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Abstract

An experiment to study the Kelvin-Helmholtz shear layer instability was designed,
constructed and tested. The objective was to extend ideas about controlling infinite
dimensional, distributed parameter systems employed at the MIT Gas Turbine Labo-
ratory to systems of uncountable dimension. The experiment showed the uncountable
dimensions predicted by the linear model but there were slight deviations due to dis-
sipation of energy (probably by viscosity). As predicted by the linear model of the
instability, all frequencies convected downstream in the tunnel at the same rate and
a narrow band of them became unstable at high tunnel velocity.
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Chapter 1

Introduction

1.1 Motivation and Introduction to Infinite Di-

mensional Systems

A lot of work has been done on the control of finite dimensional systems. These sys-

tems are represented by time-ordinary differential equations. Given a finite number

of parameters describing the system (i.e. states), the evolution of the system can be

uniquely determined. The number of states needed to describe the system is deter-

mined by the number of differential equations and the highest order derivative in each

of the equations. There are many texts that describe both classical [Van de Vegte, 90]

and also newer optimal control techniques for such systems [Kirk, 70]. the control

of finite dimensional systems is so well understood that there are computer packages

such as Matlab [Math Works Inc.] that can be used to design controllers with a mini-

mal understanding of the underlying theory. We do not have the same understanding

of infinite dimensional systems.

Infinite dimensional systems require an infinite number of parameters describing

the state of the system at any one time in order to predict its future. For example, in

order to describe the thermal condition in a room, the temperature at every point in

the room must be known. This is an infinite dimensional system because there is an

infinite number of points in the room if continuum mechanics is assumed. Systems are



normally represented by partial differential equations that involve not only derivatives

with respect to time but also partial derivatives with respect to a spatial dimension.

As a result, the analysis and understanding of these systems require greater mathe-

matical sophistication than for finite dimensional systems. Almost all prior work in

the control of infinite dimensional systems has been theoretical, involving functional

analysis and operator theory [Banks] . To date, this work has found little practical

application.

[Paduano, 92] is a description of a method for successfully controlling an infinite

dimensional instability in a compressor. The states of the compressor are given by the

flow rate at different points about the annulus of the compressor. There is both an in-

finite and uncountable number of points on the annulus and so there appear to be an

uncountable infinity of states. However, the flow rate can be represented by a spatial

Fourier series taking the position along the annulus as the spatial dimension. Since

the annulus is circular, the flow rate is periodic with a period equal to the perimeter

of the annulus. This reduces the number of states to the countable infinity of terms

in the Fourier series expansion of the flow rate. This Fourier space is a countable or-

thonormal basis in which the original system can be accurately described.(i.e. It is a

way of describing the system using only a countable number of states.) What is more,

the flow in the compressor changes smoothly about the annulus so the higher har-

monics in the Fourier series are much smaller and can be ignored without significant

losses in accuracy (i.e. the high spatial frequency harmonics are natural very stable

and are not observed in the system). The order of the model can therefore be reduced

by ignoring the higher terms in the Fourier series. The low frequency harmonics in

the Fourier series expansion are a finite orthonormal basis that can capture the state

of the actual system to an arbitrary accuracy by increasing the number of Fourier

harmonics included. As a result, the infinite dimensional system is represented to

arbitrary accuracy by a countable number of Fourier harmonics. Traditional control

theory design methods applied to this finite dimensional system have been used to

control the infinite dimensional system with success.

This approach involving the approximation of the infinite dimensional system by a



finite dimensional one is inevitable if a computer is to be used to control it because the

computer only has a finite number of states and cannot represent the actual system

let alone implement a control strategy based on it. One is faced with the choice

of either doing the analysis and design for the infinite dimensional system and then

approximating the resulting control scheme with a finite number of measurements

from the system, or building a finite dimensional model of the system based on these

measurements and designing a control system based on this model. The second

scheme is more promising because it takes advantage of the already existing knowledge

and tools for the control of finite dimensional systems.

Although the compressor for which this approach has been implemented [Paduano, 921

has an infinite number of states, they are countable. This is evidenced by their repre-

sentation by a countable number of terms in a Fourier series. The motivation behind

this thesis is to see if the same success can be achieved in systems with an uncountable

number of modes. The number of modes in the compressor is countable because the

flow rates have to be periodic. The Kelvin-Helmholtz, shear layer instability has no

such boundary conditions and cannot be represented by a Fourier series. It therefore

has an uncountable infinity of modes. The long term goal of this project is to find a

finite dimensional system that can be used to design control scheme for this system.

This work is the first step towards this goal. It involves the design and construction

of an experiment and the demonstration that it does exhibit the uncountable infinity

of dimensions that is required.

1.2 Introduction to the Experiment

[Chandrasekhar, 68] predicts that the shear layer at the boundary between fluids in

relative motion becomes unstable above a certain threshold velocity. This instabil-

ity manifests itself as waves on the boundary of the fluids that travel at the mean

velocity of the fluids. Although these waves have been observed in air flowing over

water at velocities above this threshold, no effort has ever been made to observe and

characterize the system and compare it with the predictions of the linear, non-viscous



model. An experiment was designed in an effort to do this

The experiment consists of a tank containing eugenol (clove oil) that has water

flowing over it. An airfoil is used to deflect the boundary between the two fluids

and thus excite the instability. A video camera measures the displacements of the

fluid boundary, thus sensing the size of the disturbances at a certain sampled points.

Input/output measurements were taken in an effort to identify the system behavior

and compare it with that predicted by the theory outlined in chapter 3.

Because of the complexity of non-linear analysis of the system, a linear analysis

was done an4 its results used to predict the behavior of the experiment.

The experiment displayed a lot of the traits predicted. All the waves in the shear

layer convected at the same group velocity and it was also shown that as the velocity

of the flow increased, a certain band of frequencies became increasingly unstable.

However, the linear prediction that all other waves would be marginally stable was

false. They were stable and got smaller as they traveled along the shear layer.

1.3 Outline

The novelty and complexity of the dynamics of the experiment make its design im-

possible to understand without some knowledge of the underlying theory. Chapter 2

is a brief overview of the dynamics of the linear model of the shear layer.

Chapter 3 is a description of the experiment and the issues that were considered

in its design and construction. This information is especially useful for someone that

needs to alter the tunnel or construct a similar one.

Chapter 4 is a description of the airfoil dynamics and how it affects the shear

layer. Chapter 5 completes the description of the modeling by explaining the effects

of sampling and having a tunnel of finite length on the observed transfer function and

also the impact of stabilizing the system over this range on the stability of the entire

system.

The results are presented in chapter 5. They are compared with the predictions of

the models in chapters 2, 4 and 5 and attempts are made to explain the differences.



Chapter 2

Theoretical Analysis of Undriven

System

It is critical that a theoretical analysis of the experimental setup be

know what to expect from the experiment and how to look for it.

analysis is also necessary to ensure that the experiment will be in

which the system is unstable.

done so that we

This theoretical

the regime over

2.1 Variables Describing System

The figure 2-1 shows a schematic of the experimental setup. It comprises two fluids

of different densities. The one on top is less dense and is traveling at a velocity U

relative to the one below. The velocity of any one liquid is assumed constant through

that whole liquid for simplicity of analysis. This assumption is reasonable when the

wavelengths considered are big compared to the size of the boundary layer between

the two liquids. The linear model, which will be described later in this chapter,

predicts that the flow is stable for short wavelengths so the assumption holds for the

longer unstable wavelengths we are interested in.



U

Figure 2-1: Schematic showing definition of independent variables

2.1.1 Independent variables

The independent variables are the coordinate frame in which the problem is described

(see figure 2-1)

* x: This is the displacement in the direction of the flow.

* y: This is the displacement in the direction parallel to the interface between the

two liquids but normal to the flow.

* z: This is the displacement in direction perpendicular to the interface between

the two fluids. It is taken to be zero at the interface and to increase as one

moves up.

2.1.2 Dependent variables

These are the variables that describe the state of the system and are in general func-

tions of the independent variables. They are represented as perturbation variables

with the mean values being the conditions of the undisturbed system and the pertur-

bations being the small disturbances from this mean value. They are listed below.

* p + Jp: This is the density of the fluid.



* P + JP: This is the pressure of the fluid.

* U + u : This is the velocity of the fluid in the x direction U is the free stream

velocity and u is the local variation of the free stream velocity.

* v is the velocity of the fluid in the y direction.

* w is the velocity of the fluid in the z direction.

2.2 Equations Describing the System
4

It can be shown [Chandrasekhar, 68] that the system above is described by the set of

equations listed below.

