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HEAVY QUARKS FROM QCD SPECTRAL SUM RULES
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We summarize the recent developments on the extraction of the dynamical properties of the heavy quarks from

QCD spectral sum rules.

1. Introduction

We have been living with QCD spectral sum
rules (QSSR) (or QCD sum rules, or ITEP sum
rules, or hadronic sum rules...) for 15 years,
within the impressive ability of the method for
describing the complex phenomena of hadronic
physics with the few universal “fundamental”
parameters of the QCD Lagrangian (QCD cou-
pling αs, quark masses and vacuum condensates
built from the quarks and/or gluon fields, which
parametrize the non-perturbative phenomena).
The approach might be very close to the lattice
calculations as it also uses the first principles of
QCD, but unlike the case of the lattice, which
is based on sophisticated numerical simulations,
QSSR is quite simple as it is a semi-analytic ap-
proach based on a semiperturbative expansion
and Feynman graph techniques implemented in
an Operator Product Expansion (OPE), where
the condensates contribute as higher-dimension
operators. The QCD information is transmitted
to the data via a dispersion relation obeyed by
the hadronic correlators, in such a way that in
this approach, one can really control and in some
sense localize the origin of the numbers obtained
from the analysis. With this simplicity, QSSR can
describe in an elegant way the complexity of the
hadron phenomena, without waiting for a com-
plete understanding of the confinement problem.

One can fairly say that QCD spectral sum rules
already started, before QCD, at the time of cur-
rent algebra, in 1960, when different ad hoc super-
convergence sum rules, especially the Weinberg
and Das–Mathur–Okubo sum rules, were pro-
posed but they came under control only with the
advent of QCD [1]. However, the main flow comes
from the classic paper of Shifman–Vainshtein–
Zakharov [2] (hereafter referred to as SVZ), which
goes beyond the näıve perturbation theory thanks
to the inclusion of the vacuum condensate effects
in the OPE (more details and more complete dis-
cussions of QSSR and its various applications to
hadron physics can be found, for instance, in [3]).

In this talk, I shall present aspects of QSSR in
the analysis of the properties of heavy flavours.
As I am limited in space-time (an extended and
updated version of this talk will be published else-
where [4]), I cannot cover in detail here all QSSR
applications to the heavy-quark physics. I will
only focus on the following topics, which I think
are important in the development of the under-
standing of the heavy-quark properties in connec-
tion with the progress done recently in the heavy
quark effective theory (HQET) and in Lattice cal-
culations:

– heavy-quark masses,

– pseudoscalar decay constants and the bag pa-
rameter BB,
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– heavy-to-light semileptonic and radiative decay
form factors,

–SU(3) breaking in B̄/D → Klν̄ and determina-
tion of Vcd/Vcs,

– slope of the Isgur-Wise (IW) function and de-
termination of Vcb,

– properties of hybrids and Bc-like mesons.

2. QCD spectral sum rules

In order to illustrate the QSSR method in a
pedagogical way, let us consider the two-point
correlator:

Πµν
b ≡ i

∫

d4x eiqx 〈0|T Jµ
b (x) (Jν

b (o))
† |0〉

= −
(

gµνq2 − qµqν
)

Πb(q
2,M2

b ), (1)

where Jµ
b (x) ≡ b̄γµb(x) is the local vector current

of the b-quark. The correlator obeys the well-
known Källen–Lehmann dispersion relation:

Πb(q
2,M2

b ) =

∫ ∞

4M2

b

dt

t− q2 − iǫ

1

π
ImΠb(t) +...,(2)

which expresses in a clear way the duality be-
tween the spectral function Im Πb(t), which can
be measured experimentally, as here it is related
to the e+e− into Υ-like states total cross-section,
while Πb(q

2,M2
b ) can be calculated directly in

QCD, even at q2 = 0, thanks to the fact that
M2

b − q2 ≫ Λ2. The QSSR is an improvement on
the previous dispersion relation.

