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Abstract. RooFit [1, 2] is the main statistical modeling and fitting package
used to extract physical parameters from reduced particle collision data, e.g. the
Higgs boson experiments at the LHC [3, 4]. RooFit aims to separate particle
physics model building and fitting (the users’ goals) from their technical imple-
mentation and optimization in the back-end. In this paper, we outline our efforts
to further optimize this back-end by automatically running parts of user models
in parallel on multi-core machines. A major challenge is that RooFit allows
users to define many different types of models, with different types of computa-
tional bottlenecks. Our automatic parallelization framework must then be flex-
ible, while still reducing run time by at least an order of magnitude, preferably
more. We have performed extensive benchmarks and identified at least three
bottlenecks that will benefit from parallelization. We designed a parallelization
framework that allows us to parallelize likelihood minimization with high per-
formance by splitting over partial derivatives in the minimizer. The basis of
the framework is a task queue approach. Preliminary results show speed-ups of
factor 2 to 20, depending on the exact model and parallelization strategy.

1 Introduction
RooFit is a tool that is used in large collaborations of hundreds of physicists to fit large statis-
tical models to data coming from detectors at collider experiments. Streamlining the model
fitting process is crucial for increasing collaboration productivity. When a model takes only
minutes to verify instead of hours, the user can remain focused on the physics of the mea-
surement. Moreover, faster run times would allow fitting models with much more parameters
to larger datasets — necessary to investigate the next generation of particle physics models,
e.g. Effective Field Theory models of the Higgs boson — yielding more precise results, or
even completely new findings, like models of dark matter or super-symmetry.

2 RooFit performance bottlenecks
To gauge current performance of RooFit and to identify the most promising optimization tar-
gets, we ran a benchmark on both realistic particle physics models and a set of representative
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toy models1. Apart from two key serial optimization opportunities, namely vectorization and
memory access pattern optimization [5], no obvious further optimization target was identified
without parallelization. In particular, we identified three major bottlenecks that could benefit
greatly from parallelization:

1. Gradient calculation (partial derivatives with respect to the parameters) in the Mi-
nuit2 [6] Migrad minimizer [7];

2. Likelihood evaluation, which is a sum over PDF components evaluated for events; par-
allelization can happen both over events, scaling with data volumes, and over (unequal)
components, scaling with model parameters;

3. Integrals (normalization) and other expensive shared components.

Which of these bottlenecks are actually relevant depends very much on the user’s specific
model. In some cases, parallelization of one type of “bottleneck” may lead to slower run
times due to increased overhead. This calls for the implementation of multiple strategies that
can be activated or deactivated depending on the model at hand.

In this paper, we focus on our implementation of gradient-level parallelization. This strat-
egy speeds up fits of likelihoods (or other test statistics) with a large number of parameters,
as e.g. the ATLAS and CMS Higgs combination fits [3, 4, 8]. Migrad requires a numerical
partial derivative for each fit parameter, and these partial derivatives can be calculated in par-
allel. In this way, we speed up the most time consuming part of the Migrad minimization
procedure [7], the gradient step. For N parameters, this step involves 2N test statistic eval-
uations. The second most expensive item, the line-search step between gradient steps, takes
only a few test statistic evaluations. Note that speeding up the test statistic would speed up
both steps. However, this is much more complicated due to the wide range of possible test
statistics. In contrast, given a sufficient number of model parameters (sufficient being a mul-
tiple of the number of available CPU cores), the strategy of parallelizing the gradient in the
minimizer will always yield performance improvements. This is why we chose to initially
focus on this strategy.

3 Parallel design

In order to support multiple strategies for the parallelization of RooFit models, we designed a
generic framework, RooFit::MultiProcess, that we expect to be close to optimal, flexible
and automatic by default. The basis of the framework is a task queue approach. For each
parallelizable job, a number of sub-tasks is defined and sent to a queue process that handles
bookkeeping of these tasks. A pool of workers subsequently requests tasks from the queue
process. Each worker only gets one task at a time and returns the result to the queue when
it has completed. Then the worker will request a new task, until the queue runs out of tasks.
This system automatically balances the unequal loads that heterogeneous jobs like composite
likelihood calculations or partial derivatives create. Communication between processes is
done by message passing using ZeroMQ [9].

