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Abstract

Inspired by a quantum interference phenomenon known in the atomic physics
community as Electromagnetically Induced Transparency (EIT), we propose
an efficient weakly radiative wireless energy transfer scheme between two
identical classical resonant objects, strongly coupled to an intermediate clas-
sical resonant object of substantially different properties, but with the same
resonance frequency. The transfer mechanism essentially makes use of the
adiabatic evolution of an instantaneous (so called ‘dark’) eigenstate of the
coupled 3-object system. Our analysis is based on temporal coupled mode
theory (CMT), and is general enough to be valid for various possible sorts of
coupling, including the resonant inductive coupling on which witricity-type
wireless energy transfer is based. We show that in certain parameter regimes
of interest, this scheme can be more efficient, and/or less radiative than other,
more conventional approaches. A concrete example of wireless energy trans-
fer between capacitively-loaded metallic loops is illustrated at the beginning,
as a motivation for the more general case. We also explore the performance
of the currently proposed EIT-like scheme, in terms of improving efficiency
and reducing radiation, as the relevant parameters of the system are varied.
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1. Introduction

The decade has witnessed a considerable interest in energy issues, such as
safe generation of renewable energy, energy storage and management, etc...
In particular, there is a substantial recent interest[1, 2, 3, 4, 5] in enabling
efficient and safe wireless energy transfer, motivated by the increased involve-
ment of autonomous electronic devices (e.g. laptops, cell phones, household
robots) in almost all aspects of our everyday lives, and the need to charge
those devices repeatedly. In this respect, wireless nonradiative energy trans-
fer schemes have been recently proposed[6, 7] based on strong coupling be-
tween electromagnetic resonances. In this work, we explore a somewhat dif-
ferent scheme of efficient energy transfer between resonant objects coupled
in some general way. Instead of transferring energy directly between the
two resonant objects, an intermediate resonant object will be used to medi-
ate the transfer. The intermediate object is chosen such as to couple very
strongly to each of the objects involved in the energy transfer (i.e. much
more strongly than the other two objects couple to each other). In prac-
tice, enabling such strong coupling will usually come with a price; in typical
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situations, the mediating object will often be substantially radiative. Yet,
surprisingly enough, the proposed “indirect” energy transfer scheme will be
shown to be efficient and weakly-radiative by merely introducing a metic-
ulously chosen time variation of the coupling rates. The inspiration as to
why the particular time variation had to work so well comes from a quan-
tum interference phenomenon, known in the atomic physics community as
Electromagnetically Induced Transparency[8] (EIT). In EIT, 3 atomic states
participate. Two of them (which are non-lossy) are coupled to one that
has substantial losses. However, by meticulously controlling the mutual cou-
plings between the states, one can establish a coupled system which is overall
non-lossy. This manifests itself in that a medium that is originally highly
opaque to some laser pulse (called “probe” laser), can be made transparent
by sending through it another laser pulse (called “Stokes” laser), provided
that the temporal overlap between the two pulses is properly chosen. A
closely related phenomenon known as Stimulated Raman Adiabatic Passage
(STIRAP)[9, 10, 11] takes place in a similar system; namely, the probe and
Stokes laser can be used to achieve a complete coherent population transfer
between two molecular states of the medium. Hence, we refer to the currently
proposed scheme as the “EIT-like” energy transfer scheme.

To set the stage for our proposed indirect energy transfer scheme, we will
first consider (in section 2) one concrete example of wireless energy trans-
fer between two resonant capacitively-loaded conducting-wire loops[6], and
show how the indirect EIT-like scheme can be made more efficient and less-
radiative in this particular system than the direct scheme, by including proper
time variations in the coupling rates. In section 3, we analyze the underlying
physical mechanism which turns out to be applicable not just to “wireless”
energy transfer, but more generally to any sort of energy transfer between
resonant objects. The analysis will be based on temporal coupled mode the-
ory (CMT)[12], which is a valid description for well-defined resonances with
large quality factors. In section 4, we study the general case of EIT-like
energy transfer, how the transferred and lost energies vary with the rates of
coupling and loss, both with and without time variation of the coupling rates;
we also investigate the range of relevant parameters in which the radiated
energy is substantially reduced by using the EIT-like scheme.
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2. An illustrative example of an EIT-like system

We start with a concrete case of wireless energy transfer between two
identical resonant conducting loops, labelled by L1 and L3. The loops are
capacitively-loaded and couple inductively via their mutual inductance. Let
rA denote the loops’ radii, NA their numbers of turns, and bA the radii of
the wires making the loops. We also denote by D13 the center-to-center
separation between the loops. Resonant objects of this type have two main
loss mechanisms: ohmic absorption, and far-field radiation. Using the same
theoretical method from ref.6, we find that for rA = 7cm, bA =6mm, and
NA =15 turns, the quality factors for absorption and radiation are respec-
tively, Q