* For momentum in the x direction:

au
Ptat

+ pU
dU

+ pwdz
dz dz ad

au 85P
+ a) =az az

(2.1)

The viscosity term of the form VLv2u that is normally in the momentum equation

is zero as we will assume a solution that is of the form:

Su = 5u(z)ei(kx+k yy + nt)

for which the divergence squared is zero. It is omitted in the equation above

for this reason.

* For momentum in the y direction:

av
P-

av
+ pU dz ay (2.2)ay

The viscosity term of the form / V2 v is zero for the same reason as described

above and is omitted.



e For momentum in the z direction:

aw aw d a8w _ asP a25z, s 2Sz
+ pU- 2 - gSp + T,( )Sd(z - z) (2.3)pt ax dzaz az a 2  y2

The last term with T, is a surface tension term at the surface separating the

two liquids. Sd(Z - z,)is the dirac delta function. It is an impulse of area 1 at

z, and is used in the equation because the surface tension is non-zero only at

the surface. Again, viscosity term of the form i V 2 w is omitted.

" The velocity of the fluids will be much lower than the speed of sound and so

the fluids will appear incompressible. Since the density of a particle does not

change as it moves through the liquid:

85p uSp dpasp = -w- (2.4)
at ax dz

* The velocity of the boundary between the two liquids is the same as the velocity

of the particles of the liquids at the boundary.

S+ Us - w(z) (2.5)

* From the conservation of mass:

Bu 8v Owau+ a + aw = 0 (2.6)
ax ay az

2.3 Solving the Equations

We are interested in wave-like disturbances of the form:

Sq = Jq(z)ei(kxZ+k y +nt)



where q is the perturbation variable of interest. Substituting this form for the per-

turbation variables and writing 8 as D in the equations above,

(pin + pUik, - (Dti)D)u + (p(DU) - ik,(Dpt))w = -ik,SP

(pin + pUik, - (Dg)D)v - iky(Dt)w = -ikYSP

(2.7)

(2.8)

(pin + pUik, - (DjL)D)w - (D/t)Dw = -DSP - gSp - (k2 + k2)TSz,Sd(Z - z,) (2.9)

i(n + kU)Sp = -wDp

i(n + k,U)Sz, = w,

i(ku + kyv) = -Dw

(2.10)

(2.11)

(2.12)

If equation 2-7 and 2-8 are multiplied by ik, and iky respectively and then added

together and equation 2-12 used to eliminate u and v:

[pin + pUik, - (Dkt)D]Dw - [ipk(DU) + (D~))k 2 ]w = -k 26P (2.13)

where k2 = k2 + k .

Substituting Jp from equation 2-10 and Sz, from equation 2-11 in equation 2-9:

w Tw
(pin+pUik:-2(DA)D)w = -D6P-ig(Dp) +ik2 T d - Z,)

n + k,U n + kU
(2.14)

Eliminating JP from equation 2-13 and 2-14,

D{[pn + pUk, + i(Dp)D]Dw - [pk,(DU) - i(Dy)k2]w}

- k 2(pn + pUk, + 2i(Du)D)w
k2  w

= gk 2((Dp) - -T6d(Z - Z))
g n + kU

For the problem that we are interested in, U and p and p are not functions of z

so DU, Dp and DL are all zero inside any one of the fluids. The fluid away from the



interface of the two liquids is therefore described by:

(k 2 - D 2)(pn + pUk,)w = 0

The boundary conditions are that the velocity normal to

wall, z =+ d, and that the velocity of the boundary in

the same in both liquids. The solution to the equation

conditions is:

wl = A(n + k,Ui)(ek(d+z) -ek(d + z ))

w2 = A(n + k,U 2)(ek(d - z) - e-k(d-z))

Assuming large d relative to ( these solutions reduce to

wi = A(n + k,U)ekz z < 0

2 = A(n + k,U 2)e - kz z > 0

the wall, w, is zero at the

the z direction, w , is

above that satisfies these

z<O

z>OZ < 0Z > 0

(2.16)

(2.17)

(2.18)

(2.19)

2.3.1 The Fourth Boundary Condition

If equation 2-15 is taken across the boundary of the two liquids, it provides yet another

boundary condition that must be satisfied by the two liquids. If it is integrated

between z, + E and z, - E in the limit e tending toward zero,

A,{[pn+pUk, +i(Dp)D]Dw - [pk,(DU) - i(Di)k2]w}
w k4Tw

gk'A,(p) - 4k Tn + kU n + k,U

where A,(f) = f,=z,+o - fz=z,-0

Substituting for the discontinuities in density and velocity and for D from the

solution in previous section,

p 2 (n + kJ U2)(n+ k,U 2) + p1(n + k,U) (n + k, U1 )

= gk(pi - p2) + k3T,

(2.15)



Writing:

* a1 =
P1 +P2

P1 +P2

we have,

~2 + 2k,(aU + c 2U2)n + k (aiU2 + a 2U2)
k3T

- gk(al - 2 ) k = 0
P1 + P2

The general form of the solution to this equation is:

n = -k,(aUi + a 2U 2)

k3T+ k(c - a2 ) + k 2- kia2 (Ul - U2)2

P1- + P2

2.4 Unstable Spatial Frequencies

For a spatial frequency k to be unstable, the square root in the equation above must

be complex. Writing the solution as n = -w+ia the general solution of the initial

problem can be written as:

w = (w+eta + w_e-t)ei(k x + k yy -
wt) (2.20)

where:

* W = k.(aU + a 2U2 )

* a = kxala2(Ul - U2 )2 - gk(al - a 2 ) - 1 +P2

* w+ and w_ are constants whose magnitudes depend on the initial conditions of

the problem.

Since we hope that the only waves excited in the tunnel will be traveling in the &

direction, ky will be equal to zero making k = k2 (see equation 2.13). It can be seen



from the equation above that with ky = 0 the disturbances travel through space with

a velocity given by:

U. = (aUjU + a 2 U2) (2.21)

They grow through time at a rate given by :

k3T-
a = 1ak2a 2(U - U2)2 - gk(a1 - a 2)- s P

P1 + P2
(2.22)

A spatial frequency given by k corresponds to a temporal frequency of:

w = k(alU + a 2U2) = kU. (2.23)

If the condition for stability ( i.e. the real part of a is negative )is rewritten:

(2.24)
k3T

k2 ,cr12 (UI - U2 )2 < gk(al - a 2) -ks
PI + P2

The least stable value of k is given by the minimum of the right side of the equation:

k* = _(p - p2) (2.25)

Thus for the system to be stable:

(UU - 2)2 < 2
a1a~2

Tg(aI - a2 )

P1 - P2
(2.26)

2.5 Spatial evolution of unstable frequencies

From equation 2-20 the solutions to the differential equation are of the general form:

w(x, y, t) = Aetei(kx+kyy - wt) (2.27)



We are only interested in waves that travel in the flow direction since these are the

least stable ones so:

w(x, t) = Ae"ei(kma-wt) (2.28)

Writing out the expressions for the vertical displacements of the boundary at two

points separated by a distance x0o:

* for one of the points:

w(x, t) = Aetaei(kzz-wt) (2.29)

* for the other point:

w(x - xo, t) = Aetei(kx - k o-owt) (2.30)

* looking at the expression for the second point at an earlier time, t - x, and

using equation 2.23

w(x - xo, t - ) = Ae(t-)ae(kro-wt) (2.31)

UW

The final equation in the set of equations above is the same as the first with the

exception of the factor e From equation 2.29 and 2.31,

w(x, t) = e0,()w(x - o, t - O (2.32)

The first exponential term shows that disturbances grow (or decay depending on

the sign of a) as they travel downstream. The second term means that points fur-

ther downstream are a delayed repetition of upstream points. Disturbances convect

downstream at a rate that is independent of their frequency.



Chapter 3

Design of the Experiment

This chapter contains a description of the experimental apparatus. Since the actual

ideal conditions cannot be achieved, the experiment was designed to come as close to

the conditions described in the analysis as possible.

First is an overview of the construction of the experiment followed by the details

of the construction of the test section, the actuation and the sensing mechanism. The

last part of the chapter is a comparison of the actual experiment with the assumptions

in the linear analysis in chapter 2.

3.1 Overview

Figure 3-1 is a schematic of the experimental apparatus. A pump imparts a velocity

to the water that flows around in the experiment. This water flows into a large

reservoir and into a smooth contraction. The purpose of the contraction is to reduce

the size of the boundary layer before going into the test section. A set of honeycomb

flow straighteners also reduces the turbulence in the flow. In the test section, the

water flows over eugenol (clove oil). The height of the eugenol/water boundary is

carefully adjusted using the manometer shown in the figure to ensure that there is

as little turbulence as possible at the point of interface. The water flowing over the

stationary clove oil creates the shear layer that is needed to create the instability

described in chapter 2. All the important things in the experiment occur in the shear
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Figure 3-1: Schematic showing overview of experimental setup

layer which will be called the 'experimental area'.

