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Abstract. The Faster Analysis Software Taskforce (FAST) is a small, European
group of HEP researchers that have been investigating and developing modern
software approaches to improve HEP analyses. We present here an overview
of the key product of this effort: a set of packages that allows a complete
implementation of an analysis using almost exclusively YAML files. Serv-
ing as an analysis description language (ADL), this toolset builds on top of
the evolving technologies from the Scikit-HEP and IRIS-HEP projects as well
as industry-standard libraries such as Pandas and Matplotlib. Data processing
starts with event-level data (the trees) and can proceed by adding variables, se-
lecting events, performing complex user-defined operations and binning data, as
defined in the YAML description. The resulting outputs (the tables) are stored as
Pandas dataframes which can be programmatically manipulated and converted
to plots or inputs for fitting frameworks. No longer just a proof-of-principle,
these tools are now being used in CMS analyses, the LUX-ZEPLIN experi-
ment, and by students on several other experiments. In this talk we will show-
case these tools through examples, highlighting how they address the different
experiments’ needs, and compare them to other similar approaches.

1 Introduction

Producing high-quality research papers in High-Energy Physics (HEP) involves processing
petabytes of data, applying the latest knowledge for the specific experiment and the statistical
evaluation of the end-results and their uncertainties. This process often involves the use of
experiment specific software frameworks, community packages as well as researcher-written
code. All components have to undergo rigorous testing and the result is required to be fully re-
producible. The key aims of the Faster Analysis Software Taskforce (FAST) are to: a) reduce
the amount of researcher-written code to minimize mistakes, b) lower the entry requirements
for new researchers, c) make it easier to share, and d) provide an abstraction between the
analysis itself and the processing system that actually runs over the data. We started by in-
vestigating how industry-standard tools, in particular the Pandas library [1], could help with
some of these challenges, which we presented previously [2]. Here we describe how this has
led to a complete set of high-level analysis tools.
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2 Key design considerations

To simplify both use and setup of the FAST analysis tools, the software dependencies are
significantly reduced with respect to common HEP analyses.To achieve this we build on
Python packages provided by Scikit-HEP (e.g. uproot) and the wider Python community (e.g.
pandas). Furthermore, to start analysing data only basic knowledge of YAML is required,
while the description of selections and other algorithms is kept close to their mathematical
form. The definition of an analysis can then be split into three distinct steps, each addressing
a different part of the analysis, and with corresponding FAST tools:

1. What input datasets do you need and what are their analysis-specific metadata? Han-
dled by: fast-curator

2. What do you want to do with this data? Handled by fast-carpenter
3. What do you want to show of this data? Handled by fast-plotter

To use Our primary interface to these tools right now is through YAML [3] configuration
files, which are widely used for the description of processing steps for tools like continuous
integration (e.g. on gitlab, Travis, Azure), container orchestration (e.g. Ansible, Kubernetes),
and within particle physics is used for preservation of data on the HEPData platform. As
a superset of JSON, it lacks any flow control structures but makes it easier to read for ex-
ample by reducing the number of brackets and quotation marks in the document, preferring
indentation for item separation and adds options to reuse sections with a reference and an-
chor system. These features make it natural to use in a declarative approach where the user
describes what to do, but lets the system take care of how to achieve this—addressing the
separation between processing system and actual analysis decisions. Furthermore, it allows
for various accelerating techniques to happen behind the scenes, such as memoization or the
omission of unnecessary analysis steps.

3 Describing input data: fast-curator

As an analysis evolves, the input data might change too. New datasets can become avail-
able as a physics run continues, simulations are extended, or existing data is reprocessed
through early stages. Alternatively, metadata of a given data set might be updated, such as
various scale factors or cross sections.

