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ABSTRACT

The reaction rate of martensite decomposition and the mechan-

ism by which retained austenite transforms isothermally have been

studied by means of precision length measurements, quenching dila-

tometer observations and quantitative x-ray analyses developed

specifically to measure small amounts of retained austenite in

quenched steels. These studies have shown that it is practically

impossible to eliminate all of the retained austenite by a continu-

ation of the quench even to liquid nitrogen temperatures, and that

retarding the rate of cooling through the martensite region in-

creases the quantity of retained austenite.

The solubility of carbon in martensite at the end of the first

stage of isothermal tempering increases slightly as the tempering

temperature increases up to 5000 F (1500 C), and the end of the

first stage is marked by retardation in the rate of carbon rejec-

tion from the martensite lattice. Martensite decomposition, which

occurs by means of a process of nucleation and growth of a transi-

tion precipitate, is believed to be accelerated by the stresses

present in the martensite lattice and may be represented by the

rate equation:

-de = K(T) c

where c = concentration of carbon remaining in solution at

time, t.

K(T) and S(T) = constants depending only on temperature.

1_ _
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The heat of activation of the rate coefficient K(T) has been deter-

mined as approximately 8500 cal/mol. This may be regarded as a

measure of the activation energy of carbon diffusion in martensite,

and is about one-half of the value calculated by Polder for carbon

diffusion in ferrite. This reduction in potential barrier is pro-

bably caused by the high stress level in martensite.

The austenite-martensite reaction does not stop completely

when the cooling stops, but 5 or 4 percent more of austenite may

transform isothermall into martensite at room temperature. This

isothermal transformation proceeds rather rapidly during the first

1.5 hours after the quench, but it continues at a diminishing rate

for several months. As retained austenite is tempered at higher

temperatures, the decomposition of austenite into bainite becomes

evident after prolonged aging times at 250 and 500 F (120 and 1500 C),

but this bainite decomposition (i.e. the second stage of tempering)

is quite distinguishable from the earlier isothermal decomposition

into martensite.
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I. INTRODUCTION

Many observations have been made on the dimensional instability

of hardened steels. This instability is particularly troublesome in

master gage blocks which are normally required with a calibration to

the nearest millionth of an inch, and as a result, many authors(1 - 6 )

have investigated these irreversible changes in length which occur

on room temperature aging. Although most of these studies have been

qualitative in that they evaluated a specific heat treatment used in

the manufacture of commercial gage blocks, Scott ( 7 ) seems to have

been among the first to recognize the correlation between dimension-

al instability and the structural changes which take place on tem-

pering. He correctly deduced that expansions on aging were caused

by the decomposition of retained austenite and that contractions

were caused by the tempering of martensite at room temperature. To

manufacture a stable gage block of hardened steel, it has been neces-

sary, intentionally or otherwise, to either balance these opposing

reactions or to minimize them with a rather involved series of pro-

prietary tempering and "seasoning" treatments.

Since Scott's investigation, considerable progress has been

made in the understanding of the austenite-martensite reaction, and

these concepts have been reviewed and summarized recently(8)(9).

Rather extensive information has also been obtained on the tempering

(1)Numbers refer to references at the end of the paper.

~lllec-
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process(lO),(1U),(12),(15)p(14),(15), and with the more precise

methods of measurement now available it seemed fruitful to recon-

sider the dimensional changes in hardened steels by studying the

early stages of tempering on the basis of phase reactions occur-

ring in metastable structures. It also seemed desirable to recon-

sider the austenite-martensite reaction to determine if this reac-

tion ceases completely as cooling is stopped, or if the decomposi-

tion of austenite observed at room temperature is not, in effect

merely a continuous trailing-off of the main austenite-martensite

reaction. From an investigation of the kinetics of these isother-

mal decompositions it might, in addition, be possible to gain some

approach to the mechanics of these reactions.

In the discussion which follows, dimensional behavior is con-

sidered only with reference to the changes which occur as a result

of phase transformations, and it does not include the "movement"

which takes place during heat treatment or the distortion which

may result from stress relief. In practice, satisfactory gages

must not only be dimensionally stable but must also have high

hardness and good wear resistance. For this reason, combinations

of steels and heat treatments were chosen to give fully hard mar-

tensitic structures with an excess of carbides. This corresponds

to the normal commercial practice, and measurements were made on

specimens large enough to compare directly with commonly used gages.

Two representative steels, a plain carbon tool steel (K steel) and

a chromium ball-bearing steel (T steel) were investigated and their

compositions are listed in Table I.
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1.07 0.25 0.25 0.014 0.011

1.00 0.55 0.57

Steel

- 1.56 0.21

TABLE I

Analyses of Steels

Weight Percent
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Early in the investigation it was shown that steels in the

annealed and spheroidised condition were stable, and no changes

in length greater than one part in a million were observed on

aging at room temperature. Such steels are, however, too soft

to be used as gages. Hardened steels, on the other hand, are

far from stable. They contain internal stresses as well as a

large percentage of martensite which is unstable and shows a

marked tendency to decompose even at room temperature. In addi-

tion, hardened steels may contain up to 50 percent of retained

austenite which is also far from equilibrium and which might,

therefore, be expected to break down easily on aging. Undis-

solved carbides seem to play no direct part in dimensional sta-

bility, although they are valuable in imparting wear resistance.

If the dimensional changes resulting from the transforma-

tion of the unstable phases in the direction of their equili-

brium structures are considered, it is evident that two large

opposing reactions can occur. For example, in the plain carbon

steel after a water quench from 14500 F (7900 C) it will be

shown later that there is present about 9 percent retained aus-

tenite, 2.6 percent undissolved carbides, and 88.4 percent mar-

tensite. From lattice parameter and specific volume measure-

ments (10) it can be shown that if freshly formed martensite were

to decompose into ferrite and cementite, a linear contraction of
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5500 x 10-6 in/in* would occur. Gages made from this steel are

seldom tempered above 5000 F (1500 C), and about 50 percent of

this total contraction could take place during such tempering.

This corresponds to almost the completion of the first stage of

tempering, but there is still a large potential contraction

available to cause dimensional instability. At the same time,

it we assume that the 9 percent of retained austenite can trans-

form into martensite, a linear expansion of 1260 x 10-6 in/in

would occur**. Since little of this austenite is removed by

tempering up to 5000 F (1500 C) for short times, considerable

potential growth could be caused by the decomposition of this

retained austenite, and the net effect could be either a con-

traction or an expansion depending on the relative magnitudes

and rates of the opposing transformations. By studying these

net changes in dimension, this investigation attempted to sepa-

rate the martensite decomposition from the austenite transfor-

mation and to observe the kinetics of each process by itself.

*This figure is 6000 x 10- 6 in/in for 100 percent martensite

containing 1 percent carbon and it also assumes that the fol-

lowing relationship is valid:

L A Vv
L V

**This corresponds to 140 x 10- 6 in/in for one percent of aus-

tenite transformatiDn into martensite at room temperature.

I-1
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II. PRECISION LENGTH MEASURENENTS

To investigate minute changes in length, specimens 3/8 inch

in diameter by 4.000+0.001 inch long with the ends accurately

ground to the contour of a 4 inch diameter sphere were used.

Length determinations were made by fastening these specimens to

a jig to keep themvertical, as shown in Figure 1, and then mea-

suring them in a Sheffield Visual Gage Comparator with a magni-

fication of 5000X. This gage compares the length of the sample

with a standard gage block independently calibrated to the near-

est millionth of an inch, and is able to determine deviations from

this standard with an accuracy of 5 microinches. For a 4 inch sam-

ple, this corresponds to a relative accuracy of about 1.5 micro-

inches per inch. The standard gage blocks are nominally 4.120

inches long, and the difference in length between the sample and

standard was made up by inserting small gage blocks as depicted

in Figure 1. This arrangement permits measurements to be made on

a wide variation of sample lengths with the same standard, despite

the limited range of the instrument, and contributes greatly to

the ease of measurement and to the internal consistency of the

data. The spherical ends prevent errors that might result from

slight tilting of the specimen from vertical.

The machined and ground rod specimens were first austenitized

for 50 minutes in a lead pot controlled to 50 F (+30 C) and quench-

ed. Some of these specimens were subcooled immediately after the
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GAGING FLAT

RUBBER BAND

SPECIMEN HOLDER

ENDS OF SPECIMEN GROUND TO
4' DIA. SPHERE.
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Figure 1. Method of aligning rod specimen in comparator for precision length
measurement, showing gage block arrangement for adjusting total
length to 4.120 inches.
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quench in a closed brass tube surrounded by liquid nitrogen (-521P F,

-195o C). Any scale accumulation was removed with emery paper in a

lathe running at slow speed, and the specimens were degreased and

allowed to remain for an hour on a large surface plate in the mea-

suring room which was maintained at 68+10 F (20w0.50 C). A length

measurement was then made. Following this, the specimens were aged

in oil baths maintained at 100, 150, 200, 250 and 5000 F+20 F (40,

65, 95, 120 and 150 + 1 C), in air at 680 F (200 C) and in an ice

bath at 520 F (00 C). Length determinations were repeated at suit-

able intervals for periods exceeding 200 days.

The type of data obtained from such a determination is shown in

Figure 2. A series of specimens of the ball-bearing steel (T steel)

was austenitized at 15500 F (8450 C) quenched into oil at room tem-

perature and aged at the temperaturesmentioned previously. Their

changes in length were recorded as they aged, but for each determi-

nation it was necessary to bring the specimens to room temperature,

allow them to come to thermal equilibrium for one hour, and to then

make the length measurement at 680 F (200 C). The changes caused by

the time at room temperature and by the cooling to or from the mea-

suring temperature were assumed to be negligible. Figure 2 shows

the relative changes of length as a function of time at aging tem-

perature and it should be noted that the elapsed time is plotted in

hours on a logarithmic scale. Time is taken as beginning at 90 min-

utes after the completion of the last heat treating operation, since

90 minutes wee required to clean the specimens and bring them to



+z0
320 F

0200o

0100

-400

150F
250*F

-600
20 00 F

-800
0.1 I 10 100 oo p00 10

AGING TIME -HRS.
Figure 2. Relative changes in length on aging of a ball-bearing steel austenitized at 15509 F (8450 C) for

50 minutes and quenched into oil at 680 F (200 C).
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thermal equilibrium after heat treatment before any length measure-

ments could be made. Accordingly, the relative changes in length

are all calculated from this point. The first reading as plotted

is elapsed time after this reference point, and any changes during

the first 90 minutes after the quench apply as a constant correc-

tion to all of these determinations.

The relative changes in length, plotted as x 10-6 in/in

are the averages of at least two specimens treated simultaneously.

As aging proceeded, at least 20 length measurements were made on

each specimen within the first thousand hours, but the individual

points are not plotted, to avoid confusion. The readings were re-

producible with an accuracy of +2 x 10- 6 or 10 percent whichever is

the greater. This error did not usually arise from the measurement

itself, but from the inherent difficulties in reproducing quenching

conditions precisely for each set of specimens. The structural re-

actions under investigation however, caused length changes which

were large compared to this error. No corrections were made for the

temperature coefficient of expansion since both the specimens and

the standards had approximately the same coefficient, and the speci-

mens were left on the plate long enough to come to the same tempera-

ture as the standard.

The data in Figure 2 show a maximum growth at 520 F (C0 C) which

disappears as the aging temperature increases, and at 250 and 5000 F

(120 and 1500 C) a relatively large expansion at prolonged aging

times is apparent as the retained austenite decomposes into bainite
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during the second stage of tempering(11). It is difficult to

explain the earlier maxima at 52 and 680 F (0 and 200 C) on this

basis, and qualitatively it is apparent that an isothermal decom-

position of austenite must precede the bainite formation.

Figure 3 shows the dimensional behavior on aging of a similar

set of specimens which had been refrigerated immediately after the

quench to -321 0 F with liquid nitrogen. Earlier investigators(16),

(17),(18) believed that this subcooling treatment would transform

all of the retained austenite into martensite, and, indeed, the

early maxima of Figure 2 did disappear for the subcooled specimens.