As the water leaves the experimental area, it is important that as little of the

eugenol flows out of the test section as is possible. To ensure this, there is a small,

smooth step leading into a settling tank, which collects any eugenol that does flow

out of the test section. The settling tank has a drain that can be used to recover

eugenol that is lost from the test section. The water then circulates back into the

pump.

The pump is a centrifugal three phase electrical induction motor pump. The

maximum flow rate that it can support is 0.01568m 3 s- 1

3.1.1 The Experimental Area

This is the most important part of the experiment. In order for the experiment to

work, it is important that:

* the two fluids have a relative velocity that is high enough for them to go unsta-

ble. Given the maximum flow rate of the pump, this limits the cross-sectional

area of the region the water flows in.

To

Pump

~1///~//~//////~7////,/~~

experimental area

Eugenol



* the tunnel is deep enough that the height of the water and the oil sections

appears infinite. This is necessary because it was assumed in equation 2.18 in

the analysis.

These are the factors that influenced the dimensioning of the test section.

Equation 2.26 gives the minimum relative velocity of the two liquids for instability.

For eugenol and water, the different parameters are as listed below:

* P2 = Pwater = 10 3 k gm - 3

* P1 = Peugenol = 1.05X10 3kgm -3

* 2 = water - .1 see section 2.3.1.

1.05
" C1 = aeugenol 2.05

* g = 9.8ms-2

* T = 0.04Nm - 1

For these parameters, the minimum velocity for instability is given by

U > 0.3ms - 1  (3.1)

The tunnel was measured and shown to have a velocity at least twice this. This might

seem like a constraint that is satisfied comfortably but viscosity has been ignored in

the analysis. Since it is dissipative, its effect will be to further stabilize the tunnel

thus increasing the velocity required for instability.

Using Equation 2.25 and the parameters above to get the least stable spatial

frequency, we get:

k, = 110m - 1  (3.2)

Using this value of k to get the wavelength A = 2,

A, = 1.827rcm = 2.36inches (3.3)



For the tunnel to be deep enough that the assumption in equation 2.18 (infinite

depth) holds, it must be true that e- 2  << 1. For the tunnel as designed, the

depth of the fluids is 6 inches which makes the left hand side equal to 2X10-8.

We have verified that for the parameters chosen, this system will go unstable and

that the tunnel is deep enough that infinite depth is a reasonable assumption.

3.2 Sensing and Actuation Components

3.2.1 Video Sensing

A video camera is aimed at the fluid boundary in the y direction (see fig 2-1) and is

used to sense the deflection of the boundary over a range of positions. A VisionPlus

Optical Frame Grabber is used to digitize this picture and download it to a Gateway

486, IBM compatible computer in real time. Programs have been written to find the

boundary of the two liquids by finding the point where there is a change in color in

the picture captured by the camera [Weigl, 93]. The user can specify the positions

in the x direction (see 2-1) that he wants to be tracked in y. The maximum rate at

which pictures can be taken per second is 20 Hz (I of the 30 Hz sampling rate of the

frame grabber). This information is collected real time and could be either stored to

aid in system analysis at a later time or used in real time to control the shear layer.

3.2.2 Airfoil Actuation

Different airfoil position command histories are relayed to the airfoil through a Galil

Motion Control Board from the computer mentioned in the previous section. The

commanded position can be calculated in real-time from the measured displacements

of the fluid boundary. The commanded position from the motion control board is used

to drive an amplifier which in turn produces the current which drives the motor. The

motor has an optical shaft encoder which feeds back the actual position to the Galil

board. The Galil board actively controls the position using proportional, integral and

derivative feedback. This inner feedback loop was tuned to be fast enough that all the
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Figure 3-2: Blowup of test section cross-section

dynamics of the motor and its connections to the airfoil can be ignored because the

relevant poles and zeros are at frequencies so high that the commanded and actual

airfoil position are indistinguishable at the frequencies at which the experiment is

run.

3.3 Deviations from Ideal Experiments

Many assumptions were made both in the analysis and also in the design of the

test section above. It is important that they are checked to ensure that they are

reasonable.

3.3.1 Flow is not Uniform

As a result of the raised edge to the right of figure 3-2, The flow in the experimental

area will not be exactly uniform. To ensure that these deviations do not have too

large an effect on the experiment, one has to show that the resulting changes in the

velocity are small in comparison to the total velocity of the flow.

If the flow of the water above the raised edge is modeled as the top half of a

cylinder in a free stream ( this is a rough approximation to get the magnitude of



the errors), it can be shown that the resulting errors in the velocity are given by

[McCune]:

= U( 2  Ta2

2a 2 xz
V = -U 4

where:

* U is the velocity of the free stream in which the cylinder is immersed.

* a is the radius of the cylinder. In our case this is taken to be the height of the

raised edge above the oil-water boundary. = 2 inches.

* x is the projection of the distance from the center of the cylinder to the point

of interest in the direction of the free stream velocity.

* z is the the projection of the this same distance in a direction of normal to that

of the stream.

* r is the total distance from the cylinder to the point of interest.

The error in V, is worst along the boundary of the two liquids (V = Us). In

order for it to be less than a tenth of the free stream velocity, the horizontal distance

from the center of the sphere should be at least three times the radius of the sphere.

This is only 6inches for the experiment. All the data is collected at least 2 feet from

the experiment. It is clear that the effect of the step is negligible in the region of

interest.

3.3.2 The flow is not two dimensional

Through the analysis we assumed that the flow was 2-dimensional. Derivatives in the

y direction (see fig 2-1) were assumed to be zero. The velocities in this direction

were also assumed to be zero. This is not true since there are slight variations at

the boundary between the fluid and the wall. In order for this assumption to be



reasonable, the width of the boundary layer at the wall should be small in comparison

with the total width of the channel. The region covered by the boundary layer must

stay much smaller than the width of the tunnel.

If the wall is modeled as a flat plate in a free stream, then the boundary layer

width is described by the equation [McCune]:

6 = 5.2 x (3.4)
U

where:

* the end of the boundary layer is defined as point at which the velocity of the

flow is .94U.

* v is the kinematic viscosity of water = 1.8X10-m 2s- 1

* length of tunnel = x = Im

* velocity of tunnel = U = 0.5ms-1

Using these values, the thickness of the boundary layer at the end of the test section

is given by: 1cm = 0.4inches. The tunnel is 6inches wide so the boundary layer is

small compared to the width of the tunnel.



Chapter 4

Theoretical Analysis of System

with Airfoils

Control of the Kelvin-Helmholtz system was effected using quasi-2-dimensional air-

foils. It turns out that if the airfoils are displaced from the fluid boundary by a

distance h, more 'states' exist in the system, as a result of the vortex sheet that trails

each airfoil. Section 4.1 through 4.4 describe the case where the airfoils are above the

shear layer. In section 4.5, we briefly analyze a different form of actuation. In both

cases, one or more airfoils is used to excite the shear layer. The rest of the chapter

discusses the controllability and observability of the system.

Throughout this analysis, it will be assumed that the changes in the angle of

attack are not only small enough that the flow around the airfoils does not separate,

but are also small enough that a linear analysis is valid. Special effort was made over

the course of the experiment to ensure that the angle of the airfoil was smaller than

30 degrees. The bulk of this section is drawn from previous work [McCune, 88].



4.1 Modeling the flow as a function of a point

circulation

For an airfoil at a constant angle of attack, before separation, the circulation around

the airfoil is simply proportional to the angle of attack.

r(t) = kO

This is not true for an airfoil in unsteady flow because there is a wake behind the

airfoil which changes the flow around it. This make the relationship dynamic.

The effect of the airfoil on the ambient flow is complicated by the fact that the

angle of the attack is constantly being changed in order to control the shear layer.

These changes invalidate a steady state flow assumption and unsteady airfoil theory

is needed to analyze the situation. We will model the airfoil as a point vortex with

circulation I in a free stream and then worry about how the vorticity changes with

the angle of attack of the airfoil later.

In other words:

r = r(o(t))

we will start by assuming:

r = r(t)

and determine the functionality with 0 presently.

