
DAQling: an open-source data acquisition framework

Marco Boretto1,2,3, Wojciech Brylinski1,4, Giovanna Lehmann Miotto1, Enrico Gamberini1,∗,
Roland Sipos1, and Viktor Vilhelm Sonesten1

1CERN, Geneva, Switzerland
2INFN Torino, Torino, Italy
3University of Torino, Torino, Italy
4Warsaw University of Technology, Warsaw, Poland

Abstract. The Data AcQuisition (DAQ) software for most applications in
high energy physics is composed of common building blocks, such as a net-
working layer, plug-in loading, configuration, and process management. These
are often re-invented and developed from scratch for each project or experiment
around specific needs. In some cases, time and available resources can be lim-
ited and make development requirements difficult or impossible to meet. Moved
by these premises, our team developed an open-source lightweight C++ soft-
ware framework called DAQling, to be used as the core for the DAQ systems
of small and medium-sized experiments and collaborations. The framework
offers a complete DAQ ecosystem, including a communication layer based on
the widespread ZeroMQ messaging library, configuration management based
on the JSON format, control of distributed applications, extendable operational
monitoring with web-based visualisation, and a set of generic utilities. The
framework comes with minimal dependencies, and provides automated host
and build environment setup based on the Ansible automation tool. Finally,
the end-user code is wrapped in so-called “Modules”, that can be loaded at con-
figuration time, and implement specific roles. Several collaborations already
chose DAQling as the core for their DAQ systems, such as FASER, RD51, and
NA61/SHINE. We will present the framework and project-specific implemen-
tations and experiences.

1 Introduction
Software Data AcQuisition (DAQ) systems are comprised of building blocks that are com-
mon to different applications, such as data flow, storage, control, configuration and operation
monitoring. Even though a laboratory setup can be easily read-out using a single personal
computer, from test beam setups to medium-sized experiments the acquisition system is dis-
tributed on multiple readout devices, Commercial-Off-The-Shelf (COTS) components, and
commodity servers. Therefore the scalability to distributed systems is a necessary feature of
a modern software data acquisition framework targeting small to medium-sized systems.

DAQling [1] is an open-source lightweight, yet complete, software framework for data
acquisition. Its main components are developed in C++ and Python. The development has
started in 2019, but leveraging on third-party tools and libraries allowed for a reduced devel-
opment time.
∗e-mail: enrico.gamberini@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 01026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501026



2 Overview
The framework is composed of three main elements: Core, Modules, and DAQ control. The
Core is the backbone of the DAQling processes and it is developed in C++ using standard
features up to C++17. Modules wrap user code written in C/C++ and are loaded by the Core
as shared libraries. Finally, the DAQ control is a set of Python 3.6 libraries, handling the
execution of processes, distributing commands and configurations and polling the status of
processes. Figure 1 shows the main elements and their interconnection.

Figure 1. Example scheme of the
main elements distributed on multiple
hosts.

2.1 Core

The Core enforces the use of base features provided by the framework, such as Module
loading, communication, configuration, logging, and monitoring as summarised in Figure 2.
Modules acquire these functionalities and standard methods through the inheritance from the
DAQProcess base class.

Figure 2. Diagram showing a simplified include
tree of the DAQling Core.

The Module-loading utility is part of the bare-bone Core application; this utility loads
dynamically a shared library, whose name is specified in the configuration provided to the

2

EPJ Web of Conferences 245, 01026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501026



application. The shared library is based on the Module’s class, which is inheriting from the
common DAQProcess interface class.

The entry point for the Core class is the daqling executable, which takes a few initial
parameters such as control communication port and log levels. The executable launches the
Core and initialises all the base features. After the initialisation is complete, it then waits for
further commands.

Communication

The communication utility provides configurable channels for control, data, and monitoring,
based on the ZeroMQ [2] messaging library. The data channels are implemented as a queue
system in which the ZeroMQ sockets are connected to a user-space Single-Producer/Single-
Consumer queue (from Folly library [3]). The user-space queue allows monitoring if back-
pressure is generated in the data-flow system.

The TCP/IP and inter-process shared memory transports are supported, respectively for
distributed and local systems. For what concerns communication patterns, the ZeroMQ ex-
clusive pair and publish/subscribe are supported, the latter with the possibility to filter the
subscribed data on a topic represented by a programmable number of leading bytes of the
message.