On the QCD side, such an improvement is
achieved by adding to the usual perturbative ex-
pression of the correlator, the non-perturbative
contributions as parametrized by the vacuum
condensates of higher and higher dimensions in
the OPE [2]:

Πb(q
2,M2

b ) ≃
∑

D=0,2,4,...

1

(M2
b − q2)

D/2

.
∑

dimO=D

C(J)(q2,M2
b , µ)〈O(µ)〉,

(3)

where µ is an arbitrary scale that separates
the long- and short-distance dynamics; C(J) are
the Wilson coefficients calculable in perturba-
tive QCD by means of Feynman diagrams tech-
niques: D = 0 corresponds to the case of the
näıve perturbative contribution; 〈O〉 are the non-
perturbative condensates built from the quarks
or/and gluon fields. For D = 4, the condensates
that can be formed are the quark Mi〈ψ̄ψ〉 and
gluon 〈αsG

2〉 ones; for D = 5, one can have the
mixed quark-gluon condensate 〈ψ̄σµνλ

a/2Gµν
a ψ〉,

while for D = 6 one has, for instance, the
triple gluon gfabc〈GaGbGc〉 and the four-quark
αs〈ψ̄Γ1ψψ̄Γ2ψ〉, where Γi are generic notations
for any Dirac and colour matrices. The validity
of this expansion has been understood formally,
using renormalon techniques (IR renormalon am-
biguity is absorbed into the definitions of the
condensates) [5] and by building renormalization-
invariant combinations of the condensates (Ap-
pendix of [6] and references therein). The SVZ
expansion is phenomenologically confirmed from
the unexpected accurate determination of the
QCD coupling αs from semi-inclusive tau decays
[6,7]. In the present case of heavy-heavy correla-
tors the OPE is much simpler, as one can show
[8,9] that the heavy-quark condensate effects can
be included into those of the gluon condensates,
so that, up to D ≤ 6, only the G2 and G3 con-
densates appear in the OPE. Indeed, SVZ have,
originally, exploited this feature for their first es-
timate of the gluon condensate value.

For the phenomenological side, the improvement
comes from the uses of either a finite number of
derivatives and finite values of q2 (moment sum
rules):

M(n) ≡ 1

n!

∂nΠb(q
2)

(∂q2)
n

∣

∣

∣

∣

∣

q2=0

=

∫ ∞

4M2

b

dt

tn+1

1

π
ImΠb(t), (4)
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or an infinite number of derivatives and infinite
values of q2, but keeping their ratio fixed as τ ≡
n/q2 (Laplace or Borel or exponential sum rules):

L(τ,M2
b ) =

∫ ∞

4M2

b

dt exp(−tτ) 1

π
ImΠb(t). (5)

There also exist non-relativistic versions of these
two sum rules, which are convenient quantities to
work with in the large-quark-mass limit. In these
cases, one introduces non-relativistic variables E
and τN :

t ≡ (E +Mb)
2 and τN = 4Mbτ. (6)

In the previous sum rules, the gain comes from
the weight factors, which enhance the contribu-
tion of the lowest ground-state meson to the spec-
tral integral. Therefore, the simple duality ansatz
parametrization:

“one resonance”δ(t−M2
R) +

“QCD continuum”Θ(t− tc), (7)

of the spectral function, gives a very good descrip-
tion of the spectral integral, where the resonance
enters via its coupling to the quark current. In
the case of the Υ, this coupling can be defined as:

〈0|b̄γµb|Υ〉 =
√

2
M2

Υ

2γΥ
. (8)

The previous feature has been tested in the
light-quark channel from the e+e− → I = 1
hadron data and in the heavy-quark ones from
the e+e− → Υ or ψ data, within a good accu-
racy. To the previous sum rules, one can also add
the ratios:

R(n) ≡ M(n)

