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Abstract 
This contribution aims at presenting fundamental principles and theoretical 
tools for a comprehensive study and systematic analysis of generic power 
conversion circuits. The contents are divided into three main parts. Part I 
presents a new graphical technique for the state analysis of the so-called 
‘fundamental LCEI type circuit’, which is found in sequences of many 
practical power converter topologies. In Part II, this graphical technique is 
used within a straightforward sequence-by-sequence algorithm to study the 
intrinsic functionality of power converters and to describe the evolution in 
time of their main quantities (state variables) and the conditions governing 
switch commutations and state transitions. Part III is devoted to power 
converter modelling techniques, a major advance for stable control loop 
design. 

1 Introduction 
In many practical situations the power electronics engineer is confronted with the hard task of 
understanding how a given new electronic circuit works. This is for instance the case in some ‘reverse 
engineering’ studies or when someone not familiar with new power conversion topologies wishes to 
acquire a deep understanding thereof. A typical problem can be stated as follows: how to define the 
status evolution of the switches over time and to draw the waveforms of the voltages and currents 
across the main elements in a power electronic circuit, consisting of DC sources (voltage and/or 
current) reactive passive components (inductances/capacitors) and electronic semiconductor switches 
(thyristors, diodes, IGBTs). Answering this kind of question is of course mandatory not only to 
understand the circuit functionality but also for dimensioning purposes. During the 1970s the LEEI 
laboratory in Toulouse, France, developed a technique to systematically analyse any power conversion 
circuit, based on a sequence-by-sequence approach. The study starts with a known or ‘guessed’ 
sequence, corresponding to the state of a particular set of switches. For that sequence, different steps 
(up to six as shown later on) will be followed in the specific order given by a flowchart. This 
procedure includes, for instance, in one step a test of compatibility to find out if a given sequence 
really exists, i.e., if all the voltages and currents on the switches are compatible with the initial ‘guess’ 
and no contradictions occur (such as voltage and current sources found to be short circuited and open 
circuited, respectively; diodes found in open state with a positive voltage or thyristors with negative 
currents). In another step, the evolution of the so-called ‘state variables’ of the circuit is obtained, 
leading to the step in which the events that may result in a switch to the next sequence will be 
considered. All the steps are based on simple logical procedures and require little mathematical 
calculations except for the one corresponding to the computation of the evolution of the state variables 
with time. Fortunately, for the majority of the practical cases, each sequence corresponds either to a 
first- or second-order circuit which can be modelled by a differential equation of the first or second 
order, taking into account the right initial conditions. In order to further simplify this task, LEEI has 
developed a graphical method called ‘phase plane representation’. Any second-order circuit can 
therefore be represented graphically by using this method. An elementary second-order circuit, called 
LCEI circuit, formed by one DC voltage source, one DC current source, one inductor and one 
capacitor, can be found in many practical sequences and its thorough study is essential for 
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understanding the basics of any phase plane representation. Part I of this paper deals with the 
theoretical background of the phase plane representation of the elementary LCEI circuit. Several 
practical examples of direct use of this technique will also be given. In Part II, after a brief 
classification of the different methods of study of power converters, the sequential analytical method 
will be presented including the flowchart of the systematic analysis. A case study, based on a thyristor 
chopper circuit, will be developed as an example of the proposed methodology. 

Another important issue in power converter studies is the techniques for modelling them. Most 
of the power converters need feedback-based control loops. In order to analyse the stability of these 
loops and to tune the controllers’ parameters to obtain the best possible performance, a mathematical 
model of the power converter circuit has to be developed. The particularity of power converter 
modelling is that the system mixes time-discrete and continuous signals. For instance, the output of the 
plant may be the voltage across a capacitor (continuous variable), whereas the input of the plant may 
be the control signal of one transistor (digital signal). In part III, a generic modelling technique (called 
‘state space modelling’) will be explained in detail using state space theory. An alternative, more 
direct and practical method, entitled ‘equivalent average circuit modelling’ will also be presented. 

Part I – The phase plane representation 

2 Forced state and free state in first- and second-order circuits—recall 

2.1 State variables 

Any linear system behaviour can be described by a set of main variables, whose values directly define 
its state. Any other quantities of the system can be expressed as a function of these state variables and 
system inputs. 

An important property of state variables is that they cannot change value instantaneously. They 
have to be continuous functions in time. In any electrical circuit, the state variables are 

– the currents flowing through each independent inductor, 

– the voltages across each independent capacitor. 

Of course, if two inductors are connected in series in one branch of the circuit, this leads to only 
one state variable because the current flowing through the first inductor is the same as the current 
flowing through the second one. Likewise, the direct connection of two capacitors in parallel results in 
a single state variable as the voltage across both units has to be the same. 

2.2 Response of a linear system 

Any linear system (electrical circuit) can be described mathematically by a set of differential 
equations. For instance, the elementary LCEI circuit shown in Fig. 1 can be described by the 
differential equation system shown on the right. 

  
Fig. 1: LCEI type circuit with the corresponding differential equation system 
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The full response of any linear system in the time domain R(t) is equal to the sum of the free- 
state response RΦ(t) and of the forced state response RF(t) assuming the forced-state response is finite: 

 F( ) ( ) ( ) .R t R t R tΦ= +  (1) 

In the case of an electrical circuit: 

– The free-state response RΦ(t) is the response of the circuit without excitation sources, i.e., 
voltage sources short-circuited and current sources in open circuit. 

– The forced-state response RF(t) is the response of the circuit in steady state. If all the 
excitation sources are DC, all capacitors in the circuit behave like open circuits and all 
inductors like short circuits. 

In the case of the LCEI circuit of Fig. 1, the free-state and the forced-state solutions of the 
differential equation with regard to the variable vc(t) are, respectively: 

 ( ) cos( )Cv t A tωΦ = ,   CF ( )v t Const E= = . (2) 

The full response is therefore: 

 C CΦ CF( ) ( ) ( ) cos( )v t v t v t A t Eω= + = + . (3) 

The constant A in Eq. (3) can be computed from the initial conditions statement: 

 C CΦ CF(0) (0) (0)v v v A E= + = +      ⇒        C (0)A v E= −  (4) 

where vc(0) is the initial charge of the capacitor. 

In any linear circuit, the order of the system (circuit) is equal to the total count of state variables, 
which is the sum of independent capacitors and of independent inductors. 

In Fig. 2 several examples of linear circuit responses with the equivalent circuits giving either 
the free state or the forced state responses are shown. 
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Fig. 2: Examples of free-state and forced-state circuit responses 
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In the first case, the free state corresponds to a series LC circuit, yielding a second-order circuit 
with oscillating response. In the second case, the configuration of the free-state circuit is the same, 
therefore giving also a second-order circuit with oscillating response. 

However, in the third case, the free-state circuit leads to both the capacitor and the inductor 
being in short circuit. Thus it is a non-oscillating circuit, and the response in time is quite easy to 
obtain by direct inspection: the current in the inductor increases linearly with time and the voltage 
across the capacitor is constant and equal to E. 

The fourth case is also a non-oscillating circuit because the free-state circuit has an inductor in 
short circuit and a capacitor in open circuit. It is also obvious to determine the time domain response. 

3 Response of a LCEI type circuit to voltage and current steps: the phase plane 
method 

The objective is now to study the response of the elementary LCEI circuit with two DC excitation 
sources (voltage, E, and current, I) and given initial conditions for the inductor current, iL0, and 
capacitor voltage, vc0. At first all power losses in the circuit will be neglected. In practice, there are 
losses especially in the internal resistance of the inductor. However, the time constant of the inductor 
is often so much larger than the switching period that the damping effect can be neglected at the 
switching period scale. Damping effect due to losses will be discussed later in Section 3.3. 