(A)
abs ≡ 2πf/Γ

(A)
abs = 3.19 × 104 and Q

(A)
rad ≡ 2πf/Γ

(A)
rad = 2.6 × 105 at

a resonant frequency f = 1.8 × 107Hz (remember that L1 and L3 are iden-

tical and have the same properties). Γ
(A)
abs , Γ

(A)
rad are respectively the rates of

absorptive and radiative loss of L1 and L3, and the rate of coupling between
L1 and L3 is denoted by κ13. When the loops are in fixed distinct parallel
planes separated by D13 = 1.4m and have their centers on an axis (C) per-
pendicular to their planes, as shown in Fig. 1a(Left), the quality factor for
inductive coupling is Qκ ≡ 2πf/κ13 = 1.3 × 104, independent of time. This
configuration of parallel loops corresponds to the largest possible coupling
rate κ13 at the particular separation D13. We denote the amplitude of the
electric field of the resonant mode of L1 by a1, and that of L3 by a3. As
long as all the quality factors involved are large enough, the time evolution
of the mode amplitudes a1 and a3 can be modelled according to the following
temporal CMT equations[12]:

da1

dt
= −(iω + ΓA) a1 + iκ13a3 (1)

da3

dt
= −(iω + ΓA) a3 + iκ13a1 (2)

where ω = 2πf is the angular resonance frequency, and ΓA = Γ
(A)
rad+Γ

(A)
abs . The

mode amplitudes a1(t) and a3(t) are normalized such that |a1(t)|2 and |a3(t)|2
represent, respectively, the energies in L1 and L3 at time t: E1(t) ≡ |a1(t)|2
and E3(t) ≡ |a3(t)|2. Starting with 100% of the total energy being initially
in L1 (i.e. |a3(t = 0)|2 = 0), we find that the energy transferred to L3

is maximum at time ta = 4774.6(1/f), and constitutes 29% of the initial
total energy, as shown in Fig. 1a(Right). The energies radiated Erad(ta) and
absorbed Eabs(ta) up to time ta constitute respectively 7.2% and 58.1% of
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the initial total energy, with 5.8% of the energy remaining in L1. The CMT
expressions used for Erad(ta) and Eabs(ta) are given by:

Erad(ta) =

ta∫

0

(
2 Γ

(A)
rad|a1(t)|2 + 2 Γ

(A)
rad|a3(t)|2

)
dt (3)

Eabs(ta) =

ta∫

0

(
2 Γ

(A)
abs |a1(t)|2 + 2 Γ

(A)
abs |a3(t)|2

)
dt (4)

In order to improve the efficiency of the energy transfer from the current
' 30%, we now consider different ways to boost the energy transferred from
L1 to L3 while keeping the distance D13 separating them fixed. Since the
relative orientations of the two loops are already chosen to yield the maximum
κ13, we no longer have much flexibility in improving the efficiency of transfer
between these given resonant objects at the same separation D13. So, we
introduce an intermediate resonant object that couples strongly to both L1

and L3, while having the same resonant frequency as both of them. For the
sake of illustration in the particular concrete system under consideration, we
also take that mediator to be a capacitively-loaded conducting-wire loop, and
we label it by L2. We place L2 at equal distance (D12 = D23 = D13/2 = 0.7m)
from L1 and L3 such that its axis also lies on the same axis (C), and we
orient it such that its plane is parallel to the planes of L1 and L3. In order
for L2 to couple strongly to L1 and L3, its size needs to be substantially
larger than the size of L1 and L3. However this increase in the size of L2

has a considerable drawback in the sense that it is also accompanied by a
significant increase in the undesired radiated energy. This feature is quite
generic for the resonant systems of this type: stronger coupling can often
be enabled by increasing the objects’ size, but it implies stronger radiation
from the object in question. Large radiation is often undesirable because
it could lead to far-field interference with other RF systems, and in some
systems also because of safety concerns. For rB = 70cm, bB = 1.5cm, and
NB = 1 turn, we get Q

(B)
abs ≡ 2πf/Γ

(B)
abs = 7706, Q

(B)
rad ≡ 2πf/Γ

(B)
rad = 400, and

Qκ12 ≡ 2πf/κ12 = Qκ23 = 180 at f = 1.8 × 107Hz. A schematic diagram
of the 3-loops configuration is depicted in Fig. 1b(Left). If we denote the
amplitude of the E-field of the resonance mode in L2 by a2, then the CMT

6



(a)

(b)

(c)