Circulation is conserved in a flow. The changes in circulation of the airfoil must

result in the shedding of an equal and opposite amount of vorticity to conserve the

total amount of circulation of the flow. This shed vorticity travels downstream with

the velocity of the free stream. If changes in the angle of attack are continuous,

then there is a vortex sheet shed behind the airfoil whose intensity depends on the

time history of the changes in the circulation about the airfoil. If x is the distance

downstream of the airfoil and t is time, the intensity y of this vortex sheet at a



position, x, and a time, t, is given by:

-1 d a
y(x, t) = r(t - ) (4.1)

U dt U

where U is the free stream velocity.

We will assume, for simplicity, that the point vortex and its accompanying vor-

tex sheet capture the essential physics of the airfoil. This assumption is true for a

narrow airfoil at small angles of attack at distances from the airfoil that are large in

comparison to its chord length.
4

4.2 Modeling the effect of the airfoil on the fluid

boundary

Our sole concern is the vertical displacement of the boundary of the two liquids. It

turns out that the analysis is much easier if we look only at the vertical velocities of

fluid particles at this boundary.

The airfoil is a distance, h, above the fluid boundary. Its effect on the vertical

velocity, w, of particles on the boundary of the two liquids can be shown by the

Biot-Savart law to be:

W(_ _ t)_ d-i- (4.2)2r(2 + h2) 2w0 (X - j) 2 + h2

The first part follows from the distribution of velocities around a point vortex at a

point displaced from it. The second part is just the effect of incremental volumes of

the vortex sheet integrated over the whole vortex sheet.



4.3 Interaction of the effect of the airfoil with the

shear layer

Since the system is linear, the vertical velocity at any point is the sum of that due

to the Kelvin-Helmholtz dynamics described in the previous chapter and that due to

the airfoil. Writing out this sum, the system is described by:

-0 )(X
W(X,t)= ea w(+ - 0, t - - di (4.3)

U, 2r(X2 h2) 27 (x - i) + h2

The vortex sheet y is given by equation 4.1.

4.4 Unsteady Wing Theory and Circulation

Now we will introduce a relationship for how the circulation changes with angle of

attack.

Through this analysis, it will be assumed that the changes in the angle of attack

are not only small enough that the flow around the airfoil does not separate, but are

also small enough that a linear analysis is valid.

For an airfoil at a constant angle of attack, before separation, the circulation

around the airfoil is simply proportional to the angle of attack.

ro(t) = -rUc9(t) (4.4)

where:

* U, is the free stream velocity.

* c is the chord length of the airfoil

This is not true for an airfoil in unsteady flow because there is a wake behind

the airfoil, which changes the flow around it. In the analysis we will take horizontal

distance x to be zero at the downstream end of the airfoil. The following classical

argument serves to motivate the model:



* The wake changes the direction of the mean flow around the airfoil thus changing

the effective angle of attack of the airfoil in the free stream. It can be shown

[McCune, 88] by integrating the resulting vertical velocities due to the vortex

sheet at the half chord point that this effect is given by [McCune, 88]:

r = C() = , d (4.5)

* The vertical velocity resulting from the wake is not zero along the chord of the

airfoil. What is more, it is greater on parts of the airfoil further downstream

than those upstream. In order to ensure that there is no flow through the

airfoil (boundary condition for a hard surface), more circulation is produced by

the airfoil. It can be shown [McCune, 88] by integrating these differences in

velocities along the airfoil that the circulation produced is:

r2(t) = 7 (x,t)( + - 1)dx (4.6)

The three contributions to r in equations 4.5, 4.6 and 4.7 can be added to each other

as the system is linear to give:

c 7(x't) dx +  00 't( + 1)dx (4.7)r(t) = -rU,c9(t) + - o x y(, t)( - 1)d (4.7)

This equation with equations 4.3 and 4.1 above are the complete formulation of

the problem. The objective is to find a time history of the angle of attack 9 that

stabilizes the system and also minimizes the effects of disturbances on it.

4.5 Analysis for airfoil at boundary between two

liquids

As shown in the previous section, vorticity shed from the airfoil further complicates

the problem. This trailing vorticity is infinite dimensional and cannot be measured



directly. The unmeasurable states resulting from this vorticity make the controller

needed to stabilize the system more complicated. Because of this, it has been sug-

gested that an actuation scheme be found that directly changes the position of the

fluid boundary.

If the airfoil were placed at the boundary between the two liquids, we hypothesize

that it would not be possible to actuate the flow by changing its angle of attack

because:

* when the angle of attack is positive, the trailing edge of the airfoil is inside the

stationary fluid, since it just dips into the lower liquid. As a result, there is no

change in the exit velocity of the wing and very little actuation occurs. The

airfoil does not satisfy the Kutta condition.

* when the angle of attack is negative, the trailing edge rises into the fluid above

the boundary. The flow that must expand around the airfoil has a very small

velocity and thus separates.

A better way to do the actuation is to have a wing whose camber can be actuated

in real time. This approach would attempt to change the exit angle of the flow without

changing the height of the trailing edge of the airfoil. This eliminates the potential

problem of the airfoil dipping into the static liquid. The result is, strictly speaking,

not an airfoil anymore as it is not in a uniform flow. Rather, it is boundary condition

on the vertical velocity of fluid elements at the point where the two liquids first meet.

It is hypothesized that the exit angle of the actuator would set the the slope of

the shear layer at the exit point when the problem is in steady state. From equation

2.32, the slope of the eigenvalue associated with the mode at a temporal frequency w

is related to the mode by the equation:

w(, t) = [a(w) - i-]w(x, t) (4.8)

We can therefore find the effect of changing the angle of the shear layer at one point

by separating its effect on the different modes and then seeing how each of these



modes evolves. This gives:

Wactuato(x, t) = ea(w) ew(-t a(w) - i exit(tie-'idi) dw (4.9)

The inner integral separates the effect of the slope, exit(t) into its effect on the slopes

of the different modes. The fraction that multiplies this integral then converts the

effect on the slope into the effect on the entire mode using equation 4.8. The two

exponents in the outer integral show the homogeneous evolution of the mode. the

outer integral sums the effect over all the modes of the system.

The expression for the entire system is then given by:

w(x, t) = e"U w(x - X0 , t - 0 ew -t 1 + e eexit(te-didw
U 1 a(u) - iJO

(4.10)

This system is described by only one partial differential equation and has fewer

states than the previous one. More importantly, all the variables in the equation

(w(x, t) and aeit) are measurable. In the previous description, the magnitude of the

vortex sheet trailing the airfoil is not measurable. This system is therefore easier to

control since all states are measurable. However, all the effect of the controller occurs

downstream of the actuation point so one could never take the limit of the control

process as the spatial range tended towards (-oo, oo).

4.6 Observability

It is important to keep in mind that the objective of the experiment is to minimize

the deflections of the shear layer. Since the deflection of the shear layer over the range

of points of concern is measured, all the states relevant to their time evolution must

clearly be observable. Unobservable states can be removed by reducing the order of

the model without any loss in accuracy of prediction of the evolution of the shear

layer. If, for instance, some states of the vortex sheet were unobservable from the

shear layer, the model describing the shear layer dynamics would be unchanged by



their removal. By this argument, all the relevant states are observable.

4.7 Controllability

This is the issue that is of greatest concern. If there are eigenmodes whose time

evolution cannot be changed using airfoils then the system will not be controllable.

This section is an attempt to do a controllability analysis of the problem.

From equations 2.32 and 2.29, the eigenmodes are of the form:

We (X, t) = e-it[e 7e U] (4.11)

Because of the convection of the shear layer, their is a link between temporal oscil-

lations and the shape of the mode associated with them. Thus the bracketed term

gives the shape of the eigenmodes excited by oscillating the airfoil at a frequency w.

Our objective is to quantify the effect of oscillations of the airfoil at this frequency

on the mode.

From equation 4.2, the effect of the airfoil can be separated into two components:

that due to bound vorticity and that resulting from the vortex sheet that trails it. For

simplicity, we will treat the controllability resulting from these two factors separately.

This makes sense because the system is linear and so the net effect is the sum of the

effect of these two terms.

4.7.1 Controllability From Vortex Sheet

For the low frequencies with which we are concerned, the effect of the vortex sheet is

outweighed by that of the bound vorticity for points close to the airfoil. The vortex

sheet is therefore only important far away from the airfoil. Because of this, we will

assume that in this region, the shear and vortex sheets extend to infinity both in the

upstream and downstream directions.

It was shown at the beginning of this section that in order to excite the mode

whose shape is given by e w eu the airfoil must oscillate at the frequency ewt.