3.1 Theoretical analysis: state equations 

The free-state and steady-state circuits of the LCEI circuit are shown in Fig. 3: 
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Fig. 3: Free-state and forced-state circuits of the LCEI circuit 

The forced-state response, [iLF(t), vCF(t)], can be directly expressed by: 

 LF

CF

( )
( )

i t I
v t E

=⎧
⎨ =⎩

 . (5) 

The free-state circuit can be modelled by the following differential equations: 

 

Cφ
Lφ
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d
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⎧
=⎪⎪

⎨
⎪ = −⎪⎩

 (6) 

which can be merged into the following one: 
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The solution to this equation system, giving the free-state response of the circuit, [iLΦ(t), vCΦ(t)], 
is: 

 Lφ

Cφ

( ) cos( ) sin( )
( ) cos( ) sin( )
i t A t B t

v t BL t AL t
ω ω

ω ω ω ω
= +⎧⎪

⎨ = − +⎪⎩
 (8) 

with ω being the resonance frequency of the circuit, 1/ LCω = . 

The full response [iL(t), vC(t)] is therefore: 

 L

C

( ) cos( ) sin( )
( ) cos( ) sin( )
i t I A t B t

v t E B L t A L t
ω ω

ω ω ω ω
= + +⎧

⎨ = − +⎩
 . (9) 

Constants A and B depend on the initial conditions of the circuit, and can be obtained by 
evaluating Eq. (9) for t = 0: 

 L L0

C C0

(0)
(0)
i i I A

v v E B Lω
= = +⎧

⎨ = = −⎩
 ;      

L0

C0
C0( )

A i I

E v CB E v
L Lω

= −⎧
⎪
⎨ −

= = −⎪
⎩

 . (10) 

By replacing A and B from Eq. (10) in Eq. (9), the full response equation is obtained: 

 
L L0 C0

C C0 L0

( ) ( )cos( ) ( )sin( )

( ) ( )cos( ) ( )sin( )

Ci t I i I t v E t
L

Lv t E v E t i I t
C

ω ω

ω ω

⎧
= + − − −⎪

⎪
⎨
⎪ = + − + −⎪⎩

 . (11) 

It is shown below that, with the appropriate scale, Eq. (11) gives, in polar coordinates, the 
equation of a circle. In order to demonstrate this statement, the following expression is derived from 
Eq. (11): 

 

( ) ( )22
L C

2 2 2 2
L0 L0 C0 C0

2 2 2 2
C0 C0 L0 L0

2 2
L0 C0

( ) ( )

( ) cos ( ) 2 ( )( )cos( )sin( ) ( ) sin ( )

( ) cos ( ) 2 ( )( )cos( )sin( ) ( ) sin ( )

( ) ( ) .

L i t I v t E
C

L Li I t i I v E t t v E t
C C

L Lv E t v E i I t t i I t
C C

L i I v E
C

ω ω ω ω

ω ω ω ω

− + − =

= − − − − + − +

+ − + − − + − =

= − + −

 (12) 

Or, which is equivalent:  

 ( )
2

2 2 2
L C L0 C0( ) ( ) ( ) ( )L L Li t I v t E i I v E

C C C
⎛ ⎞

− + − = − + −⎜ ⎟⎜ ⎟
⎝ ⎠

. (13) 

Considering the following relationships: 
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= =

= =
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Eq. (13) can be re-written according to (14): 

 

y

x

yF

xF

r2

x0

y0

( ) ( )2 2 2 2
F F 0 F 0 F( ) ( )y y x x y y x x− + − = − + −  . (14) 

This corresponds to the equation of a circle in Cartesian coordinates. The circle is centred in the 
point given by the forced state response (xF, yF) and it passes through the point corresponding to the 
initial conditions (x0, y0). Note that in order to obtain a circle, the ordinate (inductor current) has to be 
multiplied by the scale factor /L C . 

3.2 Graphical representation 

In conclusion, the LCEI type circuit generates an oscillating response which can be represented 
graphically in the phase plane ( L /i L C  versus Cv ) as follows (see Fig. 4): 

     
Fig. 4: Phase plane representation of the LCEI elementary circuit 

– First, the point corresponding to the forced state is plotted in the graph (symbol x). In this 
case the point is E for the abscissas and /L C I  for the ordinates; 

– Second, the point corresponding to the initial conditions (symbol 0). is plotted: 0Cv for the 
abscissas and L0/L Ci  for the ordinates; 

– Third, a circle is centred on the forced state point and drawn through the initial conditions 
point. The rotation is clockwise. Note that for this sense of rotation to be correct, the 
capacitor voltage has to be in the same sense as the DC voltage source E, and the inductor 
current in the same sense as the DC current source I (current and voltage arrows oriented tip-
to-tip, see Fig. 4). 
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The waveforms for the inductor current and the capacitor voltage in the time domain can be 
obtained directly from the phase plane representation (see Fig. 5). 
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Fig. 5: Obtaining the waveforms in the time domain 

As the point M moves clockwise around the circle with constant speed ω, 

– the inductor current corresponds to the points in the ordinate; 

– the voltage across the capacitor to the points in the abscissa. 

The resulting waveforms are sinusoids with average values equal to the steady state current and 
voltages, and with a frequency equal to the oscillation frequency of the circuit, 1/ LCω = . 

Some waveform quantities, such as the maximum and minimum values of inductor current and 
capacitor voltage can also be directly computed from the phase plane: 

oscillating magnitude (radius), 2 2
C0 L0( ) ( )Lr v E i I

C
= − + −  (15) 

 maximum inductor current, 2 2
L C0 L0max

( ) ( )C Ci I r I v E i I
L L

= + = + − + −  (16) 

 minimum inductor current, 2 2
L C0 L0min

( ) ( )C Ci I r I v E i I
L L

= − = − − + −  (17) 

 maximum capacitor voltage, 2 2
C C0 L0max

( ) ( )Lv E r E v E i I
C

= + = + − + −  (18) 

 minimum capacitor voltage, 2 2
C C0 L0min

( ) ( )Lv E r E v E i I
C

= − = − − + −  . (19) 

3.3 Response of a LCEI circuit with damping effect 

If the damping effect has to be considered, owing for instance to the internal resistance in series of the 
inductance, the differential equation given by (7) now becomes: 
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The corresponding full response, in the case of a light damping effect ( / 1/R L LC<< ), is given 
by: 

 
[ ]
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C 3 4

( ) cos( ) sin( )
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i t I e C t C t

v t E e C t C t
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α

ω ω
ω ω

−

−

⎧ = + +⎪
⎨

= + +⎪⎩
 (21) 

where C1, C2, C3, and C4 are constants which depend on the initial conditions. 

The phase plane representation of Eq. (21) gives a spiral instead of a circle (see Fig. 6). 

 
Fig. 6: Phase plane representation of the elementary LCEI circuit in case of ‘light’ damping 

The spiral starts at the initial conditions point, runs clockwise, initially along the undamped 
circle, and converges towards the steady state operating point. 

3.4 Practical examples 

In this subsection, some simple examples of phase plane representations of power electronic circuits, 
including power switches, are given. 

3.4.1 Charging a capacitor from a DC voltage source 

The following circuit can be used to charge a capacitor with a limited current peak, from a constant 
DC voltage source (see Fig. 7). The charging process can be launched by firing the thyristor. 
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Fig. 7: Capacitor charger circuit with associated free-state and steady-state circuits, when the thyristor is ‘on’ 

The phase plane corresponding to the charging process is depicted in Fig. 8, together with the 
plots of the voltage and current waveforms in the time domain. 

The forced state point coordinates, corresponding to the steady-state circuit of Fig. 7, are (E, 0) 
because the DC current source is non-existent. Assuming the capacitor initially fully discharged 
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(thyristor ‘off’), the initial conditions point is (0, 0). These points are marked in the phase plane of Fig. 
8 by x and o, respectively. 

