
2 THE CP-VIOLATING TWO-HIGGS DOUBLET MODEL

2.1 Theory review

Howard E. Haber and Maria Krawczyk

The Standard Model (SM) of electroweak physics is an SU(2)L×U(1) gauge theory coupled to quarks,
leptons and one complex hypercharge-one, SU(2)L doublet of scalar fields. Due to the form of the
scalar potential, one component of the complex scalar field acquires a vacuum expectation value, and
the SU(2)L×U(1) electroweak symmetry is spontaneously broken down to the U(1)EM gauge symme-
try of electromagnetism. Hermiticity requires that the parameters of the SM scalar potential are real.
Consequently, the resulting bosonic sector of the electroweak theory is CP-conserving.

The SM, with its minimal Higgs structure, provides an extremely successful description of ob-
served electroweak phenomena. Nevertheless, there are a number of motivations to extend the Higgs
sector of this model by adding a second complex doublet of scalar fields [1–10]. Perhaps the best
motivated of these extended models is the minimal supersymmetric extension of the Standard Model
(MSSM) [11–13], which requires a second Higgs doublet (and its supersymmetric fermionic partners)
in order to preserve the cancellation of gauge anomalies. The Higgs sector of the MSSM is a two-Higgs-
doublet model (2HDM), which contains two chiral Higgs supermultiplets that are distinguished by the
sign of their hypercharge. The theoretical structure of the MSSM Higgs sector is constrained by the
supersymmetry, leading to numerous relations among Higgs masses and couplings. In particular, as in
the case of the SM, the tree-level MSSM Higgs sector is CP-conserving. However, the supersymmetric
relations among Higgs parameters are modified by loop-corrections due to the effects of supersymmetry-
breaking that enter via the loops. Thus, the Higgs-sector of the (radiatively-corrected) MSSM can be
described by an effective field theory consisting of the most general CP-violating two-Higgs-doublet
model.

The 2HDM Lagrangian contains eight real scalar fields. After electroweak symmetry breaking,
three Goldstone bosons (G± and G0) are removed from the spectrum and provide the longitudinal modes
of the massive W± and Z . Five physical Higgs particles remain: a charged Higgs pair (H±) and three
neutral Higgs bosons. If experimental data reveals the existence of a Higgs sector beyond that of the
SM, it will be crucial to test whether the observed scalar spectrum is consistent with a 2HDM interpre-
tation. In order to be completely general within this framework, one should allow for the most general
CP-violating 2HDM when confronting the data. Any observed relations among the general 2HDM pa-
rameters would surely contribute to the search for a deeper theoretical understanding of the origin of
electroweak symmetry breaking.

2.1.1 The general Two-Higgs-Doublet Model (2HDM)

The 2HDM is governed by the choice of the Higgs potential and the Yukawa couplings of the two
scalar-doublets to the three generations of quarks and leptons. Let Φ1 and Φ2 denote two complex
hypercharge-one, SU(2)L doublet scalar fields. The most general gauge-invariant renormalizable Higgs
scalar potential is given by

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c.]

+1
2λ1(Φ†1Φ1)2 + 1

2λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+
{

1
2λ5(Φ†1Φ2)2 +

[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
Φ†1Φ2 + h.c.

}
, (2.1)

where m2
11, m2

22, and λ1, · · · , λ4 are real parameters. In general, m2
12, λ5, λ6 and λ7 are complex.

5
5



2.1.1.1 Covariant notation with respect to scalar field redefinitions

In writing Eq. (2.1), we have implicitly chosen a basis in the two-dimensional “flavor” space of scalar
fields. To allow for other basis choices, it will be convenient to rewrite Eq. (2.1) in a covariant form with
respect to global U(2) transformations, Φa → Uab̄Φb (and Φ†ā → Φ†

b̄
U †bā), where the 2× 2 unitary matrix

U satisfies U †bāUac̄ = δbc̄. In our index conventions, replacing an unbarred index with a barred index is
equivalent to complex conjugation (for further details see section 2.3). Thus, Eq. (2.1) can be expressed
in U(2)-covariant form as [10, 14]:

V = Yab̄Φ
†
āΦb + 1

2Zab̄cd̄(Φ
†
āΦb)(Φ

†
c̄Φd) , (2.2)

where the indices a, b̄, c and d̄ run over the two-dimensional Higgs “flavor” space and Zab̄cd̄ = Zcd̄ab̄.
Hermiticity of V implies that Yab̄ = (Ybā)

∗ and Zab̄cd̄ = (Zbādc̄)
∗. Explicitly, the coefficients of the

quadratic terms are

Y11 = m2
11 , Y12 = −m2

12 ,

Y21 = −(m2
12)∗ , Y22 = m2

22 , (2.3)

and the coefficients of the quartic terms are

Z1111 = λ1 , Z2222 = λ2 ,

Z1122 = Z2211 = λ3 , Z1221 = Z2112 = λ4 ,

Z1212 = λ5 , Z2121 = λ∗5 ,

Z1112 = Z1211 = λ6 , Z1121 = Z2111 = λ∗6 ,

Z2212 = Z1222 = λ7 , Z2221 = Z2122 = λ∗7 . (2.4)

Under the global U(2) transformation, the tensors Y and Z transform covariantly: Yab̄ → Uac̄Ycd̄U
†
db̄

and

Zab̄cd̄ → UaēU
†
fb̄
UcḡU

†
hd̄
Zef̄gh̄. Indices can only be summed over using the U(2)-invariant tensor δab̄.

The advantage of introducing the U(2)-covariant notation is that one can immediately identify
U(2)-invariant quantities as basis-independent; such quantities do not depend on the original choice of
the Φ1–Φ2 basis. In particular, any physical observable must be independent of the basis choice and
hence can be identified as some U(2)-invariant quantity. For example, the well-known tan β parameter
of the general 2HDM is not a physical quantity [14–16].

2.1.1.2 Counting the degrees of freedom

The 2HDM scalar potential depends on six real parameters and four complex parameters, for a total
of fourteen degrees of freedom. However, these parameters depend on the choice of the Φ1–Φ2 ba-
sis. In order to determine the number of physical degrees of freedom, one must take into account the
possibility that unphysical degrees of freedom can be removed by redefining the scalar fields via the
global U(2) “flavor” transformations. However, note that the global U(2) group can be decomposed
as U(2) ∼= SU(2)×U(1), where the global hypercharge U(1) transformation has no effect on the scalar
potential parameters. In contrast, the scalar potential parameters will be modified by a general SU(2)-
“flavor” transformation. Since an SU(2) transformation is specified by three parameters, three degrees of
freedom can be removed by a redefinition of the scalar fields. Thus, the scalar potential provides eleven
physical degrees of freedom that govern the properties of the 2HDM scalar sector [14, 15, 17].

2.1.1.3 Discrete symmetries and the 2HDM potential

The general 2HDM is not phenomenologically viable over most of its parameter space. In particular,
if we allow for the most general Higgs-fermion Yukawa couplings, the model exhibits tree-level Higgs-
mediated flavor-changing neutral currents (FCNCs), which may contradict the experimental bounds on
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FCNCs. This can be ameliorated by either avoiding the untenable regions of parameter space or by
introducing additional structure into the model. For example, in the Higgs sector of the MSSM, tree-level
Higgs-mediated FCNCs are absent due to the supersymmetric structure of the Higgs-fermion Yukawa
couplings. Tree-level Higgs-mediated FCNCs can also be eliminated by invoking appropriate discrete
symmetries [18]. Here, we focus on discrete symmetries imposed on the scalar fields. Consider a discrete
Z2 symmetry realized for some choice of basis: Φ1 → Φ1, Φ2 → −Φ2. This discrete symmetry implies
that m2

12 = λ6 = λ7 = 0. A basis-independent characterization of this discrete symmetry has been given
in [14,19]. In practice, the discrete symmetry must also be extended to the fermion sector. By specifying
the transformation properties of the fermions with respect to the discrete symmetry, one can constrain the
form of the Higgs-fermion Yukawa interactions. In fact, removing the possibility of dangerous FCNC
effects can also be achieved if the symmetry of the Z2 discrete transformation of the Higgs potential is
softly broken; i.e., there exists a basis in which λ6 = λ7 = 0 but m2

12 6= 0 [15,17]. A basis-independent
characterization of the softly-broken discrete symmetry can also be given [14]. Finally, hard-breaking
of the discrete Z2 symmetry corresponds to the case in which no basis exists in which λ6 = λ7 = 0.
Additional implications of the broken Z2 symmetry can be found in section 2.4.

2.1.1.4 The scalar field vacuum expectation values

Electroweak symmetry breaking arises if the minimum of the scalar potential occurs for nonzero expec-
tation values of the scalar fields. The condition for extrema of the scalar potential

∂V
∂Φ1

∣∣∣∣
Φ1=〈Φ1〉,
Φ2=〈Φ2〉

= 0,
∂V
∂Φ2

∣∣∣∣
Φ1=〈Φ1〉,
Φ2=〈Φ2〉

= 0 (2.5)

yields the vacuum expectation values (vevs) 〈Φ1,2〉. The scalar fields will develop non-zero vevs if the
mass matrix constructed from the quadratic squared-mass parameters of the Higgs potential (m2

ij) has at
least one negative eigenvalue. By employing an appropriate weak isospin and U(1)Y transformation, it
is always possible to write the scalar field vevs in the following form

〈Φ1〉 =
1√
2

(
0
v1

)
, 〈Φ2〉 =

1√
2




u

v2e
iξ


 , (2.6)

where v1 and v2 are real and positive, and 0 ≤ ξ < 2π. Depending on the parameters of Higgs potential,
the extremum for u 6= 0 describes either saddle point or a minimum of the potential, called the charged
vacuum, where the U(1)EM symmetry is spontaneously broken [15, 20–22]. The vacuum solution with
u = 0 preserves the U(1)EM symmetry; it corresponds to a local minimum of potential if its parameters
are such that the physical Higgs squared-masses are non-negative. In this case, one can show that the
energy of the charged vacuum is larger than energy of the U(1)EM preserving vacuum [20, 22].

Henceforth, we assume that the global minimum of the scalar potential respects the U(1)EM gauge
symmetry. In this case u = 0 and it is convenient to write:

v1 ≡ v cos β , v2 ≡ v sinβ , (2.7)

where v2 ≡ v2
1 + v2

2 = (
√

2GF )−1/2 = (246 GeV)2 and 0 ≤ β ≤ π/2.

One is always free to rephase Φ2 in order to set ξ = 0. In the following, we shall always work in
a basis in which the two neutral Higgs field vevs are real and positive (corresponding to a real vacuum).
The scalar minimum conditions (2.5) then yield:

m2
11 = m2

12 tβ − 1
2v

2
[
λ1c

2
β + (λ3 + λ4 + λ5s

2
β + (2λ6+λ∗6)sβcβ + λ7s

2
βtβ
]

(2.8)

m2
22 = (m2

12)∗ t−1
β − 1

2v
2
[
λ2s

2
β + (λ3 + λ4 + λ∗5c

2
β + λ∗6c

2
βt
−1
β + (λ7e

iξ + 2λ∗7e
−iξ)sβcβ

]
, (2.9)
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where sβ = sinβ, cβ = cos β and tβ = tanβ. Since m2
11 and m2

22 are both real, the imaginary part of
either Eq. (2.8) or Eq. (2.9) yields one independent equation:

Im (m2
12) = 1

2v
2
[

Im (λ5)sβcβ + Im (λ6)c2β + Im (λ7)s2
β

]
. (2.10)

The quantities

δ ≡ Im (m2
12)

v2sβcβ
, η ≡ Re (m2

12)

v2sβcβ
, (2.11)

will be useful in our discussion of the Higgs mass eigenstates and the mixing of CP-even and CP-odd
states. Note that Re (m2

12) is not determined by the scalar potential minimum conditions.

2.1.1.5 Theoretical constraints on the Higgs potential parameters

The parameters of Higgs potential are constrained by various conditions. To have a stable vacuum, the
potential must be positive at large quasi–classical values of the magnitudes of the scalar fields for an
arbitrary direction in the (Φ1,Φ2) plane. These are the positivity constraints [23–26]. The minimum
constraints are the conditions ensuring that the extremum is a minimum for all directions in (Φ1,Φ2)
space, except for the direction of the Goldstone modes. It is realized when the squared-masses of the five
physical Higgs bosons are all positive.

The tree-level amplitudes for the scattering of longitudinal gauge bosons at high energy can be
related via the equivalence theorem [27] to the corresponding amplitudes in which the longitudinal gauge
bosons are replaced by Goldstone bosons. The latter can be computed in terms of quartic couplings λ i
that appear in the Higgs potential. By imposing tree-level unitarity constraints on these amplitudes, one
can derive upper bounds on the values of certain combinations of Higgs quartic couplings [28–34].

The perturbativity condition for a validity of a tree approximation in the description of interactions
of the lightest Higgs boson may be somewhat less restrictive than the unitarity constraints. For example,
by requiring that one-loop corrections to Higgs self-couplings are small compared to tree-level couplings,
one expects that |λi|/16π2 � 1.

Unitarity constraints for the 2HDM were first derived for the potential without a hard violation of
the discrete Z2 symmetry and for the CP conserving case (e.g., see [32]). Extension to the CP-violating
case can be found in [33], and for the case of hard discrete Z2 symmetry violation in [34].

2.1.2 Conditions for Higgs sector CP-violation

Higgs sector CP-violation may be either explicit or spontaneous. Explicit CP conservation1 or violation
refers respectively to the consistent or inconsistent CP transformation properties of the various terms that
appear in the Lagrangian. If the scalar Lagrangian is explicitly CP-conserving, but the vacuum state of
the theory violates CP, then one says that CP is spontaneously broken [1, 10, 35]. The observable conse-
quences of Higgs sector CP-violation (either explicit or spontaneous) include the mixing of neutral Higgs
states of opposite CP quantum numbers and/or the existence of (direct) CP-violating Higgs interactions.

The CP state mixing and the direct CP-violation in the gauge/Higgs interactions are determined
by the properties of the scalar Lagrangian (and the corresponding vacuum state). These CP-violating
effects are absent if and only if there exists a basis in which the two neutral Higgs vacuum expectation
values and the scalar potential parameters are simultaneously real [36, 37]. Given an arbitrary potential,
the existence or non-existence of such a basis may be difficult to determine directly. For this problem,
the basis-independent methods are invaluable. In particular, a set of basis-independent conditions can be

1Since CP is violated in the SM via the CKM mixing of the quarks, it is generally unnatural to demand that the Higgs sector
of the 2HDM explicitly conserve CP. Nevertheless, one can naturally impose a CP-conserving Higgs sector by employing an
appropriate discrete symmetry. In the MSSM, the Higgs sector is CP-conserving at tree-level (due to the supersymmetry),
although one finds CP-violation arising at one-loop due to supersymmetry-breaking effects.
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found to test for the CP-invariance of the scalar sector. Following [38], we introduce three U(2)-invariant
quantities [37]:

−1
2v

2J1 ≡ v̂∗āYab̄Z
(1)

bd̄
v̂d , (2.12)

1
4v

4J2 ≡ v̂∗b̄ v̂
∗
c̄YbēYcf̄Zeāf d̄v̂av̂d , (2.13)

J3 ≡ v̂∗b̄ v̂
∗
c̄Z

(1)
bē Z

(1)

cf̄
Zeāf d̄v̂av̂d , (2.14)

where 〈Φ0
a〉 ≡ vv̂a/

√
2, and v̂a is a unit vector in the complex two-dimensional Higgs flavor space.

Then, the scalar sector is CP-conserving (i.e., no explicit nor spontaneous CP-violation is present) if J1,
J2 and J3 defined in Eqs. (2.12)–(2.14) are real.2 If the scalar potential is CP-violating, then the CP state
mixing depends only on ImJ2 [16, 39], whereas CP-violation in the gauge/Higgs boson interactions is
governed by all three quantities ImJk, k = 1, 2, 3.

2.1.2.1 Explicit CP-conservation

The general 2HDM scalar potential explicitly violates the CP symmetry. An explicitly CP-conserving
scalar potential requires the existence of a Φ1–Φ2 basis in which all the Higgs potential parameters are
real. Such a basis will henceforth be called a real basis. However, given an arbitrary potential, the
existence or non-existence of a real basis may be difficult to discern, as already noted. In Ref. [37], the
necessary and sufficient basis-independent conditions for an explicitly CP-conserving scalar potential
have been established, in terms of the following four potentially complex invariants:

IY 3Z ≡ Im (Z
(1)
ac̄ Z

(1)

eb̄
Zbēcd̄Ydā) , (2.15)

I2Y 2Z ≡ Im (Yab̄Ycd̄Zbādf̄Z
(1)
fc̄ ) , (2.16)

I6Z ≡ Im (Zab̄cd̄Z
(1)

bf̄
Z

(1)

dh̄
Zfājk̄Zkj̄mn̄Znm̄hc̄) , (2.17)

I3Y 3Z ≡ Im (Zac̄bd̄ZcēdḡZeh̄fq̄YgāYhb̄Yqf̄ ) , (2.18)

where Z(1)

ad̄
≡ δbc̄Zab̄cd̄.

The conditions for a CP-conserving scalar potential depend on the invariant quantity [14, 19]:

Z ≡ 2 Tr [Z(1)]2 − (Tr Z(1))2 = (λ1 − λ2)2 + 4|λ6 + λ7|2 , (2.19)

Note that if Z vanishes, then Eq. (2.19) implies that λ1 = λ2 and λ7 = −λ6 for all basis choices. Two
distinct cases are possible. If Z 6= 0, then the necessary and sufficient conditions for an explicitly CP-
conserving 2HDM scalar potential are given by IY 3Z = I2Y 2Z = I6Z = 0. (A similar result has also
been obtained in [40].) In this case I3Y 3Z = 0 is automatically satisfied. If Z = 0, then the aforemen-
tioned first three invariants automatically vanish, in which case the necessary and sufficient condition for
an explicitly CP-conserving 2HDM scalar potential is given by I3Y 3Z = 0. Explicit expressions for the
imaginary parts of the four CP-odd invariants above can be found in [37]. The significance of the four
conditions above from a group-theoretical perspective has been recently discussed in [19, 41].

Finally, we note that the imposition of the discrete Z2 symmetry Φ1 → Φ1, Φ2 → −Φ2 implies
that the scalar potential is CP-conserving. Since λ5 is the only nonzero complex parameter in the basis
where the discrete symmetry is manifest, it is a simple matter to rephase one of the scalar doublets to
render λ5 real. Explicit CP-violation can arise if the Φ1 → Φ1, Φ2 → −Φ2 discrete Z2 symmetry
breaking is either hard or soft. In the latter case, e.g., CP violation is a consequence of a nontrivial
relative phase in the complex parameters m2

12 and λ5.

2One can show that the reality of the Jk is equivalent to the invariant conditions given in Eq. (2.75) of section 2.3 [14, 38].
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2.1.2.2 Spontaneous CP-violation

If the scalar Lagrangian is explicitly CP-conserving but the Higgs vacuum is CP-violating, then CP is
spontaneously broken. However, both spontaneous and explicit CP-violation yield similar CP-violating
phenomenology. To distinguish between the two, one would need to discover CP-violation in the Higgs
sector and prove that the fundamental scalar Lagrangian is CP-conserving. In principle, such a distinction
is possible. For example, suppose one could verify that IY 3Z = I2Y 2Z = I6Z = I3Y 3Z = 0, whereas
at least one of three invariants J1, J2 and J3 possesses a non-zero imaginary part. In this case, the CP-
symmetry in the Higgs sector is spontaneously broken.3 In practice, distinguishing between explicit and
spontaneous CP-violation by experimental observations and analysis seems extremely difficult.

Spontaneous CP-violation cannot arise in the presence of the Φ1 → Φ1, Φ2 → −Φ2 discrete Z2

symmetry. In particular, in this case the scalar potential minimum condition implies that it is possible to
transform to a real basis in which the two neutral vacuum expectation values are real.

2.1.3 The Higgs mass spectrum

2.1.3.1 CP violation and mixing of states

We introduce the following field decomposition

Φ1 =




ϕ+
1

v1 + ϕ1 + iχ1√
2


 , Φ2 =




ϕ+
2

v2 + ϕ2 + iχ2√
2


 . (2.20)

Then the corresponding scalar squared-mass matrix can be transformed to the block diagonal form by
a separation of the massless charged and neutral Goldstone boson fields, G± and G0, and the charged
Higgs boson fields H±:

G± = cosβ ϕ±1 + sinβ ϕ±2 , (2.21)

G0 = cosβ χ1 + sinβ χ2 . (2.22)

The physical charged Higgs boson is orthogonal to G±:

H± = − sinβ ϕ±1 + cos β ϕ±2 . (2.23)

The mass of the charged Higgs boson is easily obtained:

M2
H± =

[
η − 1

2
(λ4 + Reλ5 + Re λ67)

]
v2 , (2.24)

where λ67 ≡ λ6 cot β + λ7 tanβ and η is defined in Eq. (2.11). The physical neutral Higgs bosons are
mixtures of the two CP-even fields ϕ1, ϕ2 and a CP-odd field

A = − sinβ χ1 + cos β χ2 , (2.25)

that is orthogonal to G0. Consequently, in the general 2HDM, the physical neutral Higgs bosons are
states of indefinite CP.

In the {ϕ1, ϕ2, A} basis, the real symmetric squared-mass matrix M2 for neutral sector is ob-
tained:

M2 =



M2

11 M2
12 M2

13

M2
12 M2

22 M2
23

M2
13 M2

23 M2
33


 . (2.26)

3One would also have to prove the absence of explicit CP-violation in the Higgs-fermion couplings. The relevant basis-
independent conditions have been given in [10, 38].
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Diagonalizing the matrix M2 by using an orthogonal transformation R we obtain the physical neutral
states h1,2,3, with corresponding squared-masses M 2

i that are the eigenvalues of the matrixM2:


h1

h2

h3


 = R



ϕ1

ϕ2

A


 , with RM2RT = diag(M 2

1 , M
2
2 , M

2
3 ) . (2.27)

The diagonalizing matrix R can be written as a product of three rotation matrices Ri, corresponding to
rotations by three angles αi ∈ (0, π) about the z, y and x axes, respectively:

R = R3R2R1 =




c1 c2 c2 s1 s2

−c1 s2 s3−c3 s1 c1 c3−s1 s2 s3 c2 s3

−c1 c3 s2+s1 s3 −c1 s3−c3 s1 s2 c2 c3


 . (2.28)

Here, we define ci = cosαi, si = sinαi and adopt the convention for masses that M1 ≤M2 ≤M3.

One can first diagonalize the upper left 2× 2 block of the matrixM2. This partial diagonalization
[15] results in the neutral, CP-even Higgs fields which we denote as h and (−H),

H = cosαϕ1 + sinαϕ2, h = − sinαϕ1 + cosαϕ2 , (2.29)

where α ≡ α1 − π/2 is the mixing angle that renders the 2 × 2 CP-even submatrix diagonal.4 At this
stage the CP–odd field A remains unmixed:




h
−H
A


 = R1



ϕ1

ϕ2

A


 , with R1M2RT1 =M2

1 ≡



M2
h 0 M ′ 213

0 M2
H M ′ 223

M ′ 213 M ′ 223 M2
A


 , (2.30)

where

M2
A =

[
η − Re (λ5 − 1

2λ67)
]
v2 , (2.31)

M2
h,H = 1

2

[
M11 +M22 ∓

√
(M11 −M22)2 + 4M2

12

]
. (2.32)

The off-diagonal squared-masses M ′ 213 and M ′ 223 are given by

M ′ 213 = c1M
2
13 + s1M

2
23 = −1

2

[
2δ cos(β + α)− Im λ̃67 cos(β − α)

]
v2, (2.33)

M ′ 223 = −s1M
2
13 + c1M

2
23 = 1

2

[
2δ sin(β + α) + Im λ̃67 sin(β − α)

]
v2 , (2.34)

where λ̃67 ≡ λ6 cot β − λ7 tanβ and δ is defined in Eq. (2.11).

In the general CP-violating 2HDM, the states h, H and A are useful intermediaries, which do not
directly correspond to physical objects. In the case of CP conservation (realized for M ′ 2

13 = M ′ 223 = 0),
the fields h, H and A represent physical Higgs bosons: h1 = h, h2 = −H , h3 = A. If at least one of the
off diagonal terms differs from zero, an additional diagonalization is necessary, and the mass eigenstates,
which are now admixtures of CP–even and CP–odd states, violate the CP symmetry. In this case we
express the physical Higgs boson states h1,2,3 as linear combinations of h, H , A:



h1

h2

h3


 = R3R2




h
−H
A


 with RM2 RT = R3R2M2

1R
T
2 R

T
3 =



M2

1 0 0
0 M2

2 0
0 0 M2

3


 . (2.35)

4The appearance of the minus sign in −H and the shift by π/2 in the definition of α is needed in order to match
the standard convention used for CP-conserving case [8].
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The following mass sum rule holds:

M2
1 +M2

2 +M2
3 = M2

h +M2
H +M2

A = M2
11 +M2

22 +M2
33 . (2.36)

In general, the Higgs mass-eigenstates hi [Eq. (2.27)] are not states of definite CP parity since they
are mixtures of fields ϕ1,2 and A, which possess opposite CP parities. Such CP-state mixing is absent if
and only if M 2

13 = M2
23 = 0. In particular, for sin 2β 6= 0, the absence of CP-state mixing implies that

Im λ̃67 = 0 and δ ∝ Im (m2
12) = 0. In this latter case, h, H and A are the physical Higgs bosons, with

masses given by eqs. (2.31) and (2.32), and α2 = α3 = 0.

2.1.3.2 Various cases of CP mixing

We consider a number of possible interesting patterns of CP-even/CP-odd scalar state mixing [15]:

• If ε13 ≡ |M ′ 213/(M
2
A−M2

h)| � 1, then α2 ≈ 0 and the Higgs boson h1 practically coincides
with the lighter CP-even state, h. In addition, the CP-violating couplings of h are very small, typically
of O(ε13). The diagonalization of the residual 〈23〉 corner of the squared-mass matrix (2.30) using the
rotation matrix R3 yields the mass eigenstates h2 and h3. These are superpositions of H and A with a
potentially large mixing angle α3:

tan 2α3 ≈
−2M ′ 223

M2
A −M2

H

. (2.37)

If MA ≈MH , then the CP-violating state mixing can be strong even at small but nonzero |M ′ 2
23 |/v2. For

large values of MH ≈ MA the proper widths of H and A become large and the H and A mass peaks
strongly overlap. Here, one should include a (complex) matrix of Higgs polarization operators [42, 43].

• If ε23 ≡ |M ′ 223/(M
2
A − M2

H)| � 1, then α3 ≈ 0 and the Higgs boson h2 practically
coincides with the heavier CP-even state, −H . Similarly to the previous case, the diagonalization of the
〈13〉 part of squared-mass matrix (2.30), using the rotation matrix R2 yields the mass eigenstates h1 and
h3. These are superpositions of h and A states, which can strongly mix with large mixing angle α2:

tan 2α2 ≈
−2M ′ 213

M2
A −M2

h

. (2.38)

As in the previous case, ifMA ≈Mh, the CP-violating state mixing can be strong even at small M ′ 213/v
2.

• The case of weak CP-violating state mixing combines both cases above. That is ε13, ε23 � 1,
which imply that α2, α3 ≈ 0, in which case the CP–even states h, H are weakly mixed with the CP–odd
state A. The corresponding physical Higgs masses are given by

M2
1 'M2

h − s2
2(M2

A −M2
h), M2

2 'M2
H − s2

3(M2
A −M2

H), (2.39)

withM2
3 given by the sum rule (2.36) . In the particular case of soft-violation of the discrete Z2 symmetry

we also have

s2'δ
cos(β + α)

M2
A−M2

h

v2, s3'−δ
sin(β + α)

M2
A−M2

H

v2. (2.40)

• The case of the intense coupling regime with MA ≈ Mh ≈ MH [44] may also yield strong
CP-violating state mixing even when both δ and Im λ̃67 are small.

2.1.4 Higgs boson couplings

In the investigation of phenomenological aspects of 2HDM it is useful to introduce relative couplings,
defined as the couplings of each neutral Higgs boson hi (i = 1, 2, 3) to gauge bosons W+W− or ZZ ,
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Higgs bosons H+H− and hjhk, quarks q̄q (q = u, d) and charged leptons `+`−, normalized to the
corresponding couplings of the SM Higgs boson:

χ(i) = g
(i)
j /gSM

j , j = W±, Z,H±, u, d, ` . . . , (2.41)

where g(i)
j denotes the jjhi coupling. Note that for bosonic j, the relative couplings are real. In the case

of neutral Higgs boson (hi) couplings to fermions pairs f f̄ , the Yukawa couplings take the form

−LY = f̄(gRi + igIiγ5)f hi = f̄L(gRi + igIi)fR hi + h.c. , (2.42)

where the right and left-handed fermion fields are defined as usual: fR ≡ PRf and fL ≡ PLf , with
PR,L ≡ 1

2(1 ± γ5). Hence, we shall compute the Higgs–fermion relative coupling in Eq. (2.41) by
employing the complex couplings gi = gRi + igIi.

One can also make use of basis-independent techniques to obtain expressions for Higgs couplings
to gauge bosons, Higgs bosons and fermions that are invariant under U(2) field redefinitions of the two
complex scalar doublet fields [16]. Further details of this procedure and a complete collection of 2HDM
couplings can be found in section 2.3.

2.1.4.1 Bosonic sector

The gauge bosons V (W and Z) couple only to the CP–even fields ϕ1, ϕ2. In terms of the relative
couplings defined in Eq. (2.41), the couplings of gauge bosons to the physical Higgs bosons hi are:

χ
(i)
V =cos β Ri1+sinβ Ri2, V = W or Z. (2.43)

In particular, in the case of weak CP-violating state mixing considered above, we obtain

χ
(1)
V ' sin(β − α), χ

(2)
V ' − cos(β − α), χ

(3)
V ' −s2 sin(β − α) + s3 cos(β − α). (2.44)

The cubic and quartic Higgs self-couplings as functions of the Higgs potential parameters and the
elements of mixing matrix were obtained in [15,16,45–47]. In the case of soft Z2 symmetry violation in
the CP-conserving case, these latter results simplify. The Higgs self-couplings can be expressed in terms
of the Higgs masses and the mixing angles α and β. Moreover, if the Higgs-fermion Yukawa interactions
are of type-II [as defined below Eq. (2.46)], the trilinear couplings can be given in terms of the Higgs
masses, the relative couplings to gauge bosons and quarks, and the parameter η [15]. As an important
example, in the case of weak CP-violating state mixing and soft Z2 symmetry-violation, the coupling of
the neutral scalar hi to a charged Higgs boson pair (normalized to 2M 2

H±/v) can be expressed in terms
of the relative neutral Higgs couplings to the gauge bosons and fermions as follows:

χ
(i)
H± =

(
1− M2

i

2M2
H±

)
χ

(i)
V +

M2
i − ηv2

2M2
H±

Re (χ
(i)
u + χ

(i)
d ). (2.45)

Deviations of the cubic Higgs boson self-couplings from the corresponding Standard Model value would
also provide insight into the dynamics of the 2HDM. In particular, as emphasized in section 2.6, there is
a strong correlation between the loop-corrected hhh coupling and successful electroweak baryogenesis
(that makes critical use of the CP-violation from the Higgs sector).

2.1.4.2 Fermion–Higgs boson Yukawa couplings

The Higgs couplings to fermions are model dependent. The most general structure for the Higgs-fermion
Yukawa couplings, often referred to as the type-III model [48, 49], is given in the generic basis by:

−LY = Q0
LΦ̃1Γ1U

0
R +Q0

LΦ1∆1D
0
R +Q0

LΦ̃2Γ2U
0
R +Q0

LΦ2∆2D
0
R + h.c. , (2.46)
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where Φ̃i ≡ iσ2Φ∗i , Q
0
L is the weak isospin quark doublet, and U 0

R, D0
R are weak isospin quark singlets.

Here, Q0
L, U0

R, D0
R denote the interaction basis states, which are vectors in the quark flavor space, and

Γ1,Γ2,∆1,∆2 are Yukawa coupling matrices in quark flavor space.5 We have omitted the leptonic
couplings in Eq. (2.46); these follow the same pattern as the down-type quark couplings.