The channel for control is initialised at the startup of the daqling application through the
Core, and it is implemented using the Request/Reply pattern. On the Core side, the channel
is polled continuously waiting for requests from the DAQ control, such as status request or
commands, and after execution, replies with the result through the same channel.

The data-flow channels are instead initialised during configuration, specifying communi-
cation transport and pattern, channel identifier, and address. Messages passed through these
channels are exposed to the user code as raw binary structures. This design choice leaves
the responsibility on the interpretation of the data to the user, and therefore also allows for
maximum flexibility.

The monitoring channels are initialised at startup and during configuration, depending on
whether the metrics to monitor are defined in the Core or the Module. They are implemented
as Publishers.

Configuration

The configuration utility is a simple interface allowing the configuration’s JSON structure to
be accessible inside the application, both in the Core and Module parts. The JSON handling
implementation is based on the nlohmann/json [4] header-only library. The default Core
configuration fields include name, host/port pair, Module type, logging level, connections,
and Module-specific settings that can be accessed via the getConfig and getSettings
methods.

Logging

The logging utility is wrapped around the gabime/spdlog [5] header-only library. Messages
are entered in the code utilising methods named according to their severity level, from DEBUG
to ERROR. Messages are automatically formatted adding time, severity, location in code, and
customised message. The minimum severity of messages to be collected can be configured
separately for the Core and Module part, to avoid flooding of DEBUG messages from Core
while debugging the user code in Module.

The library provides a selection of standard sinks, between which the stdout is used as
the baseline for DAQling. The library also allows to add custom sinks; DAQling implements

3

EPJ Web of Conferences 245, 01026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501026



a ZeroMQ sink, publishing log messages towards a centralised log collector (implemented as
a subscriber).

Monitoring

Operational monitoring is a crucial feature that allows to continuously check metrics regard-
ing the data flow for signs of back-pressure or problems in general. DAQling exposes a
registerMetric method that allows the user to register variables to be published, speci-
fying a string name and which operation should be applied to it. The supported variables
types are int, unsigned, bool, float, and double, while the supported operations are
LAST_VALUE, ACCUMULATE, AVERAGE, and RATE. The monitored metrics are published via
ZeroMQ towards a Python broker (called Metrics manager in DAQling framework). The lat-
ter is subscribed to all metrics publishers and can be configured to route the values from each
source to one of the two supported destinations: InfluxDB [6] and/or Redis [7]. In the setup
provided by DAQling, InfluxDB is used as the source by the Grafana [8] front-end for time-
series visualisation. The Redis in-memory cache can be easily used by any custom client to
display polled values.

2.2 Modules

The Modules are wrappers for the user code and are built as shared libraries to be loaded by
the Core application. A Module inherits the standard commands provided by DAQProcess in
the form of a set of methods that are re-implemented to specify functionalities to the Module.
DAQProcess provides a few basic methods that are expected to be used in a data acquisition
system such as configure(), start(), stop(), and a runner() that is launched as a
runner thread. In addition to these generic methods, a registerCommand is also provided,
allowing the user to expand the Finite State Machine (FSM) with custom commands and
states.

The inherited class is, therefore, a minimal implementation that allows complete freedom
to the user in the matter of data flow, internal structure, and logic while being able to exploit
the Core’s functionalities. The communication channels that are set-up during the config-
uration step can be accessed from the Module code via the configuration’s JSON structure.
Logging messages can be registered to specify the desired log level. Finally, metrics can be
registered via the monitoring functionality.

DAQling includes few Modules that together with a ready-to-use configuration file allow
running a demonstrative data flow system. The Modules include a "Readout interface", an
"Event builder", and a "File writer". While the latter is a complete configurable binary file
writer that can be used in its current state or adapted, the first two are simple examples with
an event data generation and an event-number-based building. Nonetheless, the Modules
show how to develop user code and show the application of all the features in DAQling Core,
including operational monitoring.

2.3 Control library

The control of the processes is entrusted to a Python library handling the supervision of
processes, distribution of commands and configurations, and status checking. The library is
employed in an example command-line Python script (shipped with DAQling) and can be
used in applications such as web graphical user interfaces (see Subsection 3.1). The library
can be used in combination with the DAQling monitoring and logging utilities to develop
support tools (e.g. error recovery manager).

