
UNDERSTANDING, MODELING AND IMPROVING THE
DEVELOPMENT OF COMPLEX PRODUCTS: METHOD AND STUDY

by

Bradley W. Rogers

B.S. 2003, Mechanical Engineering
Auburn University

Submitted to the Engineering Systems Division and the
MIT Sloan School of Management

in partial fulfillment of the requirements for the degrees of

Masters of Science in Engineering Systems
and

Masters of Business Administration

at the
Massachusetts Institute of Technology

June 2009.

© 2009 Massachusetts Institute of Technology. All Rights Reserved.

Signature of Author

Certified by

ARCHIVES

MASSACHUSETS iNS TE.
OF TECHNOLOGY

JUN 1 0 2009

LIBRARIES

May 8, 2009
Engineering Systems Division &

MI, Sloan School of Management

- , -

Debora Nightin ~l, Thesis Supervisor
Profe'sor of the Practice of

Aeronautics & Astronautics and of Engineering Systems Division

Certified by
Steven D. Eppinger, Thesis Supervisor

General Motors LFM Professor of Management
MIT Sloan School of Management

Accepted by
/ Nancy Leveson

Professor of Aeronautics & Astronautics and of Engineering Systems Division
Chair, Engineering Systems Division Education Committee

(Debbie Berechman
Executive Director of the MBA Program

MIT Sloan School of Management

Accepted by

This page has been intentionally left blank.

UNDERSTANDING, MODELING AND IMPROVING THE
DEVELOPMENT OF COMPLEX PRODUCTS: METHOD AND STUDY

by

Bradley W. Rogers

Submitted to the Engineering Systems Division and the
MIT Sloan School of Management

on May 8, 2009
in partial fulfillment of the requirements for the degrees of

Masters of Science in Engineering Systems
and

Masters of Business Administration

ABSTRACT

Development of new aerostructure designs frequently occurs through a complex process that is difficult to
understand and control. Tight requirements for weight, cost, strength, and aerodynamic behavior create
many interdependencies in the product design, which translate through to the design process. An
increasing fragmentation of the commercial aerospace industry has also added a dimension of complexity
to the process - outsourced component designs are often interdependent with in-house component
designs, resulting in frequently changing requirements for supplier components during the design
process.

This thesis offers an analysis of the product development processes of a first-tier aerostructures supplier,
Spirit AeroSystems. Although this host company provides the context for analysis, the method is meant
to be generally applicable to the development of any complex product.

The Design Structure Matrix (DSM) methodology is used to capture the required interaction between
tasks of the development of a propulsion structure for commercial aircraft. The task times, time
variations, work loads, interdependencies, likelihoods of rework, and learning curves are then quantified
and applied to a discrete-event Monte Carlo simulation model which outputs probabilistic completion time
and workload of the project. The model is then used to show how changing the customer requirements at
different points in the development cycle affect the cost and schedule of development. The failure modes
and effects analysis (FMEA) is applied to quantify risks and ensure proper control of their likelihoods and
consequences A holistic industry-level analysis provides insight into the complexities of developing an
interdependent product across multiple organizations. Potential recommendations to improve the
development process are outlined. Finally, the "Three Lens" methodology is applied to identify
implementation obstacles.

This paper builds upon product development process simulation theory by introducing process
independent externalities into the model to show how changing customer requirements may impact the
cost and schedule of development. It also proposes a new framework for optimal staffing based upon the
maturity of the customer requirements. Finally this paper shows that a disintegrated, sections-based
design process architecture, like that used for the Boeing 787, is sub-optimal for product development,
and it proposes a new architecture for developing aircraft.

Thesis Supervisors:
Steve Pryor - Director of Product Definition, Propulsion Structures & Systems, Spirit AeroSystems
Steven Eppinger - General Motors LFM Professor of Management, MIT Sloan School of Management
Deborah Nightingale - Professor of the Practice, Aeronautics & Astronautics and ESD, MIT

This page has been intentionally left blank.

TABLE OF CONTENTS

A BSTRA CT 3

TA BLE O F CO NTENTS 5

LIST O F FIG U R ES

ACKNOW LEDGEM ENTS.. ... 8

1. INTRO D UCTIO N 9

1 .1 O bje ctiv e .. 9
1.2 O utlin e 10
1.3 C ontext 10
1.4 Com pany O verview ... 11
1.5 Chapter Summary .. 12

2. DEVELOPING STRUCTURAL PROPULSION PRODUCTS .. 13

2.1 Propulsion Products Overview 13
2.2 Product Development Process Description 14
2.3 D esign P rogression .. 17
2.4 Functional Groups 18
2.5 Intellectual Property 20
2.6 C hapter Sum m ary 20

3. UNDERSTANDING AND MODELING PRODUCT DEVELOPMENT PROCESSES 21

3.1 Utility of a Product Development Process Model 21
3.2 Design Structure Matrix (DSM) ... 21
3.3 Discrete Event Simulation 23
3.4 Monte Carlo Simulation 24
3.5 Creation of a DSM-Based Simulation Model .. 24
3.6 Process Tasks ... 25
3.7 Task Performance and Interdependence Characteristics ... 26
3.8 Data Collection 27
3.9 Chapter Sum m ary 28

4. M O DEL DESCRIPTION30

4.1 Model Overview 30
4.2 Task Workload Distributions .. 30
4.3 Random Number Generation 30
4.4 Event Types 31
4.5 Next Immediate Event Determination 31
4.6 Human Resource Constraints 31
4.7 Learning Curves 32
4.8 Concurrency *2......... 32
4 .9 R ew o rk 33
4.10 Failure Modes 33
4.11 Convergence 33
4.12 Model Logic 33
4.13 Input & Output34
4.14 Chapter Summary 34

5. PRODUCT DEVELOPMENT PROCESS ANALYSIS .. 35

5.1 M odeling Inform ation Transfer 35

5.2 DSM Interpretation 35
5.3 Task C oupling A nalysis .. 39
5.4 Functional Group Analysis 43
5.5 Nominal Completion Time, Cost & Staff Levels44
5.6 Chapter Sum m ary 46

6. MANAGING DEVELOPMENT WITH CHANGING REQUIREMENTS 47

6.1 Source of Changing Requirements 47
6.2 Types of Change 47
6.3 Tim e D ependency 48
6.4 Externality Adjusted Completion Time, Cost & Staff Levels49
6.5 W asted Developm ent Effort .. 52
6.6 Creating a Robust Development Process ... 54
6 .7 C h a pte r S u m m a ry ... 5 5

7. M A NA G IN G R IS K .. 56

7.1 FM EA M ethodology Overview 56
7.2 Reducing Risk and Mitigating Failure Mode Effects 58
7.3 Chapter Sum m ary 59
8. PRODUCT DEVELOPMENT INTEGRATION IN THE AIRCRAFT INDUSTRY...............60
8.1 Increased Outsourced Development 60
8.2 Interdependent Design & Process Integration 60
8.3 Sections & Systems Architecture .. 61
8.4 M utating Requirem ents 62
8 .5 C o st o f C o n c u rre n cy .. 6 3
8.6 Chapter Sum m ary ... 63

9. IMPROVING PRODUCT DEVELOPMENT 64

9 .1 O v e rv ie w 6 4
9.2 Advancing Understanding of the Development Process 64
9.3 Integrating Interdependent Tasks 64
9.4 Managing for Change ... 66
9.5 Making the Process Robust to Change........................ 67
9.6 Capturing Intellectual Property ... 69
9.7 Architecting Product Development of Aircraft 70
9.8 Chapter Summary 71

10. IMPLEMENTING CHANGE IN AN ORGANIZATION ... 72

10.1 Three-Lens M ethodology 72
10.2 Structural Appropriateness 72
10.3 Political Alignment 72
10.4 Cultural Suitability 74
10.5 Chapter Sum m ary 75

11. C O N C L U S IO N 76

11.1 Key Learnings 76
1 1 .2 F u tu re W o rk 7 7
11.3 Final Remarks 78

APPENDIX A - MATLAB Code for Simulation Model 79

APPENDIX B - MATLAB Code for DSM Task "Network Distance" Measure 88

APPENDIX C - Binary DSM for Development Process of a Nacelle 89

B IB LIO G R A P HY 90

6

LIST OF FIGURES

Figure 1.1 - Spirit's Sales Breakdown 11
F ig ure 2 .1 - C uto ut N ace lle 13
Figure 2.2 - Commercial Airline Jet 13
Figure 2.3 - Business Jet 13
Figure 2.4 - Propulsion Product Architecture 14
Figure 2.5- Inter-Functional Information Flow in the Development Process...................... 16
Figure 2.6 - Complexity in Design and Stress Analysis Relationship.. 17
Figure 3.1 - Simple Example Process 22
Figure 3.2 - Binary DSM for Example Process .. 22
Figure 3.3 - Numeric DSM for Example Process 23
Figure 3.4 - Binary DSM for Development Process of a Nacelle.. 29
Figure 4.1 - Latin Hypercube Sampling Process 31
Figure 4.2 - Task Learning Curve 32
Figure 4.3 - Dependent Tasks with Varying Degrees of Concurrency 32
Figure 4.4 - High Level Model Logic 34
Figure 5.1 - Binary DSM for Development Process of a Nacelle................ 35
Figure 5.2 - Binary DSM for First Development Phase .. 36
Figure 5.3 - Product Architecture 37
Figure 5.4 - Design-Stress Relation................................ 37
Figure 5.5 - Binary DSM for Second Development Phase............................ 38
Figure 5.6 - M ajor Iteration Sources ... 38
Figure 5.7 - Binary DSM for Third Development Phase 39
Figure 5.8 -Ten Tasks Depending on the Most Other Tasks..................... 40
Figure 5.9 - Ten Tasks Upon Which the Most Other Tasks Depend 40
Figure 5.10 - Ten Tasks that Interface with the Most Other Tasks 40
Figure 5.11 - Ten Tasks Depending the Most on Other Tasks.. 41
Figure 5.12 - Ten Tasks Upon Which Other Tasks Depend the Most 41
Figure 5.13 - Ten Tasks that Exhibit the Most Input and Output Dependency............... 41
Figure 5.14 - Most Integrated Tasks by Network Distance 42
Figure 5.15 - Functional Info Exchange............................... 43
Figure 5.16 - Functional Group Interdependence 43
Figure 5.17 - Simulated Nominal Completion Time Distribution 44
Figure 5.18 - Simulated Nominal Required Workload Distribution 45
Figure 5.19 - Simulated Nominal Staff Levels Required by the Development Process 46
Figure 6.1 - Maximum Simulated Impact of a Single Major Requirements Change 48
Figure 6.2 - List of Simulated Requirements Changes... 49
Figure 6.3 - Simulated Completion Time Distribution with Typical External Change............................... 50
Figure 6.4 - Simulated Required Workload Distribution with Typical External Change 51
Figure 6.5 - Simulated Staff Level Requirements with Typical External Change 52
Figure 6.6 - Simple Staff Profile 53
Figure 6.7 - Simple Process Progress53
Figure 6.8 - Staff Profile with Change.................. 53
Figure 6.9 - Progress with Change 53
Figure 6.10 - Requirements Maturity with Change 53
Figure 6.11 - Potentially Wasted Effort............. 54
Figure 6.12 - Potentially W asted Progress... 54
Figure 6.13- Potential Necessity of High Staffing 54
Figure 6.14 - O ptim al Staffing Levels 54
Figure 8.1 - Effect of Outsourcing on Design Chain Architecture.....................................60
Figure 8.2 - Example Systems Integrator Design Chain .. 61
Figure 8.3 - Example Sections Architecture of a Business Jet 61
Figure 8.4 - Binary Product DSM for Example Sections Aircraft Architecture 62
Figure 8.5 - Effect of Sections Architecture on Systems Integrator Design Chain 63

ACKNOWLEDGEMENTS

First, I would like to thank the Leaders for Manufacturing partner companies for sponsoring my
fellowship at MIT and the LFM staff for their effort that enables the program to run seamlessly.

In particular, I would like to thank Spirit AeroSystems for sponsoring my internship, which
provides the context for this thesis, and for the opportunity to learn from their organization.
Specifically seven people were instrumental to me throughout my time at Spirit. My project
supervisor, Steve Pryor, was always helpful when I needed resources and always had time to
help me develop my ideas. My project champion, Alan Hermanson, was supportive and
encouraging throughout the internship. Tom Greenwood was the perfect sounding board,
offering great insight and helping me not to forget the big picture. Tom Scott offered perspective
into the company's technical capacities. Mark Hoffman provided an experienced perspective of
product development at Spirit. Bill Cook managed the internship arrangements. Finally LuAnn
Schaaf made certain that I was integrated and connected within the company and in Wichita.
Her friendship alone would have made the internship worthwhile. I greatly appreciate the
support of all those involved, which ensured that my experience would be fruitful and enjoyable.

My two thesis advisors, Steven Eppinger and Deborah Nightingale, also deserve much credit for
their contribution to this thesis, but also for laying the groundwork that this thesis relies upon.
Professor Eppinger is responsible for much of the advancement of the Design Structure Matrix
methodology. Professor Nightingale has provided much insight into process improvement in the
aerospace industry as co-director of the Lean Advancement Initiative.

I would like to thank several important friends who have profoundly impacted my life at different
stages. Although I've been told that one should pick his friends and not let them pick him, I
didn't pick any of these friends, and it has worked better than I could have imagined. My friends
who have most influenced my life are my brother Brian, Chris Clem, Jeremy Ellis, Derek Brown,
Sine Magassouba, Sean Sutton, Jeff McAulay and my fellow Peace Corps G6ers.

I would never have had such great opportunities in life were it not for the sacrifices and hard
work of my parents and grandparents. I would like to thank my Mamaw & Papaw Wells and my
Ma & Pa Rogers for their hard work that allowed me to grow up a family situation that was never
dictated by finances. I would also like to thank my parents. Dad and Dianne, you taught me the
value of honesty, work, and doing things right. Mom and Steve, you always encouraged me to
dream big and honestly believed that I could accomplish anything. Thank you all for giving me
such great opportunities throughout my life.

I would most importantly like to thank my wife, Gina, for her patience, understanding, and
unconditional support throughout this time back at school. I am nothing without you, and will
love you forever.

I would like to dedicate this thesis to my two beautiful children, Zade Wells Rogers & Mikaya
Scaletta Rogers. I pray for your health and happiness every day. May you learn from my
weaknesses and mistakes to become better than I. You can change the world if you try.

"Technical skill is mastery of complexity, while creativity is mastery of simplicity."
- Sir Erik Christopher Zeeman

1. INTRODUCTION

1.1 Objective
With the recent fragmentation of the commercial aircraft industry, many aircraft OEM's and
suppliers are rethinking their strategic positions to create value, capture value, and minimize
risk. Major aircraft OEM's Boeing and Airbus are increasingly outsourcing not only the supply of
manufactured components and assemblies, but also their design. Areas that were viewed as
simple cost centers when the industry was more vertically integrated have now become areas
for differentiation and competitive advantage. The churn caused by the industry's fragmentation
has created new opportunities to battle for strategic power. However, a side effect of this high
degree of outsourcing is increased complexity. The companies that best understand and
control these new complexities will be the most successful in a disintegrated aircraft industry.

Product development of aircraft has seen a great increase in complexity caused by the
fragmentation of the industry. Component and assembly designs that are intrinsically
interdependent were once collocated, but are now separate. Interdependent product
development efforts must now communicate through the opaque corporate veils of the
companies that own them - each company striving to optimize its own business and protect
itself. It is certainly true that the companies which can master product development in the wake
of industry fragmentation will stand to gain strategic power and better position themselves to
capture the value created throughout the design chain.

Given the substantial strategic significance of having a mastery of new product development, a
number of companies are taking a close look at their product development processes. Typically
improvement initiatives come in the form of IT solutions - some address engineering needs (i.e.
new CAD and CAE plug-ins and tools) and some address process flow (i.e. ERP) - but rarely
do these initiatives drastically improve the costs associated with product development or
improve the strategic standing of the company. Managers are still left with certain higher level
questions that must be answered in order to make drastic improvements to cost and completion
time:

* Are development process and roles optimally organized?
* Where should efforts for performance improvement be focused?
* What are the sources of risk in the development process, and how can they be controlled?
* What externalities frequently disrupt the process, and why are they so disruptive?
* What can be done to increase the robustness of the process to externalities?
* How can the process be structured to create and capture more value in the design chain?

The objective of this thesis is to offer a methodology to understand, model, and improve product
development processes and to apply this methodology in the context of a large tier-one aircraft
structures manufacturer. Although this research has a definitive focus on the development of
aircraft, the methodology is meant to be generally applicable to development of other complex
products as well.

Several analytical tools will be used. A design structure matrix (DSM) will be used to model the
process by quantifying the performance characteristics of individual process tasks as well as the
relationships and interdependencies between tasks. [14] [15] A discrete event simulation will be
used to understand the time-related effects of external disruptions such a changing customer
requirements. A Monte Carlo simulation will be used to predict probabilistically the outcome of a
development process based on uncertain characteristics of the process. This is useful for
understanding both the expected time for process completion and the level of risk in the

process, and will be the basis for process analysis. A failure modes and effects analysis
(FMEA) will be applied to highlight process risks and ensure measures are taken to reasonably
control them. A product DSM will be used to shed light on the complexities created by
designing an aircraft across multiple organizations according to sectional architecture rather
than systems architecture. Finally, potential recommendations will be presented and an
organization-based "Three Lens" analysis offered to evaluate them.

1.2 Outline
* Chapter 1 orients the reader to the purpose and context of this thesis.
* Chapter 2 describes the product development process as a basis for later analysis.
* Chapter 3 summarizes the process and tools used to model the development process.
* Chapter 4 describes how various characteristics of the product development process are

modeled, and how the simulation model itself is structured.
* Chapter 5 offers analysis of the nominal product development process through simple

network techniques and through simulating the process.
* Chapter 6 incorporates exogenous requirements changes into the process simulation, and

offers insight into managing for evolving requirements.
* Chapter 7 offers a tool for managing risk development process risk.
* Chapter 8 provides a holistic perspective of product development in the aircraft industry and

identifies architectural features that increase complexity and risk.
* Chapter 9 offers recommendations for improving the product development process.
* Chapter 10 offers an approach for identifying the organizational suitability of an initiative.
* Chapter 11 summarizes findings and proposes opportunities for future work.

1.3 Context
This research was performed during a six-month internship as part of collaborative work
between Spirit AeroSystems (Spirit) and the MIT Leaders for Manufacturing (LFM) Program.
LFM is a partnership between the MIT School of Engineering, the MIT Sloan School of
Management, and numerous large U.S. manufacturing firms. LFM's charter is to discover and
teach the principles that produce world-class leadership in manufacturing and operations.

The internship took place during the six months following Spirit's third year after its divestiture
from the Boeing Company. During Spirit's transition from having a cost center mentality to that
of value creation for the customer, the role of product development also began to transition.
Rather than simply serving as a means to defining the product for manufacturing, product
development had become a basis for competition in terms of quality, cost, schedule, and even
customer service. At the time of the internship, only one new propulsion product had been
completely developed. Although this product exceeded expectations for quality, there were
opportunities for improvement in the projects cost and schedule. Because of this, Spirit had
decided to revisit its product development processes looking for areas to improve performance
and for areas to restructure. This initiative served as the basis and context for the internship.

The internship was positioned at two levels within the company. At a grassroots level, the focus
was to find and implement specific improvements in product development of Spirit's Propulsion
Structures & Systems (PS&S) business unit. At the high level of the Chief Technology Office
(CTO), the focus was to find strategic improvements in product development that would apply
across Spirit's various business units.

This thesis is meant to synthesize the application of multiple tools to better understand, model
and improve the development of propulsion products in the context of Spirit AeroSystems, but
also in a manner applicable to development of complex products in general.

1.4 Company Overview
Spirit AeroSystems, Inc, headquartered in Wichita, Kansas, is the world's largest non-OEM
designer and manufacturer of aerostructures for commercial, military, and business/regional jet
aircraft. Spirit's people, capabilities, and technologies provide customers with products and
services in the business segments of fuselages, wings, propulsion products, and aftermarket
support. [12]

Spirit manufactures aerostructures for every Boeing commercial aircraft model currently in
production including the majority of the airframe content for Boeing's 737 jetliner. Spirit is also
the largest aerostructures supplier on Boeing's new 787 Dreamliner aircraft, which is now
scheduled to enter service in 2010.

With principal manufacturing facilities located in Prestwick, Scotland, Spirit Europe, the
companies wholly owned subsidiary, is the largest independent aerostructures supplier to
Airbus providing wing components for the A320, A330, A340, and A380 aircraft families.

Spirit AeroSystems was established in 2005 when Onex Corporation acquired most of Boeing's
Wichita-based, commercial aircraft product design and manufacturing capabilities. The
company's headquarters are in Wichita, Kansas, with additional operations in the US, UK, and
Malaysia. The facilities of Spirit's Wichita site have been producing airplanes and
aerostructures since the 1920's. In 2006, Spirit Europe was created as a fully owned subsidiary
through the purchase of BAE Aerostructures facility in Prestwick, Scotland. Spirit issued its first
public stock offering in November 2006.

For the fiscal year of 2007, Spirit reported a net sales of $3.86B which was a 20% increase from
the previous year. Net income in this year was $297M. Total assets of the company are valued
at $3.34B. [12] Figure 1.2 below illustrates the breakdown of 2007 financial performance by
business segment and major customer.

Revenue by Business Segment
Other

Wing ,

Fuselage
ropulsion

Income by Business Segment

Wing

Propulsion (

Sales by Customer
Other

Airbus

Fuselage

Figure 1.1 - Spirit's Sales Breakdown [12]

Spirit is organized according to several important characteristics, the combination of which
defines the relationships between internal groups. These characteristics are functional
hierarchy, business segment, geographic location, and customer.

At the top of Spirit's functional hierarchy, the business is arranged into five primary groups:
technology, operations, finance, sales & marketing, and human resources. Spirit's primary
businesses fall into four major segments: propulsion, fuselage, wing, and aftermarket support.

Spirit serves a variety of aircraft OEM customers. Since many of its customers are competitors,
Spirit takes significant precautions to ensure isolation of the intellectual property developed for
or owned by its customers. This inevitably leads to the formation of organizational groups
around particular customers. In particular, Spirit's strong roots in Boeing are still prevalent, so
the company has taken extreme measures to ensure proper isolation of intellectual property
between its two largest customers Boeing and Airbus. Spirit customers include: Boeing, Airbus,
Gulfstream, Cessna, Mitsubishi, Sikorsky, and others.

