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Abstract. CloudVeneto.it was initially funded and deployed by INFN in 
2014 for serving the computational and storage demands of INFN research 
projects mainly related to HEP and Nuclear Physics. It is an OpenStack-based 
scientific cloud with resources spread across two different sites connected 
with a high speed optical link: INFN Padova Unit and the INFN Legnaro 
National Laboratories. The infrastructure has grown throughout the years 
with additional funds from ten University of Padova departments, and 
nowadays supports a broader range of scientific and engineering disciplines. 
Its hardware resources provide around 2500 computational cores and 360 TB 
of storage to about 250 users working for more than 70 projects. In the last 
months we enhanced the cloud platform in two ways: 1) by integrating a 
number of heterogeneous GPU cards to address the special needs of user 
communities whose computations involve machine learning training; 2) by 
enabling the users to simply deploy on-demand Kubernetes clusters for Big 
Data Analytics applications taking advantage of the operator framework. In 
particular, the Kubernetes operators for Apache Kafka and Spark platforms 
were integrated to address real-time data ingestion and streaming processing 
on the cloud. This article describes the technical details of these two solutions 
and their integration with the cloud infrastructure. 

1 Introduction  

The origin and the details of the CloudVeneto.it infrastructure have been described in a 
previous article [1]. In sections 2 and 3 we’ll therefore only give an updated summary of its 
layout and capacity, while in sections 4 and 5 we’ll focus on two use-cases, from Astro-
particle physics and HEP, that could profit of the most recent enhancements brought to the 
infrastructure, namely the integration of a number of heterogeneous GPU cards and the 
development of a mechanism to deploy on-demand Big Data Analytics clusters based on the 
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Kubernetes container orchestration framework. Section 6 will track the conclusions and 
future perspectives. 

2 The CloudVeneto.it infrastructure 

CloudVeneto.it is an OpenStack based IaaS that has been funded by INFN and ten 
departments of the University of Padova, and is serving the scientific user communities 
affiliated to them. Nowadays more than 250 users and 70 research projects are supported by 
this infrastructure. Its hypervisors and storage nodes are geographically spread across two 
sites 10 km apart (INFN Padova data center and INFN Legnaro National Laboratories) which 
have a dedicated network connection at 10 Gbps. The main OpenStack services (Horizon, 
Keystone, Neutron, Glance, Nova, Cinder, Heat, EC2 API) are hosted in two controller nodes 
implementing high availability in an active-active configuration. The overall fault-tolerance 
and high availability is achieved using three instance redundancy for a Percona XtraDB 
cluster, a RabbitMQ cluster and a HAProxy/Keepalived cluster. The disk devices of the 
hypervisors provide the ephemeral storage of the virtual machines, while two iSCSI storage 
systems and a Ceph cluster provide the backends for Cinder (block storage) and Glance 
(images) services. Ceph, through its radosgw service [2], is also used as an object storage 
provider. A complex network configuration (described in detail in [1]) with four virtual 
routers and one or more class-C virtual networks for each OpenStack project implements the 
different access policies defined for INFN, University and non academic (e.g. related to 
collaboration projects with Public Administration or industry) users, also based on the 
ownership of the resources. User enrollment happens through a customised Horizon 
dashboard where the user authenticates with his/her own institutional Single Sign On system 
(INFN AAI or University of Padova SSO). Username/Password authentication is also 
available. Ganglia, Nagios and Cacti instances continuously monitor the whole 
infrastructure, while a Foreman/Puppet server is used for provisioning and configuration. 

Table 1. Cloudveneto.it computing resources by owner. 

Owner Storage 

(TB) 

# Compute 

Nodes 

# Cores 

(in HT) 

RAM 

(GB) 

# GPUs 

INFN 270 40 1680 5824 6 

University 90 20 816 3552 6 

Total 360 60 2496 9376 12 

  
In 2019 the accounting system CAOS [3] based on Ceilometer/Gnocchi (the telemetry 

services recommended within OpenStack) has been dismissed due to some scalability 
problems, and replaced with a homemade solution built on the time series database InfluxDB 
[4], the analytics platform Grafana [5] and the system statistics collection daemon Collectd 
[6] (in particular relying on the virt plugin). The total capacity of computing resources, 
summarized in Table 1, achieved 60 compute nodes for a total of about 2500 logical cores 
and 9 TB of RAM. Moreover, two NVIDIA TITAN Xp, one NVIDIA Quadro RTX 6000, 
one NVIDIA GeForce GTX TITAN, four NVIDIA Tesla T4 and four NVIDIA V100 GPUs 
were gradually embedded in the infrastructure making use of the OpenStack support for 
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KVM hypervisor with PCI passthrough virtualization [7]. Some of them were used in a 
scientific computation described in section 4. 

Besides the elastic on-demand HTCondor batch cluster service already provided to 
CloudVeneto.it users, another PaaS-type service designed to deploy a Big Data Analytics 
platform was developed and put in production during 2019.  

3 Kubernetes clusters for Big Data Analytics 

It is well known that the cloud is better exploited using a cloud-native approach in building 
and running applications, that basically have to be container packaged, dynamically managed 
and micro-services oriented. Cloud-native principles and open source software are fostered 
e.g. by the Cloud Native Computing Foundation (CNFC) [8]. In particular, two of its first 
“graduated projects” are the container orchestration framework Kubernetes [9] and the 
systems monitoring and alerting tool Prometheus [10]. Apache Kafka [11] and Apache Spark 
[12] are among the most popular open source Big Data Analytics tools maintained within the 
Apache Software Foundation. Kafka is a distributed highly scalable and fault-tolerant 
streaming platform used in thousands of companies for building real-time data pipelines and 
streaming applications. Spark is a unified analytics engine for large-scale data processing. It 
supports cloud-native deployments using Kubernetes as resource manager implementation 
since March 2018. 