In some models, not all the terms in Eq. (2.46) are present at tree-level [50]. For example, in a
type-I model (2HDM-I) [51], there exists a basis where Γ2 = ∆2 = 0.6 Similarly, in a type-II model
(2HDM-II) [52], there exists a basis where Γ1 = ∆2 = 0. The vanishing of certain Higgs-fermion
couplings at tree-level can be enforced by imposing a discrete Z2 symmetry under which Φ1 → Φ1,
Φ2 → −Φ2, and the fermion fields are either invariant or change sign according to whether one wishes
to preserve either the type-I or type-II Higgs-fermion couplings while eliminating the other possible
terms in Eq. (2.46). Another well-known example is the MSSM Higgs sector, which exhibits a type-II
Higgs-fermion coupling pattern that is enforced by supersymmetry.

The fermion–Higgs boson Yukawa couplings can be derived from Eq. (2.46) (see, e.g., chapter 22
of [10]). Without loss of generality, we choose a basis corresponding to a real vacuum (i.e., ξ = 0). The
fermion mass eigenstates are related to the interaction eigenstates by bi-unitary transformations:

PLU = V U
L PLU

0 , PRU = V U
R PRU

0 , PLD = V D
L PLD

0 , PRD = V D
R PRD

0 , (2.47)

and the Cabibbo-Kobayashi-Maskawa matrix is defined as K ≡ V U
L V

D †
L . It is also convenient to define

“rotated” linear combinations of the Yukawa coupling matrices:

κU ≡ V U
L (Γ1cβ + Γ2sβ)V U †

R , ρU ≡ V U
L (−Γ1sβ + Γ2cβ)V U †

R , (2.48)

κD ≡ V D
L (∆1cβ + ∆2sβ)V D †

R , ρD ≡ V D
L (−∆1sβ + ∆2cβ)V D †

R . (2.49)

The quark mass terms are identified by replacing the scalar fields with their vacuum expectation values.
The unitary matrices V U

L , V D
L , V U

R and V D
R are chosen so that κD and κU are diagonal with real non-

negative entries. These quantities are proportional to the diagonal quark mass matrices:

MD =
v√
2
κD , MU =

v√
2
κU . (2.50)

In a general model, the matrices ρD and ρU are independent complex non-diagonal matrices.

It is convenient to rewrite Eq. (2.46) in terms of the CP-even Higgs fields H and h and the CP-odd
fields A (and the Goldstone boson G0). The end result is:

−LY =
1

v
D

[
MDsβ−α +

v√
2

(ρDPR + ρD
†
PL)cβ−α

]
Dh+

i

v
DMDγ5DG

0

+
1

v
D

[
MDcβ−α −

v√
2

(ρDPR + ρD
†
PL)sβ−α

]
DH +

i√
2
D(ρDPR − ρD

†
PL)DA

+
1

v
U

[
MUsβ−α +

v√
2

(ρUPR + ρU
†
PL)cβ−α

]
Uh− i

v
UMDγ5UG

0

+
1

v
U

[
MUcβ−α −

v√
2

(ρUPR + ρU
†
PL)sβ−α

]
UH − i√

2
U(ρUPR − ρU

†
PL)UA

+

{
U
[
KρDPR − ρU

†
KPL

]
DH+ +

√
2

v
U [KMDPR −MUKPL]DG+ + h.c.

}
, (2.51)

5We have reversed the lettering conventions for these coupling matrices as compared to [10] since ∆ is more naturally
associated with the coupling to down-type quarks.

6A type-I model can also be defined as a model in which Γ1 = ∆1 = 0 in some basis. Clearly, the two definitions are
equivalent, since the difference in the two conditions is simply an interchange of Φ1 and Φ2 which can be viewed as a change
of basis.
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where sβ−α = sin(β−α) and cβ−α = cos(β−α). In the most general CP-violating 2HDM, the physical
Higgs fields are linear combinations of h, H and A. As advertised, since ρD and ρU are non-diagonal,
Eq. (2.51) exhibits tree-level Higgs-mediated FCNCs.7 See section 2.5 for a study of the implications of
flavor-changing fermion–Higgs boson couplings for a variety of neutral current processes.

The fermion–Higgs boson Yukawa couplings simplify considerably in type-I and type-II models.
In particular, ρD and ρU are no longer independent parameters. For example, in a one-generation type-II
model, Γ1 = ∆2 = 0, which implies that [14]

tanβ =
−ρD
κD

=
κU

ρU
. (2.52)

These two equations are consistent, since the type-II condition is equivalent to κUκD + ρUρD = 0.
Moreover, using Eqs. (2.50) and (2.52), it follows that:

ρD = −
√

2md

v
tan β , ρU =

√
2mu

v
cot β . (2.53)

Inserting this result into Eq. (2.51) yields the well-known Feynman rules for the type-II Higgs-quark
interactions. For example, in the case of weak CP-violating state mixing, one finds the expected form for
the relative couplings of the neutral Higgs bosons to the up and down-type quarks:

χ
(1)
d = − sinα

cosβ
= sβ−α − tanβ cβ−α , χ(1)

u =
cosα

sinβ
= sβ−α + cot β cβ−α , (2.54)

−χ(2)
d =

cosα

cos β
= cβ−α + tanβ sβ−α , −χ(2)

u =
sinα

sinβ
= cβ−α − cot β sβ−α , (2.55)

χ
(3)
d = −i tanβ , χ(3)

u = −i cot β . (2.56)

Note the extra minus sign in χ(2)
i which arises due to the identification of h2 ' −H in this limiting case.

A similar analysis can be given for models of type-I. In the same CP-conserving limiting case
considered above, χ(i)

u is identical to the corresponding type-II values given above, but χ(i)
d = χ

(i) ∗
u .

2.1.4.3 The decoupling limit and implications for a SM-like Higgs boson

Suppose that all the coefficients of the quartic terms are held fixed [with values that are not allowed to
exceed O(1)]. Then, in the limit that MH± � v = 246 GeV, we find that one neutral Higgs boson
has mass of O(v), while the other two neutral Higgs bosons have mass of O(MH±). In this decoupling
limit, one can formally integrate out the heavy Higgs states from the theory [53–58]. The resulting Higgs
effective theory yields precisely the SM Higgs sector up to corrections of of O(v2/M2

H±). Thus, the
properties of the light neutral Higgs boson of the model, h1, are nearly identical to those of the CP-
even SM Higgs boson. Note that the CP-violating couplings of the lightest neutral Higgs boson to the
fermions, gauge bosons and to itself are suppressed by a factor of O(v2/M2

H±). In contrast, the two
heavy neutral Higgs bosons will generally be significant admixtures of the CP-even and CP-odd states
H and A.

In the approach to the decoupling limit, cβ−α ' O(v2/M2
H±) [58]. Then, Eqs. (2.44) and (2.54)

yields χ(1)
V ' χ

(1)
d ' χ

(1)
u ' 1, as expected. The flavor structure of the Higgs-quark interactions in the

decoupling limit is also noteworthy. Eq. (2.51) yields approximately flavor-diagonal QQh1 couplings,
since the contribution of the non-diagonal ρQ is suppressed by cβ−α. The heavier neutral Higgs bosons
possess unsuppressed flavor non-diagonal Yukawa interactions, and thus can mediate FCNCs at tree-
level. Of course, such FCNC effects would be suppressed by a factor of O(v2/M2

H±) due to the heavy

7Note that even in the case of a CP-conserving Higgs potential, where h, H and A are physical mass eigenstates, Eq. (2.51)
exhibits CP-violating Yukawa couplings proportional to the complex matrices ρD and ρU .
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masses of the exchanged Higgs bosons. The existence of a decoupling limit depends on the possibility of
taking M 2

H± arbitrarily large while holding the parameters λi fixed. Using Eq. (2.24), it follows that the
approach to the decoupling limit corresponds to the region of 2HDM parameter space where η � |λi|.
This implies that no decoupling limit exists in a 2HDM with an exact discrete Z2 symmetry.

The presence of a SM-like Higgs boson (which is defined as a neutral scalar that possesses tree-
level couplings which are nearly identical to those of the SM Higgs boson) is consistent with a 2HDM
with parameters near the decoupling limit. However, a SM-Higgs boson can arise in non-decoupling
regions of the 2HDM parameter space. As an example, in the CP-conserving limit with cβ−α ' 1 and
cot β sβ−α � 1, it follows that the heavier CP-even state H strongly resembles a SM-like Higgs boson.
Other examples of a SM-like Higgs boson in a non-decoupling regime can be found in [58, 59].

The decoupling limit is also a regime in which all but the lightest Higgs boson are very heavy
and nearly mass-degenerate. However, large Higgs masses (often with significant mass splittings) can
also arise in a non-decoupling parameter regime in which the λi are large. In this case, the heavy Higgs
boson masses are bounded from above by imposing unitarity constraints on the λi. These unitarity
constraints, which have been obtained for the CP-conserving case in [32], can be more severe in the
CP-violating case [33,34]. For example, the unitarity limit constrains the parameter |λ5| while the Higgs
mass formulae depend on Re λ5. In general, reasonably large H ,H± and A masses (up to about 600
GeV), consistent with the unitarity constraints, can be obtained for very large or very small tanβ and
reasonably small values of η ≈ (Mh/v)2, as well as for tan β ≈ 1 with η ≈ 0 [15].

Finally, we note that in a non-decoupling parameter regime, the loop effects due to virtual ex-
change of heavy Higgs boson states do not decouple. Thus, in this parameter regime, one can also
deduce upper bounds for heavy Higgs masses (or equivalently a bound on the departure from the decou-
pling limit). As an example, the non-decoupling effects of charged and neutral Higgs boson one-loop
contributions to leptonic τ -decays can yield an upper limit on the charged Higgs boson mass [60].

2.1.4.4 Pattern relations and sum rules

The orthogonality of the mixing matrix R allows one to obtain a number of relations [15, 61–63] among
the relative couplings of neutral Higgs particles to the gauge bosons and fermions. For simplicity, we re-
strict the following analysis to the case of one generation of quarks (and leptons). Consider the following
ratio of tree-level relative neutral Higgs couplings in the general CP-violating 2HDM:

R ≡ χ
(i)
V −χ

(i) ∗
d

χ
(i)
u −χ(i)

V

, (2.57)

where i labels the Higgs mass eigenstates. One can easily verify that Eq. (2.57) holds separately for
each value of i = 1, 2, 3. Moreover, if the denominator of Eq. (2.57) vanishes, then the numerator must
vanish as well and vice versa. The neutral Higgs boson relative couplings χj also satisfy a vertical sum
rule [46, 64, 65]:

3∑

i=1

(χ
(i)
j )2 = 1 (j = V, d, u) . (2.58)

Note that Eqs. (2.57) and (2.58) also holds for the corresponding relative couplings of the definite CP
scalar states h, H and A.

In models with type-I and type-II Higgs–fermion Yukawa couplings, additional tree-level pattern
relations and sum rules are respected. This is not surprising, given that the type-I and type-II conditions
impose extra relations among the Higgs-fermion couplings. For example, Eq. (2.57) can be extended to
the following result [15]:

R =
χ

(i)
V −χ

(i) ∗
d

χ
(i)
u −χ(i)

V

=
1−|χ(i)

d |2

|χ(i)
u |2−1

=
Imχ

(i)
d

Imχ
(i)
u

, (2.59)
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where R is independent of the index i that labels the neutral Higgs state. A brief computation shows
that in type-I models, R = −1, whereas in type-II models, R = tan2 β. In writing Eq. (2.59), we
implicitly assumed that the denominators do not vanish. For example, Eq. (2.59) can also be applied to
the couplings of the neutral Higgs states of definite CP: h, H and A. However, in the CP-conserving
limit, χ(i)

u and χ(i)
d are real for i = h and H , so for these states the ratio of imaginary parts in Eq. (2.59)

should be removed.

From Eq. (2.59), one can derive a horizontal sum rule for the neutral Higgs boson couplings [65]:

R |χ(i)
u |2 + |χ(i)

d |2 = 1 +R . (2.60)

Taken together, the vertical and horizontal sum rules guarantee that the cross section to produce each
neutral Higgs boson hi (or h,H,A) of the 2HDM-I or 2HDM-II, in the processes involving the Yukawa
interaction, cannot be lower than the corresponding cross section for the production of the SM Higgs
boson with the same mass [65].

The following linear relation among neutral Higgs boson relative couplings [15] is also a conse-
quence of Eq. (2.59)

(1 +R)χ
(i)
V = χ

(i) ∗
d +Rχ(i)

u . (2.61)

Models with type I and II Higgs-fermion Yukawa couplings can be distinguished by the following
pattern relation, which only holds in the 2HDM-II: [62, 63]:

(χ(i)
u + χ

(i)
d )χ

(i)
V − χ(i)

u χ
(i)
d = 1 . (2.62)

Of course, Eqs. (2.60)–(2.62) can also be applied to the neutral Higgs states of definite CP: h, H and A.

2.2 Overview of phenomenology
Gérald Grenier, Howard E. Haber and Maria Krawczyk

We present a brief tour of the phenomenological and experimental investigations of the Higgs of the
general 2HDM sector [9, 66, 67] at existing colliders (LEP8 and TEVATRON), and at colliders now
under construction (LHC) and under development (the ILC and the associated Photon Linear Collider
(PLC) [68]). Results from the LHC and the ILC/PLC can provide useful synergies for CP studies of the
general 2HDM, as discussed in [69, 70] and illustrated in section 2.14. The possibility of higher energy
lepton colliders such as CLIC [71] and µ+µ− collider [72, 73] have also been considered, and these
facilities provide additional opportunities for CP studies of the Higgs sector.

2.2.1 Present limits on Higgs boson masses and couplings

Due to the complexity of the general 2HDM parameter space, there are no completely model-independent
limits on Higgs boson masses and couplings. However, the absence of a Higgs boson discovery at LEP
and the Tevatron places numerous constraints on the 2HDM parameters.

In the decoupling limit of the 2HDM (see section 2.1.4.3), where the properties of the lightest
neutral Higgs boson approach those of the SM Higgs boson, the mass limits of the SM Higgs apply:
Mh > 114.4 GeV [74]. Less definitive results exist away from the decoupling limit, where significant
deviations of the properties of the lightest neutral Higgs boson from those of the SM Higgs boson can be
realized [58, 63]. Within the context of the MSSM, numerous mass limits have been quoted depending
on a number of underlying theoretical assumptions. Many of these limits are described in Section 3.2.
Here, we briefly focus on some of the more model-independent limits that have been obtained at LEP.

8Although the LEP collider shut down in 2000, there are still ongoing analyses of data.
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Fig. 2.1: Model independent upper limits for the CP-even and CP-odd Higgs boson masses as a function of their
couplings to vector bosons and down-type fermions. The allowed parameter regimes (at 95% CL) lie below the
solid lines. In the left panel, the squared relative coupling χ2

V is shown as function of Mh [75]. In the right panel,
the relative coupling χd is shown as function of MA [76]. The relative couplings are defined in section 2.1.4 (note
that the vertical axes employ different symbols for these relative couplings).
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Fig. 2.2: In the left panel, constraints on the parameter C2 ≡ cos2(β − α) are exhibited as a function of the
Higgs masses Mh and MA, based on the non-observation of e+e− → hA (assuming purely hadronic final states).
Similar results are reinterpreted in the right panel in the CP conserving type-II 2HDM. The shaded area denotes the
excluded regions of the (Mh,MA) plane, independently of the CP-even neutral Higgs boson mixing angle [77,78].

If the neutral Higgs boson coupling to gauge bosons is suppressed, then (χhV )2 = sin2(β−α)� 1,
and the upper bound on the Higgs mass (derived from the non-observation of e+e− → Zh) is signifi-
cantly reduced from the corresponding SM Higgs boson mass limit [75, 79], as shown in the left panel
of Fig. 2.1. In the CP-conserving 2HDM, the cross section for e+e− → hA is proportional cos2(β − α)
and depends on the corresponding masses Mh and MA. The constraints on cos2(β − α) deduced from
the non-observation of hA production at LEP yields an exclusion limit in the Mh–MA plane shown
in Fig. 2.2 [77, 78]. Note that these exclusion plots cannot exclude the possible existence of one very
light neutral Higgs boson. For a CP-odd Higgs boson (which does not couple to gauge bosons at tree-
level), important constraints on the Yukawa coupling χd as a function of the Higgs mass are derived from
searches for e+e− → bb̄A (where A → τ+τ−). The absence of an observed bb̄τ+τ− signal above the
SM background yields the exclusion plot shown in the right panel of Fig. 2.1 [76]. These limits depend
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on the enhancement of the bb̄A coupling (which for type-II Yukawa couplings is proportional to tan β).
A similar search was also performed for four b final states resulting from bb̄A(→ bb̄) production and for
four tau final states resulting from τ+τ−A(→ τ+τ−). The same four-fermion signatures can also result
from the production of the CP-even state h [76].

The phenomenology of the charged Higgs boson of the 2HDM depends on fewer model parameters
compared to that of the neutral Higgs bosons. Mass limits (at 95% CL) exist for the CP-conserving
2HDM-I and 2HDM-II and are given by 78.6 GeV [80] and 76.7 GeV [81], respectively. These limits
are independent of tanβ. All other limits involving the charged Higgs boson mass depend on tanβ. For
example, the CDF Collaboration reports [82] no charged Higgs bosons have been observed in top quark
decays at the Tevatron. This data excludes certain regions of the MH±–tanβ plane.

Virtual charged Higgs exchange can affect low-energy processes and place constraints on the
2HDM parameters. The most powerful constraint of this type can be obtained from the observed rate
for b → sγ, which is consistent with the predictions of the Standard Model. Thus, the contributions
via loops due to new physics must be rather small. In the 2HDM, there is an extra contribution due
to a charged Higgs boson loop. The significance of this contribution depends on the structure of the
Higgs-fermion couplings. For example, there is almost no constraint in the CP-conserving 2HDM-I.
In contrast, in the 2HDM-II, the experimental observation of b → sγ implies a 95% CL lower limit of
MH± >∼ 320 GeV [83,84]. However, such a limit must be interpreted with care, since virtual effects orig-
inating from other new physics sources can cancel the charged Higgs contribution, thereby significantly
relaxing (or removing entirely) the charged Higgs mass limit.

A number of other observables can also provide useful constraints on 2HDM parameters. For
example, a lower bound on Mh±/ tan β can be obtained in precision measurements of semi-leptonic b
decays [85] and leptonic τ -decays [60] by constraining the size of the tree-level charged Higgs boson
exchange contributions. Constraints on Higgs masses and couplings have been obtained for type-II
[60, 86] and for type III Higgs-fermion couplings [87–89]. Additional examples of this type can be
found in section 2.5. Global fits using different electroweak observables such as ρ, Rb and b → sγ [90]
(and (g−2)µ in [91]), have been made for the 2HDM-II, and these can significantly constrain the allowed
regions of the parameter space.

2.2.2 Probing the CP nature of the neutral Higgs bosons

If phenomena consistent with the 2HDM are discovered, it will be important to discover the form of
the 2HDM that is realized in nature. One critical step in this program is the determination of the CP-
properties of the three neutral Higgs bosons. If CP is conserved, then one can associate definite CP-
quantum numbers with the three states (i.e, the CP-even h and H and the CP-odd A). If CP is violated,
there is mixing among these states of definite CP, the corresponding mass-eigenstates h1, h2 and h3

are states of indefinite CP. In this latter case, one of the main tasks of the experimental Higgs studies
is to confirm this mixing and determine the corresponding mixing angles. If the 2HDM parameters lie
in the vicinity of the decoupling regime, then to a very good approximation h1 ' h is a SM-like CP-
even Higgs boson. However, even in this case, there may be significant CP-violating effects involving
the heavy neutral Higgs bosons, manifested by large mixing between the H and A. In the decoupling
regime, the mass splitting between the heavy neutral Higgs states tends to be small (of order M 2

Z/M
2
H± ).

Consequently, the mixing between H and A in the CP-violating case and the overlapping of the H and
A resonances in the CP-conserving case can lead to similar phenomenological effects. Moreover, in
the case of nearly mass-degenerate scalar states, one should include the effects of the non-zero width in
scalar mass matrix [42, 43], leading to the phenomena of resonant Higgs bosons production. A study of
this type is presented in Section 3.12.

In order to determine the CP-properties of the neutral scalar states, one must study the various
Higgs couplings to gauge bosons and fermions that govern the Higgs production and decay processes.
In general, the CP-indefinite neutral states hi exhibit both scalar and pseudoscalar couplings to fermion
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pairs. In contrast, W+W− and ZZ couple dominantly to the CP-even component of the neutral Higgs
bosons. This latter coupling enters at tree-level, whereas the coupling to the CP-odd component is a
one-loop generated effect [92]. Nevertheless, in a completely model-independent study of Higgs decay
to massive vector boson pairs, one may wish to allow for the possibility of a non-negligible CP-odd
component that couples to vector bosons, as in [93]. For example, Lorentz invariance dictates that the
most general interaction vertex for the coupling of a neutral Higgs boson hj to ZZ is given by [94–96]:

Γµν(k1 , k2) =
ig

mZ cos θW

[
ajm

2
Zgµν + bj(k2µk1ν − k1 · k2gµν) + cjεµναβk

α
1 k

β
2

]
, (2.63)

where the incoming momenta k1 and k2 correspond to the fields Zµ and Zν , respectively, aj and bj are
CP-even form factors and cj is a CP-odd form factor. (We assume a convention where ε0123 = 1.) The
form factors depend on Lorentz invariant combinations of the external momenta. For the CP-violating
2HDM at tree level, bj = cj = 0 and aj = Rj1 cos β +Rj2 sinβ, where R is the mixing matrix defined
in Eq. (2.27). The form factors bj and cj (and modifications of aj) are generated by radiative loop cor-
rections. These corrections can generate both dispersive (real) and absorptive (imaginary) contributions
to the form factors (the latter corresponds to the possibility of on-shell intermediate states). Contribu-
tions to bj and cj can also be generated due to new physics at the TeV-scale. After integrating out the
effects of the high-scale physics, effective local (dimension-five) operators of the form ZµνZ

µνhj and
εµναβZ

µνZαβhj can be generated in the low-energy effective Lagrangian that result in contributions to
bj and cj , respectively [97,98], where Zµν ≡ ∂µZν−∂νZµ+ ig cos θW (W+

µ W
−
ν −W+

ν W
−
µ ) is the field

strength tensor of the Z boson. The hermiticity of these two operators implies that the contributions of
high-scale physics to the form factors must be real.

The discovery of a CP-violating signal in the ZZhj interaction requires a detection of an inter-
ference effect between the CP-even and CP-odd form factors of Eq. (2.63). If the tree-level term aj
dominates, the direct observation of CP-violation will be difficult. In contrast, there are no tree-level
couplings of the neutral Higgs bosons to gluon pairs or photon pairs, so that the loop coupling to the
CP-even and CP-odd components of the neutral Higgs bosons can be competitive. One can also infer
the existence of CP-violation indirectly (in the context of the 2HDM) if there is significant CP-mixing
among the three neutral states. In this case, the observation of ZZhj couplings for all three states hj
would provide strong evidence for the CP-mixing of the scalar states.

For a neutral Higgs boson with a mass below 140 GeV the most detailed information of its CP
properties can be obtained from its decay into τ+τ− [99–101] (a tool is provided in [102]). For larger
Higgs masses, one must employ the decays intoW +W− and/or ZZ [93], if the corresponding branching
ratios are suitably large (in the decoupling regime only h1 can have significant couplings to W+W− and
ZZ). Finally, for Higgs masses above 350 GeV, one can employ the tt̄ decay mode [103]. In each case,
the CP properties can be determined by studying the angular distributions of the various final state decay
products. Additional CP-odd observables can be constructed by considering the properties of the Higgs
production process. The production of a neutral Higgs boson in association with hadronic jets (e.g, as
in gauge boson fusion at the LHC [104]) or in association with tt̄ [105, 106] have been investigated.
We note that if Higgs production via diffractive processes is observable at the LHC, then the azimuthal
angular distribution of the tagged protons can be used to study the CP-properties of the produced Higgs
boson. For further details, see [107, 108] and Section 3.8.

At the ILC and CLIC, the Higgs bosons are produced in pairs or in association with other particles.
At the PLC and at a µ+µ− collider, one can produce a single neutral Higgs boson through a resonant
s-channel process via γγ fusion and µ+µ− annihilation, respectively. For example, in γγ fusion to a
neutral Higgs boson, one can make use of the polarization of the photon beams to study in detail the
CP-properties of the resonant neutral Higgs states [109]. The interference between a Higgs signal and
the SM background can also provide information that enables one to determine the CP property of the
Higgs boson. Specific examples will be cited below in the discussion of CP studies at the ILC and PLC.
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2.2.3 SM-like Higgs boson scenario

The Higgs boson direct search limits and the global electroweak fits to the precision electroweak data
from LEP, SLC and the Tevatron provides a strong hint for the existence of a SM-like Higgs boson with
a mass in the range of 115 GeV—207 GeV [110]. Precision measurements of Higgs couplings and quan-
tum numbers (spin and CP) at future colliders are needed to confirm the nature of such a particle. A
SM-like Higgs boson can appear in both the CP-conserving and the CP-violating 2HDM in the decou-
pling regime as previously noted [58, 63]. In this case, the other Higgs boson masses of the model must
be significantly larger than MZ .

For special choices of the 2HDM parameters, a SM-like Higgs boson can also appear in a non-
decoupling regime [58, 59, 90] of the model parameter space. In this latter case, a SM-like Higgs boson
would possess tree-level couplings that approximately match those of the SM Higgs boson (although
opposite to the SM signs of couplings are possible). However in contrast to the decoupling regime, the
masses of the non-SM-like neutral and charged Higgs bosons in the non-decoupling regime need not be
particularly heavy. It may be possible to distinguish a SM-like Higgs boson from the Higgs boson of
the Standard Model due to the effects of one-loop induced couplings. For example, the couplings of a
SM-like Higgs boson to two gluons and to two photons can deviate from those of the corresponding SM
Higgs couplings, due to the contribution of a charged Higgs boson loop [59, 62].

In the non-decoupling scenario just considered, a very light h1 may exist with suppressed cou-
plings to gauge bosons, whereas the heavier H (in the CP-conserving model) or h2 in the CP-violating
model corresponds to a SM-like Higgs boson. In such a case, even a very light h or A (with the mass of
the SM-like H above 114 GeV) is not excluded by LEP data in the CP conserving 2HDM-II as shown in
section 2.2.1. In the MSSM with large loop-induced CP-violating Higgs Yukawa interactions, a bench-
mark scenario named CPX [111] has been provided for further studies of this scenario. The OPAL
collaboration has reanalyzed its data in the light of the CPX scenario [112]. Combined LEP results and
ATLAS prospects for this benchmark are provided in Sections 3.2 and 3.3.

In [113] very large non-decoupling effects were found in the CP conserving 2HDM due to loop
corrections in Higgs self-couplings (for small η). These can yield deviations as large as 100% from
the Standard Model prediction, even when all the other couplings of the lightest Higgs boson to gauge
bosons and fermions are in good agreement with the Standard Model.

2.2.4 Tri-mixing scenarios

In some portion of the 2HDM parameter space, the three neutral Higgs bosons can be close in mass
and have similar coupling strengths to the Z . This has been called the three-way mixing regime (in the
CP-conserving case sometimes referred to as the intense coupling regime [44]).

A good experimental Higgs mass resolution is important to probe this scenario at the LHC. Here
the mass resolution expected for the SM Higgs searches, which is between ∼ 300 MeV and 2 GeV
[114, 115], should be sufficient. The total cross-section for Higgs production is divided up (roughly
equally) among the three neutral Higgs bosons. One must check that the three hiZZ couplings satisfy
the vertical sum rule Eq. (2.58). This parameter regime seems very challenging at the Tevatron but might
be easier to probe at the LHC. Detailed analyses of such scenarios were also performed for the ILC [116]
and PLC [117]. A similar two-mixing scenario was considered in [43], for the PLC.

2.2.5 CP studies of the Higgs sector at the LHC

After the initial discovery of a (candidate) neutral Higgs boson at the LHC, it will be important to verify
whether the properties of this state are consistent with those of the SM Higgs boson, or whether an
extension of the SM Higgs sector is required. The CP properties can be determined at the LHC by
studying angular distributions of the Higgs decay products. The gg → hi → f f̄ process has been
considered for the tt̄ final state in [103, 118] and analyses for τ+τ− and tt̄ final states are presented in

21

THE CP-VIOLATING TWO-HIGGS DOUBLET MODEL

21



sections 2.7 and 2.8. The decay hi → V V with V = W± or Z , followed by leptonic decays of the vector
boson V has been considered in [93, 119]. The sensitivity of the four-lepton channel (for hi → ZZ) to
CP-violating observables is examined in sections 2.12 and 2.11 and in section 2.13 for the e+e−µ+µ−

final states.

The CP properties can also be determined by studying angular distributions of particles produced
in association with the hi. The distribution of azimuthal angles of two light accompanying jets in hijj
production via gluon-gluon and vector boson fusion are studied in section 2.10 as a probe for the CP
properties of hi. In the case of gluon fusion, this distribution might be diluted by higher order corrections
[120]. In the gg → hitt̄ production, CP-sensitive variables can be build as studied in section 2.9. In this
same production, certain weighted cross section integrals described in [121] can provide a determination
of the CP nature of a light hi. A similar study was performed in [122] for partonic processes involving
gluons and light quarks accompanying by two jets, for neutral Higgs bosons lighter than 200 GeV.

Charged Higgs boson production and decays can also be useful for probing CP properties of the
Higgs sector at LHC. The associated production ofH±h1 withH± →W±h1 and h1 → bb̄ yields events
with four b-quarks, a charged lepton and missing transverse energy. There is virtually no Standard Model
background, and the corresponding signal can be as large as 45 events for an integrated luminosity of 30
fb−1 at the LHC [123]. For mH± < mt, the tt̄ pair production, with one top quark decaying into bH±

and H± →W±h1 →W±bb̄ (and the other top quark decays into bW±), yields a signal of four b quarks
and two W bosons. It is relatively free of Standard Model background and can result in roughly 5000
events for a luminosity of 30 fb−1 at the LHC [124]. In some regions of the 2HDM parameter space,
the study of H±W∓ production might allow one to distinguish between Higgs sector of the MSSM and
a general 2HDM [125]. Evidence for CP violation can be revealed in asymmetries in the associated
production of a charged Higgs boson and the top quark [126]. Asymmetries in charged Higgs boson
decay into tb̄, t̄b can also be used to probe CP violation [127], whereas measuring the same asymmetries
in H± → τ±ντ decay is more challenging [128].

In a general 2HDM, one expects (at some level) the existence of FCNC processes and lepton-
flavor-violating (LFV) processes in the leptonic sector, mediated by tree-level neutral Higgs boson ex-
change. For example, hi can decay into 2 charged leptons of different flavors. Typical branching ratios
compatible with current experimental data for LFV hi decay can be found in [129]. The most promising
decay is h1 → τ±µ∓. Measurements of the muon anomalous magnetic moment [130] favor regions of
the parameter space where the h1 → τ±µ∓ decay can be seen at both the LHC and Tevatron [131].

2.2.6 CP studies of the Higgs sector at the ILC

We briefly survey some of the main aspects of the CP study at a high energy linear e+e− collider (ILC)
with

√
s = 500—1000 GeV, assuming an integrated luminosity of 100 fb−1 and a longitudinally polar-

ized electron beam (up to 90%). The main neutral Higgs production mechanisms at the ILC [132,133] are
governed by the Higgs interaction with gauge bosons: e+e− → Zhi via Higgs-strahlung, e+e− → νν̄hi
via W+W− fusion and e+e− → e+e−hi via ZZ-fusion. The gauge boson fusion processes become
the dominant Higgs production processes at large

√
s. Neutral and charged Higgs bosons can also be

produced in pairs: e+e− → hihj (i 6= j) via s-channel Z-exchange and e+e− → H+H− via s-channel
γ and Z-exchange. Note that in the decoupling limit, the two heaviest neutral Higgs bosons (h2 and h3)
and H± are heavy and roughly mass degenerate. Thus, the pair (or associated) production of a pair of
heavy states is kinematically possible only if

√
s is larger than twice the mass of the heavy Higgs states.