Our design of the MultiProcess classes dealing with task management will inevitably
also impact user facing classes, in particular the existing likelihood calculation classes
RooNLLVar, RooAbsOptTestStatistic and RooAbsTestStatistic. These classes cur-
rently contain all the logic for both optimization, parallelization and different types of like-
lihoods, making it hard to maintain and modify. We therefore took this opportunity to also

1 The benchmarks can be found in our GitHub repositories at https://github.com/roofit-dev/parallel-roofit-scripts
and https://github.com/roofit-dev/rootbench.
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redesign these likelihood classes. New user-facing classes will represent statistical concepts:
binned and unbinned likelihoods and combinations thereof. Internally, optimization will be
handled in a separate class as well. Parallelization will be handled by MultiProcess. The
entire class design and its relation to existing classes is illustrated in figure 5.

We aim to provide a smooth transition for users by ensuring that all algorithms imple-
mented in RooFit::MultiProcess produce the exact bit-wise identical results as the pre-
vious algorithms. One example is the transformation to Minuit2 internal parameters, which
involves trigonometric functions that cause rounding differences. For more design details, we
refer to [10].

4 Results

We next present the results of benchmarks run using our implementation of a gradient-level
parallelization strategy in the new RooFit::MultiProcess framework. This method was
benchmarked on two realistic models:

1. Fast model: a gluon gluon fusion Higgs boson production model on an Asimov data
set [11]. This has 13795 likelihood components and 265 parameters. A fit on this model
runs in about 20 seconds – our main target is to speed up longer running benchmarks,
but we used this model for getting good statistics on the timing data, which inevitably
varies due to external influences, like operating system or other background activity.

2. Big model: ATLAS Higgs combination fit [12]. This model has 126883 likelihood
components and 1487 parameters. In a realistic scenario, where the starting point of
the fitter is not close to the actual minimum, this model fits in a few hours.

We ran the benchmarks on a CentOS 7 node of the Nikhef HPC cluster. The node runs
on an AMD EPYC 7551P 32-core CPU, with 256 GB RAM, which is more than sufficient
for our purposes. No other users could use the node at the same time, so the impact of
concurrently run programs is minimized to only processes run by the OS.

As per our design (previous section), our fit results using the new parallel framework
are exactly the same as those that come out of using the serial RooFit routines. For further
physics validation of the models we refer to the respective cited references.

4.1 Fast model results

The fast model fit runs in about 17 seconds with the old RooFit::RooMinimizer class
that just runs serially in a single process, indicated by the black horizontal line in figure 1a.
As figure 1 further shows, the single worker MultiProcess run is slower, averaging at 23
seconds. This is in part due to communication (the orange “update” component), which is not
required for the RooMinimizer, but also clearly the gradient calculation itself was slower in
our benchmarks, since it is slower than the entire minimization. The cause of the differences
remains under study. A possible cause is that also the rest term (i.e. mainly the line search
step) runs slightly faster in the old situation compared to the single worker situation. We
found that this is largely due to the fact that RooFit caches partial results. However, these
cached values are not synchronized between the workers and the master process. Since the
main process does the line-search step and the workers do the gradient steps, and parameters
change in between these steps, the cache is effectively thrown away each time the work load
switches from the master process to the workers and the other way around. Compared to the
old RooMinimizer, this causes a slight delay both in the master process and in the workers
at the start of each step. This especially affects fast-fitting models. In fact, beyond 8 cores,
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(a) Wall clock time of runs in seconds. (b) Speed-up of the runs compared to a
single worker run.

Figure 1: Fast model wall clock run times for runs with increasing number of workers on the
horizontal axis. For each number of workers, the fit was repeated 10 times to get both mean
run time — indicated by the height of the bars — and standard deviation — indicated by
the black error bars on each histogram bar. Separately measured components of the run time
are colored as indicated in the legend: gradient calculation time, update time of parameters
between processes, terminate time at the end of a run (shutting down ZeroMQ sockets and
context and the forked processes) and the rest of the run time (in these runs this includes the
line-search phase). For reference, the black horizontal line at about 17 seconds indicates the
mean run time of the old RooFit::RooMinimizer class, while the surrounding two grey
lines indicate those runs’ standard deviation.

the lack of further scaling, but growth of the rest term, leads to anti-scaling, i.e. slower wall
clock times with increasing number of workers. This can be seen most clearly in figure 1b,
specifically in the purple line that represents the speed-up for the total run with respect to the
single worker run. Despite this, a speed-up of a factor 2.5 can be achieved with 4 workers on
a “fast” run like this.

