The

second multipath option is a reflection off the roof that enters under the receiver. This

case is highly likely because the antenna was on a tripod and the gain under the

receiver is fairly high. The offset used for this case was 1.9 meters down and 0.5

meters north.

The multipath frequency is given in Equation (3.20) and Equation (3.21).

f (k) - Adt Ad2  (3.20)
XAt XAt

dI (k + 1) - d, (k) d2 (k + 1) - d (k)f(k) = - (3.21)0.19 (t (k + 1) - t (k)) 0.19 (t (k + 1) - t (k) )

where X is the wavelength of the signal (0.19 meters), t is the measurement time, and

k is the index for the measurements. The results for satellite 26 for the first offset are



shown in Figure 3.8. The period is between 90 and 100 seconds (1.5 to 1.7 minutes),

and the frequency is 0.0095 to 0.011 Hz.
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Figure 3.9 shows the results for the reflections under the antenna. The period in this

case is 150 seconds or greater (1.5 - 10 minutes), and the frequency is 0.008 Hz or less.
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Experimental observations of multipath were found in [1, 16]. Multipath frequen-

cies with time periods of 5 to 30 minutes were recorded. Differential multipath with

time periods of 5 to 10 seconds were observed. The simulation results are in the range

of these observations. Other multipath "paths" are possible. The two examples were

only intended to indicate reasonableness. No attempt was made to actually measure

the distance to nearby buildings.

Note that the frequencies observed in the data and those found from the simulation

of reflections from under the receiver fall into the same frequency range. The fre-

quency for reflections off nearby buildings matches closer with the frequencies found

in the raw data highlighted in the last section.



Chapter 4

Results

4.1 Rooftop Experiment Results

4.1.1 Navigation Solution for 5-Hour Data
The first set of results is from processing the navigation solution for the 5-hour set

of data with the zero baseline. Figure 4.1 shows the satellites that were used during the

data collection. The y-axis is the satellite identification number. Note that at each time

only four satellites are being used. The gap between 115 and 116.5 hours was noted

earlier as the time when less than four satellites were tracked.
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Figure 4.1 Satellite ID vs. Time

The vertical lines mark each spot where there is a switch in at least one of the sat-

ellites being tracked. The data was split into six different sets where the satellite set

stayed constant over that interval. The small data segment towards the middle was not

used.



Time delay differences were created using the processing described in Chapter 3.

Figure 4.2 shows the resulting mean square vs. time delay plots for each of the six sets

of data. The average is also plotted on this chart.
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Figure 4.2 Navigation Solution Errors

Figure 4.3 shows the 1-sigma bounds on the time delay differences. These were

computed by finding the standard deviation for the mean square error calculation as

shown in Equation (4.1). [11] Note that the error bounds for the six sets overlap much

of the time.

S=1) 4G MS = _:2hCyRSS/ (nm- 1 (4.1)



where o s is the mean square error (ordinate in graph), and nm is the number of

overlapping points. It can be seen that the error bounds increase as the number of over-

lapping points decreases for increasing time delay.
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Figure 4.3 One-Sigma Bounds for Time Delay Errors

Figure 4.4 shows the weighted average from the six data sets, along with the stan-

dard deviation on the average. These values are used as inputs to the Marquardt curve

fitting routine. The weighted average and standard deviation were found using Equa-

tion (4.2) and (4.3) where MSi is the mean square for each set and (, is the standard

deviation for the mean square.

MS i

2

mean - (4.2)
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Figure 4.4 Average Navigation Solution Error
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Figure 4.5 shows the Markov fit to the average from the 6 data sets. Equation (4.4)

shows the model that was used in the Marquardt fitting routine. A sum of two Markov

processes was used because this model provided a better fit to the data. The first pro-

cess with the shorter time constant is attributed to multipath. The period falls in the

sample range found in the multipath scenario as discussed in Chapter 3. All the zero

baseline cases exhibit this short time constant behavior. The longer time constant pro-

cess is intended to encompass all other errors. A model for this process was one of the

goals of the study.

t M2 t

Model = o 1 -e +2 1-e (4.4)

(4.3)



The error bounds on the Markov fit are shown with dotted lines. These are

obtained by using the covariance provided by the Marquardt routine as shown in

Equation (4.5).

ae = -;f (4.5)

The one-sigma error on the model is 8e. The function f is the mean square error

which is a function of the vector 9. The vector 9 consists of both values for a and r.