Figure 1: (Color online) Wireless energy transfer in an examplary system: (a) (Left)
Schematic of loops configuration in 2-object direct transfer. (Right) Time evolution of
energies in the 2-object direct energy transfer case. (b) (Left) Schematic of 3-loops config-
uration in the constant-κ case. (Right) Dynamics of energy transfer for the configuration
in (b. Left). Note that the total energy transferred E3 is two times larger than in (a.
Right), but at the price of the total energy radiated being four times larger. (c) (Left)
Loop configuration at t=0 in the EIT-like scheme. (Center) Dynamics of energy transfer
with EIT-like rotating loops. (Right) Loop configuration at t = tEIT . Note that E3 is
comparable to (b. Right), but the radiated energy is now much smaller: In fact, it is
comparable to (a. Right). 7



equations can be written as:

da1

dt
= −(iω + ΓA)a1 + iκ12a2 (5)

da2

dt
= −(iω + ΓB)a2 + iκ12a1 + iκ23a3 (6)

da3

dt
= −(iω + ΓA)a3 + iκ23a2 (7)

Note that since the coupling rates κ12 and κ23 are ' 70 times larger than
κ13, we can ignore the direct coupling between L1 and L3, and focus only
on the indirect energy transfer through the intermediate loop L2. If initially
all the energy is placed in L1, i.e. if E2(t = 0) ≡ |a2(t = 0)|2 = 0 and
E3(t = 0) ≡ |a3(t = 0)|2 = 0, then the optimum in energy transferred to
L3 occurs at a time tb = 129.2(1/f), and is equal to E3(tb) = 61.50%. The
energy radiated up to tb is Erad(tb) = 31.1%, while the energy absorbed is
Eabs(tb) = 3.3%, and 4.1% of the initial energy is left in L1. Thus while
the energy transferred, now indirectly, from L1 to L3 has increased by a
factor of 2 relative to the 2-loops direct transfer case, the energy radiated
has undesirably increased by a significant factor of 4. Also note that the
transfer time in the 3-loops case is now ' 35 times shorter than in the 2-
loops direct transfer because of the stronger coupling rate. The dynamics of
the energy transfer in the 3-loops case is shown in Fig. 1b(Right), where the
expressions used for Erad(tb) and Eabs(tb) are given by:

Erad(tb) =

tb∫

0

(
2ΓA

rad|a1(t)|2 + 2ΓB
rad|a2(t)|2 + 2ΓA

rad|a3(t)|2
)
dt (8)

Eabs(tb) =

tb∫

0

(
2ΓA

abs|a1(t)|2 + 2ΓB
abs|a2(t)|2 + 2ΓA

abs|a3(t)|2
)
dt (9)

Thus the switch from 2-loops direct transfer to 3-loops indirect transfer
had an expected significant improvement in efficiency, but it came with the
undesirable effect of increased radiated energy. Let us now consider some
modifications to the 3-loops indirect transfer scheme, aiming to reduce the
total radiated energy back to its reasonable value in the 2-loops direct transfer
case, while maintaining the total energy transfer at a level comparable to Fig.
1b. As shown in Fig. 1c(Left and Right), we will keep the orientation of L2
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fixed, and start initially (t=0) with L1 perpendicular to L2 and L3 parallel
to L2, then uniformly rotate L1 and L3, at the same rates, until finally, at
(t = tEIT ), L1 becomes parallel to L2 and L3 perpendicular to it, where we
stop the transfer process. This process can be modeled by the following time
variation in the coupling rates:

κ12(t) = κ sin
(
πt/2tEIT

)
(10)

κ23(t) = κ cos
(
πt/2tEIT

)
(11)

for 0 < t < tEIT , and Qκ = 180.1 as before. By using the same CMT analysis
as in Eq. (5-7), we find, in Fig. 1c(Center), that for tEIT = 1989.4(1/f), an
optimum transfer of 61.2% can be achieved at tc = 1, 798.5(1/f), with only
8.2% of the initial energy being radiated, 28.6% absorbed, and 2% left in L1.
This is quite remarkable: by simply rotating the loops during the transfer,
the energy radiated has dropped by a factor of 4, while keeping the same
61% level of the energy transferred, although the instantaneous coupling
rates are now smaller than κ. This considerable decrease in radiation is
on first sight quite counterintuitive, because the intermediate resonator L2,
which mediates all the energy transfer, is highly radiative (' 650 times more
radiative than L1 and L3), and there is much more time to radiate, since the
whole process lasts 14 times longer than in Fig. 1b.