On aging at 250 and 3500 F (120 and 1500 C), however, decomposition

of retained austenite into bainite was still observed, but on a

reduced scale. Apparently the refrigerated specimens contained

significant quantities of retained austenite although in smaller

amounts than the non-refrigerated specimens. The presence of aus-

tenite in these subcooled specimens was later verified and measured

by an independent method. The data in Figures 2 and 5 may be con-

sidered, therefore, as being derived from two mixtures of austenite

and martensite of the same chemical composition, but with different

quantities of each constituent.

In commercial heat treating practice it is not uncommon to in-

terrupt the quench at temperatures above room temperature and to

then allow the work to air cool through the remainder of the mar-

tensite range. The interrupting temperature may be even above the



Figure 3. Relative changes in length on aging of a ball-bearing steel austenitized at 15500 F (8450 C)
for 50 minutes, guenched into oil at 680 F, and refrigerated immediately in liquid nitrogen
at -5219 F (-1959 C) for one hour.
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Ms* point, as in martempering, but the effects of such treatments

on the retained austenite content and on the stability of the aus-

tenite have not previously been investigated. Figure 4 shows the

dimensional behavior of the ball-bearing steel specimens quenched

into oil at 1250 F (50 C), held for five minutes in the quenching

bath to allow it to come to thermal equilibrium, and then cooled

in air to room temperature. Similarly, specimens were quenched

into oil at 2500 F (1200 C) and molten salt at 450P F (2300 C),

held in the hot quenching bath for five minutes, and allowed to

air-cool to room temperature. The dimensional changes on aging

for these cases are shown in Figures 5 and 6. From hardness

values it was evident that little or no pearlite had formed dur-

ing the quench so that the dimensional behavior in Figures 4, 5

and 6 can also be taken as due to various mixtures of martensite

and retained austenite. The Ms point for this steel was measured

on very small specimens (1/16 inch thick x 1/4 inch diameter) by

the hot-quenching method of Greninger and Troiano( 1 9 ) and found

to be 4150 F (2150 C) so that the data of Figure 6 represent the

behavior of martempered specimens.

An analagous series of treatments were performed on the plain

carbon steel (K steel). Figure 7 shows the dimensional behavior

of this steel after quenching into water from 14500 F (7900 C),

and here it is also evident that considerable quantities of re-

tained austenite decomposed into bainite at the higher aging

*Ms is the temperature at which martensite formation begins.



Figure 4. Relative changes in length on aging of a ball-bearing steel austenitized at 15500 F (8450 C)
for 50 minutes, quenched into oil at 1250 F (500 C), and air-cooled to room temperature.
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Relative changes in length on aging of a ball-bearing steel austenitized at 15500 F (8450 C)
for 30 minutes, quenched into oil at 2500 F (1200 C), and airrcooled to room temperature.
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Relative changes in length on aging of a ball-bearing steel austenitized at 15500 F (8450 C)
for 30 minutes, quenched into molten salt at 450° F (2300 0), and air-cooled to room
temperature.
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Figure 7. Relative changes in length on aging of a plain carbon tool steel austenitized at 14500 F

(79&0 C) for 30 minutes and quenched into water at 68° F (200 C).
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temperatures. The slight early maxima which were present in the

low alloy steel are not apparent here. However, specimens which

were quenched and immediately refrigerated to -521" F (-195o C)

and then aged, Figure 8, shrank correspondingly faster so that

there mnst have been some obscured expansion due to the early

decomposition of the retained austenite.

Because of its relatively lower hardenability, the plain

carbon steel could not be quenched into very warm baths and still

remain fully martensitic for the specimen sizes used here. It

was possible, however, to obtain fully hard samples on quenching

into water at 1250 F (500 C), and Figure 9 shows that even this

slight increase in interrupting temperature produced a marked

change in dimensional behavior. Pronounced early maxima were

present and it is apparent that this steel is very sensitive to

quenching conditions. An iced brine quench at 250 F (-5 C) was

also used for this steel since this quench is considerably more

drastic than the water quench, and these results are plotted in

Figure 10. The Ms point for thisteel was determined by the

Greninger and Troiano technique and found to be 4000 F (205" C).

All of the specimens used in this investigation were obtain-

ed from rod stock in the spheroidized-annealed condition. The

effect of fibre direction had been investigated previously(18)

by cutting specimens from a plate of ball-bearing steel parallel

and transverse to the rolling direction and subjecting them to

various duplicate heat treatments. No significant differences



Relative changes in length on aging of a plain carbon tool steel austenitised at 14500 F
(7900 C) for 50 minutes, quenched into water at 680 F (200 0), and refrigerated immediately
in liquid nitrogen at -321o F (-195o C) for one hour.
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Relative changes in length on aging of a plain carbon tool steel austenitized at 14500 F
(7900 C) for 30 minutes, quenched into water at 1250 F (50O C), and air-cooled to room
temperature.
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Figure 10. Relative changes in length on aging a plain carbon steel austenitized at 14500 F (7900 C)
for 30 minutes and quenched into iced brine at 23" F (-50 C).
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in dimensional behavior were found on aging and it has been assumed,

therefore, that the length changes measured in this investigation

reflect true volume changes due to phase transformations. This pro-

cedure is a much more sensitive test of directionality than either

direct specific volume determinations or simultaneous measurements

of length and diameter of a given specimen.
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III. QiUENCHIG DILATOMETER MIASUREMEUTS

Because of the observed instability of the dimensional

specimens during the 90 minute interval between the quench and

the first measurement, it was suspected that rather large changes

took place during this period. A quenching dilatometer was con-

structed, therefore, to study this interval immediately after the

quench. The dilatometer was essentially that of Flinn, Cook, and

Fellows(20) except that it was modified to take a thermocouple

and a specimen 4 inches long by 5/8 inch diameter. This specimen

was supported at its lower end by an outer quartz tube cut away to

admit free access of the quenching fluid, and was held by spring

compression at the upper end against a smaller quarts tube which

actuated the dial gage. The arrangement is shown in Figure 11.

For a dilatometer run, the specimen was set into the quarts

holder, and austenitized in the small lead pot set on the moving

table. To quench, the lead pot was lowered away from the speci-

men and the quenching bath brought up around it, by swinging the

counterweighted table through a U-shaped course described by the

guide shown in Figure 11. During the quench the dial gage and

timer remained in the same position and were photographed by a

motion picture camera running at 16 frames per second but with

shutter speed advanced to one-eightieth of a second to stop the

motion of the dial. The quenching bath was equipped with a high

speed electric stirrer, a cooling coil, and an immersion heater



MOVIE
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.DILATOMETER TUBE

-QUENCHING BATH

Figure 11. Quenching dilatometer apparatus showing arrangement of

the equipment and a close-up of the specimen. The dial

gage and timer are turned 9& from their normal position
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controlled by a potentiometer controller, so that a wide variety of

quenching conditions were possible. A vibrator was attached to the

quarts tube holder, and flood lights were provided to light the

dial sufficiently to be photographed.

For these experiments it was of utmost importance to determine

when the specimen had reached room temperature. A hole 1/2 inch

deep and 1/16 inch in diameter was drilled into the top of each

dilatometer specimen and a 28 gage chromel-alumel thermocouple in-

serted until it made metallic contact. This thermocouple was thread-

ed back through the inner quartz tube of the dilatometer to a string

galvanometer with a 0.007 second period which was used by Greninger(21)

and which was capable of following quenching rates up to 10,000 F

per second. This galvanometer produced a trace on photographic

paper attached to a revolving drum and provided, therefore, a record

of temperature and time. The galvanometer deflections were calibrated

in terms of temperature by measuring the austenitizing temperature

with a separate portable potentiometer and recording the high trace

on the revolving drum. A low trace was recorded at zero millivolts,

and it was demonstrated that the temperature was a linear function

of the deflection. This calibration was performed on each record.

The quenching rates for the fairly massive samples used here were

comparatively -slow and it was an easy matter to match up correspond-

ing records of length, temperature, and time.

In practice, the specimen was quenched with the flood lights

on, the buzzer operating, the stirrer working vigorously, and the

___
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camera running free. At the same time, the string galvanometer was

recording on the revolving drum. After the main motion of the dial

gage had subsided and the specimen had reached room temperature, an

automatic timer was introduced, and this would in proper sequence,

turn on the lights, operate the vibrator, activate an electronic

circuit designed to trip the shutter for a single frame, and turn

off the lights at predetermined intervals for the next 24 hours.

On runs where the quenching bath was above room temperature, the

specimen tended to approach the ambient rather slowly and the tem-

perature readings were taken directly on the potentiometer. An

electric fan was also used to accelerate the air-cooling of these

specimens.

Considerable experimental difficulties were encountered in

operating the quenching dilatometer. The specimen was quite heavy

and the quartz breakage frequent. Because of the thermal shock,

specimens could not be quenched into iced brine, and molten salt

baths could also not be used because of the solidification of the

salt about the specimen and quarts during the subsequent air cool-

ing. In order to quench to 4500 F (2500 C) it was necessary to use

a hot oil bath, but hardness readings as well as cooling curves

demonstrated that there was little difference between salt and oil

at this temperature under these conditions. Some difficulty was

also encountered with oil at 4500 F (250" C) because of a gumnmy

carbon residue which formed as the hot specimen was quenched into

the hot oil. Lead oxide in the austenitizing bath attacked the

~_ __II
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quartz and caused it to deteriorate rapidly, but this was alleviated

somewhat by deoxidizing the lead bath with an oil-soaked brick prior

to each run. Finally, the quenching fluid tended to enter between

the specimen and inner quartz rod and to flood the thermocouple.

This was prevented by using a thin tight-fitting sleeve of stainless

steel at the top of the specimen. The sleeve is not shown in Figure

11. After repeated trials, duplicate runs were obtained for each of

the quenching conditions studied here with the exception of the iced

brine quench, and since the dilatometer specimen size and quenching

conditions duplicated rather closely the situation for the dimen-

sional specimens, it was possible to anambiguously project the length

changes from the dilatometer specimen to the dimensional data.

The results for a ball-bearing steel specimen (T steel) quenched

from 1550 F (8450 C) into oil at 680 F (200 C) are shown in Figure

12, and the corresponding results for a specimen of plain carbon

steel (K steel) water quenched from 14500 F (7900 C) are shown in

Figure 15. The onset of the martensite reaction is indicated ap-

proximately by the sharp minima in the length curves since the aus-

tenite-martensite reaction is attended with a rather large increase

in volume. The temperature readings at these minima are several

hundred degrees higher than the Ma points measured by the Greninger

and Troiano method, and it is evident that the thermal gradients in

the dilatometer specimens were so high that the thermocouple was

reading consistently too high. Although this discrepancy might be

quite large during the quench, it would tend to become less as room



Figure 12. Quenching dilatometer record showing relative change in length and temperature as functions
of time for a ball-bearing steel, austenitized at 15500 F (8450 C) and quenched into oil at
68 F (200 C).
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Figure 13. Quenching dilatometer record showing relative change in length and temperature as functions
of time for a plain carbon steel, austenitized at 14500 F (7900 C) and quenched into water
at 680 F (20 C).
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temperature were approached, and in any event, it would err on the

conservative side in estimating when the entire sample had come to

room temperature. Even on the compressed scale of Figures 12 and

15 it is seen that some expansion took place after the sample had

reached room temperature, and what is equally important, that this

expansion was continuous with that caused by the martensite reac-

tion on cooling. Similar results were obtained for each of the

quenching conditions studied.
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IV. THE QUANTITATIVE DETERMINATION OF RETAINED AUSTENITE

A. The Problem

Before the reactions which hardened steels undergo on subse-

quent heat treatment could be considered in anything but qualita-

tive fashion, it was necessary to make some kind of quantitative

analysis for each of the reacting constituents. Martensite and

retained austenite are the important reactants in the normally

hardened tool steels considered here, although undissolved car-

bides must be considered as a diluent if they are present in meas-

urable quantities. Once this analysis had been made, it was more

precise to follow transformation reactions by observing changes

in length, but this latter method could only determine differences

in the amount of retained austenite, and an independent method was

necessary to establish the absolute amounts of either austenite or

martensite.