The Higgs-strahlung cross section e+e− → Zhi depends on whether the hi is CP-even, CP-
odd, or a mixture [94, 95, 97, 134, 135]. For a CP-even (CP-odd) Higgs boson, the Z is longitudinally
(transversally) polarized. The spin, parity and charge conjugation quantum numbers, J PC , of the Higgs
boson can potentially be determined independently of the model by studying the threshold dependence
and angular distribution of the Higgs and Z boson [136]. The angular distribution of the fermions in the
Z → f f̄ reflects the CP nature of the state hi [95,97,134,135]. A full simulation was performed in [137]

22

WORKSHOP ONCP STUDIES AND NON-STANDARD HIGGS PHYSICS

22



for the TESLA design, with promising results. It should be noted that in the analyses cited above, generic
CP-odd couplings of the Higgs boson to gauge boson pairs were assumed. In practice, such couplings
are expected to be quite suppressed, as they are necessarily absent at tree-level and thus can only appear
at one loop (in contrast to the tree-level CP-even couplings), as discussed in section 2.2.2.

The Yukawa couplings of the neutral Higgs bosons can be studied in the associated production
processes e+e− → f f̄hi, where (f = b, t, τ, µ). The Yukawa process and the Higgs production pro-
cesses e+e− → Zhi and e+e− → hihj (i 6= j) are complementary in the search for at least one Higgs
boson of the CP-violating 2HDM [65, 138]. In all these processes, correlations between the production
and decay (with polarized initial beams) yield numerous observables that are sensitive to the spin and
CP properties of the produced Higgs bosons. For example, the sensitivity to CP violation in the Yukawa
coupling to b quarks, was studied in [139]. In this analysis the process e+e− → bb̄νν̄ was considered for
a Higgs boson with a mass of 120 GeV that decays primarily into bb̄, and the interference between the
Higgs signal and SM background was exploited to determine the CP properties of the Higgs boson. The
process e+e− → tt̄hi alone may be sufficient to provide a reasonable determination of the tt̄ and ZZ
couplings and the CP-properties of the produced hi [140]. The Yukawa interaction is also responsible for
singly-produced charged Higgs bosons via e−e+ → bc̄H+, τ ν̄H+. These production processes provide
a test of the chirality of the charged Higgs boson Yukawa couplings [141].

The Higgs self-couplings are very difficult to ascertain at the LHC. At the ILC, these couplings
can be measured with limited accuracy in the processes e+e− → Zhihj and e+e− → νν̄hihj [113,142,
143]. These processes depend both on the Higgs self couplings and the V V hi and V V hihj couplings.

2.2.7 CP studies of the Higgs sector at the PLC

By shining intense laser light on the electron (and positron) beam, one can convert the initial beam of
the ILC into a photon beam via Compton backscattering. This provides a mechanism for using the ILC
as an electron-photon or photon-photon collider. In the photon linear collider (PLC) mode of the ILC,
the photon beams are produced with energies up to 80% of the electron-positron center-of-mass energy
and with a luminosity similar to that of the original colliding e+e− beams. Moreover, it is possible to
produce highly polarized photon beams (the degree of polarization depends on the polarization of the
laser light employed in the Compton backscattering that produces the photon beam, and polarization of
the electron beam). At the PLC, the neutral Higgs boson can be produced resonantly in the s-channel,
leading to a higher mass reach than the parent e+e− collider. Moreover, the polarization of the photon
beams can be selected to form an (approximately pure) CP-odd or CP-even initial state. This provides
an ideal laboratory for studying the CP properties of the neutral Higgs boson. For example, CP-violating
asymmetries in neutral Higgs boson processes can be constructed even without information on the final
states.

The spin and parity of the Higgs boson can be measured in a model-independent way at the PLC
using the hi → ZZ (ZZ∗) decay channel [93], and the angular distributions of the fermions from the
decays Z → f f̄ . The detection of Higgs sector CP-violating effects can be ascertained by studying a
variety of final states. By taking into account interference effects of the Higgs signal and background, one
can extract both the Higgs partial width Γγγ and the phase of the Higgs amplitude, φγγ , for the W+W−

final state [144] and for the tt̄ final state [145]. Other analyses of CP violation in γγ → hi → W+W−

have been given in [146]; realistic simulations for the 2HDM with a SM-like Higgs boson and in a model
independent approach were performed in [144, 147] and are discussed in section 2.14. In particular, the
simultaneous simulation of ZZ and W+W− final states is crucial in determining the CP properties of
the neutral Higgs bosons with masses in the range of 200—300 GeV. Various analyses related to heavy
neutral Higgs boson production in γγ → ZZ,ZH , which also make use of the interference effects with
the SM background, are given in [148]. The process γγ → hi → tt̄ also provides an ideal setting for
studying the CP properties of the neutral Higgs boson. Model independent studies of this channel are
given in [145, 149–151].
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Both linearly and circularly polarized photon beams are necessary in order to measure polarization
asymmetries and to establish the CP property of the heavy hi. Experimental signatures of CP-violating
mixing of the heavy CP-even and CP-odd neutral Higgs states (H/A) at the PLC with (linear and circular)
polarized beams were studied in [43] in the decoupling regime including effect of non-zero Higgs widths.
Resonant loop-induced CP violation in Higgs-strahlung, in tri-mixing and two-mixing scenarios, was
studied in [117]. The CP asymmetries in the production and decays of pairs of muons, taus, b and t
quarks were used in this analysis. Although both analyses cited above were carried out for the case of
the MSSM Higgs sector, the main results should hold for the more general (CP-violating) 2HDM.

The Yukawa couplings of the Higgs boson can be explored at the PLC by making use of another
mechanism. The fermionic fusion, from the splitting of two photons into pairs of fermions, may lead
to the production of neutral or charged Higgs bosons without strong suppression at high energies. This
splitting leads to a collinear enhancement log(Mh/mf ) (where Mh is the mass of the produced Higgs
boson), which can be interpreted as the generation of “partonic densities” in the photon. The ττ fusion
was used e.g. in [152] as a method to determine the Yukawa coupling of neutral Higgs boson. Likewise,
single charged Higgs boson production in γγ → bc̄H+, τ ν̄H+, via γ → cc̄ and γ → bb̄, may be useful
to discriminate models [141]. It is possible to determine the chirality of Yukawa couplings H+bc,H+τν
by choosing the polarization of the colliding photon beams.

Finally, γγ → hihj (via box and triangle loops with gauge bosons and fermions) can be used to
determine Higgs self-couplings [143], with larger sensitivity than in the “parent” e+e− collider.

2.2.8 CP studies of the Higgs sector at a multi-TeV lepton collider

In the decoupling limit, h1 is nearly indistinguishable from the SM-Higgs boson. The heavier Higgs
bosons h2, h3 and H± (which are degenerate in mass up to corrections of order m2

Z/mH± ) may be
too heavy to be studied directly at the LHC and ILC. In this case, a multi-TeV lepton collider will be
required to fully explore the Higgs sector and provide a comprehensive study of the heavy Higgs states,
in particular of the Higgs sector CP-violation. Thus, we briefly survey the potential for CP studies at a
high luminosity multi-TeV e+e− collider such as CLIC [71] and a µ+µ− collider [72, 73].

At CLIC, the heavy Higgs states are produced in pairs via e+e− → hihj (j = 2, 3) and e+e− →
H+H− (note that single production of a heavy Higgs state: e+e− → h1hj (j = 2, 3) is suppressed
in the decoupling limit [53, 58]). The dominant decay of the charged Higgs boson is H+ → tb̄. An
asymmetry between the H+ and H− partial decay rates into tb̄ and t̄b would be a signal of CP-violation.
A simulation performed in [153] suggests that a 10% asymmetry could be detected as a 3σ effect with
5 ab−1 of data at CLIC with

√
s = 3 TeV. No analogous study has yet been performed for the hihj final

state (see [154] for an analysis of the discovery potential for e+e− → HA at CLIC).

At a µ+µ− collider, the s-channel single production of a heavy neutral Higgs boson [155, 156]
provides a new discovery mode as compared to the e+e− colliders. This production mechanism is feasi-
ble at a µ+µ− collider due to the mass enhancement in the Higgs coupling to µ+µ− relative to e+e−. In
addition, the charged Higgs boson can also be singly produced via µ+µ− → hj → H±W∓. The superb
energy resolution of the µ+µ− would permit the separation of the heavy neutral Higgs boson s-channel
resonances, even though these states are nearly degenerate in mass. It is demonstrated in [157] that the s-
channel production rates for the heavy neutral Higgs states and the transverse-polarization asymmetries
are complementary in diagnosing Higgs sector CP-violation. Additional CP-violating observables can
be studied by examining the heavy Higgs decays into a pair of third generation quarks or leptons [158].
The importance of the muon beam polarization for Higgs CP studies in µ+µ− → hj (j = 2, 3) is em-
phasized in [159]. In singly produced charged Higgs bosons in association with the W , an asymmetry in
the production rates for H±W∓ also provides a signal of CP violation [160].
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2.3 Basis-independent treatment of Higgs couplings in the CP-violating 2HDM
Howard E. Haber

In the most general two-Higgs-doublet model (2HDM), there is no distinction between the two complex
hypercharge-one SU(2) doublet scalar fields, Φa (a = 1, 2). Thus, any two orthonormal linear combina-
tions of these two fields can serve as a basis for the Lagrangian. All physical observables of the model
must be basis-independent. For example, tan β ≡ v2/v1 [see Eq. (2.7)] is basis-dependent and thus
cannot be a physical parameter of the model [14–16]. Basis independent techniques have been exploited
to great advantage in [14, 19, 37, 40, 41] in the study of the CP-violating structure of the 2HDM (and
extend the results originally obtained in [38, 39].) In addition, the importance of the scalar-doublet field
redefinitions (and rephasing transformations) have been emphasized, and some of their implications for
2HDM phenomenology have been explored in [15]. In this paper, we employ the basis-independent
formalism to obtain an invariant description of all 2HDM couplings.

2.3.1 Basis-independent formalism for the 2HDM

The fields of the 2HDM consist of two identical complex hypercharge-one, SU(2) doublet scalar fields
Φa(x) ≡ (Φ+

a (x) , Φ0
a(x)), where a = 1, 2 can be considered a Higgs “flavor” index. The most general

redefinition of the scalar fields (which leaves the form of the canonical kinetic energy terms invariant)
corresponds to a global U(2) transformation, Φa → Uab̄Φb [and Φ†ā → Φ†

b̄
U †bā]. Here, it is convenient

to introduce unbarred and barred indices with a summation convention in which only barred–unbarred
index pairs of the same letter are summed. The basis-independent formalism consists of writing all
equations involving the Higgs sector fields in a U(2)-covariant fashion. Basis-independent quantities can
then be identified as invariant scalars under U(2). The U(2)-invariants are easily identified as products of
tensor quantities with all barred and unbarred index pairs summed with no flavor indices left over.

The scalar potential can be written in U(2)-covariant form [10, 14] in terms of the tensors Yab̄ and
Zab̄cd̄ as shown in Eq. (2.2). The vacuum of the theory is assumed to respect the electromagnetic U(1)EM

gauge symmetry. The U(1)EM-conserving vacuum expectation value can be written as:

〈Φa〉 =
v√
2

(
0
v̂a

)
, (a = 1, 2) , with v̂a ≡ eiη

(
cβ

sβ e
iξ

)
, (2.64)

where v ≡ 2mW /g = 246 GeV, cβ ≡ cos β, sβ ≡ sinβ and v̂a is a vector of unit norm. The overall
phase η is arbitrary. By convention, we take 0 ≤ β ≤ π/2 and 0 ≤ ξ < 2π.

Under a U(2)-flavor transformation, v̂a → Uab̄v̂b. The unit vector v̂a can also be considered to
be an eigenvector of unit norm of the Hermitian matrix Vab̄ ≡ v̂av̂

∗
b̄
. Since V is Hermitian, it possesses

a second eigenvector of unit norm that is orthogonal to v̂a. We denote this eigenvector by ŵa, which
satisfies v̂ ∗

b̄
ŵb = 0. The most general solution for ŵa, up to an overall multiplicative phase factor, is:

ŵb ≡ v̂ ∗ā εab = e−iη
(
−sβ e−iξ

cβ

)
. (2.65)

The inverse relation to Eq. (2.65) is easily obtained: v̂ ∗ā = εāb̄ ŵb. Above, we have introduced two Levi-
Civita tensors with ε12 = −ε21 = 1 and ε11 = ε22 = 0. However, εab and εāb̄ are not proper tensors
with respect to the full flavor-U(2) group (although these are invariant SU(2)-tensors). That is, ŵa does
not transform covariantly with respect to the full flavor-U(2) group. If U = eiψÛ , with det Û = 1 (and
consequently detU = e2iψ), it is simple to check that under a U(2) transformation

v̂a → Uab̄v̂b implies that ŵa → (det U)−1 Uab̄ ŵb . (2.66)

Henceforth, we shall define a pseudotensor as a tensor that transform covariantly with respect to
the flavor-SU(2) subgroup but whose transformation law with respect to the full flavor-U(2) group is
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only covariant modulo an overall nontrivial phase equal to some integer power of detU . Thus, ŵa is a
pseudovector. However, we can use ŵa to construct proper tensors. For example, the Hermitian matrix
Wab̄ ≡ ŵaŵ∗b̄ = δab̄ − Vab̄ is a proper second-ranked tensor.

One can write a set of independent scalar quantities constructed out of Yab̄, Zab̄cd̄, va and wa.
There are six independent invariant quantities:

Y1 ≡ Tr (Y V ) , Y2 ≡ Tr (Y W ) ,

Z1 ≡ Zab̄cd̄ VbāVdc̄ , Z2 ≡ Zab̄cd̄WbāWdc̄ ,

Z3 ≡ Zab̄cd̄ VbāWdc̄ , Z4 ≡ Zab̄cd̄ Vbc̄Wdā , (2.67)

and four independent pseudo-invariant quantities:

Y3 ≡ Yab̄ v̂
∗
ā ŵb , Z5 ≡ Zab̄cd̄ v̂∗ā ŵb v̂∗c̄ ŵd ,

Z6 ≡ Zab̄cd̄ v̂
∗
ā v̂b v̂

∗
c̄ ŵd , Z7 ≡ Zab̄cd̄ v̂∗ā ŵb ŵ∗c̄ ŵd , (2.68)

that depend linearly on Y and Z . Note that the invariants are manifestly real, whereas the pseudo-
invariants are potentially complex. Using Eq. (2.66), it follows that under a flavor-U(2) transformation
specified by U , the pseudo-invariants Y3, Z5, Z6 and Z7 transform as:

[Y3, Z6, Z7]→ (detU)−1[Y3, Z6, Z7] and Z5 → (detU)−2Z5 . (2.69)

Thus, Eqs. (2.67) and (2.68) correspond to thirteen invariant real degrees of freedom (ten magnitudes
and three relative phases) prior to imposing the scalar potential minimum conditions:

Y1 = −1
2Z1v

2 , Y3 = −1
2Z6v

2 . (2.70)

This leaves eleven independent real degrees of freedom (one of which is the vacuum expectation value v)
that specify the 2HDM parameter space.

2.3.2 (Pseudo)-invariants and the Higgs bases

Once the scalar potential minimum is determined, which defines v̂a, one class of basis choices is uniquely
selected. Suppose we begin in a generic Φ1–Φ2 basis. We define new Higgs doublet fields:

H1 = (H+
1 , H0

1 ) ≡ v̂∗āΦa , H2 = (H+
2 , H0

2 ) ≡ ŵ∗āΦa = εb̄āv̂bΦa . (2.71)

With respect to U(2) transformations, H 1 is an invariant field and H2 is a pseudo-invariant field that
transforms as H2 → (detU)H2. The latter phase freedom defines a class of Higgs bases. The defini-
tions of H1 and H2 imply that

〈H0
1 〉 = v/

√
2 , 〈H0

2 〉 = 0 . (2.72)

Hence, all Higgs bases are characterized by: v̂ = (1, 0) and ŵ = (0, 1). Using Eqs. (2.67) and (2.68),
one identifies Y1, Y2, Y3 and Z1, Z2,. . . ,Z7 as the coefficients of the 2HDM scalar potential in any Higgs
basis.

Explicitly, the scalar field doublets in the Higgs basis can be parameterized as follows:

H1 =

(
G+

1√
2

(
v + φ0

1 + iG0
)
)
, H2 =

(
H+

1√
2

(
φ0

2 + ia0
)
)
, (2.73)

where G± are the charged Goldstone bosons, G0 is the CP-odd neutral Goldstone boson, and H± are
the charged Higgs bosons with mass: M 2

H± = Y2 + 1
2Z3v

2. Since v̂ is a vector and ŵ is a pseudovector,
it follows that G± is an invariant field and H± is a pseudo-invariant field that transforms as:

H± → (detU)±1 H± (2.74)
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with respect to flavor-U(2) transformations. The neutral Higgs mass-eigenstates are linear combinations
of φ0

1, φ0
2 and a0. CP-violation due to the mixing of neutral scalar CP-eigenstates and/or direct CP-

violation in the bosonic interactions of the gauge/Higgs bosons are absent if and only if [14, 38, 39]:

Im [Z∗5Z
2
6 ] = Im [Z6Z

∗
7 ] = Im [Z∗5 (Z6 + Z7)2] = 0 . (2.75)

2.3.3 The physical Higgs mass-eigenstates

It is simplest to perform the diagonalization of the neutral scalar squared-mass matrix in the Higgs basis.
As in Section 2.1, we denote the neutral mass-eigenstate Higgs fields by h1, h2 and h3. The angles θij
parameterize the rotation matrix that converts the neutral Higgs basis fields φ0

1, φ0
2 and a0 into the mass-

eigenstate fields hk. Details of the diagonalization procedure can be found in [16].9 The end result
is: 


h1

h2

h3


 =




q11
1√
2
q∗12 e

iθ23 1√
2
q12 e

−iθ23

q21
1√
2
q∗22 e

iθ23 1√
2
q22 e

−iθ23

q31
1√
2
q∗32 e

iθ23 1√
2
q32 e

−iθ23







√
2 ReH0

1 − v
H0

2

H0 †
2


 , (2.76)

where

q11 = c13c12 , q21 = c13s12 , q31 = s13 , q41 = i ,

q12 = −s12 − ic12s13 , q22 = c12 − is12s13 , q32 = ic13 , q42 = 0 , (2.77)

with cij ≡ cos θij and sij ≡ sin θij . We have also defined q4` (` = 1, 2) for later use. In particular,

qk` → qk` , and eiθ23 → (detU)−1eiθ23 , (2.78)

under a U(2) transformation. That is, the qk` are invariants, which implies that θ12 and θ13 are U(2)-
invariant angles, whereas eiθ23 is a pseudo-invariant. Note that since H1 and eiθ23H2 are U(2)-invariant
fields, it follows that the hk are invariant fields, as expected. We shall also define Z5 ≡ |Z5|e2iθ5 and
Z6,7 ≡ |Z6,7|eiθ6,7 , in which case the φn ≡ θn − θ23 (n = 5, 6, 7) are U(2)-invariant angles.

If Im (Z∗5Z
2
6 ) = 0, then the neutral scalar squared-mass matrix can be transformed into block

diagonal form, which contains the squared-mass of a CP-odd neutral mass-eigenstate Higgs field A and
a 2× 2 sub-matrix that yields the squared-masses of two CP-even neutral mass-eigenstate Higgs fields h
and H . The analytic form of this diagonalization is simple and yields the well-known results of the CP-
conserving 2HDM . If Im (Z∗5Z

2
6 ) 6= 0, then the neutral scalar mass-eigenstates do not possess definite

CP quantum numbers, and the three invariant mixing angles θ12, θ13 and φ6 ≡ θ6 − θ23 are non-trivial.

The angles θ13 and φ6 are determined modulo π from [16]:

tan θ13 =
Im (Z5 e

−2iθ23)

2 Re (Z6 e−iθ23)
, tan 2θ13 =

2 Im (Z6 e
−iθ23)

Z1 −A2/v2
, (2.79)

whereA2 ≡ Y2+ 1
2 [Z3+Z4− Re (Z5e

−2iθ23)]v2. These equations exhibit multiple solutions (modulo π)
corresponding to different orderings of the hk masses. Likewise, the angle θ12 is determined from:

tan 2θ12 =
2 cos 2θ13 Re (Z6 e

−iθ23)

c13

[
c213(A2/v2 − Z1) + cos 2θ13 Re (Z5 e−2iθ23)

] . (2.80)

For a given solution of θ13 and φ6, Eq. (2.80) yields two solutions for θ12 modulo π, corresponding to
the two possible relative mass orderings of h1 and h2.

9This procedure differs somewhat from the one presented in section 2.1.3.1. In the latter, the diagonalization of the scalar
squared-mass matrix is carried out in a generic basis. The advantage of performing this computation in the Higgs basis is that
it allows one to easily identify the (pseudo)-invariant quantities that relate the neutral scalar interaction- and mass-eigenstates.
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The neutral Higgs boson masses Mk ≡Mhk can be expressed in terms of Z1, Z6 and the θij:

M2
1 =

[
Z1 −

s12

c12c13
Re (Z6 e

−iθ23) +
s13

c13
Im (Z6 e

−iθ23)

]
v2 , (2.81)

M2
2 =

[
Z1 +

c12

s12c13
Re (Z6 e

−iθ23) +
s13

c13
Im (Z6 e

−iθ23)

]
v2 , (2.82)

M2
3 =

[
Z1 −

c13

s13
Im (Z6 e

−iθ23)

]
v2 . (2.83)

Eqs. (2.79) and (2.81)–(2.83) can be used to obtain [16]:

s2
13 =

(Z1v
2 −M2

1 )(Z1v
2 −M2

2 ) + |Z6|2v4

(M2
3 −M2

1 )(M2
3 −M2

2 )
, c213s

2
12 =

(Z1v
2 −M2

1 )(M2
3 − Z1v

2)− |Z6|2v4

(M2
2 −M2

1 )(M2
3 −M2

2 )
,

(2.84)
and

sin 2θ12 =
2 |Z6|v2 cosφ6

c13(M2
2 −M2

1 )
, tan 2φ6 =

Im (Z∗5Z
2
6 )

Re (Z∗5Z
2
6 ) +

|Z6|4v2

M2
3 − Z1v2

. (2.85)

These results uniquely determine the invariant angles (modulo π) for a given hk mass ordering.

Using Eqs. (2.73) and (2.76), one obtains the following U(2)-covariant expression for the scalar
fields in a generic basis in terms of mass-eigenstate fields:

Φa =




G+v̂a +H+ŵa

v√
2
v̂a +

1√
2

4∑

k=1

(
qk1v̂a + qk2e

−iθ23 ŵa

)
hk


 , (2.86)

where h4 ≡ G0 and the qk` have been given in Eq. (2.77).

2.3.4 Higgs boson couplings

The gauge boson–Higgs boson interactions are governed by the following interaction Lagrangians:

LV V H =

(
gmWW

+
µ W

µ− +
g

2cW
mZZµZ

µ

)
Re (qk1)hk

+emWA
µ(W+

µ G
− +W−µ G

+)− gmZs
2
WZ

µ(W+
µ G

− +W−µ G
+) , (2.87)

LV V HH =

[
1
4g

2W+
µ W

µ− +
g2

8c2W
ZµZ

µ

]
Re (q∗j1qk1 + q∗j2qk2)hjhk

+

[
e2AµA

µ +
g2

c2W

(
1
2 − s2

W

)2
ZµZ

µ +
2ge

cW

(
1
2 − s2

W

)
AµZ

µ

]
(G+G− +H+H−)

+

{(
1
2egA

µW+
µ −

g2s2
W

2cW
ZµW+

µ

)
(qk1G

− + qk2 e
−iθ23H−)hk + h.c.

}
, (2.88)

LV HH =
g

4cW
Im (qj1q

∗
k1 + qj2q

∗
k2)Zµhj

↔
∂µ hk +

ig

cW

(
1
2 − s2

W

)
Zµ(G+↔∂µ G− +H+↔∂µ H−)

−1
2g

{
iW+

µ

[
qk1G

−↔
∂ µ hk + qk2e

−iθ23H−
↔
∂ µ hk

]
+ h.c.

}
,

+ieAµ(G+↔
∂µ G

− +H+↔
∂µ H

−) (2.89)

28

WORKSHOP ONCP STUDIES AND NON-STANDARD HIGGS PHYSICS

28



where sW ≡ sin θW , cW ≡ cos θW and there is an implicit sum over the repeated indices j, k = 1, . . . , 4
(with h4 = G0). Since e−iθ23H− is an invariant field, Eqs. (2.87)–(2.89) are indeed U(2)-invariant.

Likewise, one can work out the cubic and quartic Higgs boson self-couplings [16]:

L3h = −1
2v hjhkh`

[
qj1q

∗
k1 Re (q`1)Z1 + qj2q

∗
k2 Re (q`1)(Z3 + Z4) + Re (q∗j1qk2q`2Z5 e

−2iθ23)

+ Re
(

[2qj1 + q∗j1]q∗k1q`2Z6 e
−iθ23

)
+ Re (q∗j2qk2q`2Z7 e

−iθ23)

]

−v hkG+G−
[

Re (qk1)Z1 + Re (qk2 e
−iθ23Z6)

]
− v hkH+H−

[
Re (qk1)Z3 + Re (qk2 e

−iθ23Z7)

]

−1
2v hk

{
G−H+ eiθ23

[
q∗k2Z4 + qk2 e

−2iθ23Z5 + 2 Re (qk1)Z6 e
−iθ23

]
+ h.c.

}
, (2.90)

and

L4h = −1
8hjhkhlhm

[
qj1qk1q

∗
`1q
∗
m1Z1 + qj2qk2q

∗
`2q
∗
m2Z2 + 2qj1q

∗
k1q`2q

∗
m2(Z3 + Z4)

+2 Re (q∗j1q
∗
k1q`2qm2Z5 e

−2iθ23) + 4 Re (qj1q
∗
k1q
∗
`1qm2Z6 e

−iθ23) + 4 Re (q∗j1qk2q`2q
∗
m2Z7 e

−iθ23)

]

−1
2hjhkG

+G−
[
qj1q

∗
k1Z1 + qj2q

∗
k2Z3 + 2 Re (qj1qk2Z6 e

−iθ23)

]

−1
2hjhkH

+H−
[
qj2q

∗
k2Z2 + qj1q

∗
k1Z3 + 2 Re (qj1qk2Z7 e

−iθ23)

]

−1
2hjhk

{
G−H+ eiθ23

[
qj1q

∗
k2Z4 + q∗j1qk2Z5 e

−2iθ23 + qj1q
∗
k1Z6 e

−iθ23 + qj2q
∗
k2Z7 e

−iθ23

]
+ h.c.

}

−1
2Z1G

+G−G+G− − 1
2Z2H

+H−H+H− − (Z3 + Z4)G+G−H+H− − 1
2Z5H

+H+G−G−

−1
2Z
∗
5H
−H−G+G+ −G+G−(Z6H

+G− + Z∗6H
−G+)−H+H−(Z7H

+G− + Z∗7H
−G+), (2.91)

where there is an implicit sum over the repeated indices j, k, `, m = 1, 2, 3, 4 (with h4 = G0). Us-
ing Eq. (2.74) and noting that the combinations Z5e

−2iθ23 , Z6e
−iθ23 and Z7e

−iθ23 are U(2)-invariant
quantities, it follows that the cubic and quartic Higgs boson self-couplings are also U(2)-invariant.

Expressions for the cubic and quartic Higgs self-couplings in the CP-violating 2HDM have also
been obtained in terms of generic basis parameters in [15, 47, 161], and an application of these results
to the CPX scenario [111] of the minimal supersymmetric extension of the Standard Model (MSSM)
is given in Section 3.6. Indeed, the effective Lagrangian of the MSSM Higgs sector is a general CP-
violating 2HDM when one-loop radiative corrections (which are sensitive to supersymmetry-breaking
effects and new CP-violating phases) are taken into account. The relative simplicity of the Higgs self-
couplings given in Eqs. (2.90) and (2.91) illustrates the power of the basis-independent techniques.

The Higgs couplings to quarks are governed by the Yukawa Lagrangian given in Eq. (2.46) In
terms of the quark mass-eigenstate fields, Eq. (2.46) can be expressed in U(2)-covariant form:.10

−LY = QLΦ̃āη
U
a UR +QLΦaη

D †
ā DR + h.c. , (2.92)

where Φ̃ā ≡ iσ2Φ∗ā, and ηUa ≡ (V U
L Γ1V

U †
R , V U

L Γ2V
U †
R ) and ηDa ≡ (V D

R ∆1V
D †
L , V D

R ∆2V
D †
L ). We

employ the standard notation: ψR,L ≡ PR,Lψ with PR,L ≡ 1
2(1 ± γ5). The unitary matrices V U

L,R and
V D
L,R relate the quark interaction-eigenstate and quark mass-eigenstate fields via the bi-unitary transfor-

mations of Eq. (2.47). One can rewrite Eq. (2.92) in terms of Higgs basis scalar fields:

−LY = QL(H̃1κ
U + H̃2ρ

U )UR +QL(H1κ
D † +H2ρ

D †)DR + h.c. , (2.93)
10To obtain the Higgs couplings to leptons, let Q→ L and D → E, and omit U (right-handed neutrinos are not included).
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where
κQ ≡ v̂∗āηQa =

√
2MQ/v , ρQ ≡ ŵ∗āηQa . (2.94)

Under a U(2) transformation, κQ is invariant, whereas ρQ is a pseudo-invariant that transforms as:

ρQ → (detU)ρQ . (2.95)

By construction, κU and κD are proportional to the (real non-negative) diagonal quark mass matrices, as
indicated in Eq. (2.50). That is, we have chosen the unitary matrices V U

L , V U
R , V D

L and V D
R such that MD

and MU are diagonal matrices with real non-negative entries. In the general 2HDM, the ρQ are arbitrary
complex 3× 3 matrices.

In order to determine the interactions of the Higgs (and Goldstone) bosons with the quark mass
eigenstates, one can bypass the intermediate step involving the Higgs basis by inserting Eq. (2.86) into
Eq. (2.92) to obtain:

−LY =
1

v
D

{
MD(qk1PR + q∗k1PL) +

v√
2

[
qk2 [eiθ23ρD]†PR + q∗k2 e

iθ23ρDPL

]}
Dhk

+
1

v
U

{
MU (qk1PL + q∗k1PR) +

v√
2

[
q∗k2 e

iθ23ρUPR + qk2 [eiθ23ρU ]†PL
]}
Uhk

+

{
U
[
K[ρD]†PR − [ρU ]†KPL

]
DH+ +

√
2

v
U [KMDPR −MUKPL]DG+ + h.c.

}
, (2.96)

where k = 1, . . . 4. Since eiθ23ρQ and [ρQ]†H+ are U(2)-invariant, it follows that Eq. (2.96) is a basis-
independent expression of the Higgs-quark interactions.

The Higgs-quark couplings are generically CP-violating as a result of the complexity of the qk2 and
the fact that the matrices eiθ23ρQ are not generally Hermitian or anti-Hermitian. Consequently, the neutral
Higgs bosons (h1, h2 and h3) are typically states of indefinite CP quantum number (whereas h4 ≡ G0

is always a pure CP-odd state). Basis-independent conditions for the CP-invariance of the neutral Higgs
boson couplings to quark pairs are obtained by requiring that Eq. (2.75) is satisfied and [16]:

Z5[ρQ]2 , Z6ρ
Q , and Z7ρ

Q are Hermitian matrices (Q = U,D) . (2.97)

In this case, the only remaining source of CP-violation in the 2HDM is the unremovable phase in the
CKM matrix K that enters via the charged current interactions mediated by either W ± or H± exchange.

The Higgs-quark couplings also generate Higgs-boson-mediated flavor-changing neutral currents
at tree-level by virtue of the fact that the ρQ are not diagonal (in the quark mass basis). Thus, for a
phenomenologically acceptable theory, the off-diagonal elements of ρQ must be small.

2.3.5 Conclusions

In the most general (CP-violating) 2HDM, physical observables do not depend on the choice of scalar
field definitions (or basis). Employing the U(2) freedom of field redefinitions, one can write down
the Higgs couplings of the 2HDM in a form that is manifestly basis independent. The U(2)-invariant
forms for the Higgs boson couplings have been explicitly presented in this paper. In particular, the
parameter tanβ, which depends on the choice of basis, does not appear in any of the Higgs boson (or
Goldstone boson) couplings. In specialized versions of the 2HDM, additional theoretical assumptions
are introduced that may implicitly select a preferred basis. For example, one can impose a discrete
symmetry on the Lagrangian that takes a simple form in some particular basis. The type-I and type-II
models discussed in Section 2.1.4.2 provide examples of such a scenario. In this case, tanβ is promoted
to a physical parameter, and one can express tan β directly in terms of U(2)-invariant quantities [14–16].