Locations in which Spirit owns and operates facilities include: Wichita, Kansas; Tulsa,
Oklahoma; McAlester, Oklahoma; Kinston, North Carolina; Prestwick, Scotland; Samlesbury,
England; and Subang Jaya, Malaysia.

This thesis is primarily focused on the part of the organization characterized by the following:
* Function: Product Development (within the Chief Technology Office)
* Business Segment: Propulsion Structures and Systems (PS&S)
* Location: Wichita, KS
* Customer Various

1.5 Chapter Summary
This first chapter discussed the purpose and context of this thesis. The objective is to offer a
methodology to understand, model, and improve product development processes and to apply
this methodology in the context of a large tier-one aircraft structures manufacturer, Spirit
AeroSystems. An overview of the company is presented to demonstrate the size and scope of
the business. Research was conducted based particularly on the development of propulsion
products, which is the focus of the following chapter.

2. DEVELOPING STRUCTURAL PROPULSION PRODUCTS

2.1 Propulsion Products Overview
Spirit currently produces two types of propulsion
products - pylons (frequently called struts) and
nacelles. The nacelle is comprised of seven
primary parts - inlet, apron, fan cowl, engine,
engine build up, nozzle, and thrust reverser.
Spirit does not design or manufacture the engine
itself. The pylon, which attaches the nacelle to
the wing, is comprised of three primary parts -
torque box, fairings, and systems. The design of
these components and assemblies usually takes
place in separate teams consisting of employees
who are more familiar with one assembly than the
others.

Figure 2.1 - Cutout Nacelle

Products can be further classified
according to the type of aircraft to which
they belong. Spirit's primary revenue is
derived from commercial airline jet
components. Typically, but not always,
the commercial airliners employ under-
wing nacelles attached with pylons.
These propulsion components are
physically large and serve as Spirit's
financial and technical base stemming
from the company's Boeing years.

Figure 2.2 - Commercial Airline Jet

As a means of diversification and growth after
the divestiture, Spirit began pursuing customers
in the market of business jets. Business jets are
typically smaller than commercial airliners,
generally supporting loads of less than 20
passengers. Business jets usually employ
fuselage mounted nacelles, in which case no
pylon is necessary. Diversification into this new
market has given Spirit access to a much larger
number of customers, where as there were only
two customers in the commercial airliner market
- Boeing and Airbus.

Figure 2.3 - Business Jet

The architecture of a propulsion product is represented in Figure 2.4 below. Interfaces between
components are typically defined in the industry as either "structural" or "systems." Structural
interfaces imply that some force or load is transmitted between the two components, thereby
creating a dependency in the mechanical structure of the two components. Systems interfaces
imply that either a signal or fluid is transmitted between the two components, thereby creating a
dependency in the operational states of the two components. A typical systems interface is
accomplished through connecting wires, cables, and tubing, whereas a structural interface is
typically accomplished through rivets, fasteners, and other means of mechanical attachment.

Wing or Fuselage

INPylon or Engine Mount

Engine & Thrust Reverser
Engine Build Up & Nozzle

Fan Cowl In et

Nacelle

Structural Interface
.Avctrm Intarftra*

Figure 2.4 - Propulsion Product Architecture

2.2 Product Development Process Description
Design of propulsion structures and systems at Spirit is understood to be a highly iterative,
functionally based process. The process begins with concept development, often called the
joint concept development phase (JCDP) since the initial conceptual design is meant to be
developed alongside the customer. Initial concept development begins early on taking into
account preliminary customer requirements and creating an engineering design that will likely
meet those requirements. During the JCDP, two other important processes are also taking
place. Program planning begins in which the budget, schedule, and resources requirements are
created. In addition, an integrated product team (IPT) is formed by selecting high performing
individuals from each of the functional groups that will participate in the development process.

The IPT will continually meet throughout the process to review the design and ensure that
nothing is being overlooked. Configuration management also begins in which the contractual
agreements are formed and accepted between Spirit and the customer. These agreements
specify attributes of the product, schedule, cost, and customer interaction that comprise the
scope of work for the product program. More colloquially to those participating in the
development process, configuration management refers to the customer's design specifications
that the product must meet. The JCDP usually takes place completely on Spirit's dime and is
viewed as the effort necessary to win a new product contract and iron out the scope of work.

At the finalization of JCDP, the detailed design begins. This is accomplished in teams of CAD
designers organized by sub-assemblies and components. The design of the product is
acknowledged as a highly iterative process. Many constraints are levied upon the design
including weight limits and stress safety limits, which inherently drive the design in opposite
directions. When considering manufacturability, supply chain limitations, and overall cost of the
product, it is often difficult and time consuming to converge upon a design solution that meets all
of the design constraints, let alone optimizes cost. The design group is typically the largest in a
product program.

In order to validate the design, a substantial amount of analysis is applied. Since tools typically
need to designed and fabricated in order to produce the designed components (especially
where composite materials are concerned), testing of physical hardware is replaced by testing
and analysis of simulated or modeled hardware. This modeling and analysis is performed by
two separate groups - stress and propulsion analysis. The stress group performs all analysis of
the capabilities of the design to safely handle various load scenarios and conditions. The
propulsion analysis group comprised of experts in all other analysis techniques necessary to
evaluate performance of the design ranging from computational fluid dynamic (CFD) methods to
fire control analysis. There are two primary goals for stress and propulsion analysis, which
sometimes impart different requirements on the groups. In addition to analyzing in order to
advance the design, these groups must also provide analysis documentation of the final design
in order to meet regulatory certification requirements. Usually, certification requires a more
detailed and complex analysis than would be required to advance the design, especially in the
early iterations. The stress group is typically the second largest on a product program at about
60% the size of the design group. The propulsion analysis group, however, is not typically
assigned to a product program and is treated more as a shared company resource. The only
significant link in the process between stress and propulsion analysis is that the resulting load
conditions and heat transfer coefficients generated by propulsion analysis need to be
incorporated into the stress engineers model. The iteration that takes place between the design
group and the analysis groups is labeled as "mechanical model loop" in Figure 2.5 below.

There are three groups that participate in the development process which are primarily
concerned with design of production capabilities and processes for the product. The tooling and
supply chain groups are involved early in the design process. These groups together make
decisions regarding whether to purchase/outsource component supply or to make components
in house. These groups interact with the design group early on in the form of high level
guidance regarding the feasibility and cost of producing a design. Later in the development
process as tool designs and supplier purchase orders are being created, these groups may
have more specific recommendations for design changes. Tooling and supply chain are both
treated as shared resources in the company, however, one or two members from each group
are typically assigned to a product program -in order to ensure that their concerns are being
considered in product design choices. The third group is the manufacturing engineering group,
which is responsible for the design of entire manufacturing process, incorporating the designs

and decisions made by tooling and supply chain. The number of manufacturing engineering
personnel on a product program is low initially, but increases near the end of the development
process as product and tooling designs become more mature.

Once the product design is finalized, the initial tools are built, and production processes have
been defined, fabrication of the initial product hardware begins. This initial prototype hardware
is usually outfitted with additional instrumentation to provide feedback from testing. The
prototype hardware is then integrated with the engine and tested. Testing is typically performed
by the engine manufacturer. It is not usually expected that testing will return negative results,
thus testing is viewed more as a final design quality check for certification rather than part of the
design improvement iteration. Once all necessary test hardware has been produced and the
design passes certification, operational production begins. During the initial phase of
production, the product platform is still considered to be in product development since
manufacture process improvement is frequent, but once manufacture is at a significant level of
maturity, the program is handed over to the operations business function.

Product Development Process

Developmentment Processoling &
supp*y Chain

There are also two major design reviews in the product development procss referred to as theConheld after the first iteration of detail Esign and stress analysis, Tsuch that tooling and supplyting
Propusion Certification

Figure 2.5 - Inter-Functional Information Flow in the Development Process

Theremanufacture also two major design reviews in theproduct development process referred to as the
preliminary design review (PDR) and the critical design somreview (CDR). The timing of these
design reviews is left somewhat to the discretionheof the program manager. Typically PDR is
held after the first iteration of detail design and stress analysis, such that tooling and supply
chain can indicate feasibility of the design moving forward. CDR is typically held when the
design is considered to be about 90% complete, such that tool designs, purchase orders, and
manufacture plans may also be evaluated. However, it is sometimes the case that CDR is held
earlier in the design's, progress since unforeseen changes sometimes occur afterwards which
impact many other aspects of the design.

2.3 Design Progression
Feedback is critical for the advancement of any design. In most industries, this feedback
typically comes from actual experience with the product. Incorporated into a product
development process, this is commonly referred to as the design-build-test feedback loop.
Prototypes can be made at a rough level of detail to provide this feedback early in the
development process and advance the design very rapidly.

Testing in the aerospace industry, however, does not come easily for two primary reasons.
Firstly, many of the components can not be easily prototyped since their size and uniqueness
require special tools which need to be developed concurrently with the product design.
Secondly, and most importantly, testing of an early stage design can lead to serious injury and
death. In years as recent as the 1960's, aircraft test pilots have had incredibly high death rates.

Due to these reasons, the Federal Aviation Administration (FAA) as well as most aircraft design
companies requires a substantial amount of design analysis before any hardware is built,
tested, or flown. For most aircraft OEM's and suppliers, the design-build-test loop for design
advancement has been replaced by a design-model-simulate approach. Elaborate numeric and
computational methodologies are used to simulate and predict the behavior and performance of
a design, rather than actually testing it in the real world. Much effort has been taken, however,
to validate simulation processes against historic test data.

For an aircraft structure, analysis must be performed to gain feedback regarding various failure
modes. In the case of propulsion structures, such failure modes may include the accumulation
of ice or outbreak of fire. However, the failure mode requiring the most analysis is the yielding
of the structure due to excessive loading. The method that addresses this failure mode is
referred to as stress analysis. Using this approach, loading conditions (or load scenarios) are
defined for the various operational states of an aircraft. Models are created which then translate
the assembly level load conditions into component level load conditions. Additional models are
then created which allow each designed component to be evaluated for its ability to withstand its
specified load criteria. This information is then fed back to the designer, who uses it to improve
the design. Figure 2.6 below illustrates the complex interdependence between the design and
stress analysis tasks.

Design & Stress Analysis Interdependence

Figure 2.6 - Complexity in Design and Stress Analysis Relationship

Due to the complex level of interdependence in this process, a high degree of iteration is
required to properly advance the design. As seen in Figure 2.6 above, the component design is
used not only to create component stress models, but also to generate the component load
conditions. When the information from the stress analysis is fed back to the designer, the
design can advance. However the change of the design also changes the load conditions upon
which the design change was based. Typically a given set of component loads is allowed to
remain constant, such that the design may advance through several iterations. Once the design
has changed significantly, the component loads will be recalibrated such that further analysis
takes place with more accurate conditions.

A very important and relevant criteria in the advancement of design is the maturity of customer
requirements - in particular, the maturity of the loads. Historically, there may have been as few
as 5 load scenarios specified for an aircraft component. In order to compensate for the
insufficiency of so few cases, more conservative factors of safety were used, which inevitably
increased the weight of the aircraft. Today, with more sophisticated analysis tools thousands of
load scenarios may be modeled and analyzed. This increase in analysis has allowed for lower
factors of safety in the design (although regulatory safety requirements must always be met),
and thus has lowered the weight of structural components. Because there are so many load
scenarios, the design can only improve based on feedback from analysis of the loads by which
the design performs worst. As the design changes, the most critical load scenarios may also
change. To further complicate matters, the load scenarios are usually not well defined at the
start of a new program. Instead, new load scenarios and changes to load scenarios arrive
throughout the development process. The maturity of the loads by which the design is
evaluated plays a critical role in the ability to improve the design against the final customer
requirements. It should be noted, though that changes in load scenarios creates rework that is
not inherent in the process (since the maturity of the load scenarios is mostly independent of the
maturity of Spirit's design), but rather inherent in the scheduling of Spirit's design effort with
respect to that of the aircraft OEM.

The final major element in design progression involves the interdependency between design of
the aerostructure and the incorporation of various "systems" into that structure. The structures
and systems designs are initially created separately and then integrated together. However,
constraints on space, load paths, and center of mass usually make the integration of systems
into the structure somewhat difficult. This leads to design iteration between the structures and
systems. Additional rework for integrating systems and structures is created when the design of
structures changes due to changing load scenarios.

2.4 Functional Groups
As seen in Figure 2.5, product development of propulsion structures is very functionally oriented
at Spirit. Responsibilities and deliverables are initially defined and assigned to functional
groups. Each functional group then drives toward completion of its deliverables using the tools
and systems provided. Integrated product teams ensure communication between groups such
that they don't operate in isolation. It is in this manner that the final design is achieved. Below
is a list of brief descriptions of the roles, capabilities, and tools of each of the functional groups.

Proqram Management - oversees the entire lifecycle of the product development process
including concept development, detail design, manufacture process design, and early stages of
manufacture operations. Program management is responsible for all of the program planning
including budget, schedule, and resource requirements, as well as establishment of customer
contracts and customer relations. At the onset of a product program, management is

responsible for establishment of an initial integrated product team. Typical tools employed
include program schedule, progress tracking, and critical path tools.

Integrated Product Team - is comprised of high performing individuals from each of the various
functional groups and the financial group. The IPT's fundamental role is to ensure that all of the
necessary perspectives are considered during the design of the product. The core members
are located in close physical proximity to ensure adequate communication. Ultimately, the IPT
is responsible for ensuring that the product meets the customer's requirements as well as the
needs of the company.

Design - is responsible for creating and defining the attributes of the product. A three-
dimensional model is created using high-end computer aided design (CAD) software. The
design attributes of the model are eventually translated into two-dimensional drawings which are
released for production. Design and release are controlled electronically, although several
software systems are currently in place. The long term goal is to control design and release
through an ERP system.

Stress - oversees the analysis of the design regarding capability to safely incur specified load
scenarios and conditions. Loading conditions may be defined both by the regulatory agencies
and by the customer. To perform this step, typically finite element analysis (FEA) software is
employed. The stress engineer must create a new model using FEA tools based on the product
design. Loading conditions, boundary conditions, and other physics are then specified within
the new model. A solver then outputs the stress levels incurred throughout the model. The
results of this analysis serve two purposes - to feed back to the design group for advancement
of the product design and to prove to the certifying agencies that the design meets safety
requisites.

Propulsion Analysis - oversees the analysis of the design regarding all safety issues other than
stress. These include computational fluid dynamic (CFD) modeling and analysis, thermal
analysis, anti-ice analysis, fire safety analysis, acoustics analysis, and others. Much like stress,
the results of this group are needed for both design advancement as well as certification. Even
though PS&S has a stronger need for propulsions analysis capabilities than the other business
segments, the propulsion analysis group is treated as a shared resource across the company.

Tooling - is responsible for the creation of tools which are capable of effectively producing the
product design and that meet manufacture/assembly requirements. This includes design and
production of the required tools. Important factors that impact tool design are ergonomics,
safety, maintenance, and process flow characteristics. In addition, tooling provides the design
group with preliminary feedback regarding the feasibility and cost of product manufacture.

Supply Chain - oversees the sourcing and procurement of parts and assemblies that comply
with the product design. This includes finding and qualifying suppliers for parts as well as
performing make-buy decisions with tooling. Contractual structuring with suppliers also takes
place through this group.

Manufacturing engineering - oversees the design of the manufacture process in which product
components will be received, manufactured, and assembled. Manufacturing engineering
defines the steps needed to produce the product with the aim of optimizing product flow through
the manufacture process. Much of the process design is driven by choices made by tooling and
supply chain.

Operations - is responsible for daily production of the product by executing the plans created by
design and manufacturing engineering. This includes managing production employees,
maintaining and troubleshooting tooling and machinery, and improving the flow of the product
on the manufacturing floor.

Certification - is responsible for ensuring that the product meets the requirements for regulatory
certification and for guiding the product through the certification process.

2.5 Intellectual Property
The fruit of Spirit's product development process is a design, the blueprints for the product and
for the tools to manufacture and assemble that product. The creation of these designs can be
viewed as the creation of intellectual property (IP). Currently, the business model at Spirit treats
the development of every product as a new effort. This is largely due to the fact that Spirit does
not own the IP for the product design that it creates, rather the customer or aircraft OEM owns
the IP for the design of the product. The OEM perceives value in the ownership of the IP so that
the IP is not shared with competing aircraft OEM's. However, Spirit would also perceive value
in its ownership of the product design IP such that it would not have to begin each new
development process from a clean slate and could, thus, offer lower cost and faster
development times to its customers. The separation of product IP within Spirit is a very
sensitive issue for two of Spirit's customers, the industry's largest OEM's. The IP that Spirit
does retain is that for the design of the tools used to produce the designed product. This allows
Spirit to concede the IP for the product design since it retains the information needed to produce
the product itself. In this manner, the OEM ensures that no other competitor can copy the
design of its products while Spirit retains the sole ability to produce the product which it
designed.

2.6 Chapter Summary
The second chapter described both the architecture and the development process for
propulsion products. The role of functional groups is described, as well as the relationships
between these groups in the development process. The high degree of interdependency in the
product and the development process, which dictates design progress, is discussed. The
chapter ended with a note regarding the creation and capture of intellectual property. A
methodology for documenting, modeling and analyzing the development process will be offered
in the following chapter.

3. UNDERSTANDING AND MODELING PRODUCT DEVELOPMENT PROCESSES

3.1 Utility of a Product Development Process Model
A model is an abstract representation of something that exists in reality. It is never possible to
create a model that fully captures every aspect of its subject, and there should never be reason
to attempt to do so. The real purpose of model creation is to capture the important factors such
that the results output from the model closely approximate reality. If this can be achieved,
models can provide much insight into their subjects.

In the case of product development processes (PDP's), modeling can provide several valuable
benefits. Firstly, a PDP model can provide a much more rapid response to stimuli than an
actual development process of a real product. In fact, product development of propulsion
products can typically take several years to complete, in which case feedback from an
improvement initiative may take years as well. In addition, it would be difficult over this
extended period of time to attribute changes in performance to a single improvement initiative
since it is nearly impossible to isolate this one variable and hold everything else constant in a
real life development process. Thus a model allows the manager to isolate single variables and
receive timely feedback regarding the anticipated effects of a change or improvement initiative.
A good PDP model can serve as a sandbox for experimenting with potential process changes.

Secondly, manipulating and experimenting with a real life product development process entails
the assumption of risk. It is typically not easy to understand the impacts of a change in such a
dynamic system, thus there is a chance that a change may yield negative results. Through the
use of a model, both the expected outcome and the potential risks may be predicted such that
better decisions can be made without as much costly experimentation with the real process. In
addition, a PDP model can serve as a quantitative justification for ideas and improvements that
would be difficult to obtain support for, since stakeholders would not feel that they are assuming
as much risk.

Finally a relevant PDP model can provide a better basis for estimation of development time and
cost before initiation of a real product development process as well as during an ongoing
process. The information yielded by a model that simulates development of a potential product
can be used to help managers make better business decisions and structure more appropriate
contracts. During an ongoing process, a manager could use a model to better quantify the
schedule impact of a product change order. Having the information that a model provides can
be invaluable in making appropriate business decisions.

3.2 Design Structure Matrix (DSM)
The tool used as the basis for modeling the development process is the design structure matrix
(DSM). The DSM is a modeling tool that represents the relationships and dependencies
between components of a system, product, or process. In the case of a product development
process, the DSM indicates the flow of information between development activities in the form of
a matrix. [14] Information flow in development processes dictates not only workflow, but also
the rate of design iteration and evolution. Therefore, DSM can allow for incorporation of
process dynamics that are often overlooked when planning or predicting a product development
process. The DSM was first introduced by Steward and captures coupling and dependency
between the design tasks of a project. [15] The tasks listed along the left column of the matrix
represent design activities that receive information, while the same tasks listed along the top
row represent design activities that provide information. An off-diagonal mark located within the
matrix denotes dependence and coupling between two design activities. Steward's original

model is also referred to as a Binary Design Structure Matrix because each cell in the matrix
represents a binary choice of coupling and dependency. For example, the process depicted
below, where each process task is represented by a letter, can be represented as a 6x6 binary
DSM. [9]

Figure 3.1 - Simple Example Process [9]

DESIGN TASKS

A B C D E F < PROVIDING
1 I.. INFORMATION

DESIGN TASKS MARK

RECEIVING INFORMATION
Figure 3.2 - Binary DSM for Example Process [9]

The mark located in the third row and second column denotes task C's dependence on task B to
be completed before it can be executed. Looking down a task's column, one can easily
determine .those tasks that are dependent upon it. For example, looking down the fifth column,
we see that task B and task F are dependent on task E to be completed. Looking across a
task's row, one can easily determine those tasks upon which it is dependent. For example,
looking across the fifth row we see that task.E is dependent on task C and task D to be
completed. Note that if the tasks in the DSM are ordered sequentially, the marks located above
the diagonal represent feedback (information transferred from later tasks to earlier tasks) and
the marks located below the diagonal represent feed-forward (information transferred from
earlier tasks to later tasks).

The DSM may be treated as both a qualitative and a quantitative tool.. An extension to
Steward's work was introduced by Eppinger, Whitney, Smith, and Gebala where the off-

diagonal marks are replaced with numerical measures of coupling and dependence (or some
other metric that measures an inter-task relationship), while the on-diagonal mark measure task
duration (or some other metric that characterizes an intra-task relationship). [6] This Numerical
Design Structure Matrix captures task interrelationships at a much deeper level than its binary
counterpart, in addition to capturing completion time. Although the binary DSM can be very
useful to a project manager as a visual representation of the process, task dependencies, and
risks, the numeric DSM provides a much deeper insight into the impact of the structure of the
process on overall completion time, costs, and risks.

As an example, Figure 3.3 below shows a 6x6 numerical DSM representation of the binary DSM
shown above. The number 2.7 located in the second row and fifth column denotes the relative
strength of dependence of task B upon Task E. The number 7 located in the third row and third
column denotes a duration of 7 days for Task C to be completed. [9] If human 'resources
constrain the process, duration may be replaced by workload (in man-days) in order to allow for
variable durations according to the staffing level of a given task. Workloads are used when
applying the DSM to Spirit's development process.

DESIGN TASKS

A B C D E F <- PROVIDING
A I 10.3 INFORMATION
B 1 3 2,Z.

