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Abstract

We have developed several novel methods of locomotion at low Reynolds number, for both
Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication
layer, and the three-link swimmer which moves in an unbounded fluid. Robosnail 1 utilizes
lubrication pressures generated in a Newtonian fluid under a steadily undulating foot to
propel itself forward. Tractoring force and velocity measurements are in agreement with
analytic and numerical solutions. Robosnail 2, modeled after real land snails, uses in-plane
compressions of a flat foot on a mucus substitute such as Laponite or Carbopol. Robosnail
2 exploits the non-Newtonian qualities (yield-stress, shear thinning) of the fluid solution
to locomote. The glue-like behavior of the unyielded fluid allows Robosnail 2 to climb up
a 90 degree incline or inverted 180 degree surfaces. The three-link swimmer is a device
composed of three rigid links interconnected by two out-of-phase oscillating joints. It is
the first experimental test that successfully demonstrates that a swimmer of its kind can
translate in the Stokes limit.
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Chapter 1

Introduction

The realm of low-Reynolds number (Re) encompasses the world of the very small, the very

viscous, or the very slow. If we were to shrink the size of a microbe, or to swim in a pool of

honey, or to slow our motions to a snail's pace, we would catch a glimpse of this world. It

would appear to us very alien because of the different physical laws that dominate. At this

scale, the simple task of getting around involves strategies that are often counterintuitive

and not applicable to the larger scales in which we live. Fortunately for us, it is not difficult

to study this world, since varying the Reynolds number only requires changing characteristic

speeds, lengths, or fluid viscosities, and not necessarily all three variables together. This

way, we can understand microscopic systems by building a macroscale experiment and

controlling the speed and/or fluid viscosity to achieve the correct Reynolds number.

Self-propulsion at low Reynolds number has been well-studied both theoretically and

experimentally [44, 23, 4]. Observations of low-Reynolds number organisms suggest that the

realm of low-Re requires a very different type of locomotion strategy. Most such swimmers

do not resemble the macroscale (high-Re) swimming and flying organisms we are used to

seeing. Instead of wings, fins, and flaps, we find mostly cilia and flagella as the dominant

generators of propulsion [30, 19, 29]. One of the early researchers of low-Re locomotion

was G. I. Taylor [47], who discussed the implications associated with flow reversibility at

low-Re. Taylor also looked into the mechanics of flagellar propulsion, and built simple

flagellar swimmers to demonstrate their efficacy. Another low-Re device, proposed by E.M.

Purcell [41], was the hypothetical three-link swimmer, theoretically the simplest mechanism

composed of rigid oscillating links capable of locomotion in the Stokes limit (Re = 0). While



Purcell proposed that such a swimmer should be able to generate a net displacement, no

real prototype of this mechanism had been realized prior to this thesis.

While the locomotion of small mobile objects in an unbounded fluid at low-Re has been

well-studied, the motion of organisms over a thin layer of fluid has been relatively less

explored. This locomotion strategy has been adopted by a number of organisms including

slugs and snails. Vlks [50] made one of the first detailed observations of the contractile

motions of a snail's foot during locomotion. Decades later, Lissmann [31, 32] made detailed

kinematic observations of the foot motions of snails and hypothesized certain ways that a

snail might use a single foot to move over different surfaces. Denny [17, 18, 15], was the first

to recognize that the non-Newtonian properties of snail mucus play an important role in

locomotion. His careful studies of banana slug (Ariolimax columbianus) locomotion yielded

valuable information concerning the interaction between the kinematics of the snail foot the

and fluid dynamics of the mucus layer.

The research of snail locomotion has inspired a branch of low-Reynolds number loco-

motion based on peristaltic waves. It has been known that motions of boundaries over

thin layers of viscous fluid can generate very large shear and normal stresses in the low-Re

lubrication regime [42, 6]. While engineers have long taken advantage of these lubrication

forces in the design of bearings, we sought to prove that, similarly, lubrication forces could

be used for propulsion. To the best of our knowledge, until Robosnail 1, there has been no

prior experimentation with free self-propelled peristaltic crawlers over thin fluid films.

1.1 Motivations

There are numerous emerging technologies that make use of low-Re flows and low-Re lo-

comotion. Microfluidic devices, commonly known as "lab-on-a-chip" devices, are being

developed to perform numerous fluid experiments (such as blood tests) using only a frac-

tion of a sample droplet. Our understanding of low-Re flow will help us manipulate flows

in such devices. As manufacturing methods become increasingly capable of creating and

assembling micro-scale components, miniature swimming machines may be developed to

navigate tiny fluid-filled passageways of the human body. A sound general theory of low-Re

locomotion will be necessary to design and optimize these miniature swimming devices.

The majority of this research has its focus on snail-inspired locomotion. Snails possess a



mode of locomotion that is radically different from that of most other organisms. The sim-

plicity of the gastropod foot (a single, continuous pad of muscle [36, 43]) suggests that one

should be able to design similar simple machines capable of a variety of useful motions. As

artificial muscle-like actuators become more widespread, they could conceivably be joined

together easily to make simple snail-like actuators. Snail-like locomotion devices could be

effective across a wide variety of substrates in the presence of viscous fluids. If the fluids are

non-Newtonian, there can be further advantages, such as the ability to climb walls, which

was one of the design goals of Robosnail 2.

In addition to micro-robotics, the field of oil drilling could potentially benefit from the

application of snail-like devices. The setting of an oil well can be challenging as they are

often muddy, vertical and irregular. A flexible slug-like or snail-like device may be more

adept at navigating the fluid-filled environment of a downhole (the drilled hole in the ground

of a potential oil site) than a more conventional rigid, jointed mechanism.

1.2 Snail locomotion

Many examples of soft propulsion systems can be found in the wild, particularly among

worms and mollusks [49, 48]. With the exception of a few snails using cilia as a means of

propulsion [13], snails moving on solid surfaces often display a similar pattern of undulations

along the foot [35, 27, 25, 28] that may be in-plane compressions of the foot, or out-

of-plane waving motions, depending on the species. It has been observed that certain

species of flatworm [39, 40], earthworm [24, 14], polychaete worm [20, 34], and holothuroid

(Echinodermata) [45] also generate peristaltic waving motions similar to that of snails during

locomotion on flat surfaces.

What these animals lack in speed, they make up for in versatility. Terrestrial snails in

particular are capable of climbing walls and ceilings, as well as traversing rough, irregular

terrains, and are not hindered by wet surfaces. They accomplish this by carrying their own

fluid lubrication, mucus. As the snail moves its muscular foot, the forces are transmitted to

the substrate through the thin mucus layer. Thus the study of snail locomotion is a study

of fluid dynamics, in which the viscous, non-Newtonian mucus and complex motions of the

foot are optimized for the snail's unique mode of locomotion.

The most important property of mucus that allows a snail to exhibit such versatility in



Figure 1-1: Helix aspers2 and Limax maximus, two land snails which inspired the con-

struction of Robosnail 2, the wall-climbing adhesive locomotion device. (Slugs are officially

classified as snails)
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constraints relating to the fluid dynamics of the application.

1.3 Three-link swimmer

The three link swimmer, like the robosnails, is the first machine of its type to be constructed.

It is one of the simplest machines that theory predicts is able to swim in the Stokes limit.



Figure 1-2: One prototype of robosnail 2, moving in an inverted position on a 1 mm layer
of Laponite (A synthetic clay suspension)

21



Physically, it can be thought of as a free-swimming cousin to the peristaltic waving robosnail,

where the waving motion is discretized into three rigid sections rather than a continuous,

smooth wave. However, the three-link swimmer has given rise to further research into n-link

swimmers which approach the continuous limit [46]. Because of the complex nature of the

flow around the three-link swimmer, few equations are presented; however, the experimental

results increase our understanding of the swimmer's behavior at low Reynolds number.

These devices together represent a diverse range of approaches to locomotion in vis-

cous fluids, and have sparked a new generation of propulsive devices for locomotion at low

Reynolds numbers related to the oil drilling and defense industries.



Chapter 2

General Theory

2.1 Locomotion at Low Reynolds Number

All of the systems described here operate at extremely low Reynolds number, the regime

where viscous forces dominate over all inertial and buoyant forces. In this limit, the Navier-

Stokes equations reduce to the Stokes equations. The Navier-Stokes equations for incom-

pressible Newtonian fluids are given by

V. '=0

p(t+ -V) -Vp + V2 +

where p is the fluid density, V is the velocity field, p is the pressure, A is the fluid viscosity,

and f is an applied body force on the fluid.

The Reynolds number describes the relative magnitudes of inertial and viscous forces:

Re = pVL (2.2)

where V and L are characteristic velocities and lengths in the flow. In the absence of body

forces f = 0, in the limit of low Reynolds number (approaching the Stokes limit where

Re = 0, usually when V or L are small), the right-hand terms Navier-Stokes equation

become zero, resulting in Stokes equations:

(2.1)



V -V'=O

-Vp + AV2 i = 0 (2.3)

2.2 Lubrication Flows

When the fluid in question is constrained to flow inside a thin fluid gap, further simplifica-

tions can be made to the analysis. In this limit, the Stokes equations reduce even further

to the lubrication equation:

S=0 (2.4)
dy

ap tLt2- = 2  
(2.5)

-@ dy 2

where v the velocity of the fluid which flows only in the x- direction. Here the thin dimension

of the film is aligned with y. The pressure of the fluid varies only along the direction of the

film, and momentum effects are negligible.

