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Abstract

In this paper, we study the stability and generalization properties of penalized empirical-risk
minimization algorithms. We propose a set of properties of the penalty term that is sufficient
to ensure uniform [-stability: we show that if the penalty function satisfies a suitable convexity
property, then the induced regularization algorithm is uniformly (-stable. In particular, our
results imply that regularization algorithms with penalty functions which are strongly convex
on bounded domains are 3-stable. In view of the results in [3], uniform stability implies general-
ization, and moreover, consistency results can be easily obtained. We apply our results to show
that £, regularization for 1 < p < 2 and elastic-net regularization are uniformly 3-stable, and
therefore generalize.

1 Introduction

In supervised learning, we are given a set of n data points z = {(x1,v1),..., (Tn,yn)} drawn i.i.d.
from an (unknown) probability distribution p on the product space Z = X x Y, and we have to
estimate a function f,: X — ) that tries to predict f(x) ~ y (see [7] and [11]), in a sense that
we formalize later in this paper. A learning algorithm is an algorithm that takes in as input the
training dataset z and yields as output a solution function f,.
A fundamental class of learning algorithms can be described as the penalized /reqularized empirical-

risk minimization problem, where we find a function f from a hypothesis space ‘H by minimizing
the regularized empirical-risk functional,

fz—argmm{ ZV )y Yi —i—)\P(f)}

The first term of the functional above represents the empirical error that the function f makes
on the dataset, while the second term represents a regularizer that controls the complexity of the
function. The regularization parameter A is to be chosen according to the problem to adjust the
trade-off between the empirical error and the complexity of the function. A special case of the
regularized empirical-risk minimization when the penalty function P(f) is the norm | f||?, on a
reproducing kernel Hilbert space H [2] is known as Tikhonov regularization [5]. It turns out that



many well-known machine learning algorithms, including Regularization Networks, Support Vector
Machines, Splines, and Radial Basis Functions, are special cases of Tikhonov regularization with a
particular choice of the loss function V' and hypothesis space H (see, for example, [5], [12], and [6]).

Tikhonov regularization has been studied extensively, and has been shown to possess many of
the desired properties of learning algorithms, including stability and generalization [3]. The notion
of generalization can be formalized as the requirement that the empirical risk of the solution be
concentrated around the expected risk. In other words, if we observe that the empirical error of the
solution function f, is small, then with high confidence, we know that the expected error is also
small. For regularized empirical-risk minimization algorithms, generalization implies consistency,
that is, the solution approaches the best function in the hypothesis space H as the size of the
dataset grows. In this context, stability is the notion that a small change in the training dataset z
does not change much the solution. The connection between generalization and stability is studied
in [3], where it is shown that a suitable notion of stability, namely, uniform [-stability, implies
generalization. Such a connection is further developed in [10], where weaker notions of stability are
studied. In this paper, we consider the former notion of stability.

Besides Tikhonov regularization, there are many algorithms that fall under the regularized
empirical-risk minimization setting, but use different penalty functions P. Different choices of
penalty functions lead to different properties of the solution functions, that might be desired based
on the specific nature of the problems. However, in choosing the penalty function to use, we have
to be careful so as to preserve the nice properties of the learning algorithms, such as stability,
generalization, and consistency, that Tikhonov regularization enjoys. Nevertheless, checking the
uniform stability property of a regularization algorithm directly is difficult, as currently there is no
characterization of when an algorithm is stable.

Our goal in this paper is to characterize the conditions on the penalty function that lead to
stability. We choose to focus on the penalty function only (rather than including the loss function,
or considering the whole regularized empirical-risk functional) because by the construction of the
regularized empirical-risk minimization algorithm, the penalty function as the regularizer plays the
key role in ensuring that the algorithm is well-behaved, so it is reasonable to expect that there
is a condition on the penalty function that leads to the stability of the algorithm. Moreover,
a characterization of stability in terms of the penalty function ensures that the property of the
algorithm is preserved regardless of the training dataset z that we receive.