DESIGN TASKS C 0.2 STRENGTH
D 2.3
E _ 0.5 1.1
F i 0.7 - DURATION

RECEIVING INFORMATION
Figure 3.3 - numeric DSM for Example Process [9]

As evidenced from these simple examples, the DSM is an effective tools for capturing the
structure of a system and visually representing it concisely and compactly. [9] A significant
aspect of the product development process that numeric DSM neglects is quality. Firstly, the
DSM assumes that the quality of the final design is fixed. In addition, the DSM does not
account for variance in product features or technology from the development of one product to
the next. Thus, the numeric DSM is most useful when applied to a stable product platform in
which the underlying structure of the product and the process do not change. It is also most
useful when applied to a process that develops products with similar design quality
requirements.

3.3 Discrete Event Simulation
Discrete event simulation is a modeling methodology that simulates a process as a discrete-
state, event-driven system of which the state evolution depends entirely on the occurrence ofasynchronous discrete events over time. [4] In a discrete event model of a system, the state of

the system can be changed by events which occur at given points in time. However, the timing
and impact of each event may depend upon the state of the system when each event occurs. A
discrete event simulation operates in a manner in which events are executed one at a time,
each time re-evaluating the state of the system and then the timing and impact of the
subsequent event. Because the initiation and re-initiation of tasks, the completion of tasks, and
the changing of requirements are all events in a development process which occur at a given
point in time and which change the state of the development process itself, discrete event
simulation should be a relevant tool for modeling this type of process. The manner in which the
discrete event model operates for a product development process is by:

1. initiating the first task(s) in the process by staffing them;
2. finding the next task start, task completion, or requirements change based upon the current

time and state of the process and its tasks;
3. advancing a clock by the time until the next event;
4. updating the system and task staffing to the new state;
5. repeating the previous 2-4 until all tasks have converged and no requirements changes

remain.

3.4 Monte Carlo Simulation
Although a DSM-based discrete event model will allow prediction of the outcome of a product
development process given a set of parameters describing that process, these results may be
practically useless unless the uncertainty and variation of process parameters is accounted for.
Monte Carlo is a methodology by which the input parameters are generated randomly from
distributions and the output results for the given parameters are recorded. By repeating this
process a sufficient number of times, an output distribution may be obtained which reflects the
uncertainty of the input parameters. This information may be used to evaluate and mitigate risk,
as well as to understand variation in the performance of a process. [2] The key variables that
are modeled with uncertainty are the task workloads (the number of man-hours required to
complete each task once). The distribution obtained for each task workload is a result of both
epistemic and stochastic uncertainty, or in other words, uncertainty associated with lack of
knowledge about the data and the inherent variance in the data.

3.5 Creation of a DSM-Based Simulation Model
The construction of a quantitative DSM model entails five primary steps. Firstly, all tasks which
occur in the development process must be accounted for. This is not to say that every task
must be at a high level of detail, but rather that every task must appear in the DSM even if it is
recognized as a sub-task of a larger task. During this step the modeler must trade off detail
against abstraction. Additional detail may increase the realism and accuracy of the model, but
this comes at the expense of additional complexity and model processing time. The modeler
must find the appropriate balance between detail and abstraction in order to achieve the
greatest level of usability and usefulness.

Secondly, once all tasks have been identified, data must be gathered regarding the
performance characteristics of each task in isolation. This is the information that is inherent in
the task itself, regardless of its role in the process. When treating the task in isolation, as such,
the terminology used is "once-through work." This entails that the task performer has access to
timely, accurate information and is not required to rework or restart the task. It is often difficult
to gather accurate data for once-through work since the work for tasks is never completed in
isolation. Primary data collected for once-through work are the estimated completion workloads

(in man-hours) expressed as a probability distribution. Also collected are the task learning
curves, which again are inherent in the task and not the task's role in the process. The typical
maximum number of personnel assigned to each task must also be collected in order to reflect
the actual human resources to which the development process may have access.

Thirdly, data must be gathered regarding the relationships of each task to all of the other tasks
in the process. This is the information regarding the task which is inherent in the task's role in
the process. The terminology used to describe the relationships between tasks is referred to as
"dependency." This task dependency data can be difficult to gather since it forces the task
performer to completely evaluate his or her role in the process, something that many task
performers have never before done. The primary data collected for task dependencies are the
strength of precedence and rework dependencies. Strength of precedence refers to the degree
of concurrency which may take place between two tasks. Rework dependency refers to the
degree of rework that a task must perform, given that the information from an input task has
changed.

Next, externalities that impact the development process must also be identified. The
information captured in the previous three steps is sufficient for modeling the ideal process.
However, there may be other factors which are not inherent in the tasks or the process, but
which may greatly impact the outcome of the development process. The externalities captured
by this model are changing customer requirements (usually in the form of engineering change
orders), unplanned customer audits and reviews, and human resource constraints. Each of
these externalities creates unique effects on the outcome of a development process, especially
since their impact may differ depending upon the timing of their introduction to the process.
These externalities do add a significant degree of complexity to the model, however neglecting
them would produce results which would not meaningfully approximate reality.

The final step in creating a quantitative DSM-based model is to define an algorithm which
utilizes the data to predict an outcome. The methods used in this model are Monte-Carlo
Simulation and discrete event simulation. Monte Carlo simulation will allow the model to run
many times based on different probability selections for tasks. This should portray the variability
in the outcome of the development process. The discrete event simulation will allow for the
dynamics introduced by the timing of changing requirements to be properly captured. Once
complete, the model should be calibrated against historical PDP data in order to ensure its
accuracy.

One aspect not considered in the creation of this model is task error - the quality of the output
of the design is considered to be solely dependent of the quality of the information input. In
other words, errors in task completion are not incorporated into this model. Although mistakes
happen in reality and affect the likelihood of rework and iteration, this data proved extremely
difficult to gather. Since most task data was gathered from task performers, most were not
willing to concede that mistakes are made. Thus this model will provide all iteration that is
inherent in the design process and not the quality of work of the task performed.

3.6 Process Tasks
When contemplating, discussing or modeling a process, it is useful to divide the process into
modules, referred to here as tasks. Sometimes the basis of this division is intuitive, as in the
case of a typical manufacturing process, which is usually predetermined to perform steps one
by one until a product is made. Product development, on the other hand, can be a very human
intensive process in which steps and procedures are not always well designed or documented,

and sometimes occur in a de facto manner. It is often even difficult to monitor advancement of
the design, which is really information rather than something physical. Thus, there is a high
degree of discretion involved when documenting tasks in a development process.

Extreme detail can be captured by documenting thousands of tasks, or all of these detailed
tasks could be pooled together to represent tasks at a more macro level. The tradeoff between
detail and abstraction is also one between complexity and simplicity or usefulness and usability.
A general rule of thumb was used in determining the appropriate level of detail - if a series of
tasks could be grouped together such that other functional groups only interacted with the first
and last task in the group, these tasks were listed as a single task. This level of modularization
was intended to eliminate confusion when gathering task level data regarding dependencies.
Thus, if a task in the middle of a group of tasks is dependent upon another functional group, this
dependency could be isolated and not masked within an overly abstract task. Also, tasks that
seemed to represent a large portion of the work were generally broken out into their subtasks,
thus the workloads of each task would be on the same order of magnitude which would reduce
sensitivity to error in the data gathered for each of those tasks.

3.7 Task Performance and Interdependence Characteristics
The methodology used predicts the outcome of a process on the basis of the characteristics
inherent in each task performed and of the characteristics inherent in the role of the task in the
process. This data was gathered in two separate phases to avoid confusion between
addressing tasks in isolation and addressing task interdependencies. Below are the attributes
of the gathered data described in detail.

Task Once-Through Completion Work - is the amount of work in man-hours required to perform
a task one time with access to accurate information and with no rework. This data was
collected at three points - the most likely, the pessimistic (corresponding to 90th percentile), and
the optimistic (corresponding to 1 0 th percentile). This data was later used as the basis for a
triangular distribution characterizing the likelihood of completion work for a given task.

Task Learning Curve Factor - describes the decrease in required work necessary to complete
subsequent iterations of a task. It is necessary to decrease the once-through completion work
of a task with each iteration in order to account for learning.

Task Dependency - indicates that a task is directly dependent upon the information output from
another task. Thus, task dependencies are used in a qualitative or binary DSM to indicate
information flow from and to tasks.

Concurrency Factor - describes the degree in which two tasks must occur sequentially or
concurrently. A concurrency factor of 1 would indicate that the tasks may occur completely in
parallel or that they may begin at the same time. A concurrency factor 0 would indicate that the
tasks must occur completely sequentially or that the dependent task must wait for the input task
to finish entirely before beginning.

Rework Factor - indicates the impact of reworking input tasks upon a given task. A rework
factor of 1 would indicate that any percentage of rework of the input task would be completely
passed to the dependent task. A rework factor of 0 would indicate that reworking of the input
task would not create rework for the dependent task.

Iteration Likelihood - is the probability of the reworking of an input task causing a given task to
rework. For the purposes of this model, all dependencies are assumed to have a 100% iteration
likelihood, except for dependencies classified as "failure modes". Each failure mode has some
probability that it will occur in the development process and may only occur once during the
process. Typically failure modes have a low likelihood of occurrence, but may cause vast
amounts of late rework.

3.8 Data Collection
Collection of accurate data for a development process model is crucial for the relevancy of the
model, but can pose one of the largest challenges. Data collection for this model was
undertaken in five phases. The first phase was process documentation. This phase primarily
focused on identification of tasks performed in the development process. The method used for
data collection in this phase was mostly informal discussion with key individuals in the process.
Contacts, which were deemed to have some expertise, were assigned to contribute information
for each task. In total, forty-six contacts were listed, each having an expertise in as few as one
task, or as many as seventeen. Each of these contacts was given an opportunity to provide
feedback regarding the detail, accuracy, and comprehensiveness of the list of tasks.
Additionally, all contacts were initially given an orientation to the model methodology, purpose,
impact, and timeline in order to create awareness about the end use of the collected
information, as well as to create more "buy in" for the project.

The second phase consisted of gathering once-through task performance characteristics. Task
performers were asked for three types of data. Firstly, they were asked to offer a brief
description of their task, which would be used to verify that the collected data was indeed for the
task which was specified. Secondly, they were asked to offer expected once-through work
man-hours. This data requested was based on pessimistic (within 90% confidence), realistic
(within 50% confidence), and optimistic (within 10% confidence) expectations. Finally, the
contacts were asked to provide data reflecting the learning curves inherent to their tasks. The
duration of the interviews was between to be 5 to 15 minutes for each task. After this data was
collected and reviewed, additional interviews and discussions took place regarding data that
was not anticipated and was somewhat surprising. Managers from each functional group
checked the quality of the data collected for each task and adjusted the data so that is was
consistent and could potentially be scaled in aggregate for model calibration later.

The third phase consisted of gathering task dependency characteristics. Functional group
managers were asked for three types of data. Firstly, they were asked to identify all tasks upon
which the specified task is directly dependent for information and to qualify these dependencies
as either "necessarily concurrent" or "not necessarily concurrent" tasks. Secondly, they were
asked to assign a concurrency factor to each of the tasks upon which the specified task was
dependent. This factor was interpreted as the degree of precedence that one task had over the
other, or the amount at which the tasks could occur in parallel. Finally, the functional managers
were asked to assign a rework dependency factor to each of the dependencies. Rework
dependency was interpreted as the degree to which the specified task must be reworked given
a complete change in information from a dependent task. This data was gathered during a one-
day workshop where each functional manager was present and inter-functional dependencies
could be easily discussed as necessary. This approach helped to ensure that dependencies
were not overlooked and that confusion could be easily addressed. To facilitate the workshop,
each attendee -was given a printout of the binary process DSM and was asked to quantify the
dependencies associated with their functional group by writing these factors next to each binary

relationship. After this data was collected and reviewed, additional interviews and discussions
took place regarding data that was not anticipated and was somewhat surprising.

The fourth phase consisted of determining and quantifying significant externalities.
Determination of the major externalities occurred by informal discussion throughout the other
data gathering phases. However, effort was made to formally discuss and document these
issues, as well as quantify them. This took place solely through interviews and discussion with
key personnel and managers.

The final phase consisted of data calibration. In this phase, key individuals and managers were
asked to look over the data collected and assess the accuracy. For the data that was identified
as inaccurate, interviews were scheduled to revisit the justification of the data. This phase is
necessary to compensate for data that may have been provided in an overly conservative,
overly liberal, or erroneous basis. An additional calibration phase was performed based upon
historical PDP data in order to ensure that output of the model was reasonable.

In addition, data was collected from program managers in the various business segments of the
company. This data, however, was of a more qualitative nature to understand the underlying
issues associated with developing products in this industry. Each program manager was asked
to present on the perceptions of the problems and the lessons learned from their development
processes. This information was later evaluated by a separate team in order to create
recommendations for changes and restructuring of the process.

3.9 Chapter Summary
The third chapter described the Design Structure Matrix as a very powerful tool for
documenting, understanding, and modeling the development process. An overview of DSM is
given since it will serve as the basis of analysis and modeling. Discrete event simulation and
Monte Carlo simulation are described as the modeling methodologies for the development of a
product development simulation tool. The various types of data required for the simulation
model are discussed, as is the methodology for data collection. The means by which this data
is used to simulate the development process is the focus of the following chapter.

_ Ii' if~ I 3ii " ,, ,,,," i 1 ~ Ail "'' '

I~~~ -- N N- - - - -

.. ._., i i,-ip

6 K;, _ _ 'i. .N. .. .N N N -NNNI N.NN.N.

- - -... - -.'- I I I r
-- '- -- . ..•

,, :

I

•

i l ll~- I i

... . r~ ,i.

I II

ii

''' .

°"" ,o,

t , :

Figure 3.4 - Binary DSM for Development Process of a Nacelle

(See Appendix C for an enlargement of this figure.)

4. MODEL DESCRIPTION

4.1 Model Overview
As discussed in the previous chapter, a quantitative model was created in order to understand
the performance of the development process for propulsion aerostructures. The underlying
basis of the model is the Design Structure Matrix (DSM) which illustrates the process tasks and
their interdependencies. Data from the DSM are then input into a discrete event model which
simulates the development process for a given set of parameters. Finally, Monte Carlo
simulation is performed in order to observe the modeled results as the input parameters are
varied randomly according to their understood distributions. [2]

4.2 Task Workload Distributions
The man-hours required to complete a given process task once without rework or iteration is
called the task's once-through workload. There is a high degree of uncertainty associated with
this parameter due to variation across development processes and due to uncertainty in
estimating it. The primary reason that workloads are so difficult to estimate is that it is difficult to
isolate the once-through workload from the overall, final workload, which includes substantial
rework. Three points were gathered for each task's workload: the most likely workload, the
minimum workload and the maximum workload. The minimum workload was defined as the
point having a 10% likelihood within which the task would be completed. The maximum
workload was defined as the point having a 90% likelihood within which the task would be
completed. The model assumes a triangular distribution for each task workload based upon
these points, and the end points were determined iteratively in MS Excel based upon the
cumulative distribution function of the triangular distribution for each task. The endpoints for
these distributions were extrapolated rather than gathered because the actual workload
probability distributions may have had tails that would drastically distort the ability for the
triangular distribution to resemble the actual distribution in the most likely regions of the actual
distribution. These workload distributions become the basis for random number generation of
the Monte Carlo simulation. The time necessary to complete a task is given by the product of
the remaining workload for that task and the number of personnel staffed to that task. For
example, a task requiring 1600 man-hours would last 400 hours if staffed with 4 personnel, or it
would last 200 hours if staffed with 8 personnel.

4.3 Random Number Generation
Rather than sampling randomly from each task workload distribution, Latin Hypercube sampling
(LHS) was employed. This approach drastically decreases the number of samples (Monte
Carlo iterations) required to reduce the variance of the output mean compared with sampling
randomly. Thus, the time required for convergence of the final development process
performance estimators is also drastically reduced, making the model much more time efficient.
[10] One thousand samples were used for this simulation, which required about two hours to
run.

The LHS process, shown in Figure 4.1 below, divides- the sample probability density function
into equally likely intervals and randomly samples within each interval. Thus, the number of
samples is equal to the number of intervals by which the distribution is divided. Calculating the
division points of the distribution is accomplished by setting the difference between the output of
the cumulative distribution of each division point and the previous division point equal to 1
divided by the number of samples. One sample is taken randomly from each interval, and these
samples are then randomly sequenced.. [5]

f(d) f(d) =A2 =...=A IA = 1/N

A =70. A=O.1 d d

d- d d d Ld
d (opt, fikel . .s
opt pessdi(d d

Figure 4.1 - Latin Hypercube Sampling Process [5]

4.4 Event Types
Three types of events are acknowledged in the discrete event model, each of which has
ramifications to the state of the system: task initiation, task completion, requirements changes.
Task initiation implies that the task is queued to receive staff as soon as possible. Task
completion implies that subsequent tasks now have new information available and that the staff
for that task is reallocated to a human resources pool to work on something else. Requirements
changes imply that the percent of completion for a given task is actually less than previously
perceived, and that the task must initiate rework if it had previously completed. One important
attribute of requirements changes is that they are time dependent rather than process
dependent. That is to say that task initiations and completions occur as an outcome of the
previous state of the process, while requirements changes occur at a fixed point in time
irrespective of the point in the process. Incorporation of requirements changes can therefore be
interpreted as the incorporation of process externalities.

4.5 Next Immediate Event Determination
One major step in the discrete event model is the method to determine the next immediate
event in which to staff and execute. This turns out to be a relatively costly computation based
upon the number of process tasks and task dependencies. In order to calculate the next
immediate event, first all subsequent tasks of all current tasks in progress are listed. All of
these subsequent tasks whose other input tasks have not reached completion are removed.
Then the remaining subsequent tasks are ordered based upon the amount of time remaining for
their single input task that is not completed, and the top one(s) with the least time to initiation
are kept. To this is added the nearest task completion and the nearest requirement change.
The list is again truncated to the event(s) occurring soonest. Thus, the next immediate event
and the time remaining for that event are calculated.

4.6 Human Resource Constraints
Two types of human resource constraints are accounted for in the model. The first is a task
human resource constraint, which is the maximum amount of staff allocated to that task. The
second is the maximum staff available within each functional group. The human resource
allocator in the model attempts to provide each initiated task with its maximum staff level.
However, if the staff pool for the functional group to which a given task belongs cannot provide
staff at that time, it staffs the task as highly as possible until more staff become available. If
multiple tasks are competing for available human resources, the human resource allocator
prioritizes based on the chronology of first initiation of tasks (the lowest task number). The
allocator will not, however, remove staff from a task in progress in order to put it on a new task.

Several important weaknesses of the model fall into the category of treatment of human
resources. Firstly, resistance of staff transitions is neglected. This allows staff to be transferred
in any number at any time to a new task with no cost in time. In reality, moving human
resources does not occur with perfect efficiency. Secondly, there is no time or process
dependency in the staff available for each functional group. In reality, the staffing level of
functional groups is determined by management and may, vary over time as the process ramps
up or ramps down. Finally, there is no resolution of expertise within each functional group.
Instead each functional staff member is deemed equally qualified as the others in that group.
Nevertheless, the human resource allocator does provide enough functionality to yield
meaningful results.

4.7 Learning Curves % of (donr)
Learning within the development process is
modeled through learning curve factors for 100%
each task. After each iteration of a task, the ().
workload for that task is reduced by a learning 2
curve factor until it has met its point of (.... ..
maximum learning. So as the process iL I
proceeds, the amount of work required to
complete a given task may be substantially
reduced from its original value. [5] 1st 2nd 3rd ... # of iteration

Figure 4.2 - Task Learning Curve
4.8 Concurrency
The degree to which tasks may occur in parallel is an important factor in determining the
duration of the product development processes. The model assumes that tasks which do not
exhibit dependency may occur completely in parallel. For tasks that do exhibit dependency, the
concurrency factor provides the extent to which the dependent task can occur in parallel to the
input task. For example, if task B has a concurrency dependency of 0.5 upon task A, then task
B must wait until task A is 50% complete in order to begin. Additionally, concurrency in the
model only occurs during the first iteration. This models the effect that once work is complete, it
will not begin again until it receives changed information, and that changed information is only
passed on once the task is complete. This may be viewed as a scenario of de facto information
flow which is typical in a large development process in which most tasks are performed out of
the immediate vicinity of its dependent tasks. Rework concurrency was perceived to be minimal
in the actual process as well. Also, there is no cost of concurrency assumed since the once-
through workloads for each task should have accounted for this. Thus a task that is begun in
parallel to an input task does not have to update its work as the input task completes its work.

A

concurrency = 0

B

Figure 4.3 - Dependent Tasks with Varying Degrees of Concurrency

Sc A A

oncurrency 1
B

t I
--r I

I AI i
* I

I I
(cwuwmencyrr0.b I
r r_ __~1 ___
I
I 1 R.
1 -
I a I ie (
I 1

4.9 Rework
Task rework and iteration are colloquially viewed negatively during the product development
process. Many companies judge the effectiveness of their development processes by "first
pass" design quality, viewing subsequent rework as waste. However, this is a narrow view of
rework and iteration. Although it is true that rework due to mistakes should be minimized, some
rework is inherent in the process due to the product architecture. This rework is primarily
caused by interdependency in the development process and should be facilitated rather than
eliminated. For the purposes of this model, the rework dependency factor is defined as the
fraction of rework generated for a given task when its input task is reworked completely. An
underlying assumption that is applied in order to model these relationships is that all tasks are
homogeneous. That is to say that if the rework dependency of task B upon task A is 0.5, that
task B is subject to 50% of whatever fraction of rework task A is exposed to. Rework caused by
error is neglected from the model since it is perceived to be relatively small compared to
inherent rework and that data was nearly impossible to obtain in the given timeframe.

4.10 Failure Modes
There were certain dependencies that were not typically planned for since they had a small
likelihood of occurrence for a given development process. These dependencies were deemed
process "failure modes" which may cause substantial amounts of rework. Most of these failure
modes occur later in the process when design maturity is perceived to be high. Examples
typically include inability to manufacture the design or failure of certification testing. These
failures were modeled with a likelihood of occurrence in each program and with rework and
concurrency factors if they do occur. Much of risk management focuses on reducing the
likelihood of failure mode occurrence and the amount of rework from their occurrence.

4.11 Convergence
Since nearly all of the dependencies have a 100% likelihood of occurrence, the discrete event
model could continue infinitely to pass miniscule amounts of rework throughout the system. In
reality, once tasks begin to converge either the small differences can be flushed out in a
meeting, or the small differences become negligible and the process is stopped. This model
assumes a convergence criteria for each task. If the queued rework fraction does not surpass
the convergence criteria, then the task is not initiated. Once all tasks are in a converged state
and there are no more requirements changes, the modeled process has completed. The choice
of convergence criteria is difficult since convergence often depends upon the details for a given
task. For our model, the convergence criteria is constant across all tasks.