A clue to the physical mechanism behind this surprising result can be
obtained by observing the differences between the green curves in Fig. 1b
and Fig. 1c. Unlike the case of constant coupling rates, depicted in Fig. 1b,
where the amount of energy ultimately transferred to L3 goes first through
the intermediate loop L2, in the case of time-varying coupling rates, shown
in Fig. 1c, there is almost little or no energy in L2 at all times during the
transfer. In other words, the energy is transferred quite efficiently from L1 to
L3, mediated by L2 without ever being in the highly radiative intermediate
loop L2. (Note that direct transfer from L1 to L3 is identically zero here
since L1 is always perpendicular to L3, so all the energy transfer is indeed
mediated through L2). This surprising phenomenon is actually quite similar
to the well-known electromagnetically induced transparency[8] (EIT), which
enables complete population transfer between two quantum states through
a third lossy state, coupled to each of the other two states.
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3. Physical mechanism behind EIT-like energy transfer scheme

We note that the mechanism explored in the previous section is not re-
stricted to wireless energy transfer between inductively coupled loops, but its
scope extends beyond, to the general case of energy transfer between reso-
nant objects (henceforth denoted by Ri) coupled in some general way. So, all
the rest of this article falls in this general context, and the only constraints
for the EIT-like scheme are that the three resonant objects have the same
resonance angular frequency, which we denote by ωo, that all quality factors
be large enough for CMT to be valid, and that the initial and final resonant
objects have the same loss rate ΓA. R1 and R3 will be assumed to have negli-
gible mutual interactions with each other, while each of them can be strongly
coupled to R2. However, as is often the case in practice of wireless power
transfer[6], R2’s strong coupling with other objects will be assumed to be
accompanied with its inferior loss properties compared to R1 and R3, usually
in terms of substantially larger radiation losses. To analyze the problem in
detail, we start by rewriting the CMT Eq. (5-7) in matrix form, and then
diagonalizing the resulting time evolution operator Ĉ(t).

d

dt




a1

a2

a3


 =



−(iωo + ΓA) iκ12 0

iκ12 −(iωo + ΓB) iκ23

0 iκ23 −(iωo + ΓA)







a1

a2

a3


 ≡ Ĉ(t)




a1

a2

a3




(12)
In the special case where the coupling rates κ12 and κ23 are constant and
equal, Eq. (12) admits a simple analytical solution, presented in the ap-
pendix. In the more general case of time dependent and unequal coupling
rates κ12(t) and κ23(t), the CMT operator Ĉ(t) has an interesting feature

which results from the fact that one of its eigenstates, ~V1, with complex
eigenvalue λ1 = −(iωo + ΓA), has the form

~V1 = e−iωot−ΓAt




−κ23√
(κ12)2+(κ23)2

0
κ12√

(κ12)2+(κ23)2


 (13)

This eigenstate ~V1 is the most essential building block of our proposed efficient
weakly-radiative energy transfer scheme, because it has no energy at all in
the intermediate (lossy) resonator R2, i. e. a2(t) = 0 ∀ t whenever the

3-object system is in state ~V1. In fact if ΓA → 0, then the EIT-like energy

10



transfer scheme can be made completely nonradiative, no matter how large
is the radiative rate ΓB

rad, as shown in Fig. 2. Moreover, if the 3-object
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Figure 2: (Color online) Energy transfer with time-varying coupling rates, for ΓA = 0,
κ/ΓB = 10, κ12 = κ sin(πt/(2tEIT )), and κ23 = κ cos(πt/(2tEIT )).

system is in state ~V1, then κ12 = 0 corresponds to all the system’s energy
being in R1, while κ23 = 0 corresponds to all the system’s energy being in
R3. So, the important considerations necessary to achieve efficient weakly
radiative energy transfer, consist of preparing the system initially in state
~V1. Thus, if at t = 0 all the energy is in R1, then one should have κ12(t =
0) = 0 and κ23(t = 0) 6= 0. In the loops’ case where coupling is performed
through induction, these values for κ12 and κ23 correspond to exactly the
same configuration that we had considered in fig 1c, namely starting with
L1 ⊥ L2 and L3 ‖ L2. In order for the total energy of the system to end
up in R3, we should have κ12(t = tEIT ) 6= 0 and κ23(t = tEIT ) = 0. This
ensures that the initial and final states of the 3-object system are parallel
to ~V1. However, a second important consideration is to keep the 3-object
system at all times in ~V1(t), even as κ12(t) and κ23(t) are varied in time.
This is crucial in order to prevent the system’s energy from getting into the
intermediate object R2, which may be highly radiative as in the example
of Fig. 1, and requires changing κ12(t) and κ23(t) slowly enough so as to
make the entire 3-object system adiabatically follow the time evolution of
~V1(t). The criterion for adiabatic following can be expressed, in analogy to
the population transfer case[9], as