Our main result can be stated (informally) as follows. Let f, and f,; be the solution functions of
the regularized empirical-risk minimization algorithm with the training dataset z and the modified
dataset z/, respectively. If there are some constants C' > 0 and & > 1 such that the penalty function

P satisfies ot
P(fa) + P(fy) — 2P (P20

)= Cllfa = fulls 1)
then the algorithm is uniformly (§-stable with g = (’)(nié%l). In particular, if 1 < £ < 3, then
B = o(n~'/2), and therefore, using results from [3], the algorithm generalizes. As we shall see in
this paper, the solution function f, lies in a ball with finite radius in the hypothesis space H, and
therefore, a special case of the result above is when the penalty function P is strongly convex on
bounded domains, for then the regularization algorithm satisfies Eq. (1) with £ = 2, and thus
generalizes. As an application of our results, we show that ¢, regularization for 1 < p < 2 and
elastic-net regularization are uniformly B-stable with 3 = O(n~!), and therefore, both algorithms
generalize.



The rest of this paper is organized as follows. Section 2 defines the general setting of learning
algorithms that we are working with. Section 3 introduces regularization algorithms and proves
the main theorem about the stability of regularization algorithms. Section 4 applies the results to
¢, regularization for 1 < p < 2 and elastic-net regularization. Section 5 explores the connection
between generalization and consistency, and finally, Section 6 discusses the results and possible
future work.

2 Problem Setting

In this section, we establish the framework of the problem and introduce our notation. First, we
describe the setting on the probability and function spaces that we consider. Then, we define the
notions of stability and generalization of learning algorithms, and how these two notions relate.

2.1 Probability and Function Spaces

Let X be a separable metric space and ) be a real separable Hilbert space. We denote the inner
product and norm in Y by (-,-)y and |- |y, respectively. We assume that there is an underlying un-
known probability distribution p on the product space Z = X x Y. Let z = {(z1,y1),- -, (Tn,yn)}
be a dataset that we observe, where the points (z;,y;) € X x ) are drawn identically and indepen-
dently from p. Our objective is to find a function f: X — ) from a hypothesis space ‘H that “best”
explains the values y € )V via the variables z € X.

To describe the hypothesis space H, we consider the setting introduced in [4]. Let I' be a
countable set. We start with a collection of feature functions (¢, )yer, where each py: X' — ) is a
measurable function satisfying the property that for every z € X,

3 le(@)3, < &

~yel

for some 0 < kK < +00. Let ¢»(I") denote the set of sequences o = (o )yer, where o, € R and
> over oz,% < 4o00. The usual inner product and norm in ¢3(I") are denoted by (-,-)p, and || - ||¢,,
respectively.

The hypothesis space that we consider is the linear span of the feature functions (¢-)er,

H={fa: X—>y|fa:Z<p7a7, ae (I}

vyel

Note that the mapping o — f, is a linear operator, i.e. fo,—ay = fay — fap- The construction
of H ensures that for every f, € H, the pointwise evaluation f(x) is bounded. In fact, fo(z) =
2 over ¢~ (x)ay, converges absolutely, because the Cauchy-Schwarz inequality gives us

1/2 1/2
wa>avlyé(2|w<x>|§) (Zai) < 5'?[alle,.

vyel’ vyel’ vyerl

In particular, the inequality above gives us the following bound on the infinity norm of f,,

[falloo = sup fa(@)]y < &72|alle,- (2)

3



Our definition of H actually implies that it is a reproducing kernel Hilbert space. For more detail
on the reproducing property of H, see [4].

To measure the “quality” of a function f, we introduce a loss function V: ) x Y — [0, +00).
We assume that V satisfies the following three properties:

(i) for every (z,y) € X x Y, the functional o — V(fo(x),y) is convex;
(ii) there exists B > 0 such that for all y € ), we have V(0,y) < B;

(iii) V is L-Lipschitz in the first variable, so that for all y,y1,y2 € ), we have
V(y1,9) = V(y2, )| < LIy — y2ly,.