Input data are described as one or more data sets in YAML files that are generated and
interpreted using the fast-curator package. Listing 1 shows such an example: data sets
and their meta data can be defined in either a single YAML file (e.g. data and DY defini-
tions, lines 2-12) or imported from other YAML files (WW and WZ data sets, lines 19+). Note
that some of the information there is redundant, e.g. the number of events in the files. This
information is useful to keep track of changes to the analysis’ input datasets as new sam-
ples become available. Input files can be either provided individually or via wildcards to
the fast-curator command which can work on local files or via the XRootD [4] protocol.
This mechanism can be extended to support experiment-specific file catalogues, with CMS’
DAS [5] already included, and with plans to add a Rucio [6] interface in the near future.

4 Describing data processing: fast-carpenter

The core of any particle physics analysis is the processing of event-level data.
In fast-carpenter the data processing steps are defined as "stages" in a YAML file.

The example shown in listing 2 uses three built-in stages: one to define new variables (lines 9
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1 datasets:
2 - files:
3 - input_files/HEPTutorial/files/data.root
4 eventtype: data
5 name: data
6 nevents: 469384
7 - files:
8 - input_files/HEPTutorial/files/dy.root
9 - input_files/HEPTutorial/files/dy_2.root

10 name: dy
11 nevents: 77729
12 nfiles: 2
13

14 defaults:
15 eventtype: mc
16 nfiles: 1
17 tree: events
18

19 import:
20 - "{this_dir}/WW.yml"
21 - "{this_dir}/WZ.yml"

Listing 1: Dataset description for fast-curator. Contains datasets for real data and one simula-
tion (dy) and imports for two more (WW and WZ). Note that some of the redundant information
is only there to assist book-keeping and validating changes to the input datasets as new sam-
ples become available. They are not all required by fast-carpenter and later stages.

to 15), another to remove events based on a series of cuts (lines 30 to 38), and two instances
of binned dataframe production i.e. histograms (lines 23 to 28 and 39 to 43). Beyond these,
additional modules produce dataframes with full event-level information and helpers handle
systematic weight variables and parameters that define phase-space regions. In addition, the
mechanism used to load stages easily extensible; if fast-carpenter does not provide a
stage that you need for your analysis, it is easy to write it and include it in your workflow.
Such a stage is included in the example Listing 2 on lines 4 and then configured on line 17.

Both CutFlow and BinnedDataframe stages write outputs to disk in the form of a Pan-
das DataFrame, defaulting to CSV format, although any Pandas-supported format can be
used. Binned dataframes generalise histograms to multiple dimensions. Each bin captures
the raw number of events within its boundaries and, if one ore more are provided, the sum of
each weight and square of weights.

The example in listing 2 starts by defining new variables, such as the transverse
momentum of each muon (Muon_Pt), whether or not each muon is considered isolated
(IsoMuon_Idx), how many muons are isolated (NIsoMuon) and several variables for di-
muon pairs using ean "external" user module, cms_hep_tutorial.DiObjectMass. We
obtain the 2D distribution for the number of muons and isolated muons in each event, fol-
lowed by a selection (EventSelection), removing events with fewer than 2 isolated muons,
failing a trigger requirement, or with a leading muon of Muon_Pt less than 25 GeV. The last
step, DiMuonMass, produces another binned dataframe for the invariant mass of muon pairs.

A key advantage of this approach is that the same processing description can be used
on many different processing systems. At the time of writing this includes the use of local
multi-core processing and interfaces to the SGE and HTCondor batch systems. Recently an
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1 stages:
2 - BasicVars: Define # Define new variables
3 # A custom class to form the invariant mass of a two-object system
4 - DiMuons: cms_hep_tutorial.DiObjectMass
5 - NumberMuons: BinnedDataframe # Filled a binned dataframe
6 - EventSelection: CutFlow # Select events by applying cuts
7 - DiMuonMass: BinnedDataframe # Fill another binned dataframe
8