4.12 Model Logic
Figure 4.4 below depicts the model logic at a relatively high level. MATLAB was chosen as the
programming language since the matrix structure of variables is aligned with the DSM structure
and can drastically reduce computational time. The process begins at the upper right portion of
the figure with data pertaining to the Monte Carlo simulation. If the number of simulated
process trials is less than the number specified, a new trial will be initiated based on the data
pertaining to the development process. Each trial is a complete run of the discrete event model,
which iterates (in the large left-most loop in the figure) until there are no more events for that
trial. When the trial is complete, the observed metrics from that trial are recorded and the
simulation process continues. Once the required number of trials is reached the results are
formatted and displayed. See Appendix A for MATLAB code created for this model.

Figure 4.4 - High Level Model Logic

4.13 Input & Output
All of the input data for the model is aggregated into a single Microsoft Excel spreadsheet with
workbooks for each type of data. The data quantifying dependencies between tasks was
transposed into a list by an excel macro for easier input into the model. A scalar was given to
each type of raw data. This scalar was used to calibrate data in aggregate against performance
of actual development processes. Data concerning the characteristics of functional groups and
human resource constraints is also present. Finally, time dependent requirements changes (or
external engineering change orders) are compiled into a list for input to the model.

Several metrics are recorded for each simulated process trial and are formatted for output. The
time to completion and the total process workload are recorded for each run. This data is
plotted in histogram form to show the distribution of possible schedule and cost outcomes
(workload is a proxy for cost- since the wage rate.data for each functional group was not made
available). In addition, the staff levels over the duration of each process trial were recorded
such that the distribution of staffing levels over time is also estimated.

4.14 Chapter Summary,
The fourth chapter described in detail the manner in which the gathered data can be used to
simulate the development process. The incorporation of characteristics of the process such as
task learning curves and external considerations such as human resource constraints aredescribed. Also more programmatic issues such as the treatment of uncertainty is discussed.
Finally the simulation model's logic is described along with the format of input and output data.
The following chapter offers analysis of the development process of propulsion products at Spirit
using the qualitative binary DSM, various network analysis techniques, and finally the output
from the simulation model.

5. PRODUCT DEVELOPMENT PROCESS ANALYSIS

5.1 Modeling Information Transfer
The Design Structure Matrix (DSM) shows that the development process is a network of
interdependent tasks. The interdependencies cause iterative loops that allow the design to
evolve to its final state. Planning tools that do not account for iteration and process dynamics
become less relevant as the level of interdependency in the process increases. For example, it
does not make sense to discuss the critical path of a complex development process that
contains a high degree of interdependency. In a simple process where all information flows
downstream, only tasks that fall on the critical path affect the total cycle time of the process.
However, in a complex process, any task with interdependency could potentially. affect the total
cycle time. In order for the manager to understand where to focus attention in a complex
process, evaluating the degree of process interdependency of each task should indicate the
tasks that are most critical to the process network.

5.2 DSM Interpretation
Figure 5.1 below depicts the DSM for the development process of a jet nacelle. (See Appendix
C for an enlargement of this figure.) The large grey bars divide the process into its three
phases: concept development & project planning, detail design, and testing & certification. The
preliminary design review (PDR) and critical design review (CDR) act as the stage-gate
between development activities in the three phases.

U - -_ _

__ T

Figure 5.1 - Binary DSM for Development Process of a Nacelle

Although much of the information flow is downstream in the process (dependencies below the
diagonal) there is significant information feedback (dependencies above the diagonal) which
results in iterative loops. A box is drawn around each of these loops, and each is assigned a
descriptive name. Some loops iterate independently, while others are coupled to other loops
which causes task convergence to occur more slowly. Dependencies which occur above the
diagonal and are not included within a planned iterative loop are deemed process failure modes.
These dependencies are usually not likely to occur individually within the development process,
and therefore are not included in typical iteration. However, collectively, the occurrence of one
or several of these failure modes is likely and, therefore, should not be neglected. When
interpreting the DSM, it should be noted that although the tasks are listed in order of which they
first occur, the diagonal is not an effective proxy for the timeline of the project.

In the first phase of the development process, three iterative loops were identified as shown in
Figure 5.2 below. The first loop, "Statement of Work/Program Planning", indicates that in order
to create a plan for the development process, the scope and depth of work required by the
customer must be understood. However, the work required by the customer may also depend
upon the ability of the company to meet certain cost and schedule targets which is a product of
planning. Thus these, tasks must iterate in order to converge to a final solution.

The second loop, "Contract/Certification Planning", indicates that the plan for the certification
process depends upon the requirements agreed upon in the contract. However, the contracted
requirements are influenced by the plan for certification in order to be realistic. Moreover, this
iterative loop overlaps with the "SOW/Program Planning" loop, which could result in additional
iteration of either loop.

The last loop in the first phase, "Materials, Processes, & Specifications (MP&S) Cost Impact",
the cost of production depends upon developing and certifying new MP&S, but MP&S must also
be constrained by the cost targets of production. These three iterative loops should not be
neglected, but because they do not contain a high number of tasks or large workloads, they
should not drastically impact the total development process outcome directly.

Figure 5.2 - Binary DSM for First Development Phase

In the second phase of the product development process, nine iterative loops were identified.
Figure 5.5 below shows the first six. The first is simply iteration that occurs between preliminary
design review and the action items that come out of the review in order to pass into the next
phase. The second loop, "Technical Specifications & Interfaces," indicates that component
specifications influence the component interfaces, and interfaces influence the specifications as
well. These two loops are relatively minor.

The third loop, "Structures & Systems Interfaces," indicates W imor Fu.se.

that the design of the various subsystems influences the
design of other subsystems through interfaces. Thus, no
subsystem design can occur in isolation from the other PonoEnin Mao

subsystems. The dependency within this iterative loop is-..
driven by the product architecture. Perhaps the most ff o& Tfuet kww.

significant dependencies driving iteration result from the
integration of systems and structures within a given
subsystem. Better integration of these design activities Fa n CoW --e

may result in substantial improvements to the performance N

of the development process. dwI
9Yswf Wwam------

Figure 5.3 - Product Architecture
The fourth loop, "Design & Stress Analysis," indicates that
the design of structures is subject to stress analysis in
order to ensure the capability of a given design to Dsign&Ste AMlysisintrdependenc
withstand the specified forces required of it. The structures
are designed, evaluated, and redesigned through an
iterative design optimization process. The ultimate goal of ,.
this process is to minimize the weight of the product while
meeting unit cost constraints and ensuring the strength of U

the design to safely withstand its operating environment. .p.* C .
This iterative loop is typically viewed as the most costly
since it involves the majority of development staff and
contains a relatively high degree of rework dependency.
Changing load requirements can manifest into very high
costs and long delays since they can retrigger substantial
iteration in this loop.

Figure 5.4 - Design-Stress Relation

The fifth loop, "Design Feasibility," indicates that the design of the subsystems must undergo
evaluation to determine the producibility and the alignment of the design with the supply chain.
This loop is essentially "design for manufacture and supply" in which manufacturing staff, tooling
staff, and supply chain staff give early feedback regarding their perceptions of the design in
order to minimize downstream problems in the future. Usually, this feedback is given in
integrated product team (IPT) meetings, which occur throughout the development process
rather than through formal documentation or formal reviews.

The sixth loop, "Design & Propulsion Analysis", indicates that the design must be analyzed for
performance against various fluid and thermal related requirements. This analysis is usually
performed at a system level rather than at the component level, so it does not display the
complex dependency and does not require the significant staff levels of the "Design & Stress
Analysis" loop. However, the tasks performed tend to be technically intensive which may drive
significant human resource constraints in this loop.

Figure 5.5 - Binary DSM for Second Development Phase

The primary iterative loops in the development process are
those contained in the detail design phase. Specifically,
there are four loops for design of structures which iterate
mostly independently with minimal direct dependency upon
each other, except through the structures design. Figure
5.6 to the right shows a simple representation of these
loops. This complexity creates difficulty in managing the PROUsON STRUCTURES TOOL&

process since all four loops may occur simultaneously and
the design may be evolve based on feedback from any one
of them. Moreover, the design must be frozen for a STRESS

significant portion of the analysis, which erodes the ANALYSIS

relevancy of the analysis as the design changes during that
period. The overlapping of several iterative loops
necessitates more iteration than in simpler processes.

Figure 5.6 - Major Iteration Sources

The last three loops in the second phase of the development process facilitate the development
of production tools and the manufacturing process. The first loop, "Production Requirements,"
indicates that the requirements for the tooling and the manufacturing process are dependent
upon each other. The second loop, "Tool Design & Analysis," indicates that the tools
themselves must undergo analysis to evaluate their ability to meet the production requirements.
The final loop, "Tooling & Manufacturing Design" indicates that the manufacturing process
design depends upon the tools, but also that the tooling design may depend upon the
manufacturing process design. Although it is possible that the tooling design may impact the
product design, the "Feasibility" loop is meant to provide tooling feedback, while isolating tooling
design from product design in the overarching process.

Figure 5.7 - Binary DSM for Third Development Phase

The third phase of development contains three iterative loops. The first is simply iteration that
occurs between critical design review and the action items that come out of the review in order
to pass into the next phase. The second loop, "Release Approval," indicates that the creation of
the engineering drawings and the approval process for those drawings cause iteration. The
final loop, "Supplier Qualification," indicates that the supplier selection process and the supplier
approval process may iterate if chosen suppliers cannot meet the specified requirements.

Interestingly, the testing and certification of the product, which occurs in this phase, is not
planned to cause design iteration. The "Design & Stress Analysis" loop and the "Design &
Propulsion Analysis Loop" are meant to ensure positive test results with a high degree of
certainty. However, the outcome is not always positive since there is always at least some
small likelihood of failure. Therefore, the final development phase contains a significant number
of failure modes which may retrigger previously completed process tasks.

5.3 Task Coupling Analysis
Coupling analysis is a simple tool that uses the information captured by the DSM to quantify
interactions. The analysis can be performed at two levels - the individual task level, the lowest
level of abstraction, and the group task level, which aggregates the individual task level data to
create higher levels of abstraction. [9]

By observing the information flow and dependencies for each task, it is possible to identify
roughly which tasks have the largest network effect in the development process. For complex
development processes dominated by iterative loops, the performance of the process is typically
most sensitive to tasks with the largest network effect. The ideal method for evaluating the
network effect would be to perform a sensitivity analysis of the simulated development time for
each design task and its parameters. But, simply adding a task's dependency data should yield
approximate results. This measure is referred to as the "degree" of each task with respect to

the network of tasks. [13] The top results achieved by counting the input, output, and total
dependencies from the binary DSM for each task are tabulated in Figure 5.8, Figure 5.9, and
Figure 5.10 below. A high input dependency may be viewed as a high likelihood that a task will
be reworked, while a high output dependency may be viewed as a high likelihood that a task will
cause other tasks to be reworked. The total (or volume dependency) is meant to determine the
total network effect of a task by summing the input and output dependencies.

Task Group Task Description Task No Input Count Rank
IPT Prepare for CDR 89 38 1
DESIGN Create Detail Design: Fan Cowl Structure 41 21 2
DESIGN Create Detail Design: Thrust Reverser Structures 42 21 2
IPT Prepare for PDR 27 20 4
DESIGN Create Detail Design: Inlet Structures 38 20 4
DESIGN Create Detail Design: Engine Build Up (EBU) Systems 37 19 6
ME/OPS Create Production Build Plan 80 17 7
IPT Define Part Interface Specifications 36 17 7
IPT Build Engine Development Program (EDP) Hardware 100 14 9
PM Identify Test Hardware Requirements 18 13 10

Figure 5.8 -Ten Tasks Depending on the Most Other Tasks

Task Group Task Description Task No Output Count Rank
DESIGN Create Detail Design: Thrust Reverser Structures 42 23 1
DESIGN Create Detail Design: Inlet Structures 38 21 2
IPT Create Detailed Technical Specifications 31 20 3
IPT Create Conceptual Design 10 20 3
DESIGN Create Detail Design: Engine Build Up (EBU) Systems 37 20 3
DESIGN Create Detail Design: Fan Cowl Structure 41 20 3
DESIGN Create Detail Desigh: Thrust Reverser Systems 43 19 7
DESIGN Create Detail Design: Inlet Systems 39 18 8
PM Define Customer Preliminary Requirements 4 17 9
PM Create Integrated Work Statement (IWS) (BOM) 6 17 9

Figure 5.9 - Ten Tasks Upon Which the Most Other Tasks Depend

Task Group Task Description Task No Volume Count Rank
DESIGN Create Detail Design: Thrust Reverser Structures 42 44 1
DESIGN Create Detail Design: Fan Cowl Structure 41 41 2
DESIGN Create Detail Design: Inlet Structures 38 41 2
IPT Prepare for CDR 89 39 4
DESIGN Create Detail Design: Engine Build Up (EBU) Systems 37 39 4
DESIGN Create Detail Design: Thrust Reverser Systems 43 31 6
DESIGN Create Detail Design: Inlet Systems 39 30 7
IPT Define Part Interface Specifications 36 28 8
IPT Build Engine Development Program (EDP) Hardware 100 23 9
IPT Create Detailed Technical Specifications 31 22 10
IPT Create Conceptual Design 10 22 10

Figure 5.10 - Ten Tasks that Interface with the Most Other Tasks

These results show that the design tasks interface with the most other tasks and are therefore
most likely to influence the performance of the development process. These results can be
further refined by multiplying each counted dependency by its rework factor. [13] The top results
achieved by summing the input, output, and total rework dependencies from the numeric DSM
for each task are tabulated in Figure 5.11, Figure 5.12, and Figure 5.13 below.

Task Group Task Description Task No Input Measure Input Percent Rank
DESIGN Create Detail Design: Inlet Structures 38 4.2 2.6% 1
DESIGN Create Detail Design: Thrust Reverser Structures 42 4.1 2.6% 2
PM Obtain Signed Contractual Documentation 14 4 2.5% 3
DESIGN Create Detail Design: Fan Cowl Structure 41 3.9 2.4% 4
PM Identify Test Hardware Requirements 18 3.9 2.4% 4
IPT Define Part Interface Specifications 36 3.6 2.3% 6
DESIGN Create Detail Design: Engine Build Up (EBU) Systems 37 3.4 2.1% 7
IPT Define IPT Schedule 23 3.2 2.0% 8
IPT Perform Producibility Cost Studies 20 3,1 1.9% 9
PM Define Program Schedule 12 2.9 1.8% 10

Figure 5.11 - Ten Tasks Depending the Most on Other Tasks

Task Group Task Description Task No Output Measure Output Percent Rank
IPT Create Conceptual Design 10 8.9 5.6% 1
PM Create Integrated Work Statement (IWS) (BOM) 6 6.1 3.8% 2
DESIGN Create Detail Design: Thrust Reverser Structures 42 5.6 3.5% 3
PM Define Customer Preliminary Requirements 4 5.4 3.4% 4
DESIGN Create Detail Design: Engine Build Up (EBU) Systems 37 5,1 3.2% 5
DESIGN Create Detail Design: Inlet Structures 38 5.1 3.2% 5
DESIGN Create Detail Design: Fan Cowl Structure 41 4.7 2.9% 7
IPT Define Customer Requirements 30 4.15 2.6% 8
PM Create Engine Development Program Plans 5 3.8 2.4% 9
DESIGN Create Detail Design: Thrust Reverser Systems 43 3.8 2.4% 9

Figure 5.12 - Ten Tasks Upon Which Other Tasks Depend the Most

Task Group Task Description Task No Volume Measure Volume Percent Rank
DESIGN Create Detail Design: Thrust Reverser Structures 42 9.70 3.0% 1
IPT Create Conceptual Design 10 9.70 3.0% 1
DESIGN Create Detail Design: Inlet Structures 38 9.30 2.9% 3
DESIGN Create Detail Design: Fan Cowl Structure 41 8.60 2.7% 4
DESIGN Create Detail Design: Engine Build Up (EBU) Systems 37 8.50 2,7% 5
PM Create Integrated Work Statement (IWS) (BOM) 6 6.70 2.1% 6
CERT Define Certification Compliance Matrix with Customer 13 6.30 2.0% 7
DESIGN Create Detail Design: Thrust Reverser Systems 43 6.00 1.9% 8
PM Define Customer Preliminary Requirements 4 5.50 1.7% 9
IPT Define Customer Requirements 30 5.45 1.7% 10

Figure 5.13 - Ten Tasks that Exhibit the Most Input and Output Dependency

These results confirm that the design tasks are the most likely to influence the process
performance. However, several new tasks are brought forward that the binary DSM was not
able to capture. For example, creating an appropriate conceptual design becomes the second
most important in terms of causing additional iteration as shown in Figure 5.13. Also, defining
the certification compliance matrix with the customer becomes a critical task that must be
managed well. Finally, defining preliminary and final requirements can play a critical role in the
process. This is especially important since customer requirements evolve over time, which as
shown here, can drastically impact the development process. Weighting each task by its typical
staff level or its typical completion time could further refine the coupling analysis for future work.

A more advanced method for evaluating the network impact of each task is to measure the
distance (e.g. number of tasks) that separates each task from all of the other tasks. This
measure is referred to as the distance modularity of each task and is given for the number of
tasks (n) by the formula below. [13]

Actual distance disconnectivity
M(IT)i =

Maximum distance disconnectivity

d(i,j)
j= ij i

n(n -1)

This measure can validate the accuracy of the "degree" measure, since immediate tasks must
also be connected to other tasks in order to have a significant impact. [13] The MATLAB code
used to calculate the distance of each task is shown in Appendix B. The results from analyzing
the DSM for "distance" are depicted in Figure 5.14 below. The top 37 tasks are shown in Figure
5.14 below. These tasks have very similar network distances that are significantly shorter than
the others.

Task Input Output Total
Task Group Task Description No Distance Distance Distance
DESIGN Create Detail Design: Thrust Reverser Structures 42 42% 35% 38%
DESIGN Create Detail Design: Fan Cowl Structure 41 42% 35% 38%
DESIGN Create Detail Design: Inlet Structures 38 42% 35% 38%
IPT Define Part Interface Specifications 36 42% 35% 38%
DESIGN Create Detail Design: Engine Build Up (EBU) Systems 37 42% 35% 38%
DESIGN Create Detail Design: Thrust Reverser Systems 43 42% 35% 39%
DESIGN Create Detail Design: Inlet Systems 39 42% 35% 39%
PA Perform Propulsion Analysis: Fire Safety 75 42% 35% 39%
IPT Create Detailed Tecinical Specifications 31 43% 35% 39%
PA Perform Propulsion Analysis: Thermal Analysis 71 42% 35% 39%
PA Perform Propulsion Analysis: CFD 65 43% 35% 39%
PA Perform Propulsion Analysis: Thermal Anti-Ice Analyses 76 42% 35% 39%
TOOL Perform Tooling Feasibility/Cost Chec< (DFM) 63 42% 35% 39%
DESIGN Create Detail Design: Integrated Nacelle Assembly Model 45 42% 35% 39%
SCM Perform Supply Chain Feasibility/Cost Check 64 42% 35% 39%
STRESS Analyze Components and Assemblies: Thrust Reverser 60 43% 35% 39%
STRESS Analyze Components and Assemobles: Fan Cowl 59 43% 35% 39%
STRESS Analyze Components and Assemnlies: Inlet 58 43% 35% 39%
DESIGN Identify Test Instrumentation Requirements 62 42% 35% 39%
DESIGN Create Detail Design: Thrust Reverser Assembly Model 44 43% 35% 39%
DESIGN Ceate Detail Design: Inlet Assembly Model 40 43% 35% 39%
PA Define Dynamic Fluid Loading (Fan Outer Duct Loads) 66 43% 35% 39%
PA Define Fluid Velocities and Heat Transfer Coefficients 67 43% 35% 39%
PA Perform Propulsion Ana ysis: Acoustics 74 43% 35% 39%
PA Scale Model Testing 69 43% 35% 39%
PA Scale Model Design 68 42% 36% 39%
DESIGN Obtain Engine Interfaces 32 43% 35% 39%
STRESS Solve FE Model: EBU Components: Modal Frequency check 57 43% 35% 39%
STRESS Create FE Models: EBU Components: Modal Frequency Check 51 43% 36% 39%
STRESS Solve FE Model: Thrust Reverser Components 56 43% 36% 39%
STRESS Solve FE Model: Fan Cowl Components 55 43% 36% 39%
STRESS Create FE Models: Thrust Reverser Components 50 43% 36% 39%
STRESS Solve FE Model: Inlet Components 54 43% 36% 39%
STRESS Create FE Models: Fan Cowl Components 49 43% 36% 39%
STRESS Create FE Model: Inlet Components 48 43% 36% 39%
STRESS Solve FE Loads Model for Component Loads 53 43% 36% 39%
STRESS Create FE Loads Model (Assembly of FE Component Models) 52 43% 37% 40%

Figure 5.14 - Most Integrated Tasks by Network Distance

This analysis did not take into account the dependency weightings, since it is only meant to
validate the findings of the coupling analysis based on task degree. The distance measure of
tasks confirms that the Design tasks are central to the development network. In addition, the
Stress and Propulsions Analysis (PA) tasks are also shown to be very central to development of
aerostructures.

5.4 Functional Group Analysis
Individual task data can be aggregated by functional
group in order to show functional dependency. Using
rework dependencies
information flow between
can be assessed. The
right approximate the
dependency that occurs
integrated product teams
other functional groups.

from the numeric DSM,
and within functional groups

charts in Figure 5.15 to the
input, output, and total

across functional lines. The
(IPT's) interact the most with
This is reassuring since the

IPT is not actually a functional group, but rather a
group consisting of members of the various functional
groups. The fact that the IPT as a group interacts with
the most other functional groups indicates that the
tasks that require the most functional integration are
the responsibility of the IPT. Thus, IPT's seem to have
the authority necessary to fulfill the charter for which
they are intended. Again, the design group shows up
as having a high degree of interdependency with the
other groups. The stress group should also be
acknowledged as needing to communicate heavily
with other groups since it is heavily involved in both
the design and certification processes. Finally,
program management exhibits a high degree of cross-
functional dependency, which should be expected.