We will see in the following that in the case of regularization algorithms, condition (i) allows us to
characterize the stability property of the algorithm in terms of the penalty function. Properties (ii)
and (iii) ensure that the loss function is well-behaved. We note that the three properties listed above
are reasonable and are satisfied by most commonly used loss functions. For example, if Y = R, then
the hinge loss V(y1,y2) = (1 — y1y2)+ satisfies properties (i)—(iii), and if ) is a bounded subset of
R, then the square loss V (y1,92) = (y1 — y2)? also satisfies properties (i)—(iii).

Given a function f € H, we can define the empirical risk of f (with respect to z) to be

1 n
E(f) = - S V() vi),
i=1
and the expected risk of f to be
e(f) = ey V(f(z),y) dp(z,y).

The empirical risk can be seen as a proxy for the expected risk. The definition of generalization in
the following section will make the previous statement precise.

2.2 Stability and Generalization

We now define the notions of stability and generalization of learning algorithms, and explain how
these concepts interact.

Stability. The notion of stability that we use is the uniform [3-stability definition introduced in [3].
First, given a training dataset z, we define z’ to be the modified dataset obtained by switching the
jth point of z with a new point (2/,y'), so that z/ = (S\{(z;,y;)}) U{(2/,¢/)}, for 1 < j < n. Let f,
and f,; denote the solution functions of the learning algorithm with dataset z and z/, respectively.
Then we say that a learning algorithm is uniformly 3-stable if

sup |V (fa(x),y) = V(f(x),y)| < 6.
reX, yey

Intuitively, the definition above means that a small change in the input dataset should not much
change the solution function f,, as measured by the loss function V. Note that the bound £ will in
general depend on n, the size of the dataset z, and A, the regularization parameter.



Generalization. We say that an algorithm generalizes if the empirical risk of the solution function
E2(fz) converges in probability to the expected risk £(f,) as the size of the dataset z increases.
More specifically, an algorithm generalizes if we have a probabilistic bound on the generalization
error &,(fz) — E(fz), and the error term in the bound tends to 0 as n tends to +o0o. As stated in
the introduction, a generalization property of an algorithm gives us a belief that when we observe
a small empirical error, the expected error is also small. Intuitively, generalization also means
predictivity: if an algorithm generalizes, then the solution function can predict the values y € Y
corresponding to the variables z € X well, even for unseen data points (x,y).

The relation between stability and generalization comes from the following result by Bousquet
and Elisseeff [3]:

Theorem 2.1. Suppose that the regularization algorithm is uniformly [3-stable. Then for every
0 <0 <1, the following bound holds with probability at least 1 — 6,

E(fa) < Ealfu) + B+ (208 + Lk'*r + B) 10%‘;711/5)’

where T > 0 is an upper bound to || f||n (see Corollary 3.2).

This theorem above essentially states that stability implies generalization. In particular, if
B = o(n~'/2), that is,

lim b(n) = lim A(n)-n'/? =0,

n—-+00 n*1/2 n—-+4oo

then the error term in the bound above tends to 0 as n tends to +oo.

3 Stability of Regularization Algorithms

In this section, we consider a class of learning algorithms known as regularization algorithms.
We first give some preliminary results, and then prove the main theorem about the stability of
regularization algorithms.

3.1 Regularization Algorithms

Let P: £5(I") — [0,4+00) be a penalty function that regularizes the complexity of the function f,
corresponding to a € f5(I"). As mentioned in the introduction, the learning algorithm that we con-
sider in this paper is the regularized empirical-risk minimization algorithm, also called regularization
algorithm. In our setting, the regularization algorithm corresponds to the following minimization
problem,

aclz(T)

min {; Z V(fa(zi), vi) + AP(O‘)} .
i=1

The regularization parameter A > 0 controls the trade-off between the empirical error and the
complexity of the function f,.