Since the vortex sheet is a convecting, linear time-invariant function of the oscillations

of the airfoil, it will be described by the function:

-wtjW

7 = 'yoe "' e2 w (4.12)

There is a factor of (approximately) two in the velocity term because it convects

at twice the velocity of the shear layer. From the third term in equation 4.3, the

resulting effect on the shear layer is given by the convolution below:

ortex,t) = T e [e2 2 2 = F[(w 2U )F 2 ± h2)] (4.13)

With F(.) being the fourier transform with respect to x. Since convolution is a

linear time invariant process, the result is simply the product of the exponent being

convolved and a constant whose value is the Fourier transform of the other term

evaluated at the frequency of the exponent i.e

Wvortez (, t) = Aejwte i (4.14)

Where A is F,( X4- ) evaluated at wx =- .

The issue under investigation when talking about controllability, from equation

4.3, is how much of the eigenmode can be reduced by the addition of this term. If

this term is orthogonal to the eigenmode then the eigenmode is not controllable. The

two functions under consideration are: ei" and e u e ". For the case where the

eigenmode is neutrally stable, these are harmonics at two different frequencies and

are therefore orthogonal. Neutrally stable modes are therefore uncontrollable from

the vortex sheet. The vortex sheet can only increase the size of these modes because

the magnitude of the sum of the mode and the vortex sheet effect is always greater

than the magnitude of the mode ( This is a direct result of orthogonality). The same

temporal frequency results in different spatial frequencies in the vortex sheet and the

shear layer. Since these spatial frequencies are orthogonal, the vortex sheet cannot

be used to control the shear layer. The two are either orthogonal in time or in space.



Controllability increases as the flow becomes more unstable and the functions less

orthogonal. However, it still remains small. This means that large amplitudes in

the vortex sheet are needed to affect shear layer. The inner product of the resulting

vortex sheet shape and the eigenmode shape gives a measure of the controllability. It

is given by the integral below:

4Ur 2U __2

fO ef2re U eu'dxz = [e w - 1] (4.15)
Jo 2a + 3jw

For small values of alpha, this is simply:

2U2 47ra(w) 
(4.16)

3jw2

In order for the mean amplitude of the eigenmode to be reducible, the amplitude

must be non-zero. The larger this value relative to the size of the eigenmode, the

greater the controllability. The size of the eigenmode is given by:

-7+ e + [e_ -1]4.
~dexi 2 c = 2 e - 1] (4.17)e 2a + 2jw

For small values of alpha, this gives:

S87ra(w) (4.18)
2j2r

Since we expect the values of a in the experiment to remain small, the exponents

in the expressions above can be linearized to give the ratio of the inner product to

the size of the eigenmode as:

8U7rx(w) 8Uira(w) (4.19))/V (4.19)3w2 2W2

This gives:

3 8Ua(w) (4.20)
2wFor these small a, the controllability increases with the speed of the tunnel and with

For these small c, the controllability increases with the speed of the tunnel and with



a. Higher frequencies are harder to control.

4.7.2 Controllability from bound vorticity

From equation 4.3 and the analysis above, the controllability from the bound vorticity

is zero if and e U e U are orthogonal. The controllability can be measured by

the inner product of these functions. The integral for calculating this orthogonality

is simply the Laplace transform of 4 evaluated at s, = -(a(w) - jw). i.e

00  x C , _S2 + h2 e- +" dx (4.21)

This can be looked up in any table of Laplace transforms and is not zero at any point.

Thus all modes are controllable from the bound vorticity.[Roberts and Sanders] gives

the value of the Laplace transform and the result of the substitution gives:

- cos((a(w) - w)) du - sin(h(a(w) - jw)) 0 - du
(a(w)-jw) U U J(a(w)-jw) U

(4.22)

4.7.3 Controllability Conclusion

From the analysis above, it is clear that the vortex sheet has the added peril that

excitation of frequencies that are neutrally stable will increase the magnitude of the

shear layer displacements. The added states of the shear layer come at a high cost in

analysis, design and implementation with little advantage in controllability. It is for

this reason that the alternative actuation method described in 4.5 was considered.



Chapter 5

Model Reduction: The Sampled

Bounded Range Problem

As explained in the introduction, the objective is find a suitable finite dimensional

model of the system described in chapter 2. This section describes the finite dimen-

sional approximation and evaluates how good an estimate of the actual system it

is.

The problem is doubly bounded.

* Because the tunnel is bounded, the waves in it do not extend to infinity. We

must ensure that this does not affect that tunnel and that any effects of the

boundaries of the tunnel are small over the region of concern.

* The Camera only records images of a small portion of the tunnel. The rela-

tionship of this observed transfer function to the actual transfer function in the

tunnel must be known if we are to identify the parameters (a(w) and U) that

describe the system (see equation 2.32).

We will characterize the effects of these two bounds. First we will discuss the fact

that the tunnel is bounded and then we will go on to discuss the fact that we are

only observing a small subset of the shear layer.



5.1 The effect of the bounded tunnel

5.1.1 The vortex sheet

The circulation on the vortex sheet represents the states of the actuator. We assume

in the model that it extend an infinite distance downstream. Because the wavelengths

are of the order of 3 inches and the tunnel extends at least 60 inches, this is a valid

assumption. This shed vorticity is bound to the fluid and flows out of the tunnel and

there is no reflection. What is more, the effect of points on the vortex sheet decays as

the reciprodal of the square of their distance from the test section. We can therefore

approximate the vortex sheet with a sheet of finite length so long as the area over

which we observe the tunnel is bounded.

In constructing a discrete model of the vortex sheet, it will be approximated a

by a countable number of states obtained by sampling the continuous sheet. By

the Nyquist sampling theory, this is valid so long as the spatial sampling frequency is

greater than twice the spatial frequency . The bandwidth of the controller is bounded

and temporal and spatial wavelengths are related linearly (a direct consequence of

convection) so the the spatial frequencies are also band limited. If the sampling rate

of the vortex sheet is chosen correctly, a finite model can capture its dynamics.

5.1.2 The shear layer

The geometry of the test rig suggests (and it was observed in experiments) that

the disturbances are small at the point where the two fluids first come into contact.

The waves have zero amplitude upstream of this point. This is in keeping with the

representation of the system given by equation 2.32. The waves grow as they travel

downstream but the amplitude at any one point does not increase with time. The

instability manifests itself in the spatial dimension because the disturbances travel as

time increases. Thus the upstream bound of the tunnel is represented by the model.

The downstream bound of the tunnel is a little more complicated. From figure

3-2, the waves cannot flow in the x direction in the eugenol at the downstream end



of the tunnel because of the barrier. Since the solutions of the shear layer instability

(equation 2.32) do not allow waves to travel upstream, this boundary condition must

be satisfied by a solution to Laplace's equation (i.e. the homogeneous solution to

Laplace's equation). This solution will be of the form:

wo(x, t) = Aeik.zek(O -
Oboundary

)  (5.1)

This solution was found by picking the solution of Laplace's equation that does not

give rise to waves traveling upstream (no oscillation in the x direction) and decreases

as one moves away from the wall (potentials for Laplace's equation are greatest at the

boundary). This solution to Laplace's equation decays to 3.4873x10-06 of its value

at the boundary two wavelengths away from the wall. This is only 6 inches from the

boundary in our experiment. This effect is negligible in the region of interest.

The fact that the actual tunnel is bounded makes no significant difference to the

dynamics of the waves over the region of interest.

5.2 Effect of bounded and sampled camera range

Because the camera only gets information over a small portion of the experiment

and this portion is sampled by a computer, the system observed is not the same as

the actual system. Unlike the bounds discussed in the previous section, this does not

affect the actual dynamics. The measured dynamics are different from the actual ones

because of incomplete measurement. Issues of observability and bounds of the errors

in estimating the transfer function have to be made for the system to be controlled

effectively.

5.2.1 The effect of bounding the range

In the problem as stated in chapter 2, it is assumed that the two liquids extend in-

finitely both in the positive and negative horizontal directions. It was shown in section

5.1 that the tunnel behaves almost as if it were infinite. However, the camera only



takes information about a small length of this tunnel. The effect of this 'windowing'

of the tunnel is explained in this section.

The transfer function from an actuator to the displacement of the boundary or

from one point of the boundary to others further downstream is a function of position.

It can therefore be written as:

w(x, s) = G(x, s)u(s) (5.2)

The transfer function that shows the effect of the control on the different spatial

harmonics in the displacement of the boundary layer or the evolution of different

initial states of the system with time can be found by taking the Fourier transforms

of both sides of the equation above to give:

ii(k, s) = G(k, s)u(s) (5.3)

This transfer function is the system transfer function since it tells how the different

spatial eigenfunctions of the system evolve with time. It is this second transfer func-

tion that we are interested in. We would like to see how it is changed by looking at

the system over a bounded range.