In certain instances the microscope has been used to determine

the percentage of retained austenite. The quenched sample is tem-

pered to darken the martensite, and then polished and etched in the

usual fashion. A point counting method, which measures the percen-

tage of the etched area which appears as austenite, or the lineal

analysis of Howard and Cohen(9) which measures the percentage of a

line drawn across an etched surface which is intercepted by aus-

tenite grains, has then been used to make the determination quanti-

tative. All such microscopic methods, however, depend on the etch

~
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itself being quantitative. On fairly coarse structures, larger

than ASTM grain size No. 6, if a reasonably large percentage of

retained austenite is present, i.e. larger than 15 percent, and

if the austenite is not too finely divided, there is probably lit-

tle smearing of the etch, and a lineal analysis or a point count

is probably quite accurate. If the structure is difficult to re-

solve, however, the retained austenite may be completely obliterat-

ed under the microscope or it may appear disproportionately low

as the lines of demarcation become difficult to distinguish. For

example, a plain carbon tool steel (1.07 0 - K steel) quenched

from 14500 F (790 C) shows only martensite and undissolved car-

bides under the microscope, yet as will be shown later, such a

sample contains almost 10 percent of retained austenite.

X-ray methods have been most successful in filling in the

region under 15 percent retained austenite where the microscopic

methods usually fail. Although austenite and martensite in the

same steel may be identical chemically, their crystal structures

and lattice parameters differ, and the intensity of an austenite

diffraction line is some function of the percentage of retained

aistenite in the sample. In the method of Gardner, Antia and

Cohen(22) this principle was applied by exposing the sample sim-

ultaneously with a standard aluminum foil in a Phragmen camera.

The ratio of the peak blackening of the (200) austenite line to

that of the (200) aluminum line as determined from a microphoto-

meter trace was taken as proportional to the austenite content.

_ __ _ _ __ - LL--ZY _1
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To calibrate this method, however, it was necessary to determine

this ratio as a function of austenite content by one of the micros-

copic methods. At high austenite contents this calibration was

probably quite accurate and it resulted in a straight line which

apparently passed through the origin. Close to the point where

the austenite began to disappear, however, the accuracy was pro-

bably quite low, and it is questionable if the straight line

should have been continued from the last calibration point through

the origin. Fletcher's modification(1 6 ) consisted of tempering the

sample at 500 F (1500 C) to collapse the martensite (1o0-101)

doublet and of using the (111) austenite line which is considerably

more sensitive than the (200) line.

In addition to the uncertainty in the microscopic calibration

there is an inherent theoretical error in extending the calibration

line as a straight line through the origin. The peak intensity of

a diffraction line is not a quantity which can be calculated theoret-

ically because it is influenced very greatly by the physical condi-

tion of the diffracting crystal. As the austenite transforms, the

particle size of the retained austenite becomes smaller, and soon

after it reaches the point where it can no longer be resolved under

the microscope, line broadening begins to occur in the austenite

diffraction lines. The peak intensities are thus lowered with a

corresponding increase in line width. Retained austenite crystal-

lites are also apt to be considerably distorted since the trans-

formation product has a greater specific volume than the austenite
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from which it forms. Such distortion also reduces the peak intensi-

ties appreciably, and these two factors together could easily reduce

the peak intensities by 50 percent. However, only the intensity

distribution is affected in these cases; the total diffracted energy

remains the same. Other factors such as errors in photometry and

uncertainty in "instrumental" broadening affect the peak intensity

and the shape of the line but again have comparatively little effect

on the integrated intensity, which is proportional to the energy of

the diffraction line. These factors cannot be eliminated by an ex-

ternal calibration since the austenite is no longer visible in these

regions, and they would tend to make the determination indicate less

austenite than was actually present.

It is in this low austenite region that most normally hardened

steels fall, and the isothermal decomposition data presented pre-

viously indicated that many interesting effects occur even with

small amounts of retained austenite. These data also showed that

more austenite was present in normally quenched steels than had

previously been suspected, and another method of austenite deter-

mination, which would be independent of a microscopic calibration

was sought.
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B. Quantitative Analysis by X-rays

An x-ray method based on the measurement of diffracted energy

can also be developed for determining the percentage composition

of multi-phase alloys. If, for example, a mixture of martensite

and austenite is irradiated with x-rays, each type of crystal will

diffract in accordance with the Bragg law.

(1) nA = 2d sin O

where n = order of the spectrum

A = wavelength in kX units

d = interplanar spacing in kI units

9 = diffraction angle

To consider the energy in each of these diffraction lines it is

necessary to measure the integrated intensity, i.e. the area under

the intensity vs. 0 curve. This energy can be calculated on a

theoretical basis, however, and for a powder sample consisting of

very small crystals the integrated intensity in ergs/sec per unit

length of a diffraction line for a particular substance, , is

given by:

(2) PK = KsIo S2e -2M m (L.P.) A(Q)

where K = N2 A3 e 4

24527r !,moec
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and PC = power per unit length of diffraction line in

erg/sec for a particular diffraction line of

substance *c

N( = number of atoms per cm5

A = wavelength in cm.

e = electronic charge in e.s.u.

Ro = camera radius in cm.

me = electronic mass in grams

c = velocity of light in cm/sec.

I o = intensity of plane incident wave in erg/cm2 -

sec.

V = volume in cm5 of substance, o( , irradiated

S, = structure factor per atom

e- 2 m = Debye-Waller temperature factor

m = multiplicity of diffracting plane

L.P. = Lorens and polarization factor

A(G) = sample absorption factor

Collecting all the constants which would apply for a given camera

and exposure, this equation may be asrranged to:

(5) PI = const * N eF2e- 2M m (L.P.) V, A(G) = const * R*V~A(G)

where No = number of unit cells per unit volume = -

v, = volume of unit cell of substance *

F = structure factor per unit cell



-57-

If martensite is taken as the substance o< , then a similar

equation may be written for each diffraction line of austenite,

substance Y , where No, F, m, (L.P.), V. and A(Q) each have

different values. For each line, therefore, the coefficient R

contains the factors which may be readily calculated from tabu-

lated values, the volume irradiated in the unknown to be deter-

mined, and the absorption correction depends on the geometry of

the sample. For a flat sample set at a grazing angle, , the

absorption correction has been given by Taylor(25) as:

(4) A(Q) = a(sain s )  in(20 .- ) , (0)
"A sin (20 - # ) + sin# '

where a = area of specimen irradiated

,, = average linear absorption coefficient for the

entire specimen.

Since "a" and "" are constants for a given exposure, the factor

A' () varies only with 9 in a smooth curve such as the one plotted

in Figure 14 for the case where , = 60 0 . It is noticeable that

the absorption decreases rapidly as the back reflection direction

is approached.

To determine the volume percentage of c? and 2 , the dif-

fraction lines of substance o( are microphotometered and the inte-

grated intensity per unit length of line determined in arbitrary

units. Division of these observed intensities by the appropriate

values of R will leave the product V, *A(Q), and since Vc< is a
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ABSORBTION CORRECTION FOR FLAT SAMPLE
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e (DEGREES)

Figure 14. Variation of absorption correction with diffraction angle
for a flat sample.

60
4)



1

constant for all of the diffraction lines from substance *<, a plot

of V( *A(Q) vs. 0 should have the same general shape as the curve

in Figure 14. If the sample contains a different percentage of '

than of Y , a similar procedure will yield another curve for

V,*A(G) which should also have the same shape as the one in Figure

14. Since A'() is the same for both diffracting substances, the

difference in the curves for o< and ? is due only to the fact that

V, is different than Vy . The constant ratio by which the ordi-

nates of the Y curve must be multiplied to place them on the 0(

curve is thus equal to the volume ratio of '.N. If no other dif-

fracting medium is present in the sample, the volume percentage of

each constituent may then be calculated from the additional fact

that c + = 100.

C. Experimental Procedure for Retained Austenite

The procedure may be illustrated by describing the determina-

tion of retained austenite in the K steel (1.07 carbon) austenit-

ized at 14500 F (790 C) for 50 minutes and quenched into water

at room temperature. The sample was a cylinder 3/8 inch diameter

by 5/8 inch long (0.95 x 1.6 cm) heat treated in a lead pot and

quenched into agitated water. After heat treatment, about 1/8

inch was removed from the flat surface on a wet grinder with pre-

cautions taken not to temper the specimen. A standard metallo-

graphic polish and etch with 1 percent nital was then used and the

sample was examined for evidences of tempering and flow. Pitting
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of the undissolved carbides was also avoided since the diluting

effect of these carbides was considered in a subsequent calculation.

The specimen was then mounted in'a Debye camera so arranged

that the grazing angle, # , with a flat cross-section was 600.

This grazing angle was chosen since it was small enough to allow

the (200) martensite line to diffract, and large enough to prevent

excessive line boradening because of the obliqueness of the irrad-

iated surface. A flat sample was used because of the ease of dup-

licating the surface preparation and because it was possible to re-

move sufficient metal from the surface to make certain that no edge

effects were involved. A plane surface is also an efficient dif-

fracting shape and exposure times were considerably lower than for

a wedge or a thin rod. Monochromatic CoKoK radiation was obtained

by the diffraction of cobalt radiation from the (200) face of a

rock salt crystal mounted directly on the camera in front of the

collimating system. Although both the half and third wavelengths

were also present they did not interfere with the determination

since only the relatively weak lines were used. Monochromatic

radiation was used to cut down the background intensity so that the

very weak lines for low percentages of austenite would be visible,

and the camera was also evacuated to reduce air scattering. The

camera arrangement is shown in Figure 15. Segregated areas in the

specimen were avoided, and because of the fine grain size (ASTM No. 9)

obtained from this particular heat treatment no sample oscillation

was necessary to obtain smooth uniform diffraction lines. Exposure

-- 1 I
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times were about 24 hours and the central reproduction in Figure

16 shows the diffraction pattern obtained by this method for the

K steel water quenched from 1450& F (790 C).

The x-ray patterns were recorded on Eastman No-Screen film,

and all films were processed so as to produce a linear blackening

vs. intensity curve up to a blackening of 1.5. In practice, how-

ever, the maximrum blackening used was approximately 1.2. These

films were then microphotometered in a Kipp and Zonen recording

microphotometer with the light intensity adjusted to provide the

greatest possible vertical enlargement of the lines, and the cen-

tral trace of Figure 17 shows the microphotometer record of the

corresponding film of Figure 16. This densitometer trace was

then converted to a blackening curve and the areas under each

peak calculated by Simpsonts rule in the manner described by

Fit zwilliam(24).

Most of the factors for the value of R in equation (5) have

been tabulated by Taylor(25). The volume of the unit cell was

calculated in each case from the known parameters of austenite

and martensite for this carbon content(15). Since the CoKcx

radiation (1.7872 kX units) is very close to the absorption

edge of iron (1.7594 kI units) a rather large correction must

be made in the listed atomic scattering factors for dispersion.

This correction has been tabulated by H8nl(25) and takes the

- I ---MEN** 1 1 'W"" a W
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Figure 16. X-ray diffraction patterns obtained with

CoK monochromatic radiation showing aus-

tenite and martensite lines.
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form:

(5) f = fo - a

where f = effective atomic scattering factor

fo = calculated atomic scattering factors for the

case where the irradiating wavelength is not

close to an absorption edge of the sample

A f = decrement of the atomic scattering factor

due to interaction with the K electrons

For the case of CoK. radiation on iron, Af = 4.0 units. Since

the camera was too small and the lines too diffuse to allow reso-

lution of the martensite doublet for most of the lines, the doub-

lets were lumped together as if they were effectively body center-

ed cubic lines for the martensite and the structure factor as well

as the multiplicity were calculated on this basis.

The Debye-Waller temperature factor was calculated from the

Debye temperature for iron taken as 420P K(26). In the Lorenz and

polarization factor, account was taken of the fact that a beam of

x-rays monochromated by a rock salt crystal is not completely un-

polarized and the (L.P.) factor was calculated from

cos 2  cos2 2
(6) (L.P.) = + cos2 c 2 2

sing sin 20

where Qc = Bragg angle for the monochromating crystal. The values

of each of these factors are listed for austenite and martensite

in Table II.
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TABLE II

X-ray Constants for Austenite and Martensite Lines

CoKc radiation (1.7872 kX units) crystal monochromated.

Martensite: body centered tetragonal

ao = 2.852
co = 2.975

(P f (eff.)