Note that we currently do not make any assumption on the penalty function P. However, since
we are working in an unbounded domain ¢5(I"), to ensure that the minimizer exists, we assume that
P is coercive, that is,

P(a) = +00.

lleell e —+o0



For example, for 1 < p < 2, the function

Pla) = llally, = > lon P

yel

is coercive, since the £,-norm is stronger than the f3-norm for 1 < p < 2, ie. [|alls, < [laf,,. On
the other hand, if p > 2 and the index set I' is infinite, then P(«a) = HO[HZ is not coercive. To see
that, take I' = N, and consider a sequence (ay,)nen of points in ¢5(N), where the jth component of
an is 1/4/7, if 1 < j < n, and 0 otherwise. Then we have

n
. . 1
el = Jop (325 ) = oo
]:

but since p > 2,

n

1
P o_
nﬂm || cun || —nhr}rl ]Eljp/z < +00.

In fact, P(a) = ||a||§p for 1 < p < 2 will be one of the examples that we consider in Section 3.2,
corresponding to the algorithm ¢, regularization.

Let a, denote a minimizer of the objective functional with dataset z. Note that we do not
require that the minimizer be unique; the statements about «, that we make in this paper hold
for all points « in the set of minimizers of the objective functional. Henceforth, we will refer to
Qi as the minimizer. Similarly, let a,; denote the minimizer of the objective functional with the
modified dataset z’. For clarity of notation, we denote the function f,, corresponding to oy by fa,
and similarly, we denote the function f, ; corresponding to a,; by fy.

An important property of the minimizer o, is the following simple result.

Lemma 3.1. If A > 0, then
B+P(0
Plag) < BP0
A
Proof. First we note that the function fo corresponding to the zero element 0 € ¢5(I") is an iden-
tically zero function. Therefore, invoking the property that a, is the minimizer of the objective
functional, we obtain

1 n
AP (o E Z (fa(i), yi) + AP(az)
1 n
*Z fOl‘z yz)+73()
n =1
< B+ P(0).
Dividing both sides by A yields the desired inequality. O

Since P is coercive, Lemma 3.1 yields the following corollary.

Corollary 3.2. There exists T > 0 such that ||aglle, < T.



We note that the constant 7 might depend on A since the bound of P(ay) depends on \. When
needed, we will refer to 7 as 7()\). Note also that this constant 7 appears in the generalization
bound in Theorem 2.1.

Furthermore, we have the following bound on the value of the loss function.

Lemma 3.3. For all (z,y) € X x Y, we have V(f,(z),y) < L&'/*r + B.

Proof. Using the triangle inequality and the Lipschitz property of V', we obtain

V(fz(2),y) < |V(fz(2),y) = V(0,9)] + V(0,y)
< L|fz($)|y + B.

Then, using the bound on the infinity-norm on f, (Eq. (2)), we have
f2(@)]y < | falloo < K63 ||agle, < K27,

Combining the two inequalities above yields the lemma. O

3.2 Stability Induced by the Penalty Function

In this section, we prove that regularization algorithms whose penalty functions satisfy a certain
convexity property on the minimizers are uniformly (-stable. To do that, we need the following
result from [3], which exploits the fact that the dataset z and the modified dataset z’/ differ at
precisely one point. Note that in order to apply this result, we need the assumption that the
functional o — V(fu(x),y) is convex, as listed in property (i) of V.

Lemma 3.4. For 0 <t < 1, we have the following inequality'
2tL
Plaz) = P(tag + (1 = t)ag) + Plag) = P((1 —t)ag +tay) < —=llfa = failloo:
Now we are ready to state the theorem.