M(n+1)
and Rτ ≡ − d

dτ
logL, (9)

and their finite energy sum rule (FESR) variants,
in order to fix the squared mass of the ground
state. In principle, the pairs (n, tc), (τ, tc) are

free external parameters in the analysis, so that
the optimal result should be insensitive to their
variations. Stability criteria, which are equivalent
to the variational method, state that the best re-
sults should be obtained at the minimas or at
the inflexion points in n or τ , while stability in
tc is useful to control the sensitivity of the re-
sult in the changes of tc values. To these stability
criteria are added constraints from local duality
FESRs, which correlate the tc value to those of
the ground state mass and coupling [10]. Stabil-
ity criteria have also been tested in models such
as the harmonic oscillator, where the exact and
approximate solutions are known [11]. The most
conservative optimization criteria, which include
various types of optimizations in the literature,
are the following: the optimal result is obtained
in the region, starting at the beginning of τ/n sta-
bility (this corresponds in most of the cases to the
so-called plateau often discussed in the literature,
but in my opinion, the interpretation of this nice
plateau as a sign of a good continuum model is
not sufficient, in the sense that the flatness of the
curve extends in the uninteresting high-energy re-
gion where the properties of the ground state are
lost), until the beginning of the tc stability, where
the value of tc more or less corresponds to the
one fixed by FESR duality constraints. The ear-
lier sum rule window introduced by SVZ, stating
that the optimal result should be in the region
where both the non-perturbative and continuum
contributions are small, is included in the previ-
ous region. Indeed, at the stability point, we have
an equilibrium between the continuum and non-
perturbative contributions, which are both small,
while the OPE is still convergent at this point.

3. The heavy-quark-mass values

Here, we will summarize the recent results ob-
tained in [12], where an improvement and an
update of the existing results have been done,
with the emphasis that the apparent discrepancy
encountered in the literature is mainly due to
the different values of αs used by various au-
thors. Using the world average value αs(MZ) =
0.118± 0.006 [13], the first determination of the
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running mass to two loops, from the Ψ and Υ
systems, is:

mc(M
PT2
c ) = (1.23+0.02

−0.04 ± 0.03) GeV

mb(M
PT2
b ) = (4.23+0.03

−0.04 ± 0.02) GeV, (10)

where the errors are respectively due to αs and
to the gluon condensate. One can transform this
result into the perturbative pole mass and obtain,
to two-loop accuracy:

MPT2
c = (1.42 ± 0.03) GeV

MPT2
b = (4.62 ± 0.02) GeV. (11)

It is informative to compare these values with the
ones from the pole masses from non-relativistic
sum rules to two loops:

MNR
c = (1.45+0.04

−0.03 ± 0.03) GeV

MNR
b = (4.69+0.02

−0.01 ± 0.02) GeV, (12)

where one may interpret the small mass differ-
ence, less than 70 MeV as the size of the renor-
malon effect into the pole mass. A similar com-
parison can be done at three-loop accuracy. One
obtains:

MPT3
c = (1.62 ± 0.07 ± 0.03) GeV

MPT3
b = (4.87 ± 0.05 ± 0.02) GeV, (13)

to be compared with the dressed mass:

Mnr
b = (4.94 ± 0.10 ± 0.03) GeV, (14)

obtained from a non-relativistic Balmer formula
based on a b̄b Coulomb potential and including
higher order αs-corrections [14]. Here, one still
has the 70 MeV mass difference, which reinforces
our interpretation that it is due to the renormalon
effect (for an exposition of this effect, see e.g.
[16]). One can also use the previous results, in
order to deduce the mass-difference between the
b and c (non)-relativistic pole masses:

Mb −Mc = (3.22 ± 0.03) GeV, (15)

in good agreement with potential model expecta-
tions [15].

An extension of the previous analysis to the case
of the B and B∗ mesons leads to the value
MPT2

b = (4.63 ± 0.08) GeV, in good agreement
with the previous results. The meson-quark mass
difference has been also directly estimated in the
large mass limit. By combining the result from
HQET [17] with the one from the full QCD
spectral sum rules [18,19], one can deduce the
weighted average:

Λ̄ ≡ δM∞
b ≡ (MB −MNR

b )∞

= (0.58 ± 0.05) GeV, (16)

of the quark-meson mass difference, which is in
agreement with the previous findings, but less ac-
curate.