Once the thyristor is fired, the operating point moves clockwise in a half circle centred at point 
(E, 0) and starting at point (0, 0). The capacitor voltage increases up to twice the value of the DC 
voltage source E. The inductor current starts by increasing, reaches the maximum value once the 
capacitor voltage is equal to E, and decreases back to zero at the end of the charging period. 
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t
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Fig. 8: Phase plane representation and time domain waveforms during the charge period, assuming zero initial 
conditions (thyristor off, capacitor fully discharged) 

3.4.2 Thyristor rectifier with free-wheel thyristor CROWBAR 

This example corresponds to a practical case study at CERN, the SPS main power converters. In many 
bipolar power converters, the three-phase network is rectified by a thyristor full bridge. The voltage 
ripple resulting from this rectification process is smoothed by a passive LC filter. Because the supply 
is supposed to be bipolar, free-wheeling diodes can not be used to discharge the magnet current in case 
of any converter’s fault. Instead, a thyristor is typically used, mounted according to a free-wheel 
thyristor (FWT) CROWBAR configuration. For the sake of simplicity and reliability, this thyristor is 
often triggered by a BOD (break-over diode) circuit connected between the anode and the gate. The 
idea is that when the voltage across the FWT reaches the break over voltage the BOD collapses, 
injecting a current pulse in the gate which fires the thyristor. This thyristor switches ‘off’ naturally, 
once its current reaches zero. 

Most of the time, the CROWBAR system is placed as shown in Fig. 9, case 1. However, in this 
case a high current spike is generated in the capacitor when the FWT switches on. In order to bound 
this spike, the FWT can be located as shown in case 2, thus the capacitor current due to the discharge 
is limited by the filtering inductor at no extra cost. 
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Fig. 9: Free-Wheel Thyristor (FWT) CROWBAR system to discharge the magnet in case of power converter 
failure: two different possible locations 

It was observed that when the main network shuts down, the FWT occasionally switches ‘on’ 
and ‘off’ periodically (BANG BANG mode), instead of switching ‘on’ and remaining so until the 
magnet is discharged. 
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What is the explanation for this phenomenon and when does it occur? This question can be 
easily answered by using the phase plane representation. 

In case 2, after the mains network shuts down, the last two conducting thyristors of the rectifier 
bridge remain ‘on’ for a short time. At this point, the FWT is still ‘off’. The equivalent circuit with its 
free state and forced (or steady) state sub circuits is shown in Fig. 10. 
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Fig. 10: Equivalent circuit after mains network shutdown; free-state and forced- (or steady-) state subcircuits 

The forced state point is (0, /L C I ) and, assuming the initial voltage on the capacitor is equal 
to vBR0, the initial conditions point is therefore (vBR0, /L CI ). The circuit response is oscillating, 
therefore corresponding to part of a circle in the phase plane. 
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Fig. 11: Phase plane and waveforms in the time domain. Deviations from circle represent a light damping effect. 

As shown in Fig. 11, once the inductor current reaches zero, both the rectifier bridge thyristors 
switch ‘off’ (gating signals are inhibited after mains network shutdown detection), and because the 
capacitor voltage remains positive, the FWT remains ‘off’. The magnet current, which is considered to 
be constant at this time scale, will then flow through the capacitor. The inductor current is then zero 
and the capacitor voltage decreases linearly in time and becomes negative (straight line in the phase 
plane). Once the voltage reaches the break-over voltage of the BOD in the negative sense (–vBOD), the 
FWT will be triggered ‘on’. The free-state and forced-state circuits are the same as the former ones, as 
the FWT is in parallel with the rectifier bridge. The operating point follows another part of a new 
circle, cantered in (0, /L CI ) and starting in the new initial conditions point (–vBOD, 0). 

Once the inductor current reaches zero again, the FWT switches ‘off’, and the process is 
repeated several times until the magnet is discharged. 

The voltage and currents in the time domain can be directly obtained from the phase plane, by 
employing the process depicted in Fig. 5. 

As can be seen from the phase plane, the above-mentioned process takes place only if the 
magnet current is low enough for the rectifier bridge thyristors  to switch off once the inductor current 
reaches zero (condition A in Fig. 12). If the magnet current is high enough, the inductor current 
remains always positive and therefore the two last conducting rectifier bridge thyristors will assure the 
full discharge of the magnet. This case (identified in Fig. 12 by condition B) may be destructive for 
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those thyristors which are not dimensioned to resist the full magnet discharge, while starting with the 
high junction temperature, resulting from their previous normal operation. 
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Fig. 12: Two possible conditions for magnet discharging 

In summary: 

Condition A (as explained above), BR0 /v L CI> : 

The rectifier bridge thyristors switch ‘off’. The FWT assures the magnet discharge in BANG-
BANG mode. The maximum inductor current, maximum capacitor voltage and oscillating frequency 
can be expressed, in this order and neglecting damping effect, by the following equations: 

 2 2
BODmaxL

Ci I I v
L

≈ + +  (22) 

 2 2
C BODmax

Lv I v
C

≈ +  (23) 

 BOD21 Cvt
I

≈  ;     
BOD

/2 2 tan I L Ct a LC
v

π
⎡ ⎤⎛ ⎞

≈ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 ;     OSC

1
1 2

f
t t

=
+

 . (24) 

Condition B, BR0 /v L CI<  

The rectifier bridge thyristors remain switched ‘on’ and assure full magnet discharge. The FWT 
never switches ‘on’ because it remains short circuited by the rectifier bridge thyristors. 

Part II – Methods of study of power converters 

4 Classification of the methods of study 
Different methodologies apply to the study, analysis, simulation, or functional understanding of power 
converter circuits. Some of them are well suited to approximate quick engineering understanding and 
dimensioning, others are more oriented toward detailed simulation purposes. One possible 
classification is briefly presented below. 
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4.1 Analytical methods 

These methods are based on the mathematical modelling of the circuit by a set of differential 
equations. Once the differential equations system is defined for a certain state of the power switches 
(sequence), the response of the circuit can be obtained by solving the differential equations system, 
taking into account the correct initial conditions of the state variables (inductor currents, capacitor 
voltages), which correspond to the values obtained at the end of the former sequence. 

4.2 Graphical representations 

This method consists in direct utilization of pre-computed look-up-tables, abacus, characteristics plots 
in p.u. units, etc. 

4.3 Graphical/analytical methods: the phase plane 

This is a mixture of the above two methods. It corresponds to the application of mathematical 
differential equations, supported by a graphical approach (like, for instance, time-domain waveform 
drawing) or tool (like the phase plane representation). 

4.4 Simulation methods 

These are based on specific computer software and CAD tools for complex analog and digital circuitry 
simulation. Some examples are: PSPICE, SABER, MATHLAB/SIMULINK, SIMPLORER, and 
PSIM. 

This category of methods can be divided into two sub-groups. 

4.4.1 Functional based methods 

The power converter is considered as a ‘black-box’: only the input/output relationship or function is 
taken into account as a block diagram. No internal behaviour is analysed. This method presupposes 
that the output depends on the input variables only. It is not valid, for instance, in discontinuous mode, 
because in this case the output also depends on the internal state variables. 

4.4.2 Sequential analytical methods 

The converter operation is broken down into different sequences. In each sequence, all the power 
switches remain in the same state so that an equivalent linear circuit can be redrawn by replacing 
closed and opened switches by short circuits and open circuits, respectively. The method consists 
therefore in studying, in parallel, each individual sequence and the transition conditions between 
sequences. This sub-group can again be broken down into two classes: the methods without a priori 
knowledge where all possible sequences of the power converter are extensively analysed, and the 
methods with a priori knowledge in which additional information, often acquired by experience, is 
taken into account to discard some sequences that are a priori known to be unfeasible. This last 
method, which is one of the most efficient for numerous practical cases, will be detailed below. 