4.2 Load balancing

One might suspect that waiting time in-between partial derivative calculations on the workers
could be a delaying factor as well, but we confirmed that this was not the case in any signif-
icant way. In addition, we investigated whether a sub-optimal load balancing of the partial
derivatives over the workers could be causing the sub-optimal scaling. This analysis for a
single fast model run is illustrated in figure 2. We see that for three workers (panel 2a), the
load for each gradient is, in fact, very well balanced over the workers. In the case of the eight
workers (panel 2b), the idle times of some workers that are waiting for the slowest worker
becomes more noticeable. We measured that on average this costs about 2% of the run time
with 8 workers on the big model run. All in all, we can conclude that the dynamic load
balancing of our task queue approach is efficient.

4.3 Big model results

Figure 3 shows the main timing results on the big model. Due to time constraints we ran this
model with initial starting parameters very close to the actual minimum, leading to only 10
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(a) Three iterations of a three worker run. (b) Two iterations of an eight worker run.

Figure 2: Load balancing of our task queue algorithm. Each panel represents one gradient
calculation. Each gradient calculation consists of 265 partial derivatives, each of which is
shown as a differently colored stacked “sub”-bar. The three or eight main bars each represent
work done on one of the workers used in that run. Vertical axis shows wall clock time in
seconds.

(a) Timing (b) Speed-up

Figure 3: Big model benchmark results. In this run, for each number of workers, the fit was
repeated only 3 times and we additionally measured the line-search phase separately. See the
caption of figure 1 for further details.

gradient steps per minimization run. We find in this case that a speed-up of a factor 4 can be
achieved with 7 workers. The update and termination times seem to have become insignifi-
cant in these longer runs. The rest term, on the other hand, plays a major role in keeping the
model from scaling. Further analysis revealed, however, that this component happens only
once at the beginning of a minimization run. It it caused by the high number of constant terms
in this model and their initial evaluation performed before the starting of the minimization
run. Apart from this, the line-search step, which here we do measure independently of the
rest term, turns out not to be insignificant either, although at least it remains constant, since it
is calculated independently of the workers.

5

EPJ Web of Conferences 245, 06027 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506027



Figure 4: Big model benchmark
results for performance models of
longer total fitting run times.

In a typical realistic fit, many more gradient
steps would be performed, since the initial guesses
of the parameters will not be close to the optimal
point. To see how our above results generalize to
such a more realistic scenario, we also ran several
times with starting guesses further from the min-
imum. We found that the rest and terminate com-
ponents stay constant within the expected variance.
Since these are only one time costs that do not scale
with the number of steps (whereas the gradient, up-
date and line search components do), we can easily
construct a performance model for longer, more re-
alistic runs. In figure 4 we show these performance
model results for three run times: 10 minutes, 1
hour and 2 hours. The latter two are, in fact, the
actual realistic range of single core run time using
real Run 2 data [12]. We show that using 16 work-
ers (possibly less, since we did not measure any

amount of workers between 8 and 16) one can achieve an average total run time speed-up of
a factor 6.5.

5 Discussion

Our parallelized gradient method achieves a factor seven speed-up on our main target of big
models. The speed-up varies slightly due to communication between the processes, since
we currently synchronize all parameters from and to all nodes after each run, amounting to
∼ 1000 numbers being transferred between N processes for each gradient call. This is neces-
sary because the gradient algorithm self-adapts its precision based on the minimizer’s search
progress. We could reduce the required communication by two orders of magnitude by pin-
ning partial derivatives to specific workers, since the adaptive precision for each derivative
component only depends on that component itself. This trade-off of flexibility in dynamic
load balancing (which would be lost when pinning gradient components to specific work-
ers) versus reduced communication could be implemented as an alternative strategy. Both
strategies may prove useful in different cases.

The framework is currently available in the ROOT fork in the RooFit development GitHub
page at https://github.com/roofit-dev/root/tree/MP_ZeroMQ. We warn that it should not be
considered production-ready. Once ready, it will be included in an upcoming official ROOT
release. The authors are in close contact with the ROOT developers team to coordinate this
effort.
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Figure 5: UML class diagram of the MultiProcess classes and the new likelihood classes
and their connections to existing classes.
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