58.60

49.90

61.90

10.4

8.8

7.6

F

20.8

v a = 24.2 (kX)

a L.P. -

6 1.70 .920

17.6 24 1.55

15.2 12 1.65

R

6.91

.875 15.05

.835 6.54

Austenite: face centered cubic

ao = 3.597

(220) 44.68 9.4

= 46.4 (U)

57.6 12 1.40

52.8 24 1.42

Line

(200)
(002)

(211)
(112)

(220)
(022)

.890 9.80

-- i

(511) 55.18 8.2 .860 14.75
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The integrated intensities in arbitrary units for each of the

lines for a sample of K steel (1.07 carbon) exposed 50 hours after

quenching are listed in Table III. On plotting the values of

V, *A(G) for the martensite lines, Figure 18, it is evident that

the shape of the absorption correction is the same as that predict-

ed by the calculated curve for a flat sample in Figure 14. Similar-

ly the values of V¥ *A(G) for the austenite points lie on a curve

considerably lower than that for the martensite. From Figure 18 it

is evident that the (220)Y must be multiplied by 9.7 to bring it

up to the martensite curve and the (311)Y by 9.2. On averaging,

the ratio martensite = 9.5.austenite

If the entire volume of the sample were composed of austen-

ite and martensite the percentage of austenite could be computed

readily. Undissolved carbides are, however, plainly visible under

the microscope. These carbides contribute diffracted energy to

neither the martensite nor the austenite lines so that:

(7) V. + V = (100 - volume percent of carbides)

These carbides were measured by a lineal analysis under the micros-

cope and this sample was found to contain 2.6 percent by volume.

Therefore:

(8) - = 9.5

o< +r-= 97.4

and = 9.5 percent by volume.

sr~CY"IIIC --
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TABLE III

Integrated Intensities for Austenite Determination

K Steel (1.07 C) - 14500 F water quenched

2.6 percent carbides

Integrated
Line Intensity P'

Martensite

Austenite

(200)

(211)

(220)

(220)

(511)

4.849

19.451

9.591

1.095

2.518

V*A(Q)

0.702

1.295

1.470

0.112

0.165

Ave.

o

Volume
Percent

9.7

9.2

9.5 9.5

= 9.5

= 100 - 2.6 = 97.4

X = 9.5

"--~--I --
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Figure 18. The variation of V*A(G) with diffraction angle obtained for K
steel (1.07 C) austenitized at 14500 F (790P C) and quenched
into water. The lower points are calculated from the austen-
ite lines and the constant ratio needed to bring the lower
points on to the upper curve gives the volume ratio of mar-
tensite to austenite.

60
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This correction for the volume of carbides is small and lies

within the limit of accuracy of the determination. Whereas the

microscope has been used here for the carbide correction, it is

only responsible for a small correction on the total volume. No

direct calibration with observed austenite contents is necessary,

and the undissolved carbides can be determined on the actual sam-

ple under observation. The carbide volume is usually a function

of the austenitising temperature only and appreciable errors in

the carbide count will influence the austenite results only

slightly.

The carbide volume can also be checked from the M0 point de-

termination. If we assume for the plain carbon steel (1.07 car-

bon) that the undissolved carbides are present as FeSC, on sub-

traction of the carbon in the 2.6 percent carbides from the total

carbon, it would seem that 0.90 percent carbon is in solution.

The M point for such a steel has been given as about 4000 F

(2050 C) by Elier and Troiano(2 7 ) and this checks exactly with

the N5 point observed here for these quenching conditions. For

the ball-bearing steel (1.0 carbon, 1.5 chromium, 0.20 vanadium)

oil-quenched from 15500 F (8450 C) the undissolved carbides were

found to be 4 percent by volume by lineal analysis. Performing

a similar calculation from the measured N point it is found that

this steel behaves effectively as if 0.84 percent carbon and 0.5

percent chromium were in solution.

__ ~C
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To check on the reproducibility of the austenite determina-

tion, another exposure was made on the same sample immediately

afterwards. This result and the results on several other samples

treated identically are shown in Table IV. The error in the de-

termination was estimated to be +5 percent of the amount of retained

austenite, or +0.50 percent austenite, whichever is the greater.

The sensitivity of the method is quite high since the exposure time

can be increased to bring out even very weak austenite lines. Fig-

ures 16 and 17 illustrate the x-ray patterns and microphotometer

traces for cases where the austenite contents are as low as 2.9

percent and as high as 14.5 percent. It should be possible to de-

tect austenite contents as small as one-half percent with the ex-

posure conditions used here.

It is also interesting to note in Figure 17 that the austen-

ite lines become relatively sharper as the austenite content in-

creases, and that at low austenite contents the lines are quite

broad. This effect is due to either fine particle size or dis-

tortion and contributes to the error caused by using peak inten-

sities alone as a criterion of austenite content.

D. Extinction and Absorption Effects

Before this method could be accepted with confidence several

other factors had to be considered. Equation (2) is applicable

only in the absence of extinction. Primary extinction is caused

by the cancellation in energy due to a 180& phase shift as the

- I ~Y CPI~-- V -- ------- I
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TABLE IV

Effect of Room Temperature Aging on Retained Austenite Contents

K Steel (1.07 C) - 14500

Time After
Sample Quench (Hours)

1 530

1 54

2 72

5 240

4 480

5 6000

F, quenched into water at 6880 F.

% Retained
Austenite % Martensite % Carbides

9.5 89.1 2.6

9.5 88.9 2.6

9.4 890 2.6

9.0 89.4 2.6

9.1 89.5 2.6

8.8 89.6 2.6



- 53 -

primary beam proceeds through a given set of planes in a single

crystal. As the crystal becomes smaller the extinction decreases,

but the particle size in this case is not small enough to justify

the assumption that extinction is absent. There is, however, con-

siderable distortion in both the austenite and martensite crystals

and it has been shown(28) that plastic deformation practically

eliminates extinction, especially for the weaker reflections. In

addition, extinction has its greatest effect on the very strong

reflections, (111)2 and (110)c( , which are not used in this de-

termination. It seems reasonable to assume, therefore, that the

extinction effects are negligible here.

Equation (2) is also limited to the case where the particle

size is so small that the absorption in the individual particle

produces a negligible reduction of intensity of the transmitted

beam. Unfortunately, although this effect is quite troublesome,

it has generally been overlooked. This phenomenon is termed

microabsorption and has recently been treated theoretically by

Brindley(29), Taylor(50 ) and Brentano(51). Following the rea-

soning of Brindley, a given crystal A, in a mixture of A and B

crystals, Figure 19, is considered as it is irradiated by x-rays.

The path of the incident beam to the crystal and of the diffracted

beam from the crystal may be considered as a statistical average

of A and B according to the average composition of the sample.

To this part of the path an average absorption coefficient/"

calculated from the composition in the usual fashion may be used,

_ __ __ ___



a b
X-ray reflection from mixe ,d nIedium grade p,, n(lers (0"01<jD<01). (a)

shows a two-component powder. (b) show s reflection from a volume-
elementSva of a crystal in a polycrystalline particle; x is the path of
the radiation in the particle.

Figure 19. Diffraction of x-rays by a given grain in a

mass of crystallites. (After Brindley(19)).
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and it is this macroabsorption coefficient which appears in the

usual absorption correction such as the one given by equation (4).

In this case the absorption coefficients of A and B appear only

as part of an average for the absorption of the entire sample.

For a diffraction line of A however, part of the path, as shown

in Figure 19 must lie completely within A. Similarly, for the

diffraction lines of B part of the path must lie completely with-

in B. If the absorption coefficient for A is very much larger

than that for B, or if the particle size of A is very much larger

than that of B, a larger part of the energy will be lost by absorp-

tion in A, and the particle with the smaller absorption will be

disproportionately accentuated on the pattern. Such an effect may

seem trivial, but a large number of particles must diffract to pro-

duce an observable diffraction line, and this factor can become

the most important single cause of error in a quantitative deter-

mination by x-rays.

Fitzwilliam(24) demonstrated this effect by irradiating pow-

der compacts of known composition and particle size with x-rays of

different wavelengths. Table V taken from his data shows the

startling errors which may be obtained, and it is evident that

microabsorption correction (Z) must be applied here. This cor-

rection should be some function of the absorption coefficient and

the particle size for each constituent and it appears in the in-

tensity equation as:

(9) PA = const * N F2e- m (L.P.) VA* AA(G)
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TABLE V*

The Microabsorption Effect

Sample I - 40.0 Fe, 60.0 Ni (Wt. percent) - <200 mesh, >525 mesh

Observed
A Composition

Fe Ni

0.709 42.6 57.4

1.539 12.5 87.7

1.787 42.7 57.,*

Sample II -

Cu

0.709 29.5

1.539 36.2

1.787 32.?

True
Mass
Ratio

1.500

1.500

1.500

Observed
Mass
Ratio

1.346

7.125

1.344

Brentano Brindley
Observed Theory Theory

0.90

4.75

0.90

0.80

5.58

0.75

0.60

> 34

0.42

49.9 Cu, 50.1 Al (Wt. percent) --<200 mesh,>525 mesh

Al

70.7

65.8

67.8

1.004

1.004

1.004

2.412

1.764

2.106

2.40

1.76

2.10

1.92

2.10

2.60

5.28

5.88

6.91

Linear Absorption Coefficients

Al

14.5

131

195

Cu

444

470

711

Fe

502

2550

466

Ni

422

438

669

* After Fitzwilliam(24)

A

.709

1.559

1.787
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Similarly in the intensity equation for B a factor ZB will appear

and the ratio P1 will be in error by a factor K = ZA. If K = 1,

there is no microabsorption factor, and the farther K is from unity

the greater is the correction.

The form which the microabsorption coefficient, Z , should

take is not quite clear at present. Bridnley and Taylor have de-

rived the equation for this correction as:

1 a (/A'A -,Ax
(10) A = V e dV,

where dVa = volume element of crystal A correctly oriented

to reflect radiation

/' = mean absorption coefficient of the solid mat-

erial forming the powder specimen

A/A = linear absorption coefficient of substance A

x = path length of the radiation in the particle

of A

The values of ' have been tabulated by Brindley(29) for various

values of (/A -/)* (r = radius of the particle), and the values

of K predicted by this theory are shown for Fitzwilliams's data in

Table V. It is evident from a comparison with the experimental

data that the value of K is always in the right direction, but that

it overestimates the effect.

Considering the same problem in a somewhat different fashion,

Brentano(51) calculated the value of K for a series of cube crystal-

_ ~0-qLLYIIIPLs-. --
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lites diffracting in the back reflection direction. He obtained

the correction in the form:

-2/' A . ZA
(11) K= /t B  1- e

- 2 / B . ZB

where Z = cube edge dimension

Values of K by the Brentano theory are also shown in Table

V and it is seen that these values agree much more closely with

the experimental data, and wild be used to estimate an approxi-

mate value for the correction factor K.

For the martensitic steels considered here, the largest par-

ticle of either constituent can be no greater than the original

austenite grain size and the smallest could be estimated as being

about a tenth of that value. Estimating the austenite grain size

from the fracture grain size, which was ASTM No. 9 for most of

the cases investigated here, the mean grain radius may be taken

as about 0.90 x 10-' cm(52). Because of the difference in den-

sity the austenite has a lower absorption coefficient than the

martensite but the factor (4A -r) is only about 15. Using

either the Brindley theory, which overestimates the effect, or

the Brentano theory, which seems to be about right, the value

of K is unity, despite the generous assumptions which have been

made with respect to particle size. This is quite fortunate since

it eliminates a troublesome correction and the results for the

quantitative determination of the austenite-martensite system may

be regarded with greater confidence.

--~C~LlsP Y
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E. Results of Austenite Determinations

Table VI lists the austenite contents for the K steel (1.07

carbon) as a function of the quenching conditions. Each deter-

mination is the average of at least two determinations. These

values are somewhat higher than the corresponding values shown

by Fletcher(15) and a surprisingly large amount of austenite is

present even after immediate refrigeration to liquid nitrogen

temperature. Although previous data had indicated that this

treatment left no residual austenite, the dimensional changes

discussed previously had indicated that some austenite must be

present even after immediate cooling with liquid nitrogen, and

the transformation of all of the austenite by subcooling alone

seems to become impossible in this case.