5 Sequential analytical methods 

5.1 The principle 

The principle is based on the description of the power converter in a sequence-by-sequence approach. 
In order to accomplish this procedure, two major tasks have to be accomplished in parallel for each 
sequence: 

a) analysing the conditions for a sequence transition; 
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b) computing the state evolutions during each sequence. 

A sequence transition (task a) is accomplished whenever one or several switches change state. 

Examples of conditions for switching ‘on’ events are: diodes: VT > 0; thyristors: VT > 0 and gate 
signal ‘on’; transistors: gate signal ‘on’. 

Examples of conditions for switching ‘off’ events are: diodes and thyristors: IT = 0; transistors: 
gate signal ‘off’. 

In order to accomplish task b, the voltages across each independent capacitor and the current in 
each independent inductor have to be derived by any analytical/graphical method. The initial 
conditions are the same as the final state values of the former sequence. 

Knowing the expressions for these state variables, the expressions for the currents on each 
closed switch and for the voltage across each open switch can be derived. 

At this stage, the analysis flow leads back to task a where the conditions for transition to the 
next sequence are evaluated. 

5.2 Flowchart for a systematic analysis — remarks 

The full procedure can be systematized by the following flowchart where each operation is done in the 
order indicated. 

For a given sequence 

1. Search for the order of the system 

As explained in Section 2.2, the order of the system is equal to the number of state variables, 
which is the sum of independent capacitors and independent inductors. 

2. Compute the expressions for: 

voltage across open switches and current flowing through closed switches, as a function of 
sources values and state variables (even though the expressions of the latter are not known at 
this stage). 

Remarks: 

1. The current flowing through each switch is taken as positive when it flows in the sense of the 
semiconductor conduction. 

2. The voltage across each switch is taken in the opposite sense of the current 
flow (reception convention). 

3. Each switch at closed state is considered as a voltage source, VD = Δ (pn 
junction directly polarized). 

3. Tests of compatibility: check for the existence of the given sequence 

For all switches except the last one changing state, check for instance that the voltage across 
each open diode is negative, the current flowing through each closed switch is positive. 

Remarks: 

1. A state change of a switch may induce an instantaneous change on another switch, leading to several 
switching events at the same instant. 

2. This new switching event produces another sequence. 

3. A new test of compatibility has to be performed in order to find the stable sequence. 

vD

iD

DT

vT

iT

+

+
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4. Compute the expressions for the state variables 

Find the solution of the equation system in forced and free states, taking as initial conditions the 
final conditions of the former sequence. In the case of LCEI type circuits, the phase plane 
representation (as will be seen in the next example) is an extremely powerful tool. It avoids 
finding the analytical equations at each point in time, by instead just drawing the curves in the 
phase plane. 

5. Check for the events that may generate a switching 

Types of events leading to a possible sequence transition are 

Switches with natural switching: 

natural turning off: current on the switch at closed state = 0; 

natural turning on: voltage across the switch at open state ≥ 0. 

Switches with forced switching: 

forced turning off: current on the switch at closed state > 0 & gate signal ‘off’; 

forced turning on: voltage across the switch at open state > 0 & gate signal ‘on’. 

6. Selection of the event leading to a sequence transition 

Find the first event occurring among those listed in point 5. 

This task often demands deep thought and knowledge of the system operating conditions. 

5.3 Choice of the first sequence 

In any problem of circuit analysis, the first question often asked is “Where to start?” In some cases, a 
poor choice of first sequence may lead to a ‘divergent’ result in the circuit analysis (turn-around). This 
is the case of circuits where initial conditions for a steady state cycle are not obvious to determine: 
they depend on the way transient operation behaves, pre-charging procedures, etc. 

However, when the process starts with a ‘good sequence’, then the former algorithm leads, step-
by-step, directly to the end of the study, without any possibility for errors like missing sequence or 
deadlocks. 

This is the only part of the algorithm which is not fully automatic and where some prior 
knowledge or feeling about the circuit can be tremendously helpful. 

It is not possible to systematically define rules for this starting point. However, there are some 
practical rules for choosing the first sequence, which result in consistency of the analysis and 
convergence: 

1. choose a sequence where the load is connected to the source or (active phase); 

2. choose a sequence corresponding to a free-wheeling state; 

3. choose a sequence corresponding to a discontinuous conduction state. 

E
Ild

T

D

T on => D off ; instantaneously
T off => D on ; instantaneously

T on and D on: inexistent sequence
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In some cases, one of these rules is initially applied and if any mismatch occurs later, others are 
tried. 

5.4 Example: study of a thyristor chopper 

C
E

L

vC iL TP
TADA

DP
Rld
Lld

ild
vld

                  

TPg

TAg

t

t  
Fig. 13: Thyristor chopper circuit and firing signals 

The example of the power electronics circuit shown in Fig. 13 illustrates the principle of the method. It 
is called a thyristor chopper because it generates a chopped voltage from a constant DC source E with 
a variable average value. The thyristor TP is fired ‘on’ when the gate signal TPg is applied and it is 
switched ‘off’ once the auxiliary thyristor TA is fired ‘on’ by the signal TAg. The analysis procedure 
given by the flowchart of Section 5.2 is described sequence-by-sequence below. The time domain 
waveforms of the main variables are drawn further on Fig. 14. 

Sequence 1 
For the initial sequence, an active phase is considered (TP ‘on’ and DP ‘off’) and the voltage across the 
capacitor vC is assumed to be negative. 

E

vC

iL

Ild vDP

iTPvDA vTA

 

1) Search for the order of the system 
LC circuit is open ⇒ No evolution of the state variables 

2) Voltages & currents on semiconductors 
TA Cv v= − ;   DA Cv v= + ;   DPv E= − ;   TP ldi I=  

3) Test of compatibility 
DA 0v < ;   DP 0v < ;   TP 0i > ;   TA (   )0 no gate signalv >   

Seq. OK 

4) Evolution of state variables 
No evolution 

5) Events that may generate a switching 
C TA0 0v v< ⇒ > ⇒ TA switches ‘on’ if gate signal applied 

6) The event leading to a sequence transition 
TA switches ‘on’ when a gate signal is applied 
Final condition: C C0v v= ;  L 0i =  

Note: 
In (3) the voltage across DP is negative. Because vC < 0, the voltage across DA is also negative. The 
current flowing through the closed thyristor TP is positive. The voltage across the open thyristor TA is 
positive, but no gate signal is applied yet. The sequence exists. 
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Sequence 2 (TA has switched ‘on’) 

E

vC

iL

Ild vDP

iTPvDA iTA

 
FreeS

ForcedS
vCF  

LiC
L

Cv
vC0

ldI
C
L

vC1

 

1) Search for the order of the system 
Free-state circuit of 2nd order ⇒ Circle in the phase plane 

2) Voltages & currents on semiconductors 

TA Li i= ;   DAv = −Δ ;   DPv E= − ;   TP ld Li I i= −  

3) Test of compatibility 

DA 0v < ;   DP 0v < ;   TP 0i > ;   Seq. OK 

4) Evolution of state variables 
Circle: Centre @ (vCF, iLF) = (0, 0);  
Starting point @ (vC0; iL0) = (vC0, 0) 

5) Events that may generate a switching 
TA may switch off if iTA = 0 => iL = 0; DA and DP keep off; 
TP may switch off if iTP = 0 => iL=Ild 

6) The event leading to a sequence transition 
TP switches ‘off’ before TA 

Final condition: C C1 L ld ; v v i I= =  

Note: 
In (3) the sequence exists because the voltages across all open diodes are negative and the current flowing 
through the closed thyristor TP is positive. Note that no evaluation is made for TA because it is the last switch 
changing state (see explanation of task 3 in Section 5.2). 