Group Input Measure Input Percent Rank
IPT 38.3 24% 1
DESIGN 28.7 18% 2
STRESS 25.8 16% 3
PM 22.6 14% 4
PA 15.3 10% 5
SCM 8.8 6% 6
TOOL 7.8 5% 7
ME/OPS 7.5 5% 8
CERT 4.7 3% 9

Group Output Measure output Percent Rank
IPT 36.1 23% 1
PM 35.2 22% 2
DESIGN 35.1 22% 3
STRESS 17.7 11% 4
PA 13.9 9% 5
ME/OPS 5.9 4% 6
CERT 5.7 4% 7
TOOL 5.2 3% 8
SCM 4.8 3% 9

Group Volume Measure Volume Percent Rank
IPT 74.4 23% 1
DESIGN 63.8 20% 2
PM 57.8 18% 3
STRESS 43.5 14% 4
PA 29.2 9% 5
SCM 13.6 4% 6
ME/OPS 13.4 4% 7
TOOL 13.0 4% 8
CERT 10.4 3% 9

Figure 5.15 - Functional Info Exchange

The DSM in Figure 5.16 below shows the percent of total process dependencies of each group
upon the others. The numbers the show up along the diagonal indicate intra-functional
dependency, while those off of the diagonal indicate inter-functional dependency. Although the
largest dependencies do occur within a group, which is to be expected if grouping is effective,
intra-functional dependency accounts for only 43% of the total process dependency as
represented by the DSM. This assessment of intra-functional dependency should be taken in
context of the level of detail and aggregation of tasks within the DSM. Thus, intra-functional
dependency accounts for 43% of process dependency, only at a relatively high level.

PM
IPT
DESIGN
STRESS
PA
TOOL
ME/OPS
SCM
CERT

PM IPT DESIGN STRESS PA TOOL ME/OPS SCM CERT
9% 3% 1% 0% 0%0/ 0% 0% 0%9 1 %
9% 10 2% 0% 0 % 1% 1% 1% 1%
1% 4% 42% 3% O 0% 1% 0% 0%
0% 3% 3% 0 1% 0% 0 0% 0% 0%
1% 1% 2% 0% %% 0% 0% 0% 1%
0% 0% 3% 0% 0% 0% 0% 0%
0% 1/% 10 090 0% 1O 1% 0% 0%
1% 0% 3% 0% 0% 0% 1% 2j00
1% 1 o 0% 0% 1 0% 0% 0% 0% 0%

.. 0%.. 0 % . .. O
220/ 23% 22% 11% 9% 3% 40%/ 3% 4%/

14%
24%
18%
16 %
10%
5%
5%
6%
3%

100%

Figure 5.16 - Functional Group Interdependence

5.5 Nominal Completion Time, Cost & Staff Levels

Please note that the data and graphical information provided in this section has been scaled to
represent data and risk typical in industry, rather than that of the host company. Therefore, this
data may not be used to evaluate the host company, and may not be associated with it in any
way. It may only be used educationally for the purposes of comprehending a method for
understanding, modeling and improving product development processes.

The output from the DSM-based simulation model shown in this section show that typical
variability in the process tasks and variability in the process failure modes can cause non-
negligible variation in the cost and completion time of the baseline process. For example, the
histogram in Figure 5.17 below depicts the likelihood of completing the development process as
a function of time. Feasible completion times range from 500 to 700 business days, a range of
200 business days. Also, there seem to be at least two modes. The first represents the
possibility of having minimal or no failure modes occurring during the process, while the second
represents the possibility that failure modes create substantial rework. Although each of the
failure modes individually may not be likely, the impact of the failure modes collectively seems
to be significant.

Simulated Schedule

9.0% 100%

8.0% .. 9.......... 0%

7.0% 8%

70%
6.0%

60%

.C 50%

4.0%
40%

30% U

2.020% 20%

1.0% 10%

0.0%. , 0%

V V Ln Ln 0, 8 W LO

business days

Figure 5.17 - Simulated Nominal Completion Time Distribution

The predicted total workload required, which is a proxy for cost, is shown in the histogram in
Figure 5.18 below. At first glance, the total workload variability seems less significant that that
of completion time. However, the figure below actually depicts the workload required by the
process. One assumption of the model is that human resources are provided as needed by the
process. This assumption is somewhat invalid in reality since human resources cannot be

easily removed from a development process. Thus when idle time is added to the workload, the
distribution will be much more correlated with the time of completion of the project.

Simulated Workload

100%

90%

80%
7rA4

16.0%-

14.0% ---

12.0% . .

10.0%

8.0%

6.0% 4--

4.0%

I

50% a

.40% u

E
U
1330%

20%

10%
2.0%

0.0% i &4
0

man-days

Figure 5.18 - Simulated Nominal Required Workload Distribution

The staffing profile of the simulated baseline process is shown in Figure 5.19 below along with
the likelihood of process completion. This can be interpreted as the expected number of staff
required by the process over the course of the process. The mean plus one and two standard
deviations are also shown, in order to roughly depict variance. Towards the end of the process,
as the possibility of completing the process becomes more substantial, the staff level percentiles
become less relevant, as the staff levels become less adequately represented by the normal
distribution. This figure shows that initially, there is little variation in the staff required. Thus the
first iteration of design work and analysis can be easily planned for. However, as various
iterative loops begin and as failure modes begin to occur, early predictions of staffing
requirements become less relevant. This shows that the staffing of a program at certain points
in time may have a standard deviation as high as 10 people. So a flexible human resource and
planning structure could have major benefits in reducing the cost of a program. There also
seem to be several peaks throughout the program that coincide with typical design iteration and
with the occurrence of failure modes that occur near the end of the program. Constraining the
human resources to a point below that demanded by the actual process would have the effect of
lowering the peaks and extending the timeline. This may, however, increase the timeline more
than just by the area under the curve since iterative loops may be substantially slowed.

C2
iI

Simulated Staff Levels

90 100%

80 90%

70 80%

likelihood of
completion ' 70%

98.... 60% "

CU 50 ..

20

200

0%

0 0%
0 100 200 300 400 500 600

business days

Figure 5.19 - Simulated Nominal Staff Levels Required by the Development Process

The simulation results depicted in the above figures show that the baseline development
process without the impact of external drivers exhibits a substantial degree of variation, which is
inherent in the process tasks and dependencies. There may be ways to improve process tasks,
improve the speed of iteration, and reduce the risk associated with the process that could
drastically impact development process performance.

5.6 Chapter Summary
The fifth chapter analyzed the development process for propulsion products at Spirit using a
variety of techniques. A detailed description of the process dynamics is given by discussing
each iterative loop in the process. Control and facilitation of these dynamic loops will dictate the
performance of the process. Next network coupling analysis tools are used to identify the
specific tasks that are likely most crucial to the performance of the process. A similar network
analysis gives insight to how the various functional group depend on each other. Finally, the
output from the simulation tool described in the fourth chapter is presented and analyzed. The
analysis in this chapter is based solely upon the process characteristics. The following chapter
will offer analysis of the development process incorporating externally changing requirements.

6. MANAGING DEVELOPMENT WITH CHANGING REQUIREMENTS

6.1 Source of Changing Requirements
More and more frequently, product development responsibilities are being pushed down the
supply chain in many industries. This disintegration of the design chain for a product may have
many advantages including reduced cost structure and better design for manufacture. Specific
to the large aircraft industry, the ability to create additional jobs in various countries may secure
aircraft sales to those countries. One significant disadvantage in disintegrating the design chain
of a highly interdependent product is that informal communication, which is necessary to
efficiently complete the development process, is replaced by formal communication across the
various participating organizations. Specifically, iteration that occurs across organizations is
manifest through changing customer requirements. Moreover, if adequate high level design
work and analysis has not been preformed by the OEM or system integrator before offloading
system and sub-system design responsibilities to suppliers, the suppliers' requirements will
change even more substantially. In a disintegrated design chain for an interdependent product,
customer requirements will always change in order to align and integrate the development
efforts of all the organizations involved.

6.2 Types of Change
The most disruptive factor of the product development process is changing customer
requirements. Throughout the course of a development program, it is understood that the
requirements will change, but the timing of these changes is difficult to predict, and the impact of
the changes is difficult to quantify, even upon completion of the development effort. In addition,
changing requirements can create a sense of frustration on the part of the process participants
and a sense of panic on the part of the process managers. Creating a product development
process that is more robust to changing requirements will enable creation of more accurate
proposals and schedules, staffing programs at reduced cost, and more consistently meeting the
deadlines of the customer.

The effect of changing load scenarios seems to be the largest cause of total rework for Spirit
during product development. As program staffing is ramped up, design and analysis iteration
begins, thus advancing the product design against customer specified loads and other
requirements. Once the design begins to reach maturity, however, the customer (aircraft OEM)
"always" changes the load scenarios. The changing load scenarios render much of the previous
work and design iteration invalid, in effect creating substantial amounts of rework. The primary
cause of these customer driven loads changes seems to simply be advancement of the analysis
of the overall aircraft design. The fact that the requirements are developed concurrently with the
detail design effort rather than in advance of it inevitably leads to changing requirements.

In an ideal PD process, customer requirements would be finalized before development starts.
However, the increased need to shorten development time of aircraft has driven a higher degree
of concurrency. Aircraft OEM's now develop the overarching aircraft design simultaneously with
its subsystems. This high degree of concurrency results in the release of immature
requirements to design suppliers as a basis for early development. As development and
analysis of the aircraft and its subsystems progress, the OEM is able to release more mature
requirements to its design suppliers. As such, updated requirements are received at Spirit,
rendering some of the previous work invalid and creating great amounts of rework.

With the understanding that customer requirements do not change randomly, but as a result of
the maturing of the overall aircraft design and analysis, these requirements may be qualified

with a maturity rating. This rating should then be used as a basis for the amount of work that

should be exerted for a given set of requirements. In this manner, a program can be scheduled
and staffed such that no more work, additional detailing or analysis is performed than is justified

by the maturity of the requirements.

6.3 Time Dependency
The two major factors dictating the impact of a requirements change are the timing of the

change with respect to the state of the process and the extent of the change. If a requirements
change occurs early within the development process, the impact is not substantial since little
work had been initiated at that point. However, if the requirements change occurs later in the
process, the impact is greater since the change renders a large amount of previous work invalid.

To demonstrate the significance of the timing of a requirements change using the simulation
model, a single change was issued that completely changes the load requirements that the
structure must withstand. When this change is made at the start of the process, no difference is
perceived from simulating the processes without the change. But when the change is made
after the process has completed, a very substantial amount of rework is required causing major
cost and schedule overruns as shown in the Figure 6.1 below. The impact shown should be
viewed as the maximum potential impact since the change occurs at a perceived finalized state
of the process. The impact from a change in requirements will be reduced at earlier states of
the development process.

Simulated Staff Levels

90 - - ------ __ _

80

70

60

1.50
C.

n 40

30

20

10

Simulated Major
Requirements Charce

0 100 200 300 400 500 600 700 800 900

business days

Figure 6.1 - Maximum Simulated Impact of a Single Major Requireme

1000 1100

,nts Change

u

6.4 Externality Adjusted Completion Time, Cost & Staff Levels

Please note that the data and graphical information provided in this section has been scaled to
represent data and risk typical in industry, rather than that of the host company. Therefore, this
data may not be used to evaluate the host company, and may not be associated with it in any
way. It may only be used educationally for the purposes of comprehending a method for
understanding, modeling and improving product development processes.

Changing customer requirements can drastically change the cost and schedule of a
development process, as shown in the previous section. Therefore, it is necessary to modify
the baseline process results from the previous chapter to reflect the change that occurs in
reality. A set of 24 requirements changes, shown in Figure 6.2 below, was compiled to reflect
the timing and extent of changes that may occur during a typical development process.
Changes were induced for requirements regarding surface geometries, external interfaces,
aerodynamic performance, load scenarios, and configuration. The extent of change was
generally reduced as the development process advanced. Variability of the timing of incoming
changes was not considered, although this would likely result in increased variability in cost and
schedule. All 24 changes were induced for each run of the Monte Carlo simulation, which
allows us to understand the potential effects of a set of deterministic, exogenous changes.

Index Task Task Description Time (hrs) Impact
1 15 Obtain Master Dimension Surfaces (MDS) 1000 50%
2 15 Obtain Master Dimension Surfaces (MDS) 2000 25%
3 16 Obtain Preliminary Loads and Transmittal Sheets (LTS) 1000 50%
4 16 Obtain Preliminary Loads and Transmittal Sheets (LTS) 2000 25%
5 16 Obtain Preliminary Loads and Transmittal Sheets (LTS) 4000 25%
6 16 Obtain Preliminary Loads and Transmittal Sheets (LTS) 6000 25%
7 30 Define Customer Requirements 1000 50%
8 32 Obtain Engine Interfaces 1000 50%
9 32 Obtain Engine Interfaces 3000 25%
10 32 Obtain Engine Interfaces 5000 25%
11 32 Obtain Engine Interfaces 6000 25%
12 32 Obtain Engine Interfaces 7000 25%
13 33 Define Aerodynamic Requirements 1000 50%
14 33 Define Aerodynamic Requirements 2000 25%
15 33 Define Aerodynamic Requirements 3000 25%
16 33 Define Aerodynamic Requirements 5000 25%
17 33 Define Aerodynamic Requirements 7000 25%
18 46 Obtain Design Loads 1000 75%
19 46 Obtain Design Loads 2000 50%
20 46 Obtain Design Loads 3000 50%
21 46 Obtain Design Loads 4000 40%
22 46 Obtain Design Loads 5000 30%
23 46 Obtain Design Loads 6000 20%
24 46 Obtain Design Loads 7000 20%

Figure 6.2 - List of Simulated Requirements Changes

Figure 6.3 below shows a histogram of the distribution of the time required to complete
development activities. The average duration has increased by almost a factor of two due to
external changes. Interestingly, the variation in completion time is actually reduced. This is due
to the fact that the total time required is implicitly derived from the timing of the last requirement
change, which entails final set of requirements. Since the final change was fixed in this model,
the variation of completion time was reduced. However, uncertainty or variation in the timing of
the final requirements change would cause additional variation in completion time.

Simulated Schedule
100%

90%

80%

70%
0

60% -

50%

40%' E

30%

20%

10%

LA 0
r~ 0a
tl -1

Figure 6.3 - Simulated

business days
Completion Time Distribution with Typical External Change

Figure 6.4 below, depicts the histogram of the distribution of work in man-days required by the
process. Workload, like schedule, has also increased by almost a factor of two. More
importantly, the 80% range of potential workloads has almost tripled indicating increased
variation. This is important because if human resources are inflexible, then the actual worked
hours on a program will mask opportunities for cost reduction. But if human resources are
easily placed and removed from the development process, this may result in lower cost.

8.0% --

7.0% -

5.0%

4.0%

3.0%

2.0%

1.0%

0.0%
af' LA

-------~ -~,-

i
1

FIL

-.

- 4o

10.0%

9.0% .

8.0%

7.0%

6.0%

5.0% -

4.0% ---

3.0% -

2.0% V
1I nX i

Simulated Workload

...- -

.. ...

0.0% g o .

man-days

100%

90%

80%

70% "o

60% ,

50%

40%-

30 E30%

20%

10%

0%

Figure 6.4 - Simulated Required Workload Distribution with Typical External Change

Finally, Figure 6.5 below depicts the staffing requirements demanded by the development
process over time. The changes incurred drive staff peaks later in the process, whereas early
changes are not as disruptive. Intuitively, the process cannot converge until the last
requirements change has taken place. Again, flexible human resources would be able to take
advantage of the dips in staffing demand. Maintaining peak staff levels throughout would allow
the process to meet the same completion time, but with a higher cost. Maintaining valley levels
throughout would allow the process to minimize cost, but at the expense of the schedule. The
white line indicates the expected baseline staff levels without incorporating change. This graph
shows with certainty that requirements changes may have a drastic impact on the development
process and pose a unique and difficult management challenge.

"-,-4^~-

Simulated Staff Levels

8 0

60

a, 50

0. 40

30

20 -

10

0 100 200 300 400 500 600 700 800 900 1000 1100

business days
Figure 6.5 - Simulated Staff Level Requirements with Typical External Change

6.5 Wasted Development Effort
Although much iteration required to advance the development of Spirit's products is inherent in
the products, a significant amount of iteration and rework stems from changing customer
requirements - most typically changing loads. At first glance, it may seem as though the
wasted work in the product development process lies in the vast amounts of rework created by
changing requirements. Many industries judge the effectiveness of their PD processes by "first
pass" design quality, viewing subsequent rework as waste. However, when rework is caused by
changing customer requirements rather than engineering mistake, the rework cannot be seen
as waste since it advances the design against the final set of requirements which were
previously unknown. In effect, the real waste lies in the work that was initially completed, much
of which may have been irrelevant with respect to the final customer requirements.

Consider the simple staffing profile in Figure 6.6 below: In this process there are no iterative
loops, just a ramp up, a steady state and a ramp down of staff. The time denoted by tc denotes
the time at which the detail design phase is complete. Figure 6.7 indicates that development
progress for the simple staffing profile follows an S-shaped curve, which is simply the
accumulation of the area (man-hours) under the staffing profile as time proceeds.

Staff

Time Time

Figure 6.6 - Simple Staff Profile Figure 6.7 - Simple Process Progress

Now consider how changing customer requirements three times during the development
process might prolong the completion of detail design. The design cannot be complete until the
requirements are finalized. The staffing profile has now been extended such that is does not
ramp down until after the final set of requirements is received, as shown in Figure 6.8. The
perceived progress against the current set of requirements is drastically reduced each time the
requirements change, as shown in Figure 6.9. It is often perceived that the overrun due to the
changing requirements is waste, since it could have been avoided if the final requirements were
simply known at the beginning of the development process.

Staff
Progress

Time Time

Figure 6.8 - Staff Profile with Change Figure 6.9 - Progress with Change

However, it is usually impossible for the final requirements to be known at the beginning of the
process. Also, it is not appropriate to qualify work that advances the design against the final
requirements as waste since that work may actually be the most valuable. For separate
organizations developing interdependent parts of a design concurrently, it may be helpful to
understand the evolution of customer requirements in terms of their maturity, as shown in Figure
6.10 below.

Requirements
Maturity

tTime

Time

Figure 6.10 - Requirements Maturity with Change

Through this lens, the design process advances the design only as much as is justified by the
maturity of the final requirements, or the predicted relevancy of the current requirements to the
anticipated final requirements. This paradigm views waste as the work that was done in excess
of what is justified by the maturity of the requirements as shown in Figure 6.11 and Figure 6.12.

Progress

Time

Figure 6.11 - Potentially Wasted Effort

Time

Figure 6.12 - Potentially Wasted Progress

There is one important caveat to this perspective. The extent to which the maturity of the
requirements depends upon the maturity of the design dictates the ability of the process to staff
based upon the requirements maturity. If the advancement of the maturity of the requirements
depends upon the maturity of the design, then excess progress of the design could reduce the
likelihood of future requirements changes. In this case, excess staffing may be justified. Figure
6.13 shows the case in which requirements maturity is completely dependent on the design
maturity, thus rendering necessary an early staff ramp up. Figure 6.14 depicts how the optimal
staffing ramp up depends on the degree of dependency of the requirements maturity upon the
design maturity.

Staff Staff

Time

a=1

Time=o

Time

Figure 6.13 - Potential Necessity of High Staffing Figure 6.14 - Optimal Staffing Levels

Effort is made in chapter 9, "Restructuring and Improving the Development Process," to develop
quantitative measures for evaluating the maturity of requirements and incentivizing open
communication regarding requirements maturity between suppliers and the OEM.

6.6 Creating a Robust Development Process
Change is a reality of product development in the aerospace industry. Because the overall
aircraft design and each of its interdependent subsystems are developed both separately and
concurrently, change cannot be eliminated. Therefore, the most suited process for product
development is not one of speed under ideal or planned circumstances, but one of robustness
to change. In the current process at Spirit, change is somewhat disruptive. Psychologically,
change may create panic for management and frustration for engineers. A development
process that is robust to change means that change is expected and planned for, and that
excess effort toward meeting immature requirements is minimized. The goal of a robust
development structure is to ensure that change typical on new programs does not disrupt the

Staff

process and does not result in overruns that may have been avoided. Recommendations for
creating a robust development process are reserved for chapter 9, "Restructuring and Improving
the Development Process."

6.7 Chapter Summary
The sixth chapter discussed and analyzed the impact of changing customer on the performance
of the development process. The two factors dictating the impact of a change are the timing
and the extent of the change. A set of requirements changes meant replicate changes that may
actually occur on a program was introduced to the simulation model. The results showed that
changing requirements is likely the largest factor in determining the performance of the
development process. Finally, a staffing policy to optimize the cost of development is offered
based upon the maturity level of requirements and the dependency of requirements maturity
upon the maturity of the product design. With a more substantial understanding of the
development process and its sensitivities based upon the analysis of this and the previous
chapters, a method for managing risk will be offered in the following chapter.

7. MANAGING RISK

7.1 FMEA Methodology Overview
The Failure Mode & Effects Analysis (FMEA) is a procedure for documenting and analyzing
potential failure modes within a system for classification by severity or determination of the
effect of failures on the system. Typically, two types of methodologies exist, the product and the
process FMEA. The product FMEA is often used to improve reliability and safety of products
being developed. The process FMEA is typically used to improve the reliability of
manufacturing processes. However, Browning notes that the task-based DSM is well suited to
process FMEA. [1] The FMEA can be applied to each of the failure modes of the DSM in order
better understand development process risk. The FMEA documentation may also be used to
prioritize and organize risk management activities. This process typically should be undertaken
by a team of four to eight people. Too few people will not provide enough accuracy in capturing
and quantifying failure effects, while too many people results in ineffective meetings.

The first step in conducting an FMEA is to identify the failure modes of the process. Although
the DSM already provides this information, the team should familiarize itself with these failure
modes and ensure that the list is complete. Using the DSM structure, each failure mode should
be identified with a dependency between two tasks, an input task and an output task. A brief
summary is also useful to better describe what the failure actually is.

A failure effect is defined as the result of a failure mode on the whole development process.
Separate effects should be listed separately under the same failure mode. A rating should be
given to each effect, quantifying the predicted impact on the cost and schedule of the
development process. It is important that the FMEA team establish the meaning of ratings
before proceeding to ensure consistency throughout the process. Example ratings for severity
are:

0.0 - negligible impact on product development cost and schedule
0.2 - some impact on the product development cost or schedule, but not likely to be perceived

by the customer/OEM
0.5 - large impact on the product development cost or schedule, which will likely require some

re-planning or re-negotiation with the customer/OEM
1.0 - critical impact on the product development cost or schedule, which may put the future of

the program or the company at risk

To determine the overall severity of a failure mode's effects, the severity of each effect should
not be simply added individually since the scale is not necessarily linear (i.e. five effects with
severity of two should not aggregate to a severity of rating of ten). Instead the highest severity
rating should be used unless a more appropriate formula is agreed upon.