2.3 Snail Locomotion

Consider a generalized snail consisting of a continuous, flexible foot, a means of actuating

deformations of the foot, and a thin mucus layer of variable height, whose surface moves

with a predefined cyclic motion. A point on the foot moves according to

U(x, t) = U(x - 'Vt), (2.6)

where Vi is some waving velocity, and the wave shape is some periodic motion such that

u(x, t) = u(x + A) where A is the wavelength. Thus, while the foot is flexible and each point

on the foot moves independently, the average velocity of any one point on the foot relative

to the snail itself is zero:

o dt = 0,



where T is the period of one cycle. While a mechanical or natural snail generally can

have foot motions consisting of an arbitrary periodic deformation function u(x, t), the two

robosnails described here are special cases of the above. Robosnail 1 generates mainly

height varying traveling waves whereas robosnail 2 generates mostly in-plane compression

waves. Because these two modes of locomotion rely on distinct physical effects, they will

be analyzed in separate sections.

The net force on the snail from the fluid is the integral of all the fluid forces acting on

the foot. At the low Reynolds numbers involved, all flows can be considered quasi-steady,

so acceleration terms are neglected:

Ft = dF = dA + pdA

where Ft is the tractoring force (the force required to pull a given payload, or any given

external force), A is the total area of the foot, r is the shear stress in the fluid tangential to

the foot surface, and p is the pressure within the fluid. Theoretically, a snail can generate

propulsive forces from any combination of pressure and shear forces. In our case, we separate

and test the two phenomenon separately: Robosnail 1 is a pressure-driven mechanism, while

Robosnail 2 relies on shear forces for propulsion.

2.3.1 Shear-thinning fluids

While Newtonian fluids have a constant viscosity and therefore a linear response to in-

creasing strain rate, non-Newtonian fluids typically have variable viscosity and a non-linear

response. There exist numerous types of non-Newtonian fluids which can broadly be sep-

arated into shear-thickening fluids and shear-thinning fluids. Among the shear-thinning

fluids there are numerous models, such as Bingham fluids (finite yield stress fluids), power-

law fluids, and Herschel-Bulkley fluids (figure 2-1). Snail mucus is a shear-thinning fluid

with some viscoelasticity, which can be modeled in several ways. The most important ma-

terial property of the mucus that allows snails to move is the shear-thinning behavior. A

shear-thinning fluid is one which has a viscosity that decreases with increasing shear rate.

Figure 2-2 shows the shear stress - viscosity relationship for Carbopol, the main fluid used

to test Robosnail 2. Carbopol is a synthetic thixotropic fluid, chosen for its rheological

similarity to real snail mucus.



Figure 2-1: Shear-rate (y) versus shear-stress (T) curves for various fluids. Robosnail 2
exploits the physical properties of non-Newtonian fluids and theoretically can use any of
the fluids shown, except for the Newtonian fluid. The four fluids shown above have simple
mathematical representations: For the Newtonian fluid 7 = [-y, for the power law fluid
T = pAyn, for the Bingham fluid 7 = Ty + Ip , and for the Herschel-Bulkley fluid 7 = Ty + /p".
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Figure 2-2: Shear-rate versus viscosity curves for various concentrations of Carbopol, a
synthetic fluid used for the lubrication layer of Robosnail 2 [21, 22]. Note that for each
curve, the viscosity drops several orders of magnitude beyond a certain shear stress. This
is the shear-thinning behavior; Newtonian fluids possess a constant viscosity regardless of
shear rate. This shear-thinning behavior is a critical property that allows Robosnail and
most live snails to move. When approximated as a finite yield-stress fluid, the yield stress
can be taken as the point at which the viscosity drops off. (Figure appears courtesy of
Randy Ewoldt [21])



Two secondary properties that affect snail locomotion are the finite yield stress and the

restructuring time. Carbopol and snail mucus, for our purposes, can both be classified as

finite yield stress fluids. It is this finite yield stress, as opposed to general shear-thinning

behavior, that allows the snail to move upside-down on smooth surfaces, and to passively

glue themselves to vertical or inverted surfaces when they are stationary. This is possible

because the fluid has a range of stresses under which the fluid effectively remains solid,

gluing certain parts of the snail's foot onto the substrate.

More accurately, natural snail mucus does not have a truly solid state, but instead, a

high viscosity (in the "unyielded" regime) where the viscosity is many orders of magnitude

higher than in the "yielded" regime. The high viscosity is so great and the resultant flow

rates so low that the fluid can practically be considered "solid-like". Synthetic analogs of

snail mucus, such as Laponite and Carbopol, likewise have a pronounced shear-thinning

behavior that can be treated as a having a finite yield stress.



Chapter 3

Robosnail 1

3.1 Introduction

Many organisms use undulation as a means to move through fluids, or to transport fluids.

Robosnail 1 was built with the intention of emulating peristaltic crawlers, using a flexible,

powered foot to move over a thin layer of viscous Newtonian fluid. As we shall see in

the following chapter, this type of crawling is more "snail-inspired" than "snail-like." In

reality most snails use a different mode of locomotion (that we explore with the Robosnail

2 prototypes in Chapter 4). Regardless of its relevance to live snails, peristaltic lubrication

propulsion has proven to be an effective mode of transportation.

The basic idea behind robosnail 1 is to use a waving sheet to squeeze viscous fluids

backwards through the thin gap between snail and substrate. The reaction force of the

fluid on the snail propels the snail forwards. Our initial prototype machines undulated a

thin rubber foot over a layer of glycerol, propelling themselves at a velocity close to the

speed of the undulating traveling wave.

3.2 Theory

3.2.1 Underlying physics

Robosnail 1 locomotion is analogous to the peristaltic pumping observed in the movement

of fluid through the intestine is due to the peristaltic motion of the intestinal wall. In

Robosnail 1, the foot is analogous to the pumping wall, and as with peristaltic pumping,

the wall exerts a force on the fluid. The fluid in turn transmits a force on the substrate



which, unlike peristaltic pumping causes motion of the pumping device. The changing shape

of the snail foot is described by the fluid thickness height h(x, t), which varies with time

(see Figure 3-1). For simplification of the analysis, we assume that the waving membrane

is periodic with a wavelength A such that h(x, t) =h(i + nA, t) and that the waves travel

with a speed Vw such that h = f(i - Vt). We define the average height H = fSo (h)dx

and an amplitude & = H - min(h). The snail travels at some resultant velocity Vs. For

practical concerns, the crawler may also be transporting some payload (or tractoring force)

with resultant load Ft.

Natural mucus used by snails is a viscous, non-Newtonian fluid which has a variable

viscosity dependent on shear rate. As shown in later chapters, real snails exploit these non-

Newtonian properties in their method of locomotion and their motion would be severely

handicapped if their mucus were Newtonian. However, because robosnail 1 relies on New-

tonian effects, the 'mucus' used with Robosnail 1 can be a viscous Newtonian fluid, and

will be modeled as such. Since the layer of fluid is thin, we assume that the lubrication

approximation holds everywhere in the fluid film. Under this assumption, pressure varies in

the x- and y- directions, but not in the z- axis. In this limit, the Navier-stokes equations

reduce to the lubrication equation, which is the x-component of the Stokes equation:

j z-2 = O

At this point it becomes useful to non-dimensionalize the equations, rescaling the relevant

quantities as follows:

= Ax

i = V,,z

p = H 2

h = Hh



and

rt = Ft
H 2

The lubrication equation then becomes:

Oz2 Ox

in dimensionless form.

For thin profiles, pressure does not vary across the depth of the film. Hence, for any

given x-position, the pressure is constant. The flow profile then must be parabolic for any

value of x, taking the form

u(z) = z2 + C1Z + C2 (3.1)

where the integration constants C1 and C2 are determined by boundary conditions at the

foot and the substrate. To solve for these constants we switch to a reference frame traveling

with the wave. In this frame, the height function of the foot h(x) does not vary with time.

Because the flow is steady, the volume flow rate Q = f udz (per unit width) is a constant.

The top and bottom surface velocities in the new reference frame are:

V |z=o = Vw - Vs

V z=h = VW

or in dimensionless terms,

UIz=O = 1- Vs

Ujz= 1= 1.

Applying these boundary conditions to equation (3.1), the velocity profile becomes

1 8p zu(z) = z(z - h) + V( - 1) + 1 (3.2)
2 Ox h

Integrating Q = foh udz and solving for P we find

dp 12 s
dx- [h( - 2-) - Q]. (3.3)



mucus [I]

Figure 3-1: Switching to a moving reference frame to find the flow underneath a self-
propelled, peristaltic waving membrane. In the laboratory frame, the foot height is a
function of x and t. In the wave frame (a frame of reference following the wave crests) the
height is only dependent on x and the flow can be modeled as steady.

Applying the periodic boundary condition

X =dxp = p(O) -p(O)= 0

integrating (3.3) and solving for Q gives

12
Q = (1- V,/2)3 (3.4)

where

1 dx

Forces come from the viscous shear at the surface of the membrane, and from the high

pressure zones where the foot is nearly touching the ground. The shear forces act parallel to

the foot surface, and the pressure force acts perpendicular to it. We are mainly concerned

with forces in the x- direction (vertical forces depend on the average pressure under the

foot, which can vary arbitrarily by a constant of integration).