Theorem 3.5. Suppose that for some constants C > 0 and & > 1, the penalty function satisfies

ozz—l—azj)
2

Pas) + Plags) ~ 2P > Ol — a5 3)

Then the reqularization algorithm is uniformly B-stable with

1
LEgE/2\ &1
f= < nAC ) '

Proof. Using the Lipschitz property of V and Eq. (2), we have

sup |V (f2(2),y) = V(f0r (2),9)| < Ll fz = farlloo < LE?|laz — 0igs]ley.
zeX,yey

!The coefficient on the right hand side of the inequality is slightly different from what appears in Lemma 20
in [3], because the setting in [3] considers z\7 = z \ {(z;,;)} as the modified dataset, while we consider z’' =

(2\ {(z5,55)}) U{(=",5)}-



Now we need to bound |az — ayille,- Applying Lemma 3.4 with ¢ = 1/2, we have the following
inequality

Qg+ L
2 T )« = _f. .
22 ) < furle

Combining the inequality above with the given property of P and Eq. (2), we obtain

L\Ve Lr1/2\ )
lay — augille, < () £z = faillXLF < ( [ — Oéza'Hef-

Plaz) + Play) - 2P

nAC nAC

Since £ > 1, this gives us

1

1/2\ e=1

e — agilles < (25 |
n\C

Finally, substituting this result to our first inequality above yields

I ,{5/2> =

TEX, yey nAC

sip [V (fal@)y) = V(i (@)1)] < (

as desired. O

As noted in Section 2.2, we want 3 = o(n~'/2) to obtain a generalization bound where the error
term tends to 0 as n tends to +o00. Equivalently, for the regularization algorithm to generalize, we
need the power ¢ in Eq. (3) to be such that 1 < £ < 3.

Now recall that a function P: £5(T") — R is strongly convez if there exists a constant C' > 0 such
that for every ay, ag € lo(T),

P(on) + P(as) — 2P (al;az)

> Cllar — a7,

Clearly, a strongly convex penalty function satisfies Eq. (3) with £ = 2, and hence we can apply
Theorem 3.5 to conclude that the regularization algorithm is uniformly 3-stable with 3 = O(n™1),
and therefore generalizes. In fact, we can make a slightly stronger statement, since Eq. (3) only
requires P to be strongly convex on the minimizers, and by Corollary 3.2, we know that the mini-
mizers o, and «,; have bounded fe-norms. Therefore, the conclusion of Theorem 3.5 still holds for
penalty functions that are strongly convex on the bounded domain {a € ¢5(T") | ||||e, < T}, where
7 is the bound on the f3-norm of the minimizers, as in Corollary 3.2. For example, the function
Pla) = HaHIZp, for 1 < p < 2 is not strongly convex over ¢5(I"). However, it is strongly convex over
bounded domains, as shown in Section 4.1, which allows us to apply Theorem 3.5.

Moreover, we note that while the condition in Eq. (3) is in principle weaker than strong convex-
ity, it is nonconstructive, as it involves the minimizers a, and «,;. In practice, it is more convenient
to check that the penalty function P is strongly convex (or strongly convex on bounded domains, as
stated in the preceding paragraph), rather than showing that P satisfies Eq. (3) on the minimizers.
To verify strong convexity, we can proceed from the definition directly, as we shall do in Sections
4.1 and 4.2, or use the following result from [8], which reduces the problem into checking strong

convexity in one dimension?.

>The original formulation of the theorem in [8] is for functions with domains in finite-dimensional Euclidean spaces
R™, but the result extends naturally to £2(T).



Lemma 3.6. A function P: l5(I"') — R is strongly convex on a convex set A C l2(T") if and only if
the function

o(6) =P (ar + (a2~ a))

is strongly convex on the interval 0 <t < ||y — azl|e, with the same coefficient for all oy, as € A,
(65} 75 a9.

a1 — aalle,

We summarize the discussion above in the following corollary.

Corollary 3.7. A regularization algorithm with a penalty function P that is strongly convex over
the bounded domain |lle, < T is uniformly (-stable with 8 = O(n~'), and therefore generalizes.

4 Examples

In this section, we consider some specific regularization algorithms, characterized by different
penalty functions P, and apply Theorem 3.5 to show that they are uniformly (-stable.