∣∣∣∣∣

〈
~V2,3

∣∣∣∣∣
d~V1

dt

〉∣∣∣∣∣ << |λ2,3 − λ1| (14)
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where ~V2 and ~V3 are the remaining two eigenstates of Ĉ(t), with correspond-
ing eigenvalues λ2 and λ3. In principle, one would think of making the
transfer time tEIT as long as possible to ensure adiabaticity. However there
is a limitation on how slow the transfer process can optimally be, imposed
by the losses in R1 and R3. Such a limitation may not be a strong concern
in a typical atomic EIT case, because the initial and final states there can be
chosen to be non-lossy ground states. However, in our case, losses in R1 and
R3 are not avoidable, and can be detrimental to the energy transfer process
whenever the transfer time tEIT is not less than 1/ΓA. This is because, even if

the 3-object system is carefully kept in ~V1 at all times, the total energy of the
system will decrease from its initial value as a consequence of losses in R1 and
R3. Thus the duration of the transfer should be a compromise between these
two limits: the desire to keep tEIT long enough to ensure near-adiabaticity,
but short enough not to suffer from losses in R1 and R3.

We can now also see in the EIT framework why is it that we got a con-
siderable amount of radiated energy when the inductive coupling rates of the
loops were kept constant in time, i.e. in constant-κ case, like in Fig. 1b. The
reason is that, when κ12 = κ23 =const, the energies in R1 and R3 will always
be equal to each other if the 3-object system is to stay in ~V1. So one cannot
transfer energy from R1 to R3 by keeping the system purely in state ~V1; note
that even the initial state of the system, in which all the energy is in R1,
is not in ~V1, and has nonzero components along the eigenstates ~V2 and ~V3

which implies a finite energy in R2, and consequently result in an increased
radiation, especially if ΓB

rad À ΓA
rad as in our concrete example.

Although the analysis presented above, in terms of the adiabatic follow-
ing of the eigenstate ~V1, clarifies why the EIT-like transfer scheme is weakly
radiative, this explanation still seems to be puzzling and somewhat paradox-
ical. The origin of the paradox stems from the fact that, in the EIT-like
approach, there is no energy at all in the mediator R2. That is to say, energy
is efficiently transferred through the intermediate resonator R2 without ever
being in it. This apparent contradiction can be resolved by looking at the
detailed contributions to the time-rate of change of the energy E2 in R2. As
we show it in more details in the appendix, the EIT-like approach ensures
that the energy leaves R2 (to R3) as soon as it reaches R2 (from R1).
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4. Under which conditions is EIT-like approach beneficial?

In the abstract case of energy transfer from R1 to R3, where no constraints
are imposed on the relative magnitude of κ, ΓA

rad, ΓB
rad, ΓA

abs and ΓB
abs, there

is no reason to think that the EIT-like transfer is always better than the
constant-κ one, in terms of the transferred and radiated energies. In fact,
there could exist some range of the parameters (κ, ΓA

rad, ΓB
rad, ΓA

abs, ΓB
abs), for

which the energy radiated in the constant-κ transfer case is less than that ra-
diated in the EIT-like case. For this reason, we investigate both the EIT-like
and constant-κ transfer schemes, as we vary all the crucial parameters of the
system. The percentage of energies transferred and lost (radiated+absorbed)
depends only on the relative values of κ, ΓA and ΓB. Here, ΓA = ΓA

rad +ΓA
abs,

and ΓB = ΓB
rad + ΓB

abs. Hence we first calculate and visualize the dependence
of these energies on the relevant parameters κ/ΓB and ΓB/ΓA, in the contour
plots shown in Fig. 3.