The basis-independent formalism provides a powerful approach for connecting physical observ-
ables that can be measured in the laboratory with fundamental invariant parameters of the 2HDM. This
will permit the development of two-Higgs doublet model-independent analyses of data in Higgs studies
at the LHC, ILC and beyond.
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2.4 Symmetries of 2HDM and CP violation
Ilya F. Ginzburg and Maria Krawczyk

This contribution is based on the results published in [15] and some new results that have recently been
obtained. The main aspects of the results of [15] are included in Section 2.1. Here we present alternative
treatments of some problems and add new results, some of which were reported in [162].

The spontaneous electroweak symmetry breaking (EWSB) via the Higgs mechanism is described
by the Lagrangian

L = LSMgf + LH + LY with LH = T − V . (2.98)

Here LSMgf describes the SU(2) × U(1) Standard Model interaction of gauge bosons and fermions, LY
describes the Yukawa interactions of fermions with Higgs scalars and LH is the Higgs scalar Lagrangian.
Higgs potential. In our calculations we use the 2HDM Higgs potential as specified in Eq. (2.1); however,
we insert explicit negative signs in the terms proportional tom2

11 andm2
22 terms. In this latter convention,

ifm2
12 = 0 then EWSB is generated for positive values ofm2

11 andm2
22. The most general renormalizable

kinetic term is

T = (Dµφ1)†(Dµφ1) + (Dµφ2)†(Dµφ2) +
[
κ(Dµφ1)†(Dµφ2) + h.c.

]
. (2.99)

2.4.1 Reparametrization group

The “flavor” basis transformations discussed in Section 2.1 are described by a unitary group give by the
direct product of the 3-parameter SU(2) reparametrization (RPa) group and a U(1) group, describing
an overall phase freedom of the Lagrangian. This entire group operates on the space of fields while the
RPa group operates also in the space of Lagrangians (with coordinates given by its parameters). The
parameters of the Lagrangian can be determined in principle from measurements only with an accuracy
up to the RPa freedom. All observable quantities (at least in principle) are invariants of the RPa group
(IRPa). These are, for example, masses of observable Higgs bosons, i.e. eigenvalues of the mass matrix,
and eigenvalues of the Higgs-Higgs scattering matrices. The transformations φk → e−iρkφk form a
rephasing transformation (RPh) group, which is a subgroup of the RPa group with a single parameter
ρ = ρ2 − ρ1.

The method described in Section 2.1 allows one to obtain a large series of (generally not indepen-
dent) IRPa’s [37]. An alternate method is based on the irreducible representations of SU(2) RPa group as
discussed [19]. In this paper some basic objects, related to these irreducible representations, were deter-
mined: 3 scalars Ak, 2 vectors Li and Mi and tensor aij (i, j = x, y, z). After a simple reorganization
of scalars Ak, we get

AI = λ1 + λ2 + 2λ3, AII = λ3 − λ4, AIII = m2
11 +m2

22 , (2.100a)

(Lx, Ly, Lz) =
1√
2

(−Re(λ6 + λ7), Im(λ6 + λ7), −(λ1 − λ2)/2) , (2.100b)

(Mx,My,Mz) =
1√
2

(
Re m2

12, −Im m2
12, (m2

11 −m2
22)/2

)
, (2.100c)

aij =
1

2




Re λ5 − b −Im λ5 Re (λ6 − λ7)
−Im λ5 −Re λ5 − b Im (λ7 − λ6)

Re (λ6 − λ7) Im (λ7 − λ6) 2b


 , (2.100d)

with b = (λ1 + λ2 − 2λ3 − 2λ4)/6. Introducing the vectors LIi = aijLj and LIIi = aijL
I
j , a complete

set of 11 independent invariants of RPa transformations can be naturally chosen as follows

I1 = AI , I2 = AII , I3 = LiLi,
I4 = Tr(a2) ≡ Tr (aijajk) , I5 = Tr(a3) = Tr (aijajkak`) ,

I6 = aijLiLj ≡ LiLIi , I7 = εijkLiL
I
jL

II
k ,

I8 = AIII , I9 = MiMi , I10 = LiMi , I11 = εijkLiL
I
jMk .

(2.101)
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2.4.2 Z2 symmetry

The CP violation and the flavour changing neutral currents (FCNC) are absent for a 2HDM Lagrangian
with a Z2 symmetry, which inhibits the φ1 ↔ φ2 transitions [18]. The Lagrangian is invariant under the
interchange φ1 ↔ φ1, φ2 ↔ −φ2 or φ1 ↔ −φ1, φ2 ↔ φ2.

• The case of exact Z2 symmetry is described by the Lagrangian Eq. (2.98) with potential Eq. (2.1),
where λ6 = λ7 = m2

12 = 0, and a kinetic term Eq. (2.99) with κ = 0.

• In the case of soft violation of Z2 symmetry, one adds to the Z2 symmetric Lagrangian a term
of operator dimension two, m2

12(φ†1φ2) + h.c., with a generally complex m2
12 (and λ5) parameter. This

type of violation respects the Z2 symmetry at short distances (much shorter than a cut-off 1/M ) to all
orders in the perturbative series, i.e. the amplitudes for φ1 ↔ φ2 transitions disappear at virtuality
k2 ∼M2 →∞. That is why we call this a “soft” violation.

Let our physical system be described by the Lagrangian Ls with an exact or softly violated Z2

symmetry. The general RPa transformation converts Ls to a hidden soft Z2 violating form Lhs, with
λ6, λ7 6= 0, κ = 0. The 14 parameters of this type of Lagrangian are constrained since they can be
obtained from 9 independent parameters of an initial Lagrangian Ls (+ 3 RPa group parameters); the
nondiagonal κ kinetic term does not arise from the loop corrections. For such a physical system the
preferable RPa representation is given by Ls.

The criteria whether the soft Z2 symmetry of the potential is hidden can be easily obtained from
Eq. (2.101) (the invariant condition is provided in [14]). If this case is realized, one can consider the
RPa representation with an explicit soft Z2 symmetry (λ6 = λ7 = 0) and with a real λ5 (this can be
achieved by a suitable RPh transformation). In this representation, aij is a diagonal matrix, and the
vector Li ≡ (0, 0, L) has only a z-component. Therefore the vectors LIi and LIIi also have only z-
components. Hence, the invariant I7 = 0. A straightforward calculation gives in addition: I3 = L2,
I4 = (λ2

5 + 3b2)/2, I5 = 3b(b2 − λ2
5)/4, I6 = bL2. Therefore, these four invariants obey the relation

I5I3/I6 + 3I4/2 = 3(I6/I3)2. These relations are written for invariants. Hence, the necessary and
sufficient conditions for soft Z2 symmetry violation are

I7 = 0 , I2
3 I4I6 + (2/3)I3

3 I5 − 2I3
6 = 0 . (2.102)

• In the general case, the terms of an operator of dimension four, with generally complex parame-
ters λ6, λ7 and κ, are added to the Lagrangian with a softly violated Z2 symmetry. This case covers both
the opportunity of a hidden soft Z2 symmetry violation and of a true hard violation of the Z2 symmetry
of the Lagrangian, which cannot be transformed to an exact or softly violated Z2 symmetry form by any
RPa transformation. For the true hard violation case, the Z2 symmetry is broken at both large and short
distances in any scalar (“flavor”) basis.

The mixed kinetic terms Eq. (2.99) can be eliminated by the nonunitary transformation (rotation
+ renormalization), e.g.

(φ ′1,φ
′
2)→

(√
κ∗φ1+

√
κφ2

2
√
|κ|(1+|κ|)

±
√
κ∗φ1−

√
κφ2

2
√
|κ|(1−|κ|)

)
. (2.103)

However, in the presence of the λ6 and λ7 terms in the potential Eq. (2.1), the renormalization of the
quadratically divergent, non-diagonal two-point functions leads anyway to mixed kinetic terms (e.g. from
loops with λ∗6λ1,3−5 and λ∗7λ2−5). This means that κ becomes nonzero at higher orders in perturbative
theory (and vice versa a mixed kinetic term generates counterterms with λ6,7). Therefore all of these
terms should be included in Lagrangian on the same footing, i.e. the treatment of the hard violation
of Z2 symmetry without κ terms is inconsistent. (This term does not appear if the parameters λi are
constrained by the relations given in Eq. (2.102).) In the case of true hard violation of the Z2 symmetry,
the parameter κ is running like the λ parameters. Therefore, the diagonalization of Eq. (2.103) is scale
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dependent, and the Lagrangian remains off–diagonal in the fields φ1,2 even at very short distances in any
RPa representation. Such a theory seems to be unnatural.

Although we present in [15] and here the relations for the case of hard violation of theZ2 symmetry
at κ = 0, the loop corrections create a κ terms and can change the results significantly. Such a treatment
of the case with true hard violation of the Z2 symmetry is as incomplete as in other papers that consider
the “most general 2HDM potential”. Note, however that there is no consensus whether the parameters κ
are independent parameters.

2.4.3 Ground state after EWSB. Criterium for CP conservation

The extrema of the potential define the vacuum expectation values (v.e.v.’s) 〈φ1,2〉 of the fields φ1,2 via
equations Eq. (2.5), ∂V/∂φi|φi=〈φi〉 = 0. The physical reality can be described only by a potential with
a ground state obeying the condition for U(1) symmetry of electromagnetism11 :

〈φ1〉 =
1√
2

(
0
v1

)
, 〈φ2〉 =

1√
2

(
0

v2e
iξ

)
, (2.104)

The rephasing transformation of fields allows one to eliminate the phase difference ξ and leads to the
corresponding changes of the coefficients of Lagrangian. This real vacuum Lagrangian is used in [15]
and in Section 2.1.

A standard decomposition of the fields φ1,2 in the component fields Eq. (2.20) at κ = 0 retains a
diagonal form of the kinetic terms for the fields ϕ+

i , χi, ϕi. The mass-squared matrix for the component
fields has a block diagonal form with separate blocks, corresponding to massless Goldstone boson fields,
charged Higgs boson fields H± and a 3× 3 matrix for the neutral fields Eq. (2.26), for two scalars η1, η2

and a pseudoscalar A = −χ1sinβ + χ2cosβ.

The possible mixing of the scalar and pseudoscalar states, which yields physical Higgs states h i
having no definite CP parity, generates CP violation in Higgs sector. Therefore, a signature for CP
conservation in the Higgs sector is given by the zero values of squared-mass matrix elements Eq. (2.26)
responsible for this mixing (i.e. M13 = M23 = 0 in the real vacuum basis). The vanishing of M13 and
M23 can be realized if in such a basis m2

12 and v2
1λ6−v2

2λ7 (and also λ5 – see Eq. (2.10)) are real. The set
of arbitrary bases can be obtained from the set of real vacuum bases by the rephasing of fields. Therefore
the sufficient condition for CP conservation in the Higgs sector can be written in a basis independent
form as

Imλ∗5(m2
12)2 = 0 , Im(λ∗6 + λ∗7)m2

12 = 0 , Imλ∗6λ7 = 0. (2.105)

Each of these quantities is not RPa invariant but these forms are very simple. (For the soft Z2 violat-
ing potential, this condition becomes both necessary and sufficient; it is simply: Imλ∗5(m2

12)2 = 0,
cf. [163]).

The imaginary part of the quantity v2
1λ6 − v2

2λ7 can be equal to 0 (which is necessary for CP
conservation) even for complex λ6 and λ7. The RPa transformation from one real vacuum basis to
another depends on two independent parameters (3 parameters of a general RPa transformation with one
parameter restoring the real basis). One can use these parameters to eliminate the imaginary parts of λ6

and λ7 separately. Using in addition Eq. (2.10) one can conclude that in the case of CP violation in the
Higgs sector there exists a Higgs basis in which all the coefficients of the potential are real (which is
necessary condition for CP conservation).

Generally, these v.e.v.’s can be complex even in the case of a Lagrangian with real parameters.
Therefore, the coefficients of the real vacuum Lagrangian can be complex even in the case where all
coefficients of the incident Higgs potential are real. Hence, the existence of an RPa representation of the
potential with all real coefficients forms a necessary but not a sufficient condition for CP conservation.

11Detail analysis of two possible vacuum solutions, including charged vacuum [20], is presented in [162], [15].
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The RPa invariant form of this necessary condition is presented in Section 2.1 [38, 40, 164], [14,
37], and with invariants (2.101) in [19].

2.4.4 Tree level unitarity constraints

The quartic terms in the Higgs potential (with λi) lead, in the tree approximation, to the s–wave Higgs-
Higgs and WLWL and WLH , etc. scattering amplitudes for different elastic channels. These amplitudes
should not overcome the unitary limit for this partial wave – that is the tree-level unitarity constraint.
Such a constraint was obtained first in [18] for the minimal SM, with one Higgs field. For the 2HDM
with soft Z2 violation and CP conservation, they were derived in [32]. In the general CP nonconserving
case, the corresponding constraints were obtained in [34].

Since in the Higgs–Higgs scattering the total hypercharge Y and weak isospin σ are conserved,
one can consider separate S matrices, SY σ , for the different quantum numbers of the initial state. The
unitarity constraint means that the eigenvalues of these SY σ are less than 1 [34], where

16πSY =2,σ=1=




λ1 λ5

√
2λ6

λ∗5 λ2

√
2λ∗7√

2λ∗6
√

2λ7 λ3+λ4


, 16πSY =2,σ=0= λ3−λ4, (2.106a)

16πSY =0,σ=1 =




λ1 λ4 λ6 λ∗6
λ4 λ2 λ7 λ∗7
λ∗6 λ∗7 λ3 λ∗5
λ6 λ7 λ5 λ3


 , (2.106b)

16πSY=0,σ=0 =




3λ1 2λ3 + λ4 3λ6 3λ∗6
2λ3 + λ4 3λ2 3λ7 3λ∗7

3λ∗6 3λ∗7 λ3 + 2λ4 3λ∗5
3λ6 3λ7 3λ5 λ3 + 2λ4


 . (2.106c)

The eigenvalues of these matrices can be found as roots of equations of the 3-rd or 4-th degree. It is
useful to start the diagonalization from the corners of the above matrices, corresponding to the fixed
values of the Z2 parity. This particular diagonalization transforms SY σ to a form with diagonal elements
that are coincident with the eigenvalues found in [32] (for soft Z2 violation without CP violation) with
the sole change of λ5 → |λ5|.

Next, one can use the following observation: For an Hermitian matrixM = ||Mij || with maximal
and minimal eigenvalues Λ+ and Λ−, all diagonal matrix elements Mii lie between them, Λ+ ≥ Mii ≥
Λ− . By virtue of this fact, the mentioned corrected constraints from [32] form necessary conditions for
unitarity. These constraints are enhanced due to the λ6, λ7 terms that govern the hard violation of the Z2

symmetry.

2.4.5 Couplings to fermions

The general form of Yukawa interaction couples a 3-family vector of the left-handed quark isodoublets
QL with 3-family vectors of the right-handed field singlets dR and uR and Higgs fields φi Eq. (2.46).

If some fermion field singlet is coupled to both scalar fields φ1 and φ2, the counterterms corre-
sponding to the one-loop propagator corrections to the Higgs Lagrangian contain operators of dimension
4, which violate the Z2 symmetry in a hard way. They contribute to the renormalization of the parameters
κ, λ6 and λ7. Therefore, to have only a soft violation of Z2 symmetry (to prevent φ1 ↔ φ2 transitions at
short distances), one demands that [18, 165] each right-handed fermion couples to only one scalar field,
either φ1 or φ2. The case Γ2 = ∆1 = 0 with diagonal Γ1, ∆2 corresponds to the well known Model
II, while Γ2 = ∆2 = 0 corresponds to Model I. Note that a general RPa transformation makes these
properties of the Lagrangian hidden. The widespread Model II, with many useful relations for it partially
obtained in [15] and first collected together there, is described in Section 2.1.
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In this analysis we use in principle measurable relative couplings—that is, ratios of the couplings
of each neutral Higgs boson hi to the corresponding SM couplings Eq. (2.41). We present here, for
completeness, only the case of model I Yukawa interactions. In this model, all right handed fermions
are coupled to one Higgs field, say φ1. The general RPa transformation makes this property hidden,
changing simultaneously tan β. The parameter β corresponding to the Model I form of the Lagrangian
will be labeled with a subscript I. For this form of the Lagrangian we have (i = 1, 2, 3):

Model I : χ(i)
u = χ

(i)
d ≡ χ

(i)
f =

[Ri2 − i cos βI Ri3]

sinβI
. (2.107)

In this case, among the methods presented for Model II, only one method succeeds in determining βI via
observable quantities, namely [see Eq. (2.58)]

1

sin2 βI
=

3∑

i=1

( Reχ(i)
u )2. (2.108)

2.4.6 A natural set of parameters of 2HDM

It is natural to assume that the 2HDM that describes physical reality allows for the existence among the
reparametrization equivalent Lagrangians the one in which the fields φk do not mix at small distances
(mixed kinetic term does not appear). This would correspond to the 2HDM with an exact or softly
violated Z2 symmetry. We assume such choice in this section. Besides, it is natural to assume that
the CP symmetry in the Higgs sector is violated only weakly at least for the lightest Higgs boson h1.
This assumption together with rephasing invariance offers the basis for the selection of the natural set of
parameters of 2HDM.

The Eq. (2.30) shows that the CP symmetry for the lightest Higgs boson is violated weakly if and
only if |M ′13| � |M2

A −M2
h |. In view of Eq. (2.34), for the real vacuum Lagrangian at β + α 6= π/2

this condition can be rewritten in the form

v2| Imm2
12| � v1v2|M2

A −M2
h | . (2.109)

For all other rephasing equivalent Lagrangians, this condition Eq. (2.109) contains both Imm2
12

and Rem2
12. Therefore, for the natural set of parameters of 2HDM we require that both | Imm2

12|(v2/v1v2)
and |Rem2

12|(v2/v1v2) are small for all rephasing equivalent Lagrangians. In the case of soft violation
of Z2 symmetry, the same requirements is transmitted to Imλ5 and Re λ5. Therefore, we define a
natural set of parameters as follows

|η|, |λ5| � |λ1−4| . (2.110)

For the natural set of parameters of the 2HDM, the breaking of the Z2 symmetry is governed by a small
parameter η. Due to the existence of a limit where the Z2 symmetry holds, a small soft Z2 violation
in the Higgs Lagrangian and the Yukawa interactions also remains small beyond the tree level. In this
respect, we use term natural in the same sense as in [166]. (Note also that the non-diagonal Yukawa
coupling matrices Γ1 and ∆2 (leading to FCNCs) are unnatural in this very sense).

In accordance with Eq. (2.26), for the natural set of parameters MA cannot be too large. This
parameter regime is not ruled out by the data; in the CP conserving case see e.g. Section 2.2.1.
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2.5 Textures and the Higgs boson-fermion couplings
Justiniano L. Dı́az-Cruz, Roberto Noriega-Papaqui and Alfonso Rosado-Sánchez

The 2HDM [8, 167] has a potential problem with flavour changing neutral currents (FCNC) mediated
by the Higgs bosons, which arise when one quark of type u or d is allowed to couple to both Higgs
doublets. The possible solutions to this problem of the 2HDM involve an assumption about the Yukawa
Lagrangian of the model. The specific choices for the Yukawa matrices Γ1,2 and ∆1,2 define the ver-
sions of the 2HDM known as I, II or III, which involve certain mechanism to eliminate the otherwise
unbearable FCNC problem or at least to keep it under control. In this paper we are interested in studying
the 2HDM-III, where the FCNC problem is ameliorated by assuming a certain texture for the Yukawa
couplings. However, the original six-texture ansatz that leads to the popular Cheng-Sher ansatz [168]
seems disfavored by current data on the CKM mixing angles. More recently, mass matrices with four-
texture ansatz have been considered, and are found in better agreement with the observed data [169,170].
In this paper we investigate how the form of the ff ′φ0 couplings, get modified when one replaces the
six-texture matrices by the four-texture one. We also discuss some implications for rare quark and lepton
decays, as well as the phenomenology of the Higgs bosons [129].

2.5.1 The fermion sector of the 2HDM-III with four-texture mass matrices

We will assume that both Yukawa matrices Γ1,2 and ∆1,2 have the four-texture form and are Hermitian;
following the conventions of [169], the quark mass matrix is written as:

Mq =




0 Cq 0

C∗q B̃q Bq
0 B∗q Aq


 . (2.111)

when B̃q → 0 one recovers the six-texture form. We also consider the hierarchy:
| Aq |� | B̃q |, | Bq |, | Cq |, which is supported by the observed fermion masses in the SM.

Because of the hermicity condition, both B̃q and Aq are real parameters, while the phases of Cq and
Bq, ΦBq ,Cq , can be removed from the mass matrix Mq by defining: Mq = P †q M̃qPq, where Pq =

diag[1, eiΦCq , ei(ΦBq+ΦCq )], and the mass matrix M̃q includes only the real parts of Mq. The diago-
nalization of M̃q is then obtained by an orthogonal matrix Oq , such that the diagonal mass matrix is:
M̄q = OTq M̃qOq . Expanding in powers of zf = mf

2/m
f
3 , where mf

2,3 denote the masses for 2nd and
3rd generations, the Yukawa Lagrangian can then be expressed in terms of the mass-eigenstates for the
neutral (h0,H0, A0) and charged Higgs bosons (H±). The interactions of the neutral Higgs bosons with
the d-type and u-type quarks (u, u′ = u, c, t and d, d ′ = d, s, b) are expressed as follows.

LqY =
g

2
D̄

[(
md

mW

)
cosα

cos β
δdd′ +

sin(α− β)√
2 cos β

(√
mdmd′

mW

)
χ̃dd′

]
D ′H0

+
g

2
D̄

[
−
(
md

mW

)
sinα

cos β
δdd′ +

cos(α− β)√
2 cos β

(√
mdmd′

mW

)
χ̃dd′

]
D ′h0

+
ig

2
D̄

[
−
(
md

mW

)
tanβ δdd′ +

1√
2 cosβ

(√
mdmd′

mW

)
χ̃dd′

]
γ5D ′A0

+
g

2
Ū

[(
mu

mW

)
sinα

sinβ
δuu′ −

sin(α− β)√
2 sinβ

(√
mumu′

mW

)
χ̃uu′

]
U ′H0

+
g

2
Ū

[(
mu

mW

)
cosα

sinβ
δuu′ −

cos(α− β)√
2 sinβ

(√
mumu′

mW

)
χ̃uu′

]
U ′h0

+
ig

2
Ū

[
−
(
mu

mW

)
cot β δuu′ +

1√
2 sinβ

(√
mumu′

mW

)
χ̃uu′

]
γ5U ′A0. (2.112)
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The corresponding Lagrangian for the charged lepton sector is obtained following a similar procedure,
and can be read from [171]. Unlike the Cheng-Sher ansatz, the parameters χ̃ff ′ (f 6= f ′) are now
complex. While the diagonal elements χ̃ff are real, the phases in the off-diagonal elements are essen-
tially unconstrained by present low-energy data. These phases modify the pattern of flavour violation
(FV) in the Higgs sector. However, because of the Hermiticity of the Yukawa matrices, the three-level
CP-properties of h0/H0 and A0 remain valid i.e. the couplings h0(H0)f f̄ are pure scalar, while the
coupling A0ff̄ is proportional to γ5. Further, in our prescription the FV couplings satisfy some rela-
tions, such as: |χ̃µτ | = |χ̃eτ | and |χ̃sb| = |χ̃db|, which simplifies the parameter analysis. Henceforth,
we denote |χ̃ff ′ | as χff ′ . On the other hand, by considering the effective Lagrangian for the couplings
of the charged leptons to the neutral Higgs fields one can also relate our results with the SUSY-induced
2HDM-III. Thus, our result will cover (for specific choices of parameters) the general expectations for
the corrections arising in the MSSM.

2.5.2 Bounds on the FV Higgs parameters

Constraints on the lepton flavour violation (LFV)-Higgs interaction will be obtained by studying LFV
transitions, which include the 3-body modes (li → ljlk l̄k), radiative decays (li → lj + γ), as well as the
µ − e conversion in nuclei. On the other side, constraints on the Higgs boson-quark interaction can be
obtained by studying FCNC transitions. In particular, we consider the radiative decay b → s γ and the
decay B0

s → µ−µ+, which together with LFV bounds derived in [171] constrain the parameter space of
2HDM-III, and determine possible Higgs boson signals that may be detected at future colliders.

2.5.2.1 LFV three-body decays

To evaluate the LFV leptonic couplings, we calculate the decays li → ljlk l̄k, including the contribution
from the three Higgs bosons (h0, H0 and A0). In particular, for the decay τ− → µ−µ+µ− we obtain the
following expression for the branching ratio:

Br(τ− → µ−µ+µ−) =
5

3

ττ
212 π3

m3
µm

6
τ

v4

{
cos2(α− β) sin2 α

m4
h0

+
sin2(α− β) cos2 α

m4
H0

−2
cos(α− β) sin(α− β) cosα sinα

m2
h0 m

2
H0

+
sin2 β

m4
A0

}
χ2
µτ

cos4 β
(2.113)

here ττ corresponds to the life time of the τ lepton (we have also assumed χµµ � 1). Using Br(τ− →
µ−µ+µ−) < 1.9 × 10−7 [172], we get an upper bound on χµτ ((χµτ )τ→3µ

u. b. ) (see Table 2.1).

2.5.2.2 Radiative decay µ→ eγ

The B.R. of µ+ → e+γ at one loop level is given by [173]

Br(µ+ → e+γ) =
αemτµmem

4
µm

4
τ

212π4v4 cos4 β
χ2
µτ χ

2
eτ

{
cos4(α− β)

m4
h0

∣∣∣∣ln
m2

3

m2
h0

+
3

2

∣∣∣∣
2

+2
cos2(α− β) sin2(α− β)

m2
h0m

2
H0

∣∣∣∣ln
m2

3

m2
h0

+
3

2

∣∣∣∣
∣∣∣∣ln

m2
3

m2
H0

+
3

2

∣∣∣∣

+
sin4(α− β)

m4
H0

∣∣∣∣ln
m2

3

m2
H0

+
3

2

∣∣∣∣
2

+
1

m4
A0

∣∣∣∣ln
m2

3

m2
A0

+
3

2

∣∣∣∣
2
}
. (2.114)

We make use of Br(µ+ → e+γ) < 1.2× 10−11 [174] to constrain χµτ (= χeτ ) (see Table 2.1).
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2.5.2.3 Radiative decay τ → µγ

The B.R. of τ → µγ at one loop level (assuming χττ � 1) is given by [173]

Br(τ → µγ) =
3

5

αemmµm
3
τ

16π cos4 β
χ2
µτ

{
sin2 α cos2(α− β)

m4
h0

∣∣∣∣ln
m2
τ

m2
h0

+
3

2

∣∣∣∣
2

+
cos2 α cos2(α− β) + sin2 α sin2(α− β)

m2
h0 m

2
H0

∣∣∣∣ln
m2
τ

m2
h0

+
3

2

∣∣∣∣
∣∣∣∣ln

m2
τ

m2
H0

+
3

2

∣∣∣∣

+
cos2 α sin2(α− β)

m4
H0

∣∣∣∣ln
m2
τ

m2
H0

+
3

2

∣∣∣∣
2

+
sin2 β

m4
A0

∣∣∣∣ln
m2
τ

m2
A0

+
3

2

∣∣∣∣
2
}
. (2.115)

We constrain χµτ by using Br(τ → µ+ γ) < 3.1 × 10−7 [175, 176] (see Table 2.1).

2.5.2.4 µ− e conversion

The formulas of the conversion branching ratios for the LFV muon electron process in nuclei at large
tanβ, in the aluminum and lead targets, are approximately given by

Br(µ−Al(Pb)→ e−Al(Pb)) ' 0.18(2.5) × 10−3
mem

6
µm

2
p tan6 β cos2 β

2 v4 m4
H0 ωcapt

χ2
eµ, (2.116)

where ωcapt is the rate for muon capture in the nuclei [177]. ωcapt = 0.7054 × 106 s−1 and ωcapt =
13.45 × 106 s−1 in the Al and the Pb nuclei, respectively [178]. We get an upper bound on χeµ
((χeµ)µN→eNu. b. ) for Al and Pb (see Table 2.1), by using Br(µ−N → e−N ) < 6.1 × 10−13 [179].

2.5.2.5 Radiative decay b→ s γ

We will make an estimation of the contribution due to the FV ff ′φ0 couplings to the standard model
branching ratio of b→ s γ as follows

∆Br(b→ s γ) = ∆Γ(b→ s γ)× (
∑

l=e,µ,τ

Γ(b→ c l ν̄l))
−1 (2.117)

Such contribution to the branching ratio of b→ s γ at one loop level is then given by [173]

∆Br(b→ s γ) =
αemmsm

3
b cos2(α− β)

16πm4
h0 |Vcb|2 cos4 β

χ2
sb

∣∣∣∣− sinα+
cos(α− β)√

2
χ̃bb

∣∣∣∣
2 ∣∣∣∣ln

m2
b

m2
h0

+
3

2

∣∣∣∣
2

.

(2.118)
We make use of the good agreement between the experimental value for Br(b→ s γ) = (3.3 ± 0.4) ×
10−4 and the theoretical value obtained for Br(b → s γ) = (3.29 ± 0.33) × 10−4 in the context of the
SM [174] to constrain any new contribution to Br(b→ s γ), namely ∆Br(b→ s γ) ≤ 10−5, and hence
to bound χsb(= χdb) (see Table 2.1).

2.5.2.6 B0
s → µ−µ+ decay

The width of the decay B0
s → µ−µ+ at the tree level is given as [180]

Γ(B0
s → µ−µ+) =

G2
F η

2
QCD

m3
B f

2
Bmsmbm

2
µ cos2(α− β)

128π m4
h0 cos4 β

χ2
sb

∣∣∣∣− sinα+
cos(α− β)√

2
χ̃µµ

∣∣∣∣
2

,

(2.119)
where GF = 1.16639 × 10−5 GeV −2, η

QCD
≈ 1.5, mB ' 5GeV , and fB = 180MeV . We make use

of Γ(B0
s → µ−µ+) < 8.7× 10−19 GeV [180, 181] to constrain χsb(= χdb) (see Table 2.1).
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Table 2.1: Upper bounds on χµτ , χeµ and χsb as functions of tanβ, for α = β, α = β−π/4, α = β−π/3, taking
mh0 = 120 GeV, mH0 = 300 GeV and mA0 = 300 GeV and χµµ = 0 χττ = 0. Upper bound (χeµ)µN→eNu. b. as a
function of tanβ for Al, Pb and assuming mH0 = 300 GeV.

upper bound β − α tan β = 10 tanβ = 20 tanβ = 30 tan β = 40 tan β = 50

0 8.1 2.1 9.0× 10−1 5.1 × 10−1 3.3 × 10−1

(χµτ )τ→3µ
u. b. π/4 1.6× 101 3.8 1.7 9.2 × 10−1 5.9 × 10−1

π/3 2.5× 101 5.9 2.6 1.5 9.2 × 10−1

0 1.5 × 10−1 7.4× 10−2 5.0× 10−2 3.7 × 10−2 3.0 × 10−2

(χµτ )µ→eγu. b. π/4 1.9 × 10−1 9.4× 10−2 6.3× 10−2 4.7 × 10−2 3.8 × 10−2

π/3 2.2 × 10−1 1.1× 10−1 7.4× 10−2 5.6 × 10−2 4.5 × 10−2

0 1.6 4.0× 10−1 1.8× 10−1 9.9 × 10−2 6.4 × 10−2

(χµτ )τ→µγu. b. π/4 2.7 6.6× 10−1 2.9× 10−1 1.7 × 10−1 1.1 × 10−1

π/3 3.8 9.3× 10−1 4.1× 10−1 2.3 × 10−1 1.5 × 10−1

(χeµ)µAl→eAlu. b. 1.2 × 10−1 3.1× 10−2 1.4× 10−2 7.6 × 10−3 4.9 × 10−3

(χeµ)µPb→ePbu. b. 1.4 × 10−1 3.6× 10−2 1.6× 10−2 8.9 × 10−3 5.7 × 10−3

0 8.1 × 10−2 2.1× 10−2 9.1× 10−3 5.1 × 10−3 3.3 × 10−3

(χsb)
b→s γ
u. b. π/4 1.8 × 10−1 4.3× 10−2 1.9× 10−2 1.1 × 10−2 6.7 × 10−3

π/3 3.9 × 10−1 8.9× 10−2 3.9× 10−2 2.2 × 10−2 1.4 × 10−2

0 1.1 2.7× 10−1 1.2× 10−1 6.6 × 10−2 4.2 × 10−2

(χsb)
B0
s→µµ

u. b. π/4 2.4 5.6× 10−1 2.5× 10−1 1.4 × 10−1 8.6 × 10−2

π/3 5.1 1.2 5.0× 10−1 2.8 × 10−1 1.8 × 10−1

2.5.3 Higgs boson decays in the 2HDM-III

One of the distinctive characteristic of the SM Higgs boson is the fact that its coupling to other particles
is proportional to the mass of that particle, which in turn determines the search strategies proposed so
far to detect it at future colliders. In particular, the decay pattern of the Higgs boson is dominated by
the heaviest particle allowed to appear in its decay products. When one considers extensions of the
SM it is important to study possible deviations from the SM decay pattern as it could provide a method
to discriminate among the different models [182, 183]. Within the context of the 2HDM-III, not only
modification of the Higgs boson couplings are predicted, but also the appearance of new channels with
FV, both in the quark and leptonic sectors [129, 184, 185].