4

EPJ Web of Conferences 245, 01026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501026



The overall configuration of the system is described in JSON format and it is checked
against a schema for field correctness and completeness. The use of different schemas (po-
tentially one for every different Module type in the system), allows using a web interface to
insert or modify values into pre-compiled fields based on the schema itself. In general, the
overall configuration allows describing the topology of the data acquisition system and its
data flow. In particular, it is possible to spawn applications (loading the specified DAQling
Module) on different hosts, define their interconnections and Module-specific settings.

The process management is based on Supervisor [9] and its
mnaberez/supervisor_twiddler extension [10]. The supervised hosts run a daemon lis-
tening on a known port for XML-RPC [11] requests, which can trigger the spawning,
automatic restart, status checking, etc. of processes. The DAQling control library wraps a
class handling the XML-RPC requests for several supported use-cases.

The communication between the control library and the applications is handled via Ze-
roMQ "control" channels. These are exclusive Request/Reply pairs towards each DAQling
application. The commands sent through these channels will call the corresponding methods
defined in the DAQling Modules (configure, start, etc.), including custom commands
defined through registerCommand (see 2.2). In particular, for the configure command, the
JSON configuration corresponding to the targeted application/Module is transmitted. Also,
the control channel allows polling the Module’s status as defined in the FSM.

2.4 Deployment and build system

The deployment of the framework is handled by the Ansible [12] automation tool with a selec-
tion of "playbooks" provided with DAQling. The minimal dependencies and required tools
for building and running DAQling are installed via a single "host-setup" playbook, while
optional playbooks take care of the installation of additional tools or libraries. The play-
books are supported on CERN CentOS 7, but installation on Debian-based OSs and cross-
compilation on ARM architectures have been achieved. The Docker [13] file and correspond-
ing image are available on the DAQling repository, allowing for containerised execution of
the baseline DAQling framework.

The DAQling Core is written in using C++ revision 17. The building of the framework is
handled with CMake (version 3) and GCC8. CMake allows for the selective and configurable
building of the DAQling Core and Modules.

3 Applications

Few projects are developing their data acquisition systems using DAQling: FASER [14],
NA61/SHINE [15], and RD51 [16]. More information on the FASER and NA61/SHINE
usage are provided in the next Subsections. For what concerns the RD51 collaboration, a
simple laboratory setup has been developed, performing the raw data dump, decoding and
online monitoring of data coming from the VMM3 front-end ASIC [17] and read out through
an FEC card [18]. This system can be easily scaled to test beam tests.

3.1 FASER

The new FASER experiment is expected to start operation in 2021, after the LHC Long
Shutdown 2 [19]. The collaboration chose to rely on DAQling as the framework to develop
their software data acquisition system. This choice allowed the FASER developers to quickly
set up a simulated data flow with the expected topology and data rates. The development of

5

EPJ Web of Conferences 245, 01026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501026



DAQling started shortly before the application to the FASER DAQ, therefore the feedback,
feature requests, and suggestions proved helpful from the beginning of the collaboration.

The FASER DAQ system includes:

• 1× Trigger Logic Board (TLB) issuing hardware triggers and producing event fragments
(∼ 25 B) with an expected average rate of 500 Hz, peaking at 2 kHz;

• 9× Tracker Readout Boards (TRB), each receiving the hardware trigger and producing
event fragments of ∼ 250 B up to 1.5 kB;

• 1× Digitizer, from which data is pulled upon a trigger request and with event fragments of
∼ 10-20 kB.

These hardware components are paired with corresponding "readout interfaces" which take
care of the configuration of detector electronics and acquisition of data. The data from the
readout interfaces account for an expected average rate of ∼ 9 MB/s, peaking to 70 MB/s
in the worst-case scenario. Event fragments from readout interfaces are sent to an "event
builder" that assembles and checks the fragments from different sources. The event builder
then distributes such complete events to the file writer and the online monitoring processes.

TLB 
DAQ

TRB 1 
DAQ

TLB 9 
DAQ

... Digitizer 
DAQ

Event 
Builder

File 
Writer

Online 
Monitoring

Online 
Monitoring

Online 
Monitoring

Detector electronics

Storage

Pull

Pub/Sub

Push

Push

Figure 3. Overview of the FASER
DAQ system.

The collaboration also developed a GUI based on a Flask [20] web server. The GUI al-
lows the control of the DAQ system by means of the DAQling control library. It integrates
the display of operational monitoring data polled from a Redis instance. Finally, a configu-
ration GUI has also been developed, allowing to manipulate the JSON configuration for the
different Modules using JSON schemas. The described GUIs are to be merged and become
an integrating part of the DAQling framework.