The total dimensionless force acting on the foot is given by

F = Fpressure,x + Fshear,x = 1 \ dx d ly =h dx.



Integrating the pressure term by parts and substituting (3.3) for P yields

Fpressure,x = op dz = (1211)- (1 (3.5)
dx 13 2

Substituting Q from equation (3.4) gives the relation between the velocity and the tractoring

force of the snail:

6(1 - A) Ft
4 - 3A 11(4 - 3A)

where the shape function
I2

The relation between force and velocity takes the simple linear form of f = fstall - mVs

where fstai is the stall force, and m is a constant. Their respective values can be found by

rearranging terms in equation (3.6):

Fstau = 611(1 - A) (3.7)

m = -I 1 (4 - 3A) (3.8)

When V = 0 the force reaches the stall force. As the applied force on the snail is decreased,

the velocity increases linearly until it reaches the free velocity, Vs,free

6(1 - A)
Vs,free - 4 (3.9)

4 - 3A

Figure 3-2 illustrates this straightforward relationship, which can be used to predict the

snail's resultant velocity given any applied force. The free velocity and dimensionless stall

force, Fstallu, are both purely functions of the foot shape, through Ij and A. For a sinusoidal

foot, the foot shape is determined by a single dimensionless parameter, a or the ratio

of amplitude to average height above the substrate. This is a practical parameter that

quantifies how close the foot is to the ground, and is limited by 0 < a < 1, that is to say,

the wave can be completely flattened setting a = 0, or touching the substrate when a = 1.

In most engineering applications, one would like to maximize the stall force of a robosnail.

The simplest way to increase the stall force is revealed by equation (3.8)- by decreasing the

clearance between the foot and the ground. Other methods include increasing the number
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Figure 3-2: (Left) The relationship between dimensionless applied force and snail velocity.
As the tractoring load is increased to the stall force, the velocity decreases to zero. The full
graph extends past f < 0, where increasing the tractoring force beyond the stall force would
cause the snail to drift backwards, and V > V,,free where a negative (pushing) tractoring
force would increase the snail velocity past Vs,free-

of waves created by the foot, or increasing the viscosity of the working fluid, all of which

are proportional to the dimensional stall force.

Note that the resultant dimensionless force and velocity are merely a function of the

wave shape. This is analogous to the Stokes flow generated by self-propelled objects in an

infinite fluid in which the objects' motion is only a result of the geometry. For the snail,

the problem is even more simplified, as the velocity and force can be analytically predicted

as long as the height h(x) is an integrable function.

3.2.2 Various wave shapes

As equation (3.6) shows, the force and velocity relation is a function of the height profile,

which has been left in the general form h(x). Thus any number of height profiles can be

used, theoretically, resulting in a different force-velocity curve for each one. The easiest

way to change the dimensionless height profile is to vary the amplitude with respect to the

offset height. Figure 3-3 shows the dimensionless free velocity as a function of dimensionless

amplitude for a variety of waving profiles. Note that for some profile shapes, such as the

triangle wave, we obtain a counterintuitive result where the expected snail velocity is greater

than the undulating velocity.

To understand the increase in speed associated with sharp waveforms, consider the
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Figure 3-3: Dimensionless stall force and free velocity for a three different wave shapes:

sinusoid, sawtooth, and square. Note that the force is displayed on a log scale. As the

amplitude gets larger, with the foot nearly touching the substrate, lubrication pressures

increase, and the stall force increases rapidly. While the stall force is similar for the three

wave shapes across the given range of amplitudes, there is significant variation in the free

velocity ([10]) for differing wave shapes. The square wave performs favorably at low am-

plitudes, but as the amplitude nears a - 0.5, the sharper wave profiles gain an advantage.
Note that the model predicts that the sawtooth wave can achieve V > V,,



interaction of the foot and the thin fluid layer. Upon close inspection, we find that the

extra "boost" in pressure force for the triangle wave arises near the lowest extremities of

the waveform. When the wave shapes approach the substrate, the pressure buildup and

hence the majority of propulsive force comes from the area immediately surrounding these

minimum points. The velocity of a snail with a sinusoidal wave profile approaches the

waving velocity as the waves near the substrate; but a snail with a sharp waving profile

should move even faster. Near the touchdown points, the surface is more vertical to take

advantage of the pressures propelling the snail, furthermore, there is less surface in close

proximity to the ground, so the viscous drag is reduced.

To further explore this effect of sharp waveforms, we consider additional shapes besides

the sinusoid and triangle wave. In particular, we are interested in waveforms which have

lower extremity shapes that fall somewhere between the "smooth-bottomed" sinusoid and

the "sharp-bottomed" triangle wave. Of course, there are an infinite number of wave shapes

we can consider, as almost any arbitrary repeating shape can be made into a wave profile.

However, it is primarily the shape of the lower points that determines the crawling velocity,

so we wish to find a wave type accordingly whose sharpness we can vary with ease. One

simple solution is to replace the sinusoid with two parabolas, one opening upward and one

opening downward. The advantages of this approach are that there are no slope discontinu-

ities to disrupt the force equation, and we can vary the sharpness by changing the sharpness

factor fs, the ratio of width of one parabola to the entire wavelength. As fs approaches

1, the second parabola reduces to nothing, and the waveform becomes a repeating inverted

parabola. While this is not exactly a triangle wave, it should behave much like one, since

the low areas resemble the triangle wave's sharp point, and the majority of the propulsive

force is generated in this area. We would like to determine at which fs the snail starts to

move faster than its own waving speed.

Since the velocity is a function of wave shape only, we use the velocity equation (3.9)

and solve for free velocity as a function of the foot nearing the substrate (expressed as a

variable amplitude a but defined for the irregular wave shape as ho - hmin so that the

geometry is normalized as with the sinusoidal case). The solution for the free velocity as

the foot approaches the substrate, for various "sharpness ratio" f, is shown in the figure

3-5. The "overdrive" phenomenon occurs roughly at a ratio of fs = 0.7 and an amplitude

of a = 0.85.
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Figure 3-4: A "composite" waveform made of two parabolas. By varing the sharpness factor
f, (the relative size of the downturned parabola to the entire wavelength) from near 0 to
near 1, we can vary the free velocity as a function of the amplitude.
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Figure 3-5: (Left) Dimensionless velocity as a function of the "sharpness ratio" of the two
parabolas composing the wave. 1V. (Right) Maximum velocity attainable as a function of
the sharpness ratio fs. As the lower parabola becomes less than 30 percent of the total
wavelength (fs = 0.7), the snail begins to move at a speed greater than the waving speed



3.2.3 Three-dimensional effects for a finite-width snail

The two-dimensional theory is sufficient to explain how peristaltic motion of a membrane

over a thin viscous fluid can propel itself. However, in most real-life situations requiring

robosnail-like motion, the snail has finite width, resulting in edge effects that cause a dis-

crepancy between the two-dimensional theory and full three-dimensional results for force

and velocity. At the edges of a finite-width waving sheet, the lubrication pressures under-

neath the waving sheet in regions near the edges are diminished as fluid is allowed to leak

to and from the region outside of the thin gap. Since the propulsive force is an integral of

the pressure forces on the foot, we expect there to be losses in the propulsive force. Con-

versely, we would not expect equivalent shear losses, because shear stresses do not "leak" as

pressure does. Hence the overall expected result of imposing finite-width conditions would

be decrements in the towing force, free velocity, and efficiency. This is verified by both

numerical simulations and experiments.

Due to the complexity of the three-dimensional flow in the gap of varying height, we

found no analytical formulation to describe the pressure field under a finite-width sheet.

However, we were able to numerically solve for the flow and pressure field using the three-

dimensional lubrication equations which, like two-dimensional lubrication, remain valid as

long as the Reynolds number is sufficiently low and the gap height is sufficiently small

compared to the wavelength:

ap a2ux

ay 8z2

These lead to a differential equation

dh 8p 1 V dh 1
-Vp = 3 dh 12 ) dh 1 (3.10)

dxz x h 2 dx h3

which is solved numerically.

In the simulation, the foot was divided into discrete segments over one wavelength with

boundary conditions of periodicity between the front and rear edges, and pressure falling

to zero at the side edge. The pressure was calculated, as well as the net propulsive force,



0 . ..... ........ ............ ............ ..................... .. .. ...... .... .......... .. ............ ........... .. ... ..

0

70 .........

..... ....... ....... ...... ...... .. .... .............. ....... .......... 
20 ..... .. . ..... 8 0 6 A

10 ... -.............. ........................

0 10 20 30 40 50 60 70 80 90 100

Figure 3-6: A typical Matlab simulation result of pressure underneath a finite width, pe-
riodic waving robosnail 1 foot, with an aspect ratio of b = W/A = 1.6 and a = 0.7. The
simulation itself uses a periodic end conditions in x and is mirrored along the x-z plane.
The waving foot generates a pressure similar to the two-dimensional waving robosnail foot
near the centerline, but at the edges, the fluid is allowed to leak, and pressure decreases,
decreasing the total propulsive force.

which is the integral of the pressure forces in the direction of travel. The velocity was found

in a manner analogous to the two-dimensional case. Figure 3-6 shows a representative plot

of pressure over the surface of the foot.

The resultant force-velocity curves and pressure profiles were compared to the two-

dimensional case with identical amplitude and height parameters. Simulations predict that

the finite-width snails do not perform as well as the infinite case, matching our expectation.