Using the previous result in (10) and the expres-
sion of the running mass to two-loops, one also
obtains at 1 GeV:

mc(1 GeV) = (1.46+0.09
−0.05 ± 0.03) GeV

mb(1 GeV) = (6.37+0.64
−0.39 ± 0.07) GeV, (17)

By combining the previous value of the running
b-quark mass with the s-quark one evaluated at 1
GeV, which we take from ms(1 GeV)= 150 MeV
[20] until 230 MeV [21] , one obtains the scale-
independent ratio:

mb/ms ≃ 33.5 ± 7.6, (18)

a result of great interest for model-building and
GUT-phenomenology.

4. The pseudoscalar decay constants and

the bag parameter BB

The decay constants fP of a pseudoscalar me-
son P are defined as:

(mq +MQ)〈0|q̄(iγ5)Q|P 〉 ≡
√

2M2
P fP , (19)
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where in this normalization fπ = 93.3 MeV. A
rigorous upper bound on these couplings can be
derived from the second-lowest superconvergent
moment:

M(2) ≡ 1

2!

∂2Ψ5(q
2)

(∂q2)
2

∣

∣

∣

∣

∣

q2=0

, (20)

where Ψ5 is the two-point correlator associated
to the pseudoscalar current. Using the positivity
of the higher-state contributions to the spectral
function, one can deduce [22]:

fP ≤ MP

4π

{

1 + 3
mq

MQ
+ 0.751ᾱs + ...

}

, (21)

where one should not misinterpret the mass-
dependence in this expression compared to the
one expected from heavy-quark symmetry. Ap-
plying this result to the D meson, one obtains:

fD ≤ 2.14fπ. (22)

Although presumably quite weak, this bound,
when combined with the recent determination to
two loops [23]:

fDs

fD
≃ (1.15 ± 0.04)fπ, (23)

implies

fDs
≤ (2.46 ± 0.09)fπ, (24)

which is useful for a comparison with the recent
measurement of fDs

from WA75: fDs
≃ (1.76 ±

0.52)fπ and from CLEO: fDs
≃ (2.61 ± 0.49)fπ.

One cannot push, however, the uses of the mo-
ments to higher n values in this D channel, in
order to minimize the continuum contribution to
the sum rule with the aim to derive an estimate
of the decay constant because the QCD series will
not converge at higher n values. In the D chan-
nel, the most appropriate sum rule is the Laplace

sum rule. The results from different groups are
consistent for a given value of the c-quark mass.
Using the table in [23] and the value of the pertur-
bative pole mass obtained previously, one obtains
to two loops:

fD ≃ (1.35 ± 0.04 ± 0.06)fπ ⇒
fDs

≃ (1.55 ± 0.10)fπ. (25)

For the B meson, one can either work with the
Laplace, the moments or their non-relativistic
variants. Given the previous value of Mb, these
different methods give consistent values of fB,
though the one from the non-relativistic sum rule
is very inaccurate due to the huge effect of the
radiative corrections in this method. The best
value comes from the Laplace sum rule; from the
table in [23], one obtains:

fB ≃ (1.49 ± 0.06 ± 0.05)fπ, (26)

while [23]:

fBs

fB
≃ 1.16 ± 0.04, (27)

where the most accurate estimate comes from the
“relativistic” Laplace sum rule. One could notice,
since the first result fB ≃ fD of [24], a large viola-
tion of the scaling law expected from heavy-quark
symmetry. Indeed, this is due to the large 1/Mb-
correction found from the HQET sum rule [17]
and from the one in full QCD [19,18]:

fB

√

Mb ≃ (0.42 ± 0.07) GeV3/2

.

{

1 − (0.88 ± 0.18) GeV

Mb

}

, (28)

which is due to the meson-mass gap δM ≡MB −
Mb [17] and to the continuum energy Ec [19,25]
(Ec ≃ 3

4δM [18]):

fB

√

Mb ≃
1

π
E3/2

c

{

1 − δM

Mb
− 3

2

Ec

Mb
+ ...