The way the contour plots are calculated is as follows. For each value of
(κ/ΓB, ΓB/ΓA) in the adiabatic case, where κ12(t) and κ23(t) are given by
Eq. (10)-(11), one tries a range of values of tEIT . For each tEIT , the maxi-
mum energy transferred E3(%) over 0 < t < tEIT , denoted by max(E3, tEIT ),
is calculated together with the total energy lost at that maximum trans-
fer. Next the maximum of max(E3, tEIT ) over all values of tEIT is selected
and plotted as a single point on the contour plot in Fig. 3a. We refer
to this point as the optimum energy transfer (%) in the EIT-like case for
the particular (κ/ΓB, ΓB/ΓA) under consideration. We also plot in Fig. 3d
the corresponding value of the total energy lost (%) at the optimum of E3.
We repeat these calculations for all pairs (κ/ΓB, ΓB/ΓA) shown in the con-
tour plots. In the constant-κ transfer case, for each (κ/ΓB, ΓB/ΓA), the
time evolution of E3(%) and Elost are calculated for 0 < t < 2/κ, and op-
timum transfer, shown in Fig. 3b, refers to the maximum of E3(t) over
0 < t < 2/κ. The corresponding total energy lost at optimum constant-
κ transfer is shown in Fig. 3e. Now that we calculated the energies of
interest as functions of (κ/ΓB, ΓB/ΓA), we look for ranges of the relevant
parameters in which the EIT-like transfer has advantages over the constant-
κ one. So, we plot the ratio of (E3)EIT−like/(E3)constant−κ in Fig. 3c, and
(Elost)constant−κ/(Elost)EIT−like in Fig. 3f. We find that, for ΓB/ΓA > 50,
the optimum energy transferred in the adiabatic case exceeds that in the
constant − κ case, and the improvement factor can be larger than 2. From
Fig. 3f, one sees that the EIT-like scheme can reduce the total energy lost by a
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Figure 3: (Color online) Comparison between the EIT-like and constant-κ energy transfer
schemes, in the general case: (a) Optimum E3 (%) in EIT-like transfer, (b) Optimum
E3 (%) in constant-κ transfer, (c) (E3)EIT−like /(E3)constant−κ, (d) Energy lost (%)
at optimum EIT-like transfer, (e) Energy lost (%) at optimum constant-κ transfer, (f)
(Elost)constant−κ /(Elost)EIT−like.
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factor of 3 compared to the constant-κ scheme, also in the range ΓB/ΓA > 50.
Although one is usually interested in reducing the total energy lost (ra-

diated + absorbed) as much as possible in order to make the transfer more
efficient, the undersirable nature of the radiated energy makes it often im-
portant to consider reducing the energy radiated, instead of only considering
the total energy lost. For this purpose, we calculate the energy radiated at
optimum transfer in both the EIT-like and constant-κ schemes, and compare
them. The relevant parameters in this case are κ/ΓB, ΓB/ΓA, ΓA

rad/ΓA, and
ΓB

rad/ΓB. The problem is more complex because the parameter space is now
4-dimensional. So we focus on those particular cross sections that can best
reveal the most important differences between the two schemes. From Fig.
3c and 3f, one can guess that the best improvement in both E3 and Elost

occurs for ΓB/ΓA ≥ 500. Moreover, knowing that it is the intermediate ob-
ject R2 that makes the main difference between the EIT-like and constant-κ
schemes, being “energy-empty” in the EIT-like case and “energy-full” in the
constant-κ one, we first look at the special situation where ΓA

rad = 0. In Fig.
4a and Fig. 4b, we show contour plots of the energy radiated at optimum
transfer, in the constant-κ and EIT-like schemes respectively, for the partic-
ular cross section having ΓB/ΓA = 500 and ΓA

rad = 0. Comparing these two
figures, one can see that, by using the EIT-like scheme, one can reduce the
energy radiated by a factor of 6.3 or more.

To get a quantitative estimate of the radiation reduction factor in the
general case where ΓA

rad 6= 0, we calculate the ratio of energies radiated at
optimum transfers in both schemes, namely,

(Erad)constant−κ

(Erad)EIT−like

=

tconstant−κ
opt ∫

0

{
ΓB

rad

ΓA
rad
|aconstant−κ

2 (t)|2 +
(|aconstant−κ

1 (t)|2 + |aconstant−κ
3 (t)|2)

}
dt

tEIT−like
opt∫

0

{
ΓB

rad

ΓA
rad
|aEIT−like

2 (t)|2 +
(|aEIT−like(t)|2 + |aEIT−like

3 (t)|2)
}

dt

(15)
which depends only on ΓB

rad/Γ
A
rad, the time-dependent mode amplitudes, and

the optimum transfer times in both schemes. The latter two quantities are
completely determined by κ/ΓB, and ΓB/ΓA. Hence the only parameters rel-
evant to the calculations of the ratio of radiated energies are ΓB

rad/Γ
A
rad, κ/ΓB,

and ΓB/ΓA, thus reducing the dimensionality of the investigated parameter
space from 4 down to 3. For convenience, we multiply the first relevant
parameter ΓB

rad/Γ
A
rad by ΓA/ΓB, which becomes

(
ΓB

rad

/
ΓB

)/(
ΓA

rad

/
ΓA

)
, i.e.
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Figure 4: (Color online) Comparison between radiated energies in the EIT-like and
constant-κ energy transfer schemes: (a) Erad(%) in the constant-κ scheme for ΓB/ΓA =
500 and ΓA

rad = 0, (b) Erad(%) in the EIT-like scheme for ΓB/ΓA = 500 and ΓA
rad = 0, (c)