As we increase the snail width, the fluid has less opportunity to leak and the profile begins

to resembles the 2D case. Figure 3-8 compares the ratio of stall force in 3D to the expected

stall force in the 2D case while varying the foot width from near zero, two several times

the wavelength. We see that for a given snail foot width, wave profiles that are closer to

the ground have higher force - closer to the 2D prediction - compared to wave profiles that

ride higher. Intuitively this makes sense as the fluid trapped in the small space between

wave and ground is less susceptible to leakage than the fluid underneath a larger space. At
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Figure 3-7: Tractoring force, snail velocity, and centerline pressure plot for robosnail 1,
comparing a finite width snail with an infinitely wide snail. The finite snail has a waving
amplitude a 0.7 times the average fluid film height, and a width W equal to 0.8 times the
wavelength A. The wave shapes for both cases are the same. The finite snail suffers from
edge leakage, which degrades the maximum tractoring force and velocities, as well as the
efficiency. The centerline pressure serves as a qualitative evaluation of how much propulsive
pressure is lost overall in the finite case.

lower amplitudes of 0 < a < 0.1, the snail's 3D to 2D force ratio asymptotes to a single

curve. This lower limit of force at low waving amplitudes suggests that the propulsive force

is generated over a large area of the foot rather than concentrated spots along the low areas,

and as the edge leakage affects the wider gap areas of the foot, the entire pressure field is

affected by the leakage at these small amplitudes.

For all of the finite width cases (and with the experiments to be described in the following

section), the analysis was done with the foot edges open to the fluid without any type of

sealing. We expect a partial seal could be created with a wall that extends near to the

substrate to hold in some of the pressure. One might expect some optimal separation

between sealing wall and substrate where the pressure could be contained appreciably while
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the shear stress losses in the fluid gap between the edge of the sealing wall would not be so

great as to nullify the benefits of the seal. Another way to improve performance, aside from

building a wide snail, is to run the system inside a cylindrical environment, and to have the

peristaltic motion of the foot generate waves in the axial direction inside the cylindrical hole

(or around the outside of a cylindrical rod). This way, there are no edge effects except at

the leading and trailing edges, and if the thickness of the fluid layer is small in comparison

with the radius of the rod, the fluid flow and forces can be analyzed using the 2D method.

3.2.4 Power and efficiency

The input power to a Robosnail device can be readily calculated with a simple integral.

For every section of foot, the differential amount of force exerted is equal to the pressure in

the fluid times the differential area. For thin fluid layers, we can imagine the foot as being

actuated by numerous small linear actuators, each feeling a resistance force of

dF = PdA = bPdx.

The differential power exerted is the differential force times the vertical waving velocity at

that point.

dWin = VydF = Vybpdx

Win = b Vpdx.

Recall, however, that V, = V,, , so that

L dh
in = Vwb fo- xpdx.

Since Fxp= b foL dpdx the power expended simplifies to the expression

Win = VwFx,p. (3.11)

The efficiency of the snail is the ratio of useful power to the power expended:

V Ft V8Ft
S- F (3.12)

VwFx,p Fx,p
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Figure 3-9: Maximum efficiency plot of a 2D robosnail with various wave shapes and over

a range of amplitudes. The relative efficiency performance of the three wave shapes is
comparable to that of the free velocity (Figure 3-3).

In the 2D case, we can substitute the expressions for the horizontal pressure force (3.5) and

snail velocity (3.6) to find an analytical expression for the efficiency as a function of snail

velocity:
IDV[6(1 - A) - V(4 - 3A)]

1 ,,- [1-
In general, we find that the efficiency curves of various wave shapes to behave in a

similar fashion to the free velocity curves of the same wave shape - if a certain wave shape

has a higher free velocity at a given amplitude than another wave shape, we can expect

that it would also have a higher maximum efficiency (figure 3-9). It becomes clear that at

different waving amplitudes, different wave shapes are optimal. The question of optimality

has been studied analytically for the waving sheet [52, 51]

In three dimensions, the snail velocity and pressures can be found numerically. Figure

3-7 compares the efficiency for a the 2D case and a typical 3D case, where the snail width

is 0.8 times the wavelength. The wave shapes for both cases are the same. The finite-width

snail generally experiences a lower efficiency than its 2D counterpart, as we had expected.



Figure 3-10: Partially exploded view of Robosnail 1 showing motor/gearbox assembly,
rotating helix, slot plates, and membrane.

3.3 Mechanisms

One of the simplest wave shapes that can be generated with the waving foot is a sinusoidal

wave. To do this, we used a shallow helix threaded through slotted plates which are con-

strained to move vertically (see figure 3-10). The bottom edges of the rectangular plates

are affixed to a flexible membrane. Each of the plates then acts as a connecting rod, with

its section of helix acting as a crank, transferring the vertical component of its rotational

motion to its section of the membrane. The helix was driven by a geared-down motor. The

resultant motion of the rotating helical crank is a traveling sinusoid along the length of the

membrane with a wave speed (cm/s) equal to the wavelength (cm) divided by the rotations

per second (1/s).

A handful of designs were proposed for the construction of a peristaltic robosnail that

could mimic any waveform, but of the few that were built ultimately none of the designs

tested were reliable enough to generate useful data. One of the main challenges was to create

a device with high enough resolution to emulate the sharp waveforms that are of the most

interest. Many of the devices required a large number of linkages each connected to a cam

follower, but the complexity of the systems made construction of such devices prohibitively

difficult. However, the designs are briefly described here for the sake of discussion and



completeness.

One cam-driven robosnail that was built (see figure 3-11) involved an interchangeable

cam which could accommodate up to 64 cam followers. The membrane was wrapped around

in a circle concentric with the cam, so the motion of the snail (or the fluid, as the tank was

built to rotate) was in a circle concentric with the apparatus. This was done for two reasons:

1) to simplify the machine, 2) to make the waveform periodic, and 3) to reduce leakage from

the sides of the membrane. As long as the width of the snail is sufficiently small compared

to the mean diameter of the membrane, the 2D theory is still applicable. The experiment

yielded little useful data, as the membrane was barely wide enough to generate force, and

there were significant losses due to friction in the bearing supporting the tank, so the tank

rotated much less than the 2D prediction.

The analysis was further complicated by the fact that the tank walls inhibited some of

the pressure loss, so while the snail was far from the ideal infinite case, the results could be

directly compared to neither the ideal 2D case nor the 3D simulations, which described a

free fluid with no side walls. The snail also suffered from high friction at the cam followers,

even with only 8 followers installed; this suggests that the mechanical losses with a larger

number of followers would play a dominant role in determining "crawling" velocities.

Another proposed method to generate arbitrary waveforms was to use a semisolid belt

with waveform "chunks" attached on the outer surface. The belt would run against a

stretched membrane so that its shape would be transferred onto the membrane while the

surface of the membrane would remain more or less at a constant place rather than being

pulled along with the belt. A similar idea involved using screwlike rollers to transfer a

sharp trough wave profile onto a membrane with lateral stiffness members (see figure 3-13).

As all of these proposed devices involved rubbing a tensioned membrane against a moving

form, it is doubtful that we could build an effective device with enough tension in the

membrane to hold it against the form to counteract the high pressures at the wave troughs,

while maintaining a low enough friction force between the moving form to run reliably.

We concluded that a system using cams and actuators would likely be more efficient albeit

harder to construct.

In the end, the helix-driven sinusoidal robosnail 1 models were the most reliable versions

and will be the focus of this study.



Figure 3-11: Side cross-section of the "ring snail" with interchangeable cams
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Figure 3-12: Some interchangeable cams that would allow various wave shapes for the
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Figure 3-13: Another robosnail 1 type design for generating a non-sinusoidal waveform in
the membrane. This particular design aims to test the "overdrive" phenomenon where the
snail velocity exceeds its own waveform velocity. The membrane is reinforced with lateral
stiffness members, and is stretched across two spiral cams. The rotational motion of the
pair of spiral cams would transfer their translating profile to the membrane.
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Figure 3-14: Set-up for measuring free velocity of robosnail. The channel contains the
working fluid, enough to submerge the entire foot so that the peristaltic motion does not
entrain air bubbles during operation. A laser sheet is shone at an angle onto the bottom
foot surface, so that the profile could be measured and the wave profile and fluid thickness
determined.

3.4 Experiment

Several experiments were conducted to test the analytical and numerical predictions. As

we have seen already, differing wave shapes result in different forces and velocities, and

conceivably a host of foot shapes could be experimentally analyzed. Due to the difficulty

of constructing a device to generate custom waveforms, we only collected data for the

sinusoidally waving robosnail.

The first experiment tested the free velocity of the snail without pulling any load. The

snail was run in a pan of glycerol for some tests, later switching to silicone oil (the tendency

of glycerol to absorb water from the air varied its viscosity from day to day, introducing

experimental errors). The snail was first tested without any support - it was allowed to sink

freely into the liquid, then the free velocity was measured as the foot neared the substrate.

In later experiments the snail was placed on a track which held the snail at a constant
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Figure 3-15: Set-up for measuring the moving tractoring force of the snail. Small support
wheels on tracks hold the snail at a fixed height from the substrate, while the pulley setup
allows the payload to be easily adjusted.

height from the substrate. Experiments also included a stationary force experiment to test

the stall force of the waving robosnail at various heights and a moving force experiment

(3-15), where various tractoring forces were applied to a waving robosnail, and the resultant

velocity was measured.