The FASER experiment is expected to run nominally without 24/7 shifters. An automatic
recovery and alarming system will, therefore, allow remote expert support only in case of
problems. The automatic recovery system is planned to be based on DAQling’s control library
and exploiting its logging, monitoring utilities.

6

EPJ Web of Conferences 245, 01026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501026



3.2 NA61/SHINE

NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) [15] is a fixed-target experiment
operating at the CERN SPS accelerator. The physics program of the experiment was recently
extended and major upgrades of the experimental facility during the Long Shutdown 2 are
required to perform the planned measurements. The event flow rate is planned to be increased
from 80 Hz to 1 kHz using readout electronics obtained from the ALICE Collaboration [21].
This requires the development of a new data acquisition system.

The DAQ system of NA61/SHINE will consist of 12 readout nodes sending the data from
different sub-detectors to one of 160 Event Builders for the online reconstruction and the
noise rejection.

The Collaboration decided to use DAQling as a base framework for the local readout
nodes as well as the Event Builders software. The communication layer, however, will be
replaced by a custom library which will allow controlling the data flow by an Orchestrator
(Acquisition Supervisor). The Orchestrator will decide about the destination Event Builder
of the given sub-event and update the configuration of the nodes.

The DAQling framework was successfully used for the tests of the new Time Projection
Chambers (TPC) readout electronics. The DAQ upgrade team developed a module for reading
out the TPC data, decoding and online data reconstruction.

4 Summary

DAQling provides a generic software ecosystem for distributed DAQ systems. The C/C++

user code is contained in Modules enforcing the use of the framework’s utilities while allow-
ing for freedom on data format, data flow and processing choices. The topology of the DAQ
system is configurable via JSON files, and the DAQ system itself can be controlled through
an extensible control library and integrated monitoring and logging utilities.

The open-source approach of the DAQling project facilitates the continuous enhancement
of the framework. Few projects already use DAQling for their DAQ systems and the user
communities directly contribute to its growth by feeding back ideas and code.

References

[1] DAQling, https://gitlab.cern.ch/ep-dt-di/daq/daqling
[2] ZeroMQ, https://zeromq.org
[3] Facebook, Facebook Open-source Library, https://github.com/facebook/folly
[4] nlohmann/json, https://github.com/nlohmann/json
[5] gabime/spdlog, https://github.com/gabime/spdlog
[6] InfluxDB, https://www.influxdata.com/products/influxdb-overview/
[7] Redis, https://redis.io/
[8] Grafana, https://grafana.com/
[9] Supervisor, http://supervisord.org/

[10] mnaberez/supervisor_twiddler, https://github.com/mnaberez/supervisor_
twiddler

[11] XML-RPC, https://en.wikipedia.org/wiki/XML-RPC
[12] Ansible, https://www.ansible.com/
[13] Docker, https://www.docker.com/

7

EPJ Web of Conferences 245, 01026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501026



[14] A. Ariga, T. Ariga, J. Boyd, F. Cadoux, D.W. Casper, Y. Favre, J.L. Feng, D. Ferrere,
I. Galon, S. Gonzalez-Sevilla et al., FASER: ForwArd Search ExpeRiment at the LHC
(2019)

[15] N. Abgrall, O. Andreeva, A. Aduszkiewicz, Y. Ali, T. Anticic, N. Antoniou, B. Baatar,
F. Bay, A. Blondel, J. Blumer et al., NA61/SHINE facility at the CERN SPS: beams and
detector system (2014)

[16] RD51 Collaboration, http://rd51-public.web.cern.ch/rd51-public/
Welcome.html

[17] G. Iakovidis, VMM3, an ASIC for Micropattern Detectors (2018)
[18] J. Toledo, H. Muller, R. Esteve, J.M. Monzó, A. Tarazona, S. Martoiu, The Front-End

Concentrator card for the RD51 Scalable Readout System (2011)
[19] LHC long term schedule, https://lhc-commissioning.web.cern.ch/

lhc-commissioning/schedule/LHC-long-term.htm

[20] Flask, https://palletsprojects.com/p/flask/
[21] ALICE, http://alice.web.cern.ch/

8

EPJ Web of Conferences 245, 01026 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501026