A failure cause is defined as the event or source which initiates the occurrence of a failure
mode. Independent causes should be listed separately under the same failure mode. An
occurrence rating should be assigned to each failure cause. Occurrence rating is defined as the
likelihood of the given failure cause occurring during the development process. Example ratings
for occurrence are:

0.0 - zero possibility of occurring
0.5 - fifty percent likelihood of occurring
1.0 - definite likelihood of occurring

The overall occurrence from a failure mode's causes is given by one minus the likelihood that
no failure causes occur, as shown in the equation below.

Ooal o- (1- o)
Typically in an FMEA, controls should be taken into account in assessing the ability of the
system to detect impending failure and to preemptively mitigate its consequences. However in
human based systems such as a product development process, such controls are difficult to
automate and are unreliable. Therefore, controls created in a product development process are
incorporated only through reduction of occurrence or severity and the detectability rating is not
considered.

The total risk associated for any single failure mode is obtained by multiplying the severity of
each failure mode by its occurrence. This risk priority number may be used to evaluate the total
level of risk in the development process (e.g. number of failure modes surpassing certain
thresholds), to prioritize risk management efforts, and to determine the expected impact of risk
which can be extrapolated from running the simulation model with and without the presence of
process failure modes.

The FMEA should be documented, preferably in spreadsheet form such as that of MS Excel.
This will allow for easy communication of results and easy prioritization of risk reduction and
mitigation initiatives. A DSM-based process FMEA should reference the process dependency
to which each failure mode refers. Below is a list of headings which should be present:

* Index - an identifying number for each failure mode
* Output Task - the task which may trigger a failure mode causing unplanned rework
* Input Task - the task which may be reworked if the failure mode occurs
* Failure Mode Description - a brief summary describing circumstances of the failure mode
* Effect(s) of Failure Mode - a potential consequence of the occurrence of a failure mode
* Severity - the impact of the consequence of the failure mode
* Cause(s) of Failure Mode - a potential cause which will induce the failure mode
* Occurrence - the likelihood of the occurrence of the cause of a failure mode
* Risk Priority Number - a rating for the total risk associated with a failure mode
* Recommended Actions - a list of actions which would reduce the occurrence or severity

associated with a failure mode
* Responsibility - the person or group responsible for undertaking the recommended action

There are several common practices in prioritizing failure modes. One practice is to adopt a
color-based grouping approach. This approach determines threshold risk priority numbers
which classify the failure modes into green, yellow, and red groups. Red failure modes are
considered extremely risky, while green ones are considered reasonable. Yellow failure modes
are somewhere in between. A major benefit from this approach is that the total significant risk
of a program may be easily communicated as the number of red, yellow, and green failure
modes for the process. Also, the red classification may be psychologically motivating for group
members. There are criticisms of this approach, however. The first is that threshold limits may
be determined somewhat arbitrarily, which may not set well in a more quantitative environment,
where numbers are typically not used subjectively. Another is that fixed threshold limits are not
appropriate since the severity and occurrence data for a failure mode may be developed
relationally against the other failure modes. So, the data may be scaled high or low since it
was developed subjectively, in which case fixed thresholds may not portray actual levels of risk.

Another common practice is maintaining a top ten list of failure modes to address. This
approach may be beneficial since it is very conducive to continuous improvement, regardless of
the state or risk. However, if the total level of risk is very high, more effort may be justified to
address additional failure modes. If the total level of risk is low, the reduction in risk from the
efforts addressing the top ten failure modes may not justify the costs.

A final, and potentially most appropriate, common practice is for a manager to evaluate the best,
and most cost effective way to reduce risk. The risk associated with some failure modes may
be more easily reduced than others. This approach should account for the manager's
integration of tacit knowledge and cost-benefit analysis.

7.2 Reducing Risk and Mitigating Failure Mode Effects
There are. many ways to reduce risk and mitigate its effects. Simply increasing the awareness
of specific risks alone can make a substantial impact in reducing risk. This is because many
task performers are unaware of the system risk, so once they become aware they will naturally
act to reduce it. Other, more proactive methods are described below.

One method is to freeze the design even though iteration may have naturally occurred, and to
label the failure as generational learning. For example, if it is found that a specific design
feature is costly to manufacture, rather than reiterating the design, this rework may be artificially
withheld and the feedback will be withheld for future products. This approach is best suited
when the failure mode is for a non-critical aspect of the design (e.g. not safety related) and
when iteration is very costly (e.g. if the failure mode occurs once the design is mostly complete).

Another technique is to rapidly advance the beginning iterations of each of the development
tasks in order to trigger failure modes as early as possible. This has the effect of reducing the
severity of the failure mode since it would not impact the cost or schedule to the extent that it
would if the process advanced more slowly. This technique is best suited for processes with
substantial iteration, since the rapid advancement may cost more relatively in processes that
only iterate once or twice. This may have the effect of increasing the expected cost or schedule
while reducing the risk of substantial overruns.

Another approach is to restructure the process to reduce the risk or to eliminate the failure mode
completely. An example of this approach would be to incorporate prototype testing into the
standard development process, rather than using it as a final quality check on the design for
certification. If testing is incorporated into the process earlier, the risk of testing failure would be
drastically reduced, although the expected time and cost to complete the process may be
extended.

Finally, some companies simply assign each failure mode to a team. Thus, that team is
responsible for reducing the likelihood and severity of their assigned failure modes. These
teams are given flexibility to address their failures in the ways that they deem most effective.
This is similar to generating awareness, but it takes it a step further by assigning responsibility
and incentives. The most mature organizations maintain a failure reporting and corrective
action database in which occurrence of actual process failures and effects are recorded, and
corrective actions are created upon further analysis.

7.3 Chapter Summary
The seventh chapter overviewed the failure mode and effects analysis in the context of failure
modes identified through the process DSM. Suggested methods were offered to reduce risk
and mitigate failure mode effects. Unfortunately, schedule constraints did not allow for sufficient
time during the internship for the author to perform an FMEA that would be adequate for
presentation here. Before suggesting recommendations for improving the development
process, a more holistic view of aircraft development is offered in the following chapter.

8. PRODUCT DEVELOPMENT INTEGRATION IN THE AIRCRAFT INDUSTRY

8.1 Increased Outsourced Development
Recently, OEM's in the large aircraft industry have felt increasing pressure to disintegrate their
business and to increase outsourcing. Over the past decade, this has lead to increased
outsourcing of both product supply and development. Two primary forces have driven this
disintegration - cost reduction and offsets. Pressure to reduces costs forces companies to
develop suppliers in lower wage environments. "Offsets" is the term given to the agreement
between the aircraft OEM's and the governments of potential aircraft customers to develop or
build part of an aircraft in that country in exchange for government subsidies for aircraft
purchases from that OEM. Recently, Boeing adopted a mostly outsourced model for
development and supply of its 787 Dreamliner.

The Dreamliner is now scheduled to deliver two years later than planned - the culprit, in large
part, is the new unprecedented outsource model that Boeing had adopted for the program. [18]
Diving headfirst into this new model, Boeing outsourced roughly 70% of Dreamliner parts which
would have previously been built in-house. The new model not only increased externally
supplied content of the aircraft, but also offloaded a substantial amount of design work to those
suppliers. Although the impact on the development schedule is obvious, it has yet to be seen
how the new model will play out once full-scale production is underway.

Although many argue that Boeing's lack of control over its dispersed supply chain led to the
problems it is currently experiencing, [7] the underlying problem may be much more structural in
nature - that Boeing disintegrated the design effort of a highly interdependent product, failing to
understand the impact of this forced modularization upon the development process.

Integrated Design Chain

Dis-integrated Design Chain

System
Integrator

Outsource Model

0Sub -System

Figure 8.1 - Effect of Outsourcing on Design Chain Architecture

8.2 Interdependent Design & Process Integration
When designing a highly complex product, it is critical to understand the interdependency
between different parts of the product. Typically, parts which are highly inter-dependent can be
grouped into sub-systems, and sub-systems which are highly interdependent can be grouped
into systems. Systems represent the highest level of grouping of the whole product. The point
of grouping parts into systems and sub-systems is that interdependent designs must collaborate
in order to reach a feasible solution. For this reason, there must be a certain level of integration
between parts, sub-systems, and systems which depends on the degree of interdependency
between these groups. As seen in Figure 8.1 above, vertical integration provides an
architecture with open collaborative channels. Under an outsourced model, collaboration

between interdependent sub-systems takes place through the
inherently a model with more resistive collaborative channels.
grouping responsibilities of design tasks along the lines of simplified

system integrator and is
Figure 8.2 below depicts

systems and sub-systems.

Figure 8.2 - Example Systems Integrator Design Chain

8.3 Sections & Systems Architecture
The problems resulting from the disintegration of the design chain at the system level are further
complicated by the grouping of design tasks based on sections rather than on systems. The
sections grouping breaks the structures system into parts, as they should be supplied. The
production and assembly of an aircraft is not an iterative process, so supply of aircraft parts may
be dissected based on labor and logistics costs. Although sections grouping optimizes the
supply of parts assemblies, superimposing this structure onto the development process
drastically complicates the process architecture. Not only is collaboration between the highly
interdependent sections indirectly routed through the OEM, but other systems must now
collaborate with multiple structures providers in alleviating inter-systemic issues. Figure 8.3
and Figure 8.4 below depict the sections view of an aircraft and the associated sections-based
product DSM. [16]

Empennage

Wing -

Cabin

Tailcone

Distributed Systems :
*Structure
*Avionics
*Electrical System
*Hydraulic System
*Flight Controls
* Pneumatics
*Fuel System

Cockpit

Figure 8.3 - Example Sections Architecture of a Business Jet

PmoAmuctaR oA

Avr*s

E Sy*st
4y&&A .syskr

Pg A'0 V-', &eA v
N 5 W~o~r*W

x * Axx At I x x r x

Sx x
Ax x x x x 1 x

X

%

X I
X X

Figure 8.4 - Binary Product DSM for Example Sections Aircraft Architecture

This product DSM shows that the sections architecture drastically increases the number of inter-
organizational dependencies and interfaces versus grouping based on functional systems.
Tripathy further notes that modular decomposition for jet aircraft is not possible since the
functional systems are distributed throughout the aircraft, touching almost all sections, and since
each section contains elements of most of the functional systems. [16]

8.4 Mutating Requirements
If the role in the development process is now systems integrator, the aircraft OEM is now
responsible for communicating the impact of an- evolving over-arching product design to its
suppliers. As the design of a particular supplier changes, those changes may impact other
parts of the design. In a vertically integrated design effort, such changes are internal and may
occur quickly and informally through iteration between the design tasks. However, in an
outsourced model, this sort of iteration does not occur informally, but rather through formal
requirements changes., The formality of this process is compounded by other business
processes that must also occur such as re-evaluation of contracts for scope creep and
estimation of the cost impact of changing requirements. Thus, mutating requirements and
engineering change orders replace informal collaboration, drastically impeding the design
evolution process. Figure 8.5 below shows the degree of interdependency in a sections-based
design chain, which may act as sources for changing requirements.

62

Functonal S9

i

X X
X X

r xx x (

XI X X

X A

xX A

u" I I I .T I A I _

Figure 8.5 - Effect of Sections Architecture on Systems Integrator Design Chain

8.5 Cost of Concurrency
Many believed that the new outsourced model would allow for an expedient development
schedule, since suppliers would be responsible for their own designs allowing more concurrency
in the process with fewer human resource constraints. The planned schedule for the
Dreamliner assumed a schedule reduction of 33% over previous similar development
processes. This belief demonstrates a significant misunderstanding of the complex,
interdependent nature of both aircraft products and the aircraft development process.

The primary problem with this schedule assumption is that not all tasks should be performed
concurrently. If two design tasks that normally should be performed in series are instead
performed in parallel, this introduces the need for additional iteration between the tasks, which
could have otherwise been avoided. Overlapping sequential tasks has been described as "a
core technique for saving development time [11], but Cho and Eppinger point out that it is
generally acknowledged that overlapping tasks may save time, but is more costly than the
traditional sequential approach, since it induces the need for additional iteration. [5] Moreover,
the reduction in schedule assumes that the overlapped tasks may iterate freely when needed.
But when iteration must occur between separate organizations through changing requirements,
any time savings will likely be wasted, and development may take substantially longer. Thus,
two design tasks can sometimes be completed more quickly when performed in series than by
overlapping them.

8.6 Chapter Summary
The eighth chapter described how an increased trend in outsourcing product development has
redefined the manner that design iteration can occur. The effects of the disintegration of the
design chain are compounded by the division of design responsibilities along sections of the
aircraft rather than systems, rendering the development process inefficient. This perspective
offers insight into the source of changing customer requirements that, disrupt the development
processes of the suppliers. The following chapter will offer recommendations to address both
the high level integration problems depicted in this chapter and the low level issues associated
with the development processes of suppliers.

9. IMPROVING PRODUCT DEVELOPMENT

9.1 Overview
This section is meant to offer potential solutions to improve Spirit's product development
process at various levels. These potential recommendations have been grouped by the issues
that they attempt to address. Detailed evaluation of each of each solution is not undertaken
here, but rather a brief justification is offered regarding how each solution could address an
issue with the development process.

9.2 Advancing Understanding of the Development Process
In order to improve its product development processes, Spirit's managers and engineers must
first gain a deeper appreciation for the complexities and interdependencies inherent in
aerostructure design. This understanding must not only take place at high levels, but through all
levels in the development process. Once task performers fully understand their role in the
development process, they will adapt to minimize risk for themselves and their colleagues.

Institutionalize DSM
The Design Structure Matrix (DSM) is a very useful tool for depicting the flow of information
within a complex process in a very organized and simple graphic. The DSM highlights sources
of iteration that define the complexity of the process allowing employees to better understand
their role in the process and managers to better understand how to control and improve the
process. In order to increase the accuracy of simulation results, as well as to have more
accurate numeric DSM representation, task characteristics and dependency data should be
monitored. With more accurate input data, the simulation model could be used as basis for
product development cost and schedule estimation. Ulrich and Eppinger note that facilitating
information exchange is for complex development processes is critical to its performance. [17]
With a better understanding of information flow paths, employees will be able to communicate
more effectively in the development process.

Institutionalize the Process FMEA
The Failure Mode & Effects Analysis (FMEA) is a useful tool for understanding and managing
risk. The standardization of the FMEA would result in a better understanding of systemic risk by
all of the employees participating in development efforts. The FMEA's may be originally
informed through subjective input and simulation results, but with the creation of a process
failure modes and corrective action tracking system, the FMEA would become more informed by
historical data allowing for long term calibration.

9.3 Integrating Interdependent Tasks
Because interdependency is inherent in its development processes, advancement of product
design at Spirit is highly iterative. This iteration should be facilitated since it can't be eliminated.
The best way to facilitate iteration is to ensure that the interdependent tasks are highly
integrated. Since such a high degree of interdependency is across functional lines, it is very
important to remove inter-functional barriers so that iteration occurs with resistance.

Minimize Functional Grouping on Proqrams
In Wichita, the functional grouping within programs at Spirit is very strong. By recreating a
program organization based off of the product architecture rather than the functions, design
iteration is more likely to be both expedited and reduced since staff performing interdependent
tasks are more tightly coupled. This sort of product-based grouping is not uncommon in

complex development programs, and is already essentially enacted at Spirit's Prestwick site.
By integrating functions at a grass-roots level, interdependent tasks in the development process
will be more tightly coupled and may iterate more rapidly or even concurrently.

Create Functional Centers at the CTO
If functional grouping is minimized at the program level, it will still be necessary to ensure that
the functions are still represented and maintained within the organization. In order to achieve
this, it is recommended that functional centers are created within the CTO either under or
alongside the program management center in the CTO. These centers will ensure proper
career development opportunities, training, software selection, and best practices across the
organization. There should also be links established between each program and the functional
centers such that employees have a place to go for functional questions related to the program.

Split Role of Stress in Desiqn & Certification
Since there are two customers of stress analysis in the development process - design and
certification - which have different but related needs, the stress group should be split such that
it can better meet the needs of each of those customers individually. In this manner, stress for
design will not be obliged to perform certifiable analysis on each iteration and may therefore
adopt tools and practices which enable faster iteration and design evolution. Certification
analysis would then be viewed as a one-time, effort-intensive quality check of the final design.
This would allow design analysis to adopt a more appropriate amount of risk in order to save
time and effort, much like the role of rapid prototyping in a design-build-test process.

Be Aware of Integrated CAD/CAE Tools
The state of technology of computer aided design and engineering tools is constantly evolving.
In more recent years, there have been major advancements in the integration of stress analysis
tools into the CAD environment. Although these integrated tools are not yet mature enough to
apply to aerostructure products, they will reach that state. When these tools are mature
enough, the largest iterative loop in the development process will be reduced to nearly nothing
providing significant reductions in the development cost and schedule. One significant issue,
however, is that the organizational structure of the development process at Spirit is not suited
for this level of integration. Spirit will need to rethink the roles of design and stress engineers
and how they interact when this technology reaches a maturity tipping point.

Innovate in Structures/Systems Integration Practices
The interdependency between systems and structures design inherently causes design
iteration. Innovation in integrating systems into the structural design would not only be a basis
for product differentiation and competitive advantage, but could also eliminate iteration within
the development process. Because of the dual benefit of better integrating systems and
structures, investment in this area is very likely to produce a substantial return.

Outsource Only Independent & Non-Iterative Development Tasks
There do exist particular aspects of the development process which may be outsourced to a low
cost engineering service provider without significantly increasing the complexity of the
development process. Such tasks are characterized by: minimal interdependency to other tasks
in the development process, minimal likelihood of iteration, easily communicated statement of
work and instruction, and relatively large workload. If such characteristics of a task are met,
then it should be considered for low-cost outsourcing. Two such items include creation of final
product drawings (based upon CAD designs) and certification analysis & documentation of the
final design.

9.4 Managing for Change
Managing for change means controlling the development process with the understanding that
changing requirements are part of the process. This includes maintaining a smoothly
functioning change management processes, but also includes preparing the process and its
participants for change. Assuming that progress will proceed perfectly as planned is not only a
poor assumption, in the design of aerostructures it is probably the worst assumption.

Create a Scope & Change Program Manager Position
The most simple way to prioritize managing for change would be to create a position for a scope
and change manager at the highest level of the development program. This person would then
be responsible for interfacing with the OEM on all issues relating to changing requirements.
Incentive structures would be developed by this person to encourage better communication of
requirements maturity and to help the OEM understand the necessity of flushing out
requirements as early as possible.

Develop a Wiki to Manage Change
Communicating requirements changes and engineering change orders throughout the
development process can become very tricky when the number of participating employees is
large. A wiki-style interface could allow for the employees to have easy, searchable access to
all of the external changes impacting the development effort. The OEM could also be given
access to request changes through this system, essentially using the wiki as a platform for
managing the change process. Finally, if horizontal development partners may be given access
to this change system, then all participating organizations could become aware of impending
change upon their processes due to external changes, essentially demystifying the source of
changing requirements.

Staff Based on Requirements Maturity
With the knowledge of the customer's perception of the maturity of their requirements, a
different approach may be taken with regards to staffing a program. Since work completed
against mature requirements is more valuable than work completed against immature
requirements, the maturity rating of the requirements should serve as a basis for staffing a new
product development program. In order to minimize staff levels throughout a program, effort
should be made to delay staff ramp-up of a program until customer loads have matured. This
recommendation is driven by two factors - customer-driven load scenario maturity dictates the
ramp-down of a program, and the load scenario maturity is mostly independent from the
maturity of Spirit's design. Although the customer would like to see early ramp-up in order to
minimize their perceived risk on Spirit's end, the customer's perceived risk mitigation comes at
Spirit's expense of inability to meet internal cost and cycle time targets.

Create Incentives for Early & Expedient Changes
The timing of a requirements change can drastically reduce or increase the systemic impact of
that change on the development process. Based on this understanding, contractual
agreements should create incentive for the OEM customer to flush out requirements changes as
early as possible. This would not only incentivize the OEM to allow more informal
communication between development organizations, but would also encourage the OEM to stop
overlapping sequential development tasks across the development organizations, resulting in
less iteration and fewer requirements changes.

Create Incentives for Communicating Requirements Maturity
In order to foster more accurate and open communication between Spirit and its customers
regarding the maturity of requirements, development schedule, and actual progress, both
parties must have a financial incentive to do so. If such an incentive does not exist for the
customer, that customer will always mitigate schedule risk by representing its requirements as
more mature than they actually are. This mitigation of the customer's risk comes at great
expense to Spirit since it would then staff the program at levels beyond those justified by the
maturity of the requirements.

Cost sharing, if properly structured, would incentivize the customer to accurately depict the
maturity of the requirements, since they would bear the cost of overruns associated with overly
optimistic portrayal of the level of maturity. Overly pessimistic portrayal of requirements would
result in prolonging the product development schedule more than would have otherwise been
necessary. The proper structure for cost sharing should be based upon the accuracy of the
communicated maturity of the loads. Not only would this structure for cost sharing force OEM's
to pay for overruns that were caused by them, but it would create incentive for both parties to
eliminate unnecessary cost in the first place.

Give Notice to Downstream Tasks of Impending Change
One very specific action that managers can take to reduce the impact of change is to
communicate that change is impending to the downstream tasks of the task directly affected by
the change. This would allow the process to better brace against change by preemptively
planning for the effects of specific changes as early as possible.

Increase Human Resources Flexibility
The baseline development process for aerostructures contains a significant amount of
variability,, and changing requirements further compounds it. If the staffing of a given
development process is inflexible and human resources cannot be easily added or removed,
there will be very significant waste. The ability to shift human resources as the process requires
them will significantly reduce development costs. Although it is not realistic to achieve a
perfectly flexible human resource pool, any increase in flexibility will reduce costs.

9.5 Making the Process Robust to Change
Change is a reality of product development in the aerospace industry. Because the overall
aircraft design and each of its interdependent subsystems are developed concurrently, change
cannot be eliminated. Therefore, the most suited process for product development is not one of
speed under ideal or planned circumstances, but one of robustness to change. In the current
process at Spirit, change is very disruptive. Change creates panic for management and
frustration for engineers. A development process that is robust to change means that change is
expected and planned for, and that excess effort toward meeting immature requirements is
minimized. The goal of the proposed recommendations and development structure below is to
ensure that change typical on new programs does not disrupt the process and does not result in
overruns.

Create Requirement Maturity Ratings
The degree of maturity of customer requirements is currently roughly acknowledged by the
classification of loads as either preliminary, design, and final. Three tiers of maturity, however,
do not offer enough resolution to differentiate between incoming changes that may differ greatly
in maturity. Several criteria (listed below) can be used to quantify the maturity of a given set of
loads.