To explore the characteristics of Higgs boson decays in the 2HDM-III, we will focus on the lightest
CP-even state (h0), which could be detected first at LHC. The light Higgs boson-fermion couplings are
given by Eq. (2.112), where we have separated the SM from the corrections that appear in a 2HDM-III.
In fact, we have also separated the factors that arise in the 2HDM-III too. We notice that the correction
to the SM result, depends on tanβ, α (the mixing angle in the neutral CP-even Higgs sector) and the
factors χ̃ff ′ that induce FCNC transitions (for f 6= f ′) and further corrections to the SM vertex. In our
analysis, we will include the decay widths for all the modes that are allowed kinematically for a Higgs
boson with a mass in the range 80GeV < mh0 < 160GeV . Namely, we study the branching ratios for
the decays h0 → bb̄, cc̄, τ τ̄ , µµ̄ and the FV h0 → bs̄(sb̄), τ µ̄(µτ̄), as well as the decays into pairs of
gauge bosons with one real an the other one virtual, i.e. h0 → WW ∗, ZZ∗ [8, 167]. Overall, our results
show that the usual search strategies to look for the SM Higgs boson in this mass range, may need to be
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Fig. 2.3: B.R. for all the relevant decay modes that are allowed kinematically for 80GeV < mh0 < 160GeV ;
taking α = β − 3π/8 and assuming χ̃ff ′ = 0.1 for f = f ′ and f 6= f ′. For: (a) tanβ = 2; (b) tanβ = 2.61; (c)
tanβ = 5; (d) tanβ = 15.

modified in order to cover the full parameter space of the 2HDM-III (see Fig. 2.3).

2.5.4 Conclusions

We have studied in this paper the ff ′φ0 couplings that arise in the 2HDM-III, using a Hermitian four-
texture form for the fermionic Yukawa matrix. Because of this, although the ff ′φ0 couplings are com-
plex, the three-level CP-properties of h0,H0 (even) and A0 (odd) remain valid.

We have derived bounds on the parameters of the model, using current experimental bounds on LFV and
FCNC transitions. One can say that the present bounds on the couplings χ̃ff ′ ’s still allow the possibility
to study interesting direct FV Higgs boson signals at future colliders.

In particular, the LFV couplings of the neutral Higgs bosons, can lead to new discovery signatures of
the Higgs boson itself. For instance, the branching fraction for h0 → τµ̄(τ̄µ) can be as large as 10−5,
while Br(h→ bs̄(b̄s)) is also about 10−4. These LFV Higgs modes complement the modes B0 → µµ,
τ → 3µ, τ → µγ and µ→ eγ, as probes of FV in the 2HDM-III, which could provide key insights into
the form of the Yukawa mass matrix sector.

40

WORKSHOP ONCP STUDIES AND NON-STANDARD HIGGS PHYSICS

40



2.6 Electroweak baryogenesis and quantum corrections to the Higgs potential

Shinya Kanemura, Yasuhiro Okada and Eibun Senaha

The connection between cosmology and particle physics is important to understand what the Universe
is made of. The baryon asymmetric Universe observed today is one of the outstanding problems in
cosmology. The asymmetry is characterized by the ratio of the baryon number density to the entropy
density, nB/s ∼ 10−10 [186], which remains constant during the expansion of the Universe if there is
neither baryon number violation nor entropy production.

In order to construct such baryon asymmetry from the initially baryon symmetric Universe, three
ingredients are required [187]: (a) baryon number violation, (b) C and CP violation, and (c) depar-
ture from thermal equilibrium. In the electroweak theories, these conditions can in principle be satisfied
(electroweak baryogenesis). The condition (a) is fulfilled by the sphaleron process in Standard Model
at high temperature. The sphaleron is an unstable classical solution of the SU(2) gauge-Higgs system
which corresponds to a saddle point connecting different topological vacua. Frequent baryon number vi-
olation processes occur near and above the critical temperature by the transition associated with a change
of the topological number, which is called the sphaleron process, although it is completely negligible at
zero temperature. On the other hand the Standard Model cannot satisfy the other two conditions under
the current experimental data. One is that the electroweak phase transition is not first order for exper-
imental lower bounds of the Higgs boson mass, mh > 114 GeV [74], so that the condition (c) cannot
be fulfilled. The other difficulty is that the magnitude of the CP violation which is originated from the
Kobayashi-Maskawa matrix is too small to generate the sufficient baryon asymmetry during the phase
transition. Therefore, the extension of the Standard Model Higgs sector and the additional sources of the
CP violation are required. There are many attempts to explain the baryon asymmetry in the extension
of the Standard Model. For reviews on electroweak baryogenesis, see Refs. [188–193].

Here, we study electroweak baryogenesis in the two Higgs doublet model [194–203] and the
minimal supersymmetric standard model [204–221] focusing on its connections to collider phenomenol-
ogy. In particular, we discuss relationship between the strength of the first-order electroweak phase
transition and the quantum corrections to the trilinear coupling of the lightest Higgs boson [222]. Sim-
ilar discussions on the Higgs self-coupling in the electroweak baryogenesis scenario can be found in
Refs. [223, 224].

First we consider the two Higgs doublet model with the softly-broken discrete symmetry. The
Higgs potential at the tree-level is given by Eq. (2.1) with λ6 = λ7 = 0. Though m2

12 and λ5 can
be complex, one of the two becomes real by the redefinition of the either Higgs field. As mentioned
above, the CP violation plays a crucial role in the generation of the baryon asymmetry. In particular, the
difference between the CP violating phase in the symmetric phase and that in the broken phase at finite
temperature gives a significant effect on the total amount of the baryon asymmetry. In order to calculate
the magnitude of such CP violating phases, the equation of motion for the Higgs bubble wall has to be
solved at the critical temperature. In the previous studies, it was found that there is a solution in which the
CP violation can enhance only during the phase transition while it can become small at zero temperature
enough to escape the experimental constraints of the electric dipole moment [201–203]. Here, we assume
such a scenario so that we neglect the CP violating phase as the first approximation. Furthermore, to
simplify our analysis we consider the phase transition in the direction of 〈Φ1〉 = 〈Φ2〉 = (0 ϕ)T /2,
which corresponds to m1 = m2, λ1 = λ2, in other words, sin(α− β) = −1 and tanβ = 1 [199–201].

The one-loop contributions to the effective potentials at zero and finite temperatures [225] are
respectively given by

V1(ϕ) = ni
m4
i (ϕ)

64π2

(
log

m2
i (ϕ)

Q2
− 3

2

)
, V1(ϕ, T ) =

T 4

2π2

[ ∑

j=bosons

njIB(a2
j) + ntIF (a2

t )
]
, (2.120)
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with

IB,F (a2
i ) =

∫ ∞

0
dx x2 log

(
1∓ e−

√
x2+a2

i

)
, ai(ϕ) =

mi(ϕ)

T
, (2.121)

where V1(ϕ) is regularized by using the DR-scheme, Q is a renormalization scale, mi(ϕ) is the field
dependent mass of the particle i, and ni is the degree of the freedom of i; i.e., nW = 6, nZ = 3 for
gauge bosons (W±, Z), nt = −12 for the top quark (t) and nh = nH = nA = 1, nH± = 2 for the five
physical Higgs bosons (h,H,A,H±).

Qualitative features of the phase transition can be understood from the effective potential (2.120)
by the following high temperature expansion. When m2

Φ � m2
h, M

2 (Φ ≡ H,A,H±, M2 ≡ v2η),
the field dependent masses of the heavy Higgs bosons can be written as m2

Φ(ϕ) ' m2
Φϕ

2/v2. At high
temperatures, the Higgs potential can be expanded in powers of ϕ [226, 227].

Veff(ϕ, T ) ' D(T 2 − T 2
0 )ϕ2 −ET |ϕ|3 +

λT
4
ϕ4 + · · · , (2.122)

with

T 2
0 =

1

D

(
1

4
m2
h − 2Bv2

)
, (2.123)

B =
1

64π2v4

(
6m4

W + 3m4
Z − 12m4

t +m4
H +m4

A + 2m4
H±

)
, (2.124)

D =
1

24v2

(
6m2

W + 3m2
Z + 6m2

t +m2
H +m2

A + 2m2
H±

)
, (2.125)

E =
1

12πv3

(
6m3

W + 3m3
Z +m3

H +m3
A + 2m3

H±

)
, (2.126)

λT =
m2
h

2v2

[
1− 1

8π2v2m2
h

{
6m4

W log
m2
W

αBT 2
+ 3m4

Z log
m2
Z

αBT 2
− 12m4

t log
m2
t

αFT 2

+m4
H log

m2
H

αBT 2
+m4

A log
m2
A

αBT 2
+ 2m4

H± log
m2
H±

αBT 2

}]
, (2.127)

where log αB = 2 log 4π− 2γE ' 3.91, log αF = 2 log π− 2γE ' 1.14, and γE is the Euler constant.
The first order phase transition is possible due to the appearance of the cubic term which originates from
the bosonic loops at finite temperature. From Eq. (2.122), the critical temperature Tc is expressed by

T 2
c =

T 2
0

1−E2/(λTcD)
. (2.128)

At Tc, the effective potential Veff has two degenerate minima at

ϕ = 0, ϕc =
2ETc
λTc

. (2.129)

In order not to wash out the created baryon number density after the electroweak phase transition, we
have to require that the sphaleron process should be sufficiently suppressed. The most reliable condition
has been obtained from the lattice simulation study [228, 229]. It is expressed as

ϕc
Tc

=
2E

λTc
> 1. (2.130)

Due to the contributions of the heavy Higgs bosons in the loop, the first order phase transition can be
strong enough to satisfy Eq. (2.130). The high temperature expansion makes it easy to see the phase
transition analytically. However, it breaks down when the masses of the particles in loops become larger
than Tc. In the following, we therefore calculate Tc and ϕc numerically.
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Fig. 2.4: The Higgs vacuum expectation value ϕc at the critical temperature Tc as a function of the heavy Higgs
boson mass mΦ (mΦ = mH = mA = mH± ) for M = 0, 50, 100 and 150 GeV. Other parameters are fixed as
sin(α− β) = −1, tanβ = 1 and mh = 120 GeV.

In order to see phenomenological consequences of our scenario for successful electroweak baryo-
genesis, we study the trilinear coupling of the lightest Higgs boson (the hhh coupling) at the zero temper-
ature in the parameter region where the phase transition is strongly first order. The leading contribution
of the heavy Higgs bosons and the top quark to the hhh coupling can be extracted from the one-loop
calculation by [113, 230]

λeff
hhh(2HDM) ' 3m2

h

v

[
1 +

m4
H

12π2m2
hv

2

(
1− M2

m2
H

)3

+
m4
A

12π2m2
hv

2

(
1− M2

m2
A

)3

+
m4
H±

6π2m2
hv

2

(
1− M2

m2
H±

)3

− m4
t

π2m2
hv

2

]
. (2.131)

It is easily seen that the effects of the heavy Higgs boson loops are enhanced by m4
Φ (Φ = H,A,H±)

whenM2 is zero. These effects do not decouple even in the large mass limitmΦ →∞ and yield the large
deviation of the hhh coupling from the Standard Model prediction. In this case, mΦ is bounded from
above by perturbative unitarity (mΦ < 550 GeV) [31,32,34,231]. We note that when such nondecoupling
loop effects due to the extra heavy Higgs bosons are large on the hhh coupling, the coefficient E of the
cubic term in Eq. (2.122) becomes correspondingly large. Therefore there is a strong correlation between
the large quantum correction to the hhh coupling and successful electroweak baryogenesis.

We calculate the effective potential (2.120) varying the temperature T and determine the critical
temperature Tc of the first order phase transition and the expectation value ϕc at Tc. In the plots of
Fig. 2.4, Tc and ϕc are shown as a function of the mass of the heavy Higgs bosonmΦ forM = 0, 50, 100
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Fig. 2.5: Contours of the radiative correction of the triple Higgs boson coupling constant overlaid with the line
ϕc/Tc = 1 in the mΦ-M plane for mh=100, 120, 140 and 160 GeV. Other parameters are the same as those in
Fig. 2.4. The above the critical line, the phase transition is strong enough for the successful electroweak baryoge-
nesis scenario.

and 150 GeV. We take mh = 120 GeV. For the heavy Higgs boson mass, we assume mH = mA =
mH±(≡ mΦ) to avoid the constraint on the ρ parameter from the LEP precision data [232]. We also
take into account the ring summation for the contribution of the Higgs bosons to the effective potential
at finite temperature to improve our calculation [225, 233–238]. In the case of M = 0, it is found that
ϕc = Tc ' 120 GeV at mΦ ' 185 GeV, and the condition (2.130) is satisfied for mΦ > 185 GeV. One
can also find that the condition (2.130) can still be satisfied for M = 150 GeV, if the masses of the heavy
Higgs bosons are greater than about 300 GeV.

In Fig. 2.5, we show the parameter region where the necessary condition of electroweak baryogen-
esis in Eq. (2.130) is satisfied in the mΦ-M plane for mh = 100, 120, 140 and 160 GeV. For mh = 120
GeV, we can see that the phase transition becomes strong enough for successful baryogenesis when the
masses of the heavy Higgs bosons are larger than about 200 GeV. For the larger values of M or mh, the
greater mΦ are required to satisfy the condition (2.130). In this figure we also plot the contour of the
magnitude of the deviation in the hhh coupling from the Standard Model value. We define the deviation
∆λ2HDM

hhh /λeff
hhh(SM) by ∆λ2HDM

hhh ≡ λeff
hhh(2HDM) − λeff

hhh(SM). We calculated the deviation from the
full one-loop results, which give a better approximation than the formula given in Eq. (2.131) [113,230].
We can easily see that the magnitude of the deviation is significant (> 10%) in the parameter region
where electroweak baryogenesis is possible. Such magnitude of the deviation can be detected at future
collider experiments [142, 239–241].

Next we discuss a scenario of electroweak baryogenesis in the minimal supersymmetric standard
model. The strong first order phase transition can be induced by the loop effect of the light stop in the
finite temperature effective potential [204]. We examine the loop effect of the light stop on the hhh
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coupling in this scenario. In the following, we only consider the finite and zero temperature effective
potentials using high temperature expansion to understand the qualitative feature. As we have done in
the case of the two Higgs doublet model, we consider the relationship between the magnitude of the
phase transition and the deviation of the hhh coupling from the Standard Model value. The combined
result is approximately expressed as

∆λhhh(MSSM)

λhhh(SM)
' 2v4

m2
tm

2
h

(∆Et̃1)2, (2.132)

where mh is the one-loop renormalized mass of the lightest Higgs boson and ∆E t̃1 is the contribution
of the light stop loop to the cubic term in the finite temperature effective potential. From the condition
(2.130), the deviation in the hhh coupling from the Standard Model value is estimated to be ∼ 6%
for mh = 120 GeV. In the minimal supersymmetric standard model, the condition of the sphaleron
decoupling also leads to the large deviation of the hhh coupling from the Standard Model prediction at
zero temperature.

In summary, we have discussed electroweak baryogenesis with special emphasis on its connec-
tions to the collider phenomenology. If the electroweak phase transition is strong enough for electroweak
baryogenesis, the triple Higgs boson coupling can deviate from the Standard Model value. The magni-
tude of the deviation can be larger than 10% level in the two Higgs doublet model. Such magnitude of
the deviation can be detected at future colliders.

2.7 Neutral Higgs bosons with (in)definite CP: decay distributions for τ+τ− and tt̄ final states
Werner Bernreuther, Arnd Brandenburg and Jörg Ziethe

This contribution deals with the question of how to determine the parity, respectively the CP property of
a neutral Higgs boson. While the Standard Model Higgs boson is parity-even, SM extensions predict also
parity-odd state(s) or, if the (effective) Higgs potential violates CP, states of undefined CP parity with
Yukawa couplings both to scalar and pseudoscalar quark and lepton currents. Higgs sector CP violation
(CPV) is, especially in view of its potentially enormous impact on the physics of the early universe,
a fascinating speculation which can be investigated at the upcoming generation of colliders in several
ways. The decays h → τ−τ+ and/or h → tt̄ are particularly suited, provided that sufficiently large
event numbers are available. The analysis presented here is based on the proposals and investigations
of [99, 103] for the tau and of [99, 103, 242–245] for the top channel. Other investigations include
[101, 246–250].

The following applies to any neutral Higgs boson hj with flavor-diagonal couplings to quarks and
leptons f (with mass mf )

LY = −(
√

2GF )1/2
∑

j,f

mf (ajf f̄f + bjf f̄ iγ5f)hj , (2.133)

where ajf and bjf are the reduced scalar and pseudoscalar Yukawa couplings, respectively, which depend
on the parameters of the scalar potential and on the type of model. In the SM af = 1 and bf = 0. In
models with two Higgs doublets there are three physical neutral Higgs fields hj in the mass basis. In
the type II models the Yukawa couplings to top quarks and τ leptons are (see sections 2.1 and 3.1):
ajt = R2j/ sinβ, bjt = −R3j cot β, ajτ = R1j/ cos β, bjτ = −R3j tanβ, where tanβ = v2/v1, and
(Rij) is a 3 × 3 orthogonal matrix that describes the mixing of the neutral spin-zero states. At the Born
level only the CP = +1 component of hj couples to W+W− and to ZZ . If Higgs sector CP violation
(CPV) is negligibly small then the fields hj describe two scalar states h,H and a pseudoscalar A. In the
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following φ denotes, as in section 2.1 above, any of these Higgs bosons. We assume that the differences
between the mass of the Higgs particle φ under consideration and the masses of the other neutral Higgs
states are larger than the experimental resolution.

2.7.1 τ and top spin observables

The observables discussed below for determining the CP quantum number of a neutral Higgs boson in
the decay channels φ → τ−τ+ and/or φ → tt̄ may be applied to any Higgs production process. At the
LHC this includes the gluon and gauge boson fusion processes gg → φ and qiqj → φq′iq

′
j , respectively,

and associated production of a light Higgs boson, tt̄φ or bb̄φ with φ→ τ−τ+. Likewise they can be used
in future Higgs search at an ILC, or in Higgs production with envisaged high energetic muon or photon
collisions, µ−µ+, γγ → φ→ f f̄ . In the following we consider the semi-inclusive reactions

i → φ + X → f(kf , α) + f̄(kf̄ , β) + X , (2.134)

where i is some initial state, f = τ−, t, kf and kf̄ = −kf are the 3-momenta of f and f̄ in the f f̄ zero-
momentum frame (ZMF), and α, β are spin labels. We make use of the fact that, at colliders, polarization
and spin correlation effects are both measurable and reliably predictable for tau leptons and top quarks.

Let’s assume that experiments at the LHC will discover a neutral boson resonance in the channel
gg → φ → τ−τ+X . The spin of φ may be inferred from the polar angle distribution of the tau leptons.
Suppose the outcome of this is that φ is a spin-zero (Higgs) particle. One would next like to determine
its Yukawa coupling(s), and specifically like to know whether φ is a scalar, a pseudoscalar, or a mixture
of both, i.e., a state of undefined CP quantum number. For answering this question several CP-even and
-odd observables involving the spins of f, f̄ apply, and we emphasize that all of them should be used. It
was shown in [99] that the correlation resulting from projecting the spin of f onto the spin of f̄ ,

O1 = sf · sf̄ , (2.135)

is the best choice for discriminating between a CP = ±1 state. Here sf , sf̄ denote the f, f̄ spin opera-
tors. This is easy to understand in simple quantum mechanical terms. Consider a reaction i → φ→ f f̄
where φ production and decay factorizes. If φ is a scalar (JPC = 0++) then f f̄ is in a 3P0 state,
and an elementary calculation yields 〈sf · sf̄ 〉 = 1/4. If φ is a pseudoscalar (JPC = 0−+) then f f̄
is in a 1S0 state and 〈sf · sf̄ 〉 = −3/4, which is strikingly different from the scalar case. These val-
ues do not depend on the mass of φ, provided mφ > 2mf . For general couplings (2.133) one gets
〈O1〉 = (a2

fβ
2
f − 3b2f )/(4a2

fβ
2
f + 4b2f ) [99]. In Fig. 2.6 (left) the expectation value 〈O1〉 is shown for

φ→ τ−τ+X as a function of the ratio rτ = bτ/(aτ +bτ ), taking aτ , bτ > 0 for definiteness, for arbitrary
Higgs mass mφ & 100 GeV. The figure applies also to φ→ tt̄X (with rτ → rt) if mφ is markedly above
the tt̄ threshold. For small t quark velocities βt the resulting plot is distorted, as compared with Fig. 2.6,
between the fixed points 1/4 and -3/4. The QED corrections to this observable, respectively the order αs
QCD corrections in the case of f = t are very small [99].

We note in passing that the CP-even spin-spin correlation in the helicity basis, 〈(k̂f · sf )(k̂f̄ · sf̄ )〉,
is insensitive to the CP quantum number of φ [99].

If γfCP ≡ −afbf 6= 0 the Yukawa interactions of φ break CP. This leads to CP-violating effects
in the reactions (2.134). For an unpolarized initial state i a general kinematic analysis of (2.134) yields
the following [103, 243, 245]. If C-violating interactions do not matter in (2.134) then LY (which is C-
invariant, but P- and CP-violating) induces two types of CPV effects in the f f̄ state: a CP-odd spin-spin
correlation and a CP-odd polarization asymmetry which correspond to the observables

O2 = k̂f · (sf × sf̄ ) , O3 = k̂f · (sf − sf̄ ) . (2.136)

Here k̂f = kf/|kf | in the f f̄ ZMF. (A priori two more terms can appear in the squared matrix element
of (2.134). They are obtained by replacing k̂f → p̂ in (2.136), where p̂ is the direction of one of the
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Fig. 2.6: Expectation value of 〈O1〉 (left) and 〈O2〉 (right) for φ→ τ−τ+X as a function of rτ [99].

colliding beams in i. However, for resonant φ production only the observables (2.136) are of interest.)
The CP-odd and T-odd12 variable O2 measures a correlation of the spins of the f and f̄ transverse
to their directions of flight. A non-zero expectation value is generated already at tree level, 〈O2〉 =

γfCPβf/(a
2
fβ

2
f + b2f ) [103], which can be as large as 0.5 in magnitude! In Fig. 2.6 (right) 〈O2〉 is shown

for φ → τ−τ+X as a function of rτ , for Higgs masses mφ & 100 GeV. The figure applies also to
φ → tt̄X (with rτ → rt) for sufficiently heavy φ. The QED corrections to this observable, respectively
the order αs QCD corrections in the case of f = t, are also very small [99]. The variable O3 measures an
asymmetry in the longitudinal polarization of the f and f̄ . As it is CP-odd but T-even, a non-zero 〈O3〉
requires γfCP 6= 0 and a non-zero absorptive part of the respective scattering amplitude. This variable is
relevant for heavy Higgs→ f f̄ , e.g., for gg → φ→ tt̄ (see below), but not for light Higgs→ ττ .

If besides (2.133) and QCD also C-violating interactions (e.g. the standard weak interactions)
matter for the reactions (2.134) then there can be, in principle, another CPV effect, namely 〈n̂ · (sf −
sf̄ )〉 6= 0 [245]. Here n̂ denotes the normal to the i → f f̄ scattering plane. Below we consider the
reactions gg → φ→ f f̄ within QCD. In this case this CPV polarization effect is absent. This holds true
also for reactions (2.134) where the production and decay of φ factorizes.

2.7.2 Distributions for the decay products of τ+τ− and tt̄

The polarization and spin-correlation effects (2.135), (2.136) induced in the f f̄ sample lead, through
the parity-violating weak decays of the τ leptons and top quarks, to specific angular distributions and
correlations in the respective final state. We consider here

i → φ + X → f(kf ) + f̄(kf̄ ) + X → a(q1) + b̄(q2) + X , (2.137)

where a, b̄ denotes a charged particle or a jet from the decays f → a+ · · · , f̄ → b̄+ · · · . The 3-momenta
of f and f̄ in (2.137) refer as above to the f f̄ ZMF, while the momenta q1 and q2 refer to the f and f̄
rest frames, respectively. For f = τ, t these frames and momenta can be reconstructed using kinematic
constraints (c.f., e.g. [115, 251, 252]).
For the tau lepton one may take into account the decay channels τ− → π−ντ , ρ−ντ , a

−
1 ντ , `

−ν̄`ντ ,
which comprise about 81 % of all tau decays. That is, B(τ−τ+ → ab̄X) ' 66 % for a, b = π, ρ, a1, `.
Here we need to recall only the τ -spin analyzing power of these particles, that is, the coefficient ca in the
distribution Γ−1

a dΓa/d cos θ = (1 + ca cos θ)/2 of the decay τ− → a + · · · , where cos θ is the angle
between the τ spin vector and the direction of a in the τ rest frame (c.f., e.g., [252]). They are collected
in Table 2.2.

According to the SM the top quark decays into Wb almost 100 % of the time, which leads to the
CKM allowed semi- and nonleptonic final states, t→ b`ν`, bqq̄

′, qq̄′ = ud̄, cs̄. Again we need here only

12Here T-even/odd refers to a naive T transformation, i.e., reversal of momenta and spins only.

47

THE CP-VIOLATING TWO-HIGGS DOUBLET MODEL

47



Table 2.2: Spin-analyzing power for tau decays and top quark decays in the SM.

τ− → π− ρ− a−1 `−

ca: 1.0 0.46 0.12 −0.33
t → `+ b j< j>

ca (LO): 1 −0.41 0.51 0.2
ca (NLO): 0.999 −0.39 0.47

Table 2.3: Coefficient Dab in (2.138) for some final states in φ→ ττ .

ττ → ππ ρρ ``′ πρ π` ρ`

φ (0++): 0.33 0.07 0.04 0.15 −0.11 −0.05
φ (0−+): −1 −0.21 −0.11 −0.46 0.33 0.15

the t-spin analyzing power ca of particle/jet a in the decay t → a + · · · . Table 2.2 contains the values
of the ca at tree level (c.f., for instance, [253]) and to order αs, which were computed for the semi-and
non-leptonic decays in [254] and in [255], respectively. For the non-leptonic channels, j< and j> denote
the least energetic and most energetic non-b jet defined by the Durham clustering algorithm.

Within 2HDMs the decays of the top quark will be mediated also by charged Higgs exchange.
However the branching ratio B(b → sγ) implies that H+ is much heavier than the top quarks, see
section 2.2. Thus for the important channel t → ` + · · · , ` = e, µ the impact of H+ exchange on the
c` can be neglected. In any case, the results below can be straightforwardly extended if new top decay
modes and/or decay mechanisms should be discovered.

The cos θ distributions for the antiparticle decays f̄ → b̄+ · · · are proportional to (1 − cb cos θ),
assuming CP invariance. Violation of this relation requires that the respective decay amplitude has a
CP-violating absorptive part [256]. In 2HMDs the one-loop corrections to the tWb vertex generate such
a term [257], but its effect on the ca of the top quark is negligible in the context of this report.

Let’s now come to the analogue of the Oi at the level of the final states a, b̄. The spin correlation
〈O1〉 leads to a non-isotropic distribution in cosϕab, where ϕab = ∠(q1,q2). If no phase space cuts are
applied – modulo cuts on the invariant mass Mff̄ of the fermion pair – this opening angle distribution is
of the form [99, 244]:

1

σab

dσab
d cosϕab

=
1

2
(1−Dab cosϕab) , Dab =

4

3
cacb 〈sf · sf̄ 〉 . (2.138)

2.7.3 τ decay channels

For φ→ ττ we have listed in Table 2.3 the coefficients Dab for some of the final states mentioned above.
As the charged pion in τ → πντ is the best τ -spin analyzer, this channel discriminates most strikingly
between a scalar and a pseudoscalar Higgs boson. In the case of a pseudoscalar φ the pion momenta q1,
q2 are predominantly parallel, while for a scalar φ they tend to be antiparallel. As this channel has a
small branching ratio, B(ττ → ππ) ' 0.01, the other channels also matter.

The analogue of the CP-odd spin observables O2,3 are [99, 245]:

Q2 = (k̂f − k̂f̄ ) · (q̂2 × q̂1)/2 , Q3 = k̂f · q̂1 − k̂f̄ · q̂2 , (2.139)

where k̂f and k̂f̄ = −k̂f are defined as above in the f f̄ ZMF. Measurement of (2.139) requires the
determination of the signs of the charges of a and b̄ while this is not necessary for (2.138). The average
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Fig. 2.7: Production of φ withmφ= 200 GeV at the LHC via gluon fusion and decay φ→ ττ → ππ. Left: opening
angle distribution for a scalar (dashed) and a pseudoscalar (solid). Right: distribution ofQ2 for a Higgs boson with
aτ = −bτ .

of Q2 should be computed for events (2.137) plus the charge conjugated events āb, while the average
of 〈Q3〉 is to be computed for diagonal channels aā. Concerning O3 one may take advantage of larger
event samples, as exemplified in the case of top quarks in (2.142) below. Asymmetries corresponding to
(2.139) are:

A(Q) =
Nab(Q > 0)−Nab(Q < 0)

Nab
, (2.140)

where Nab is the number of events in the reaction (2.137). They should be experimentally more robust
because only the signs of Qi have to be measured. If no phase-space cuts, besides cuts on Mff̄ , are
imposed then [245]

〈Q2〉ab =
4

9
cacb 〈O2〉 , 〈Q3〉aa =

2

3
c2a 〈O3〉 ,

A(Q2) =
9π

16
〈Q2〉ab , A(Q3) = 〈Q3〉aa . (2.141)

Let’s apply Q2 to φ → ττ . (As already mentioned above 〈Q3〉 is in general small in this channel.) The
observable Q2 measures the distribution of the signed normal vector of the plane spanned by q1,q2 with
respect to the τ− direction of flight. If γτCP 6= 0 then this distribution is asymmetric. If φ were an ideal
mixture of a CP-even and -odd state, |aτ | = |bτ |, the asymmetry corresponding to Q2 would take the
value |A(Q2)| = 0.4 in the ππ and |A(Q2)| = 0.06 in the ρ` channel, etc. Notice that the sign of 〈Q2〉ab
resp. of A(Q2) measures the relative sign of the Yukawa couplings aτ and bτ .
How are these results modified by cuts? We have analyzed this for the production of a Higgs boson φ via
gluon fusion at the LHC, and we report here only on the ππ channel: gg → φ → τ−τ+X → π−π+X .
Backgrounds are due to the irreducible Z → ττ and the tt̄, bb̄ and W + jet processes (c.f., for instance,
[115, 258]). We apply the cuts Ea,b

T ≥ 40 GeV, |η| <2.5. We take mφ = 200 GeV and require 120 GeV
≤ Mττ ≤ 280 GeV. Figure 2.7 (left) shows the opening angle distribution for a scalar (bτ = 0) and
a pseudoscalar (aτ = 0) state. Because of the applied cuts the shapes of the distributions differ from
(2.138), but the two cases are, nevertheless, clearly distinguishable. One can use Dab ≡ −3〈cosϕab〉 as
an unbiased estimator. We get Dππ = −0.32 (scalar) and−1.37 (pseudoscalar), which is to be compared
with the respective values of Table 2.3. Thus only a few ππ events are required to decide whether φ is
essentially a parity-even or -odd state. With (2.139) one can further check whether or not φ is a CPV
mixture. In Fig. 2.7 (right) the distribution of Q2 is plotted for the case of a Higgs boson with “maximal”
CPV in its couplings to tau leptons, aτ = −bτ . This gives 〈Q2〉ππ = 0.19, which is a bit below the
“no-cut” value 2/9, obtained from (2.141). We estimate that about 45 ππ events would establish this as
a 5 σ effect. The opening angle distribution and Q2 can be evaluated in analogous fashion for the other
tau decay channels which should, of course, also be taken into account to accumulate statistics.
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2.7.4 Top decay channels

Finally we discuss heavy Higgs bosons φ with mass mφ > 2mt that strongly couple to top quarks. Of
particular interest here is the case of a pseudoscalar, as A→/ W +W−, ZZ in lowest order, or a heavy
scalar with strongly suppressed couplings to the weak gauge bosons. If tanβ is of order 1, the top-quark
Yukawa coupling(s) will be large and φ → tt̄ is the dominant decay mode. For the investigation of the
CP nature of φ with the observables (2.138) and (2.139), (2.140) in this mode the dilepton and the lepton
+ jets channels are suitable which, for ` = e, µ, comprise about 4/81 and 8/27, respectively, of all t t̄
decays in the SM. In order to search for a longitudinal polarization asymmetry O3 it is useful to divide
the lepton + jets sample into two classes: A : tt̄→ `+ + · · · , and Ā : tt̄→ `− + · · · . For these events
one can use [245]

E = 〈k̂f · q̂1〉A − 〈k̂f̄ · q̂2〉Ā (2.142)

and a further asymmetry involving the above triple correlation.