Sequence 3 (TP has switched ‘off’) 

E

vC

iL

Ild vDP

vTPvDA iTA

 
FreeS

 
 

LiC
L

Cv
vC0

ldI
C
L

vC1

 

1) Search for the order of the system 
Free-state circuit in open loop ⇒ straight line in the phase plane 

2) Voltages & currents on semiconductors 

TA L ldi i I= = ;   DAv = −Δ ;   DP C L Cv E v v E v= − + + = − + ;   

TP C L Cv v v v= + =  

3) Test of compatibility 

DA 0v < ;   DP C1 0v E v= − + < ;   TA L ld 0i i I= = > ;   Seq. OK 

4) Evolution of state variables 
Straight line: iL = Ild = Cst ; vC(t) = Ild/C*t + vC1 

5) Events that may generate a switching 
TA keeps on; DA keeps off; DP switches on if vC > E ; 
TP switches on if vC > 0 and gate signal applied 

6) The event leading to a sequence transition 
TP must not switch on (lost of control); DP switches ‘on’ when vC > E 

Final condition: Cv E= ;   L ldi I=  

 

C. DE ALMEIDA MARTINS

118



 

Note: 
In (1) the capacitor is charged with constant current (load current).In (3) the sequence exists because the 
voltages across all open diodes are negative and the current flowing through the closed thyristor TA is positive. 
No evaluation of TP.In (6) the TP must not be switched on at this stage to avoid loss of control. TP can be 
switched on again when the transient state of the circuit is completely finished. 

Sequence 4 (DP has switched ‘on’) 

E

vC

iL

Ild iDP

vTPvDA iTA

 
FreeS

ForcedS
E

vCF

Ild

iLF

 

LiC
L

Cv
vC0

ldI
C
L

vC1 E

 

1) Search for the order of the system 
Free-state circuit of 2nd order ⇒ Circle in the phase plane 

2) Voltages & currents on semiconductors 

TA Li i= ;   DAv = −Δ ;   DP ld Li I i= − ;   TPv E=  

3) Test of compatibility 

DA 0v < ;   TA L 0i i= > ;   TP (   )0 no gate signalv E= > ;    
Seq. OK 

4) Evolution of state variables 
Circle: (vCF, iLF) = (E, 0); (vC0, iL0) = (E, Ild) 

5) Events that may generate a switching 
TA switches off if iL = 0;  DA keeps off;  DP switches off if iL = Ild 
TP switches on if gating signal applied 

6) The event leading to a sequence transition 
TP must not switch on (lost of control); TA switches ‘off’ before DP 
Final condition: C ld L/ ; 0v E I L C i= + =  

Sequence 4a (TA has switched ‘off’) 

E

vC

iL

Ild iDP

vTPvDA vTA

 

LiC
L

Cv
vC0

ldI
C
L

vC1 E

 

1) Search for the order of the system 
LC circuit is open ⇒ No evolution of the state variables 

2) Voltages & currents on semiconductors 

TA Cv E v= − ;   DA Cv v E= − ;   DP ldi I= ;   TPv E=  

3) Test of compatibility 

DA C 0v v E= − > ;  TP (   )0 no gate signalv E= > ; DP 0i > ; 
Seq. not OK 
 
The voltage across diode DA is positive. 
This sequence has no physical existence 
(DA switches on at the same time TA switches off).  
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Sequence 5 (DA has switched ‘on’) 

E

vC

iL

Ild iDP

vTPiDA vTA

 
 

FreeS

ForcedS
E

vCF

Ild

iLF

 
 

LiC
L

Cv
vC0

ldI
C
L

vC1 E

 

1) Search for the order of the system 
Free-state circuit of 2nd order ⇒ Circle in the phase plane 

2) Voltages & currents on semiconductors 

TAv = −Δ ;   DA Li i= − ;   DP ld Li I i= − ;   TPv E=  

3) Test of compatibility 

TA 0v < ;   DP 0i > ;   TP (   )0 no gate signalv > ;    
Seq. OK 

4) Evolution of state variables 
Circle: (vCF, iLF) = (E, 0); (vC0; iL0) = ld(  / , 0)E I L C+  

5) Events that may generate a switching 
TA keeps off; DA switches off if iL = 0; DP switches off if iL = Ild 
TP switches on if gating signal applied 

6) The event leading to a sequence transition 
TP must not switch on (loss of control); DA switches ‘off’ before DP. 

Final condition: C ld L/ ; 0v E I L C i= − = . 

Sequence 6 (DA has switched ‘off’) 

E

vC

iL

Ild iDP

vTPvDA vTA

 

1) Search for the order of the system 
LC circuit is open ⇒ No evolutions of the state variables; 

2) Voltages & currents on semiconductors 

TA Cv E v= − ;   DA Cv v E= − ;   DP ldi I= ;   TPv E=  

3) Test of compatibility 

TA (   )0 no gate signalv > ;   DP 0i > ;   TP (   )0 no gate signalv > ; 
Seq. OK 

4) Evolution of state variables 
No evolution 

5) Events that may generate a switching 
TA switches on if gate signal; DA keeps off; DP keeps on; 
TP switches on if gate signal applied 

6) The event leading to a sequence transition 
TA must not switch on (loss of control); TP switches on with gate 
signal. 

Final condition: C ld L/ ; 0v E I L C i= − = . 
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Sequence 6a (TP has switched ‘on’) 

E

vC

iL

Ild iDP

iTPvDA vTA

 
 
 
 

LiC
L

Cv
vC0

ldI
C
L

vC1 E

 

1) Search for the order of the system 
LC circuit is open ⇒ No evolutions of the state variables 

2) Voltages & currents on semiconductors 

TA Cv v= − ;   DA Cv v= ;   DP ld CCi I I= − ;   TP CCi I=  
CC     I short circuit current of E=  

3) Test of compatibility 

DA 0 v > ;   TA 0v < ;   DP 0i < ;   Seq. not OK 
 

Voltage across diode DA is positive 
⇒ DA switches ‘on’ immediately 
Current on diode DP is negative 
⇒ DP switches ‘off’ immediately 
 
This sequence has no physical existence 
(Once TP switches ‘on’; DP switches ‘off’ and DA switches on) 

Sequence 7 (TP has switched ‘on’; DP has switched ‘off’; DA has switched ‘on’) 

E

vC

iL

Ild vDP

iTPiDA vTA

 
FreeS

ForcedS

vCF

iL

 

LiC
L

Cv
vC0

ldI
C
L

vC1 E

 

1) Search for the order of the system 
Free-state circuit of 2nd order ⇒ Circle in the phase plane 

2) Voltages & currents on semiconductors 

TAv = −Δ ;   DA Li i= − ;   DPv E= − ;   TP ld Li I i= −  

3) Test of compatibility 

TA 0v < ;   DP 0v < ;   Seq. OK 

4) Evolution of state variables 
Circle: CF LF( , ) (0,0)v i = ;  C0 L0 ld( ;  ) (  / , 0)v i E I L C= −  

5) Events that may generate a switching 
TA keeps off;  DA switches off if  iL = 0;  DP keeps off 
TP switches off if iL = Ild 

6) The event leading to a sequence transition 
DA switches ‘off’ before TP 

Final condition: C ld L(  / ); 0v E I L C i= − − =  

 

The complete phase plane and time domain waveforms are shown in Fig. 14. Each part of the 
phase plane path is identified by the corresponding sequence number. 
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LiC
L

Cv
vC0 vC1 E

1 2
3

4

5

6

7

ldI
C
L

ldI
C
LE −

ldI
C
LE +

  