The partial derivatives of the function f with respect to the elements of 9 are output

from the Marquardt routine. The routine also provides the covariance matrix E defined

by Equation (4.6).

E = 8989T  (4.6)

The noise level for the difference between receiver A and B is 0.05 meters2 and

provides a bias for the navigation solution errors. The receiver noise has a mean of

0.21 meters and a standard deviation of 0.23 meters. Squaring the standard deviation

gives a bias for the mean square of 0.05 meters 2.

Figure 4.6 shows the residual for the Markov process fit. This is obtained by sub-

tracting the fit from the data. The residual represents anything that has not been
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Figure 4.5 Markov Process Fit

included in the model. Note the sinusoidal characteristic in the residual. This will be

addressed later in the chapter.
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The model parameters for each of the 6 sets and the average are given in Table 4.1.

The average values are obtained from a separate fit for the average curve, not just the

average for the parameter values from the 6 data sets. The fits to the individual sets

reveal the fact that the Markov model is not very sensitive to changes in the r2 value.

That is the reason for the large variations seen in this parameter. This insensitivity is

related to the limit (variance) of the experimental correlation given in Chapter 3.

Table 4.1 Results for Zero Baseline

SET G1  IT1 G 2  T2
(meters) (seconds) (meters) (seconds)

1 1.25 272.5 1.02 285.9

2 0.68 80.2 5.74 7643.3

3 0.85 39.8 26.4 123,719

4 1.86 204.9 5.80 11,412

5 1.47 125.2 3.92 10,110

6 1.10 57.6 1.66 506.6

Average 0.98 103.9 1.71 499.0

4.1.2 Navigation Solution for 24-Hour Data
The second set of results is from processing the navigation solution for the 24-hour

set of data with the zero baseline. Figure 4.7 shows the satellites that were used during

the data collection. The y-axis is the satellite identification number. Note that at each

time only four satellites are being used. The vertical lines mark each spot where there



in at least one of the satellites being tracked. Ten sections were selected for

of the navigation solution. These are indicated by an 'X' above the data set.
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Figure 4.7 Satellite ID, 24-Hour Data

Time delay differences were created and Figure 4.8 shows the resulting mean

square vs. time delay plots for each of the ten sets of data. The average is also plotted
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on this chart. The average is the very thin line that runs through the middle of the

curves.
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Figure 4.8 Navigation Solution Errors, 24-Hour Data
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Noting that some of the curves in Figure 4.8 are lower than others, the time of day

for each curve and the mean MSE were calculated. Figure 4.9 plots the mean of each

of these sets of time delay differences versus time of day. The time of day is plotted

from 0 to 24 hours (1 days). Hour zero occurs at midnight. It might be said that there is

a large mean error between 8:00 a.m. and 10:00 a.m. corresponding to a rise in total

electron count in the morning. the smallest mean square differences occur between

noon and 8:00 p.m. There is then another increase. This increase occurs significantly



after sunset. Any correlation between the mean square differences and sunrise and

sunset is difficult to discern.
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Figure 4.9 Mean Error by Time of Day

Figure 4.10 shows the average from the ten data sets, along with the standard devi-

ation on the average. These values are used as inputs to the Marquardt curve fitting

routine.
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Figure 4.11 shows the Markov fit to the average from the 10 data sets. The bias is

zero because there is only one receiver for the 24-hour data. The result is a shift of

receiver A vs. receiver A. The T2 value of 3847.1 seconds equals 1.07 hours.
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Figure 4.11 Markov Process Fit, 24-Hour Data
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Note that the error bounds on the raw data, Figure 4.10, and on the Markov fit, Fig-

ure 4.11, do not completely overlap. This is especially obvious after a few thousand

seconds. This "inconsistency" reflects the fact that the Markov process is an incom-

plete description of the pseudorange transmission delay differences. In fact, the errors

and their differences are not stochastic, but are "unpredictable". Even this is not

exactly the case because, with enough effort, satellite ephemeris and transmission

delay could be predicted at least in the short term. Characterizing these differences as

Markov processes is merely convenient. As the analysis proceeds the character of the

fit residuals will be observed.