 

Fig. 1. Automatic deployment and execution of workloads on the Big Data Analytics platform based 
on Ansible, Kubernetes and Docker technologies.  

We developed a set of Ansible [13] playbooks to automatically deploy Kubernetes clusters 
including Kafka, Spark and Prometheus operators. The deployment can optionally be in High 
Availability, both over cloud and bare metal resources, and includes the Kubernetes legacy 
dashboard and the Grafana dashboard for visualising cluster and application monitoring data. 
The Kubernetes operator pattern adds a further level of automation that simplifies running, 
monitoring and fine-grained lifecycle management of applications within a Kubernetes 
cluster. It enables in fact declarative application specification and management of application 
through Kubernetes custom resources. In the example shown in Fig. 1, a Spark application 
properly defined in a YAML file can be submitted via the Kubernetes client to the Kubernetes 
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API, and the Spark operator executes the spark-submit command on behalf of the user. The 
application software is typically packaged into container images uploaded into a Docker 
registry. While streaming data can be injected into a Kafka cluster and further processed by 
Spark, the access of data hosted in external storage systems like e.g. Ceph [2], HDFS [14] 
and CERN EOS [15] is also possible from the cloud through the appropriate 
protocols/connectors.    

4 GPU use-case: the MAGIC experiment 

The MAGIC experiment [16] aims at detecting primary γ rays originated from galactic and 
extragalactic sources with Imaging Atmospheric Cherenkov Technique (IACT). A set of 
telescopes with a mirror diameter up to 28 m located on the Canary island of La Palma at 
2200 m above the sea detects the Cherenkov light emitted in extensive air showers initiated 
by very high energy rays hitting the atmosphere. The Cherenkov light can be reflected and 
focused by the mirrors and collected by a camera composed of several photomultiplier tubes. 
Electronic signal conversion and digitalization gives a pixelated image of the shower induced 
by the primary ray. The main problem affecting the identification of the primary γ rays is the 
huge background coming from the cosmic rays, with a signal to noise ratio less than 1/2000. 
The University of Padova researchers working in the MAGIC experiment designed and 
implemented a novel full analysis based on a Deep Learning pipeline from the pixel-wise 
information. The new method, described in detail in [17], improved significantly both the 
shower direction reconstruction (~ 20%) and the energy reconstruction (~ 30% above 1 TeV), 
over the standard MAGIC analysis, which inevitably loses potentially useful information in 
its image parametrization step. Fig. 2 shows a simplified comparison of the two analyses.  

 

Fig. 2. The new analysis approach based on CNN working directly from the calibrated data compared 
with the traditional analysis pipeline.   

We configured and set up customized images and specific flavors to allow users to create, 
in our cloud infrastructure, a virtual machine with one or more GPUs. The training and 
optimization of the Convolutional Neural Network (CNN) adopted in the new analysis could 
greatly benefit from the use of GPUs integrated in CloudVeneto.it. By using a virtual server 
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connected with a NVIDIA Titan GPU, a factor 10 of speedup compared with the use of a 24 
CPU core server was achieved in the training time. The reading performance of the 250 GB 
input dataset was initially a serious bottleneck for the computation pipeline when using 
magnetic hard disks on the hypervisors hosting the GPU cards, so we decided to upgrade the 
bare metal hypervisor with solid state disk (SSD-NVMe) and customize how the instances 
execute I/O instructions. This improvement was crucial to achieve the full utilization of 
GPUs connected to the virtual servers, because the non-sequential reading performance 
increased by more than one order of magnitude. 

5 The CMS experiment use-case 

The University of Padova researchers working in the CMS experiment exploited the Big Data 
Analytics platform of CloudVeneto.it described in section 3 to perform online data 
processing of the CMS muon detector composed of Drift Tube (DT) chambers [18].  They 
built a prototype at INFN-Legnaro Laboratories with two DT chambers for testing the online 
event reconstruction with data streams coming from the front-end electronics at the same rate 
as the LHC clock (40 Mhz), without archiving data on disk. Muon tracks crossing the DTs 
generate hits converted into electronic signals which are digitized and acquired by an FPGA 
board hosted on a server running a Kafka producer.  This broadcasts the hit data to the Kafka 
cluster hosted in CloudVeneto.it as “messages” of 1kB minimum size (128 hits). Kafka 
brokers provide then the data to the Spark cluster. Spark executors process data from Kafka 
through the Spark Streaming API that performs event reconstruction and produces useful 
data for monitoring the detector status. Spark outputs are injected back to Kafka that makes 
them available for monitoring and runtime visualisation with Prometheus, Grafana and 
Bokeh [19]. Fig. 3 shows the entire setup and data processing workflow.  

 

Fig. 3. Muon DT chambers Online data acquisition setup at INFN-Legnaro Labs and remote 
streaming processing through the Big Data Analytics platform of CloudVeneto.it.  

CloudVeneto.it implementation through Kubernetes enabled the maximum flexibility in 
changing both Kafka and Spark clusters configuration. This allowed us to perform extensive 

5

EPJ Web of Conferences 245, 07013 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507013



tests which demonstrated the scalability of the system up to the level of throughput expected 
at HL-LHC from the DT chambers. 

6 Conclusions 

As discussed in this article, CloudVeneto.it infrastructure has evolved to face not only its 
continuously growing user base, but also the increasingly high demand of Big Data and 
Machine Learning workloads required by scientific applications that need accelerated 
hardware and high level services on top of the lowest IaaS cloud level.  

As a next challenge, we are exploring the possibility to confederate CloudVeneto.it into a 
larger INFN nationwide cloud infrastructure geographically distributed across a few big 
INFN data centers, which is expected to enter gradually in production during 2020.       
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