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Abstract 
An effective accelerator control system can function 

only when the errors are known to the desired accuracy. 
Direct diagnostics on the beam is the ideal way of 
measuring the field errors. However, as described in [1] a 
system solely based on beam feed-back may be too 
demanding. Hence, to compensate for the magnet field 
errors obtained from magnet production and installation, 
the LHC control system requires an accurate forecast of 
the magnetic field and the multipole field errors in the 
accelerator. In this paper we describe how to use warm 
and cold magnetic measurement data to provide this 
forecast. 

 

INFORMATION AVAILABLE FROM 
MAGNETIC MEASUREMENTS ON DAY 1 
 

In order to steer the magnet production and monitor that 
the field quality is within the required specifications, the 
LHC quality assurance plan foresees the testing at warm 
of:  

• All the MB, MQ, MQM and MQYs so as to obtain 
their main field integral strength as well as their 
higher order geometric harmonics; 

• All the MBX, MBRx and MQXx; 
• All the MQTL (presently done at CERN); 
• Most superconducting lattice correctors and spool 

pieces (at present the data for 90 % of the produced 
magnets is available); 

• All warm MQW; 
• A sample (of about 5 to 10) of other warm insertion 

magnets (MBXW,..) measured at the manufacturer 
before delivery.  

 
Standard cold magnetic measurements are currently 

performed in the cold test benches SM18 and in the 
vertical cryostats of Block-4. The aim of these cold tests 
is to obtain a good warm-cold correlation and to enable 
accurate magnetic field modeling of the LHC during the 
entire machine cycle. At the present rate, cold 
measurements are performed on:  

• 20% of the MB and 20% of the MQ in standard 
conditions (i.e. load line and LHC cycle);  

• 12 special MB tests to study powering history effect 
on the decay;  

• 12 special MB tests to establish the details of the 
snap-back waveform;  

• A sample of the MQM and MQY (typically 10% in 
SM-18 and 30% in Block 4);  

• 75% of the MBX, MBRx;  
• 100% of the MQXx (Q1, Q2, Q3);  

• few MQTL (2 cold tests have been performed to 
date) [2];  

• A limited sample of lattice correctors and spool 
pieces (about 120 tests have been performed to date, 
while a plan for the over 7000 magnets series is still 
not completely defined [2]).  

 
An example of the information obtained from the tests 

of an LHC dipole can be found in Fig 1, reporting the 
sextupole field as from the data taken at warm in industry, 
and at cold during a simulated LHC cycle. As described in 
section 2, a breakdown into different components, 
identified in the plot, is used to accurately model the data.  
 

 
Figure 1:  Integral sextupole of typical dipole magnet. The 
red line is the warm cold mass value, the green line is the 
warm collared coil value and the black horizontal line is 
the geometric value. 

 
Presently, the warm and cold magnetic data is stored in 

three different Oracle databases containing separate 
entries for:  

• Warm data; 
• Cold Data (Injection and Flat-Top); 
• Warm-Cold Offsets (Injection and Flat-Top); 
• Components in cold conditions (geometric, 

persistent currents, decay, snap-back, saturation). 
 

At the current rate, by the end of 2006, 3.5 million 
measurements and 35GB of accumulated data will be 
available in the databases. The plan is to use this data to:  

• Set injection values;  
• Generate ramps;  
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• Forecast the corrections of the field errors in MB 
and IR magnets.  

 
The principle is to define modelling functions for the 

current and time behaviour of each field error component, 
and to scale the modelling functions by the value of the 
measured component which is stored in the database or 
can be deduced from values stored in the data base (e.g. 
an extrapolation from warm conditions). This will be done 
on a magnet family basis [3], [4], as described later, where 
with family we intend a group of magnets powered in 
series, for which the integrated transfer function and 
integral harmonics information is needed (e.g. the set of 
154 dipoles in a sector).  
 