Of interest also is the significant increase in retained

austenite as the quenching bath is raised to as low a temperature

as 1250 F (500 C). During some commercial quenching practices,

the work is removed from the quench before it has reached room

temperature, and this in effect approximates a quench into luke-

warm water. Such a quench can result in appreciably higher re-

tained austenite.

Similarly, Table VII indicates the retained austenite con-

tents for the ball-bearing steel (T steel, 1.0 carbon, 1.5

chromium, 0.20 vanadium) as a function of quenching conditions.

Here again, the austenite content rises somewhat as the tempera-

ture of the quenching bath rises, and on quenching above the M s

~- ~-- II
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Treatment

Water quenched to 680 F

Water quenched to 1250 F, air
cooled to room temperature

Quenched into iced brine at
250 F

Water quenched to 680 F, refrig-
erated immediately to -521o F

*10 days after heat treatment

Hardness
Rockwell C

67.0

65.9

67.2

68.0

% Retained
Austenite*

9.0

14.1

8.5

2.9

TABLE VI

Retained Austenite Contents

K Steel (1.07 C) - Austenitized at 14500 F for 50 minutes

(2.6 percent Carbides)
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TABLE VII

Retained Austenite Contents

T Steel (1.0 C, 1.5 Cr, 0.20 V)
Hardness % Retained

Treatment Rockwell 0 Austenite*

Austenitized 1550o F for 50
minutes (4.0% Carbides)

Oil quenched to 68° F, air cooled to 66.5 7.0
room temperature

Oil quenched to 1250 F, air cooled to 64.9 9.0
room temperature

Oil quenched to 2500 F, air cooled to 64.4 9.5
room temperature

Quenched into molten salt at 4500 F, 64.0 10.6
air cooled to room temperature

Oil quenched to 680 F refrigerated 67.0 2.0
immediately to -521 F

Austenitized 1450' F for 50 minutes

Quenched into water at 680 F 65.5 5.1

Quenched into water at 680 F refrig- 65.6 0.5
erated immediately to -5216 F

*10 days after heat treatment
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point (4200 F for this steel when austenitized at 15500 F) as in

martempering, it is seen that about 10 percent of austenite is

retained.

A check of the x-ray method against the line counting method

in the regions where the microscope is applicable is summarized

in Table VIII. Samples of the ball-bearing steel were quenched

into oil at 680 F (200 C) after austenitizing for 30 minutes at

1550, 1650, and 17500 F (845, 900, and 9550 C). Austenite con-

tents were determined by x-ray, the martensite was then darkened

for 10 seconds at 6100 F (5200 C) and the austenite determined by

lineal analysis. At the higher austenitizing temperatures the

structure was coarse enough to give some confidence in the visual

determination and Table VIII shows that both methods checked rea-

sonably well for the higher austenite contents. When samples were

quenched from 15500 F (8450 C), however, no austenite was visible

under the microscope, but the x-ray method indicated 7.0 percent

present.

In the chromium steel (T steel) the rate of cooling through

the martensite region has a very marked effect on the amount of

retained austenite, and Table IX shows that as the rate of cool-

ing through the region of martensite formation is increased, the

percentage of retained austenite is decreased. A specimen

quenched from 15500 F (8450 C) into oil contains 7.0 percent aus-

tenite, compared to 5.8 percent for a water quenched specimen.

This effect of cooling rate below the M8 point was shown in another

~_ I
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TABLE VIII

Comparison at X-ray Determination vs. Lineal Analysis

T Steel (1.0 C, 1.5 Cr, 0.20 V)

Treatment

Austenitized 15500 F, 50
minutes, oil quenched

Austenitized 165 F, 50
minutes, oil quenched

Austenitized 1750 F, 50
minutes, oil quenched

% Carbides

4.0

2.6

0.2

% Retained Austenite
Lineal

Analysis x-ray

0

14.1+2.0

18.042.0

7.00.4

14.00.8

20.0+1.0

__ ~ Z~LtCeL~i~lt~ -- ~
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TABLE IX

Effect of Quenching Conditions on Retained Austenite Content

T Steel (1.0 C, 1.5 Cr, 0.20 V) - austenitized 15500 F, 30 minutes

Austenite Content*
Treatment Volume Percent

Quenched into oil at 680 F 7.0

Quenched into water at 68" F 5.8

Quenched into iced brine at 2350 F 4.9

Quenched into iced brine at 250 F, refrig- 0.7
erated immediately to -521" F

Quenched into molten salt at 4500 F, air 10.6
cooled to room temperature

Quenched into molten salt at 450 F, oil 6.2
quenched to room temperature

Quenched into molten salt at 450 F, water 6.1
quenched to room temperature

Quenched into molten salt at 450 F, quenched 0.9
into liquid N at -521" F

*10 days after heat treatment

~UI_ I



- 65 -

way by quenching specimens into molten salt at 450 F (2300 C),

which is above the Ms temperature, and then air cooling, oil

quenching, and water quenching to 680 F (200 C). The data for

this series in Table IX again indicate that an increase in cool-

ing rate below the Ms point reduces the austenite content. This

effect of cooling rate through the martensite range is probably

due to the very rapid stabilization of austenite towards trans-

formation on cooling which occurs during aging at and slightly

above room temperature. A similar effect has been observed by

Fletcher and Cohen( 1 6 ) who found that aging of retained austenite

at room temperature progressively stabilized it against further

transformation on subcooling.

It is also interesting to note that even a quench into liq-

uid nitrogen at -521o F (-195o C) from above the M temperature

was still unable to transform all of the austenite into marten-

site. About 0.9 percent retained austenite remained after this

treatment even though the cooling had been continuous from the M8

temperature to -321o F (-195o C) without any interruption at room

temperature. It seems almost impossible to completely transform

all of the retained austenite in a specimen of this size (5/8 inch

diameter, 5/8 inch long) by merely cooling through the martensite

range, and the temperature at which martensite is completely trans-

formed on cooling, that is the Mf point, becomes rather difficult

to define without some reference to stabilization phenomena.



- -

- 66 -

F. Effect of Tempering on Austenite Determinationg

As a mixture of austenite and martensite is tempered, two

effects occur simultaneously. The austenite decomposes, in a

fashion shown in greater detail by the precision length measure-

ments, and the martensite tempers. With the decomposition of

the austenite, the intensity of the austenite line decreases,

but at the same time, as the transition precipitate forms dur-

ing the tempering, iron atoms are tied up within the transition

precipitate lattice and can no longer contribute to the marten-

site line. The observed ratio of the austenite and martensite

integrated intensities will depend, therefore, on the amount of

precipitation which has taken place, as well as on the austenite

content itself.

From M. point data and from microscopic observations on the

volume percentages of undissolved carbides present, the ball-

bearing steel (1.0 0, 1.5 Cr, 0.20 V) has 0.84 percent carbon in

solution after an oil quench from 15500 F (8450 C), and the plain

carbon steel (1.07 carbon), has 0.90 percent carbon in solution

after an oil quench from 14500 F (7900 C). If these steels are

tempered at 5000 F (1500 C), later data will show that 0.50 per-

cent carbon is precipitated from the martensite lattice for the

plain carbon steel (K steel) and 0.15 percent carbon by the ball-

bearing steel (T steel). Kurdjumov( 5 5 ) indicates that about 0.45

percent carbon should be precipitated, but his data is derived
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from axial ratio determinations on martensite formed from a single

crystal of austenite containing 1.4 percent carbon and would be ex-

pected to apply only approximately to this case.

This transition precipitate is definitely known from magnetic

measurements not to be FegC, yet if it were, 4.5 percent of Fe5C

by volume would be formed for the K steel (using the 0.30 percent

precipitated carbon figure). There has been some evidence ( 54 ) ,(35)

to support an average composition of Fe6C for the precipitate, and

on this basis it seems reasonable to assume, therefore, that about

10 percent of the volume will be occupied by the transition precip-

itate for the K steel (1.07 carbon) and about 5 percent for the T

steel (1.0 carbon, 1.5 chromium, 0.20 vanadium) after tempering at

5000 F (1509 C). There is some doubt if the correction should be

applied in this way since it is questionable whether all of the

iron atoms in the initially formed transition precipitate will

move far enough out of the iron lattice so that none will diffract

with the martensite, and this correction is probably only a first

approximatbn. Table X shows the effect of this correction to the

martensite lines and the differences caused by the correction are

practically all within the limit of accuracy for the x-ray deter-

mination. The differences between tempered and non-tempered speci-

mens check qualitatively, however, with the decompositions of aus-

tenite observed -later by length measurements. (See Table XIV).
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TABLE I

Effect of Tempering on Austenite Determinations

T Steel (1.0 C, 1.5 Cr, 0.20 V)

% Retained Austenite
Corrected for
Tempering of

Treatment Uncorrected Martensite

15500 F, oil quenched, tempered 7.4 6.8
3000 F, 30 minutes

15500 F, oil quenched, tempered 7.2 6.7
5000 F, 1 hour

15500 F, oil quenched, tempered 7.3 7.0
500o F, 5 hours

Average 7.5 6.8

15500 F, oil quenched, tempered 7.0
680 F, 240 hours

11500 F, oil quenched, tempered 6.7
680 F, 6700 hours

15500 F, oil quenched, tempered 6.2
2000 F, 6700 hours

K Steel (107 C)

14500 F, water quenched, tempered 9.0
680 F, 240 hours

14500 F, water quenched, tempered 8.8
68 F, 6000 hours

14500 F, water quenched, tempered 6.2
2000 F, 6000 hours

14500 F, water quenched, tempered 9. 8.4
3000 F, 1 hour
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At tempering temperatures below 2500 F (1200 C) the temper-

ing correction on the martensite lines is negligible and Tables

IV and X show that some austenite decomposes isothermally on

tempering at temperatures as low as 680 F (200 C). This iso-

thermal decomposition of austenite is determined more accurately

later by precision length measurements.



- 70 -

V. THE DECOMPOSITION OF MARTENSITE

Previous investigations on the decomposition of martensite

(7),(34) have been handicapped by the inability to quantitatively

account for the effects caused by retained austenite, which was

always present. By a combination of the quantitative x-ray de-

terminations of austenite and the precision length measurements

it was possible in the study, however, to subtract out the

changes caused by the austenite and to observe each reaction sepa-

rately. In addition, these methods were sensitive enough not only

to show the fine detail involved in the first stage of tempering

but also to detect minute amounts of the isothermal transformation

of austenite proceeding at room temperature.

If we consider a steel containing only austenite and marten-

site, then the total change in length observed may be considered

as the sum of the contraction caused by the decomposition of the

martensite and the expansion caused by the transformation of the

austenite. For two mixtures containing different percentages of

each constituent this may be epxressed algebraically:

(12) A L = mlM + alA

a L2= mtM + a2A

where m = volume percent of martensite in Mixture 1

at time = 0.

m
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m2 = volume percent

at time = 0.

al = volume percent

at time = 0.

a2 = volume percent

at time = 0.

A L1 = unit change in

time = t.

L L2 = unit change in

time = t.

M = unit change in

composition in

to time = t.

A = unit change in

transformation

It is not difficult

of martensite in Mixture 2

of austenite in Mixbure 1

of austenite in Mixture 2

length of Mixture 1 up to

length of Mixture 2 up to

length caused by partial de-

1 percent of martensite up

length caused by partial

in 1 percent of austenite

up to time = t.

to show that:

(13) al - a6 , = M (ml - al m2)
a2 a2

This formulation assumes that the decomposition of one percent of

martensite or austenite has the same kinetics in each mixture.

As an example, for the ball-bearing steel (T steel) oil quench-

ed to 680 F (200 C) and refrigerated immediately to -521O F (-195o C)

in liquid nitrogen, x-ray and lineal analysis has shown that such a

_ ~~__~_ .~___ ~L~r~LI~r~-t~Y
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steel contains 2 percent retained austenite, 4 percent carbides,

and 94 percent martensite by volume. Its isothermal dimensional

behavior is shown in Figure 5. Similarly, if this same steel is

merely oil quenched to 680 F (20P C) and not refrigerated, its

analysis will be 7 percent retained austenite, 4 percent carbides,

and 89 percent martensite. The dimensional changes on tempering

for this steel are shown in Figure 2. Therefore,

Ml = 94.0 m2 = 89.0

a8 = 2.0 a2 = 7.0 a 2

If from each curve in Figure 3, 0.286 of the corresponding ordi-

nate in Figure 2 is subtracted, the difference will be the con-

traction caused by 68.6 percent of martensite (94 - 0.286 x 89.0).