3.5 Results and Discussion

It was found that the snail performed according to the predictions made by theory and

numerical simulations. First, it was confirmed (figure 3-16) that the free snail velocity is

proportional to the waving velocity when geometry and other variables were held constant.

The 2D theory significantly over-predicts the constant of proportionality, consistent with

the discussion on 3D effects.

The second test conducted was the stationary tractoring force, which we also expect to

be proportional to the waving velocity. The data was consistent with the numerical results

(figure 3-17).

The last set of data confirmed the linear tradeoff between tractoring force and waving

velocity. The snail was operated at various waving speeds and the tractoring velocity was

measured as it pulled loads of varying sizes. The load was increased and the tractoring

force was found to drop linearly with velocity (3-18) as the theory predicted.

The last set of data describing the tractoring force varied slightly from the theoretical

value in the slope of the force-velocity curve. The experiment found a greater tractoring
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Figure 3-16: Free velocity of robosnail plotted against waving velocity. Fluid is silicone oil.
The best-fit line coincides with the numerical result for a finite-width snail with dimension-

less waving amplitude a = 0.8.
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Figure 3-17: Tractoring force of Robosnail 1, plotted against waving velocity. The resultant
tractoring force is linearly proportional with respect to waving velocity, as expected. The
solid line represents the corresponding tractoring force predicted by numerical results for a
snail of aspect ratio b/1 = 0.6 with a sinusoidal wave amplitude ratio of a/h = 0.7. Fluid is
silicone oil.
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Figure 3-18: Force-velocity data for Robosnail 1. The payload force was increased while the
robosnail velocity was measured. The snail velocity decreased linearly as expected. Fluid is
silicone oil. The foot aspect ratio is aspect ratio b/1 = 0.6, with a sinusoidal wave amplitude
ratio of a/h = 0.7.



force for higher payloads, and a smaller tractoring velocity near the zero-payload free moving

range. The most likely explanations for this discrepancy are that at low speeds, the fluid

buildup behind the stalling robosnail resulted in an increase in hydrostatic pressure pushing

on the snail in its favor. At high speeds, oil friction in the bearings probably caused the

steeper drop-off in performance.



Chapter 4

Robosnail 2

4.1 Introduction

After producing Robosnail 1, we were motivated to develop a machine and fluid system

capable of climbing walls and ceilings like live land snails (Robosnail 1 was only effective

at moving over surfaces that were smooth and horizontal). With this goal in mind, we

developed Robosnail 2. After reviewing several studies of land-snail locomotion [17, 18,

15, 16, 31, 32] and observing live snails in more detail, we found that most of the snails

that were examined moved by adhesive locomotion, where propulsive forces are generated

through fluid shear, rather than by pressure forces as in the case of Robosnail 1.

While Robosnail 1 is capable of moving through viscous fluids, it possesses several

limitations. Real snails are known for their ability to traverse vertical and inverted planes,

highlighting an important feature of snail mucus - finite yield stress. Robosnail 1, which is

designed to run on Newtonian liquids, cannot climb walls unless it is completely submerged,

as a Newtonian fluid would flow down and out of the gap by the force of gravity. Even if

the device were submerged in a viscous fluid, a Robosnail 1 robot would require some sort

of active pumping mechanism to keep itself adhered to the wall using fluid pressure, while

real snails can adhere to a wall even when their foot is immobile. The benefits of Robosnail

2 mirror those of real snails in more ways than one: by using a non-Newtonian shear-stress

fluid, Robosnail 2 can generate more force whether stationary or mobile, than Robosnail 1

(per unit of foot area) and was found to be more efficient than Robosnail 1.

Robosnail 2 will likely prove to be a useful proof-of-concept for later machines that

operate in environments with non-Newtonian fluids. Mucus-filled cavities, oil drilling sites,



lake bottoms, and other such environments are a few examples where snail-like adhesive

locomotion might be advantageous.

4.2 Theory

At first glance, both Robosnails appear very similar: they are both mechanisms with a

flexible foot, and they propel themselves over a thin lubrication layer of fluid using cyclical

undulations of the foot. Despite these similarities, the two versions are fundamentally

different. While Robosnail 1 relies on high lubrication pressures to propel itself, Robosnail

2 is propelled by the shear forces within the fluid film, and pressure forces are negligible.

Furthermore, Robosnail 1 was built for use with a viscous Newtonian fluid, while Robosnail

2 requires a non-Newtonian fluid to move forward and, as we will show later, does not

function with a Newtonian fluid at all.

The phenomenon of adhesive locomotion, as its name implies, is one of selective gluing

and ungluing of an actuated membrane onto a substrate. In this illustration, the mucus

acts as the glue. Unlike an ordinary glue, however, the mucus can be switched from solid

to liquid states when subjected to a sufficient amount of shear force. This is essential in

order that the snail be able to undergo a net motion. If the snail then generates traveling

compression waves from one end of the membrane to another, such that the fluid beneath

waves is sheared to the point of yielding, then the snail is able to travel forward incrementally

with each new wave. As long as the fluid beneath the areas between sliding zones of the

foot does not shear past the critical yield stress, the snail moves forward without slip. One

final, necessary requirement of the fluid is that it be able to re-solidify (or restructure) after

yielding; if this were not the case, the finite yield stress of the fluid would be lost after

one motion cycle of the foot, and the snail would lose its ability to gain traction on the

substrate.

4.2.1 Underlying physics

If we watch a snail moving beneath a piece of glass (figure 4-1), we can observe on the

underside of the foot a distinct pattern of stripes. Close inspection of these moving stripes

reveal them to be alternating zones of compression and expansion, which Denny [16] terms

waves and interwaves, respectively. The compressed waves are moving forward from the



Figure 4-1: The underside of a moving slug (Limax maximus). The foot is divided into
several regions; the interwave, which has material points stationary with respect to the
glass surface, the waves, which are sliding forward with respect to the glass, and the rim,
which is sliding at a constant velocity with respect to the glass. This study will focus on
the wave and interwave regions.

tail to the head of the snail (direct waves). Certain marine snails [31] generate expansion

waves instead of compression waves while moving; in this case, the waves move backwards

(retrograde waves). In either case, the surface of a foot region within the wave is found to

be sliding forward with respect to the ground, while the surface of an interwave is stationary

with respect to the ground. The wave can be thought as a moving kink on a carpet, where

the whole carpet represents the foot of the snail. By sliding the kink from one end of the

carpet, one can move the carpet forward by an incremental amount. The direct waves

must logically be compression waves since they resemble a standard carpet kink, in which

material is bunched together; conversely, it follows that retrograde waves must be expansion

waves (figure 4-2). A graphical space-time representation (figure 4-3) of the moving foot

demonstrates how the relative sizes and speeds of the waves and interwaves are related.

A snail of this type has a flat foot, with a mucus layer of fixed height, whose surface



Figure 4-2: Snails moving with adhesive locomotion may apply direct or retrograde waves.
The vertical stripes represent the relative local compression of the foot surface. Direct
waves are necessarily waves of compression, while retrograde waves are necessarily waves of
expansion
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Figure 4-3: A space-time representation of the waves and interwaves of the foot of a moving
snail (from [10]). As the waves and interwaves move forward at a given velocity, the actual
material points of the foot (given by the dotted line) move at a different velocity: while
the point is within the interwave, it is stationary even though the interwave moves forward;
while the point is within the wave, it moves faster than the velocity of the wave zones. Lw
and LI are the wave velocities, respectively, and tW ti are the times a material point remains
within a wave and interwave, respectively. Xw is the increment of distance that the snail
travels during the passage of a single wave.



deforms with a time-dependent displacement

f, = f(it),

where , is the dimensional distance along the x-axis and the deformation fi is the displace-

ment of a point on the foot from its average position. For our purposes, fi is constrained

to the horizontal plane in the x- direction. We limit our analysis to traveling waves of a

fixed shape

= (£ - Vwt), (4.1)

which are periodic such that

and defined such that the average deformation+ ),is zero:

and defined such that the average deformation is zero:

SAiidi = 0.

At this point it is important to know the strain in the foot

=

which in turn gives us the foot compression ratio

dx&I  +
=1+

where x' is the new, deformed position of a point the foot at any given . The snail itself

is moving at a velocity Vs so that the net velocity of a point is the sum

P = f +vs.

Applying 4.1,
The net force on the foot is equal to the tractoring force, and is the integral of all the

The net force on the foot is equal to the tractoring force, and is the integral of all the



shear forces on the foot,

t = TdA.