THE FIELD MODEL 
One of the key elements of the system that will deliver 

a forecast of the magnetic field in the LHC is the field 
model. The model is a decomposition of the field errors 
and their deviations from the reference design values 
based on a separation of the contributing effects.  
 

In the following we indicate with Cn the complex 
harmonic of order n in the complex series expansion of 
the 2-D magnetic field B in the magnet aperture:  
 
B(x,y) = By + iBx =
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where z is the coordinate in the complex plane and Rref is 
the reference radius. The coefficients Cn have dimensions 
of [T @ Rref]. Taking the index m as the order of the main 
field (with m = 1 for dipole), the index n stands for the 
higher order field harmonics. The index n is therefore 
such that  
 
n ≥  m +1 (2). 
 

The main field is indicated as Bm (in T at the reference 
radius Rref=17mm). The non-normalized harmonic 
coefficients Cn are assumed to be given in the reference 
frame aligned with the main field direction. They can be 
decomposed in their real part Bn (the normal harmonics) 
and imaginary part An (the skew harmonics), and, because 
we take the main field to be purely normal, we have by 
definition Am = 0. For convenience we use also 
normalized harmonic coefficients, indicated as cn and 
defined as:  
 

cn = bn + ian =104 Cn

Bm

 (3) 

 
expressed in [units @ Rref], and also decomposed in their 
real part bn (the normal harmonics) and imaginary part an 
(the skew harmonics). Finally, the main field transfer 
function (TF) is defined as the ratio of field generated and 
operating current: 
 

TF = Bm

I
 (4) 

 
which is expressed in units of [T @Rref / A].  
 
The field model is the relation: 
 

Cn = Cn t,I, dI
dt

,T,I(−t)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  (5) 

 
where we express the fact that the harmonic Cn depends 
on time (t), magnet operating current (I), magnet ramp-
rate (dI/dt), magnet temperature (T) and magnet powering 
history I(-t). To give an explicit form of the field model, 
we decompose the field errors in the following 
components: 
 
1) DC Components (steady state, reproducible from cycle 
to cycle, depend on current, but not on time) 

 
a. Residual Magnetization Contribution ( Cn

residual ) of 
magnetic parts in the cold mass, mostly in the iron 
surrounding the coils, visible at low current, e.g. during 
warm measurements; 

b. Geometric Contribution ( Cn
geometric ): deviation 

between the conductor placement in the real coil 
winding and the ideal distribution of current (i.e. 
producing the exact, desired multipolar field). This 
contribution is present at all field levels and is 
proportional to the operating current; 

c. Displacement Contribution ( Cn
deformation ):  

displacements of the cables in the coil cross section. 
Cable movements can take place, for instance, during 
cool-down and powering at high field as a consequence 
of the changes in the force and stress distribution; 

d. DC Magnetization Contribution ( Cn
MDC ): persistent 

currents in the superconducting filaments. This 
contribution is important at low operating field (e.g. 
injection in the main dipoles), where the 
superconductor magnetization is highest; 

e. Saturation Contribution ( Cn
saturation ): due to changes of 

the magnetic permeability in the iron yoke surrounding 
the coils. This contribution is important at high field, 
mainly on the main field component. 
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2) AC Short Term Effects (transient, reproducible, 
depends on current and time)  
a. Coupling currents ( Cn

MAC ): due to interfilamentary 
currents within the strand and interstrand currents 
within the cable. This contribution is only present 
during changes in the operating field, e.g. during 
energy ramp, is reproducible, depends on current and 
time. 

 
3) AC Long Term Effects (transient, non reproducible, 
depends on current, time and powering history) 
 
a. Decay ( Cn

decay ): effect due to cable internal field 
changes and, possibly, flux creep in the filaments 
magnetization, important during injection and in 
general at all current plateaus at low field; 

b. Snapback ( backsnap
n

−C ): rapid re-establishment of the 
magnetization after its decay during a constant current 
plateau, important at the beginning of the acceleration 
ramp. 

