
A multi-purpose user interface for the iFDAQ of the COM-
PASS experiment

Antonín Květoň1,∗, Martin Bodlák1,, Vladimir Frolov2,, Stefan Huber3,, Vladimír Jarý4,, Igor
Konorov3,, Josef Nový4,, Dominik Steffen3,, Ondřej Šubrt4,, and Miroslav Virius4,

1Charles University, Prague, Czech Republic
2Joint Institute for Nuclear Research, Dubna, Russia
3Technical University of Munich, Germany
4Czech Technical University in Prague, Czech Republic

Abstract. In HEP experiments, remote access to control systems is one of the
fundamental pillars of efficient operations. At the same time, development of
user interfaces with emphasis on usability can be one of the most labor-intensive
software tasks to be undertaken in the life cycle of an experiment. While de-
sirable, the development and maintenance of a large variety of interfaces (e.g.,
desktop control interface, web monitoring interface, development API...) is of-
ten simply not feasible, as far as manpower is concerned. We present a solution
employed in the control software of the iFDAQ of the COMPASS experiment
at CERN. Being a mix of a command-line and terminal tool, this interface can
fulfill the roles of a dynamic monitoring interface, a control interface, and a
scripting API simultaneously. Furthermore, it can easily be used as a remote
access tool for operations experts, needing nearly no setup user-side and being
compatible with smartphones. We also discuss the methodology and results of
a concrete use case – automated run control for performance tests of the iFDAQ
readout software.

1 Introduction

A new data acquisition system (DAQ) has been deployed at the COMPASS experiment [1]
in 2014 [2] and used for data-taking during the period from 2015 to 2018. The system,
referred to as the iFDAQ [3] is accompanied by a software framework [4, 5], which handles
not only run control, configuration and monitoring (CCM), but also readout, processing and
data storage.

Several interfaces have been an integral part of the framework since its conception, most
notably the run control GUI. During the period from 2015 to 2018, an API and a remote
control interface were also implemented, but have proven to be difficult to maintain, given
the manpower limitations of the software development group. This gave rise to the need for
a new approach to interfaces to the framework, that emphasizes manpower efficiency. This
article describes the nature of the new interface architecture as well as the rationale behind
the design decisions taken.

∗e-mail: antonin.kveton@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 05034 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505034



Figure 1. Software architecture of the iFDAQ software framework

2 Interface requirements

The types of interfaces required have been identified as the following:

• Desktop GUI – to be used in the control room; emphasis should be placed on user experi-
ence, as shifts are traditionally used to train new members of the collaboration

• Remote access UI – to be used by experts to solve problems remotely; to take form of a
web interface or an X-forwarded on-site desktop GUI

• Programming API – to expose control and monitoring functionality to other systems

• Scripting API – to allow for quick and easy creation of custom user utilities

3 New interface architecture

In order to achieve maximum manpower efficiency, emphasis was placed on reusability of
the interfaces for different purposes. In both the old and new architecture, the Master pro-
cess/service, which effectively acts as a DIALOG server (cf. [6]), functions as a middleman
between the interfaces and the rest of the system, namely the slave processes. While in the
old architecture the clients would share only little communication-protocol code, the new
architecture introduced the concept of a Common client core.

3.1 Common client core

The common client core, implemented as a shared object library with a C++ API, handles
communication with the Master service. Upon initialization, it subscribes to the Master’s DI-
ALOG services and periodically receives messages containing information concerning sys-
tem state as well as monitoring information. The core contains the logic to parse, store and
expose this information to the user in the form of C++ functions. Being event-driven, the
events (such as the on value update event) are also available to the user, implemented as
exposed Qt signals.

The common client core also unifies communication being sent to the Master service,
specifically configuration and run control commands, internally implemented as DIALOG
commands.

2

EPJ Web of Conferences 245, 05034 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505034



Figure 2. New iFDAQ interface architecture

Containing the system state information and exposing configuration and run control func-
tionality, the common client core can therefore be used as both the basis for any user inter-
faces internal to the framework as well as what is effectively a C++ API to the iFDAQ system,
which can then be used by outside systems. As DIALOG does not support communication
over different subnets, applications making use of this API have to be run on the same net-
work as the Master service.

3.2 Run control GUI

The first package building on the common client core is the Run control GUI. This is a
heavy-weight interface to be used in the control room, taking up three 1920x1080 screens
in the default state. The system state is represented in the form of GUI elements, with extra
emphasis on usability.

Figure 3. The main window
of the Run control GUI. The
main features present are
buttons to initiate state
transitions of the DAQ system,
trigger and event rate display,
DAQ state machine state
display and FPGA registry
display.

3

EPJ Web of Conferences 245, 05034 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505034



3.3 Run control TUI/CLI

The scale of the run control GUI makes it very impractical for remote usage, given the limi-
tations of the DIALOG library. The remote user has to resort to X-forwarding the application
over several SSH hops, which is not a satisfactory solution, as the performance of a large
GUI forwarded in this way is extremely poor. While alternative solutions that improve per-
formance exist (such as X2Go and Xpra), it was decided that a more dedicated solution would
be needed for remote access.

A web interface was one of the proposed solutions, but was determined to be in conflict
with the focus on manpower-efficient solutions, as this would require development of an
iFDAQ API in a programming language better suited for web development (such as PHP or
Python), effectively doubling the common client core workload.

The more economic final solution was to use a dynamic text-based terminal interface
whose commands could also be run in command-line mode, and thereby also effectively
creating a bash API to the system that could allow for a CGI implementation.