By looking at a finite segment of the tank, we have 'windowed' the displacement

of the boundary along the x direction. One way to represent this fact is to assume

that it is zero everywhere else but in the region of concern. This is equivalent to

windowing the transfer function above i.e.

Gm(x, s) = G(x, s)f(x)

where:

* Gim(x, s) is the transfer function of the model with the finite range.

* f(x) is a function whose value is one for x within the region of concern and zero

elsewhere.



We would like to find out what the effect of this is on the transfer function G(k, s).

From Fourier theory, the Fourier transform of a product of two functions is the

same as the convolution of the Fourier transforms of the two functions. The effect

of windowing on the frequency transfer function is thus a convolution with the sinc

function.

Gm(k, s) =- (k - ki sin(k) d

where:

* Gm(k, s) is the transfer function of the model.

Ssin(k) is the Fourier transform of the boxcar window above.k

We now know how the transfer function is changed. It is important to notice that

in the limit where the window is very wide, the sinc function looks like an impulse at

the origin. In this case, the transfer function is unchanged by windowing.

lim Gm(k, s) = G(k, s) (5.4)
X10 -+00

The convergence properties in this integral are given by those of the sinc function

to an impulse. Since this converges only pointwise, the convergence of the transfer

functions is also only pointwise. However, the effect of bounding the range can be

made arbitrarily small by increasing the range.

The value at any one spatial frequency in the model will be an average of other

frequencies weighted by the sinc function. Because waves travel downstream at a fixed

velocity, the spatial frequency k - k is associated with the corresponding temporal

frequencies by the relation U,(w - CD) where U, is the convection velocity. The

convolution can be written as a convolution of temporal frequencies. As a result, the

temporal Fourier transform in the expression Gm(x,jw) is also convolved with the

sinc function. G(x, t) for the unbounded problem was calculated in chapter 2 (see

equation 2.32).

The convolution above will not make the model appear unstable if the actual

system is stable since it can be viewed as the response of a stable system to a bounded



input, since convolution is the same as a linear response(i.e. we can view the sinc

function as the input to the transfer function.) However the converse is not true. If

the actual system has an unstable mode that is not observable under the windowing,

the model may appear to be stable even though the actual system is not.

This discussion leads us to the following conclusions concerning windowed obser-

vation of the infinite space system:

* Although the measured dynamics are altered by the windowing process, the

effects are predictable and the relatively benign. Stable systems appear stable.

Unstable eigenmodes may appear stable as a result of the convolution.

* This windowing in the spatial domain has the same effect on the transfer func-

tion as time domain windowing since position and time are related by the con-

vection velocity. Thus the properties of the observed system can be tailored by

picking a better window than the boxcar. For instance if ringing is undesirable,

a Hanning window could be used instead of a boxcar.

* The effect of windowing reduces as the length of the window is increased. If the

camera takes information over a long segment, the observed transfer function

will be approximately that of the infinite segment.

5.2.2 The effect of sampling

The states of the uncontrolled system are given by the displacements of the shear

layer within the range. Thus each point within the region of interest is a state. Since

there are an uncountable infinity of points within any finite range, these states are

more than one can fit into a computer and so digital control would not be possible.

The limitation is not just because the computer has finite memory but also because

the memory of the computer is discrete in nature and so even if you had a computer

with infinite memory, the memory would still be countable and you would not be

able to represent the states of the system. It is therefore imperative that the range

be reduced by sampling to yield a new set of states that is at most countable.



From Nyquist sampling theory, spatial frequencies less than half the spatial sam-

pling rate are unchanged by sampling G(x, jw). However, spatial frequencies above

this are 'aliased' to lower frequencies in the model (km, = mod(k,, 2-) where k, is

the spatial sampling frequency). Since the velocity of the wave is given by , aliased

waves will appear to travel faster in the model. Simulations show that this causes

attenuation of aliased frequencies. The corresponding phase also stops being linear

with distance downstream for these temporal frequencies.

As the sampling rate is increased, the range of frequencies that is not aliased is

also increased. For an infinite sampling rate, no frequencies are aliased and the model

looks like the actual system.

lim G,m (k, s) = G(k, s) (5.5)XW -+00

Convergence is only pointwise since so long as the sampling rate is finite, there are

frequencies that are aliased.

Since the system has a maximum spatial wavelength that is unstable, a low pass

filter can be used to exclude higher frequencies to avoid this aliasing. The spatial

frequencies are proportional to temporal frequencies, so this can be done in time

domain. This filtering is accomplished by the low pass filter that is used to avoid

temporal aliasing before temporal sampling of the signals for input into the computer.

The net result is that the control will not affect high frequencies. This is okay since

they are stable anyway.

5.3 Conclusion of model discussion

Based on the previous discussion and on a computer model constructed, we hypothe-

size that the finite dimensional model captures the essential dynamics of the infinite

dimensional problem. What is more, as the order of the finite dimensional model is

increased, it converges on the real system. Thus, if we can control the model, then

conceptually it would possible to control the real system if one had an infinitely long



shear layer and a computer that could handle a countable infinity of states. Given

the nature of the shear layer, more can be said about the accuracy of the model.

If the model appears stable, then it must be the case that the unstable modes

are unobservable in the region of interest and are therefore not important. They are

unobservable either because they do not show in the tunnel or occur at frequencies

higher than the sampling rate. Experimental results (chapter 6) indicate that high

frequencies are so stable that attempts to excite them are unsuccessful. Thus a

bounded finite dimensional model for this infinite dimensional system should capture

the dynamics and converge on the system. The modes in this system are unobservable

either because they are lost in the sampling or in the windowing. From the nature of

the eigenfunctions (equation 2.31), a mode cannot be lost in the windowing.

Modes lost in the sampling must have a spatial frequency much higher than the

sampling rate. These high spatial frequencies result in high viscosity which dissipates

them and thus stabilizes them.

5.4 The New Reduced Model

In this finite state model, the linear equations describing the system dynamics (equa-

tions 4.3, 4.4 and 4.8) are simply matrix equations. The matrices can be obtained by

assuming that the function remains constant over spatial intervals of a length given

by the spatial sampling frequency. i.e

w(x, t) = w(Xl, t) X1 < X < X1 +- X (5.6)

with x2 being the spacing between spatial sample positions. After this discretization

in space, the convolutions become matrix equations and multiplications are vector

multiplications.

They can be written as:

* for equation 4.7,

r(t) = ke(t) + Ty(t) (5.7)



where k is given by -rUc and the matrix T represents the discretization of

the integrals in the original equation.

for equation 4.1, the solution is not that straight forward. One needs to use the

fact that vortex sheet is traveling with the free stream velocity and so it must

satisfy the wave equation,

7y(x, t) = -U -Y(X, t) (5.8)

everyv~here except at x = 0. The boundary condition at x = 0 is obvious from

equation 4.1 and is written below.

Id
y(0, t)= - dt ](t) (5.9)

The derivatives are linear transformations and can be represented by difference

equation matrices in the reduced model. This yields the matrix equation,

y= + a dt2 (5.10)

where a' results from the difference equation at the boundary, x = 0. Eliminating

r using 4.7, this can be reduced to:

4 = A,y + B,0 (5.11)

This is the equation describing the dynamics of the vortex sheet.

* the expression for equation 4.3 requires the same kind of analysis as that above.

Looking at the homogeneous part of the solution, different spatial wavelengths

are also traveling downstream with different velocities and also growing at dif-

ferent velocities. This can be represented by the matrix expression:

W(x,t) = F-1H(a(w), U)Fl(t) (5.12)



The matrix F simply resolves a discrete time signal into its frequencies (i.e.

compute the discrete time Fourier transform). The matrix H(a(w), U) is a

diagonal matrix with each element of the diagonal representing the equation

below which must be satisfied by the corresponding spatial frequency, k,

d
dw(k, t) = [a(w) - iw]w(k, t)dt

From equation 2.29.

The driven response of this displacement can be got from equation 4.2 and is

given by:

d 'Xr 1 y(, t)( - X)
dt 27r(x 2 + h2 ) 27r ( - X)2+ h2
-tw(x t) = -____- ____

(5.14)

Substituting for P and replacing the convolution integral with a matrix, we get

the following expression for the homogeneous and the driven system

w(t) = F- HFri (t) + Aw7 (t) + Bwl (5.15)

This can be written as

-(t) = Aw -(t) + Aw,'-(t) + Bw8 (5.16)

This is the equation describing the dynamics of the shear layer.

Combining the equations describing the

vortex sheet,

:4(t) J
4(t)

Aw

o
Aw,

Al

dynamics both of the shear layer and the

L (t)7(t)J

o]

+
BWB 0(t)

B-1j
(5.17)

(5.18)
W (t)]

(5.13)

(t) = [ I



The second equation follows from the fact that the states of the vortex sheet will not

be measured in the experiment.