}

. (29)
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The apparent disagreement among different ex-
isting QSSR numerical results in the literature
is due mainly to the different values of the quark
masses used because the decay constants are very
sensitive to that quantity as shown explicitly in
[23].

Finally, let me mention that we have also tested
the validity of the vacuum saturation BB = 1 of
the bag parameter, using a sum rule analysis of
the four-quark two-point correlator to two loops
[26]. We found that the radiative corrections are
quite small. Under some physically reasonable
assumptions for the spectral function, we found
that the vacuum saturation estimate is only vio-
lated by about 15%, giving:

BB ≃ 1 ± 0.15. (30)

By combining this result with the one for fB, we
deduce:

fB

√

BB ≃ (197 ± 18) MeV , (31)

if we use the normalization fπ = 132 MeV, which
is

√
2 times the one defined in (18), in excellent

agreement with the present lattice calculations
[27].

5. Heavy-to-light semileptonic and radia-

tive decay form factors

One can extend the analysis done for the two-
point correlator to the more complicated case of
three-point function, in order to study the form
factors related to the B → K∗γ and B → ρ/π
semileptonic decays. In so doing, one can consider
the generic three-point function:

V (p, p′, q2) ≡ −
∫

d4x d4y ei(p′x−py)

〈0|T JL(x)O(0)J†
B(y)|0〉, (32)

where JL, JB are the currents of the light and B
mesons; O is the weak operator specific for each

process (penguin for the K∗γ, weak current for
the semileptonic); q ≡ p − p′. The vertex obeys
the double dispersion relation :

V (p2, p′2) ≃
∫ ∞

M2

b

ds

s− p2 − iǫ
∫ ∞

m2

L

ds′

s′ − p′2 − iǫ

1

π2
ImV (s, s′)

(33)

As usual, the QCD part enters in the LHS of the
sum rule, while the experimental observables can
be introduced through the spectral function af-
ter the introduction of the intermediate states.
The improvement of the dispersion relation can
be done in the way discussed previously for the
two-point function. In the case of the heavy-to-
light transition, the only possible improvement
with a good Mb behaviour at large Mb (conver-
gence of the QCD series) is the so-called hybrid
sum rule (HSR) corresponding to the uses of the
moments for the heavy-quark channel and to the
Laplace for the light one [18,28]:

H(n, τ ′) =
1

π2

∫ ∞

M2

b

ds

sn+1

∫ ∞

0

ds′ e−τ ′s′

ImV (s, s′). (34)

We have studied analytically the different form
factors entering the previous processes [29]. They
are defined as:

〈ρ(p′)|ūγµ(1 − γ5)b|B(p)〉 = (MB +Mρ)A1ǫ
∗
µ −

A2

MB +Mρ
ǫ∗p′(p+ p′)µ +

2V

MB +Mρ
ǫµνρσp

ρp′σ,

〈π(p′)|ūγµb|B(p)〉 = f+(p+ p′)µ + f−(p− p′)µ,

(35)

and:

〈ρ(p′)|s̄σµν

(

1 + γ5

2

)

qνb|B(p)〉

= iǫµνρσǫ
∗νpρp′σFB→ρ

1 +

6



{

ǫ∗µ(M2
B −M2

ρ ) − ǫ∗q(p+ p′)µ

} FB→ρ
1

2
.

(36)

We found that they are dominated, for Mb → ∞,
by the effect of the light-quark condensate, which
dictates the Mb behaviour of the form factors to
be typically of the form:

F (0) ∼ 〈d̄d〉
fB

{

1 +
IF

M2
b

}

, (37)

where IF is the integral from the perturbative tri-
angle graph, which is constant as t′2c Ec/〈d̄d〉 (t′c
and Ec are the continuum thresholds of the light
and b quarks) for large values of Mb. It indicates
that at q2 = 0 and to leading order in 1/Mb,
all form factors behave like