Proportionately, the contraction due to 100 percent martensite may

be constructed for each aging temperature and these curves are

plotted in Figure 20. Similarly, in Figure 21 the contractions

for 100 percent martensite in the plain carbon tool steel (1.07

carbon) on aging at various temperatures were obtained by a suit-

able combination of Figures 7 and 8 and the x-ray determinations

of austenite for these treatments.

Not only can the contraction of 100 percent martensite be

obtained from these curves but also the expansion caused by the

isothermal decomposition of the retained austenite in each speci-

men. For example, if 89 percent of the martensite contraction

curves in Figure 20 are subtracted from the corresponding curves

in Figure 2, (i.e. for the oil quenched ball-bearing steel with



Figure 20. Relative changes in length on aging 100 percent martensite of a ball-bearing
austenitized for 50 minutes at 15500 F (8450 C) and quenched into oil.
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Figure 21. Relative changes in length on aging 100 percent warteAite of a plain carAon tool
steel austenitized for 30 minutes atl450' F (7900 0) and quenched into water.
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7 percent austenite and 89 percent martensite) the net expansion

caused by the decomposition of 7 percent of retained austenite

will be obtained. These calculations were also made for each com-

bination of austenite and martensite in both steels and the results

will be presented later in the discussion of isothermal austenite

decomposition.

In making these subtractions two assumptions have been made. It

was first assumed that the subcooling had no effect on the subseauent

rate of martensite contraction. This point was checked by refriger-

ating quenched specimens very rapidly and also rather slowly with

liquid nitrogen and then observing their dimensional changes on ag-

ing at room temperature. If the refrigeration had had any effect on

the subsequent martensite decomposition the specimens would have con-

tracted at different rates on room temperature aging, but all samples

contracted at exactly the same rate with no apparent relation to the

rate of subcooling. It was therefore safe to assume that refrigera-

tion had no effect on the rate of martensite contraction.

The second assumption implied that the condition of the austen-

ite in both steels was identical and that it would decompose at the

same relative rate in each case. This is probably not precisely

true. Stress undoubtedly plays an important part in the austenite

transformation, and stress conditionsin the refrigerated sample

were probably somewhat different than in the other. There is

also an active mass effect for the larger amount of austenite

balanced against a stabilization towards isothermal trans-
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formation which is known to occur on tempering(18). Since a cor-

rection for the presence of only about 2 percent of austenite had

to be made for the refrigerated steel, the error in this correc-

tion would in the worst case be relatively small and would prob-

ably make little difference in the final curves. In addition, the

corrections were obtained from two steels which had austenite con-

tents within a few percent of each other so that conditions in each

steel were probably similar.

From the contraction curves for 100 percent martensite in Fig-

ures 20 and 21 several qualitative trends can be drawn directly.

The reaction starts immediately with no apparent incubation per-

iod, and if the reaction curves are plotted on a linear scale, it

is seen that the rate of reaction seems to be a maximum at the be-

ginning. That a precipitation accompanies the martensite decompo-

sition is apparent in Tables XI and XII where the hardness values

for both steels are tabulated after various combinations of tem-

pering and quenching treatments. It is interesting to note that

this reaction is quite similar to the usual precipitation harden-

ing phenomena observed in non-ferrous alloys. The max un harden-

ing occurs at low aging temperatures during the early stages'of

formation of the transition precipitate and softening commences

as disregistry with the matrix lattice and stress relief sets in

and the agglomeration of the precipitate starts. This hardening

is not caused by the isothermal decomposition of retained austenite,

for a comparison of the refrigerated and non-refrigerated steels

~II_ ~ I
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TABLE XI

Effect of Tempering on Hardness

T Steel (1.0 C, 1.5 Cr, 0.20 V)
Austenitized 1550 F, quenched as indicated

Hours at
Temperature
Aging Temperature

Quenched into oil at
Quenched into oil at

52
68

100
150
200
250
500

100 1000

Rockwell C
68s F

66.8
66.9
67.0
67.1
66.9
65.7
64.0

67.1
67.0
67.5
67.4
66.7
64.5
62.6

67.0
67.1
67.4
66.8
65.5
65.8
61.1

67.5
67.5
67.4
65.7
64.2
61.4
60.5

Quenched into oil at 680 F. refrigerated immediately to -5210 F

52
68

100
150
200
250
500

67.2
67.2
67.6
68.2
68.0
66.1
65.7

67.2
67.2
67.6
68.5
67.5
65.2
62.4

67.2
67.4
67.8
67,6
66.5
64.1
61.0

Quenched into oil at 1250 F. air cooled to 680 F

32 64.8 65.0 65.3
68 65.2 65.5 65.6

100 65,1 65.4 65.8
150 65.1 65.5 65.2
200 65.0 64.7 64.1
250 64.2 65.6 62.9
500 64.0 62.7 61.5

Quenched into oil at 250& F, air cooled to 680 F

52
68

100
150
200
250
500

65.6
64.8
64.8
65.8
64.8
64.2
65.2

65.9
65.5
65.1
65.6
64.1
63.1
61.7

66.0
65.7
65.5
65.4
65.7
62.0
60.0

Quenched into molten salt at 4500 F. air cooled to 680 F

68
100
150
200
250
500

62.5
62.7
64.9
64.5
653.8
64.5
64.4

62.8
62.7
65.0
64.9
65.6
64.4
65.5

62.8
65.0
65.2
64.7
63.4
65.6
62.6

65.0
63.9
65.0
64.5
62.9
61.9
61.0

5000

66.7
67.7
66.9
65.5
65.6
60.7
60.5

67.6
68.2
67.2
66.2
64.5
62.1
60.0

65.4
65.8
65.3
64.12
62.2
61.2
60.5

66.0
65.6
65.4
64.8
62.5
59.1
58.5

67.5
68.5
66.6
66.4
65.5
61.1
60.0

65.2
66.1
64.6
64.1
61.8
58.9
57.6

65.5
65.4
64.4
62.1
58.9
58.0

10 .....
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TABLE XII

Effect of Tempering on Hardness

K Steel (1.07 C) - Austenitized 14500 F, quenched as indicated

Hours at
TemDerature

Aging
Temperature oF
Ouenched into brine

52
68

100
150
200
250
500

100

iced at 230 F

67.1
67.1
67.5
68.2
68.5
67.9
67.1

67.6
67.8
68.3
69.0
68.1
67.0
65.9

Rockwell C

67.9
67.9
68.8
68.7
67.2
66.1
65.8

Quenched into water at 680 F

52
68

100
150
200
250
500

66.8
66.8
66.8
67.5
68.4
68.4
67.0

67.0
67.5
67.6
68.4
67.53
67.6
64.5

67.7
67.5
67.7
67.8
66.9
65.4
62.5

683.
68.5
68.2
67.1
65.0
65.2
62.5

67.7
69.2

66.9
64.7
62.6
62.2

Quenched into water at 680 F. refrigerated immediately to -321" F

52
68

100
150
200
250
500

67.6
67.6
67.7
68.6
69.0
68.6
67.3

67.6
67.7
68.5
69.0
68.6
67.6
65.4

67.7
68.0
68.7
68.5
67.0
66.5
64.2

68.5
69.4
69.4
68.5
65.9
64.0
65.5

68.8
68.4
64.9
68.0
65.2
62.5
62.3

Quenched into water at 1250 F. air cooled to 680 F

52
68

100
150
200
250
500

66.1
66.5
66.6
66.9
67.5
65.8
65.1

66.53
66.6
66.8
67.7
66.8
64.6
65.0

66.4
66.9
67.9
67.2
66.6
64.2
65.0

1000

68.3
68.9
69.0
68.2
65.7
64.0
62.7

2000

68.0
68.1
68.6
67.0
65.0
635.0
62.0

66.6
67.5
66.9
66.7
64.8
62.2
62.4

66.7
67.5
66.9
65.6
64.0
60.0
60.0

L- I

100 2000 ---
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aged at 680 F (200 0) shows that the refrigerated steels underwent

greater hardening on aging, and these steels contained considerably

less retained austenite than the non-refrigerated steels quenched

in the same fashion.

At 250 and 5000 F (120 and 1500 C) Figures 20 and 21 also show

that the initial reaction rate of martensite contraction is very

high but that it slows up considerably as time progresses and

reaches a plateau which delineates the end of the first stage of

tempering. By the time this plateau has been reached, softening

is already well advanced because of the depletion of carbon from

the martensite lattice and the overaging of the transition precipi-

tate. The surprising brend, however, is the fact that the total

shrinkage at the plateau does not increase as the agiig temperature

increases, but actually seems to be inversely proportional to the

aging temperature. This is most evident in the ball-bearing steel,

Figure 20, where more total shrinkage can occur at 1500 F (660 C)

than at 5000 F (1500 C). Since the shrinkage measured here accom-

panies a rejection of carbon from the martensite lattice, the in-

verse relationship of the first stage total shrinkage to the tem-

perature must indicate that the solubility of carbon in the marten-

site lattice increases with increasing temperature up to 5000 F

(1500 C) and that the transition precipitate is in metastable equi-

librium with greater percentages of carbon in the martensite lat-

tice as the temperature rises. Such an assumption for the increas-

ing solubility of carbon in martensite is not inconsistent with the

__ __ _ __ _ _~11
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most recent measurements of Kurdjumov and Lyssak(55) on the axial

ratio of martensite as a function of tempering temperature. They

show that the axial ratios increase slightly or remain practically

constant on tempering up to 5000 F (150 C) for one hour. With

the much more sensitive method available here, the indications are

that the transition precipitate must be in balance with slightly

increasing percentages of carbon in the martensite lattice as the

temperature rises, up to 5000 F (1500 C).

One might be tempted to explain the increase in solubility of

carbon in martensite with increasing temperature on the basis of a

change in stable particle size. However, the stable particle size

would increase with temperature and a decreasing solubility should

be obtained with increasing temperature, whereas an increasing solu-

bility is actually observed. In addition, the transition precipi-

tate which is formed is more voluminous than its decomposition pro-

ducts and the plateau in the martensite contraction curves indi-

cates that very little cementite is formed on aging up to tempera-

tures of 3000 F (1500 C). The decomposition of transition precipi-

tate to FeSC is therefore also unable to expkin the sequence of the

contraction arrests, since such a reaction would cause an effect in

the reverse direction. It seems reasonable to conclude therefore,

that the solubility of carbon in martensite must increase slightly

as the temperature rises to 5500 F (1500 C).
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To consider the kinetics of the martensite decomposition it

might first be assumed that the precipitation proceeds by a process

of nucleation and growth and therefore follows the Mehl and John-

son equation(56). In differential form for the simple case where

the rates of nucleation and growth are not functions of time this

may be written as:

(14) = KlCt5

where c = concentration of carbon remaining in solution in

the lattice at the time t

K1 = rate constant which includes the rates of nuclea-

tion and growth.

The rate constant, KI, is of course a function of temperature and

would be expected to follow an activation type of equation for its

dependence on temperature. This equation has been applied to the

recrystallization of aluminum(37 ) although Cook and Richards(38)

had to use a lower power of t to fit their data on the recrystalli-

zation of copper. Avrami( 5 9 ) has also derived similar but more gen-

eral expressions for the kinetics of phase change. In general,

these reactions have a measurable incubation period at the start of

the process where both the rates of nucleation and growth are low,

and equation (14) indicates that at t = 0, the rate will be zero.

The striking difference between the recrystallization phenomena

and the precipitation reaction observed here is that there is no in-

cubation period in the martensite decomposition, and that the rate

r 1
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at the beginning of the reaction is a maximum. A simple first order

reaction which follows the equation

(15) Kde
dt

has these characteristics, but when the data were fitted to this

equation, it was evident that even this equation did not provide for

a sufficiently rapid reaction at the beginning.