(Erad)constant−κ /(Erad)EIT−like for ΓB/ΓA = 50, (d) (Erad)constant−κ /(Erad)EIT−like
for ΓB/ΓA = 500, (e) [(Erad)constant−κ /(Erad)EIT−like] as a function of κ/ΓB and ΓB/ΓA,
for ΓA

rad = 0.
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the ratio of quantities that specify what percentage of each object’s loss is
radiated. Next, we calculate the ratio of energies radiated as a function
of

(
ΓB

rad

/
ΓB

)/(
ΓA

rad

/
ΓA

)
and κ/ΓB, in the two special cases ΓB/ΓA = 50,

and ΓB/ΓA = 500, and we plot them in Fig. 4c and Fig. 4d respectively.
We also show, in Fig. 4e, the dependence of (Erad)constant−κ /(Erad)EIT−like

on κ/ΓB and ΓB/ΓA, for the special case ΓA
rad = 0. As can be seen from

Fig. 4c-4d, the EIT-like scheme is less radiative than the constant-κ scheme
whenever (ΓB

rad/ΓB) is larger than (ΓA
rad/ΓA), and the radiation reduction

ratio increases as ΓB/ΓA and κ/ΓB are increased (see fig. 4e).

5. Conclusion

In conclusion, we proposed an efficient weakly radiative energy transfer
scheme between two identical resonant objects, based on an EIT-like transfer
of the energy through a mediating resonant object with the same resonant
frequency. We analyzed the problem using CMT, and pointed out that the
fundamental principle underlying our energy transfer scheme is similar to
the known EIT process[9] in which there is complete population transfer
between two quantum states. We also explored how the EIT-like scheme
compares to the constant-κ one, as the relevant parameters of the system
are varied. We motivated all this, initially, by specializing to the problem of
witricity-like wireless energy transfer between inductively-coupled metallic
loops. However, our proposed scheme, not being restricted to the special
type of resonant inductive coupling, is not bound only to wireless energy
transfer, and could potentially find applications in various other unexplored
types of coupling between general resonant objects. In fact, in this context,
the work presented here generalizes the concept of EIT, previously known
as a quantum mechanical phenomenon that exists in microscopic systems,
to a more general energy transfer phenomenon, between arbitrary classical
resonant objects. We focused on the particular example of electromagnetic
resonators, but the nature of the resonators and their coupling mechanisms
could as well be quite different, e.g. acoustic, mechanical, ... Since all these
resonant phenomena could be modeled with nearly identical CMT equations,
the same behavior would occur.

Finally, we would like to acknowledge Dr. Peter Bermel and Prof. Steven
G. Johnson for their help. This work was supported in part by the Ma-
terials Research Science and Engineering Center Program of the National
Science Foundation under award DMR 02-13282, the Army Research Office
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07-D-0004, the U.S. Department of Energy under award number DE-FG02-
99ER45778, and by a grant from 3M. We also acknowledge support of the
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A.

A.1. Analytical solution of the 3-object system in the constant-κ case

The CMT equations Eq. (12) admit a simple analytical solution in the
special case where the coupling rates κ12(t) and κ23(t) are independent of time
and equal to each other, namely when κ12 = κ23 =constant independent of
time. After making the following set of substitutions

Σ ≡ 1

U
≡ ΓA + ΓB

2
√

2κ
(16)

∆ ≡ ΓB − ΓA

2
√

2κ
(17)

T ≡
√

2κt (18)

we obtain the expressions below for the time-varying amplitudes

a1(T ) =
1

2
e−iωte−ΣT

[
∆√

∆2 − 1
sinh(

√
∆2 − 1T ) + cosh(

√
∆2 − 1T ) + e−∆T

]

(19)

a2(T ) = ie−iωte−ΣT 1√
∆2 − 1

sinh(
√

∆2 − 1T ) (20)

a3(T ) =
1

2
e−iωte−ΣT

[
∆√

∆2 − 1
sinh(

√
∆2 − 1T ) + cosh(

√
∆2 − 1T )− e−∆T

]

(21)
The time topt at which the energy transferred to R3 is optimum, can be

obtained by setting the time derivative of the energy |a3(T )|2 in R3 to zero,
and is therefore a solution to the following equation

Σ

[
∆√

∆2 − 1
sinh(

√
∆2 − 1T ) + cosh(

√
∆2 − 1T )

]
−
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∆

[√
∆2 − 1

∆
sinh(

√
∆2 − 1T ) + cosh(

√
∆2 − 1T )

]
= (Σ−∆)e∆T (22)

In general, this equation may not have an obvious analytical solution, but
it does admit a simple solution in the two special cases that we’ll consider
below.