Figure 4.12 shows the residual for the Markov fit on the 24-hour data. Again note

the sinusoidal nature of the model error.
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Figure 4.12 Residual for Markov Fit, 24-Hour Data
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Figure 4.13 shows the Markov fit for both the 5-hour and 24-hour data sets. The

model parameters for these two sets are almost identical. The data was collected on

different days and times of day. The results indicate a definite consistency between the

data sets. Note that at the end of each data set the average error increases sharply. This

is a result of the fact that the number of data points is decreasing at each shift. The

smaller segments have only 20 points left at the end, or only 200 seconds of data. It



seems reasonable that there would be trouble estimating a 1-hour time constant, with

so few points remaining.
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Figure 4.13 Markov Process Fit, Both 5-Hour and 24-Hour Data
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The fit to each of the 10 navigation solution sets is given in Table 4.2. The large

variance on the r2 values is again apparent, and we will note once more that it is con-

sistent with the variance in the correlation given in Chapter 3.

Table 4.2 Results for Zero Baseline, 24-Hour Data

SET G T1 0 2  12
(meters) (seconds) (meters) (seconds)

1 1.57 89.8 9.51 38,358

2 1.81 255.0 12.54 45,316

3 1.50 208.6 1.27 214.0

4 1.07 123.1 41.4 7.4x10 5

5 0.93 105.1 15.3 46,620

6 1.98 154.3 1.36 512.5

7 2.41 296.7 3.76 22,579

8 0.69 43.4 13.1 67,439

9 1.77 252.0 0.90 261.6



Table 4.2 Results for Zero Baseline, 24-Hour Data

SET 01 T 12 2
(meters) (seconds) (meters) (seconds)

10 1.54 120.1 32.1 2.7x10 5

Average 1.47 171.8 2.77 3847.1

4.1.3 Pseudorange Errors, 5-Hour Data

The third set of results is from processing the pseudorange errors for the 5-hour set

of data with the zero baseline. Fourteen pseudorange sequences were formed from the

data. The large gap in the data forced the splitting of pseudoranges on either side of the

gap. Figure 4.14 shows the resulting mean square vs. time delay plots for each of the

fourteen sets of data. The average is also plotted on this chart.
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Figure 4.14 Pseudorange Errors



Figure 4.15 shows the average from the fourteen data sets, along with the standard

deviation on the average. These values are used as inputs to the Marquardt curve fit-

ting routine.
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Figure 4.15 Average Pseudorange Error

Figure 4.16 shows the Markov fit to the average from the 14 data sets. The first rise

is very close to what was seen in the navigation solution results.
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The residual for the Markov fit is shown in Figure 4.17. Once again note the sinu-

soidal nature of the model error.
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Figure 4.17 Residual for Markov Fit, Pseudorange Errors

4.1.4 Pseudorange Errors, 24-Hour Data
The fourth set of results is from processing the pseudorange errors for the 24-hour

set of data with the zero baseline. Ten pseudorange sequences were formed from the



data. Figure 4.18 shows the resulting mean square vs. time delay plots for each of the

ten sets of data. The average is also plotted on this chart.
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Figure 4.18 Pseudorange Error, 24-Hour Data

Figure 4.19 shows the average from the fourteen data sets, along with the standard

deviation on the average. These values are used as inputs to the Marquardt curve fit-

ting routine.
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Figure 4.20 shows the Markov fit to the average from the 14 data sets. Again. The

first rise is very close to what was seen in the navigation solution results.

ftvA --U- _-

= 1.03 meters

8-

7-

6

,5-

O4-E
L4

C

2

0
0 1000 2000 3000 4000 5000 6000 7000

Time Delay (seconds)