4.1 Stability of /, Regularization, for 1 <p <2

The first regularization algorithm that we consider is /¢, regularization for 1 < p < 2, which is
characterized by the penalty function

Ple) = [lallf, =D loy .

vyel’

The algorithm £, regularization is also known as bridge regression in statistics, and can be interpreted
as a middle ground between p = 2 (which yields smooth solutions) and p = 1 (which yields sparse
solutions). Note that Tikhonov regularization is a particular case when p = 2.

As noted in 3, the function P is coercive because for every a € f(I'), we have |[all, < |l
Moreover, since we have the following bound

B\1/P
lawlles < lloalle, < (Q ,

P satisfies Corollary 3.2 with 7(\) = (B/A)"/?.
Now to apply Theorem 3.5, we need to show that the penalty function P(a) = HQHZ, satisfies

Eq. (3).

Proposition 4.1. For 1 < p < 2, £, reqularization satisfies Eq. (3) with £ =2 and

o=t (%)

Proof. Consider a function ¢g: R — R defined as ¢g(#) = |#|P. Notice that we have ¢'(6) = p-sign(f)-
0[P~ and ¢”(0) = p(p — 1)|8|P~2. Clearly the first derivative of g exists and is continuous for all



f € R. On the other hand, the second derivative of g exists and is continuous for all  # 0, while
for 8 = 0, we have

e—0 € e—=0 €

-2 — 2|elP 2 if p=2
400, ifp<?2.

Then by the second-order Mean Value Theorem, which holds even when the derivative of the
function is +o00 or —oo [1], for every a,b € R, we have

a+b
2

P 1 2 p—2
=1®—G)Mp—Dkl,

jal? + (b7 =2

where min{a, b} < ¢ < max{a, b}.
In particular, for every v € I', we can set a and b to be the components a5y and a,; ., of a, and
Qi , respectively, to obtain

1

= Z(azﬁ - azj,’y)zp(p - 1)’C’Y|p_27 (4)

Az~ + Oézj77 p

N R

where min{ay , @, o} < ¢y < max{ag , g 4}

Using Corollary 3.2, with 7(\) = (B/)) 1/p7 as noted in the beginning of this section, we can
derive a bound ¢, in Eq. (4) as follows

B\ /P
o] < maax{las | o |} < max{llaallen o} < ()

Furthermore, since 1 < p < 2, this gives us

B\
=2 (=
‘C’Y’ - ()\) .

Substituting the bound on ¢y to Eq. (4), we obtain

Oz, + oy -

N e

P 1 B\ »
> Zp(p —1) </\) (az,'y - O‘zﬂn)2-

Finally, summing over v € I" gives us

p—2
Qg + g ||P

1 B\ »
el + llass 7, -2 > -1 (3) " s = awl,:
4 p 2 Y 4 >\
P

This completes the proof of the proposition. O
A consequence of Proposition 4.1 and Theorem 3.5 is the following corollary.
Corollary 4.2. For 1 <p <2, /{, regularization is uniformly (3-stable with

2—p
5o 1 (13>p4L25
Cplp—1) \A nA

10



This implies that with probability at least 1 — §, the following generalization bound holds

1 /B\F 4% 1 /B\% 8L% [log(1/6)
HA) = &R+ pp—1) (A> - 1) () A 2n

A
A e <B>1/p+B log(1/6)
A on

and thus we conclude that £, reqularization for 1 < p <2 generalizes.

4.2 Stability of Elastic-Net Regularization

FElastic-net regularization uses the penalty function

P(a) = |lallow +elallf, = Y (wylay| +ead),
vyel
for some weights w, > 0 and a parameter ¢ > 0. Elastic-net regularization was first introduced in
[14], and then analyzed in [4]. Similar to ¢, regularization, elastic-net regularization can also be
interpreted as an interpolation of ¢; regularization, which enforces sparsity, and ¢ regularization,
which enforces smoothness. The coefficient € controls the degree in which these two components
interact. In this section, we assume that € > 0.
Clearly, P is coercive, because P(«a) > EHCYH%Q. Moreover, using Lemma 3.1, we obtain

1 1/2 B\ /2
foules < (Hlhaae +clntf))” < (£

so that P satisfies Corollary 3.2 with 7()\) = (B/)\e)l/2.