 
The field model will provide the desired field 

component dependency Cn
component t,I,dI /dt,T,I(−t)( ). 

As a general rule, superconducting magnets (and 
especially dipoles and quadrupoles) are designed to 
achieve relative field errors of 0.1 % or better. For this 
reason we can safely assume that all deviations from 
linearity are small perturbations of the ideal field, and that 
they can be added linearly to obtain the total field in the 
magnet. Hence, under this assumption, the field model 
can be given by the sum of the contributions:  
 

Cn = Cn
DC + Cn

ACS + Cn
ACL  (6) 

 

where Cn
DC is the DC, steady state error, Cn

ACS  is the AC 
short term error and Cn

ACL  is the AC long term error 
respectively defined as: 

 

Cn
DC = Cn

residual + Cn
geometric +

+ Cn
deformation + Cn

MDC + Cn
saturation

 (7) 

Cn
ACS = Cn

MAC  (8) 
Cn

ACL = Cn
decay + Cn

snap−back  (9). 
 

The order of magnitude, and hence the importance of 
the different components identified here, is quite different. 
Figure 2 gives an ordering based on the order of 
magnitude, the uncertainty and the variability from 
magnet to magnet and from cycle to cycle. The 
components at the top of the list are those that are 
expected to be most relevant for setting and correction, 
while those at the bottom of the list can be neglected.  

 

 
Figure 2:  General decomposition of error sources listed in 
order of importance. 

 
In the following sections we give analytical formulae, 

suitable to describe the various dependencies, with a 
limited set of free parameters.  
 

Geometric Contributions 
The geometric contributions to the field and field errors 

is proportional to the excitation current in the magnet. 
Hence the geometric contribution may be written as:  
 
Bm

geometric = γmI   (10) 
 
where I is the excitation current in the magnet. The 
geometric coefficient in the above definition includes the 
linear contribution from the iron yoke thus ignoring the 
saturation and the residual magnetization. For the transfer 
function: 
 
TF geometric = γm  (11) 
 
and for the normalized harmonics:  
 
cn

geometric = γ n  (12) 
 

The geometric coefficient in its definition above also 
includes the linear contribution from the iron yoke (i.e. 
ignoring the saturation and permanent magnetization). 
This is the only component of the model that can be 
obtained through extrapolation from warm measurements.  

 

DC Magnetization Contributions 
When the background field is varied during the field 

ramp, the superconducting filaments in a strand become 
magnetized. The magnetization M is generated by 
persistent currents trapped in the filaments. Hence, in the 
first approximation, the magnetization is proportional to 
the critical current density Jc and the filament diameter D 
[5]:  
 
M ∝ JcD  (13). 

 
The critical current density changes with field 

according to a law of the type [6]:  
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where B is the background field, Bc is the critical field of 
the material, α and β are pinning exponents that are 
typically in the range α = 0.5 and β = 1 for the NbTi alloy 
used in the LHC cables [7]. 
 

M is essentially stationary in time (DC) and is 
hysteretic since the persistent currents have exceedingly 
long time constants. Hence the DC magnetization is 
visible as a hysteretic contribution to the field and field 
errors that depends on the strength of the magnetization as 
well as on the geometric distribution of the magnetization 
vectors in the winding cross section. Smaller 
magnetization amplitudes in the high-field regions and 
larger magnetization in the low-field regions are the result 
of the presence of large field gradients in the coil. In 
particular, this is important at injection where the 
magnitude and variation of M is the largest.  
 