Neither of these equations takes any account of the effect of

stress on the reaction. From the very nature of the austenite-

martensite transformation it would be expected that freshly formed

martensite is under considerable stress. This stress would promote

the precipitation reaction and thereby tend to wipe out any period

of incubation at the beginning. Stress relief occurs, however, dur-

ing aging and the effect of stress would diminish steadily as the

aging proceeded. The rate of stress relief on steel castings has

been recently studied by Rominski and Taylor(40) who observed the

relaxation rates of steel as a function of time at various tempera-

tures. Their results may be expressed by the equation:

(16) - = K2
dt -S

whOre 6 = stress

S = plasticity index

The plasticity index, S, increases with temperature, indicating that

stress relief would proceed faster at higher temperatures. An anal-

I - - --
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agous relationship was also found by Hargreaves(4 1 ) who studied the

variation of the recovered Brinell diameter for plastically deform-

ed materials as a function of loading time. Hargreaves also found

that the value of S increased with cold work and considered the

plasticity index as a measured of the rate of self annealing of the

material.

Since the rate of martensite decomposition would be expected

to diminish as stress relief proceeded, the reaction rate would,

therefore, be expected to have the form:

(17) -dc 2dt KK2 .s
tS

The plasticity index, S, is a function of temperature and might be

expected to follow the activation form:

E

(18) S = B e RT

where B = constant

E = activation energy for stress relief

R = gas constant = 1.998 cal/mol

T = temperature, OK

Similarly, the rate constant K, which includes the rates of nuclea-

tion and growth would also be temperature dependent and follow the

form:

(19) K1 = A e R

___ __ __
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where A = constant

Q = activation energy for the precipitation reaction

T = temperature, OK

Equation (17) may now be rewritten:

(20) -do _(T)*dt

and the activation energy for K(T) can also be considered as that

for nucleation and growth taking place under these conditions.

Since both the height and base dimension of the martensite

lattice vary linearly with the carbon content(35) it is reasonable

to assume that the volume of the unit cell decreases proportionate-

ly as the carbon is rejected from the lattice, and since relative

changes in length are directly proportional to volume changes, the

differential equation for the rate of relative change in length may

be written:

(21) ._ K(T) •jy)
dt - tS(T)

where y = contraction whbh has occurred up to time, t

a = total contraction at the end of the reaction

This may be integrated for the isothermal case to:

(22) y = a ( - e- Kt( - ))

or

(25) log log = (1 - s) log t + log 2
a-y 205
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Before equation (25) can be evaluated, however, the end point

of the reaction, that is the value of "a", must be determined. If

the steel were to be tempered completely to cementite and ferrite,

specific volume data on a steel containing 1.02 percent carbon in-

dicate that a total shrinkage of L = 6000 x 10-6 could be expect-
L

ed(10). This same data also indicated that the end of the first

stage of tempering obtained by tempering at a temperature of about

5000 F (150P C) was about 50 percent of the total contraction. The

reaction considered here, which is the precipitation of the transi-

tion precipitate, ends with the first stage of tempering, and it

was found that the shrinkage value for the end of this first step

was quite consistent with the plateau reached at 300° F for the

plain carbon tool steel (1.07 carbon) in Figure 21. A value of

a = 1700 x 10-6 was chosen, however, as best fitting the data. In

keeping with the concept of increasing solubility of carbon in the

martensite lattice up to 5000 F (1500 C), the value of "a" would be

expected to decrease as the temperature increased. The ideal solu-

tion law could have been used to calculate the variation of "a" with

temperature, but since the solution is far from ideal and very super-

saturated, the value of "a" was simply assumed to be inversely pro-

portional to temperature. The value of "an was chosen to fit the

plateau at the higher temperatures where the reaction approached

completion and then extrapolated to fit the 2ower temperatures where

the reaction was still in its initial stages. The variation of "a"

with temperature was quite small in comparison with the total con-

traction and the values which were chosen are listed in Table XIII.

I 'c-- buul~u ---
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TABLE XIII

Constants of Rate Equation for Martensite Decomposition

t K(T) * (a-)
dt tS(T)

Tempering
Temperature a S K

OFx 10- 5 L x 10- 6
OF F L

% Carbon in Solution at end
of First Stage of Tempering

K Steel (1.07 C) - austenitiszed 14500 F 50 minutes

52
68

100
150
200
250
300

5.67
5.51
3.21
2.95
2.74
2.54
2.57

2240
2160
2100
2000
1900
1800
1700

.63

.65

.68

.70

.84

.84

.89

0.0090
0.0215
0.0590
0.165
0.477
1.270
1.590

.57

.58

.59

.60

.61

.65

.64

T Steel (1.0 C. 1.5 Cr, 0..20 V) - austenitized 15500 F 30 minutes

32
68
100
150
200
250
500

5.67
5.51
5.21
2.95
2.74
2.54
2.57

1055
1000
980
940
900
860
820

.64

.69

.71

.71

.79

.84

.88

.0185

.0519

.0635

.167

.482
1.100
1.550

.70

.70

.70

.71

.71

.72

.72

Heats of Activation for Rate Constants

In K = In A - _
RT

Q
cal/mol

9050
7480

Average 8500

In S = In B - E
RT

E
cal/mol

380
495

Average 440

Steel

~ ~- _ --



- 87 -

With the end point of the reaction determined, it was possible

to verify the proposed kinetics by evaluating equation (23). If

values for log log a are plotted as a function of lot t at a
a-y

given temperature, a straight line should be obtained with a slope

of (1 - S) and an intercept of log K at log t = 0. Figure 22
2.3

shows the data for the plain carbon steel (K steel) plotted in

this form and it is evident that equation (25) fits quite well. A

family of straight lines is obtained as tempering is carried out at

various temperatures, and the values for the rate constant, K, and

the plasticity index, S, are listed in Table XIII. The variation

of these constants with temperature is indicated in Figure 25 and

it is seen that they follow the activation energy form of equations

(18) and (19) reasonably well.

An exactly similar procedure was followed for the ball-bearing

steel (1.0 carbon, 1.5 chromium, 0.20 vanadium) except that values

of "a" for the end of the first stage of tempering about one-half as

great as the corresponding ones for the plain carbon steel had to be

chosen. That the first stage was completed was evident from the

shape of the curves in Figure 20 where well-defined plateaus had

been reached in much the same manner as for the plain carbon steel.

A comparison of the hardness values in Tables XI and XII for the two

steels indicated that the precipitation reaction in each had follow-

ed the same general pattern, except that the end of the first stage

of tempering in the chromium steel was accompanied by about half the

the precipitation of carbon that was necessary in the plain carbon

steel.

_ _I~
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From the Ms temperatures measured for these steels it was

previously shown that the plain carbon steel behaved as if 0.90

percent carbon were in solution, and the ball-bearing steel as if

0.85 percent carbon and 0.50 percent chromium were in solution in

the martensite under the hardening conditions used here. From

these values, and the values of "a" chosen for the end of the first

stage of tempering, the percentage of carbon remaining in solution

at the completion of the first stage of tempering may be calculated

if the value of 6000 x 10-6 is taken as the total change which occurs

if the carbon were completely converted to cementite. Since this

calculation does not take into account the difference in density be-

tween the transition precipitate and Fe 5C it must be considered as

only approximate. These solubilities of carbon in martensite are

listed in Table XIII and it is evident that the sensitivity of the

precision length determinations is great enough to detect a rather

small variation in solubility with temperature. The chromium bear-

ing steel is able to retain about 0.10 percent carbon more in solu-

tion than the plain carbon steel and this can be attributed to an

increase of the solubility of carbon in martensite as the chromium

content increases. Less precipitation of transition product and a

smaller increase in hardness should be evident on aging martensite

of the chromium steel. This is verified in Tables XI and XII, where

on comparing the effect of aging at 680 F (20C C), for example, it

is seen that the ball-bearing steel (T steel) undergoes a smaller

increase in hardness than the plain carbon steel (K steel).

e ~~~___~
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The values for the rate constant, K, and plasticity index, S,

are also listed in Table XIII for the ball-bearing steel. Both

steels have practically the same constants and the same heats of

activation for the precipitation and for stress relief. These

heats of activation are tabulated for each steel in Table XIII.

If we consider that the precipitation is controlled by the diffu-

sion of carbon in martensite, then the heat of activation for the

diffusion constant cannot be greater than the value of Q, the heat

of activation for the precipitation reaction. An average value

for this activation energy for the diffusion of carbon in marten-

site is about 8500 cal/mol, from Table XIII, and it is interesting

to note that this is about half of the value of 18,000 cal/mol

calculated by Polder(42) for the heat of activation for the dif-

fusion of carbon in ferrite. From the close similarity of the

ferrite and martensite lattices, the diffusion of carbon in the

interstitial positions should be opposed by about the same poten-

tial barrier, but the high stress level in the martensite seems

to have reduced this potential barrier somewhat.
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VI. THE ISOTHERMAL DECOMPOSITION OF RETAINED AUSTENITE

Considerable data were now also available on the transforma-

tion of retained austenite. This information was derived from

three sources:

a) relative changes in length immediately after the quench

measured on the quenching dilatometer

b) isothermal decomposition measured by subtracting the

appropriate precision dimensional curves

c) quantitative austenite determinations by x-ray.

From the quenching dilatometer curves in Figures 12 and 13,

it is evident that the length continues to increase and the aus-

tenite continues to transform even after room temperature is

reached. The temperature measurement was such that it indicated

when the last portion of the specimen had reached room tempera-

ture, so that it seems safe to assume the transformation observed

was truly isothermal and not caused by any transient cooling ef-

fects. Martensite contracts during and immediately after the

quench, and from equation (23) and the constants in Table XIII the

contraction for each steel during the first 1.5 hours at room tem-

perature after the quench can be evaluated. The calculated unit

contraction for the first 1.5 hours is only 50 x 10-6 for the plain

carbon steel and 30 x 10-6 for the ball-bearing steel. Since these

values are small in comparison with the expansions observed immed-

iately after the quench, they may be neglected, and the observed

1___ 3 _ i_
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expansion may then be evaluated directly in terms of percentage of

austenite transformed. The transformation of 1 percent of austenite

into martensite at room temperature would cause a relative expansion

of 140 x 10- 6 , and this figure was used to convert expansions observ-

ed at room temperature into percentages of austenite transformed.

In the determination of the contraction curves for 100 percent

martensite, the relative expansions caused by the isothermal decom-

position of austenite was obtained by subtracting the dimensional

curves for two states of heat treatment resulting in different and

known amounts of austenite. These net expansions were quite small

at low temperatures, seldom exceeding the equivalent of 1 percent

of austenite even after several thousand hours at 680 F (200 C), but

they seemed to be merely the trailing-off of the larger expansions

observed immediately after the quench in the quenching dilatometer.

A quantitative x-ray determination was usually made at about 240

hours after the quench, where the transformation rate of the aus-

tenite was known to be small, and from the changes in length, the

absolute austenite contents could be calculated back to the first

instant where the specimen had come to room temperature. Since both

the dimensional and dilatometer specimens were of the same size,

there was little uncertainty in reproducing the rates of cooling

and in the direct combination of the data from both types of mea-

surement.

__ ~_~__
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The isothermal decomposition of retained austenite at 680 F

(209 C) has been tabulated in Table XIV as a function of time after

the quench, and of the interrupting temperature for both steels.

These data are also plotted in Figures 24 and 25, and it is seen

that the rate of isothermal transformation of austenite at room

temperature diminishes rapidly on aging, but that even after sev-

eral months at room temperature the reaction is still proceeding

measurably. The dilatometer curves in Figures 12 and 15 show no

discontinuity in the expansion when room temperature is reached

and the cooling has stopped. It seems reasonable to conclude,

therefore, that the formation of martensite does not stop com-

pletely when the cooling stops, and that the observed isothermal

decomposition of austenite is merely a residual effect of the main

austenite-martensite reaction which started on cooling below the

M, point. From Figures 24 and 25 it is seen that as much as 5 or

4 percent of austenite may transform isothermally into martensite

depending on the composition and on the quenching conditions.

This isothermally formed martensite probably consists of plates

that were about to form as the cooling stopped and merely con-

tinued their formation even after cooling had ceased.