This is a set standard matrix system equations. Optimum controllers for such

systems have been solved for. They both stabilize the system and ensure that the

some norm of the transmission from disturbances to output states is minimized. Since

not all the state variables are available for feedback, the optimum controller is dynamic

and involves the estimation of the states. In our case, this is inconvenient because

the number of states to be estimated is large so this would take a lot of time and

memory. Thus static output feedback is preferred.

5.5 Conclusion

We have come up with a method for constructing finite dimensional models for the

infinite dimensional system. These are useful since only the parameters a(w) and U

are identified from the system and the state space system must be reconstructed from

this in order to implement multi-variate control.

We have also shown what kind of approximations are made in the process of doing

this and demonstrated that they are small.



Chapter 6

Results

This is a description of the experimental procedure, the results and the comparison

of the results with the prediction of the model.

6.1 Description of the Experiment

6.1.1 Input Signal

The airfoil was driven with a swept sine wave in order to identify the transfer function.

The wave is of the form:

z(t) = sin(-at2) (6.1)
2

This is a sine wave whose frequency changes linearly with time (i.e. frequency = =

at ). The reason this input waveform was chosen is because it has equal energy at all

frequencies and it is easy to look at the output and see if it is tracking the changing

excitation frequency. This is a useful feature when deciding on the magnitude of

the excitation. Figure 6-1 shows the power spectral density of the input signal. Its

energy remains roughly constant through all the frequencies that were excited.

Another tool that proved invaluable is the spectogram. This is a plot showing

how the power spectral density of a signal changes through time. Since it has both

frequency and time as its axis, it is a three dimensional plot so it will be represented

as a contour plot. Figure 6-2 shows the spectogram of the input signal. As expected,
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at any one time the energy is concentrated in a narrow band of frequencies. The

frequencies being excited also change linearly through time. By taking a spectogram

of the output resulting from this input, we can tell whether the system tracked the

input signal at all and also whether its response was linear.

In all runs, the camera was held about 30cm from the tunnel, and aimed directly

at the shear layer. Because of errors both in positioning the camera and in angling it

so that it was pointed directly at the fluid boundary, there were changes in the scale

of the measurements of distances. These errors resulted in the errors in the velocity

shown in tatle 6.2.

6.1.2 Data collection procedure

The system was driven with the input described above and output data was collected

using the camera. Each experiment was run ten times in order to average out noise

that was uncorelated with the input. Each run took 120 seconds to complete ( 20

minutes for an experiment) and resulted in 1024 time samples of data being collected

for a total of 25 points on the screen. Because of difficulty collecting and storing

all this data, the ten runs were averaged while the experiment was being conducted

and this average was stored. The coherence between the 10 different runs of the

experiment could not be computed as only the average of the data was stored.

In all runs, the camera was held about 30cm from the tunnel, and aimed directly

at the shear layer. Because of errors both in positioning and aiming the camera at

the fluid boundary, there were changes in the scale of the measurements of distances.

Because of these errors, estimates of the velocity of the shear layer in two experiments

with the tunnel at the same speed do not agree because the scale of the measurements

is changed as a result of the positioning of the camera. This explains table 6.2. The

computer collected data at 25 points on the screen. These points were separated from

each other by .6 inches.

Because the camera had a limited range, each experiment was done twice:

o with the camera 20cm from the airfoil (near)



. with the camera 90cm from the airfoil (far)

This made the detection of subtle changes in the wave as it convected possible. This

is especially important because we are looking for waves which grow exponentially as

they convect.

The system is expected to get more unstable as the flow velocity is increased. In

order to detect how changes in velocity affect the shear layer, the experiment was

done with the tunnel running at three different speeds:

* fast: .485 m/s

* medium: .46 m/s

.* slow: .34 m/s

The speeds listed above are the estimated velocities of the shear layer disturbances.

Theory (see chapter 2) suggests that these velocities are half of the velocity of the

tunnel but the tunnel was not instrumented to measure the velocity so the actual

velocity was not measured. These velocities are simply the means of the velocities in

table 6.2. An explanation of how they were computed comes later.

6.2 Effect of the Airfoil on the Shear layer

If the airfoil is to be used to control the shear layer, it is important that it enjoy

a significant amount of control authority. A measure of the control authority is the

coherence of the shear layer at points close to the airfoil to the motion of the airfoil.

This shows how much of the motion of the shear layer is due to the airfoil. As

previously explained, the coherence cannot be computed because all the averaging

was done while the data was being collected. Since the input only has one frequency

at any time and this frequency changes linearly with time, we can get an idea of how

good the coherence is by checking to see that the shear layer tracks the frequency of

the airfoil.

One way to do this is to look at the time history of the shear layer and to see if

it tracks the frequency of the input. It is easier to do using the spectogram. Because



the peak of the spectogram of the input follows a straight line (this follows because

the frequency of the input increases linearly with time), the linear response from

this input should have the frequency increase monotonically with time. Since the

actuator dynamics are much faster than the driving frequencies, the delays to the

different frequencies should be almost the same. This means that the response to

the input should have the frequency increasing linearly with time. This looks like a

diagonal ridge on a plot of frequency against time.

The spectogram, being a contour plot of a three dimensional figure does not give

insight into the nature of the transfer function or its magnitude. Difficulty in labelling

the third dimension makes this almost impossible. However, the ease with which one

can extract features such as the diagonal ridge that we are looking for make it useful

in visualizing the coherence as a function of frequency.

In order to qualitatively estimate the coherence between the point closest to the

airfoil at which data was taken and the airfoil, the spectogram of this point was

compared with that of the input. By looking to see if this point tracked the input,

an estimate of the quality of the actuation was made.

6.2.1 Effect of Airfoil with tunnel at high speed

Figure 6-3 shows the spectogram of the displacement of the shear layer close to the

airfoil with the tunnel running at approximately .485m/s. The diagonal response at

the lower frequencies shows that the shear layer tracked the airfoil at these lower

frequencies. This is equivalent to saying that there is good coherence between the

input and the output at these low frequencies. However, this coherence stops at about

1.6 Hertz. Above this frequency, the linear response to the input frequency becomes

less important than the non-linear response. This is why most of the energy is off the

diagonal.

Because of this non-linear response of the shear layer to the airfoil, the airfoil

can only be used to control the airfoil so long as the frequencies of the airfoil are

low enough that they do not cause a non-linear reaction. The non-linear reaction is

especially bad because it affects the low frequencies that cohere well with the input
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data.

Figure 6-4 shows the equivalent spectogram to figure 6-3 except that now it

is taken far from the airfoil. The only difference is that now the energy seems to

become concentrated at one frequency. There is no increase in the off-diagonal non-

linear effects which means that maybe the shear layer evolves in a linear fashion.

6.2.2 Effect of Airfoil with tunnel at medium speed

Figure 6-5 shows the spectogram of the displacement of the shear layer close to the

airfoil with the tunnel running at medium speed. As is the case with the tunnel at

approximately .485m/s, the diagonal response at the lower frequencies shows that the

shear layer tracked the airfoil at these lower frequencies showing good coherence at

these low frequencies. However, this coherence stops at about 1 Hertz. Above this

frequency, the linear response to the input frequency becomes less important than

the non-linear response. This is why most of the energy is off the diagonal. As the

tunnel is slowed down, there is a loss in the controllability of higher frequencies. This

means that the airfoils are an even worse method of control for the system at this

lower velocity.

Figure 6-6 shows the equivalent spectogram to figure 6-5 except that now it is

taken far from the airfoil. It appears that the energy at a certain band of frequencies

has become relatively higher. There is no evidence of an increase in non-linearity.

6.2.3 Effect of Airfoil with tunnel at slow speed

Figure 6-7 shows the spectogram of the displacement of the shear layer close to the

airfoil with the tunnel running at a slow speed. The output coheres with the input

only at very low frequencies. This coherence stops at 0.8 Hertz. Above this frequency,

the linear response to the input frequency becomes less important than the non-linear

response. This is why most of the energy is off the diagonal. At this low speed, the

airfoil would be an ineffective method of controlling the airfoil.

Figure 6-8 shows the equivalent spectogram to figure 6-7 except that now it is
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velocity(ms-1) frequency (Hz) Rex =wv

.48 1.6 8X104

.456 1 12X10 4

.343 .8 8.17X104

Table 6.1: Table of highest frequency of linear response at different velocities

taken far from the airfoil. The band of frequencies that responded linearly can still

be seen. However, just like in the previous plot, most of the energy goes towards

evoking a non-linear response.
4

6.2.4 Conclusion

The airfoil is only effective in evoking a linear response in the shear layer at frequencies

below a certain threshold. Above this threshold, the energy excites a lower frequency

than the input through some non-linear mechanism.