Figure 4.20 Markov Fit for Pseudorange Error
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The residual for the Markov fit is shown in Figure 4.21. Once again note the sinu-

soidal nature of the model error.
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The Markov fit for all cases is shown in Figure 4.22. All the curves are aligned in

the first rise.
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Figure 4.22 Markov Fit, All Cases
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4.1.5 Residual Errors
All the residual errors shown have had sinusoidal characteristics. They are now

examined more closely. Figure 4.23 plots the model residuals for all three of the previ-



ous cases. Not only are the sinusoidal characteristics evident in each, but the same fre-

quency and phase is present.
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Figure 4.23 Residual Errors, All Cases

Figure 4.24 shows the FFT for each of the model residuals. The periods of the

oscillations are very similar for all four cases. A primary period of about 400 seconds



is apparent. The next step is to see if the Markov model fits the data better if appropri-

ate sinusoidal terms are added.
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Figure 4.24 FFT for Residuals

A sinusoidal term using the period identified was added to the Markov model to

attempt a better fit. The new fit is shown in Figure 4.25. This fit is much better than the

Markov process alone. The model for the residual used is given in Equation (4.7). The

short period of this oscillation once again points to multipath. Some particular, strong

reflected signal common to all cases is a possible explanation



Res = 0.35sin 27 I (t + 150)
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Figure 4.25 New Model Fit to Data

(4.7)
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Figure 4.26 shows the residual for the new model. Note that the amplitude of the

residual has been reduced to about a fourth of its former level. Note that sinusoidal

characteristics can still be observed in the data. Further reduction using these periods



is possible. The primary periods in these residuals match those found in the time delay

data in Chapter 3.
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4.2 East and West Coast Experiment Results
Figure 4.27 shows the results for the East Coast baselines.
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Figure 4.28 shows the results from the West Coast data.
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Figure 4.28 West Coast Baseline Results

The errors shown in Figure 4.27 and Figure 4.28 include the effects of multipath.

An estimate of errors due to multipath was obtained using the same process that was

used for the zero baseline data. That is, time shift differences were made, and a dual

Markov model was fit to these differences. The shorter time constant was consistent

with multipath effects. The variances were somewhat smaller than seen on the rooftop.

Variances for each pair were obtained by combining the appropriate values. These

variances are shown in Table 4.3. They were subtracted from the errors before pro-

ceeding to find a combined time delay/distance model.

Table 4.3 Multipath Variances for Each Baseline

Separation (km) Locations mult (meters 2

84 Draper/Portsmouth 0.22

149 Long Beach/San Diego 0.92

282 Fallon/Stockton 0.67

496 Fallon/Fort Irwin 0.90



Table 4.3 Multipath Variances for Each Baseline

Separation (kin) Locations muti (meters2)

740 Langley/Draper 0.18

756 Fallon/San Diego 0.49

820 Langley/Portsmouth 0.10

4.3 Combined Model
The results have been presented for each of the three data sources: zero baseline,

East Coast, and West Coast. Now the results from the navigation solution errors will

be combined to create composite results. The 24-hour data for the zero baseline case

will be used since it has a longer time base.

4.3.1 Results From All Sets
Figure 4.29 plots all baseline errors together.

838 km 820 km

6- 758 km 740 km

< 46m 84 km

E149 km km-4 -km

2 282km

0 200 400 600 800 1000 1200
Time Delay (seconds)

Figure 4.29 Navigation Solution Errors, All Data Sets



Figure 4.30 plots the same information in 3-D format for a more visual interpreta-

tion.
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Figure 4.30 3-D Error Plot, All Data Sets

Figure 4.31 plots a cross section of the 3-D plot at zero time delay. This cross sec-

tion will be used to fit the Markov process for the distance correlation. The last three

points are from the East Coast baselines with a C/A-code receiver at one end (Willow

Run). The Draper data collection personnel indicated a lower confidence in the output

from these receivers. In addition, the selective availability errors had to removed by