For a snail of width b and length A,

Pt = b ( 1 + dx. (4.2)

If the fluid has viscosity /1,

b V f X + Vs (+ d(
Ft = b p 1 + at dx = b , h + (4.3)

o h ax o h 09

Equations (??) and (4.3) describe the force-velocity relationship for any snail using in-

plane foot deformations to move on a thin layer of fluid. Both (??) and (4.3) carry several

conditions that we assume to be valid: first, that the pressure gradient 2 is negligible and

therefore that the velocity profile in the fluid gap is linear. For these conditions to hold for

an incompressible fluid, we must assume that the foot height h would change slightly with

x in order that fluid mass be conserved. However, we will assume that this change in h is

small. Finally, the flow and the snail motion are assumed to be steady-state. The viscosity

p in this case is understood to be variable. In most cases described herein, viscosity is a

function of shear rate d = but can vary according to other factors depending on the

type of fluid used. It can be shown1 when a Newtonian fluid is used, in-plane foot motions

1When this is the case, equation 4.3 becomes

JI = + ( + 1) dx
h dx x

f=tlb [- /A\d i\ +(V ±V) +) dIo+
h dx} dx

h 0 dx o + dx o

since the deformation is periodic, i~(A) = i(), the second term within the brackets goes to zero

pb [J A (A)2
t h 0 dx dz

However, for small strains of the foot , ()2 is small and the remaining integral is negligible. The
remaining result

h
is independent of waving speed, and is only the viscous drag one would expect from dragging a membrane



Figure 4-4: The motion sequence of a discretized Robosnail using direct waves to move up-
wards. The wave segment is the single faster-moving segment, while the remaining segments
are the interwave.

cannot create a propulsive force; therefore, a non-Newtonian fluid is required for robosnail

2 to function.

To simplify the theoretical problem and the mechanical solution, we consider a snail

composed of a foot divided into discrete sections (figure 4-4) which can each be considered

uniform. We assume that the waves and interwaves are respectively of area A, and Ai and

move at steady velocities V, and V. The net force integral can then be calculated as a

product of shear stresses and their corresponding areas. Besides simplifying the analysis,

this model can be achieved mechanically by constructing a foot consisting of n segments,

and to employ a sliding pattern in which only 1 of the sections is moving at 1f/ while the

remaining segments move at -Vi.

We use a force balance to analyze the snail locomotion in steady state. The forces on

each of the foot segments are :

Fi = Aiji = Aipigi

F, = Awrw = Awpw w

for the thin, constant thickness layer,

Fi = Aii -
ho

through a viscous fluid.



F, = Awpiw h
ho

Because the waving motion is prescribed by the mechanism design, the wave and interwave

velocities V,1 and i are measured with respect to the snail while V is measured in the lab

frame. The sum of forces equal the tractoring force in steady state,

Fi + Fw = Ft.

The average velocity of any segment must equal zero with respect to the snail, 1 fo' Vdx = 0

which results in f = - 1, therefore

Ft A [ rw(Pi - pw)- V(s(pi(N - 1) + pw,)]
Nho

This is the general equation for tractoring force given a Robosnail 2 mechanism config-

uration (N discrete pads moving with wave and interwave speeds). The result tells us that

movement of the pads cannot generate thrust when the viscosity of the fluid is constant; if

a Newtonian fluid is used, the only force that occurs is viscous friction if the snail is being

dragged. The viscosity of the fluid in the interwave must be greater than the fluid in the

wave for the foot motion to create any positive tractoring force, and this is the case with

real snails. We can conclude from this result that the thrust is forward for a shear-thinning

fluid, and backward for a shear-thickening fluid, where the viscosity in the slow interwave

would be less than that in the faster moving wave.

It can be shown 2 that for the discrete interwave/wave model with described above, the

foot cannot apply a net force on the substrate if the gap is filled with a Newtonian fluid. If,

2When this is the case, the fast moving smaller section experiences a force of

A( V -V)
Nho

The slow moving interwave section feels an opposing force of

F A(N - 1)(- + ) A(N - 1)(-V,(N- 1) - (N - 1))

Nho Nho

The total fluid force exerted on the snail is then

A( - ) + A(-V - (N - 1)) A
Nho ho

When we consider the a snail without tractoring force, the forces from foot motion exactly balance, and the
net force is due to the relative motion of the snail, V . The snail will drift with a constant velocity, (as if it
were a rigid plate dragged through a viscous Newtonian fluid) independent of Vw.



however, the fluid is a Bingham fluid (or any fluid that exhibits a shear stress that is not

linear with shear rate), the behavior is different. In the following model we assume that the

fluid has not yielded underneath the interwave (a condition we are trying to maintain).

The tractoring force and resultant speed of the snail are highly dependent on the viscosity

function of the fluid, and many results can be found using different types of non-Newtonian

fluids. It is important to keep in mind that the viscosity of non-Newtonian fluids depends

on the shearing rate itself, therefore evaluating the force equation is often nontrivial. The

Bingham fluid approximation provides certain simplifications that yield a useful analytic

result.

4.2.2 Bingham fluid approximation

One practical non-Newtonian fluid is the Bingham fluid [7, 37, 381, which is similar to New-

tonian fluids in that the stress increases proportionally with strain rate, the only difference

being that a certain yield stress needs to be exceeded before the fluid starts to flow. Many

clays can behave like Bingham fluids and are well approximated by the model. We can

apply a similar force-balance analysis as shown above using a Bingham fluid as lubricant.

We assume a Bingham fluid model for the non-Newtonian fluid filling the gap of uniform

thickness ho. The total contact area is A, divided into N discrete sections. Recall from the

Robosnail 2 model that at all times, 7 of the area of the foot is moving upward with a speed

of V,, while the rest of the N- segments are moving downward with a speed of .-1 We

will refer to these two areas of the foot the wave and interwave, respectively. With respect

to the substrate, the wave moves forwards at V - Vt and the interwave moves backwards

with ~ - t. (Note that we desire Vt to be negative.

The Bingham number is defined as

B = ryho (4.4)

which is the ratio between the yield stress and the Newtonian fluid stress in the fluid.

Essentially, a larger Bingham number corresponds to a greater deviation from Newtonian

behavior, where the limit of B = 0 corresponds to the zero yield stress of a Newtonian fluid.

The stress under the interwave Ti will be rewritten as:



1
Ti = ,

where S is a the safety factor, defined such that 1/S is the fraction of the yield stress

reached beneath the interwaves. For there to be no slip locomotion, we require S > 1. The

force balance on the snail becomes as follows. On the wave, F, = (T + "'t) , while

on the interwave, Fi = - - A. The sum of the forces is

ATy=F,+ = 1 (N-) 1 N 1) (4.5)
N S BN-1

The maximum force the snail can sustain without slipping is the tractoring force when

= 1 and ri = -. As long as the condition < 1 holds, there is no slip and the interwave

velocity with respect to the ground is zero,

-Vw
V - Vt = N - Vt = 0,N-1

and the tractoring velocity can be deduced:

V
N-1

4.2.3 Motion with slippage

Once Ti increases beyond Ty, the foot slips, and the forces in the wave and interwave are

both functions of the yield stress and the tangent viscosity:

F A V + VS
F, = N 1) bN ho

(N -I)A + (N-) )VS

N ho

defining V = - the force balance with slippage becomes

A NV
Ft = 7 [N - 2 -N B



which has a linear force-speed curve similar to Robosnail 1. Note that even with slippage,

there can still be a net motion. For the sake of completeness, there are three more states

of slip and non-slip motion of the snail. These regimes involve the presence of slipping and

non slipping regions and depend on the Bingham number, the number of pads N, and the

fluid viscosity and yield stress (Figure 4-5).

Each of the force-velocity relations for the individual regimes can be solved by a force

balance. When a high enough load is applied, the snail will experience back-slip in both

the wave and interwave areas. The force-velocity relation for this case is

Ft = -Vs + B;, for vt < -1. (4.6)

Eventually the force is small enough that the forward-sliding wave region feels a stress

less than the yield stress of the fluid, and does not slide relative to the substrate. Since

the wave is moving forward (relative to the snail) with a velocity of V,, the snail is moving

backwards at a velocity of -V,. This configuration remains stable as long as the absolute

value of the stress within the wave is less than the yield stress, -- Ty < 7Tw < y. As the

applied force is decreased more, the relative force of the interwave is enough to overcome

the yield stress of the wave area, and the wave begins to slip forward while the interwave is

still slipping backwards. The force-velocity function becomes:

N-2 1
Ft = -Vs + B N for - 1 < vt < 1 (4.7)

N N- 1

As the applied force is decreased even more, the fluid beneath the interwave ceases to yield,

and the snail travels forward at the intended design velocity V' = Vi. This is a stable

configuration as long as the interwave fluid has not yielded --T < ri < 7Ty. Because of the

relatively large interwave area, there exists a good range of tractoring forces in which the

snail moves at the no-slip velocity. The snail will move at i even after the applied force

becomes positive, pushing the snail forwards. Eventually, a great enough pushing force will

yield the fluid beneath the interwave as well as the wave, and the snail will begin to slip

forward:

1
Ft =-vt- B, for N- < vt. (4.8)

N-1I
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Figure 4-5: Tractoring force -velocity relationship for robosnail 2. The graph shows various
regimes of motion for robosnail 2, depending on tractoring force. At one extreme (far left),
the applied load is so great that both the snail slips backwards, and there is slippage beneath
the wave and interwave regions. At the other extreme (far right), the applied load is positive,
and pushes the snail such that there is slippage forwards, against fluid drag forces beneath
the snail. Between these two extremes there is a range at which the foot motions can propel
the snail forwards without slippage at a velocity Vi. Note that with zero Bingham number,
we are left with the strictly Newtonian case, wherein no force can be generated by waving
foot motions.

Note that as the Bingham number goes to zero, the fluid yield stress is minimized and we

are left with a tractoring force that is proportional to the slipping velocity (the Newtonian

case where V, has no effect).