For reactions (2.137) where φ production and decay factorizes to good approximation we get the
following [99]: If no phase space cuts are applied – modulo cuts on Mtt̄ – the opening angle distribution
is of the form (2.138) with D``′ = 1.33〈st · st̄〉 in the dilepton channel and D`j< = 0.66〈st · st̄〉 in
the lepton + jets channel if j< is used as top-spin analyzer in the non-leptonic top decay modes. The
expectation value of O1 was given above and takes the values 0.25 and −0.75 for a P-even and -odd
Higgs boson φ, respectively. In addition the formulae (2.141) apply. For a CPV Higgs boson a non-zero
〈Q3〉 and E are generated by the one-loop QCD corrections. With about 4000 φ → tt̄ events the CP
nature of φ could be established, in this ideal situation, for a large range of the coupling ratio rt with 5 σ
sensitivity when (2.138), (2.141), and (2.142) are used in combination [99].

At the LHC the main production reaction is expected to be gluon fusion, for which these results
do not apply. The amplitude of g g → φ → tt̄ → final state interferes with the amplitude of the QCD-
induced non-resonant tt̄ background, g g → tt̄ → final state, and this interference is not negligible,
even in the vicinity of

√
s ∼ mφ, because the resonance is not narrow. The interference generates a

peak-dip structure in the tt̄ invariant mass distribution Mtt̄ [244, 259]. Statistically significant signals
are possible in the mass range 350 GeV . mφ . 500 GeV, depending on the strength of the Yukawa
couplings and on the width of φ [115, 244, 251, 259]. Needless to say, this is a difficult channel which
requires very good Mtt̄ resolution and a precise knowledge of the background contributions to the Mtt̄

distribution13 .

If experiments will find a signal of a heavy neutral spin-zero boson φ in the tt̄ channel, the above
observables can of course be used in this case, too, to investigate its CP properties. The opening angle
distribution (2.138) was investigated in [244] in the dilepton channel with the irreducible tt̄ background
included. This background dilutes the striking difference between the shapes of the distributions for
a scalar and a pseudoscalar φ exhibited above. It depends critically on the Yukawa couplings, mass,
and width of φ whether or not a statistically significant effect is obtained. In order to preserve the
discriminating power of this distribution it should be determined only for events with Mtt̄ = mφ − ∆,
where ∆ is of the order of 40 GeV [244]. For the tt̄ background the distribution (2.138) was computed
to NLO QCD in [261].

CPV (resonant and non-resonant) φ exchange at one loop was computed for qq̄, gg → tt̄ within
2HDM in [103, 243] and confirmed by [118, 262]. The expectation values of the observables (2.139),
(2.140), and (2.142) were analyzed in [245] for the dilepton and the lepton + jets channels. When
evaluated for events with Mtt̄ = mφ − ∆ it was found that CP effects of a few percent are possible.
Observables composed of final state momenta in the laboratory frame yield smaller CP effects [243].
In [263] the CP asymmetry ∆LR = [N(tL t̄L) − N(tR t̄R)]/(all tt̄), which corresponds to 〈O3〉, was
computed within 2HDM for light φ exchange in qq̄, gg → tt̄ production, and found to be ∆LR ∼ 0.1 %.

Heavy Higgs production by weak gauge boson fusion at the LHC or at an ILC should also be an

13The matrix elements of [244] are contained in the MC generator TOPREX [260].

50

WORKSHOP ONCP STUDIES AND NON-STANDARD HIGGS PHYSICS

50



Table 2.4: φ → ττ event numbers N1 and N2 required to determine the CP-even and -odd correlation Dab and
〈Q2〉ab with 3 σ significance, as a function of rτ = bτ/(aτ + bτ ).

rτ 0 0.1 0.2 0.5 0.6 0.7 – 1.0
N1: 9× 103 104 1.2× 104 1.2× 104 3× 103 103

rτ : 0.15 0.2 0.3 0.4 – 0.6 0.7 0.8 0.85
N2 : 1.2× 104 6× 103 3× 103 1.5× 103 3× 103 6× 103 1.2× 104

option to explore the tt̄ decay channel. If high-energetic left- and right-circularly polarized photon beams
will be available in the future then the respective production cross sections γγ → φ can be measured, and
a difference would constitute a clean signal of Higgs sector CPV [109]. For unpolarized γγ collisions, the
reactions γγ → φ→ ττ, tt̄ may be employed to investigate the CP nature of φ. In [149] CP observables
were analyzed and computed within 2HDM for the ` + jets final states of the φ→ tt̄ channel.

2.7.5 Conclusions

In conclusion we have discussed, for φ → ττ and φ → tt̄, a set of observables for determining the CP
parity of a neutral Higgs boson φ and, in particular, for investigating whether or not there is CPV in the
Higgs sector. The τ decay channel is clearly most suited to explore the nature of a light or heavy φ, and
the above correlations and asymmetries, applied in combination to the various charged final states, should
provide powerful tools already at the LHC. Table 2.4 summarizes our results for the τ decay mode: N1

and N2 are the φ → ττ event numbers required to measure the CP-even and -odd correlation Dab and
〈Q2〉ab with 3 σ significance as a function of rτ = bτ/(aτ + bτ ), using the τ decay channels discussed
above. The numbers apply to light and heavy φ. The opening angle distribution (2.138) is sensitive in
the ranges 0 ≤ rτ . 0.2 (scalar-like φ) and 0.7 . rτ ≤ 1.0 (pseudoscalar-like φ). Assuming that at least
104 φ→ ττ events will be recorded at the LHC, Higgs sector CP violation can be established if the ratio
of the Yukawa couplings lies in the range 0.2 . rτ . 0.8.

At the LHC a heavy φ is expected to be observable in the tt̄ channel only under favorable cir-
cumstances, i.e., for a restricted parameter range of various SM extensions. We found that the CP-odd
correlations and asymmetries (2.141), (2.142), applied to the dilepton and lepton + jets channels and
evaluated in appropriate mass bins, deviate from zero with & 3 σ for a Higgs boson with mass in the
range 300 GeV. mφ . 500 GeV and reduced Yukawa couplings |atbt| & 0.1. In any case the above ob-
servables may be applied to dileptonic and single-lepton tt̄ events, irrespective of a significant resonance
signal. Moreover, if φ → tt̄ should be seen at a future high luminosity e+e− and/or photon collider the
variables above will also show their discriminating power.

2.8 CP-violating top Yukawa couplings in the 2HDM
Wafaa Khater and Per Osland

The Two-Higgs-Doublet Model is a simple extension of the Standard Model that can provide additional
CP violation [1,36,264–266]. However, the model is rather constrained, it is not a priori obvious that the
allowed parameter regions provide CP violation that could be of experimental interest at the LHC. The
top Yukawa coupling is of particular interest, since it will become accessible at the LHC. It is interesting
to establish how the Higgs sector can be explored via this coupling.

The process
pp→ tt̄+X (2.143)

has been studied in considerable detail [263, 267], in particular by Bernreuther and Brandenburg [243,
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245] who identified the different kinematical structures appearing in the CP-violating part of the interac-
tion, and evaluated them in a generic Two-Higgs-Doublet Model.

At very high energies, the dominant contribution to the process (2.143) is from the gluon-gluon
initial state,

gg → tt̄ (2.144)

as indicated in Fig. 2.8. Also, among various observables proposed by Bernreuther and Brandenburg, we
focus [118] on one that requires the decay to electrons (or muons):

t→ l+νlb, t̄→ l−ν̄lb̄. (2.145)

In the process of producing tt̄ via gluon fusion, the CP violation can arise at the one-loop level, via
neutral Higgs exchange involving the t and t̄ lines, provided the top Yukawa coupling exhibits both
scalar and pseudo-scalar terms as given in Eq. (2.146). Such a coupling induces correlations among the
t and t̄ momenta and their spins. The most interesting of these correlations are the CP-odd ones which
are transferred to the t and t̄ decay products, e.g., to the energies and momenta of the electron and the
positron.

g

g

t

t̄

CP

Fig. 2.8: The underlying g + g → t+ t̄ reaction.

A necessary condition for having CP-violating Yukawa couplings, is that the mass matrix corre-
sponding to the three neutral Higgs bosons not be block diagonal in the weak basis, i.e., in terms of the
real and imaginary parts of the doublet fields Φ1 and Φ2. In the notation of [118] (see also section 2.1),
this requires one or more among λ5, λ6 and λ7 to be complex. The simplest case is to take λ5 to be com-
plex. Actually, the model considered in [118] takes λ6 = λ7 = 0. The Z2 symmetry is thus respected by
the quartic terms, and Flavour-Changing Neutral Couplings are naturally suppressed [18].

The resulting model can be parameterized in different ways. Let the top Yukawa coupling for a
particular Higgs boson Hj be written as

Hjtt̄ : [a+ iγ5ã] (j = 1, 2, 3) (2.146)

or as
mt

v

[
gL

1− γ5

2
+ gR

1 + γ5

2

]
. (2.147)

Then, a crucial quantity is the asymmetry between the left- and right-handed parts of the coupling

γCP = −aã = −i m
2
t

4v2
(g2
L − g2

R). (2.148)

In the Model II for Yukawa couplings, where only Φ2 couples to up-type quarks, and only Φ1 to
down-type quarks, the couplings a and ã are simply given in terms of elements of the rotation matrix that
diagonalizes the mass-squared matrixM2 of the neutral Higgs bosons. This rotation matrix R is defined
in (2.27) and (2.28). Relative to the SM coupling, the Yukawa couplings can then be written as

Hjtt̄ :
1

sinβ
[Rj2 − iγ5 cos βRj3], (2.149)
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with R the rotation matrix as defined in (2.28)

Unless the couplings are suppressed, the dominant contribution to the CP violation will come from
diagrams involving exchange of the lightest Higgs boson, H1. According to the above discussion, this
contribution will be proportional to R12R13 cos β/ sin2 β. Thus, in order to maximize the CP violation
in tt̄ production, we are interested in low values of tan β, and large values of |R12R13|. The latter
requirement means large | sinα1| and large | sin 2α2|.

2.8.1 A CP-violating observable

Among various CP-violating observables proposed by Bernreuther and Brandenburg, the quantity

A1 = E+ −E− (2.150)

was found to be rather promising [118]. Here, E+ and E− are the energies of the positron and electron
of Eq. (2.145), defined in the laboratory frame.

In order to have a significant observation, the expectation value 〈A1〉 must compare favourably
with the statistical fluctuations, which behave like

√
N , where N is the number of events. In order to

assess this, it is convenient to consider the “signal to noise” ratio [243],

S

N
=

〈A1〉√
〈A2

1〉 − 〈A1〉2
. (2.151)

The analytical expression for 〈A1〉 is entirely determined by the coefficients of the CP-odd correlations
between the momenta and the spins of the tt̄ pair [268]. This explicitly shows that the CP-violation
originating at the production level of the top pair manifests itself in the kinematics of their decay products.

2.8.2 Results

One can specify the Two-Higgs-Doublet Model in terms of the potential, plus additional parameters. We
found it convenient to follow a different approach. In order to more easily identify regions of large CP
violation, we take as input parameters those which are more directly related to the observables. Thus, we
take the angles of the rotation matrix and the lowest masses as part of the input:

Input: tanβ, α1, α2, α3, M1, M2, MH± , Rem2
12. (2.152)

With this input, the mass of the heaviest Higgs boson, M3, is determined, as well as the coefficients of
the potential, λ1, λ2, λ3, λ4, and λ5.

CP violation requires the mass-squared matrix not to be block diagonal. This, in turn, requires
sinα2 6= 0, and/or sinα3 6= 0. However, only a small part of the 8-dimensional parameter space (2.152)
yields viable models, when various physical constraints are taken into account. The constraints are of
different kinds, the most important of which are: (i) the potential must satisfy positivity and unitarity
(constraints most easily expressed in terms of the λs), (ii) the spectrum must be compatible with the
LEP searches (which essentially constrains a function of the lightest Higgs mass and its coupling to
the Z boson), and (iii) the charged Higgs must be compatible with constraints from direct searches at
LEP [232] and b→ sγ [83].

For a range of parameters, with the lightest Higgs mass of the order of 100 to 150 GeV, tanβ = 0.5
and the charged Higgs mass at 300 GeV, the “signal-to-noise” ratio was found to be of the order of 10−3.
Thus, a number of semileptonically decaying tt̄ events in excess of 106 will be required in order to
measure a significant CP-violating signal, for “optimal” parameters. This should be possible, after a few
years of running at high luminosity [269, 270].

We note from Eqs. (2.148) and (2.149) that in the limit of three degenerate Higgs masses, the CP
violation in the top Yukawa coupling vanishes, due to the orthogonality of the rotation matrix R. Also,
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Fig. 2.9: Sensitivity of A1 vs. lightest Higgs mass, M1, for M2 = 300 GeV, M3 = 500 GeV, MH± = 500 GeV
(from [271]).

due to the constraints inherent in the model (with λ6 = λ7 = 0), if two of the Higgs boson masses
approach each other (M1 → M2 or M2 → M3) then also the third one will approach this value, and the
CP violation will again vanish. Thus, “large” CP violation is only possible if one Higgs boson is fairly
light, and the other two are heavy and non-degenerate.

In a recent update of this study [271], more constraints have been imposed on the model. As a
result, the allowed regions of the parameter space shrink, and the detection of CP violation within the
2HDM thus becomes more challenging than found earlier, see Fig. 2.9.

2.9 Higgs CP measurement via tt̄φ partial reconstruction at the LHC

Justin Albert, Mikhail Dubinin, Vladimir Litvin, and Harvey Newman

In the Standard Model, if the Higgs mass is below 140 GeV, the “golden” channels φ → ZZ ∗ → 4`
and φ→ WW ∗ → 2`2ν have small branching fraction, thus the mode φ → γγ begins to become more
favorable for discovery. However, the latter does not, in general, encode information on Higgs properties
such as CP and spin. In order for information on Higgs CP and spin to be obtained from such decays,
the Higgs must be produced in association with two or more particles, such as bb̄ or tt̄. From an angular
analysis of such processes, one can obtain information, in a model-independent way, on the Higgs spin
and CP [272].

We consider here the process gg → tt̄φ. This process has a relatively small cross-section in
the SM (see the left plot of Fig. 2.10), however it has comparatively quite low background. In order
to increase the size of the sample of tt̄φ events, we reconstruct just one of the t or t̄, but not both,
i.e. a partial reconstruction of t(t̄)φ, as compared with a full reconstruction of both the t and t̄, as
well as the Higgs. For an efficiency for top reconstruction of 20%, partial reconstruction increases the
efficiency, relative to full reconstruction, from (20%)2 = 4% to 2 ∗ 20% − (20%)2 = 36%, nearly an
order of magnitude. This could potentially introduce backgrounds of the form tφ +X , however events
that contain both top and Higgs are dominated by tt̄ + X , so this technique does not add significant
irreducible background.

One may use both φ → γγ and φ → bb̄ channels for this process. We consider here the gg →
t(t̄)φ, φ → γγ channel, which has less background, although a far lower branching fraction, than φ →
bb̄. We select the φ→ γγ in a similar manner as for the CMS inclusive φ→ γγ analysis [273], and then
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Fig. 2.10: Standard Model cross-sections (left) of processes containing a Higgs at the LHC as a function of Higgs
mass, and branching fractions (right) of the Higgs, again as a function of Higgs mass.

add to that a top, reconstructed as a b-tagged jet and a high-pT (> 40 GeV) lepton. The events themselves,
and thus the background channels, are a subset of the inclusive φ → γγ analysis. Backgrounds are
dominated in this case by tt̄γγ, bb̄γγ, and Zγγ processes. As Higgs discovery and mass measurement
would likely be performed by the inclusive Higgs analysis prior to this analysis to determine Higgs spin
and CP, a selection on the Higgs mass can dramatically reduce these main “irreducible” backgrounds.

In order to consider the gg → t(t̄)φ process, the Yukawa Lagrangian can be divided into CP-even
and CP-odd components:

L = t̄(c+ idγ5)tφ, (2.153)

where 0 ≤ c ≤ 1 parametrizes the CP-even contribution and d = 1 − c parametrizes the CP-odd
fraction [272]. In the existing approaches to the MSSM with explicit CP violaton in the Higgs sector
[47, 274, 275] the parameters c and d are expressed by means of the matrix elements Rij of the Higgs
boson mixing matrix (see Eq. 2.27). For the lightest mass eigenstate h1 we have c = k (R21 sinα +
R11 cosα) and d = −k (R31 cos β) where k = −mtop/(sinβ v

2) and α,β are the standard mixing angles
of the CP-even/odd states. However, in the following we are not going to use any particular model of
explicit CP-violation but simply consider c and d as the model-independent weights parametrizing the
CP-even and the CP-odd components in the Yukawa Lagrangian [272].

Gunion and He define 6 CP-sensitive variables, as follows [272]:

a1 =
(~pt × n̂) · (~pt̄ × n̂)

|(~pt × n̂) · (~pt̄ × n̂)| , a2 =
pxt p

x
t̄

|pxt pxt̄ |

b1 =
(~pt × n̂) · (~pt̄ × n̂)

pTt p
T
t̄

, b2 =
(~pt × n̂) · (~pt̄ × n̂)

|~pt||~pt̄|
(2.154)

b3 =
pxt p

x
t̄

pTt p
T
t̄

, b4 =
pzt p

z
t̄

|~pt||~pt̄|
,

where n̂ is a unit vector in the +z direction along the collision axis. Using the partial reconstruction
technique, the information from the second top momentum must be replaced with the momentum of the
reconstructed Higgs (or potentially with the unreconstructed [missing] momentum, or some combina-
tion. Here we simply use the momentum of the reconstructed Higgs for the replacement.) As shown
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Fig. 2.11: Distributions of (as rows from top) the a1, a2, b1, b2, b3, and b4 variables. Within each row, the
leftmost plot shows the distribution for CP-even Higgs full reconstruction, left middle shows CP-odd with full re-
construction, right middle shows CP-even Higgs partial reconstruction, and rightmost shows CP-odd Higgs partial
reconstruction.
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Fig. 2.12: Projection of Higgs CP fit onto the β4 variable. Monte Carlo data are points with error bars (statis-
tical only). The line shows the projection of the fit to a sum of CP-even and CP-odd components (as well as
misreconstructed background).

in Fig. 2.11, the partial reconstruction has a similar overall per-event CP sensitivity to the full recon-
struction, along with the much higher efficiencies. We denote the partial-reconstruction versions of the
original Gunion-He variables with Greek letters: (ai, bj)→ (αi, βj).

In order to extract the CP-even and CP-odd fractions of the Higgs from reconstructed t( t̄)φ events,
we have implemented an unbinned maximum-likelihood fit, combining the information from each of the
CP-sensitive variables. For each event i and hypothesis j (CP-even signal, CP-odd signal, background)
we define the probability density function (PDF) as

Pij = Pj(αi1)Pj(αi2)Pj(βi1)Pj(βi2)Pj(βi3)Pj(βi4), (2.155)

accounting for correlations between the 6 variables. The likelihood function is

L =
e−
P
Yj

N !

N∏

i=1

∑

j

YjPij , (2.156)

where Yj is the yield of events of hypothesis j and N is the number of events in the sample.

We fit sets of 50, 100, 500, and 1000 partially-reconstructed t(t̄)φ events (corresponding to ap-
proximately 40, 80, 400, and 800 fb−1 of integrated luminosity respectively), in each case with the φ
generated as being 50% CP-odd and 50% CP-even. The resulting uncertainties on the CP (i.e. parame-
ters c and d of Eq. 2.153) are ±0.5 for the 50-event case, ±0.3 for 100 events, ±0.2 for 500 events, and
±0.1 for 1000 events. Fig. 2.12 shows a projection of the maximum-likelihood fit onto the β4 variable,
as compared with the data (the points with error bars). The CP-even component has a gentler exponential
slope, and smaller central Gaussian fraction, than the CP-odd component for this variable.

To improve measured uncertainties on the Higgs CP and spin, performing a combined analysis
of this gg → t(t̄)φ, φ → γγ channel together with related channels such as gg → t(t̄)φ, φ → bb̄;
gg → b(b̄)φ, φ→ γγ; and vector boson fusion Higgs production (for a light Higgs) and φ→ ZZ ∗ → 4`
and φ→WW ∗ → 2`2ν (for a heavier Higgs) is the most promising direction.
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2.10 Higgs + 2 jets as a probe for CP properties
Vera Hankele, Gunnar Klämke, and Dieter Zeppenfeld

At the LHC, one would like to experimentally determine the CP nature of any previously discovered
(pseudo)scalar resonance. Such measurements require a complex event structure in order to provide
the distributions and correlations which can distinguish between CP-even and CP-odd couplings. This
can either be done by considering decays, e.g. H → ZZ → l+l−l+l− and the correlations of the
decay leptons [93, 119], (see sections 2.12, 2.11 and 2.13), or one can study correlations arising in the
production process. Here the azimuthal angle correlations between the two additional jets in Hjj events
have emerged as a promising tool [98]. In the following we consider the prospects for using Φjj events
at the LHC, where Φ stands for a CP even boson, H, a CP odd state, A, or a mixture of the two. Two
production processes are considered. The first is vector boson fusion (VBF), i.e. the electroweak process
qQ → qQΦ (and crossing related ones) where Φ is radiated off a t-channel electroweak boson. The
second is gluon fusion where Φ is produced in QCD dijet events, via the insertion of a heavy quark loop
which mediates gg → Φ + 0, 1, 2 gluons.

The CP properties of a scalar field are defined by its couplings and here we consider interactions
with fermions as well as gauge bosons. Within renormalizable models the former are given by the
Yukawa couplings

LY = yf ψ̄Hψ + ỹf ψ̄Aiγ5ψ , (2.157)

whereH (andA) denote (pseudo)scalar fields which couple to fermions f = t, b, τ etc. In our numerical
analysis we consider couplings of SM strength, yf = ỹf = mf/v = ySM . Via these Yukawa couplings,
quark loops induce effective couplings of the (pseudo)scalar to gluons which, for (pseudo)scalar masses
well below quark pair production threshold, can be described by the effective Lagrangian

Leff =
yf
ySM

· αs
12πv

·HGaµν G
a µν +

ỹf
ySM

· αs
16πv

·AGaµν Gaρσεµνρσ . (2.158)

Similar to the Φgg coupling, Higgs couplings to W and Z bosons will also receive contributions from
heavy particle loops which can be parameterized by the effective Lagrangian

L5 =
fe

Λ5
H ~Wµν

~W µν +
fo

Λ5
A ~Wµν

~Wρσ
1

2
εµνρσ . (2.159)

For most models, one expects a coupling strength of order fi/Λ5 ∼ α/(4πv) for these dimension 5
couplings and, hence, cross section contributions to vector boson fusion processes which are suppressed
by factors α/π (for interference effects with SM contributions) or (α/π)2 compared to those mediated
by the tree level HV V (V = W, Z) couplings of the SM. However, together with the tree level
couplings, the effective Lagrangian of Eq. (2.159) has the virtue that it parameterizes the most general
ΦV V coupling which can contribute in the vector boson fusion process qQ → qQΦ and, thus, it is a
convenient tool for phenomenological discussions and for quantifying, to what extent certain couplings
can be excluded experimentally. Neglecting terms which vanish upon contraction with the conserved
quark currents, the most general tensor structure for the fusion vertex V µ(q1)V ν(q2)→ Φ is given by

T µν(q1, q2) = a1(q1, q2) gµν + a2(q1, q2) [q1 · q2g
µν − qµ2 qν1 ] + a3(q1, q2) εµναβq1αq2β . (2.160)

Here the ai(q1, q2) are scalar form factors, which, in the low energy limit, are given by the effective
Lagrangian of Eq. (2.159). One obtains, e.g. for the W +W−Φ coupling, a2 = −2fe/Λ5 and a3 =
2fo/Λ5, while a1 = 2m2

W /v is the SM vertex.

The CP-even and CP-odd couplings of Eqs. (2.158,2.159) lead to characteristic azimuthal angle
correlations of the two jets in Φjj production processes. Normalized distributions of the azimuthal angle
between the two jets, 4φjj , are shown in Fig. 2.13 for vector boson fusion (left panel) and for gluon
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Fig. 2.13: Left: Normalized distributions of the azimuthal angle between the two tagging jets, for the Φ→WW →
eµp�T signal in vector boson fusion at mΦ = 160 GeV, from Ref. [98]. Curves, after cuts as in Ref. [276], are for
the SM and for single D5 operators as given in Eq. (2.159), i.e. they each assume a single nonzero coupling ai of
Eq. (2.160). Right: The same for Higgs production in gluon fusion at mΦ = 120 GeV. Curves are for CP-even (i.e.
SM) and CP-odd Φtt couplings.

fusion processes (right panel) leading to Φjj events: A CP-odd coupling suppresses the cross section for
planar events because the epsilon tensor contracted with the four linearly dependent momentum vectors
of the incoming and outgoing partons disappears. For a CP-even coupling the dip, instead, appears at 90
degrees [98, 277]. Unfortunately, when both CP-even and CP-odd couplings are present simultaneously,
the two 4φjj distributions simply add, i.e. one does not observe interference effects. The dip-structure
which is present for pure couplings is, thus, washed out.

This behavior is demonstrated in Fig. 2.14. For CP-even and CP-odd couplings of the same
strength, i.e. fe = fo, the azimuthal angle distribution is very similar to the SM case. However, in
order to test the presence of anomalous couplings in such cases, other jet distributions can be used, e.g.
transverse momentum distributions. The4φjj distribution is quite insensitive to variations of form fac-
tors, NLO corrections and the like [278]. On the other hand, pT distributions depend strongly on form
factor effects. We study these effects for a particular parameterization of the momentum dependence:

a2(q1, q2) = a3(q1, q2) ∼M2 C0 ( q1, q2,M ) , (2.161)

where C0 is the familiar Passarino-Veltman scalar three-point function [279]. This ansatz is motivated by
the fact that the C0 function naturally appears in the calculation of one-loop triangle diagrams, where the
mass scale M is given by the mass of the heavy particle in the loop. As can be seen in the right panel of
Fig. 2.14, even for a mass scale M of the order of 50 GeV the anomalous couplings produce a harder pT
distribution of the tagging jets than is expected for SM couplings. Thus it is possible to experimentally
distinguish EW vector boson fusion as predicted in the SM from loop induced WWΦ or ZZΦ couplings
by the shape analysis of distributions alone.

Let us now consider the gluon fusion processes where, for Φtt couplings of SM strength, one
does expect observable event rates from the loop induced effective Φgg couplings [277]. In order to
assess the visibility of the CP-even vs. CP-odd signatures of the azimuthal jet correlations at the LHC,
we consider Higgs + 2 jet production with the Higgs decaying into a pair of W -bosons which further
decay leptonically, Φ → W+W− → `+`−νν̄. We only consider electrons and muons (` = e±, µ±) in
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Fig. 2.14: Normalized distributions of the tagging jets in EW vector boson fusion with anomalous couplings and
for a Higgs mass of mΦ = 120 GeV. Typical VBF cuts of pTj > 30 GeV, |ηj | < 4.5, |ηj1 − ηj2 | > 4.0, mjj >

600 GeV are applied. Left: Azimuthal angle distribution between the two tagging jets, for different strengths of
the operators of Eq. (2.159). Right: Transverse momentum distribution of the hardest tagging jet for fe = fo = 1

and a form factor as in Eq. (2.161). The “no formfactor” curve corresponds to the limit M → ∞, i.e. a constant
ai.

the final state. The Higgs-mass is set to mΦ = 160 GeV. From previous studies on Higgs production
in vector boson fusion [276] the main backgrounds are known to be top-pair production i.e. pp →
tt̄, tt̄j, tt̄jj [280]. The three cases distinguish the number of b quarks which emerge as tagging jets. The
tt̄ case corresponds to both bottom-quarks from the top-decays being identified as forward tagging jets,
for tt̄j production only one tagging jet arises from a b quark, while the tt̄jj cross section corresponds to
both tagging jets arising from massless partons. Further backgrounds arise from QCD induced W +W−

+ 2 jet production and electroweak W+W−jj production. These backgrounds are calculated as in
Refs. [281] and [282], respectively. In the EW W +W−jj background, Higgs production in VBF is
included, i.e. the VBF Higgs signal is considered as a background to the observation of Φjj production
in gluon fusion. We do not consider backgrounds from Zjj, Z → ττ and from bb̄jj production because
they have been shown to be small in the analyses of Refs. [276, 283].

The inclusive cuts in Eq. (2.162) reflect the requirement that the two tagging jets and two charged
leptons are observed inside the detector, and are well-separated from each other.

pTj > 30 GeV, |ηj | < 4.5, |ηj1 − ηj2 | > 1.0

pT` > 10 GeV, |η`| < 2.5, ∆Rj` > 0.7 (2.162)

The resulting cross sections for these cuts are shown in Table 2.5. The signal cross section of 121 fb
(which includes the branching ratios into leptons) is quite sizeable. The QCD WWjj cross section
is about 3 times higher whereas the VBF process reaches 2/3 of the signal rate. The worst source of
background arises from the tt̄ processes, with a total cross section of more than 17 pb.
In order to improve the signal to background ratio the following selection cuts are applied:

pT` > 30 GeV, m`` < 75 GeV, ∆R`` < 1.1

mWW
T < 170 GeV, m`` < 0.5 ·mWW

T . (2.163)

60

WORKSHOP ONCP STUDIES AND NON-STANDARD HIGGS PHYSICS

60



Table 2.5: Signal rates and background cross sections for mΦ = 160 GeV. Results are given for the inclusive cuts
of Eq. (2.162), the additional selection cuts of Eq. (2.163) and b-quark identification as discussed in the text, and
with the additional ∆ηjj cut of Eq. (2.166) which improves the sensitivity to the CP nature of the Φtt coupling.
The events columns give the expected number of events for Lint = 30 fb−1.

inclusive cuts selection cuts selection cuts + Eq. (2.166)
process σ [fb] σ [fb] events / 30 fb−1 σ [fb] events / 30 fb−1

GF pp→ Φ + jj 121.2 39.2 1176 13.1 393
VBF pp→W+W− + jj 75.2 20.8 624 17.4 521

pp→ tt̄ 6832 29.6 888 2.0 60
pp→ tt̄+ j 9712 56.4 1692 15.6 468
pp→ tt̄+ jj 1200 8.8 264 3.2 97

QCD pp→W+W− + jj 364 15.2 456 3.9 116

Here, the transverse mass of the dilepton-~p�T system is defined as [276]

mWW
T =

√
(E�T +ET,``)2 − (~pT,`` + ~p�T )2 (2.164)

in terms of the invariant mass of the two charged lepton and the transverse energies

ET,`` = (p2
T,`` +m2

``)
1/2, E�T = (p�2

T +m2
``)

1/2. (2.165)

In addition to these cuts we make use of a b-veto to reduce the large top-background. We reject all events
where at least one jet is identified as a b-jet. Using numbers from Ref. [284], we assume b-tagging
efficiencies in the range of 60% − 75% (depending on b-rapidity and transverse momentum) and an
overall mistagging probability of 10% for light partons.
With the selection cuts (2.163) and the b-veto the backgrounds can be strongly suppressed. Table 2.5
shows the resulting cross sections and the expected number of events for an integrated luminosity of
Lint = 30 fb−1. The signal rate is reduced by a factor of 3 but the backgrounds now have cross sections
of the same order as the signal. The largest background still comes from the tt̄ processes, especially
tt̄+1j. For 30 fb−1 we get about 1000 signal events on top of 4000 background events. This corresponds
to a purely statistical significance of the gluon fusion signal of S/

√
B ≈ 18 and a sufficient number of

events to analyze the azimuthal jet correlations.