T Pg

T Ag

t

t

v C
t

iL t

v T P
t

v T A

t

i T P

t

iD P

t

v ld

t

2 3 4 5 6 17  
Fig. 14: Phase plane representation and time domain waveforms 

As shown in Fig. 14, at the beginning of the cycle the current on the inductor is zero and the 
capacitor is charged at the initial negative voltage C0 ld/v E L CI= − +  (sequence 1). Once TP is fired 
the cycle starts with sequence 2. Voltage vC decreases in absolute value while iL increases to reach Ild, 
following a sine wave. In sequence 3, iL remains constant and equal to Ild, while vC increases linearly 
in time to reach E. In sequences 4 and 5, iL decreases down to zero following a cosine function in time. 
Voltage vC increases and then decreases following a sine wave with offset E. Once iL reaches zero 
(sequence 6), the chopper is definitely at the ‘on’ state. The auxiliary capacitor is charged with a 
positive voltage ld/E L C I−  and ready to block TP during the second part of the cycle (sequence 6). 
This second part starts when the auxiliary thyristor TA is triggered (sequence 7). The inductor current 
iL increases in the negative sense following a sine wave, whereas vC decreases following a cosine 
function. The sequence and cycle end when iL reaches zero. Once the waveforms of the state variables 
iL and vC are known, it is very easy to compute all the other waveforms from the equations that have 
been derived within each sequence. 

Part III – Modelling power converters for control loop design 
In this part we overview some techniques for power converter modelling, the objective being to 
establish the transfer function between the input, usually a duty-cycle signal, and the output (i.e. output 
voltage, current, etc.). Any switch mode power converter is hybrid system: thus electronic switches 
with discrete time behaviour are mixed with passive devices like capacitors and inductors which have 
continuous time behaviour (capacitor voltages and inductor currents cannot change value 
instantaneously). In control theory semantics, the power converter can be classified as an actuator 
delivering power to a load by acting on a reference signal. The reference signal is analog, the output 
variable to be controlled is also analog, but the internal behaviour of the power converter as an 
actuator is mixed digital and analog. How to cope with this peculiarity is explained below. 
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6 Modelling techniques for power converters 

6.1 The purpose: control oriented modelling 

The power converter is considered as an actuator delivering an output quantity, y(t)—load voltage or 
current—as a function of an input signal, u(t) —duty-cycle, firing angle—directly linked to the control 
of the electronic switches. Several external perturbations, p(t) —mains disturbances, sensors noise—
may have an influence on the dynamic behaviour (Fig. 15). 

 

power 
converter

u(t) y(t)

p(t)                                  

u(t)

y(t)

p(t)

residual oscillations

static
error

 
 

Fig. 15: Open loop system 

 

 

power 
converter

u(t) y(t)

p(t)

controller

sensors

r(t)

ym(t)

           

u(t)

y(t)

p(t)
 

 

Fig. 16: Closed loop system 

 

Power converters are usually integrated in closed loop schemes (Fig. 16) in order to improve the 
dynamic response of the global system to an input command, r(t), to avoid or reduce residual 
oscillations and static errors and to improve immunity to external perturbations. Application of 
modelling techniques is therefore mandatory for an efficient analysis of the loop stability and 
calculation of the controllers’ parameters, in order to tune the system to achieve the specified dynamic 
performances. 

6.2 State space models 

In the state space domain, the system is represented by the following state equations: 

 
⎩
⎨
⎧

+=
+=

DuCxy
BuAxx

 (25) 

where: u is the input reference vector, x the state vector, y the output variables vector, and A,B,C,D are 
the constant matrices. 

As an example, the boost DC/DC converter of Fig. 17 is considered. Afterwards, the method is 
generalized. 
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L
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iL

SC

α

α
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Ton α=Ton/Ts (duty-cycle)

SC  
Fig. 17: Boost DC/DC converter 

The objective of the present case study is to establish the transfer function between the transistor 
duty cycle α and the output voltage vC in Laplace domain. For the sake of simplicity, the inductor 
current iL will be considered always positive (continuous mode operation). In this case, the circuit 
operation can be decomposed into only two sequences: sequence 1, where transistor T is closed and 
diode D is open, and sequence 2, where transistor T is open and diode D is closed. The state space 
representation is shown below, for each sequence. 

Sequence 1, duration αTS: 

T C RE

L
vc

iL

Sequence (1)  

CL
C

dd ;   
d d

viE L v RC
t t

= = −  

E
L

v
i

RCv
i

C

L

C

L
⎥
⎦

⎤
⎢
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⎡
+⎥

⎦

⎤
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⎡
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⎤
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⎣

⎡
−=⎥

⎦
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Sequence 2, duration (1-α)TS: 

D

C RE

L
vc

iL

Sequence (2)  

C CL
C L

dd ;   
d d

v viE L v i C
t t R

= + = +  

E
L

v
i
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C

L

v
i

C

L

C

L
⎥
⎦

⎤
⎢
⎣

⎡
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⎦

⎤
⎢
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⎡
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−
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⎡
0
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/10
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⎩
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⎧

+=
+=

uDxCy
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22  

If the output vector y is supposed to be the output voltage vC then C 1 2 [0,  1];  y v C C= ⇒ = = . 

The next step is to solve the differential equation system over a switching period, in order to 
extract the state vector x. 

Because u(t) = constant = E, the integration of the first state space equation yields: 

 
( )

0
1

( ) (0)

                     ( ) (0) ( ) .

t
At A t

At At

x Ax Bu x t e x e B Ed

x t e x A e I B E

τ τ−

−

= + ⇒ = + ⋅

⇒ = + − ⋅

∫  (26) 
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Fig. 18: State variable evolution at the switching period scale 

By applying Eq. (26) to the present example, the state space vector is computed at each 
transition instant of one period as follows: 

 
1 S 1 S

2 S 2 S

1
S 1 1

(1 ) (1 )1
S S 2 2

( ) (0) ( )

( ) ( ) ( )

A T A T

A T A T

x T e x A e I B E

x T e x T A e I B E

α α

α α

α
α

−

− −−

⎧ = + −⎪
⎨

= + −⎪⎩
 , 

or: 

 S 1 1

S 2 S 2

( ) (0)
( ) ( )
x T F x G E

x T F x T G E
α

α
= +⎧

⎨ = +⎩
         with    

1 S 1 S

2 S 2 S

1
1 1 1 1

(1 ) (1 )1
2 2 2 2

;   ( )

;   ( )

A T A T

A T A T

F e G A e I B E

F e G A e I B E

α α

α α

−

− −−

= = −

= = −
 (27) 

where x(0), x(αTS), x(TS) are the state vector, respectively, at the beginning of the switching period, at 
the instant of sequence transition, and at the end of the switching period (Fig. 18). 

By substituting the first equation of (27) into the second one, a unique equation giving the state 
vector at each sampling period is obtained: 

 
S 2 1 1 2

2 1 2 1 2

S

( ) ( (0) )
         (0) ( )

( ) (0)

x T F F x G E G E
F F x F G G E

x T Fx GE

= + +
= + +
= +

       with    21212 , GGFG FFF +==  . (28) 

Matrices F and G contain terms with exponential matrices. They can be further simplified by 
approximating the exponential to the first order. This approximation is valid if the state variable time 
constants are larger compared to the switching period (at least 3 times). 

 
1 S

2 S

2
1 S

1 S

2
(1 ) 2 S

2 S

( ) ...
2!

( (1 ) )(1 ) ...
2!