To provide a scaling for the field generated by the DC 
magnetization it is assumed that this contribution scales as 
the Jc in Eq. (14). Current is substituted for field giving:  
 

Bm
MDC = µm

Iinj

I
I

Iinj

⎛ 

⎝ 
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⎟ ⎟ 

α
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⎟ ⎟ 

β

 (15) 

 
where the injection current Iinj is introduced as a reference 
point so that the product of the three terms in I is equal to 
the one at Iinj, and the value of µm can be interpreted as the 
value of the contribution of the DC magnetization to the 
total field measured at injection, and presently stored in 
the database. By writing Eq. (14) the assumption that the 
complex convolution of the distribution of magnetization 
vectors can be condensed in the fitting exponents α and 
β is made. The contribution to the transfer function is: 
 

TF MDC = µm

Iinj

I2
I
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and the normalised harmonics originated by the DC 
magnetization are: 

cn
MDC = µn

Iinj

I
⎛ 

⎝ 
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Ic − I
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which has a different form from Eq. (14) because of the 
renormalization to make µn the measured DC 
magnetization harmonic at injection. 
 

For a monotonous ramp (ramp-up or ramp-down), the 
Eqs. (15), (16) and (17) hold when the filaments in the 

coil are in a fully penetrated state, i.e. after the crossing of 
the hysteresis cycle (penetration phase). The expressions 
are the same for different ramp directions, but the 
coefficients µm and µn for an upwards ramp have opposite 
sign (and approximately same value) to those that best fit 
a downwards ramp.  
 

Iron Saturation Contribution 
The iron saturation contributions to the main field and 

field errors depend mostly on the iron yoke configuration 
and on the B-H characteristics of the iron structure. The 
iron yoke saturation appears as a non-linearity of the field 
and the field errors with respect to the operating current. 
This deviation is especially visible at high field levels, 
when the extent of saturation becomes significant.  
 

It is not easy to establish an a priori fit which can take 
both effects into account by simple parameterization of 
the magnet cross section. Therefore the choice is to fit the 
saturation contribution as a sum of rounded step 
functions. In practice a function that can be used with 
good accuracy is:  
 

Σ I,I1
σ ,∆I1

σ ,I2
σ ,∆I2

σ ,aσ( )
= aσ S I,I1

σ ,∆I1
σ( )+ 1− aσ( )S I,I2

σ ,∆I2
σ( )[ ]

 (18) 

 
where Sσ is a normalized, smooth step function that is 
adapted to describe the change in field associated with 
saturation: 
 

S I,Iσ ,∆Iσ( )= 1
π

arctan I - Iσ

∆Iσ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

π
2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (19). 

 
Figure 3 shows the normalized function.  

 

 
 
Figure 3.  The smooth step function used to describe the 
change in field due to saturation. 

 
For the main field component:  
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Bm
saturation = σ m I

Σ I,I1
σ ,∆I1

σ ,I2
σ ,∆I2

σ ,aσ( )
Σ Inom,I1

σ ,∆I1
σ ,I2

σ ,∆I2
σ ,aσ( ) (20). 

 
The transfer function is correspondingly: 
 

TF saturation = σ m

Σ I,I1
σ ,∆I1

σ ,I2
σ ,∆I2

σ ,aσ( )
Σ Inom,I1

σ ,∆I1
σ ,I2

σ ,∆I2
σ ,aσ( ) (21) 

 
and the harmonic coefficients are: 
 

cn
saturation = σ n

Σ I,I1
σ ,∆I1

σ ,I2
σ ,∆I2

σ ,aσ( )
Σ Inom,I1

σ ,∆I1
σ ,I2

σ ,∆I2
σ ,aσ( )

 (22). 

 

Decay  
It has been shown by [8] that the decay of harmonics at 

constant current is driven by field changes on the strands 
caused by current redistribution in the superconducting 
cables. The amplitude of the current distribution process 
can be modeled by a diffusion equation, whose most 
general solution is a series of harmonics in space 
modulated by an exponential dependence in time. The 
decay phenomenon is quite complex: the current 
redistribution causes a change of the local field in the coil 
by few mT, which in turn changes the persistent currents 
distribution and the DC magnetization of the filaments by 
adding an arbitrary component to the initial magnetization 
state. This results in a net decrease of the average DC 
magnetization of the cables and an overall decrease of its 
contribution to the total field. Neglecting all non-
linearities, we make here the simplifying assumption that 
the dynamics of the field follows that of the current 
diffusion. The evolution follows the function [9]:  
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 (23) 

 
where t is the time, tinj is the time at injection, τ is the time 
constant. a∆ gives the normalized weight of the fast 
component of the decay and its complement to one, 1−a∆, 
gives the normalized weight of the slow component. The 
field decay, using Eq. (23), is given by: 
 