4.2.4 Power and Efficiency

Once the force and velocity relations are well defined, finding the power requirement is

straightforward. The total power consumed is the sum of the power required to move the

interwave and the power required to move the wave,

Wi = F Fv = FwV + F~,

while the useful power output is the product of the tractoring force and the tractoring



velocity,

Wout = Vs Ft,

and the efficiency is the ratio

By substituting the equations for force and tractoring velocity, we arrive at the following

expressions for the power and efficiency:

Without slip:
A I N

n= -ryVw[1 + 1/S+ ]
N BN-1

1/S N 1
SB(N-1) 2  N-i

+ B(N-1) + 1/S

With slip:
A 1 N

Win -- yVw[2 + ]
N BN-1

(N- 2 - vN)Vs

2+ N

Notice that as S approaches 1, the power and efficiency expressions of the no-slip case

approach that of the slip case.

We can see that higher efficiencies are attained at higher Bingham numbers. This

makes sense because high Bingham numbers represent a greater deviation between apparent

viscosities of the working fluid, while at lower Bingham number, the setup resembles the

Newtonian case, which we have already proven cannot generate a tractoring force and hence

exhibits zero power output and efficiency. For each efficiency curve, the curve intercepts

the x-axis at a nonzero 1/S; this is the point at which the snail starts moving, and before

which a forward Ft must be applied for the snail to be moving in the correct direction; the

negative required input power results in a negative efficiency. The highest efficiency occurs

when S = 1. Efficiency decreases quickly at higher 1/S since additional forces would be

required to overcome viscous friction in the interwave region. Efficiency again falls to zero

after a certain value of 1/S > 1; this is where the interwave exerts just enough force to

sustain the drag force of the wave.
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Figure 4-6: Tractoring efficiency for Robosnail 2, N = 6, varying the shear factor 1/S =
Curves shown for B = 1, 2, 3, ... , 10. The bottom curve is for B = 1.



4.2.5 Safety vs. efficiency

While it is favorable to maximize the efficiency of the snail, certain applications involving

large scales and forces may require strict safeguards against the catastrophic breakdown of

the fluid. This breakdown can theoretically occur for certain fluids such as Laponite that

exhibit such high shear-thinning behavior that the shear stress decreases below the yield

stress at higher shear rates [53, 1, 3]. Once the tractoring force is increased to the point

where the interwave and wave have yielded, the force balance becomes unstable and the

snail continues to slide backwards with increasing speed. Hence, while the use of highly

shear-thinning fluids is favorable for maximizing efficiency (by decreasing the wave drag),

Bingham fluids (with positive p) may be favored for safer operation since a faster back-slip

would be met with higher fluid resistance, limiting the speed of slippage to a stable value.

4.3 Mechanical Design

An early incarnation (figure 4-7) of Robosnail 2 employed N foot pads independently ac-

tuated by lengths of Nitinol "muscle wire". The prototype, which used an external power

source, was lightweight enough to climb walls and move upside down using a thin layer of

Laponite suspension. The shape memory wires are capable of a maximum strain of about

5%. To maximize the total displacement of the foot pads, the design used Nitinol wires

spanning the entire length of the snail. The pulley assembly at the front of the snail allowed

the wire tension to be transmitted to the corresponding foot pad. Because of their struc-

ture, the wires are only capable of exerting a tensile force upon activation, and require an

outside source to re-extend. Each of the foot pads were fitted with return-springs in order

to return the pad and the Nitinol wire to its initial position.

The complexity of the control, the slow restructuring time and low yield stress of the

Laponite, and resultant small maximum size of Robosnail led us to continue development

of an improved version. An intermediate idea to simplify the actuation of the foot was

to incorporate a cylindrical rotating cam in which a series of grooves was carved (figure

4-8). The grooves were each composed of two spiral segments: one long segment spanning

most of the circumference turning counterclockwise, and the second segment spanning the

remainder of the circumference turning backwards clockwise, connecting the ends of the

long groove. Each groove was identical to the next except for a fixed angular offset between
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Figure 4-7: The first version of Robosnail 2 used shape-memory (Nitinol) wires to actuate
the foot sections. This gave the advantage of compactness and minimized weight, but
disadvantages were the slow and small movements of the segments (limited by the strain
and cooling time required by the shape memory alloy) and the need for an umbilical cable.



Figure 4-8: Adhesive robosnail using multiple cylindrical cams.

each groove. A foam rubber foot with perpendicularly embedded metal plates was mounted

beneath and parallel to the rotating cylinder such that the edge of each plate rested within

its own groove. Finally the metal plates were constrained by the frame to rotate about their

midpoint. As the cam was rotated, each of the plates tilted according to the rotation of

the groove, the net effect being a moving pattern of compression waves mimicking that of a

live snail. While this transmission device solved the actuation problem, the large cylinder

was too massive to allow wall climbing, and the cutting of the grooves was a costly process

that hindered prototyping.

The cylinder cam mechanism was later simplified into a mechanism consisting of a single

spiral groove cam (figure 4-9) with eight cam followers embedded in the groove at separate

angular positions. The offset angular positions of the followers was a mechanically simpler

solution than using a series of grooves and decreased prototyping difficulties as well as

machine mass. Instead of a continuous, compressible membrane, rigid sections formed the

foot. Each of the cam followers was connected to a foot segment. Since the mass of the

mechanism was decreased, the snail was capable of traversing inclined surfaces up to 45

degrees, but was still too heavy to move vertically. The single cylinder cam had a geometry

that could not be easily manufactured.

Further improvements led to the next version (figure 4-10) of Robosnail, which is pow-

ered by a single motor, carries its own battery pack, and operates on an aqueous solution of



Figure 4-9: Adhesive robosnail using a single cylinder cam.
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Figure 4-10: Robosnail 2nd generation.

Carbopol, a stronger yield-stress fluid with a faster restructuring time than Laponite. The

higher power-to mass ratio of the new mechanism, coupled with the increased yield stress

of the working fluid allowed us to build a larger, more robust prototype that was finally

able to scale a vertical incline.

At the heart of Robosnail 2 is the newly developed transmission assembly (figures 4-11,

4-12) which gives the separate foot pads their motion. The transmission consists of a slowly

rotating disk cam, which is powered by the geared-down motor, a set of six arms that follow

the track, and linkages between the arms and the foot pads. By guiding the positions of the

arm tips as it rotates, the track groove on the rotating disk defines the oscillatory motion

of the foot pads. Because each of the guiding arms is located at an angle 3 from the

previous arm, each of the pads likewise is separated by the proper phase.

We recall from the theory that for N pads, we want one of the pads (at any instant, this

would be the wave pad) to be moving forward with a speed of Vw, while the remaining pads

move backwards at = -. The track shape that fits these requirements is composed

of two segments of linear spirals, one steadily increasing radius over g- of the circle, and



Figure 4-11: An exploded view of the internal transmission device of the second-generation
Robosnail 2. The circular structure is the cam, surrounded by 6 followers. The followers
each control one of the six foot segments in a linear motion.

Figure 4-12: Top and bottom views of the cam device.



the other spiral connecting the ends of the long spiral over I of the circle. The foot pads

of Robosnail 2 are each mounted on a rigid linear guide, so they are constrained to slide

forwards and backwards with minimal sideways deviation.

4.4 Experiment

The snail was run on a thin layer of fluid on various inclines. The fluid was first spread onto

the surface in a layer that was constant in thickness; then the snail was manually adhered to

the surface. The first snail was tested with a solution of Laponite, an aqueous suspension

of synthetic clay. The second generation, motor-powered model was tested on solutions

of Carbopol, a proprietary compound produced by the Lubrizol corporation. Figure 2-2

shows for a range of concentrations, the fluid has a noticeable shear-thinning behavior. The

Carbopol solution has a much higher yield stress and so was able to support the bulkier

snail when it was tested on higher angles of inclination.

4.5 Results and Discussion

As we expected, the snail velocity was maximal on a horizontally oriented plane relative to

inverted or climbing vertically. The slowest results came from trying to move up a vertically

inclined plane, with gravity pulling on the full weight of the snail. While inverted motion

was not hindered by gravity in the direction of motion, one unforeseen problem was that

gravity caused the snail to delaminate and peel away from the surface. Eventually the snail

would delaminate to a point where the fluid could no longer support its weight, and the

device would fall from the test surface. The first test, with the muscle wire snail operating

on Laponite (figure 4-13), displayed the most forward motion at zero degrees (horizontal

motion), and the least motion at around 90 degrees (vertical motion).

The second snail was capable of pulling a greater payload, and was able to attain a

much higher velocity than its predecessor (figure 4-14). While Carbopol is not strictly a

Bingham fluid, it can be approximated as such, and the fluid constants for the Bingham

approximation of Carbopol at 7% concentration by weight are -y = 300 Pa, p = 300 Pa s.

The data for tractoring force-velocity and the linear relationship predicted by equation 4.6

are shown in figure 4-14 . At the given interwave velocity Vi = 0.5 cm/s and fluid properties,

the snail generated a high amount of wave drag, such that even at zero tractoring force,
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incline (degrees)

Figure 4-13: Displacement per cycle of Robosnail 2a, on Laponite solution, 7.5 % by weight.
The snail functioned the best on the horizontal, where gravity was not pulling against the
direction of motion or away from the substrate. The worst performance occurred at 90
degrees vertical incline, when the snail had the greatest force resisting its motion.