A T

A T

A Te I A T

A Te I A T

α

α

αα

αα−

≈ + + +

−≈ + − + +
 

By neglecting the second-order terms: 

 
1 S

2 S

1 S
(1 )

2 S(1 )

A T

A T

e I A T

e I A T

α

α

α
α−

≈ +

≈ + −
 . (29) 
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By substituting, first (29) into (27) and then (27) into (28), and neglecting second-order terms in 
2

ST , the following result for matrices F and G is obtained: 

 
2 S 1 S 1 S 2 S

1 1
2 S 1 1 S 1 2 2 S 2

S 1 S 2

( (1 ) ) ( ) (1 )

( (1 ) ) ( ( ) ) ( (1 ) )
    (1 ) .

F I A T I A T I A T A T

G I A T A I A T I B A I A T I B
T B E T B E

α α α α
α α α

α α

− −

≈ + − ⋅ + = + + −

≈ + − ⋅ + − ⋅ + + − − ⋅
= + −

 (30) 

By substituting (30) into (28), the discrete-time state equation giving the state variables at the 
end of each switching period is obtained as follows: 

 S

1 S 2 S 1 S 2 S

( ) (0)
         ( (1 ) ) (0) ( (1 ) ) .
x T Fx GE

I A T A T x B T B T Eα α α α
= + =
= + + − + + −

 (31) 

Applying a linear approximation to the state variables within a switching period (Fig. 19), the 
continuous-time state equation can be derived from Eq. (31) by linear interpolation: 

 [ ] [ ]S
1 2 1 2 S

( ) (0) (1 ) (0) (1 )
S A B

x T xx A A x B B T E
T

α α α α−
= = + − + + − . (32) 

TsTs
exact waveform

averaged waveform (first 
order approximation)

 
Fig. 19: State variable averaging 

In general, any power converter with two sequences can be modelled in state space by the 
following state space equations: 

Averaged state space model 

 
x Ax B E
y Cx D E

= + ⋅⎧
⎨ = + ⋅⎩

  with  
⎩
⎨
⎧

−+=
−+=

)1(
)1(

21

21

αα
αα

BBB
AAA

  and  
⎩
⎨
⎧

−+=
−+=

)1(
)1(

21

21

αα
αα

DDD
CCC

 . (33) 

Rule for setting up the averaged state space model 

The matrix A of the global circuit is the sum of the matrices of the circuit corresponding 
to each sequence (A1 and A2), weighted by their ‘existence duration’. The same applies to 
matrices B, C, and D. 

Note, however that, according to the assumptions made above, this model can be applied only in 
the following conditions: 

a) the time constants of all state variables are significantly higher than the switching period; 

b) the dynamic behaviour of all state variables is not influenced by their harmonic content at 
switching frequency and higher terms. This is a consequence of the linear interpolation and 
averaging illustrated in Fig. 19. 
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Coming back to the former boost DC/DC converter example, matrices A1, B1, A2, B2 of the first 
equation of the state space system are recalled below: 

 1 1

0 0 1/
 ;    1 00

L
A B

RC

⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥− ⎣ ⎦⎢ ⎥⎣ ⎦

                 2 2

0 1/ 1/
 ;     1 01/

L L
A B

C
RC

−⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥− ⎣ ⎦⎢ ⎥⎣ ⎦

 . (34) 

Using the above rule, matrices A and B become: 

 

1 2

0 0 0 1/
  (1 )1 10 1/C

A A

L
A

RC RC
α α

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + −
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     

1 2

1/
0

B B

L
B

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 . (35) 

By applying Eq. (33), the first equation of the state space model is 

 (Averaged state space model for the boost DC/DC converter) 

 

10 (1 ) 1/
1 1 0

B

A

LLx x E

C RC

α

α

⎡ ⎤− −⎢ ⎥ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦−⎢ ⎥⎣ ⎦

 . (36) 

As can be seen, matrix A depends on α. This result, which applies to the majority of power 
converters, means that the system is non-linear. In order to study the system behaviour in the vicinity 
of a given operating point, a small-signal linear model will be derived. 

Small-signal linearization 

By assuming E to be constant, only x and α may vary with time: 

 
0 0

 is constant [ ( ) ]
ˆˆ     ;     

E E s E
x x x α α α

=
= + = +

 (37) 

where x0 and α0 are, respectively, the state vector and the duty cycle in steady state, for the given 
operating point; x̂  and α̂  are the small-signal quantities for the state vector and duty cycle, 
respectively. 

Computation of the DC operating point 

 1
0 0 0

( ) ( )

0 ( ) ( ) .

x A x B E

x x A B E

α α
α α−

= +

= ⇒ = − ⋅ ⋅
 (38) 

Linearization 

Because x  = f(x,α,E), /E = const, the small signal equation can be derived from Eq. (38), by 
partial derivation: 

 
0 0 0 0( , ) ( , )

ˆˆ ˆ
x x

f fx x
x α α

α
α

∂ ∂= +
∂ ∂

 . (39) 

By applying Eq. (39) to the former averaged state space model (33), one obtains: 
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[ ]

[ ]αα

αα

ˆ)()(ˆ)(ˆ

ˆ.)()(ˆ)(ˆ

00

00

210210

210210

DC

BA

EDDxCCxCy

EBBxAAxAx

−+−+=

−+−+=

 . (40) 

Note that in Eq. (39) the new input of the system becomes ˆ.α . 

Small-signal average state space model 

  
DxCy
BxAx

⎪⎩

⎪
⎨
⎧

+=
+=

α
α
ˆˆˆ
ˆˆˆ

00

00     with    
⎩
⎨
⎧

−+−==
−+−==

EDDxCCD    CC
EBBxAAB    AA
)()();(
)()();(

21021000

21021000

α
α

 . (41) 

By applying Laplace transformation to Eq. (41), the small signal-transfer functions are obtained 
as a result: 

 0 0 ˆˆ ˆ( ) ( ) ( )sx s A x s B sα= +     ⇒    
[ ] 1

0 0

1
0 0 0 0

ˆ( )
ˆ ( )

ˆ( ) ( )
ˆ ( )

x s sI A B
s

y s C sI A B D
s

α

α

−

−

⎧ = − ⋅⎪⎪
⎨
⎪ = − +
⎪⎩

 . (42) 

Small-signal average state space model of the boost DC/DC converter 

Coming back to the boost DC/DC converter, the DC operating point can be computed from 
Eq. (38), giving: 

20
01

0 0 0 2
0

0
0

11 1 (1 ) (1 )1/
( ) ( )

1 0 1(1 ) (1 ) 0
1

RLLC RC Lx A B E E E

C

α α
α α

α α
α

−

⎡ ⎤⎡ ⎤− − ⎢ ⎥⎢ ⎥ −⎡ ⎤ ⎢ ⎥= − ⋅ ⋅ = ⋅ ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥ ⎣ ⎦− − ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

 

 or: 
.

1
1

)1(
1

0
0

2
0

0

Ev

R
Ei

C

L

α

α

−
=

−
=

 (43) 

Fig. 20 shows the inductor current and capacitor voltage in steady state, as a function of the duty 
cycle. 
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Fig. 20: State variables versus duty cycle in steady state for the boost DC/DC converter 
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From Eq. (41): 

 0 0 ˆˆ ˆx A x B α= +     with    
0

0
0 0

0 2
0

110 (1 ) 1
       ;       

11 1(1 )
(1 )

E
LLA B

E
RCC RC

α α

α
α

⎡ ⎤⎡ ⎤− − ⎢ ⎥⎢ ⎥ −⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥ −− − ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

 . (44) 

Finally, the small signal transfer function, in Laplace, are derived from the first equation of (42): 

[ ] 0 01
0 0

2 2
0

2
0

1 2 1
(1 ) (1 )ˆ( ) 1

1 1ˆ( ) 1(1 ) 1
(1 )

E Es
L RCLx s sI A B

s E Ls s sRC LC LC R

α α
α α

α

−

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟− −⎝ ⎠⎢ ⎥= − ⋅ = ⎢ ⎥⎛ ⎞+ + − ⎢ ⎥−⎜ ⎟⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

 

which gives: 

 0 0

2 2
0

1 2 1
ˆ (1 ) (1 )( )

1 1ˆ( ) (1 )

L

E Es
L RCLi s

s s s
RC LC

α α
α α

⎛ ⎞
+⎜ ⎟− −⎝ ⎠=

+ + −
       and        

2
0

2 2
0

11
(1 )ˆ ( )

1 1ˆ( ) (1 )

C

E Ls
LC Rv s

s s s
RC LC

α
α α

⎛ ⎞
−⎜ ⎟−⎝ ⎠=

+ + −
 (45) 

6.3 Equivalent average circuit models 

Here we present a more straightforward and practical method to derive the state space model. It is an 
alternative method which gives, in the cases where it can be applied, the same results as the full 
mathematical approach. 