Now to apply Theorem 3.5, we have the following proposition.
Proposition 4.3. Elastic-net reqularization satisfies (P2) with £ =2 and C = ¢/2.

Proof. From the convexity of the function |- |, for every component a, . and a,; ., of ag and ay;,

respectively, we have
az;y + azj 7’7

2
By taking the weighted sum of the inequality above over v € I' with weights w, > 0, we obtain

] + i ~ 2] > 0.

Oz + Qj
Joallnw + o oo — 2| =572 | >0
01w
Now, noticing that we have the following identity,
Qg + oy ||? 1
ol + g, =252 | = Zlox - oy,
2

we conclude that

P(ay) + Plag) — 2P (m> > <

22 ) > Sy — oy,

11



We summarize the result in the following corollary.
Corollary 4.4. FElastic-net reqularization is uniformly B-stable with

_ 2%k
oen)

g

Therefore, with probability at least 1 — §, the following generalization bound holds

2 2 1/2
S < )+ 2 (4“ e () B> og(1/8)

ENA EA € n

Then we conclude that elastic-net regularization generalizes.

We add the following remark. In general, if the penalty function P is convex, but not strictly
convex, then the minimization problem is ill-posed, since the solution might be neither unique
nor stable. Nonetheless, we can add an extra term ,u||a||§2 to the objective functional, for some
© > 0, and consider a modified minimization problem with the composite penalty function 75(0z) =
P(a)+ pllal|7,. Following the proof of the stability of elastic-net regularization, we observe that the
composite penalty function P is strongly convex, so that our results apply. The new minimization
problem is well-posed: the solution exists, is unique, and is stable. The parameter p > 0 can be
adjusted to control the extent in which the extra term /,L”OéH?Q affects the properties of the solution.
In fact, using standard variational techniques, we can show that as u tends to 0, the solution function
of the modified minimization problem tends to the solution of the original minimization problem
with minimum #s-norm.

5 Generalization and Consistency

A property of a learning algorithm related to generalization is the notion of consistency. Consistency
requires that when the size of the training data increases, the expected risk of the solution function
converges in probability to the minimum risk achievable by the functions in the hypothesis space.

In our context, a regularization algorithm is parametrized by a regularization parameter A, and
therefore, we say that the algorithm is consistent if there is a sequence (A, )nen, An > 0, such that
(An)nen converges to 0 as n tends to +oo, and for every € > 0,

lim Pr(&(f)) — inf & >e) =0,
Jim Pr(E(5) - g e() > ¢
where f)» is the solution function of the regularized empirical-risk minimization problem with
regularization parameter A = \,.

It turns out that for regularization algorithms, generalization implies consistency, as we see in
the following theorem.

Theorem 5.1. Suppose that the regularization algorithm has generalization property. Let es(A,n)
denote the error term in the generalization bound. If the following three conditions hold for some
ki, ko, ks > 0,

1. es(\,n) = O(AF) as A — 0;
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2. es(\,n) = O(n~*2) as n — +oo;
3. the bound T()\) in Corollary 3.2 has order of growth T(\) = O(A7") as A — 0;
then the regularization algorithm is consistent.

Proof. First, we define
= argmin {€(f) +AP(f)}.

Now fix § > 0. We decompose the sample error into three components as follows,

S~ I () < (E(5) — ) + (61 + NP() — £ + () - jnt £(5))).

fer
Since f;' is the minimizer of the objective functional,
E(12) +AP(f2) < &) + AP(fY),

and therefore, we have the following,
£ — nf () < (EU) — &) + (€ — () + (£ + P - it £09)).