√
Mb, although, in

most cases, the coefficient of the 1/M2
b term is

large. The study of the q2 behaviours of the form
factors shows that, with the exception of the A1

form factor, their q2 dependence is only due to
the non-leading (in 1/Mb) perturbative graph, so
that for Mb → ∞, these form factors remain con-
stant from q2 = 0 to q2max. The resulting Mb

behaviour at q2max is the one expected from the
heavy quark symmetry. The numerical effect of
this q2-dependence at finite values ofMb is a poly-
nomial in q2 (which can be resummed), which
mimics quite well the usual pole parametrization
for a pole mass of about 6–7 GeV. The situa-
tion for the A1 is drastically different from the
other ones, as here the Wilson coefficient of the
〈d̄d〉 condensate contains a q2 dependence with a
wrong sign and reads:

A1(q
2) ∼ 〈d̄d〉

fB

{

1 − q2

M2
b

}

, (38)

which, for q2max ≡ (MB−Mρ)
2, gives the expected

behaviour:

A1(q
2
max) ∼ 1√

Mb

. (39)

It can be noticed that the q2 dependence of A1 is
in complete contradiction with the pole behaviour

due to its wrong sign. This result explains the nu-
merical analysis of [30]. It is urgent and impor-
tant to test this feature experimentally. It should
be finally noticed that owing to the overall 1/fB

factor, all form factors have a large 1/Mb correc-
tion.

In the numerical analysis, we obtain at q2 = 0,
the value of the B → K∗γ form factor:

FB→ρ
1 ≃ 0.27 ± 0.03,

FB→K∗

1

FB→ρ
1

≃ 1.14 ± 0.02, (40)

which leads to the branching ratio (4.5 ± 1.1) ×
10−5, in perfect agreement with the CLEO data
and with the estimate in [31]. One should also no-
tice that, in this case, the coefficient of the 1/M2

b

correction is very large, which makes dangerous
the extrapolation of the c-quark results to higher
values of the quark mass. This extrapolation is
often done in some lattice calculations.

For the semileptonic decays, QSSR give a good
determination of the ratios of the form factors
with the values [28]:

A2(0)

A1(0)
≃ V (0)

A1(0)
≃ 1.11 ± 0.01

A1(0)

FB→ρ
1 (0)

≃ 1.18 ± 0.06

A1(0)

f+(0)
≃ 1.40 ± 0.06. (41)

Combining these results with the “world aver-
age” value of f+(0) = 0.25 ± 0.02 and the one

of FB→ρ
1 (0), one can deduce the rate and polar-

ization:

Γπ ≃ (4.3 ± 0.7)|Vub|2 × 1012 s−1

Γρ/Γπ ≃ 0.9 ± 0.2

Γ+/Γ− ≃ 0.20 ± 0.01

α ≡ 2
ΓL

ΓT
− 1 ≃ −(0.60 ± 0.01). (42)
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These results are much more precise than the ones
from a direct estimate of the absolute values of
the form factors due to the cancellation of sys-
tematic errors in the ratios. They indicate that,
we are on the way to reach Vub with a good accu-
racy from the exclusive modes. Also here, mainly
because of the non-pole behaviour of AB

1 , the ra-
tio between the widths into ρ and into π is about
1, while in different pole models, it ranges from
3 to 10. For the asymmetry, one obtains a large
negative value of α, contrary to the case of the
pole models.

6. SU(3) breaking in B̄/D → Klν̄ and de-

termination of Vcd/Vcs

We extend the previous analysis for the esti-
mate of the SU(3) breaking in the ratio of the
form factors:

RP ≡ fP→K
+ (0)/fP→π

+ (0), (43)

where P ≡ B̄, π. Its analytic expression is given
in [32], which leads to the numerical result:

RB = 1.007±0.020 RD = 1.102±0.007,(44)

where one should notice that for Mb → ∞, the
SU(3) breaking vanishes, while its size at finite
mass is typically of the same order as the one of
fDs

or of the B → K∗γ discussed before. What is
more surprising is the fact that using the previous
value of RD with the present value of CLEO data
[33]:

Br(D+ → π0lν)

Br(D+ → K̄0lν)
= (8.5 ± 2.7 ± 1.4)%, (45)

one deduces:

Vcd/Vcs = 0.322 ± 0.056, (46)

which is much larger than the value 0.226±0.005
derived from the unitarity of the CKM matrix.