3.3.1 Terminal mode

The terminal part of this interface offers dynamic visualization of the state of the iFDAQ
system, as well as the possibility of control. Once launched, commands, categorized into
sub-menus, are made available based on the current state of the system. Monitoring com-
mands utilize ANSI escape sequences to provide dynamic output, in which displayed values
can be seamlessly refreshed on update. Commands requiring input from the user can be ei-
ther run with switches and parameters, or, if the required information is not provided in the
form of switches and parameters, "interactively" (the user will be asked to provide the re-
quired values). Conveniently, this mode is also compatible with smartphones which allow for
installation of a SSH client.

Figure 4. Several
instances of the terminal
mode running in
parallel, effectively
replacing the need for
the Run control GUI.
From top to bottom and
left to right: state
machine states, trigger
rates and prescaler
settings, current run
metadata and
configuration,
interactive argument
input, FPGA error
registry overview

4

EPJ Web of Conferences 245, 05034 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505034



3.3.2 Command-line mode

The command-line mode allows the user to pass one or more commands as a parameter to
an executable binary, and they will then be run, as they would be in the terminal mode.
While the control commands are identical to their respective counterparts of the terminal
version, monitoring commands provide machine-readable output – strings are substituted
for enumerated integer values, the output follows a pre-defined format and ANSI escape
sequences are no longer used.

The values of monitoring variables are not cached and the process has to reconnect to the
DIALOG server and wait for an update, thereby causing approximately a 1-second execution
time, making the command-line mode unsuitable for high-performance applications in the
current state.

CLI −c l o c k −n a k v e t o n −m " Locking i n t o e x c l u d e a p o r t " + s e t p o r t m −m 1 −p 12 −d

Listing 1. Example of a command call in the command-line mode from a bash shell. Two commands
are chained using the plus sign and executed sequentially. The first command establishes an exclusive
lock on the system, preventing any other running instances of the common client core from sending
control commands to the Master service. A user-input message describing intent behind the lock is also
sent to all instances. The second command disables port 12 on multiplexer 1.

4 CLI use case – automated run control

One of the first real extensive use cases of the CLI mode of the Run control TUI/CLI was au-
tomated run control in order to measure software readout performance of the iFDAQ software
in 2019. An artifical data generator that can generate raw data files with a specified number
of events of a given event size was created. This data was then to be injected into the memory
of a single readout server, and subsequently, the readout performance of the Slave readout
process was to be measured in dependence on the event size. Multiple runs were planned to
be collected per event size increment – the first measurement cycle required the collection of
3 runs in each of the 93 event size increments. It was therefore very desirable to automate
this task and a wrapper Python script which handled the logic of the measurement cycle was
created, using the CLI mode for run control. The duration of a single cycle was ∼3 days.

While the CLI mode proved to be sufficient, it proved that a C++ API would have been
more efficient for this specific use case, as it takes up to two seconds to run a single com-
mand in the CLI mode, which eventually leads to a considerable overhead from state check
commands. However, the common client core was not yet fully implemented at the time.

The results of the aforementioned measurement are shown in Figure 5. This measurement
was the first of a series that aimed to optimize the readout performance of the process. Sev-
eral major improvements have been implemented since the time of the initial measurement
– as such, the results are not representative of the current state of the system, which will be
published in the future. The two phenomena of note observed in the initial measurement (pe-
riodic processing speed fluctuation and overall speed falloff after having reached the plateau
of the curve) were found to be systematic errors and eliminated in later measurements.

The total speed has been fit using the following function:

y = ymin − (ymin − ymax) exp (−kx) (1)

, where k is a free parameter.

5

EPJ Web of Conferences 245, 05034 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505034



0 50 100 150 200 250 300 350

3
10×

Event size (B)

200

400

600

800

1000

D
a

ta
 r

a
te

 (
M

B
/s

)

Buffer speed

Processing speed

Total speed

Total speed exponential plateau fit

Figure 5. Readout performance results for a single Slave readout process running on a single readout
server. Buffer speed represents performance of all logic leading up to the processing stage, processing
speed represents performance of the processing stage (c.f. [7]), and total speed combines the two.

5 Conclusion

The new interface architecture of the iFDAQ aims to siginificantly reduce long-term devel-
oper workload and ease the unified addition of new interface features. The common client
core has been implemented in 2019 and is nearing its testing phase as of February 2020. The
Run control GUI is currently using its old back-end implemenentation, which is planned to
be changed over to the common client core and tested before the COMPASS 2020 dry run.
The Run control TUI/CLI has been implemented based on the GUI back-end, and therefore
is also planned to be changed over to the common client core in 2020. Both the terminal
and command-line modes having seen use among the members of the collaboration, the Run
control TUI/CLI has proven to be a valuable addition to the iFDAQ software framework.

References

[1] COMPASS Collaboration (Gautheron, F et al.), CERN-SPSC, CERN-SPSC-2010-014
[2] J. Nový et al, Journal of Physics: Conference Series, Volume 664, 082042 (2015)
[3] D. Steffen et al, Proceedings, 38th International Conference on High Energy Physics,

Volume ICHEP2016, 912 (2016)
[4] M. Bodlák et al, Acta Polytechnica, Volume 53(4), 338-343 (2013)
[5] M. Bodlák et al, Nuclear and Particle Physics Proceedings, Volumes 273-275, 976-981

(2016)
[6] Y. Bai et al, International Journal of Mathematical, Computational, Physical, Electrical

and Computer Engineering, Volume 11, 372-381 (2017)

6

EPJ Web of Conferences 245, 05034 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505034



[7] J. Nový et al, Fifth International Conference on Communication Systems and Network
Technologies, Volume 2015, 1303-1306 (2015)

7

EPJ Web of Conferences 245, 05034 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505034