This method can be applied only if the following conditions are met: 

The time constants of all the state variables in the circuit are significantly higher (approximately 3 
times greater) than the switching period. 

The duration of all the sequences of the circuit are known and imposed only by the control signals of 
the electronic switches. Note that this condition is not met in cases where discontinuous conduction 
exists. Indeed, in these cases the duration of the sequence corresponding to the discontinuous 
conduction (all switches off) also depends on the values of the state variables. To illustrate this 
statement, note that discontinuous conduction often occurs at low inductor current levels but not at 
higher levels; thus the duration of this sequence, when it exists, depends on the average current level. 

As in state space models obtained by the full mathematical derivation, the dynamic behaviour of all 
state variables are not influenced by their harmonic contents at switching frequency and higher terms. 
This is a consequence of the linear interpolation and averaging illustrated in Fig. 19, which is also 
fundamental in this modelling technique. 

The principle of the method consists in replacing all the switches in the circuit by equivalent 
voltage or current sources in order to obtain an equivalent linear and time-continuous circuit. The 
equivalent circuit, free from all electronic switches, can therefore be modelled by any circuit theory 
technique and also in particular by state space. 

‘Recipe’ to obtain the equivalent average circuit 

1. Select any sequence of known duration. 

2. For that sequence, compute: 
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– the current through all closed switches as a function of state variables and/or source values; 

– the voltages across all open switches as a function of state variables and/or source values. 

3. Draw an equivalent circuit, by replacing: 

– the closed switches by their current pondered by the existence duration; 

– the open switches by their voltage sources pondered by the existence duration. 

Application to the BOOST converter 

By applying the above described ‘recipe’ to the circuit of Fig. 17, choosing sequence 1, the 
following equivalent circuit is obtained (Fig. 21): 

C RE

L

vC

iL
vC

iL

Sequence 1: - duration α               

C RE

L
vC

iL
αvC

- +

αiL

Sequence 1: - duration α  

Fig. 21: BOOST DC/DC converter circuit in sequence 1 and equivalent average circuit 

The transistor in closed state (see Fig. 17) was replaced by a current source whose value is the 
on-state transistor current (iL) multiplied by the sequence existence duration (α). The diode in open 
state (Fig. 17) is replaced by a voltage source whose value is the voltage across it (vC), again 
multiplied by the sequence duration. 

The equivalent average circuit can now be easily modelled by the following system of 
equations. 

 

L
C C

C C
L L

d
d .

d
d

iE L v v
t

v vi i C
t R

α

α

⎧ = − +⎪⎪
⎨
⎪ − = +
⎪⎩

 (46) 

If sequence 2 were chosen instead, the equivalent average circuit would be (Fig. 22): 

C RE

L

vC

iL
iL

vC

Sequence 2: - duration (1−α)            

C
RE

L

vC

iL
(1-α )iL

(1-α)vC

Sequence 2: - duration (1−α)

| +

 

Fig. 22: BOOST DC/DC converter circuit in sequence 2 and equivalent average circuit 

In this case, the open transistor is replaced by a voltage source with value equal to the voltage 
across its terminals multiplied by this sequence existence duration (1–α). In the same way, the closed 
diode is replaced by a current source with value equal to the current flowing through (iL) multiplied by 
the same sequence existence duration. 

This equivalent average circuit can also be easily modelled by the system of equations below: 
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L
C

C C
L

d (1 )
d

d(1 )
d

iE L v
t

v vi C
t R

α

α

⎧ = + −⎪⎪
⎨
⎪ − = +
⎪⎩

. (47) 

Note that the equation systems given by (46) and (47) are identical and can be modelled in state 
space by the following state space equation: 

 LL

CC

10 1/
1 1 0 u

Bxx

A

i Li L E
vv

C RC

α

α

−⎡ ⎤−⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ −⎢ ⎥⎣ ⎦

 . (48) 

The DC operating point can be computed from Eq. (49): 

 1
0 0 0( ) ( )x A B Eα α−= − ⋅ ⋅   ⇒  

2
L0 0

0
C0

0

1
(1 )

1
1

E
Ri

x
v

E

α

α

⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥−⎣ ⎦

 . (49) 

A small signal model can also be derived by linearization of the state equation around an 
operating point: 

constE
E),f(x,x

=
= α ;                  α

α αα

ˆˆˆ
),(),( 0000 xx

fx
x
fx

∂
∂+

∂
∂= ;              α

α
α

α

ˆˆ)(ˆ

0

0

0

0
)(

0

B
A

xAxAx
∂
∂+=  , 

 

or: 

 

0 0

0
0

0 2
0

110 (1 ) (1 )
ˆˆ ˆ

11 1(1 )
(1 )

A B

E
LLx x

E
RCC RC

α α
α

α
α

⎡ ⎤⎡ ⎤− − ⎢ ⎥⎢ ⎥ −⎢ ⎥= +⎢ ⎥
⎢ ⎥⎢ ⎥ −− − ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

 . (50) 

By applying the Laplace transformation to Eq. (50), the transfer functions between the input 
duty cycle and the state variables are obtained: 

[ ] 1
0 0

ˆ( )
ˆ ( )
x s sI A B

sα
−= − ⋅  

 0 0L

2 2
0

1 2 1
ˆ (1 ) (1 )( )

1 1ˆ( ) (1 )

E Es
L RCLi s

s s s
RC LC

α α
α α

⎛ ⎞
+⎜ ⎟− −⎝ ⎠=

+ + −
;              

2
0C

2 2
0

11
(1 )ˆ ( )

1 1ˆ( ) (1 )

E Ls
LC Rv s

s s s
RC LC

α
α α

⎛ ⎞
−⎜ ⎟−⎝ ⎠=

+ + −
 . ( 51 ) 

The expressions given by (51) are the same as the ones obtained with the state modelling 
approach based on the mathematical developments (45). 
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7 Conclusion 
The phase plane representation is a straightforward graphical tool for the analysis of power converters 
formed by sequences with up-to second-order circuits. The evolution of the state variables (inductor 
current and capacitor voltage) within a switching cycle can be easily drawn by following the specific 
set of rules described. The corresponding time domain waveforms can also be directly derived. 

This graphical tool is used within a sequential analytical method of study, in which the power 
converter circuit is decomposed into different sequences, each one corresponding to one configuration 
of states of the electronic switches. In each sequence, the state variables evolution in the phase plane is 
derived and the conditions for transition to another sequence are evaluated. By following the specified 
flowchart, any power converter can be analysed in a systematic approach, avoiding dead-locks and 
turn-arounds in the study flow and being sure that all possible sequences are considered. 

Two modelling techniques of power converters are presented: the first one, more general, is 
based on mathematical developments in the state space domain; the second one, more direct and 
practical, in which a linear and time-continuous equivalent average circuit is drawn. The validity 
assumptions of both techniques are presented and discussed. 
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