Aerospace in post processing. By policy, these errors were not totally removed from

the data, and some noise still remains. Given these facts, a strong case can be made forthe data, and some noise still remains. Given these facts, a strong case can be made for



the removal of the C/A-code runs from the data sets. This would leave only P-code

data leading to a higher confidence in the results.
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4.3.2 Results From High Confidence Sets
To create a set of high confidence data, the three C/A-code sets at 838, 1022 and

1052 km were removed. The resulting time delay errors are shown in Figure 4.32.
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Figure 4.32 Time Delay Errors, High Confidence Sets



Figure 4.33 shows the 3-D plot for the high confidence data sets. Note that this sur-

face is smoother than the one including the C/A-code results.
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Figure 4.33 3-D Error Plot, High Confidence Sets

Figure 4.34 shows the 3-D plot for the high confidence data sets with the multipath

removed from the zero baseline data. This plot will be compared with the final model.
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Figure 4.35 plots the cross-sectional view of Figure 4.33 for the case with no time

delay. This data is used as an input to the Marquardt method to fit the Markov model to

the distance dimension. The 1-sigma error bounds provided to the Marquardt method

are also shown in the graph. The circles show the actual data points available for the

Marquardt fit. Note that even with several baselines of collected data, there are still

very few points in the distance dimension compared with the number of points in the

time delay dimension.
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Figure 4.35 Zero Time Delay Results, High Confidence Sets
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Figure 4.36 shows the Markov fit for the distance dimension. The bias is zero

because the 24-hour data was used at 0 km, and only one receiver was available for

this data. Equation (4.8) shows the model that was used in the Marquardt fitting rou-

tine for the distance dimension.
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Figure 4.37 plots the residual for the distance dimension Markov fit. There is a

slight sinusoidal characteristic to this plot, but not enough data points are available to

merit trying to correct the model.
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Figure 4.37 Residual for Markov Fit, Distance Dimension

Figure 4.38 shows the final resulting DGPS model obtained by combining the

Markov fit to the time delay and baseline distance dimensions. Since the same under-

laying phenomena cause the distance and time decorrelation, the variance of the pro-

cess is common. The value of 3.73 meters 2 is the weighted average of the values found

for the time and distance models. Note that the raw data has a significant spread and

this model will not encompass every case. Rather it is meant to provide an average

error model that represents the typical behavior of the DGPS operation. The formula

for the DGPS model is given by Equation (4.9). This plot can be compared with Figure

4.34. Note that these results have been normalized by the DOP values. To determine

the errors obtained in the navigation solution, the model must be multiplied by the

appropriate DOP values for the given satellite geometry.
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Figure 4.38 DGPS Error Model

The data used to determine the time constant, t, comes exclusively from the "roof-

top" experiments. This is because the data from the East and West Coast experiments

was not of sufficient duration to contribute much to the determination of t.
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Chapter 5

Conclusions and Suggestions for Future Work

This thesis analyzed GPS data collected by Draper Laboratory to determine DGPS

error characteristics. It was found that a first order Markov process could be used as an

appropriate model for the errors in differential GPS. Since the errors are correlated in

both time and distance, the Markov model has a process variance, a time correlation

constant, and a distance correlation constant. Analysis of both navigation solution

errors and pseudorange bias errors provided a wide range of data sets for processing.

The Marquardt non-linear curve fitting routine was used to obtain the parameters for

the Markov model for each set of data.

5.1 Conclusions

The resulting DGPS model is given in Equation (5.1).

t x
MS = 3 .73 1 -e 3847 1 22 28 meters2  (5.1)

where MS is the mean square error in the pseudorange biases.

This model is fairly representative of average navigation solution errors. It should

be noted that there are significant deviations from nominal performance. (Refer to Fig-

ure 4.8 for example.) The analyst might wish to choose a larger value for the variance

to describe "worst case" performance. The rationale for using a Markov fit is that

many physical processes tend to exhibit Markov-like behavior and that it is a conve-

nient model for linearized analysis.