9 BasicVars:
10 variables:
11 - Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"
12 - IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10
13 # This next variable will create a single number for each event,
14 # using a set of inputs whose length varies for each event
15 - NIsoMuon: {reduce: count_nonzero, formula: IsoMuon_Idx}
16 # Custom module specific to this analysis uses one an optional parameter
17 DiMuons: {mask: IsoMuon_Idx}
18 # Make a binned dataframe with a column for:
19 # - the dataset name
20 # - the number of muons
21 # - the number of muons considered "isolated"
22 # and weight everything using the EventWeight variable
23 NumberMuons:
24 dataset_col: true
25 binning:
26 - {in: NMuon, out: nMuons}
27 - {in: NIsoMuon, out: nIsoMuons}
28 weights: {weighted: EventWeight}
29 # Subsequent stages only see events that pass the following requirements
30 EventSelection:
31 selection:
32 All:
33 - NIsoMuon >= 2
34 - triggerIsoMu24 == 1
35 - {reduce: 0, formula: Muon_Pt > 25}
36 # Weight events in the resulting cut flow table
37 weights: {weighted: EventWeight}
38 # Binned dataframe using the dataset and the binned DiMuon_mass
39 DiMuonMass:
40 dataset_col: true
41 binning:
42 - {in: DiMuon_Mass, out: dimu_mass, bins: {low: 60, high: 120, nbins: 60}}
43 weights: {weighted: EventWeight}

Listing 2: Data processing description example for fast-carpenter. Firstly, we define what
stages we want to apply and then we provide descriptions for each stage.
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interface to Coffea [7] has been included. Although this only uses the local multiprocessing
options for now, we anticipate expanding it to include other systems as well, e.g. Spark. The
user can control which back-end is used via a command-line flag.

5 Describing visualisation: fast-plotter

To turn the binned dataframes produced by fast-carpenter into plots, the fast-plotter
tool is provided. The goal with this package is to provide useful defaults which make
reasonable-looking plots easily, but to write this from many small functions which them-
selves are useful in a user’s custom scripts. The example in Listing 3 controls the labels for
the axes and plots, the way the legend is displayed, which annotations are added to the figure,
and the range for the y-axis.

6 Interoperability of the FAST-HEP tools

Figure 1 shows the interplay between a user’s repository and the various FAST-HEP pack-
ages. A user should typically only write their YAML configuration files, and possibly cus-
tom fast-carpenter extension stages and additional post-processing code. These will be
passed to the corresponding tool to produce the final analysis results. In addition, to the tools

1 weights: [weighted]
2 yscale: linear
3 ylabel: Number of Events
4 figsize: [5, 7]
5 legend:
6 ncol: 3
7 loc: 'upper right'
8 limits: {y: [1e-2, 1e5]}
9

10 annotations:
11 - text: CMS
12 position: [0, 1.03]
13 fontweight: bold
14 fontsize: xx-large
15 - text: Simulation
16 fontsize: x-large
17 fontstyle: italic
18 position: [0.15, 1.03]
19 - text: '$\sqrt{s} = 7$ TeV'
20 position: [1, 1.03]
21 horizontalalignment: right
22 fontsize: large
23

24 bin_variable_replacements:
25 dimu_mass: >-
26 Di-muon Mass,
27 $M_{\mu\mu}$
28 [GeV/c$^{2}$]

Listing 3: Left: Example visualisation description for fast-plotter; Right: the result of
using this description on the binned dataframe for the DiMuonMass stage from 2.
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Figure 1: The interplay between FAST-HEP packages, a user’s repository, and the analysis
results. A user’s repository contains mainly YAML files and some custom python code,
which are used to control the FAST-HEP packages. Command-line programs are shown in
typewriter fonts along arrows.

mentioned above, the FAST-HEP toolkit also provides the scikit-validate package to
help validate analysis results in a continuous integration (CI) pipeline.

All of these tools are available to download from the Python package index (pypi). Docu-
mentation is available online for fast-carpenter and fast-plotter and for the overall
project at fast-hep.web.cern.ch.

The YAML-based interfaces described above are the primary way to use these tools, how-
ever we have started investigating other approaches, in particular, using the packages’ python
APIs directly from Jupyter notebooks.
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