It is interesting to note that the austenite content of the

T steel (1.0 carbon, 1.5 chromium, 0.20 vanadium) immediately after

the quench is increased if the temperature of the quenching bath is

raised even slightly above room temperature. Continuing to raise

this interrupting temperature above the M. point has no additional
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TABLE XIV

Isothermal Decomposition of Austenite at 680 F

T Steel (1.0
indicated

Time After
Quench-hours

0
0.1
0.5
1.0
1.5
2.5

11.5
100

1000
2000
5000
5000

C, 1.5 Cr, 0.20 V), 15500 F, 50 minutes - quenched as

Oil quenched
to 680 F

11.2
10.5

9.6
9.1
8.5
8.2
7.9
7.5
7.0

6.9

% Retained Austenite
Oil quenched Oil quenched
to 1250 F* to 2500 F*

14.5
14.1
12.9
12.2
11.5
11.0
10.4
9.7
9.0

8.8

14.5
15.9
15.4
15.2
15.0
12.4
11.6
10.5
9.5
9.5

Salt quenched
to 450" F*

14.4
14.0
15.5
15.2
15.0
12.6
12.4
11.6
10.6

K Steel (1.07 C). 1450° F. 30 minutes, quenched as indicated

Water quenched
to 680 F

11.2
11.1
10.7
10.5
10.5
10.2
10.0
9.7
9.5

Water auenched
to 1250 F*

18.4
17.1
16.2
15.6
15.6
15.5
15.0
14.5
14.1
14.0

*Air cooled to 680 F.

0
0.1
0.5
1.0
1.5
2.5

11.5
100

1000
5000
5000

I - -- -.
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effect on the amount of retained austenite but the austenite has

different stability depending on the interrupting temperature. In

the water quenched K steel (1.07 carbon) a slight increase in the

temperature of the quenching bath raised the retained austenite

content appreciably at the end of the quench and in addition rend-

ered the austenite considerably more unstable. This emphasizes

the need for precautions in controlling the quenching conditions

in commercial heat treatment.

If most of the residual isothermal transformation of retained

austenite into martensite takes place within the first 1.5 hours

at room temperature after the quench, then little additional trans-

formation could be expected by tempering at higher temperatures un-

til the isothermal decomposition of austenite into bainite started.

Tables XV and XVI confirm this by showing that the isothermal trans-

formation of austenite is practically the same at all tempering tem-

peratures up to 2500 F (1200 C), where the bainite transformation

begins on prolonged aging. At 3000 F (150 ° C) the bainite reac-

tion is considerably faster and more austenite transforms. It

should be noted in Tables XV and XVI that time is calculated as

commencing after the first 1.5 hours at room temperature, so that

the value for zero time is shown as the austenite content at 1.5

hours taken from Table XIV, and the same at zero time for all of

the tempering temperatures. To convert the length changes from the

dimensional curves into percentages of austenite for the tempering

temperatures above 680 F (200 C) it was assumed that the decomposi-

tion product of austenite would have the same specific volume as

-i= 1
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TABLE XV

Decomposition of Austenite on Tempering

T steel (1.0 C, 1.5 Cr, 0.20 V)
Austenitized 15500 F, 30 minutes, quenched as indicated and kept

1.5 hours at 68" F before tempering.

Tempering Temperature OF

52 68 100 150 200 250 500

% Retained Austenite
Oil Quenched to 680 F

0
1
10

100
1000
5000

8.3
8.1
7.7
7.2
6.7
6.4

8.5*
8.2
7.9
7.5
7.0
6.9

8.5
8.1
7.9
7.6
7.5
7.2

8.5
7.8
7.5
7.5
7.1
7.1

Oil quenched to 1250 F. air cooled to 68" F

0 11.5 11.5* 11.5 11.5
1 11.1 11.0 11.0 10.5
10 10.6 10.4 10.4 9.7
100 9.8 9.7 9.7 9.0
1000 9.5 9.0 9.0 8.7
3000 8.9 8.8 8.7 8.5

Oil quenched to 2500 F. air cooled to 68" F

0 15.0 15.0* 15.0 15.0
1 12.2 12.4 12.5 11.6

10 11.5 11.6 11.6 10.3
100 10.6 10.5 10.5 8.9

1000 9.7 9.5 9.7 7.9
2000 9.6 9.5 9.5 7.7

Salt Quenched to 4500 F, air cooled to 680 F

0
1
10

100
1000

15.0
12.5
11.9
10.9
10.1

15.0*
12.6
12.4
11.6
10.6

15.0
12.6
12.6
11.6
10.7

13.0
11.8
10.4

8.8
7.1

8.5
7.8
7.5
7.4
7.2
7.1

11.5
10.5

9,8
9.1
8.7
8.5

13.0
11.7
10.4

8.9
8.0
7.8

15.0
11.8
10.4
8.8
7.1

*Austenite contents shown in this table for zero time at 680 F
are actually the values for 1.5 hours at 680 F. The true values
for zero time at 680 F are shown in Table XIV.

Hours

8.5
7.7
7.6
7.6
6.8
6.2

11.5
10.4
9.4
9.1
8.7
8,2

13.0
10.2

9,7
9,6
8.8
8.5

13.0
10.6
9.7
7.5
6.2

8.5
7.6
7.4
6.9
5.0
5.9

11.5
9.7
9.3
8.6
6.6
5.5

13.0
10.9
10.0
9.2
6.6
5.3

13.0
10.1
8.2
7.5
3.5

~U_ ~_~~__ ____ 1_ __ _ _1__
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TABLE XVI

Decomposition of Austenite on Tempering

K Steel (1.07 C)
Austenitized 145 0 F, 50 minutes, quenched as indicated and kept

1.5 hours at 680 F before tempering

Tempering Temperature o F
52 68 100 150 200

Water Quenched to 680 F

10.5
10.2
10.0
9.8
9.5
9.0

10.5*
10.2
10.0
9.7
9.5
9.2

250 500

% Retained Austenite

10.5
10.0

9.8
9.6
9.5
9.1

10.5
9.6
9.4
9.1
8.7
8.7

10.5
9.7
9.7
9.7
9.2
8.9

10.5
9.5
9.5
8.9
7.8
6.5

10.5
9.6
9.5
7.6
2.8
1.6

Water Quenched to 1250 F, Air Cooled to 680 F

0
1
10

100
1000
5000

15.6
15.4
15.1
14.6
14.0
15.7

15.6*
15.5
15.0
14.5
14.1
14.0

15.6
15.0
14.6
14.2
15.7
13.4

15.6
14.8
14.6
14.0
15.4
15.5

15,6
14.7
14.7
14.7
14.5
15.8

15.6
15.6
13.115.1
12.1
10.5
8.8

15.6
15.8
15.2
12.2
6.6
6.0

*Austenite contents shown in this table for zero time at 680 F
are actually the values for 1.5 hours at 680 F. The true values
for zero time at 680 F are shown in Table XIV.

Hours

0
1
10

100
1000
5000
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the martensite tempered at the same temperature. The actual con-

version figures used here are listed in Table XVII and were obtained

from specific volume data(10), ( 11 ).

The combined data from the quenching dilatometer and dimension-

al measurements indicate that the isothermal decomposition of austen-

ite proceeds by a two-step process. In Figures 26 and 27 selected

data from Tables XIV, XV, and XVI are plotted to show the effects of

aging on the isothermal decomposition of austenite. Each specimen

was aged at 680 F (200 C) for 1.5 hours immediately after the quench,

and the isothermal austenite-martensite reaction is shown as a resi-

dual effect of the main hardening reaction. If these specimens are

now tempered, Figures 26 and 27 show that this isothermal decomposi-

tion into martensite continues for some time even at temperatures up

to 500 F (150 C) until the bainite decomposition begins after pro-

longed aging at 250 and 3000 F (120 and 150 C). Retained austenite

decomposes isothermally, therefore, first into martensite and then

at higher temperatures into bainite.

This isothermal decomposition of austenite immediately after the

quench suggests that the Greninger-Troiano technique for the study

of the austenite-martensite reaction may contain an inherent error

because of this reaction. In this method, specimens are quenched

into hot baths and immediately darkened at some elevated tempering

temperature. Although the darkening times are short, the temperatures

may be quite high, and if 5 or 4 percent of austenite can transform

isothermally into martensite at room temperature, perhaps an equivalent

_ _ U~C_ __
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TABLE XVII

Relative Change in Length Caused by Decomposition
of 1 Percent of Austenite at Various Temperatures

Decomposition Temperature
OF

100

150

200

250

500

L

140

140

140

157

132

125

114

_i_ _ I~UIII111~--^
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amount can transform at the higher darkening temperatures, so that

somewhat less austenite will be observed than was actually present

after the quench.

It is difficult to express quantitatively the kinetics of the

isothermal decomposition of austenite into martensite since it is

merely the after-effect of the main austenite-martensite reaction

which occurred on cooling, and it would depend greatly on the con-

ditions under which the main reaction took place. When a quanti-

tative treatment is developed, however, it should be able to account

for 5 or 4 percent more austenite transforming into martensite when

the cooling is stopped.

This work on the isothermal austenite and martensite reactions

in gage steels emphasizes that the dimensional stability of these

steels is a function of the amount of martensite and of the condi-

tion and quantity of the retained austenite present. The contrac-

tion of the martensite is quite predictable and seems to be a func-

tion only of the tempering which it has received. Retained austenite

decomposition, however, causes an expansion which depends not only

on the amount, but also on the conditions under which the austenite

was left, and this process seems to be inseparable from the main

hardening reaction. The austenite decomposition is, therefore,

very sensitive to the method of quenching, and each austenite condi-

tion responds in a different manner to tempering. For this reason,

the quenching operation becomes of utmost importance in gage manu-

facture, since slight deviations from a standard practice can cause

large differences in austenite stability which are not corrected by

tempering and which thereby produce an erratic dimensional behavior

later.

_1 ~_ _ _~ __
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VII. CONCLUSIONS

From a combination of the results of quantitative x-ray analysis,

quenching dilatometer observations, and precision length determina-

tions, the following conclusions may be drawn concerning some of the

reactions occurring in martensitic steels.

i. A normally hardened ball-bearing or plain carbon tool steel

contains 7 - 9 percent of retained austenite after quench-

ing and remaining at room temperature for several days.

2. Continued cooling below room temperature is unable to trans-

form austenite completely to martensite and even continuous

cooling from the Ms point to liquid nitrogen temperatures

leaves about 1 percent of retained austenite.

5. The rate of cooling through the martensite region influ-

ences the quantity of retained austenite, and if the cool-

ing is retarded by an interrupted quench, the amount of

retained austenite is increased.

4. During the first stage of tempering, the martensite decom-

position proceeds by the rejection of a transition precip-

itate at an increasing rate with increasing temperatures

until the end of the first stage is reached. At this

point the rejection of carbon from the martensite lattice

almost ceases before the formation of cementite begins.

5. The solubility of carbon in martensite at the end of the

first stage of tempering increases slightly with increas-

ing temperature up to 5000 F (1500 C), and the ball-

-- -------^------
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bearing steel can dissolve about 0.10 percent carbon more

than the plain carbon steel because of the presence of

chromium in solution.

6. The decomposition of martensite seems to proceed by a

process of nucleation and growth of the transition pre-

cipitate accelerated by the stresses present in the mar-

tensite lattice. The kinetics of the process may be re-

presented by the rate equation:

-do = K(T) * cdt ts(T)

7. The heat of activation for the diffusion of carbon in

martensite has been determined as approximately 8500 cal/

mol. This indicates that the potential barrier opposing

the diffusion of carbon in martensite is about half as

great as barrier opposing the diffusion of carbon in

ferrite, and the difference is probably due to the high-

ly stressed condition of the martensite lattice.

8. The austenite-martensite reaction does not stop completely

when the cooling stops, but 5 or 4 percent more of austen-

ite may transform isothermally into martensite at room

temperature. This isothermal transformation proceeds

rather rapidly during the first 1.5 hours after the

quench, but it continues at a diminishing rate for sev-

eral months. As retained austenite is tempered at higher

temperatures, the decomposition of austenite into bainite
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becomes evident after prolonged aging times at 250 and

5000 F (120 and 15&0 C), but this bainite decomposition

(i.e. the second stage of tempering) is quite distin-

guishable from the earlier isothermal decomposition into

martensite.

_ _
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