The error model is consistent with the differential GPS error budget given in Chap-

ter 1. The DGPS budget had a MS error of 1.59 meters2, (1.262). The Markov model

determined herein has a MS error of 3.73 meters2. The variance at 92.6 km separation

and zero time delay is about 1.98 meters 2. Fifty nautical miles (92.6 kilometers) is the

distance assumed in the referenced error budget. Multipath effects could easily

account for the difference. The referenced budget is only the specification for the sys-

tem and not necessarily indicative of actual performance.

The raw data has a significant spread to it depending on the time of day, geometry,

multipath, weather conditions, and possibly other factors. This model does not encom-

pass every facet of the error sources. In particular we have seen the importance of mul-

tipath error modeling. An attempt was also made to correlate the magnitude of the

time delay errors to the time of day. Few data points were available, but the results

indicate the lowest values occur during the afternoon and early evening. This would

mean that the output from the two receivers is more highly correlated at these times.

The model was developed by analyzing the errors in the navigation solution output

of the GPS receivers. The individual pseudorange errors that contribute to the position

error were also examined. A technique was developed to attribute changes in all pseu-

dorange errors at satellite switch to changes in the user clock bias error estimate. This

indeed caused the pseudorange error for each satellite to be continuous and not experi-

ence jumps when a satellite switch occurred. The results from this analysis were con-

sistent with those obtained from the navigation solution analysis for the zero baseline

data. While this is encouraging, and lends more credibility to the determination of the

time constant, the lack of a measure for true GPS time means the value for pseudor-

ange error determined in this manner will be consistently low.



The cross-correlation technique was ineffective at determining the Markov fit

parameters. This is due to the requirement for large continuous data sets for cross-cor-

relation accuracy. DGPS data sets are limited to about one hour due to satellite

switches. Alternatively, the Marquardt curve fitting routine was used to fit the time

delay error to a Markov process. This routine also allowed fitting of two independent

processes.

This thesis effort has revealed many interesting aspects of the GPS receiver opera-

tion including a close look at P-code data from two receivers attached to the same

antenna. Of biggest importance may be the dramatic change in amplitude and fre-

quency of oscillations in the navigation solution at each point where a satellite switch

occurs. Given that multipath is the cause of such behavior, shielding or other counter-

measures should be investigated on future experiments or in operational scenarios.

5.2 Future Work
As just mentioned, multipath should be treated more carefully in future experi-

ments. It should be eliminated in order to examine other error sources and should be

introduced in a controlled fashion if desired.

Internet GPS data may be able to provide longer sets of data where the restriction

of common satellites in each set is no longer a requirement. In order to obtain this, the

best sites with accurately surveyed positions and hydrogen maser clocks would pro-

vide the best opportunity for such data. This data would provide a check against the

work done in this thesis and provide more insight into the correlation constants

obtained. The best Internet address to use for these sources is toba.ucsd.edu. It is not

clear, however, how the errors such as selective availability can be completely sepa-

rated from the other physical errors of interest. The Internet receivers are not



encrypted, so SA will be present. Since the position is known very accurately, the

errors in the navigation solution will be known very accurately, but the contribution

from each error source can only be estimated.

Even if true GPS time is unavailable at the receiver, a comparison of Time Dilution

of Precision (TDOP) values with the PDOP values could be utilized to obtain a statis-

tical estimate of the receiver clock errors. This would allow inclusion of these errors

into the estimate of the pseudorange errors combined with the adjustment of clock bias

devised herein. This would allow longer data sets to be analyzed. Short segments of

data were one of the primary limitations for this thesis effort.



Appendix A

Marquardt Method

The Marquardt method or Levenberg-Marquardt method provides a way to per-

form non-linear curve fitting for data. The process defines a chi-squared (X2 ) merit

function and determines best-fit parameters by minimizing the merit function. For the

nonlinear case, the minimization is performed iteratively. The procedure is repeated

until X2 effectively stops decreasing. Numerical Recipes [22] explains the Marquardt

method in detail. The main points will be discussed here.

The model to be fitted is

y = y (xi;a) (A.2)

where a is the vector of parameters in the model that the Marquardt method must find.