Figure 2.15 shows the expected 4φjj distribution for 30 fb−1. Plotted are signal events on top of
the various backgrounds. An additional cut on the rapidity gap between the jets

|ηj1 − ηj2 | > 3.0 (2.166)

has been applied. It enhances the shape of the distribution that is sensitive to the nature of the Φtt
coupling. Clearly visible, the distribution for the CP-even coupling has a slight minimum at4φjj = 90◦

whereas for the CP-odd case there is a pronounced maximum. In order to quantify this, we define the
fit-function

f(4φ) = C · (1 +A · cos 24φ+B · cos4φ) (2.167)

with free parameters A, B, C . The fit is shown as black curves in Fig. 2.15. The parameter A is now
a measure for the 4φjj asymmetry, i.e. whether there is a CP-even or CP-odd Φtt coupling. The fitted
values are A = 0.064 ± 0.035 for the CP-even and A = −0.157 ± 0.034 for the CP-odd case, while
AB = −0.039 ± 0.040 for the sum of all backgrounds. Defining a significance s as

s =
(AS+B −AB)

∆AS+B
, (2.168)
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Fig. 2.15: Distribution of the azimuthal angle between the tagging jets in Φjj events for a CP-even (left) and a CP-
odd (right) Φtt coupling. Shown are expected signal and background events per 10 degree bin for Φ→W +W− →
`+`−νν̄ and Lint = 30 fb−1 for the cuts of Eqs. (2.162, 2.163, 2.166) and an applied b-veto. Processes from top
to bottom: gluon fusion (signal), VBF, tt̄, tt̄j, tt̄jj, QCD WWjj. mΦ = 160 GeV is assumed.

we get s = 3.0 and s = −3.4 for the CP-even and CP-odd case, respectively. Thus, a distinction of
a CP-odd and CP-even Φtt coupling is possible at a 6σ level for the considered process and a Higgs
mass of 160 GeV. This implies that, at least for favorable values of the Higgs boson mass, (i) an effective
separation of VBF and gluon fusion sources of Φjj events is possible and (ii) the CP nature of the Φtt
coupling of Eq. (2.157) can be determined at the LHC.

2.11 CP-violating Higgs bosons decaying via H → ZZ → 4 leptons at the LHC
Rohini M. Godbole, David J. Miller, Stefano Moretti and Margarete M. Mühlleitner

In this contribution, we study the decay of a Higgs boson to a pair of real and/or virtual Z bosons
which subsequently decay into pairs of fermions, H → ZZ → (f1f̄1)(f2f̄2), where f1 and f2 are
distinguishable. This channel is particularly important at the LHC for Higgs masses MH > 2MZ , where
the Z bosons are produced on-shell, but is also of use for smaller Higgs boson masses where one of the
Z bosons must be virtual [285].

To do a model-independent analysis we examine the most general vertex for a spin-0 boson cou-
pling to two Z bosons, including possible CP violation, which can be written as

ig

mZ cos θW
[ a gµν + b (k2µk1ν − k1 · k2gµν) + c εµναβk1

αk2
β ], (2.169)

with k1 and k2 the four-momenta of the two Z bosons, and θW the weak-mixing angle, c.f. Eq. (2.63)
in the introduction. The form factors b and c may be complex, but since an overall phase will not effect
the observables studied here, we are free to adopt a convention where a is real. These form factors can
arise from radiative loop corrections or from new physics at the TeV scale, i.e. from higher dimensional
operators [98], and may themselves be functions of the momenta. The terms associated with a and b
are CP-even, while that associated with c is CP-odd. εµναβ is totally antisymmetric with ε0123 = 1. CP
violation will be realized if at least one of the CP-even terms is present (i.e. either a 6= 0 and/or b 6= 0)
and c is non-zero. In the following, for the sake of simplicity, we will always assume b = 0.
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Fig. 2.16: The definition of the polar angles θi (i = 1, 2) and the azimuthal angle ϕ for the sequential decay
H → Z(∗)Z → (f1f̄1)(f2f̄2) in the rest frame of the Higgs boson.

For b = 0 this differs from the vertex of Refs. [93, 136] in the CP-odd term by a factor of 2, and
differs from that of Refs [119, 286, 287] and section 2.12 in the choice of mZ as a normalization factor
instead of mH . For further related studies relevant to the LHC also see Refs. [98, 288, 289] and section
2.13; for those relevant to e+e− colliders see Refs. [94–97,134,151]; for a study at a photon collider see
Ref. [147] and section 2.14.

The Standard Model at tree-level is recovered for a = 1 and b = c = 0, which is obviously CP
conserving. Nevertheless, it is interesting to ask if the LHC will be sensitive to any exotic new physics
which might provide a CP violating HZZ vertex of this form.

2.11.1 The distributions sensitive to CP violation

In order to fully test for the occurance of CP violation in the HZZ vertex it is helpful to find asymmetries
which probe the real and imaginary parts of c. The real part of c is probed by any observable which is
CP odd and T̃ odd (where T̃ denotes pseudo-time-reversal, which reverses particle momenta and spin
but does not interchange initial and final states), while the imaginary part is probed by any observable
which is CP odd and T̃ even. The nonvanishing of the CPT̃ odd coefficients is related to the presence of
absorptive parts in the amplitude [290].

An observable sensitive to Im (c) can be found by looking at the polar angular distributions of the
process. We denote the polar angles of the fermions f1, f2 in the rest frames of the Z bosons by θ1 and
θ2 and define,

O1 ≡ cos θ1 =
(~pf̄1
− ~pf1) · (~pf̄2

+ ~pf2)

|~pf̄1
− ~pf1 ||~pf̄2

+ ~pf2 |
(2.170)

where ~pf are the three-vectors of the corresponding fermions with ~pf1 and ~pf̄1
in their parent Z’s rest

frame but ~pf2 and ~pf̄2
in the Higgs rest frame, see Fig. 2.16. The angular distribution in θi (i = 1, 2) for a

CP-odd state is∼ (1 + cos2 θi), corresponding to transversely polarized Z bosons, which is very distinct
from the purely CP-even distribution proportional to sin2 θi for longitudinally polarized Z bosons in the
large Higgs mass limit [97, 134]. Im (c) 6= 0 will introduce a term linear in cos θi leading to a forward-
backward asymmetry. The distribution for cos θ1 is shown in Fig. 2.17 for a Higgs mass of 200 GeV and
a purely scalar, purely pseudoscalar and CP-mixed scenario. The asymmetry is absent if CP is conserved
(for both CP-odd and CP-even states) but is non-zero if Im (c) 6= 0 while simultaneously a 6= 0. This
may then act as a definitive signal of CP violation in this vertex. However, note that this observable
requires one to distinguish between f1 and f̄1.
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Fig. 2.17: The normalized differential width for H → ZZ → (f1f̄1)(f2f̄2) with respect to the cosine of the
fermion’s polar angle. The solid (black) curve shows the SM (a = 1, b = c = 0) while the dashed (blue)
curve is a pure CP-odd state (a = b = 0, c = i). The dot-dashed (red) curve is for a state with a CP violating
coupling (a = 1, b = 0, c = i). One can clearly see an asymmetry about cos θ1 = 0 for the CP violating case.

To quantify this we define an asymmetry by

A1 =
Γ(cos θ1 > 0)− Γ(cos θ1 < 0)

Γ(cos θ1 > 0) + Γ(cos θ1 < 0)
. (2.171)

In the case of no CP violation A1 = 0, whereas any significant deviation from zero will be a sign that
CP is violated. Fig. 2.18 (left) shows the value of A1 for a Higgs mass of 200 GeV as a function of the
ratio Im (c)/a. The value Im (c)/a = 0 corresponds to the purely scalar state whereas Im (c)/a →∞
to the purely CP-odd case. It is clear from Eq. (2.171) that A1 is sentitive only to the relative size
of the couplings since any factor will cancel in the ratio. We find that the asymmetry is maximal for
Im (c)/a ∼ 1.4 with a value of about 0.077.

In order to get a first rough estimate whether this asymmetry can be measured at the LHC we
calculate the significance with which a particular CP violating coupling would manifest at the LHC. In
the purely SM case, we assumed that 100 fb−1 provide 180 signal events containing H → ZZ → 4
leptons after cuts to remove background [285] (all production channels). We then divide this number by
two to provide an estimate for H → ZZ → e+e−µ+µ− (since we need to distinguish the leptons) and
scaled this number up to 300 fb−1 (i.e. giving 270 events). The number of events for the CP violating
case has been obtained by multiplying the number of SM events by the ratio of CP violating to SM cross
sections. We are therefore assuming the SM value for the CP even coefficient, i.e. a = 1. For simplicity
we assume the charge of the particles is unambiguously determined.

Fig. 2.18 (right) shows the significance as a function of Im (c), calculated according to A1

√
N

where N is the number of expected events. The maximum of the curve is slighlty shifted to higher values
of Im (c)/a compared to Fig. 2.18 (left) due to the increasing Higgs decay rate with rising pseudoscalar
coupling. The curve shows that, even in a best case scenario, the signficance is always less than 3σ, so
evidence for CP violation cannot be obtained in this channel without more luminosity. However, since
one does not need to distinguish f2 and f̄2 one could also consider using jets instead of muons, i.e.
H → ZZ → l+l−jj, to increase the statistics. This process deserves further study.

To probe Re (c) we require an observable which is CP odd and T̃ odd, so we choose to define,

O2 ≡
(~pf̄1
− ~pf1) · (~pf̄2

× ~pf2)

|~pf̄1
− ~pf1 ||~pf̄2

× ~pf2 |
. (2.172)
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Fig. 2.18: Left: The asymmetry given by Eq. (2.171) as a function of the ratio Im (c)/a, for a Higgs boson of mass
200 GeV. Right: The number of standard deviations the asymmetry deviates from zero as a function of Im (c). The
inserts show the same quantities for a larger range of Im (c).
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Fig. 2.19: The normalized differential width for H → ZZ → (f1f̄1)(f2f̄2) with respect to the observableO2 (see
text). The solid (black) curve shows the SM (a = 1, b = c = 0) while the dashed (blue) curve is a pure CP-odd
state (a = b = 0, c = 1). The dot-dashed (red) curve is for a state with a CP violating coupling (a = 1, b = 0,
c = 1). Again one sees an asymmetry about zero for the CP violating case.

The dependence of the differential width on this observable is plotted in Fig. 2.19 but while an asymmetry
is indeed present, it is very small and will be difficult to see in practice. The corresponding asymmetry is

A2 =
Γ(O2 > 0)− Γ(O2 < 0)

Γ(O2 > 0) + Γ(O2 < 0)
, (2.173)

which is plotted in Fig. 2.20 (left) as a function of Re (c)/a. The significance (as calculated for A1

above) is shown in Fig. 2.20 (right). The significance is always very small, and it is difficult to see how
this could provide useful information. In this case one cannot exploit the decay of Higgs bosons to jets
since one must also distinguish f2 and f̄2.

Another distribution sensitive to CP violation is the azimuthal angular distribution dΓ/dϕ where
ϕ denotes the angle between the planes of the fermion pairs stemming from the Z boson decays, cf.
Fig. 2.16. Whereas the purely SM case shows a distribution

dΓ

dϕ
∼ 1 +A cosϕ+B cos 2ϕ, (2.174)
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Fig. 2.20: Left: The asymmetry given by Eq. (2.173) as a function of the ratio Re (c)/a, for a Higgs boson of mass
200 GeV. Right: The number of standard deviations the asymmetry deviates from zero as a function of Re (c). The
inserts show the same quantities for a larger range of Re (c).

where the coefficients A andB are functions of the Higgs and Z boson mass (see Ref. [93]), in the purely
pseudoscalar case

dΓ

dϕ
∼ 1− 1

4
cos 2ϕ. (2.175)

In the CP violating case we must include contributions from both the scalar and pseudoscalar cou-
plings which will alter this behaviour. Knowing the Higgs mass from previous measurements, any de-
viation from the predicted distribution in the scalar/pseudoscalar case will be indicative of CP violation.
This can be inferred from Fig.2.21 which shows the azimuthal angular distribution for MH = 200 GeV
in the SM case, for a CP-odd Higgs boson and two CP violating cases. The purely CP-odd curve will
always show the same behaviour independently of the value of c since the curves are normalized to unit
area. Therefore a special value of c could not fake the flattening of the curve appearing in the CP vio-
lating examples. This flattening even leads to an almost constant distribution in ϕ for the case c/a = 1.
It should be kept in mind, though, that this method cannot be applied for large Higgs masses where
the ϕ dependence disappears in the SM. One must also beware of degenerate Higgs bosons of opposite
CP; since one cannot distinguish which Higgs boson is in which event, one must add their contributions
together, possibly mimicking the effect seen above.

This procedure is similar to that of Sections 2.12 and 2.13 where log-likelihood functions were
constructed and minimised to extract the coefficients in the vertex or yield exclusion contours.

The next step will be to study in a more realistic simulation how well the ϕ distribution can be fitted
at the LHC and hence to which extent CP violation can be probed in the azimuthal angular distribution.

2.11.2 Summary and Outlook

We have studied the decays of Higgs bosons into a pair of Z bosons, which subsequently decay into
leptons, for a general HZZ coupling at the LHC. We examined CP violating asymmetries which probe
the real and imaginary couplings of the CP-odd term. We found that the asymmetries produced are small
and will not provide evidence of CP violation at the LHC without higher luminosity. However, it may
be possible to exploit other channels, such as Higgs decays to leptons and jets, to increase significances.
We also examined the dependence on the azimuthal angle between the lepton planes, which is similarly
indicative of CP violation. Further studies of this azimuthal angle and the extension to arbitrary higher
“Higgs” spin will be the subject of future work.
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Fig. 2.21: The normalized differential width for H → Z (∗)Z → (f1f̄1)(f2f̄2) with respect to the azimuthal angle
ϕ. The solid (black) curve shows the SM (a = 1, b = c = 0) while the dashed (blue) curve is a pure CP-odd
state (a = b = 0, c = 1). The dot-dashed (red) curve and the dotted (green) curve are for states with CP violating
couplings a = 1, b = 0 with c = 2 and c = 1, respectively.

2.12 Testing the spin and CP properties of a SM-like Higgs boson at the LHC
Claus P. Buszello and Peter Marquard

To confirm the properties of a Higgs-like particle found at the LHC, we study the angular distributions of
the final state particles in the decay H → ZZ → 4`. To this end we consider hypothetical couplings of
the Higgs with momentum k to Z bosons with momenta p, q reflecting the different spin/CP states. We
use a parametrisation of the couplings as follows

Lscalar = Xgµν + Ykµkν/m
2
H + iPεµνρσp

ρqσ/m2
H (2.176)

for the spin 0 Higgs and

Lvector = X(gρµpν + gρνqµ) + P(iεµνρσp
σ − iεµνρσqσ) (2.177)

for the spin 1 case where ε1234 = i. This parametrisation is discussed in detail in [119]. The scalar
couplings in Section 2.11 differ slightly from these by the choice of the masses used to normalize the
non-SM contributions. We choose mH over mZ as this is more convenient if one wants to use the same
parameterisation for HZZ and HWW vertices. We then study the distributions of the final state leptons
performing a one and a multi-dimensional analysis.

The analysis presented here is divided in two parts. First, we only consider pure states (i.e all
but one of the parameters X,Y and P are zero). The analysis of the feasibility of the exclusion of the
pure states is based on a the fast parameterised ATLAS detector simulation [291] . Next, we consider
the exclusion of admixtures of the CP-even and CP-odd non-SM contributions. This analysis - detailed
in [292] - is the first one that takes all interference terms into account and is based on the same cuts,
efficiencies and momentum resolutions as the first part. The event samples for these studies were gener-
ated using a new matrix element generator written by the authors implementing the complete couplings
including mixtures given above. It generates the decay H → ZZ(∗) → 4` with two on-shell Z bosons
in the narrow width approximation above the ZZ-threshold and one on-shell and one off-shell Z below.
In the following we give the main results of these analyses. The full results and details can be found
in [119, 292]. Another one dimensional analysis of the pure states has also been performed in [93] and a
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PYTHIA based study of CP properties at CMS can be found in Section 2.13. A similar analysis can be
carried out in other cases, where the Higgs vector boson vertex is present. In fact, in the ZZ→ 4` decay
the angular correlations are suppressed compared to W decays or ZZ → 2`2q. This makes exploiting
WBF and the Higgs decay to W pairs so interesting. In that case, one can use the forward jets and the
leptons from the W decay to determine the spin-parity of the Higgs (see e.g. [287] and Section 2.10).

2.12.1 Analysis and results

We study essentially two distributions. One is the distribution of the cosine of the polar angle, cos θ, of
the decay leptons relative to the Z boson. Because the heavy Higgs decays mainly into longitudinally
polarised vector bosons the cross-section dσ/d cos θ should show a maximum around cos θ =0. The
other is the distribution of the angle φ between the decay planes of the two Z bosons in the rest frame
of the Higgs boson. This distribution depends on the details of the Higgs decay mechanism. Within the
Standard Model, a behaviour roughly like 1 + β cos 2φ is expected. This last distribution is flattened in
the decay chain H → ZZ → 4`, because of the small vector coupling of the leptons, in contrast to the
decay of the Higgs Boson into W pairs or decay of the Z into quarks. The angles under investigation are
shown in Fig. 2.16.

I Pure states

The plane-correlation can be parametrised as

F (φ) = 1 + α · cosφ+ β · cos 2φ (2.178)

In all four cases discussed here, there is no sinφ or sin 2φ contribution. For the Standard Model Higgs,
α and β depend on the Higgs mass while they are constant over the whole mass range in the other cases.
The polar angle distribution can be described by

G(θ) = T · (1 + cos2 θ) + L · sin2 θ (2.179)

reflecting the longitudinal or transverse polarisations of the Z boson. We define the ratio

R :=
L− T
L+ T

(2.180)

of transversal and longitudinal polarisation.

Figure 2.22 (left) shows the expected values and errors for the parameter R, using an integrated
luminosity of 100 fb−1. It is clearly visible that for masses above 250 GeV the measurement of this
parameter allows the various non-SM hypotheses for the spin and CP-state of the “Higgs Boson” con-
sidered here to be unambiguously excluded. For a Higgs mass of 200 GeV only the pseudoscalar is
excluded. Fig. 2.22 (right) shows the expected values and errors for α and β for a 200 GeV Higgs and
an integrated luminosity of 100 fb−1.

The parameter α can be used to distinguish between a spin 1 and the SM Higgs particle, but its
use is statistically limited. The same applies to the parameter β. Measuring β, which is zero for spin
1 and > 0 in the SM case, can contribute only very little to the spin measurement even if mH is in the
range where β, in the SM case, is close to its maximum value. Nevertheless, β can be useful to rule out
a CP-odd spin 0 particle.

The significance of the parameter α can be improved by exploiting the correlation between the sign
of cos θ for the two Z Bosons and φ. In Fig. 2.23, we plot the parameters separately for sign(cos θ1) =
sign(cos θ2) and sign(cos θ1) = −sign(cos θ2). As can be seen, the difference in α becomes bigger for
J = 1 and CP-even. For higher masses α and β of the SM Higgs approach 0; thus only α can be used to
measure the spin. This is fortunately compensated by the measurement of R.
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Fig. 2.22: The parameter R for different Higgs massses (left) and α and β (right) for mH = 200 GeV using 100
fb−1. The error scales with the integrated luminosity as expected.

Fig. 2.25 shows the significance, i. e. the difference of the expected non-SM value and SM value
divided by the expected error of the SM Higgs. We add up the significance for α and β for the like-signed
und unlike-signed cos(θ) combinations and plot the resulting significance together with the one from the
polar angle measurement in Fig. 2.25 (left). For higher Higgs masses the decay plane angle correlation
contributes almost nothing, but the polarisation leads to a good measurement of the parameters spin and
CP-eigenvalue. For full luminosity (300 fb−1) the significance can simply be multiplied by

√
3 assuming

stable detector performance. This is especially interesting for a Higgs mass of 200 GeV. The spin 1, CP-
even hypothesis can then be ruled out with a significance of 6.4σ, while for the spin 1, CP-odd case the
significance is still only 3.9σ.
In principle, the same analysis can be done for Higgs masses below the ZZ threshold. In practice this is
complicated by the fact, that the cross-section for H → ZZ ∗ is a lot smaller and is further reduced by
additional combined impact parameter and isolation cuts needed to suppress the tt̄ and Zbb̄ backgrounds.
Due to this reduction in statistics, the decay plane correlation doesn’t yield any useful results, and we
limit the discussion to the polar angle and the spin 0 case. Furthermore we will always use an integrated
luminosity of 300 fb−1, the maximum foreseen for each of the LHC experiments. We use the number of
signal and background events published in the ATLAS TDR [115].
The distortion of the polar angle distribution is sizeable, and we have to introduce a statistical correction.
The correction reproducing the SM values properly will not necesarily correct the non-SM values back to
the theoretical values. In Fig. 2.24 (left) we present the expected values of R after applying the correction
to the distributions. The exclusion significance is shown in Fig. 2.25 (top right).
An additional distribution that is only available below the threshold, is the distribution of the off-shell
Z mass. Fig. 2.24 (right) shows this distribution for a Higgs of 150 GeV and the three different spin
0 couplings. The distributions are more robust against the cuts than the polar angle distribution. We
generate 300 data samples of the expected number of signal and background events including all cuts
for the three different hypothesis, and calculate the χ2 to the SM-distribution (again after all cuts are
applied) for each one of them. The means of these values along with the corresponding confidence levels
are plotted against the various Higgs masses in Fig. 2.25.

II Mixed states

In order to measure possible CP-violation in the Higgs to vector boson coupling, we consider the full
matrix element including the mixed terms (PX, PY and YX). As in the one dimensional case, we assume
the discovery of a signal in the H → ZZ channel. Since a significant deviation from the expected
number of events would rule out a SM Higgs in a trivial way, we further assume, that the number of
events seen is compatible with a SM Higgs. A deviation in the number of events would not allow to
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Fig. 2.23: The parameter α depends on the signs of the cos(θ) of the two Z bosons. The events where the signs
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Fig. 2.24: Left: The expected values for the parameter R after reconstruction and signal selection and with a
correction for detector effects applied, so that the SM Higgs values are recovered. The errorbars reflect the expected
statistical error for the SM case using 300 fb−1. Right: The off-shell Z mass distribution for a 150 GeV Higgs.
NSM even refers to states with Y=1, P=0, X=0. NSM odd refers to Y=0, P=1, X=0.

pinpoint the coupling structure anyway, as it would be a possible combination of effects in production
and branching ratios. Instead, we use the angular correlations of the decay products to test for small non-
SM contributions to the SM coupling. To give a better physical interpretation to the notion of a small
coupling, we rescaled Y and P to Y′ and P′ such that now for the widths of the pure states ΓP ′ = ΓY ′ =
ΓX . The exact scaling factors can be found in Table 2.6. In this study we demonstrate how CP violation
in the H → ZZ coupling could be ruled out. Figure 2.26 and 2.27 show the exclusion significance for
Y’ and P’ admixtures to an SM Higgs. By turning this around we can interpret a measurement of P’ and
Y’ outside these boundaries as proof of a non-SM Higgs coupling to vector bosons.

We use the full information from the three fold differential cross-section by constructing the fol-
lowing likelihood function:

L(Y,P) =
∑

k∈events
log

|M|2(φk, θk1 , θ
k
2 ,P,Y,X = 1)∫

|M|2(φ, θ1, θ2,P,Y,X = 1)dφd cos θ1d cos θ2
(2.181)

where |M|2 is the squared matrix element evaluated at leading order. The value of X is always fixed
to the SM value of 1, since we want to measure small contributions from non-standard couplings. By
maximising the likelihood we expect to find a value of zero for P and Y. In order to demonstrate the
potential of measuring these parameters with ATLAS we show contour plots of the expected exclusion
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Fig. 2.25: Left: The overall significance for the exclusion of the non standard spin and CP-eigenvalue. The
significance from the polar angle measurement and the decay-plane-correlation are plotted separately. Right: The
exclusion significance for the non-SM cases for various Higgs masses. The top figure shows the exclusion using
the polarisation of the Z. The middle and bottom ones show the exclusion from the distribution of the off-shell Z
mass distribution for the pseudoscalar and the scalar non-SM couplings. NSM even refers to states with Y=1, P=0,
X=0. NSM odd refers to Y=0, P=1, X=0.

limits (see Fig. 2.26 and 2.27). The full luminosity of 300 fb−1 has been used for all plots. The back-
ground has been statistically subtracted where the distribution of the background considered in this study
was computed with PYTHIA [293]. The distortion of the signal is not negligible, but since the contri-
butions of the non standard model couplings are small the distortions don’t vary much. Therefore the
expected likelihood distributions are affected only slightly by the detector effects. We do not include
any corrections for this effect, which is visible as a small shift of the maximum in positive Y’ direction.
The plots were achieved by fitting to the whole dataset and as a check to many small samples with the
expected number of events (pseudo-experiments). The results from the two methods agree perfectly. A
remarkable feature of the contour-plots is the V-form in the Y −P plane. This form is understandable,
because some combinations of Y and P couplings behave very similar to the standard model coupling
X. Therefore, neglecting the Y term in the determination of CP violating contributions could lead to

Table 2.6: Ratio of the roots of the total widths of the pure states for various Higgs masses mH . These ratios can
be used to scale the constants P and Y such, that the non standard model couplings are of the same strength as the
standard model coupling.

mH [GeV] 130 140 150 160 170 180 200 250 300√
ΓY

ΓSM
0.093 0.106 0.116 0.092 0.106 0.066 0.102 0.284 0.368√

ΓP
ΓSM

0.106 0.117 0.125 0.123 0.126 0.102 0.146 0.156 0.121
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Fig. 2.26: Expected exclusion significance of P’/X and Y’/X for masses of the Higgs of 140 GeV and 150 GeV.
The quality of the measurement is mainly limited by statistics.
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Fig. 2.27: Expected exclusion significance of P’/X and Y’/X for masses of the Higgs of 200 GeV and 250 GeV.
The much higher number of events allows for a much better measurement of the coupling structure above the ZZ
threshold.

wrong results.

2.12.2 Conclusions

We have shown with our analyses that the angular correlations of the decay products of the Z bosons can
be used to distiguish the SM Higgs-boson from hypothetical particles with different spin and CP quantum
numbers. Furthermore, we have demonstrated how and to what extent CP violation in the scalar Higgs
decay to Z-pairs can be studied and excluded. The methods discussed work well for a Higgs-boson with
a mass above the Z boson pair production threshold. Even small contributions of CP-even and CP-odd
non SM couplings can be excluded in this case. Below, the analysis is statistically limited.
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2.13 Study of the CP properties of the Higgs boson in the Φ→ ZZ → 2e2µ process in CMS
Michał Bluj

We study a possible measurement of the CP-parity of the Higgs boson Φ at the LHC, using the CMS
detector. We consider a ,,golden channel” Φ→ZZ→2e2µ and angular correlations of leptons. The most
general ΦV V coupling (V =W±,Z0) for a spin-0 Higgs boson looks as follows [93, 119, 288, 294]:

CJ=0
ΦV V = κ · gµν +

ζ

m2
V

· pµpν +
η

m2
V

· εµνρσk1ρk2σ, (2.182)

where k1, k2 are four-momenta of vector bosons V and p≡k1+k2 is four-momentum of the Higgs boson.
In this analysis a simplified version of above ΦV V coupling (Eq. 2.182) is considered with a scalar and a
pseudoscalar contributions only (i.e. κ, η 6= 0 and ζ = 0). To study deviations from the Standard Model
ΦZZ coupling we take κ=114. The differential cross-section for the Φ→Z1Z2→(`1 ¯̀

1)(`2 ¯̀
2) process

consists now of three terms: a scalar one (denoted by H), a pseudoscalar one ∼ η2 (denoted by A) and
the interference term violating CP ∼η (denoted by I):

dσ(η) ∼ H + η I + η2A. (2.183)

This way the Standard-Model scalar (η = 0) and the pseudoscalar (in the limit |η|→∞) contributions
could be recovered. It is convenient to introduce a new parameter ξ, defined by tan ξ ≡ η, with values
between −π/2 and π/2. Expressions for H , A and I can be found in article [288].

To study the CP-parity of the Higgs boson we use two angular distributions. The first one is a
distribution of the angle ϕ (called a plane or an azimuthal angle) between the planes of two decaying Zs,
in the Higgs boson rest frame15. The second one is a distribution of the polar angle θ, in the Z rest frame,
between the momentum of the negatively charged lepton and the direction of motion of the Z boson in
the Higgs boson rest frame (Fig. 2.16).

2.13.1 MC samples

The Higgs-boson signal samples were generated using PYTHIA [295] for three masses of the Higgs boson
(mΦ =200, 300, 400 GeV). Generated events were required to contain e+e− and µ+µ− pairs within the
detector acceptance region (pet > 5 GeV, |ηe|< 2.7 and pµt > 3 GeV, |ηµ|< 2.5). The analysis was per-
formed for the scalar, pseudoscalar and CP-violating states (the latter for tan ξ=±0.1,±0.4,±1,±4).
Samples for the scalar, pseudoscalar and tan ξ=±1 states contain 10 000 events, while each of remain-
ing samples contains 5 000 events. The predicted production cross-sections: σΦ, σΦ ·BR(Φ→ 4`) and
σΦ ·ε ·BR(Φ→4`), where ε is the preselection efficiency for a the signal, are summarized in Table 2.7.
We assume the Standard Model cross-section [296] and the Standard Model branching ratio [297] for
each value of the ξ parameter (independently on the CP-parity of the Higgs boson). A dependence of the
analysis’ results on the assumed cross-section is discussed in Section 2.13.4. The following background

Table 2.7: Production cross-sections of the signal. Errors are statistical only.

mass (GeV) σΦ (fb) σΦ ·BR(Φ→4`) (fb) σΦ · ε ·BR(Φ→4`) (fb)
200 17.86 · 103 38.75 7.65 ± 0.09
300 9.41 · 103 24.03 5.08 ± 0.06
400 8.71 · 103 20.15 4.45 ± 0.05

processes were considered:
14The ΦV V coupling with κ=1 and arbitrary η is implemented in the PYTHIA generator.
15The negatively charged leptons were used to fix planes’ orientations.
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Table 2.8: Production cross-sections and number of used events for background processes. Errors are statistical
only.

process σbkg (fb) σbkg ·BR (fb) σbkg · ε ·BR (fb) # events
ZZ/γ∗ 28.9 · 103 730.27 39.75 ± 0.34 20k
tt̄ 840 · 103 87.2 ·103 775.08 ± 4.84 48k
Zbb̄ 525 · 103 9.49 ·103 116.38 ± 3.22 5k

Table 2.9: Selected cross-section for signal and background at chosen stages of the selection. All values in fb;
errors are statistical only.

level of signal background
selection ZZ/γ∗ tt̄ Zbb̄

selection for mΦ =200 GeV
trigger 6.45±0.09 30.30±0.30 305.04±3.11 81.17±2.69

reco. e+e− µ+µ− 5.46±0.08 22.57±0.26 164.04±2.29 32.77±1.73
Zs’ mass 3.89±0.07 12.57±0.19 0.09±0.06 <0.03
Φs mass 3.43±0.06 1.84±0.07 <0.02 <0.03

selection for mΦ =300 GeV
trigger 4.34±0.06 30.30±0.30 305.04±3.11 81.17±2.69

reco. e+e− µ+µ− 3.74±0.05 22.57±0.26 164.04±2.29 32.77±1.73
Zs’ mass 2.69±0.05 7.32±0.15 0.13±0.07 0.05±0.07
Φs mass 2.10±0.04 0.82±0.05 <0.02 <0.03

selection for mΦ =400 GeV
trigger 3.84±0.06 30.30±0.30 305.04±3.11 81.17±2.69

reco. e+e− µ+µ− 3.35±0.06 22.57±0.26 164.04±2.29 32.77±1.73
Zs’ mass 2.46±0.05 5.35±0.13 0.09±0.06 <0.03
Φs mass 2.02±0.04 0.66±0.05 <0.02 <0.03

1. ZZ/γ∗ → 2e2µ (irreducible background). The leading order cross-section for the qq̄→ZZ/γ ∗

process calculated using MCFM program [298] is equal to 18.7 pb. The next-to-leading order con-
tribution as well as the contribution from the gg→ZZ/γ∗ process, with estimated cross-section
of about 20% of the qq̄→ZZ/γ∗ cross-section at the leading order, was included as a four-lepton-
mass dependent K-factor. The K-factor is in average equal to 1.55 in four-lepton-mass range be-
tween 30 and 750 GeV, for example K=1.46, 1.66, 1.90 for m4`=200, 300, 400 GeV, respectively.