Bm
decay = δm

∆ t, tinj ,τ,a∆( )
∆ tinj

std ,tinj ,τ,a∆( ) (24) 

 

where the parameter δm represents the maximum decay, 
following an infinitely long injection. The contribution to 
the transfer function is given by: 
 

TF decay = δm

I
∆ t,tinj ,τ,a∆( )

∆ tinj
std ,tinj ,τ,a∆( ) (25) 

 
and by analogy the contribution to the harmonics is given 
by: 

cn
decay = δn

∆ t, tinj ,τ,a∆( )
∆ tinj

std ,tinj ,τ,a∆( ) (26). 

 
The amount of decay depends mostly on the powering 

history. In practice the powering history can be condensed 
in a single powering cycle characterized by the current 
reached at the flat-top IFT, the flat-top duration tFT, the 
time tpreparation elapsed (ramp-down, preparation, ramp to 
injection) between the end of the flat-top and the 
injection. The scaling for the decay amplitudes are as 
follows:  
 

δn = δn
std IFT

IFT
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 (27). 

 

Snap-back 
During snap-back the field bounces back to its pre-

decay level once the current in the magnet starts to ramp 
up after a stop, e.g. at injection. Fast sextupole 
measurements in the LHC and Tevatron main bending 
dipole magnets have shown that the sextupole snap-back 
can be described well (within a standard deviation of 0.02 
units) by an exponential fitting of the type [9]:  
 

b3
snap−back t( )= ∆b3e

−
I t( )−I injection

∆I    (28) 
 
where b3

snap-back(t) is the sextupole change during the snap-
back, I(t) is the instantaneous value of the current, initially 
at the injection value Iinj. The snap-back amplitude ∆b3 
and the current change ∆I are the two fitting constants. In 
addition, the fitting parameters are strongly correlated, 
and once represented in a scatter plot ∆b3 vs. ∆I they lie 
on a straight line [9]: 
 
∆b3 = ξ3∆I  (29) 
 
where ξ3 is a constant. Based on this observation the snap-
back can be modeled by an expression of the type given 
above so that: 

Bm
snap−back = ∆bmIe

−
I t( )−I inj

∆I  (30) 
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TF snap−back = ∆bme
−

I t( )−I inj

∆I  (31) 
 

cn
snap−back = ∆cn

decaye
−

I t( )−I inj

∆I  (32) 
 
where the characteristic current change ∆I is given by: 
 

∆I = ∆cn

ξn

 (33). 

 

Displacement Contributions 
In general contributions due to coil deformation under 

electromagnetic loads are proportional to the Lorentz 
forces, and appear as non linear field errors in the field. In 
the first approximation, in case the constraints do not 
change during powering these errors are proportional to 
the square of the current. Unfortunately depending on the 
real dynamics of the structure, complex situations of 
establishment or loss of contact may arise. The contacts 
may be established or not depending on the amount of 
pre-stress in the structure. In general, the changes in field 
and field errors can only be obtained in detail using 
simulation codes that take into account the actual 
deformation for the specific pre-load case and hence 
reconstruct the change in the field.  
 

Since the effect of the coil movement has been found to 
be small it can be approximated by a term proportional to 
the Lorentz force, i.e.:  
 

Bm
deformation = δm

I
Inom

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3

 (34) 

 
which is normalized so that the coefficient δm corresponds 
to the effect measured at nominal current Inom. For the 
transfer function:  
 
 TF deformation = δm

I
Inom

2
 (35) 

 
Similarly for the field errors;  

 

cn
deformation = δn

I
Inom

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

 (36). 