* Wholeness - the extent to which all scenarios have been translated into load conditions;
* Feasibility - the likelihood that the current design and loading conditions allow for a feasible

solution and does not require a substantial aerodynamic and conceptual redesign;
* Set Accuracy - the percentage of all loading conditions within the entire set of loads that

should not see any future change;
* Average Load Accuracy - the average extent to which the magnitude (and sign) of each

load condition is accurate (accuracy variance may also be a useful metric).

These characteristics of loads maturity may be explicitly used by Spirit and the OEM, or a more
general set of maturity ratings may be developed based on minimum values of these
characteristics. If a general set of maturity ratings is implemented, a high enough number of
ratings must be chosen in order to provide adequate resolution to distinguish between loads of
greatly different maturity and to justify staffing changes during a program. In either manner, the
accuracy of the communicated maturity of each set of loads can be evaluated by comparing
each load set against the final set of load conditions at the end of the program. The accuracy of
communicated loads maturity should be used as a basis for cost sharing of program overruns.
It should be noted that these criteria (except feasibility) can and should be tracked, even without
any sort of cost sharing structure.

Monitor, Predict & Communicate Requirements Maturity
Every effort should be made to understand the evolution of requirements. The most basic form
of this is subjectively estimating the maturity of requirements. A more advanced approach
involves evaluating the requirements maturity progression of historic development processes,
and using this as a basis for predicting the maturity of a current development process. This is
possible since the final requirements of historic programs are known, so all preliminary and
intermediate requirements can be measured against the final ones. The best approach,
however, would be to communicate with the OEM customer in order to understand how they
perceive the maturity of the current requirements.

Relax Requirements
One method for increasing the robustness to change is to relax certain design requirements
based upon the maturity of the requirements. This methodology is analogous to assigning
tolerances to or specifying a range for the requirements. For example, if the requirements are
immature, then they could be said to have loose tolerances. The tightness of the tolerances
dictates the amount of effort that should be spent to achieve the target requirement. This has
an effect of relaxing the constraints on the solution space for the design such that no more effort
is exerted to achieve the target requirements than is justified by the requirements maturity.

One way to accomplish this is to relax the target weight for.the design based upon the maturity
of the requirements. The preliminary design target weight may be increased by a large factor,
which would gradually be reduced as the requirements mature until the late stages of product
development when the design weight is reduced to exactly the target weight. This methodology
would create a process that is much less sensitive to incoming changes, and therefore, would
not be radically disturbed by major changes early on. In addition, this would allow programs to
delay ramp up to the later stages of design since relaxing design weight would result in a
simpler engineering problem. A delayed ramp up would create a situation where most of the
work is performed against mature requirements rather than wasting the effort against immature
requirements.

If the requirements relaxation method is to be used, then a "proof of concept" should be
developed after concept selection. The proof of concept should be used to indicate that the
chosen concept has a high likelihood of meeting the target customer requirements. Developing
a proof of concept should eliminate the risk that relaxing requirements may delay feedback of
poor concept selection and should allow the OEM customer to be more comfortable with this
approach.

Ramp Fidelity
Similar to relaxing the requirements for the product, the fidelity of the design can also be
adjusted to correspond to the maturity of customer requirements. Fidelity refers to the extent of
detail present in the design. In other words, early in the development process when
requirements are immature or preliminary, the design effort should be very conceptual. As the
requirements mature, more detail can be added until the requirements and then the design are
finalized.

Phase Detail Design
Currently there are three general phases in Spirit's product development process - joint concept
development phase (JCDP), detail design, and release & certification. Spirit could greatly
benefit from imposing additional structured phases onto the process, particularly in detail
design. Since the maturity of the customer's requirements can vary greatly in the detail design,
it would be appropriate to subdivide that portion of the process into additional phases such that
the process acknowledges that excessive detail and analysis are not justified early on.
Additionally, staffing policy can now be referenced against the timing of the phases since the
addition of more phases provides more resolution. For example, tooling staff may be needed in
the initial detail design phase for general feedback and the final design phase for detail
feedback, but less so in the middle phases when the details are being flushed out. Other
policies could also be created in reference to the phases. For example structures and systems
may design independently in the first detail design phase, but should focus on integration in the
second phase. By breaking the development process into smaller blocks, more specific
direction can be given to process participants regarding what they should be doing and what
they should be prioritizing. More control can also be exerted over the rate of iteration of the
different interdependent process steps. Finally, the additional phases will provide more
opportunities to review the design against intermediate expectations and adapt subsequent
phases to specific areas.

9.6 Capturing Intellectual Property
Intellectual property (IP) is important for an OEM because it dictates the starting point for
development efforts. If, for example, Spirit retained no IP, development would start from a blank
slate. With higher retention of IP, less redundant effort is required for subsequent development
efforts. The potential recommendations below correspond to increasing levels of IP retention.
Two important caveats to these recommendations are that Spirit must invest in its own
development initiatives to create standard, reusable designs and that the OEM customer may
have preferences regarding the extent of standard design usage.

Pre-Engineer Standard Component Designs
Spirit could invest in the development of standard components that could be used in multiple
products. This is a very low level of IP retention that could easily eliminate redundant tasks
across the products. To a certain extent, standard component designs are already used, but
further expansion is assuredly feasible.

Create Load-Path Platforms
Taking standard components a step further, Spirit could standardize conceptual designs for its
products. Each of these preliminary designs would essentially consist of low-fidelity load-path
geometries. One major benefit of this approach is that it standardizes at a higher level than just
component designs, which would allow for development of CAD tools specific to each load-path
platform to streamline the design efforts required to add design fidelity and integrate the various
component designs. Another advantage of this approach is that the costs to create these
platforms should not be excessive, making this a low risk investment.

Create a Product Catalog
The most extreme form of IP generation could result in creation of a product catalog. Aircraft
OEM's could select from the catalog the design that best fits its needs, and Spirit could tailor
that design to meet the OEM's specific needs. This approach would appeal to OEM's since it
could drastically reduce the costs and schedule of development, but the OEM's may not be
partial to using designs similar to those of their competitors. There also may be a significant
amount of risk in developing high fidelity designs that customers may not want.

9.7 Architecting Product Development of Aircraft
Chapter 8, "Integrating Product Development in the Aircraft Industry," showed the extreme
complexities incurred from developing aircraft across multiple organizations and from dividing
design responsibilities based on sections of structures rather than systems. That analysis
shows the significant benefits of vertically integrating design and development efforts of a
complex product. However, there are other factors, the most significant of which is the
prevalence of offsets, that force the OEM's to outsource. Even if only manufacture were
outsourced, the design for manufacture activities with suppliers would become intrinsically
dispersed. Since complete vertical integration is not reasonable, the best option may lie in a
better architecture for product development of aircraft.

Design by Systems, Supply by Sections
The first aspect of the proposed architecture for developing a large aircraft is to design by
systems, rather than sections. This change particularly applies to the development of the
structures in the aircraft. Thus a single organization would be responsible for developing the
aircraft structures. The design of the structures should take place much more rapidly since the
sections will be developed in an integrated effort. The supply, however, should be maintained in
sections in order to minimize production costs. As previously stated, there is significant
interdependency with design of the production process and tools with the design of the product.
Thus, each sections supplier should coordinate with each systems designer in order to
incorporate design for manufacture into the development process and to allow the suppliers to
design the tools and manufacturing processes somewhat concurrently with the product design.
This architecture should alleviate major issues with disintegrated interdependency in the design
chain, while allowing the OEM's to produce products in their customers countries to ensure
sales there. One disadvantage of this approach is that the OEM's would need to select a single
design firm for each system, which may not ensure the equal footing for most tier-one
competitors that currently results in significant cost-based competition. Since Spirit has the
capability to design all structural components of a large aircraft, it is positioned to move into the
system designer role. Although this role may require organizational restructuring to operate as
both a structures system designer and a sections supplier, such a role could drastically increase
the company's value to an OEM who prefers to play the systems integrator role, further ensuring
future strategic business.

9.8 Chapter Summary
The ninth chapter offered recommendations to improve product development at various
organizational levels. Recommendations are presented in the following categories: advancing
understanding of the development process, integrating interdependent tasks, managing for
change, making the process robust to change, capturing intellectual property, and architecting
product development of aircraft. The recommendations would require varying degrees of effort
and have varying likelihoods for successful implementation. The following chapter will offer an
approach for identifying the organizational suitability of an initiative, which can serve as a basis
for.selecting recommendations or for developing tactics to increase the likelihood of successful
implementation.

10. IMPLEMENTING CHANGE IN AN ORGANIZATION

10.1 Three-Lens Methodology
A particularly useful method for evaluating the practicality of a proposed improvement initiative
or change involves evaluating it through three "lenses" - structural appropriateness, political
alignment, and cultural suitability. Through the three lenses, obstacles to successful
implementation are identified in the context of the specific organization. The results may be
used to prioritize proposed initiatives by ease of implementation. The results may also be used
as a basis for developing implementation tactics that will most likely yield success for a chosen
initiative. Either way, it is important to evaluate proposed changes in the context of the specific
company, since organizational dissonance alone may prevent successful implementation. [3]

10.2 Structural Appropriateness
The structural (or often called "strategic design") lens analyzes the proposed initiative from the
perspective of how information flows through an organization. The structural lens determines
how the architecture of the organization affects the way that tasks are accomplished and value
is added in an organization. The structure dictates the rules by which employees abide in order
to complete their tasks. In order to control activities, managers create work groups, links
between groups, goals and responsibilities for the groups, and rewards and incentives to
motivate success. The level of understanding of the structure by the employees can often
impact the performance of the organization. [8] The degree to which an initiative can be
deployed within the structure of the organization determines its structural appropriateness.
Initiatives that require new groups and linkages may not be structurally appropriate for the
organization. This, however, may indicate weaknesses in the current organizational
architecture to face future market necessities regardless of the proposed initiative.

The organizational structure at Spirit is characterized by its manufacturing roots and mentality.
Spirit has historically viewed product development not necessarily as a value added activity, but
rather as a necessary cost that must occur before manufacture can begin. This is largely a relic
of the role that the facility played as a Boeing site prior to the divestiture. In the past, this
paradigm and structure has led Spirit to prioritize manufacturing improvement more so than
product development improvement.

The current execution of product development takes place largely in a de facto manner where
participants in the process continually react to changes in inputs in order to complete their
deliverables. This has led to somewhat of a fire fighting mentality among engineers and
managers, where process implementation is prioritized above process improvement. This is not
unique to Spirit and seems to be common within the industry. Such a mentality leaves very little
time to create standard processes and tools, which could reduce the fire fighting that occurs in
subsequent efforts. Highly functional grouping is another former Boeing trait, where employees
that participate in the product development process are grouped primarily based on their skill
sets rather than the part of the product architecture. Any improvement initiatives must
acknowledge these characteristics of the organizational structure pertaining to product
development in order to increase the odds of success.

10.3 Political Alignment
The political lens analyzes the proposed initiative from the perspective of who maintains power
within the organization and how the initiative aligns with their goals and perceptions.
Employees with varying interests will resist or promote the initiative based on how they perceive

it will impact their interests. The level of power of those promoting versus resisting the initiative,
may very well determine the success of the initiative. Individuals and groups may obtain their
power through a variety of channels such as the organizational hierarchy, individual
competence, and their ability to convince or motivate others in the organization, but all of these
sources of power may be classified into two categories - bestowed power and de facto power.
Bestowed power is given through the organizational structure, while de facto power is obtained
on a cultural basis. The degree to which stakeholders with both bestowed and de facto power
will promote the initiative determines its political alignment. Initiatives that require shifting
sources of power from certain individuals to others may not be aligned with the current political
situation. It is possible, however, for bestowed power to be shifted throughout an organization,
so lack of political alignment may not necessarily prevent success of an initiative.

At Spirit, most significant power is bestowed from the organization. This is evident in part by the
proliferated presence of organizational charts in cubicles, on walls, and in presentations. One
major reason for the weighting toward bestowed power is the major presence of both
manufacturing and engineering unions at the company, which explicitly indicate assignment of
powers through contracts. These unions have left an indelible mark on the company regarding
definition and division of responsibilities, which even finds its way into the mode of operation in
management. For example, much care is always taken not to step into the responsibilities of
one's colleagues, even when not mandated by contract, which can make cross-functional
change difficult to coordinate and integrate throughout the company.

With regard to product development, pieces of power lie at three different tiers of the
organization. First, the engineers retain essentially veto power for any change initiative since
they understand how a change might impact the technical and safety aspects of product design.
That said, this group is very comfortable with the status quo since they are typically well paid
and possess a high degree of job security as part of the engineering union. In addition, they
have very little concrete incentive to improve the cost or cycle time of a product development
program since there is little.to no significant financial reward for better performance. This group
does not typically envision a better performing process and is generally skeptical when it comes
to change or improvement. However, since this group does in effect have veto power, it's
important to gain their appreciation for any change or improvement initiative. The key personnel
for this group are the engineering leads and the technical fellows. These are the engineers with
the most technical competency, experience, and process insight, who have the ability to
motivate and convince other engineers in their organizations.

The second group, middle management, is probably the least empowered to enact change
since the engineering leads control the technical aspects of the design process and the chief
technology office controls the official development process and tools. However, this group is
the most in touch with the problems, since they are evaluated against the performance of the
development process and interact with the process participants on a daily basis. In addition,
they are better positioned to see how a problem might affect various parts of the process and to
understand the root cause of the problem. Generally, a manager may carry clout with a few
engineering leads since management typically came up through engineering, but that clout is
typically limited to the function that the manager had previously served in. This group may be
the most capable of solving process problems, but seems to be the least empowered to do so.

The final group of power is the leadership, or upper management, including program managers,
company directors, and vice presidents. This group carries power both politically and culturally
at Spirit. Program mangers have the power to commission and lead change, however, they are
typically very overwhelmed with other short-term issues which may prevent them from inventing

and implementing improvements. Directors and VP's are well positioned to commission
improvement activity. Generally, this group may be too distanced from the development
process to offer much specific insight as to improving it, even though they have the most power
and resources to solve issues. In order for any significant change to occur, the clout and
resources of upper management, the holistic understanding of the middle management, and the
technical knowledge and buy in of the engineering leads will all be required.

10.4 Cultural Suitability
The cultural lens analyzes the proposed initiative form the perspective of its suitability regarding
the norms, assumptions, values and informal relationships within the organization. The culture
of a company is not explicitly created by individuals or leaders, but is rather the aggregation of
the organization's behavior. Many aspects of the culture can be cultivated by its leaders, for
example by removing staff who conduct business dishonestly or by rewarding individuals who
exhibit technical competence. However, it is impossible to completely control an organization's
culture. Initiatives that require significantly changing the norms, assumptions or values rather
than reinforcing the current ones may not be culturally suitable. Lack of cultural suitability may
pose the most difficult obstacle to overcome since culture is very difficult to change as it is
somewhat a product of the company's cumulative history. However, it is often possible to
change aspects of an initiative to make it more culturally suitable without compromising the
purpose of the initiative.

Since Spirit's divestiture from Boeing, much has changed regarding the business plan, but the
company's culture has been more slow to react. This is largely due to the fact that the
divestiture happened very comfortably with large contracts in hand and without much crisis.
Through the cultural lens, Spirit is an older, massive company with a highly experienced, but
aging workforce, and with firm roots. This engineering culture does not lend itself easily to
change, and is extremely skeptical of improvement initiatives that seem to be the next "flavor of
the month." This is especially true of initiatives that do not seem to take into consideration the
technical aspects of product development or which tend to oversimplify the process. For
change to occur within the product development process, much effort must be taken to prove
why and how the change can improve the process, rather than "marketing" the change to this
skeptical technical audience.

In addition, the engineering organization seems to have an appreciative self-perception. Many
engineers view the company as a "world leader" in general product design, which may be true in
certain areas, but may lead to complacency where improvement opportunities lie. The lack of
urgency and sense of comfort of the engineering organization has largely prevented Spirit from
enacting significant change. For product development process improvement to occur
substantially, more urgency is required than is portrayed through the comments of one technical
executive comparing product development improvement at Spirit to "Tiger Woods remaking his
golf swing."

There is also somewhat of a cultural divide .between engineering and management.
Organizationally these groups are connected, but they sometimes have very different priorities
and even values. Many engineers are very skeptical of management because they fear that
safety or engineering integrity may be compromised. This leads to a nothing-less-than-perfect
mentality in engineering where many don't trust that the process will ensure that the best and
safest design evolution will occur. The lack of trust in the process sometimes lead to over-
engineering. One of the primary reasons that engineers are skeptical of management and
improvement initiatives is that they sometimes perceive a lack of technical understanding and

oversimplification by management. Recommendations accompanied by a technical or
quantitative analysis would go a long way in appealing to this group.

10.5 Chapter Summary
The tenth chapter described an approach for assessing the organizational suitability known as
the Three Lens methodology. This approach seeks to understand the organization in terms of
an organization's structure, politics, and culture. A brief analysis of Spirit's organization through
the three lenses is offered as an example, but as an outsider's perspective, this view of Spirit
should not be taken as complete or necessarily accurate. The following chapter offers the final
conclusions from this thesis.

11. CONCLUSION

11.1 Key Learnings
As a result of the work for this thesis and the research opportunities provided by Spirit, several
key learnings should be taken:

* Linear planning tools are not appropriate in developing complex products. In development,
the plan is an approximation. If only downstream flow of information and causality is
incorporated, the plan is a poor approximation. Interdependencies in the product and
process may cause substantial iteration. A culture and a system that adapts to internal and
external change rather than resisting it will perform much better.

* DSM is an effective way to describe a product or process and to illustrate systemic
complexity. The matrix form allows for neatly organized information that can otherwise only
be shown through difficult to read "spaghetti diagrams." The DSM neatly organizes tasks and
shows the inter-task dependencies. Downstream flow of information, feedback loops, and
process failure modes are easily identified and can even be easily quantitatively illustrated.

* The organizational grouping in product development should depend on the company's
priorities, strengths and weaknesses. Functional grouping can have the effect of developing
knowledgeable experts and facilitating advancement of functional tools and practices.
Grouping based on the product architecture can have the effect of better functional
integration in the development process, facilitating iteration. It is important that organizations
find the optimal balance of these two types of grouping according to their priorities. An
organization seeking performance improvement should consider minimizing functional
grouping.

* DSM-based simulation is useful from the insight that it offers, but the underlying data may not
be accurate enough to offer detailed predictions of future development processes. A
manager who does not understand the dynamics of the development process will not be able
to effectively manage it, and DSM-based simulation can help managers better understand the
processes that they oversee. However, most task performers don't understand the role of
their task in the development process, and they don't understand what portion of their work is
due to changing requirements, internal or external, and iteration. The simulation tool
developed for this thesis is only as accurate as the underlying data that is input to it, which at
this point needs calibration against more sources and against historic development process
performance before it could be used as an accurate planning tool. It is, however, more useful
than tools that don't incorporate iteration.

* Human resource flexibility can be extremely valuable in developing complex products. Since
the actual human resource demands of a process are difficult to predict and may come in
waves, the ability to quickly add or remove people to and from the process can drastically
reduce the final cost of development.

* Disintegrated development efforts for an interdependent design are very inefficient. The
nature of systems-based grouping is to combine interdependent components so that they can
be developed together. Grouping without considering interdependency intrinsically will
require substantial inter-organization communication, which in formal processes results in
excessively changing requirements that could have otherwise been avoided. This is
particularly true of the sections architecture prevalent in the aircraft industry.

* Long development processes should be divided into more manageable periods in order to
better control the process and to provide more structure for the participants. The development
process for a complex product may take years. During that time substantial internal and
external changes may occur which lead to iteration. By introducing phases upon on the
development process, task participants can easily adapt their work in a manner consistent
with each phase, and managers can more easily set priorities and more easily gauge the
state of the development process. Less phasing results in a more de facto process, which is
difficult to control.

* Optimal staffing policy should incorporate the expected evolution of external requirements. It
does not make sense to pursue preliminary or immature requirements as though they are the
final requirements. Such an approach would be analogous to sprinting to the finish line, when
it is certain that the finish line will change.locations. A more efficient approach would be to
staff more lightly initially and more heavily as the maturity of requirements advances.

* Capturing product design IP is a good way to reduce development costs. Although each
product developed by Spirit is individual and unique, there are commonalities that exist
across similar products. The more intellectual property that Spirit can capture regarding
product cross-commonality, the more it can eliminate redundancy from redeveloping these
commonalities. Thus, capture of design IP can help improve the cost and schedule of future
product development processes.

* Organizational barriers can thwart any improvement or change initiative. It is very important
to consider the structure, politics, and culture of an organization when developing a tactical
approach to implementing change.

11.2 Future Work
During the development of this thesis and during the author's internship at Spirit, several
relevant opportunities for future research became apparent:

* Using Wiki's to facilitate communication in complex development processes.

* Applying integrated design and analysis software tools in developing aerostructures.

* Architecting a product development process that is robust to external change.

* Using a dynamic decision simulation to determine the optimal staffing policy.

* Developing requirements maturity ratings and evaluation of the historical requirements
evolution rates of various products and industries.

* Studying the relation between design chain disintegration and changing requirements.

* Exploring the effects of developing aircraft structures by sections rather than systems.

11.3 Final Remarks
Superior product development is not only of importance for reducing costs, it can provide a
strategic advantage for tier-one suppliers. In the age of outsourcing, new complexities in
product development have arisen. The companies that can master these complexities and
develop products efficiently will substantially reduce risk for the OEM's. This may provide
opportunities for strategic partnerships in the best case, or will at least create guarantees for
future business. However, the linear mentality of construction project management will have to
end. In its place a deeper understanding of the nature of developing complex products is
required. Organizations that can master the system dynamics perspective of product
development will rise to the top. The static organizations that refuse to change will sink. This
thesis provides a toolset for companies to better understand, model and improve their
development processes. But more importantly, it provides a paradigm that if institutionalized
can drastically improve the performance of product development in any industry.