The first term in the inequality above is the generalization error, and the generalization property
of the regularization algorithm implies that with probability at least 1 — §, we have the bound

£~ &) < estnN) = 0 (5 )

M1 fe2
For the second term, we first note that following the proof of Lemma 3.1, we can show that
P(f*) < (B+7P(fo))/A, so that by Corollary 3.2, the norm of f* is bounded, ||f*||3¢ < 7()\). Then

we can apply Lemma 3.3 to obtain the bound 0 < V(f*(z),y) < Lx'/?7(\) + B. Now, for every
t > 0, Hoeffding’s inequality gives us

r A A exp | — ont?
Pr(&(f*) - E(fY) 2t) < p( (LM/%(AHB)?)‘

Equivalently, for every é > 0, the following bound holds with probability at least 1 — ¢,

E() — E(f) < (La'?7(0) + B) (logél/é))m 0 (5m7) -

n Ak‘gnl/Q
Finally, let A(\) denote the third term,
AN = E(f) + AP(f) — inf E(f).
() = £+ XPU) - nf (/)
Then we note that A(A\) — 0 as A — 0.

Combining the three components above, we have the following bound, which holds with proba-
bility at least 1 — 24,

1 1
£ - 1wt ) <0 (5505 ) + O (Smm7s ) + A
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Now choose a sequence (A\p)nen, An > 0, such that

lim AipF = lim Menl/? = 400,
n—-+00 n—-+o0o

We can do this, for example, by choosing A, = n~*, for some 0 < k < min{%, ﬁ} Then as
n — +00, each term of the right hand side of the inequality above vanishes. Therefore, for every
€ >0,

n—-+o00

lim Pr(&(f)) — inf £ =0
im_Pr (£(£2) - int £(7) > ) =0,
which means that the algorithm is consistent, as desired. O

Now we can apply the computations in Section 4 to show that ¢, regularization for 1 < p <2
and elastic-net regularization are consistent.

Corollary 5.2. For £, regularization, 1 < p < 2, the bound 7(\) has order of growth T(\) =
O\YP), and the error term es(\,n) in the generalization bound has order of growth es(\,n) =
O(/\_Q/pn_l/Q). Therefore, with the choice A, = n"P/8, Ly regularization for 1 < p < 2 is consistent.

Corollary 5.3. For elastic-net regularization, the bound T(\) has order of growth T(\) = O(n=/?),
and the error term es(\,n) has order of growth es(A\,n) = OA"'n=Y2). Then with the choice
A = n~ Y4 elastic-net regularization is consistent.

6 Discussion

In this paper, we investigated the stability property of regularization algorithms in terms of the
conditions on the penalty functions. We have shown that regularization algorithms whose penalty
functions satisfy Eq. (3) are uniformly S-stable. In particular, if the penalty function is strongly
convex over bounded domains, then the regularization algorithm is uniformly (-stable with G =
O(n~!), and hence generalizes. The strong convexity characterization that we propose is quite
practical to verify, and therefore should be considered when designing new algorithms to enforce
stability and generalization. As an application of our results, we showed that £, regularization and
elastic-net regularization are uniformly (-stable.

As noted in Sections 4.1 and 4.2, /, regularization and elastic-net regularization can be inter-
preted as interpolations of /1 regularization and #s regularization. Interestingly, our result does not
apply to ¢; regularization, as the £;-norm is not strongly convex. If the strong convexity charac-
terization that we proposed in this paper turns out to be a natural requirement, then this suggests
that ¢; regularization is not uniformly (-stable. In fact, a recent result in [13] indicates that ¢;
regularization cannot be stable. This naturally raises a question of whether the set of conditions
that we propose is not only sufficient, but also necessary for uniform stability. Another question is
whether ¢; regularization is stable under a weaker notion of stability, for example, the CVEEE)y,
stability proposed in [9], that is still sufficient for generalization.
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