In this case, a = [o ] and y = 2 1- e The X2 merit function is

2 Yi- Y (x) (A.3)x (a) = j.(A.3)

2The goal of the Marquardt method is to find min that minimizes 2. An initial guess

called a cur is required to get things started. If the guess for a is fairly good, the second

derivative matrix (Hessian matrix) of the X2 function is used to jump immediately to

the a mi for that guess using

amin = acur + D - [-VX2 (acur)] (A.4)

where D is the Hessian matrix.



However, if the guess is poor, the inverse-Hessian method cannot be used. In this

case, the steepest descent method is used to take a step down the gradient

anext = acur - constant x VX 2 (acur) (A.5)

where the constant is small enough not to exhaust the downhill direction.

The gradient of X2 with respect to the parameters a, which will be zero at the X2

minimum, has components

ax2 _

7ak

N

i=-2
[Yi - y (xi;q) I a

a2 ky (xi ; )

i

k = 1,2,...,M (A.6)

Taking an additional partial derivative gives

N

2 12
i=li

E a k - i - y (xi;a)] y (xi;a)] (A.7)

The following terms are defined

Pk 28ak

22
kl -

1 2aka
(A.8)

Now [a] =
1
-D in Equation (A.4) which can be rewritten2

M

Ocklial = Pk
i=l

(A.9)

This set of linear equations can be solved for the increments 86a that are added to the

current approximation to get the next approximation.

The steepest descent formula translates to

8a l = constant x 
1

22
aka
aaaa

(xj;) a xia
___y X'd

(A.10)



The Marquardt method allows the smooth variation between the steepest descent

method and the inverse-Hessian method as the approximation goes from poor to good.

The two methods are combined into one equation

M

X c k 81a = k (A.11)

i=l

where ax is given by

(A.12)
jk jk (j k)

and k is referred to by the author as a non-dimensional fudge factor. If k is large, the

approximation is poor, and the steepest descent method is used. If k is near zero, the

approximation is good, and the inverse-Hessian method is used.

The Marquardt recipe consists of the following:

* Compute X2 (5)
* Pick a modest value for k, say k = 0.001.
* (1) Solve Equation (A.11) for 85 and evaluate 2 (a + 5a)
* If X2 (a +8) X2 () , increase k by a factor of 10 and return to (1)
* If X (a + 8a) < 2 (a) , decrease k by a factor of 10, update the trial solution

5a - 5 + 5a, and return to (1).
Once the acceptable minimum is found (change in x2 of less than 0.1), k is set to

zero and the covariance is found

[C] [o] (A.13)

The partial derivatives of the model with respect to the individual parameters in a

are used by the Marquardt method. For the Markov exponential fit, the partials are

y_ 2Y0 1 -e (A.14)



x
2 r

y _ -o xe
a y 2 (A .15)
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Appendix B

Autocorrelation Limits

The limits on the experimental autocorrelation function were found in [7]. The ini-

tial assumption proven in [3] is that the variance of an experimentally determined

autocorrelation function satisfies the inequality

VarVx () < JR' ('c) dT (B.1)
0

where T = time length of the experimental record

Rx (t) = autocorrelation function of the Gaussian process under consideration

Vx (r) = time average of X, (t) XT (t + ') where X, (t) is the finite-length sam-

ple of X (t) (that is, Vx (t) is the experimentally determined autocorrelation function

based on a finite record length)

The experimental autocorrelation is formed by

1 ((T - )

Vx () = (t) X(t)T (t + ) dt (B.2)

1
It is noted here that the Matlab function xcorr does not divide by , so the user

must be careful when working with that function. Dividing properly will result in

Equation (B.2).

Vx (r) can be shown to be an unbiased estimator of Rx (t) [7]. Assuming that the

process X(t) is a Gauss-Markov process, then the autocorrelation function is

2 -131t1
R x (z) = e (B.3)

1
Note that 3 = -. This autocorrelation can be substituted in Equation (B. 1) to give

IT
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Var[Vx (t)] < (B.4)

which is the limit that is used for the accuracy on an experimental autocorrelation

function in Chapter 3.
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