 

Coupling Currents Contribution  
Eddy currents are induced in loops among the 

transposed superconducting filaments in the strands, or 
among the strands in the cables. These currents couple the 
filaments and strands electromagnetically and are often 
referred to as coupling currents. They have time constants 
in the range of few milliseconds (among filaments in the 

strands) to few hundreds of milliseconds (among strands 
in cables). Therefore, for the typical ramp times to be 
used in the LHC operation, they can be assumed to be 
fully developed in the resistive regime, that is all 
inductive and shielding effects have already decayed. We 
also neglect the field dependence of the total resistance of 
the coupling current loops.  
 

With this assumption, the contribution of coupling 
currents to main field and field errors is linear with the 
ramp-rate. We write therefore for the main field 
component that:  
 

dt
dIB m

MAC
m 10

1θ=   (37) 

where the normalization factor is used to refer the 
contribution to the nominal ramp-rate of the LHC (10 
A/s). The contribution to the transfer function is: 
 

dt
dI

I
I

TF inj
m

MAC

10
θ=  (38) 

 
while for the normalized harmonics: 
 

cn
MAC = θm

Iinj

10 I
dI
dt

 (39). 

 
Note that normalization is such that the multiplication 

constant corresponds to the effect of the coupling currents 
at injection current and nominal ramp-rate in both cases.  
 

Residual Magnetization Contributions 
After powering at nominal current, some components 

(e.g. the iron yoke) can be permanently magnetized. This 
is particularly important in warm conditions and small 
excitations. The contribution to the main field can be 
written as:  
 

m
residual
mB ρ=  (40) 

 
for the transfer function:  
 

I
TF mresidual ρ

=  (41) 

 
and for the field errors:  
 
Cn

residual = ρn  (42). 
 

Note that in the above expression, non-normalized 
harmonics are used because one cannot use the 
assumption of a dominating main field with respect to the 
residual field.  
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EXAMPLES 
Although a practical implementation of the field model 

is not yet available, we are testing the prediction 
capability of each single part separately to assess the 
potential. To give a flavour for the use of the field model, 
we present here two examples of application: the 
calculation of the current for injection in sector 7-8, and 
the forecast of the sextupole error along a standard LHC 
cycle.  
 

Injection setting for sector 7-8 
For beam injection it is necessary to determine the 

current (I) in the MB of a sector to obtain a given 
integrated field Bdl. As most magnets of sector 7-8 have 
been allocated [10] and prepared for installation, we can 
try and produce a forecast of the current to be used for 
injection test, to be performed late in 2006. The prediction 
is based on 109 out of 154 magnets, of which 65 have 
been cold measured and 44 only have warm 
measurements. The algorithm used is the following:  
 
1) For the magnets missing cold data, we have: 
 a) retrieved warm transfer function TFw

M
 for each 

magnet M in the sector 
b) apply the warm-cold scaling fTF and offset •TF(I) to 

obtain the cold transfer function TFc
M

  
 
TFc

M = fTFTFw
M + ∆TF  (43). 

 
2) Integrate the transfer function TFc

M
 for each magnet M 

in the sector:  
 
TFc = TFc

M

M
∑  (44). 

 
3) Compute the current by inversion of the (non-linear) 

TFc(I):  
 

I = TFc I( )( )−1
Bdl  (45). 

 
The warm-cold correlation, as computed in July 2004 

on approximately 100 magnets, has a stable offset (at 
injection •TF =4.0 units, at nominal •TF =-54.2 
units). The standard deviation is also acceptable and 
comparable with the expected measurement accuracy (at 
injection σ = 5.5 units; at nominal σ = 5.0 units). 
The result is that the transfer function in the two apertures 
is:  
 

  Beam 1 Beam 2 
TF78 (T m / kA) 10.1175 10.1171 

 
Hence the current in sector 7-8 for an injection at 

450GeV from SPS (1189.2 T m) is: 
 

I78 = 763.25 A. 