This can mean either that the CLEO data are
wrong (recall that MARKIII data [34] would im-
ply a value 0.25 ± 0.15, in agreement with uni-
tarity, but less accurate), or that the unitarity
constraint is in trouble. It is difficult to see how
the QSSR result is wrong as other predictions de-
rived in the same way (see e.g fBs

and FB→K∗

1 )
agree successfully with results from alternative
approaches.

7. Slope of the Isgur–Wise function and

determination of Vcb

Let me now discuss the slope of the Isgur–Wise
function. Taron–de Rafael [35] have exploited the
analyticity of the elastic b-number form factor F
defined as:

〈B(p′)|b̄γµb|B(b)〉 = (p+ p′)µF (q2), (47)

which is normalized as F (0) = 1 in the large mass
limit MB ≃MD. Using the positivity of the vec-
tor spectral function and a mapping in order to
get a bound on the slope of F outside the physical
cut, they obtained a rigorous but weak bound:

F ′(vv′ = 1) ≥ −6. (48)

Including the effects of the Υ states below B̄B
thresholds by assuming that the ΥB̄B couplings
are of the order of 1, the bound becomes stronger:

F ′(vv′ = 1) ≥ −1.5. (49)

Using QSSR, we can estimate the part of these
couplings entering in the elastic form factor. We
obtain the value of their sum [36]:

∑

gΥB̄B ≃ 0.34 ± 0.02. (50)

In order to be conservative, we have multiplied
the previous estimate by a factor 3 larger. We
thus obtained the improved bound

F ′(vv′ = 1) ≥ −1.34, (51)
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but the gain over the previous one is not much.
Using the relation of the form factor with the
slope of the Isgur–Wise function, which differs by
−16/75 logαs(Mb) [37], one can deduce the final
bound:

ζ′(1) ≥ −1.04. (52)

However, one can also use the QSSR expression
of the Isgur–Wise function from vertex sum rules
[17] in order to extract the slope analytically. To
leading order in 1/M, the physical IW function
reads:

ζphys(y ≡ vv′) =

(

2

1 + y

)2
{

1 +
αs

π
f(y)

− 〈d̄d〉τ3g(y) + 〈αsG
2〉τ4h(y)

+ g〈d̄Gd〉τ5k(y)

}

,

(53)

where τ is the Laplace sum rule variable and f, h
and k are analytic functions of y. From this ex-
pression, one can derive the analytic form of the
slope [36]:

ζ′phys(y = 1) ≃ −1 + δpert + δNP , (54)

where at the τ -stability region: δpert ≃ −δNP ≃
−0.04, which shows the near-cancellation of the
non-leading corrections. Adding a generous 50%
error of 0.02 for the correction terms, we finally
deduce to leading order result in 1/M:

ζ′phys(y = 1) ≃ −1 ± 0.02, (55)

Using this result in different existing model
parametrizations, we deduce the value of the mix-
ing angle:

Vcb ≃
(

1.48 ps

τb

)1/2

×

. (37.3 ± 1.2 ± 1.4) × 10−3, (56)

where the first error comes from the data and the
second one from the model dependence.