APPENDIX A - MATLAB Code for Simulation Model

%%

% DSM-Based Monte Carlo, Discrete Event Process Simulation
% by: Brad Rogers 2008

%%

% Sequence
% ---

warning off

% Read input data

control_data = xlsread('main_data.xls','Control');
group_data = xls read('main_data.xls','G roups');
eco_data = xlsread('main_data.xls','ECO');
task_data = xlsread('main_data.xls','Tasks');
couplings_data = xlsread('main_data.xls','Couplings');
failures_data = xlsread('main_data.xls','Failures');

% Create DSM Dependency Matrices
dependency = zeros(size(task_data,1));
rework = zeros(size(task_data,1));
concurrency = ones(size(task_data, 1));

for m = 1 :size(couplings_data,1)
dependency (couplings_data(m,1),couplings_data(m,3)) = 1;
rework(couplings_data(m,1),couplings_data(m,3)) = couplings_data(m,5);
concurrency (couplings_data(m,1),couplings_data(m,3)) = couplings_data(m,6);

end

% Establish Simulation Parameters
max_trials = control_data(4,1);
hist_bins = control_data(5,1);
show_events = control_data(6,1);

task_group = task_data(:,3);
task_work_min = task_data(:,5);
task_work_med = task_data(:,6);
task_work_max = task_data(:,7);
task_lcf = task_data(:,8);
task_final_learning = task_data(:,9);
task_staff_max = task_data(:,10);
task_convergence = task_data(:,11);
task_max_number = length(task_lcf);

group_staff total = group_data(:,4);
group_wage = group_data(:,3);

eco = eco_data;
executed_events = [];
staff_levels = [];

% Generate random numbers matrix for task completion times and process failures
randnummat=samplematricizer(task-workmintask-work_maxtask-work-med,max_trials);
B = ones(size(failures_data),max_trials);

for m=l:max trials
B(:,m)=B(:,m).*failures_data(: ,7);

end
randnumfails = (rand(size(B))<=B);

% Allocate memory for results
sim_result_time = zeros(max_trials,1);
sim_result_cost = zeros(max_trials,1);
sim_result_work = zeros(max_trials,1);
U = 1000; %U should be set to the expected number of process events
staff_levels = zeros(max_trials*U,3);
events = 1;

% Discrete Event Initial State
%--

for trial_count = (1:max_trials)
disp(trial_count) %to track trials on screen

% Reset calculated values and lists
wip_list = [];
clock = 0;
clock_advance = 0;

group_work_cum = zeros(length(group_wage),l);
group_cost_cum = zeros(length(group_wage), 1);
group_staff_available = group_staff_total;
cost_cum= 0;
work_cum = 0;
task_work cum = zeros(length (task_work_min),1);
task_iteration = zeros(length(task_work_min),1);
task_staff = zeros(length(task_work_min),1);
task_converged = zeros(length(task_work min), 1);
task_inputchange = ones(length(task_work_min),l);

% Generate initial wip list from tasks that don't require inputs
for q =,(1:1 :task_max_number)

if isempty(find(dependency(q,1 :q-1)==1))
wip_list = vertcat(wip_list,q);

end
end

% Prioritize and Staff Tasks
wip_list = sort(wip_list);
for b = (1 :length(wip_list))

staff_lack = task_staff max(wip_list(b)) - task staff(wip_list(b));
if group_staff_available(task_group(wip_list(b))) > staff_lack

task staff(wip_list(b)) = task_staff(wip_list(b)) + staff_lack;
group_staff-available(task_group(wip_list(b))) = group_staff_available(task_group(wip_list(b))) -

staff_lack;
else

task staff(wip_list(b)) = task_staff(wip_list(b)) + group_staff_available(task_group(wip_list(b)))
group_staff_available(task_group(wip_list(b))) = 0;

end
end

group_staff-used = group_staff total - group_staff_available;
hotlist = [0 0 0 0 0];

% change status variables
initiation_status = task_staff > 0 ;

% initialize task work loads for this run

task workinitial = randnummat(:,trial_count);
task work final = task_work_initial.*task_final_learning;
task_work = max((task_work_initial .*((1 -task_lcf).^task_iteration)),task_work_final);
taskworkleft = task_work;
task_fraction_complete = (task_work - task_work_left) ./ task_work;
tasktimeleft = taskworkleft . task_staff:

% initialize run failures into couplings matrix
iter_limit = zeros(size(task_work_min,1));
for m = 1:size(failures_data,1)

if randnumfails(m,trial_count)== 1
dependency (couplings_data(failures_data(m,1)),couplings_data(failures_data(m,3))) = 1;
rework(couplings_data(failures_data(m,1)),couplings_data(failures_data(m,3))) = failures data(m,5);
concurrency (couplings_data(failures_data(m,1)),couplings_data(failures_data(m,3))) =

failures_data(m,6);
iter_imit(couplings_data(failuresdata(m,1)),couplingsdata(failures_data(m,3))) = 1;

else
dependency (couplings_data(failures_data(m,1)),couplings_data(failures_data(m,3))) = 0;
rework(couplings_data(failures_data(m, 1)),couplings_data(failures_data(m,3))) = 0;

concurrency (couplings_data(failures_data(m,1)),couplings data(failures_data(m,3))) = 1;
end

end

% Main Discrete Event Loop
% -------------------------- - ---------------- --------------

while or(size(wip_list, 1)>0, sum((eco(:,4)-task_convergence(eco(:, 1))).*(eco(:,3)>0))>0)
tic

% Update ECO List with current time
eco(:,3) = eco(:,7)-clock;

% Create Completions List
type = ones(length(wip_list));
type(: ,2:length(wip_list))=[];
ones_list = 1 * type ;
completions_list = horzcat(wip_list, type, task_time left(wip_list), ones_list,ones_list);

% Create Starts List
starts_list = [];
for c = (1 :length(wip_list));

task_potstarts = find(dependency (:,wip_list(c)) == true);
for d = (1 :length(task_pot_starts))

task_pot start inputs = find(dependency(task pot_starts(d),:)==true);
task_potstart_inputs = find(task_pot start_inputs <= d);
task_pot start inputs = find(task_iteration(task pot start inputs) > 0);
if prod(task_pot start inputs) == 1

if task_iteration(task_pot_starts(d))==1
time_til_start =(1 -concurrency(task_pot_starts(d),wip_list(c))-

(task_fraction_complete(wip_list(c))))*(task_work(wip_list(c))/(task_staff(wip_list(c))));
else

time_til_start =(1-
(task_fraction_complete(wip_list(c))))*(taskwork(wip list(c))/(task_staff(wip_list(c))));

end
if (hotlist(1,1)-=task_pot_starts(d) && hotlist(1,5)-=wip_list(c))

starts_list = vertcat(starts_list,[task_pot_starts(d),3,time til start,
(task_inputchange(wip_ist(c)))*(rework(task_potstarts(d),wip_list(c))),wip_list(c)]);

end
end

end
end

% Create Events List
events_list = vertcat(completions_list,eco(:,1 :5), starts_list);
events_list = sortrows(events_list, 3);
events_list(1 :length(find(events_list(:,3)<= 0)),:) = [];

% Create Hotlist
hotlist = eventslist(1 :size(find(events_list(:,3) < events_list(1,3)+0.001),1),:);
hotlist = sortrows(hotlist,2);

% Remove process failures modes from DSM if initiated on hotlist
% (process failures may only occur once)

for q = 1:size(hotlist,1);
if iter_limit(hotlist(q, 1),hotlist(q,5))==1

rework(hotlist(q,1),hotlist(q,5)) = 0;
concurrency(hotlist(q,1),hotlist(q,5)) = 1
dependency(hotlist(q,1),hotlist(q,5)) = 0;
iter_limit(hotlist(q,1),hotlist(q,5)) = 0;

end
end

% Track run Staff Levels
staff levels(events,:) = [clock,sum(group_staff-used),sum(task_staff)];
events = events+1;

% Calculate Clock Advance
clock_advance = hotlist(1,3);
clock = clock + clock_advance;

% Track first Events (may be used to calculate U on line 75
if trial count == 1

k = ones(size(hotlist,1)).*clock;
k = k(:,l);
executed_events = vertcat(executed_events, horzcat(hotlist,k));

end

% Update Calculated Variables
group_work_cum = group_work_cum + (group_staff-used * clock_advance);
group_cost cum = group_cost_cum + (group_staff_used * clock_advance .* group wage);
cost_cum = sum(group_cost_cum);
work_cum = sum(group_work_cum);
task_work_cum = task_work_cum + (task staff * clock_advance);
task_initiation_status = task_staff > 0;
task_work = max((task_work_initial .*((1-task_lcf).^task_iteration)),task_work_final);
task_work_left = task_work_left - (task_staff * clock_advance);
task_fraction_complete =(task work - task_work left) ./ taskwork;
task_time_left = task_work_left ./ task_staff;
task_converged = 1 - (task_fraction_complete) <= task_convergence;

% Update WIP List for each event on Hotlist
for f = [1:size(hotlist,1)]

switch hotlist(f,2)
case 1 % task complete

group_staff_available(task_group(hotlist(f,))) = group_staff_available(task_group(hotlist(f, 1))) +
task_staff(hotlist(f, 1));

task_staff(hotlist(f,1)) = 0
task_iteration(hotlist(f, 1)) = task_iteration(hotlist(f, 1)) + 1;
wip_list(wip_list(:,1l)==hotlist(f,1),:) = [] ; % remove task from wip_list
task_input_change(hotlist(f,1)) = 0;

case 2 % requirements change;
task_input_change(hotlist(f, 1)) = 1 -((1 -task_input_change(hotlist(f, 1)))*(1-(hotlist(f,4))));
task_fraction_complete(hotlist(f, 1)) = task_fraction_complete(hotlist(f, 1)) * (1 -(hotlist(f,4)));

task_work_left(hotlist(f,1)) = (task_work(hotlist(f,1)))*(1 -task_fraction_complete(hotlist(f, 1)));
if 1 - task_fraction_complete(hotlist(f,1)) <= task_convergence(hotlist(f, 1))

task_converged(hotlist(f,1)) = 1;
else

task_converged(hotlist(f, 1)) = 0;
wip_list = vertcat(wip_list,hotlist(f,1));
wip_list = unique(wip_list);

end

case 3 % task initiated
task input change(hotlist(f, 1)) = 1-((1-task input change(hotlist(f,1)))*(1 -(hotlist(f,4))));
task_fraction_complete(hotlist(f,1)) = task_fraction_complete(hotlist(f,1)) * (1-(hotlist(f,4)));
task_work_left(hotlist(f,1)) = (task_work(hotlist(f, 1)))*(1 -task fraction_complete(hotlist(f, 1)));
if (1 - task_fraction_complete(hotlist(f, 1))) <= task_convergence(hotlist(f,1));

task_converged(hotlist(f,1)) = 1;
else

task_converged(hotlist(f,1)) = 0;
wip_list = vertcat(wip_list,hotlist(f, 1));
wip_list = unique(wip_list);

end
end

end

% Sort wip_list by task number
wip_list = sort(wip_list);

% Staff Tasks
for a = (1 :length (wip_list))

staff_lack = task_staff_max(wip_list(a)) - task_staff(wip_list(a));
if group_staff_available(task_group(wip_list(a))) > staff-lack

task_staff(wip_list(a)) = task_staff(wip_list(a)) + staff_lack;
group_staff_available(task_group(wip_list(a))) = group_staff_available(task_group(wip_list(a))) -

staff-lack;
else

task_staff(wip_list(a)) = task_staff(wip_list(a)) + group_staff-available(task_group(wip_list(a)))
group_staff_available(task_group(wip_list(a))) = 0;

end
end
task time left = task work left ./ task staff;
group_staffused = group_staff_total - group_staffavailable;
if length(wip_list)==0

end
end % End discrete event run

% Record Trial results
sim_result_time(trial_count)= clock; % simulated trial results-time
sim_result_cost(trial_count)= cost_cum; % simulated trial results-cost
sim_result_work(trial_count)= work_cum; % simulated trial results-work

end % End Simulation Do Loop

% Format & Display Simulation Output
% --

% Remove zeros from preallocated memory if not used (potentially inefficient)
while staff_levels(length(stafflevels),1)==0

staff-levels(length(staff levels),:)= [];
end

% Reformat task list into separate runs, swtich from event to time basis, calc stats
expected_staff_levels=time_point_stats(time_alig n(trial_partition(staffevels(:, 1:2))));

% Display certain parameters on screen
if showevents == 1

disp('maximum executed events')
disp(length (trial_partition(staff_levels(:, 1:2))))
disp('mean process duration')
disp(mean(sim_result_time))

end

% Create plots and histograms
subplot(3,3,1)
hist(sim_result_time,hist_bins)
yiabel('Occurrences')
xlabel('Business Hours')
title('Distribution of PD Process Time','FontSize',16)

subplot(3,3,2)
hist(sim_result_cost,hist_bins)
title('Distribution of PD Process Cost','FontSize',16)
xlabel('Cost')

subplot(3,3,3)
hist(sim_result_work,hist_bins)
title('Distribution of PD Process Workload','FontSize',16)
xlabel('Man-Hours')

subplot(3,3,4:6)
scatter(stafflevels(:, 1),staff_levels(: ,2))
xlabel('Time (bus-hrs)')
ylabel('Group Staff Level (people)')

subplot(3,3,7:9)
scatter(expected_staff_levels(:, 1),expected_staff_levels(:,2))
xlabel('Time (bus-hrs)')
ylabel('Expected Staff Level (people)')

% Output simulation data to an excel spreadsheet
xlswrite('output_data.xis',expected_stafflevels,'staff);
xlswrite('output_data.xls',sim_result_time,'schedule');
xlswrite('output_data.xis',sim_result_work,'workload');

% The End

% --
function [output__mat] = sample_matricizer(a,b,c,N)

for i = 1:length(a)
output_mat(i,:) =lhs_rng(tri_uni_divide(a(i),b(i),c(i),N),N);

end

%----------------- - --
function [output mat_l1] = Ihs_rng(inputmat,N)

used_bins = [];
bins = length(inputmat)-1;
minval = input_mat(1,1);
input_mat = input_mat(2:bins+l);
for j = 1:N

bin = ceil(rand()*bins);
while length(find (used_bins==bin))>O

bin = ceil(rando*bins);
end

used_bins(j)=bin;

if bin == 1
bottom = minval;
top = input_mat(1);

else
bottom = input_mat(bin-1);
top = input_mat(bin);

end
output_mat(j,1)= (rand()*(top-bottom))+bottom;

end
output_rank = zeros(N,1);
pick = ceil(rando*N);
for i = 1:N

while output_rank(pick)-=0
pick = ceil(rando*N);

end
output_rank(i) = pick;

end

for k =1:N
output_matl(k) = output_mat(output_rank(k));

end

% ---

function [output_mat]= trial_partition(inputmat)

%find longest series to generate initial matrix
lasttime = 100000000;
max_trial_length = 0;
j=1;
trial=0;

last_time = 1000000000;
for i = 1:length(input_mat)

if input_mat(i,1)< last_time
trial_length = i-j;
j=i;

if trial_length > max_trial_length
max_trial_length = trial_length;

end
trial=trial+l;

end
last_time = input_mat(i,1);

end

output_mat = zeros(max_trial_length,2*trial);

last time = 100000000;
j= 1;
k =l;
m = 0;
for i = 1:length(input_mat)

if or(and(input mat(i, 1)< last_time,m==1),i==length(input_mat))

if i ==length(input mat)
trial_length = i-j+1;
output mat(1 :trial_length,k:k+l)= input_mat(j:i,1:2);

else

trial_length = i-j;
output_mat(1 :trial_length,k:k+l)= input_mat(j:i-1,1:2);

end
j=i;
k = k+2;

end
m=1:
last time = input_mat(i,1);

end

%---
function [output_mat] = time_point_stats(input_mat)

output_mat(:,1)=input_mat(:,l1);
input_mat = input_mat(:,2:size(input_mat,2));

trials = size(inputmat,2);

output mat(:,2)=
output_mat(:,3)=
output_mat(:,4)=
output_mat(:,5)=
output_mat(:,6)=
output_mat(:,7)=
output_mat(:,8)=

mean(input_mat(:,1 :trials),2);
median(input_mat(:,1 :trials),2);
min(inputmat(:,l :trials),[],2);
max(input_mat(:,1 :trials),[],2);
output_mat(:,2)-std(input_mat(:, 1 :trials),0,2);
output mat(:,2)+std (input_mat(:, 1:trials),0,2);
output_mat(:,2)+(2*std(input_mat(:, 1:trials),0,2));

70--

function [output_mat] = time_align(input_mat)

%find max time
time_max = 0;
trials = (size(input_mat,2)/2);
for i = 1:trials

trial_max = max(input_mat(:,((i*2)-1)));
if trial max > time max

time_max = trial_max;
end

end

output_mat = zeros(time_max,trials+1);

for i = 1:trials
for j = 1:time_max+1

time = j-1;
outputmat(j,1)=time;
input_time_col = ((i*2)-1);
B = input_mat(:,input time_col);
C= B>time;
if sum(C)-=O

val=min(B(C));
else

val=max(B);
end
index=find(B==val);
index = index(length(index));

if time < max(input_mat(:,((i*2)-1)))
output_mat(j,(i+l))=inputmat(index,i*2);

else
output_mat(j,(i+1))=0;

end
end

end

% -- ----------------------------
function [output_mat]= trial_partition(input_mat)

%find longest series to generate initial matrix
lasttime = 100000000;
max_trial_length = 0;
j=1;
trial=0;

last time = 1000000000;
for i = 1:length(input_mat)

if input_mat(i,1)< last_time
trial_length = i-j;
j=i;
if trial_length > max_trial_length

max_trial_length = trial_length;
end
trial=trial+l;

end
last_time = input_mat(i,1);

end

output_mat = zeros(max_trial_length,2*trial);

last time = 100000000;
j= 1;
k =1;
m = 0;
for i = 1 :length(input_mat)

if or(and(input_mat(i,1)< last_time,m== 1),i==length(input_mat))

if i ==length(input_mat)
trial_length = i-j+1;
output_mat(1 :trial_length,k:k+l)= input mat(j:i,1:2);

else
trial_length = i-j;
output_mat(1 :trial_length,k:k+1)= input_mat(j:i-1,1:2);

end
j=i;
k = k+2;

end
m=1;
last_time = input_mat(i,1);

end

APPENDIX B - MATLAB Code for DSM Task "Network Distance" Measure

couplings_data = xlsread('main_data.xis','Couplings');
dependency = zeros(106);
for m = 1:size(couplings_data,1)

dependency (couplings_data(m,1),couplings_data(m,3)) =1;
end
mat = network_assess(dependency);
xlswrite('distance_output.xls',mat,'inoutdist');

%---
function [inoutdistance] = network_assess(inmat)

N = length(inmat);
distl = 1;
added = 1;
outmat = ones(N,N)*N;

%set diagonals equal to zero
for n = 1:N

outmat(n,n)=0;
end

%set direct dependencies equal to one
for m = 1:N

for n = 1:N
if n~=m

if inmat(m,n)==1;
outmat(m,n)=1;

end
end

end
end

%find other distances
while added > 0

added = 0;
for n = 1:N

for m = 1:N
if outmat(m,n)== distl

for i = 1:N
if outmat(i,m)-=0

dist2=outmat(i,m);
tot = distl +dist2;
if tot <= outmat(i,n)

outmat(i,n)= tot;
added = added+l;

end
end

end
end

end
end
distl = distl + 1;

end

inoutdistance = zeros(N,3);
forj = 1:N

inoutdistance(j,1)=j;
inoutdistance(j,2)=sum(outmat(j,:))/(N*(N-1));
inoutdistance(j,3)=sum(outmat(:,j))/(N*(N-1));

end

APPENDIX C - Binary DSM for Development Process of a Nacelle

- - - I - - - - i-
t1'i y ii~, 1I ,] I I j i 1 , b, iI I Ii J ,i W I lJIi i ,,,1t il L. ,h, i ,t l lI , .1, t "

* -, ,, 1*I, , - - ' | l l ,

.i'

..

.

..

.

.....

T 1

--- iU - I .-. ... -.. I
I o .!: I ' .. , : :.

BIBLIOGRAPHY

[1] Browning, Tyson R., "Applying the Design Structure Matrix to System Decomposition and Integration
Problems: A Review and New Directions" IEEE Transactions on Engineering Management, Vol. 48,
No. 3, August 2001

[2] Browning, Tyson R., "Modeling and Analyzing Cost, Schedule, and Performance in Complex System
Development" Massachusetts Institute of Technology, 1998

[3] Carroll, J.S., "Introduction to Organizational Analysis: The Three Lenses," Massachusetts Institute of
Technology, June 2006

[4] Cassandras, C.G., S. Lafortune, "Introduction to Discrete Event Systems," Springer Science and
Business Media, 2008

[5] Cho, Soo-Haeng, Steven D. Eppinger, "Product Development Process Modeling Using Advanced
Simulation," DETC2001/DTM-21691 2001

[6] Eppinger, Steven D., Daniel E. Whitney, Robert P. Smith, and David A. Gebala, "A Model-Based
Method for Organizing Tasks in Product Development," Research in Engineering Design, Vol. 6,
No. 1, pp. 1-13, 1994.

[7] Lunsford, J. Lynn, "Jet Blues, Boeing Scrambles to Repair Problems with New Plane." Wall Street
Journal, 7 December 2007, page Al.

[8] Naughton, A. B., "Aligning Tool Set Metrics for Operation in a Multi Technology High Mix Low Volume
Manufacturing Environment", MIT 2005

[9] Pinkett, Randal, "Product Development Process Modeling and Analysis of Digital Wireless
Telephones," Massachusetts Institute of Technology, 1998

[10] Robert, C., G. Casella, "Monte Carlo Statistical Methods", 2 nd Edition, p. 156, Springer 2004

[11] Smith, P., D. Reinertsen, Developing Products in Half the Time, 2nd Edition. Van Nostrand Reinhold,
NY, 1995.

[12] Spirit AeroSystems, Incorporated, Annual Report, 2007

[13] Sosa, Manuel E.; Steven D. Eppinger; Craig M. Rowles, "A Network Approach to Define Modularity of
Components in Complex Products," Transactions of the ASME, 1118 / Vol. 129, November 2007

[14] Steward, Donald V., "The Design Structure Matrix: A Method for Managing the Design of Complex
Systems," Institute of Electrical and Electronic Engineers (IEEE) Transactions on Engineering
Management, Vol. EM-28, No. 3, August 1981.

[15] Steward, Donald V., "Systems Analysis and Management: Structure, Strategy and Design,"
Petrocelli Books, Princeton, NJ, 1981.

[16] Tripathy, Anshuman; Steven D. Eppinger, "System Architecture Approach to Global Product
Development" MIT 2007 Working Paper Number 4645-07

[17] Ulrich, Karl T., Steven D. Eppinger, "Product Design and Development," 4 th Edition, McGraw-Hill,
2008

[18] Wayne, Leslie, Micheline Maynard, "New Boeing 787 Jetliner Faces Another Delay." New York
Times, 5 December 2008.