 

Sextupole error forecast 
We have performed a second exercise to predict the 

sextupole field error during an LHC ramp. In this case 
only the dominating error componets were considered, i.e. 
the geometric error, the DC magnetization from persistent 
currents, decay and snap-back and iron saturation. The 
results are reported in Fig. 4, and show that the modelling 
can be quite effective. The maximum error is found 
during the ramp, and is of the order of 0.2 units @ 17 mm 
(i.e. below 10 units of chromaticity). As a word of caveat, 
this test was performed for a standard excitation cycle, 
and does not take into account the variability of decay and 
snap-back from cycle to cycle, that tends to increase the 
error.  
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Figure 4:  Modelling of the nornal sextupole during a 
simulated LHC cycle. The maximum error is of the order 
of 0.2 units @ 17 mm during the ramp. 

 

A SKETCH OF A DESIGN 
We have described in some details the elements of the 

machinery that can provide a forecast of current ramps 
and corrections. In Fig. 5 we show a starting point for the 
design of this machinery. At the present status we plan to 
have a program that contains the laws detailed previously 
for the interpolation of the field and field errors. By 
definition, the scaling coefficients for the interpolating 
functions are the results of the analysis of warm and cold 
magnetic measurements. These can be retrieved from the 
databases where they are stored. The query will be made 
based on the slot position in the tunnel, using the 
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installation sequence to make the correspondence between 
the tunnel slot (relevant for the beam) and the magnet (the 
index in the magnetic databases).  
 

The databases queries are lengthy and complex, and 
require time to be exectuted. This would not be acceptable 
for a real time control algorithm. For this reason the link 
to databases will be substituted by a data extraction once 
the machine will be completely allocated (and installed), 
in a medium size file that will represent the magnetic field 
properties of the LHC. Detaching from databases will 
allow for converting the program into the fast tool 
required for LHC control.  
 

CONCLUSION 
From the arguments presented above, one appreciates 

the fact that warm and cold magnetic measurements can 
be integrally used for the commissioning and operation of 
the LHC. The magnet setting and correction forecast is a 
manageable non-linear problem but requires as from 
today:  

• Extension to magnets other than dipoles; 
• Cross-calibration between measurements to 

decrease the error margins on the settings (like the 
transfer function for MQ and high order correctors); 

• Special measurements to have a sufficient sample 
for interpolation and extrapolation of field errors 
(e.g. b3 at injection and ramp) [11]; 

• Studies to establish a physical description of the 
magnetic field and the errors to provide a robust 
model for control (e.g. corrector hysteresis). 

 
The typical prediction error expected for the dipole 

modelling has been characterized in detail, and is given in 

Fig. 6 (top). One of the main parameters, the chromaticy, 
will be uncertain at the 20 to 40 units level. The 
coefficients of the model are however not frozen, and can 
be adapted based on the results of beam measurements or 
special measurement campaigns on spare and left-over 
magnets, performed on the cryogenic benches used for 
series tests. This will allow to refine the prediction 
capability, typically on a time basis of few months, up to a 
level that we estimate in Tab. 2. In this case the fill-to-fill 
reproducibility is expected to be as good as 10 units of 
chromaticity.  
 

 
 

 
Figure 6:  Expected uncertainty on the prediction of 
dipole field errors at the beginning of operation (top) and 
after recalibration through comparison with beam-based 
measurements or using data from magnetic measurements 
performed on spare magnets during LHC operation 
(bottom). 

 

 
Figure 5:  A conceptual design for the “thing”, the LHC Magnetic Field Model, showing the relation to information 
stored in databases and the processing of the request for a field forecast. 
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For the time being our focus is on realising a first 
version of the field model for tracking studies. The design 
will be kept compatible with the requirements for control 
(fast operation, real-time response).  
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