The table above gives the highest frequency excited for the different tunnel ve-

locities. As shown in table 6.1, the highest frequency at which a linear response is

discernible reduces as the tunnel is slowed down. Because the frequencies convect at

a constant rate, this highest temporal frequency corresponds to a spatial frequency

given by - . The third column gives the Reynolds number with respect to this fre-

quency. As is evident in the table, for each velocity, the last frequency that is linear

occurs at approximately the same Reynolds number with respect to its spatial fre-

quency. This seems to imply that the non-linearity is a result of viscosity which we

assumed to be zero in the analysis.

6.3 Homogeneous dynamics

The purpose behind the experiment is to study the shear layer and not the airfoil.

This is what the rest of this section concentrates on.

The data collected contained the output history for 25 points. These points were

divided into four sets. Since the transfer function from one point to others on the

shear layer should be invariant to shifts along the length of the shear layer, it should



be the same for all four data sets. By averaging these four data sets, an estimate

of the transfer function was calculated. A measure of the coherence of this transfer

function was also calculated.

6.3.1 Convection Velocity

One of the two major predictions of the linear model is that all frequencies in the

shear layer will convect with the same group velocity. This means that disturbance

will travel downstream with the same velocity. The model also predicts that this

velocity will be 1 of the velocity of the water in the tunnel. This was checked for

the tunnel. If this is the case then the output at a point downstream of another

should simply be delayed. All other changes should occur in its magnitude at other

frequencies.

As previously explained, each experiment collected data at 25 points. This data

was divided into four groups. One group started with the 1first point, the second

with the second point and so on. If one point was already in the group, the point

after it was skipped and the one after that was allowed into the group etc. This

resulted in the groups having 12 points. All the groups should have the same transfer

function from one point to the others in the group since they are separated by the

same distance. These transfer functions were computed and the coherence over the

four groups calculated to see how consistent the measure of the transfer function was.

Because the experiment at approximately .485m/s resulted in the excitation of the

most frequencies, the data at approximately .485m/s and far away from the tunnel

will be used to illustrate the results.

Tunnel at approximately .485m/s far away from airfoil

As described above, the transfer function from the first point to the remaining down-

stream points was calculated. To demonstrate the validity of the transfer function, it

is important to look at its coherence.

Figure 6-9 shows the coherence of the transfer function. downstream. The figure

to the lower left shows the coherence against the position for the many different
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frequencies. The figure to the right shows the coherence against frequency for the

different points. It is clear from the figure to the right that the lower frequencies

cohere very well. This indicates that we have a pretty good measure of the transfer

function.

Figure 6-10 shows the changes in the angle of the transfer function at different

frequencies as the wave travels downstream. The figure to the lower left shows the

angle against the position for the many different frequencies. The plot shows that the

angle appears to be linear. The figure to the right shows the angle against frequency

for the different points. This also appears to be linear. This linear phase with

position and frequency is what we expect for a convective system.( i.e. from equation

23.2, L = Z(e ,) since the delay increases linearly with distance downstream x).

A line was fitted to each of the plots of figure 6-10. The upper plot in figure

6-11 is a plot of the slopes of these lines against frequency . The lower plot shows

the mean squared error in fitting each of the slopes in the upper plot. As can be seen

in the upper plot, a line fits these slopes very well. This means that the frequencies

convect at the same velocity. This velocity is given by the reciprocal of the slopes of

this line.

Other runs

This same analysis was done for other plots and the plots corresponding to figure

6-11 are at the end of this chapter. The velocities derived from these plots are in

table 6.2. Because of sensitivity of the separation of the points at which the data is

being taken to the camera position, the velocity estimates are noisy but the trends

are still evident.

Note that runs at the same speed are at the same tunnel velocity but the calculated

velocity varies because when the camera was moved, it was not place at the exact

same position and angle. An estimate of the convection velocity can be found by

averaging the two calculated velocities.
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speed position I velocity(ms-')

high near .4819
high far .4898

medium near .484
medium far .4364

slow near .3960
slow far .2896

Table 6.2: Table of convection velocity for the different runs

6.4 Changes in Amplitude

Tunnel at approximately .485m/s far away from airfoil

Figure 6-12 shows the changes in the magnitude of the wave at different frequencies

as the wave travels downstream. The figure to the lower left shows absolute value

of transfer function against position downstream. There is not much increase in the

amplitude of the waves over the region studied. The plots against frequency show

that even though certain frequencies appear to grow, the plot is very choppy and no

general trends can be observed. Because of this, a comparison of data taken nearby

and that taken far away had to be made to study the changes in amplitude as the

waves convect.

Because 25 data points wear taken in both nearby and far away runs, there were

25 estimates of the transfer functions from a point in the first window to the corre-

sponding point in the next window. By averaging these transfer functions, low-noise

estimates of the transfer function were made and the coherence calculated. Since

the nearby and far away runs were separated by 0.7 meters, the value of alpha was

calculated with the assumption that the growth was exponential between the two

points.

Figure 6-13 shows the transfer function and its coherence from one point to

another far away. The coherence is pretty good. Based on 6.2, the logarithm of the

amplitude of this transfer function gives alpha which is shown in figure 6-14. From

the plot, frequencies between 0.4 and 0.8 Hertz are unstable. The instability at .1 Hz

appears to be unrelated to the dynamics modeled in chapter 2 because they predict
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plot of alpha against frequency at .7m :.485 m/s
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Figure 6-14: Alpha with tunnel running at .485m/s
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only one instability at a higher frequency.

Figures 6-15 and 6-16 show the transfer function and coherence and also alpha

with tunnel moving at a moderate velocity. At this velocity, the frequencies between

.4 and .8 Hz are stable. The instability at .1 Hz still exists.

The linear model predicts that all other frequencies should be marginally stable.

However, because of viscosity there is dissipation and they are strictly stable.

Figures 6-17 and 6-18 show the transfer function and coherence and also alpha

with tunnel moving at a low velocity. From figure 6-17, this data has low coherence

(less than .5) and very little information (if any) can be got from it.

6.4.1 Conclusion

It was demonstrated that all frequencies convect at the same velocity and that this

velocity increases with tunnel velocity. It was also shown that frequencies between

.4 and .8 hz become more unstable as the tunnel is sped up. Other frequencies are

strictly stable instead of being marginally stable as predicted by the linear model.

With the exception of the absolute stability of stable modes, the data collected

fits the expectations for the Kelvin-Helmholtz instability pretty well.
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plot of alpha against frequency at .7m :.46 m/s
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magnitude of transfer function against frequency at .7m :.34 m/s
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plot of alpha against frequency at .7m :.34 m/s
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Figure 6-18: Alpha with tunnel running at .34m/s
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slope of phase with distance against frequency, delay=0.027539 :.46m/s, ,.9m
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Figure 6-20: Transfer function angle slope against frequency: .46 m/s and .9m
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slope of phase with distance against frequency, delay=0.024804 :.46m/s, ,.2m
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Figure 6-21: Transfer function angle slope against frequency: .46 m/s and .2m
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slope of phase with distance against frequency, delay=0.041437 :.34m/s, .9m
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Figure 6-22: Transfer function angle slope against frequency: .34 m/s and .9m
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slope of phase with distance against frequency, delay=0.030280 :.34m/s, .2m
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Chapter 7

Conclusions and

Recommendations

The experiment displayed the two main traits expected from the instability:

* all frequencies convected downstream at the same rate.

* a certain narrow band of frequencies became increasingly unstable at higher

water-tunnel velocities

Thus we were able to create an infinite dimensional instability of uncountable dimen-

sion and were able to model it with a finite dimensional model.

However, there were certain problems with the experiment that made it problem-

atic for the study of the control of the instability.

* the transfer function from the airfoil to the shear layer appeared to be dom-

inantly non-linear above a certain threshold frequency. This complicates the

process of controlling the instability.

* the airfoil was unable to excite frequencies above this threshold frequency. this

corresponds to certain frequencies that are uncontrollable. If the tunnel were

driven at a velocity so that these frequencies were unstable, the system would

not be stabilizable.



* at higher velocities, the oil had a tendency of getting carried by the water flowing

over it. This not only resulted in a loss in the expensive oil but the oil would

corrode parts of the tunnel that were not covered with a protective lining.

Although the tunnel did show the desired traits, the problems listed above make

the experiment impractical. If the experiment is to be continued, a different com-

bination of fluids should be used. An alternative method of actuation that has no

non-linearity should also be considered.
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