Let us now discuss the effects due to the 1/M
corrections. It has been argued recently (but
the situation is still controversial [38]) that the
1/M2 effect can lower the Isgur–Wise function to
0.91±0.03 at y = 1, which is a compromise value
between the ones in [38], such that the extracted
value of Vcb using an extrapolation until this par-
ticular point will also increase by 11%. However,
the data from different groups near this point are
very inaccurate and lead to an inaccurate, though
a model-independent result. Moreover, in order
to see the effect of the 1/M correction, one can
combine this previous result at y = 1 with the
sum rule estimate of the relevant form factor at
q2 = 0, which is about 0.53±0.09 [28], just on top
of the CLEO data [39]. Notice that this result
has been obtained without doing a 1/M expan-
sion. With these two extremal boundary condi-
tions and using the linear parametrization, which
also agrees with the data [39]:

ζ = ζ0 + ζ′(y − 1), (57)

we can deduce the slope:

ζ′ ≃ −(0.76 ± 0.2). (58)

It indicates that the 1/M correction tends also to
decrease ζ′, which implies that, for larger values
of y where the data are more accurate, the in-
crease of Vcb is weaker (+ 3.7%) than the one at
y = 1. This leads to the final estimate:

Vcb ≃
(

1.48 ps

τb

)1/2

×

. (38.8 ± 1.2 ± 1.5 ± 1.5) × 10−3,

(59)

where the new last error is induced by the er-
ror from the slope. This result is more precise
than the one obtained at y = 1, while the model-
dependence only brings a relatively small error.
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It also shows that the value from the exclusive
channels is lower than that from the inclusive
one, which is largely affected by the large uncer-
tainty in the mass definition which enters in its
fifth power. Previous results for the slope and for
Vcb are in good agreement with the new CLEO
data presented at this meeting [39].

8. Properties of hybrid and Bc-like mesons

Let me conclude this talk by shortly discussing
the masses of the hybrid Q̄GQ and the mass and
decays of the Bclike-mesons. Hybrid mesons are
interesting because of their exotic quantum num-
bers. Moreover, it is not clear if these states are
true resonances or if they only manifest them-
selves as a wide continuum instead. The lowest
c̄Gc states appear to be a 1+− of mass around
4.1 GeV [3]. The available sum-rule analysis of
the 1−+ state is not very conclusive due to the
absence of stability for this channel. However,
the analysis indicates that the spin-one states are
in the range 4.1–4.7 GeV. Their characteristic de-
cays should occur via the η′ U(1)-like particle pro-
duced together with a ψ or an ηc. However, the
phase-space suppression can be quite important
for these reactions. The sum rule predicts that
the 0−−, 0++ c̄Gc states are in the range 5–5.7
GeV, i.e. about 1 GeV above the spin one.

We have estimated the Bc-meson mass and cou-
pling by combining the results from potential
models and QSSR [9]. We predict from poten-
tial models:

MBc
= (6255 ± 20) MeV,

MB∗

c
= (6330 ± 20) MeV,

MΛ(bcu) = (6.93 ± 0.05) GeV,

MΩ(bcs) = (7.00 ± 0.05) GeV,

MΞ∗(ccu) = (3.63 ± 0.05) GeV,

MΞ∗(bbu) = (10.21 ± 0.05) GeV, (60)

which are consistent with, but more precise than,
the sum-rule results. The decay constant of the
Bc meson is better determined from QSSR. The

average of the sum rules with the potential model
results reads:

fBc
≃ (2.94 ± 0.12)fπ, (61)

which leads to the leptonic decay rate into τντ

of about (3.0 ± 0.4) × (Vcb/0.037)2 × 1010 s−1.
We have also studied the semileptonic decay of
the Bc mesons and the q2-dependence of the form
factors. We found that, in all cases, the QCD pre-
dictions increase faster than the usual pole domi-
nance ones. The behaviour can be fitted with an
effective pole mass of about 4.1–4.6 GeV instead
of the 6.3 GeV expected from a pole model. Ba-
sically, we also found that each exclusive channel
has almost the same rate which is about 1/3 of
the leptonic one. Detection of these particles in
the next B-factory machine will serve as a strin-
gent test of the results from the potential models
and QSSR analysis.

9. Conclusion

We have shortly presented different results
from QCD spectral sum rules in the heavy-quark
sector, which are useful for further theoretical
studies and complement the results from lat-
tice calculations or/and heavy-quark symmetry.
From the experimental point of view, QSSR pre-
dictions agree with available data, but they also
lead to some new features, which need to be
tested in forthcoming experiments.
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