2. tt̄→W+W−bb̄→2e2µX . The tt̄ cross-section is equal to 840 pb [299].
3. Zbb̄→ 2e2µX . The Zbb̄ cross-section at the next-to-leading order, determined using MCFM pro-

gram [300–302] for pbt>1 GeV, |ηb|<2.5 and 81<mZ∗<101 GeV, is equal to 525 pb.

The information about the generated background samples are summarized in Table 2.8.
The minimum-bias pile-up events for the low LHC luminosity were added to each signal and background
sample.

2.13.2 Selection

We use selection criteria (for four isolated leptons) developed in the Standard-Model Higgs boson
searches at CMS for the H→ZZ→2e2µ process [303]. Values of the selection cuts depend on the
Higgs boson mass. The selected cross-section, at chosen stages of the selection, for the signal and
the background for three masses of the Higgs boson mΦ =200, 300, 400 GeV are shown in Table 2.9.
Fig. 2.28 shows the invariant mass of four reconstructed leptons before and after the off-line selection
(i.e. after lepton reconstruction and after cut on two Zs’ masses, respectively) for the Higgs boson sig-
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Fig. 2.28: Invariant mass distributions of four leptons before (left) and after (right) the off-line selection (normal-
ized to 60 fb−1). The signal of the Higgs boson with mΦ=300 GeV (empty histogram) and the background (filled
histograms).
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|ξ|=π/2 (pseudoscalar), respectively (empty histograms). The ZZ background - filled histogram.

nal, with mΦ=300 GeV, and for the background. The reconstructed angular distributions after the final
selection for the signal (with massmΦ=300 GeV) for various values of the parameter ξ, and for the back-
ground are shown in Fig. 2.29. Shape of the angular distributions for the background slightly depends
on the Higgs-mass-dependent selection. This effect is taken into account in our analysis.

2.13.3 Determination of the parameter ξ

The parameter ξ was determined by maximization of the likelihood function L(ξ,R), which was con-
structed, for both the signal and the background, from the angular distributions and invariant mass dis-
tribution of four leptons. The function depends on two parameters: ξ describing CP of the Higgs boson,
and R describing a fraction of the signal in the data sample. The function has the following form:

L(ξ,R)≡ 2
∑

xi∈data
logQ(ξ,R; xi), where Q(ξ,R; xi) ≡ R · PDFS(ξ; xi) + (1−R) · PDFB(xi).

(2.184)
PDFB(xi) and PDFS(ξ; xi) are Probability Density Functions for the background and the signal
respectively; {xi} are values of the measured quantities (angles and invariant mass) in the data event i.
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They are products of probability densities PM , Pϕ, Pcos θ1,2 of four leptons invariant mass and angles
ϕ and cos θ1,2 i.e. PDF ≡ PMPϕPcos θ1Pcos θ2 . PM , Pϕ, Pcos θ1,2 are obtained by the Monte Carlo
technique, using the normalized histograms of given quantities after the final selection.
A part of the function Q, which describes angular distributions of the signal depends on the parameter ξ.
From Eq. (2.183) we obtain:

P(ξ) ≡ (PϕS · Pcos θ1
S · Pcos θ2

S )(ξ) ≡ (H+ tan ξ · I + tan2 ξ · a2A)/(1 + a2 tan2 ξ), (2.185)

where: H ≡ PϕH · Pcos θ1
H · Pcos θ2

H and A ≡ PϕA · Pcos θ1
A · Pcos θ2

A are probability densities obtained
by the Monte Carlo technique for the scalar (H) and the pseudoscalar (A), respectively. The parame-
ter a2 is a (mass dependent) relative strength of the pseudoscalar and scalar couplings. For example
a2=0.51, 1.65, 1.79 for mΦ=200, 300, 400 GeV, respectively. I is a normalized product of angular dis-
tributions for the CP-violating term. Since I is not positive, and its integral is equal to zero, it is not
possible to simulate it separately. The I contribution can be obtained indirectly from the combined
probability density for the signal with a non-zero value of the parameter ξ. For example by introduc-
ing P+ ≡ P(π/4) = (H+I+a2A)/(1+a2) and P− ≡ P(−π/4) = (H−I+a2A)/(1+a2) we have
I= 1+a2

2 (P+−P−). Finally we obtain:

P(ξ) ≡ [H+ tan ξ · 1 + a2

2
· (P+ −P−) + tan2 ξ · a2A]/(1 + a2 tan2 ξ). (2.186)

2.13.4 Results

After selection all background contributions but ZZ/γ∗→2e2µ are negligible, therefore only such
events were used to construct the probability density function for the background. We use the ZZ/γ ∗

sample containing 15 000 events at the generator level. Signal probability density functions were con-
structed using samples of scalar Higgs boson (H), pseudoscalar (A) and P+, P− samples, each contain-
ing 8 000 events at the generator level. Likelihood functions were constructed independently for three
masses of the Higgs boson (mΦ=200, 300, 400 GeV).

For each value of parameter ξ and for each Higgs-boson mass we made 200 pseudoexperiments for
the integrated luminosity L=60 fb−1 (3 years of LHC at low luminosity). For each pseudoexperiment we
randomly selected events from the signal and background samples to form a test sample16. The number
of selected events was given by a Poisson probability distribution with mean defined by the process
cross-section and the examined luminosity. Then to obtain a value of the parameter ξ, we performed
a maximization of the likelihood function L(ξ,R) for the test sample. The expected and reconstructed
values of the parameter ξ (with its uncertainty), obtained for three masses of the Higgs boson are shown
in Fig. 2.30.

In our analysis the Standard-Model signal cross-section and branching ratio were used as a refer-
ence. However, both of them may change for other Higgs models. An influence of a possible suppression
(enhancement) factor C2 of the Standard Model signal on the reconstructed ξ were studied and we found
that its value slightly depends on size of suppression (enhancement). On the other hand, the uncertainty
of ξ is approximately ∼ 1/C (i.e. it depends on square-root of number of events, what one can expect),
namely:

∆ξ(ξ, C2) ≡ σ0(ξ)√
C2

. (2.187)

A value of σ0(ξ) (a precision factor) can be determined from the fit. Taking this into account we
parametrize a relative error of the difference between ξ and ξ0 as follows:

σ|ξ−ξ0|(C
2)

|ξ − ξ0|
=

∆ξ(ξ, C2)

|ξ − ξ0|
. (2.188)

16Samples used to select events, contain 2 000 and 5 000 events for the signal and the background, respectively. The samples
do not contain events used to construct probability densities for the likelihood function.
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Fig. 2.30: Reconstructed value of the parameter ξ as function of the generated value of the parameter ξ, for
L=60 fb−1, for Higgs boson mass mΦ=200, 300, 400 GeV. Uncertainties correspond to one standard deviation.
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Fig. 2.31: Exclusion contours for scalar Higgs boson as a function of the enhancement factor C 2 for the Higgs
boson masses mΦ=200, 300, 400 GeV (from left to right). Results were obtained for 60 fb−1.

The requirement of exclusion of ξ 6=ξ0 at the level of “N sigmas” could be written as σ|ξ−ξ0|(C
2)= |ξ−ξ0|/N :

C2(N) = N2 σ2
0(ξ)

(ξ − ξ0)2
. (2.189)

The exclusion contours for N=1, 3 and for ξ0 =0 (scalar) are shown in Fig. 2.31.

2.13.5 Summary

A possibility of a measurement of the CP-properties of the Higgs boson Φ in the Φ→ZZ→2e2µ process
at LHC with CMS detector was studied. It was shown that using angular correlations of the Higgs boson
decay products (leptons) the measurement of the parameter ξ, describing a general ΦZZ coupling, will
be feasible. Precision of this measurement is sufficient for determination of the CP-parity of the Higgs
boson, particularly it is sufficient to distinguish scalar from pseudoscalar.
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2.14 Higgs-boson CP properties from decays to WW and ZZ at the Photon Linear Collider

Piotr Nieżurawski, Aleksander Filip Żarnecki and Maria Krawczyk

The process of resonant Higgs boson production at the Photon Linear Collider (PLC), due to hγγ cou-
pling, is in the Standard Model sensitive to the Higgs boson couplings to both, the gauge-bosons and
up-type fermions. Moreover, as the phases of the two dominant contributions to the γγ → h amplitude,
from W± and top loops, differ, the process turns out to be very sensitive to the possible effects of the CP
violation.

In Ref. [304] we performed a realistic simulation of the Standard Model Higgs-boson production
at the PLC for W+W− and ZZ decay channels, for Higgs-boson masses above 150 GeV. From the
combined analysis of W+W− and ZZ invariant mass distributions the γγ partial width of the Higgs
boson, Γγγ , can be measured with an accuracy of 3 to 8% and the phase of γγ → h amplitude, φγγ ,
with an accuracy between 30 and 100 mrad. In Ref. [144] we extended this analysis to the generalized
Standard Model-like scenario Bh of the Two Higgs Doublet Model II, 2HDM(II), with and without CP-
violation. We also considered a general 2HDM (II) with CP violation, and found that only the combined
analysis of LHC, ILC and PLC measurements allows for a precise determination of the Higgs-boson
couplings and of CP-violating H–A mixing angle [305, 306]. Finally, we considered model with a
generic, CP-violating Higgs-boson couplings to vector bosons [93, 136, 307], which leads to different
angular distributions for a scalar- and pseudoscalar-type of couplings. From a combined analysis of the
invariant mass distributions and angular distributions of the W +W− and ZZ decay-products the CP-
parity of the observed Higgs state can be determined independently on a production mechanism [147].

In this contribution we summarize selected results of [144, 147, 305, 306], related to the determi-
nation of the Higgs-boson CP properties at the PLC.

2.14.1 Event simulation

In analyses we use the CompAZ parametrization [308] of the realistic luminosity spectra for a Photon
Linear Collider at TESLA [309, 310] and assume that the centre-of-mass energy of colliding electron
beams,

√
see, is optimized for the production of a Higgs boson with given mass. We consider the mass

range between 200 and 350 GeV, where W+W− and ZZ decays are expected to dominate. All results
presented in this paper were obtained for an integrated luminosity corresponding to one year of the PLC
running, as given by [309, 310], i.e. from 600 fb−1 for

√
see = 305 GeV (optimal beam energy choice

for M = 200 GeV) to about 1000 fb−1 for
√
see = 500 GeV (for M = 350 GeV).

Analyses described in this work were performed in two steps. In the first step we use samples
of events generated with PYTHIA 6.152 [295] to estimate selection efficiency, as well as resolutions
of the angular variable and of the invariant-mass reconstruction for γγ → W +W−/ZZ events, as a
function of the γγ centre-of-mass energy, Wγγ . We consider the direct vector-bosons production in γγ
interactions (background) as well as the signal γγ → h → W +W−/ZZ and the interference between
the signal and the background. To take into account effects which are not implemented in PYTHIA

(photon beam polarization, interference term contribution, direct γγ → ZZ production) we exploit
the standard method used in various experimental analyses called a reweighting procedure. To each
generated event a weight is attributed given by the ratio of the differential cross-section for a vector-
boson production in the polarized photon interactions [311–314] to the PYTHIA differential cross section
for given event. The fast simulation program SIMDET version 3.01 [315] is used to model the TESLA
detector performance.

For the W+W− events only qqq̄q̄ decay channel is considered, as without knowing the exact
beam-photon energies, which is a case for the Photon Linear Collider, the semileptonic W ± decays
can not be fully reconstructed. For the ZZ events, only l l̄qq̄ decay channel is considered, with one
Z decaying into e+e− or µ+µ−. Selection of the leptonic channel is crucial for a suppression of the
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background from the direct γγ →W+W− events.

The invariant-mass resolutions obtained from a full simulation of W +W− and ZZ events (based
on the PYTHIA and SIMDET programs), have been parametrized as a function of the γγ centre-of-mass
energy, Wγγ . This parametrization can then be used to obtain the parametric description of the expected
invariant mass distributions, for γγ → W+W− and γγ → ZZ events, avoiding the time consum-
ing event generation procedure. Resolutions expected in the reconstruction of angular variables are
very good and the measurement errors can be safely neglected. The measured angular distributions are
mainly affected by the detector acceptance and the corresponding selection cuts used in the analysis. The
corresponding acceptance corrections have also been parametrized as a function of the relevant angular
variables. For arbitrary model, and for arbitrary model parameters, we calculate the expected angular and
invariant mass distributions for ZZ and W+W− events by convoluting the corresponding cross-section
formula with the analytic photon-energy spectra CompAZ [308]. To take into account detector effects, we
convolute these distributions further with the function parameterising the invariant-mass resolution and
the acceptance function, which takes into account the angular- and jet-selection cuts. This approach has
been developed in [304].

2.14.2 Generic model

Following the analysis described in [93,136,307] we consider a generic model with a direct CP violation,
i.e. with tensor couplings of a Higgs boson, Φ, to ZZ and W +W− given by:

gΦZZ = ig
MZ

cos θW

(
λH · gµν + λA · εµνρσ

(p1 + p2)ρ (p1 − p2)σ
M2
Z

)
,

gΦWW = igMW

(
λH · gµν + λA · εµνρσ

(p1 + p2)ρ (p1 − p2)σ
M2
W

)
, (2.190)

where p1 and p2 are the 4-momenta of the vector bosons. The λH -terms have a structure of the CP-even
SM Higgs boson coupling,17 whereas the one with λA corresponds to a general CP-odd coupling for the
spin-0 boson. Coefficients λH and λA can be parametrized by:

λH = λ · cos ΦCP ,

λA = λ · sin ΦCP . (2.191)

The couplings of the Standard Model Higgs boson are reproduced for λ = 1 and ΦCP = 0 (i.e. λH = 1
and λA = 0). Below we will limit ourselves to λ ≈ 1 and |ΦCP | � 1 region, corresponding to a small
deviation from the respective Standard Model coupling. However, we do not make any assumptions
concerning Higgs-boson couplings to the fermions and we allow for deviations from SM predictions in
Γγγ and φγγ . Therefore our results do not depend on the Higgs-boson production mechanism and our
approach can be considered as a model-independent one.

The angular distributions of the secondary W+W− and ZZ decay products turn out to be very
sensitive to the CP properties of the Higgs-boson [93, 136, 307]. Angular variables which can be used in
the analysis are defined in Fig. 2.32 (see also Fig. 2.16). To test CP-properties of the Higgs-bosons the
distributions of the polar angles Θ1 and Θ2 as well as the ∆φ distribution, where ∆φ is the angle between
two Z- or two W -decay planes, are used. Here we propose to consider, instead of the two-dimensional
distribution in (cos Θ1, cos Θ2), the distribution in a new variable, defined as

ζ =
sin2 Θ1 · sin2 Θ2

(1 + cos2 Θ1) · (1 + cos2 Θ2)
. (2.192)

17Other possible CP-even tensor structure, ∼ (p1 + p2)µ(p1 + p2)ν , give the angular distributions similar to that of the SM
Higgs boson and therefore we will not consider this case separately. See also Section 2.12.
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γγ → Φ → ZZ → 4 f . ∆φ is the angle between two Z decay planes, ∆φ = φ2 − φ1. All polar angles are
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Fig. 2.33: Normalised angular distributions in ∆φ (left plot) and ζ (right plot), expected for scalar (solid line) and
pseudoscalar (dashed line) Higgs boson decays H,A→ ZZ → l+l−jj, for the Higgs boson mass of 300 GeV.

The ζ-variable corresponds to the ratio of the angular distributions expected for the decay of a scalar and
a pseudoscalar (in a limit MΦ >> MZ ) [93, 136, 307]. It proves to be very useful and complementary to
the ∆φ variable.

The angular distributions in ∆φ and ζ , expected for decays of a scalar H (ΦCP = 0) and a
pseudoscalar A (ΦCP = π

2 ) Higgs boson with mass of 300 GeV, Φ→ ZZ → l+l−jj , are compared in
Fig. 2.33. Both distributions clearly distinguish between decays of scalar and pseudoscalar Higgs boson;
so it’s possible to distinguish the CP-even and CP-odd states without taking into account the production
mechanism. We point out the usefulness of the ζ distribution.

For the measurement of the ∆φ and ζ distributions we introduce an additional cut on the recon-
structed ZZ or W+W− invariant mass and, for W+W− events only, the cut on the Higgs-boson decay
angle ΘΦ, to suppress large background from the nonresonant W +W− production. The cuts were opti-
mised for the smallest relative error in the signal cross-section measurement.

The expected precision in the measurements of the ∆φ- and of the ζ-distributions, for γγ →
ZZ → l+l−jj events is illustrated in Fig. 2.34. The reconstructed ∆φ values range from 0 to π, since
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Fig. 2.34: Measurement of the angle ∆φZZ between two Z-decay planes (left plot) and of the variable ζZZ
calculated from the polar angles of the Z → l+l− and Z → jj decays (right plot) for ZZ → l+l−jj events. Error
bars indicate the statistical precision of the measurement after one year of PLC running at nominal luminosity,
for the scalar Higgs boson with mass of 300 GeV. The solid and dashed lines correspond to the predictions of
the model with pure scalar (ΦCP = 0) and pseudoscalar (ΦCP = π

2 ) Higgs-boson couplings, whereas dotted
and dash-dotted lines correspond to CP violating couplings with ΦCP = ±0.2. The gray line represents the SM
background of non-resonantZZ production.

we are not able to distinguish between quark and antiquark jet. Calculations were performed for the
primary electron-beam energy of 152.5 GeV and the Higgs-boson mass of 200 GeV. The results are
compared with the expectation for ΦCP = 0 (as in SM) and ΦCP = π

2 . We see, that even after taking
into account the beam spectra, detector effects, selection cuts and background influence, the differences
between shapes of the angular distributions for the scalar and pseudoscalar couplings are still significant.
Therefore we should be able to constrain Higgs-boson couplings from the shape of the distributions, even
if the overall normalisation related to the Higgs-boson production mechanism is not known.

Each of the considered angular distributions discussed above can be fitted with the model expec-
tations, given in terms of the parameters λ and ΦCP describing Higgs-boson couplings to gauge bosons,
the parameters Γγγ and φγγ describing the production mechanism, and an overall normalisation. We
calculate the expected statistical errors on the parameters λ and ΦCP , from the combined fit to angular
distributions measured for the ZZ and W+W− decays, and to the invariant mass distributions. Results
are shown in Fig. 2.35. The two photon width of the Higgs boson Γγγ , the phase φγγ and normalisations
of both samples are allowed to vary in the fit, so the results are independent on the production mecha-
nism. One observes that for Higgs-boson masses below 250 GeV, better constrains are obtained from
the measurement of W+W− events, whereas for masses above 300 GeV smaller errors are obtained
from the ZZ events. The error on ΦCP expected from the combined fit is below 50 mrad in the whole
considered mass range. The corresponding error on λ is about 0.05.

2.14.3 SM-like Two Higgs Doublet Model

Here we consider the CP violation in the Standard-Model scenario of the 2HDM. This is a generalization
of a CP conserving scenarioBh, introduced in [15,63,144]. In the following we consider the CP-violating
solution Bh, with a weak CP violation through a small mixing between H and A states.

In this scenario the Yukawa couplings of h (h ∼ h1) are equal (up to a sign) to the corresponding
SM Higgs-boson couplings. Then, it follows from Eqs. (2.43) and (2.54)–(2.56) that the coupling of h
to gauge bosons as well as the corresponding Yukawa and gauge boson couplings of H and A bosons
are uniquely determined by tanβ, as shown in Table 2.10 (for relative couplings). Note that the tensor
structure of all couplings is the same as in the Standard Model.
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Fig. 2.35: Statistical error in the determination of ΦCP (left plot) and λ (right plot), expected after one year of
Photon Linear Collider running, as a function of the Higgs-boson mass MΦ. Combined fits were performed to the
considered angular distributions and invariant mass distributions for ZZ events and W +W− events. Results were
obtained assuming small deviations from Standard Model predictions, i.e. λ ≈ 1 and ΦCP ≈ 0. The two photon
width of the Higgs boson Γγγ , the phase φγγ and normalisations of both samples are allowed to vary in the fit.

The couplings of the lightest mass-eigenstate h1 (with mass 120 GeV) are expected to correspond
to the couplings of the SM-like h boson, whereas couplings of h2 and h3 states can be described as the
superposition of H and A couplings. For the relative basic couplings we have:

χh1
X ≈ χhX ,

χh2
X ≈ χHX · cos ΦHA + χAX · sin ΦHA , (2.193)

χh3
X ≈ χAX · cos ΦHA − χHX · sin ΦHA ,

where X denotes a fermion or a vector boson, X = u, d, V and ΦHA is the H − A mixing angle
characterizing a weak CP violation.

We study the feasibility of ΦHA determination from the combined measurement of the invariant-
mass distributions18 in the ZZ and W+W− decay-channels for the Higgs-boson mass-eigenstate h2.
From such measurement the γγ partial width, Γγγ ×BR(h→W+W−/ZZ), and the phase of the γγh
amplitude, φγγ , can be extracted. Results obtained for h2 with mass Mh2 = 300 GeV are presented in
Fig. 2.36, for Mh1 = 120 GeV and MH± = 800 GeV. Error contours (1σ) on the measured deviation
from the Standard Model predictions are shown for ΦHA = 0, i.e. when CP is conserved, and for the
CP violation with ΦHA = ±0.3 rad. Even a small CP-violation can significantly influence the measured

18It should be stressed that in the considered case of CP violation via H − A mixing, contrary to the generic model studied
in Section 2.14.2, only the invariant mass distributions are sensitive to the mixing angle ΦHA.

Table 2.10: Couplings of the neutral Higgs-bosons to up- and down-type fermions, and to vector bosons, relative
to the Standard Model couplings, for the considered solution Bh of the SM-like 2HDM (II).

h H A

χu −1 − 1
tan β −i γ5

1
tan β

χd +1 − tan β −i γ5 tanβ

χV cos(2β) − sin(2β) 0
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Fig. 2.36: The deviation from the SM predictions for the SM-like 2HDM II (sol. Bh) with CP-violation, for the
heavy Higgs-boson h2 with mass 300 GeV. A light Higgs-boson has massMh1 = 120 GeV. Three values ofH−A
mixing angle ΦHA = −0.3, 0, 0.3 are considered.

two-photon width and two-photon phase allowing to determine precisely both the CP-violating mixing
angle ΦHA and the parameter tan β.

As a large sample of events is expected at PLC, especially in the γγ → W +W− channel, system-
atic uncertainties have to be taken into account, as they can significantly influence the final precision. In
case of scenario Bh with CP violation, a possible correlations between ΦHA and tanβ has to be con-
sidered if both parameters are to be constrained from the fit to the data. In this analysis the systematic
uncertainties from following sources were considered: the total integrated γγ luminosity, shape of the
luminosity spectra, energy and mass scale of the detector, reconstructed mass resolution, and in addition
the Higgs-boson mass and width from other measurements. In order to take these uncertainties into ac-
count we include additional parameters in the fit. Variations of these parameters allow us to account for
possible deviations of the invariant-mass distributions, from the nominal model expectation due to the
systematic uncertainties.

The total error in the determination of the H −A mixing angle ΦHA, as a function of tan β value,
is presented in Fig. 2.37, for four values of heavy Higgs-boson mass Mh2 , between 200 and 350 GeV.
The simultaneous fit of tan β and ΦHA to the observed W+W− and ZZ mass spectra is considered
assuming light Higgs-boson mass of 120 GeV, charged Higgs-boson mass of 800 GeV, and no H − A
mixing (ΦHA = 0). The error on ΦHA is below ∼100 mrad for tanβ ≤ 1 and increases rapidly for high
tan β values.

2.14.4 Two Higgs Doublet Model

In the CP violating 2HDM (II), couplings of the neutral Higgs-bosons to up- and down-type quarks (and
leptons), and to vector bosons can be expressed in terms of two mixing angles, α and β, as discussed
in Section 2.1.4. In the following we will consider production and decays of the heavy Higgs-boson H .
Instead of parameters of the model, angles α and β, we will use its basic relative couplings χHV and χHu , to
parametrize cross sections and branching ratios. Moreover, couplings of the other neutral Higgs-bosons
h and A are also uniquely defined by χHV and χHu . As in Section 2.14.3 we consider a scenario with a
weak CP violation, where the couplings of the lightest mass-eigenstate h1 correspond to the couplings of
h boson, whereas relative couplings of mass-eigenstates h2 and h3 can be described as the superposition
of H and A couplings (see Eq. 2.193). We study the feasibility of constraining the value of the mixing
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Fig. 2.37: The total error in the determination of the H − A mixing angle ΦHA, as a function of tanβ value, for
four values of heavy Higgs-boson mass Mh2 . The simultaneous fit of tanβ and ΦHA to the observed W+W−

and ZZ mass spectra is considered for the SM-like 2HDM II (sol. Bh), with light Higgs-boson mass of 120 GeV,
charged Higgs-boson mass of 800 GeV, and no H − A mixing (ΦHA = 0), Eq. 2.193. Systematic uncertainties
related to the luminosity spectra, Higgs boson mass and total width, energy scale and mass resolution are taken
into account.

angle ΦHA from the measurements of the heavy Higgs-boson H (i.e. Higgs-boson mass-eigenstate h2

for ΦHA = 0) production.

The Photon Linear Collider by itself can not uniquely determine the Higgs-boson couplings in
case of 2HDM (II) with CP-violation. Therefore, we consider determination of the heavy scalar Higgs-
boson properties from the combined analysis of LHC, ILC and Photon Linear Collider data. Fig. 2.38
shows the expected Higgs-boson production rates times the W +W−/ZZ branching ratios, at the LHC,
ILC and PLC, as a function of χV and χu. Cross section measurements at these machines are comple-
mentary, as they are sensitive to different combinations of the Higgs boson couplings. LHC, ILC and
PLC measurements are also complementary in providing an evidence for a weak CP violation, as shown
in Fig. 2.39.

An expected h2 production rates for h2 → W+W−/ZZ at LHC, ILC and PLC, are shown as
a function of χu (LHC) or χV (ILC and PLC) and the CP-violating H − A mixing angle ΦHA. For
ΦHA ≈ 0 LHC and ILC measurements weakly depend on the mixing angle ΦHA, as the cross section is
dominated by one of the basic couplings, and there is no direct dependence on the coupling phase. At the
Photon Linear Collider both couplings as well as their relative phase are important and the cross section
is sensitive to the H −A mixing angle (and its sign) even for small ΦHA.

In the simulation of LHC and ILC measurements we use approach similar to the method used for
PLC, described in Section 2.14.1. We use results of [316] for the expected invariant mass distribution of
the Higgs-boson signal (pp→ H → ZZ → 4l) and Standard Model background events at LHC, scaled
to integrated luminosity of 300 fb−1. For the Higgs-boson production via Higgs-strahlung and WW -
fusion at ILC, for

√
s = 500 GeV and the integrated luminosity of 500 fb−1, we use results of [317].

In both cases the signal distributions are obtained from a simple convolution of the Breit-Wigner mass
distribution for the Higgs-boson with a detector resolution function. With such an assumption we can
scale the SM signal expectations presented in [316, 317] to any scenario of the 2HDM (II).

For each simulated set of the LHC, ILC and PLC data, the Higgs-boson couplings and CP-violating
H-A mixing angle were used as the free parameters in the simultaneous fit of the expected distributions
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Fig. 2.38: Expected Higgs-boson H production rates times W+W−/ZZ branching ratios, relative to SM predic-
tions, as a function of basic relative couplings to vector bosons (χV ) and up fermions (χu). Higgs-boson production
at LHC, ILC and PLC is studied for MH = 250 GeV. For ILC the plotted ratio is multiplied by factor 10.
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Fig. 2.39: Expected Higgs-boson h2 production rates times W+W−/ZZ branching ratios, relative to SM predic-
tions, as a function of basic relative coupling to vector bosons (χV ) or up fermions (χu), and the H − A mixing
angle ΦHA. Higgs-boson production at LHC, ILC and PLC is studied for Mh2 = 250 GeV. For ILC the plotted
ratio is multiplied by factor 10.

to all observed W+W− and ZZ mass spectra. To take into account systematic uncertainties additional
parameters are added to the fit, as in Section 2.14.3. For LHC we assume 10% systematic uncertainty
in the normalization of the background and 20% total systematic uncertainty in the expected signal
rate [318]. For ILC the uncertainties in both signal and background normalization are assumed to be 5%.
For PLC we take into account 5% uncertainty in the signal and 10% uncertainty in the background nor-
malization, as well as 10% uncertainty in the parameters describing the shape of the luminosity spectra.
The Higgs-boson mass is also used as a free parameter in the combined fit, since there will be no other
measurements to constrain its value.

In Fig. 2.40 the expected total error on the H −A mixing angle ΦHA, calculated assuming weak
CP violation (ΦHA ≈ 0), is shown as a function of the couplings χV and χu, for different heavy Higgs
boson masses from 200 to 350 GeV. An average error on ΦHA is about 150 mrad, although in most of the
considered parameter space it can be measured with accuracy better than 100 mrad. The corresponding
errors on the couplings χV and χu, averaged over the same parameter range are equal to 0.03 and 0.13,
respectively. No significant variations with the Higgs boson mass are observed.

The final step in verifying the coupling structure of the model is the comparison of the direct
heavy neutral Higgs boson measurements with constraints on the model parameters resulting from other
measurements in the Higgs sector. Assuming no CP violation, constraints on the couplings χHV and
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Fig. 2.41: A complementarity of LHC, ILC and PLC measurements in the determination of the 2HDM (II) param-
eters. Bands show values of the basic heavy Higgs-boson couplings to vector bosons (χHV ) and up-type fermions
(χHu ) consistent (on 1σ statistical error level) with heavy Higgs-boson (left plot) and light Higgs-boson (right plot)
measurements at LHC, ILC and PLC, assuming CP conservation. Model with χHV = 0.6, χHu = −1 (star) and H
mass of 300 GeV is considered, while the mass of h is set to 120 GeV.

χHu , used to parametrize the model obtained from heavy Higgs-boson (with mass of 250 GeV) and light
Higgs-boson (with mass of 120 GeV) measurements at LHC, ILC and PLC, are compared in Fig. 2.41.
Measurements of the light Higgs-boson production result in constraints on the H couplings, comparable
with the precision of the direct measurements (indicated by the ellipse).
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2.14.5 Summary

An opportunity of measuring Higgs-boson CP properties at the Photon Linear Collider has been studied
in detail for Higgs boson masses between 200 and 350 GeV, using realistic luminosity spectra and detec-
tor simulation. We considered three different models with CP violation. For a generic model with the CP
violating Higgs tensor couplings to gauge bosons, the angle describing CP violation can be determined
with accuracy of about 50 mrad in a model independent way. In the so called solution Bh of the Standard
Model-like 2HDM (II), the H − A mixing angle describing the weak CP violation can be determined
to about 100 mrad, for low tanβ. For the Two Higgs Doublet Model, only the combined analysis of
LHC, ILC and PLC measurements allows for the determination of the CP-violating mixing angle ΦHA.
In most of the considered parameter space, ΦHA can be measured to better than 100 mrad. Our results
demonstrate that the Photon Linear Collider will be an unique place for a precise determination of the
CP properties of the neutral Higgs boson.
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