In the first special case, we set ∆ = 0, and thus we have ΓA = ΓB = Γ
and Σ = 1

U
= Γ√

2κ
. In this case, Topt ≡

√
2κtopt becomes

Topt = 2 tan−1

(
1

Σ

)
= 2 tan−1U (23)

and the efficiency of the 3-object system becomes

η ≡ |a3(Topt)|2
|a1(0)|2 =

[
U2

1 + U2
exp(

−2tan−1U

U
)

]2

(24)

which is just the square of the efficiency of the two-object system[6]. There-
fore, when all objects are the same, the efficiency of the 3-object system at
optimum is equal to the square of the efficiency of the 2-object system, and
hence is smaller than it.

In the second special case, we set ∆ = Σ = 1
U

= ΓB

2
√

2κ
, that is to say we

set ΓA = 0. The analytical expressions for Topt and η become respectively

Topt =

{ πU√
U2−1

, U > 1

∞, U ≤ 1
(25)

η =

{
1
4

[
1 + exp

(
−π√
U2−1

)]2

, U > 1
1
4
, U ≤ 1

(26)

Therefore, the optimum efficiency in this case, is larger when κ > ΓB

2
√

2
.

A.2. Resolution of apparent paradox in EIT-like scheme

As we said earlier in the text, the explanation of the EIT-like scheme in
terms of the adiabatic following of the eigenstate ~V1, seems to be puzzling
and somewhat paradoxical. The reason is that energy is efficiently trans-
ferred through the intermediate resonator R2 without ever being in it. This
apparent contradiction can be resolved by looking at the detailed contribu-
tions to the time-rate of change of the energy E2 in R2. Since the energy in

19



R2 at time t is E2(t) = |a2(t)|2, one can use the CMT Eq. (12) and calculate
the power dE2(t)/dt through R2, to obtain

d|a2|2
dt

= −2ΓB|a2|2 − 2κ12Im(a∗2a1) + 2κ23Im(a∗3a2). (27)

The first term on the right-hand side of this equation corresponds to the
total power lost in R2. The second term can be identified with the time-rate
P12(t) of energy transfer from R1 to R2, namely P12(t) = −2κ12(t)Im(a∗2(t)a1(t)).
Similarly, the third term can be identified with the time-rate P23(t) of energy
transfer from R2 to R3: P23(t) = 2κ23(t)Im(a∗3(t)a2(t)). Note that because
P12(t) represents the rate at which energy gets into R2 (coming from R1), this
term will be positive. Similarly, because P23(t) is the rate at which energy
gets out of R2 (going to R3), this term will be negative. For simplicity, we
will focus on the case where ΓA = ΓB = 0, and take the time variation of the
coupling rates to be given by Eq. (10)-(11). In this case, the total energy
in the 3-object system is conserved, and the change in the energy E2 can
arise only from the exchange of energy between R1 and R2, and between R2

and R3. In this special case, the rate of change of E2, which equals the sum
P12 +P23, is oscillatory in time with amplitude Asum. It turns out that as the
transfer time tEIT gets longer, the peak amplitude Asum of the sum P12 +P23

approaches zero. This means that at the moment when energy reaches R2

from R1, it leaves R2 immediately to R3. Therefore, dE2(t)/dt is almost zero
∀ t, and the energy in R2 remains approximately equal to its initial value
of zero throughout the EIT-like transfer, despite the fact that all the energy
initially in R1 goes through R2 as it gets transferred to R3. To illustrate this
point, we consider again the case ΓA = ΓB = 0, and choose the coupling rate
κ such that Qκ = 1000. In Fig. 5a, we plot the powers P12, P23 and their sum
as functions of time when the duration of the transfer is tEIT = 6366.2(1/f).
In Fig. 5b, we repeat the same plots but now with a transfer time 5 times
longer. As can be seen by comparing Fig. 5a and Fig. 5b, we find that
the relative amplitude Asum, compared to characteristic magnitudes of P12

and P23, has dramatically decreased. To get a quantitative estimate of this
decrease in the amplitude of P12 + P23, we show in Fig. 5c, the ratio of Asum

over the maximum of P12−P23 as a function of tEIT . We find that, indeed, as
the transfer time gets longer, meaning that the adiabatic condition is better
satisfied, the amplitude Asum gets smaller and smaller compared to the peak
of P12, and consequently the deviation of the energy in R2 from its initial
zero value becomes negligible. Therefore, one way to look at why the EIT
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Figure 5: (Color online) (a) P12, P23 and P12 + P23 as functions of time for ΓA = ΓB = 0,
Qκ = 1000, and tEIT = 6366.2(1/f). (b) Same plot as in (a) but with tEIT 5 times longer.
(c) Max(P12 + P23)/Max(P12 − P23) versus tEIT for ΓA = ΓB = 0 and Qκ = 1000.
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mechanism works so well, is to note that the EIT-approach ensures that the
energy leaves R2 (to R3) as soon as it reaches R2 (from R1).
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