VS/Vi V5/Vi

Figure 4-14: Robosnail 2 tractoring force vs. normalized tractoring velocity. The working
fluid is a Carbopol solution, 7% by weight. The measurements show good agreement with
the tractoring force-velocity relationship derived earlier (equation 4.6) for a Bingham fluid
with -y = 300 Pa, p = 300 Pa s. The mass of the snail was 300 g, while the interwave
velocity was 5 mm/s. The resultant Bingham number for these parameters is B = 0.6.
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there was a finite amount of back-slip. Only when given a positive tractoring force did the

snail travel at the no-slip velocity i.

Because of the higher yield stress of the Carbopol solution compared to the Laponite

solution, the heavier snail could be supported on a vertical surface. While both models could

be supported for up to sixty seconds upside-down, eventually the foot would delaminate from

the substrate and the snail would fall away. The delamination was most likely caused by the

open construction of the segmented foot; as the segments slid over the layer of lubricating

fluid, they entrained air bubbles which slowly grew in size, and eventually contributed to

large-scale separation between the foot and the fluid. Live snails do not have this problem,

as they have a continuous foot with a smaller perimeter that can prevent undesirable leakage

of air, and they are able to sense and adjust to momentary separations from the substrate.
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Chapter 5

Three-Link Swimmer

5.1 Introduction

The Three-link swimmer was inspired by E.M. Purcell's talk "Life at Low Reynolds Num-

ber" [41]:

"There is a very funny thing about motion at low Reynolds number, which is

the following. ...if (an) animal tries to swim by a reciprocal motion, it can't go

anywhere. Fast or slow, it exactly retraces its trajectory and it's back where

it started. ... The moral of this is that the scallop at low Reynolds number is

no good. ...The simplest animal that can swim that way is an animal with two

hinges. I don't know whether one exists ..."

In his talk, Purcell describes the realm of the low Reynolds numbers, where the ef-

fects of viscosity dominate, and momentum effects are negligible. Most swimming and

flying organisms and devices familiar to man (e.g. birds, fish, airplanes) operate at high

Reynolds number, where propulsive forces are generated by momentum transfer. Because

of the paradigm shift from inertia-based to drag-based propulsion, many of the locomotion

methods that are effective at low-Re are counterintuitive, and many high-Re locomotion

methods are useless at low-Re [47].

Figure 5-1 illustrates the motion of the swimmer described by Purcell. During one

cycle of motion, the swimmer executes four similar strokes. Because each of the fins flaps

independently and out-of-synch with the other flap, the motion is not reciprocal.



Figure 5-1: Motion sequence of three-link swimmer.

5.2 Theory

In the limit of low Reynolds number (the Stokes limit), the Navier-Stokes equations reduce

to the Stokes equations, which are time-independent [41, 12]. Because of the resulting

reversibility, reciprocal motions generate no net displacement.

A two-link swimmer such as a simplified scallop, for example, is only capable of opening

and closing. Whatever net motion experienced by the scallop in its opening stroke would be

cancelled exactly during the closing stroke. Likewise, the rightward tail swing of a fishlike

swimmer would cancel the effect of a leftward swing of its tail. Flapping a pair of wings,

one of the most efficient methods of high-Re propulsion, becomes useless in the Stokes limit.

Because of the constraint of reversibility, three is the minimal number of oscillating links

required to compose a successful swimmer. (For non-reciprocating joints, two can suffice:

as in the helical flagella swimmers, constant forward rotation in one direction comprises

non-reciprocal motion. The bacterium E. coli is an example of a helical flagella swimmer.).

The optimality of swimmers of various geometries has been considered analytically [5],

and numerical studies of a thin body version of the three-link swimmer (a swimmer com-

posed of three thin, rigid cylinders) [8, 46] have been done. Because of the complexity of the



Figure 5-2: Hypothetical motion of the three link swimmer. The swimmer starts at "A",
and flaps its right-side fin downward, moving the swimmer some x and y displacement Ax,
Ay. From reversibility, this is the same as the reverse motion from B to C, and the sequence
from C back to A is the same as the time-reverse mirror image from A to C. Thus we only
need to know the motion from A to B to understand the full cycle.

flow around a swimmer composed of flat plates, we experimentally optimize the geometry

of the swimmer, by varying fin length with relation to the body.

The symmetry of the theoretical swimmer and its stroke pattern greatly simplify the

analysis of the swimmer. In fact, one needs only analyze the motion of a single sweep of

one arm to understand the entire motion of the swimmer, and one can conclude that the

swimmer must move in a straight line (Figure 5-2). This simplification is a result of two

symmetries of the motion cycle: the flap of one fin is identical to the time-reverse flap of

the second fin, while mirroring these two motions results in the third and fourth steps in

the cycle.

There is also the question of the effect of increasing the size of the flapping fins in

relation to the body. When normalized to the full body length (both fins plus mid-section),

the limiting cases for fin length are zero length (an immobile body) or half the body length

(no body, just fins, resulting in a two-link swimmer or scallop). As either of these cases

results in zero displacement, there must be some optimal arm length a that maximizes the

speed of the swimmer. Likewise, the angle of the stroke can also be optimized. It was found

by Tam [46] that the best stroke (for the planar swimmer composed of filaments) involves

constant variation of both joints rather than discrete motion of one after the other, and

that there exist separate optimizations for either maximizing the energy efficiency, or the

displacement per cycle.



5.3 Mechanical Design

The three-link swimmer was built to have three panel-like linkages, as opposed to long,

narrow linkages as described in Purcell's talk and the literature. This was a practical

compromise as the difficulties of placing the driving mechanism and power source in a

narrow linkage would increase to the point of impracticality for a device that was to be

small enough to operate at low Reynolds number.

The swimmer is powered by a clock spring, which led to a simpler design (compared to

a motorized swimmer), and added the benefit of making the actuation mechanism smaller

and less negatively buoyant compared to a motor-battery-gearbox assembly.

The spring generated a rotary motion, which needs to be translated to the flapping of

both end links (fins). To actuate the flapping of the fins, we mounted the spring on its inner

end and attached the free end to a rotating ring. The outer edge of the ring was shaped

to have sloped sections in contact with part of the moving links/fins. As the ring rotated,

the sloped edge would flip the fins to the left and right, causing the flapping motion. An

important feature as discussed earlier was for the movement of one fin to alternate with the

motion of the other. This is solved by placing the rotating axis of the ring to be offset from

the imaginary line connecting the contact points of the fin.

All of the parts, with the exception of the spring and some small fasteners, were machined

from polycarbonate and delrin plastics to keep the buoyancy to be as close as possible to

neutral with respect to the working fluids, glycerol and silicone oil. A small foam float was

added to keep the device from sinking.

5.4 Experiment

As the only requirement for the operating fluid was that it be Newtonian and of a significant

viscosity, there were several choices. For practical reasons, we chose silicone oil, as opposed

to water soluble fluids, which would eventually corrode the steel clock-spring. The mechan-

ical swimmer was operated with clear fluid to first test that there was positive travel. Later

we put neutrally buoyant tracer particles and dye into the fluid to trace the fluid motion.

Another test would be to increase or decrease the arm lengths in relation to the body

length and to experimentally find an optimal length to maximize the displacement per cycle.
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Figure 5-3: Exploded view of three-link swimmer

Figure 5-4: The three-link swimmer.
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Figure 5-5: Distance traveled for the three-link swimmer, normalized to total unfolded body
length, as a function of the fin/arm lengths. (The curve shown is a best-fit polynomial is
to guide the eye and not directly related to the theory.)

5.5 Results and Discussion

First, the mechanical three-link swimmer successfully propelled itself through a high vis-

cosity Newtonian fluid at a rate of several percentages of the body length per cycle. The

displacement per cycle was shown to vary when the lengths of the arms were changed.

Two arm-lengths besides 1:1 were tried and the displacements were normalized to the total

swimmer length.

The experimental results seem to suggest an optimum arm size around b = 0.4, resulting

in the maximum measured swimmer velocity near 0.034 body lengths per cycle. The flow

around the three-link swimmer was fully 3D, and unlike the Becker swimmer, could not

be analyzed with the theory of thin bodies. However, the real swimmer experiment pro-

vided us with qualitative information on the fluid dynamics of its swimming action. Like

Becker [8], Tam [46] conducted extensive numerical studies in the search for an optimized

swimming stroke and swimmer shape of a 3-link swimmer (Tam extends the analysis to



compare optimal n-link swimmers and swimmers with a body). As the findings of Tam and

Becker suggest, the optimal fin length is roughly equal to the mid-segment length, which is

consistent with our prototype swimmer results.

Neutrally buoyant tracer particles (Kalliroscope @ rheoscopic fluid in some tests, and

small plastic beads in other runs) were planted in the fluid to trace the fluid motion as

the swimmer propelled itself past. This low-tech flow visualization method allowed us to

understand better the fluid dynamics of the swimmer.

Like any self propelling body, the swimmer generates a thrust wake, pushing fluid back-

wards as it moves forward. There is however a large region of fluid being pulled along with

the swimmer, as the no-slip condition is significant at extremely low Reynolds numbers.

Lastly, because the fluid is incompressible, the fluid is pulled in from the sides to make up

for the fluid moving to the fore and aft of the swimmer. Even after five cycles, these flow

characteristics are clearly visible in the tracer lines.



Figure 5-6: The three-link swimming next to fluid tracers. As the swimmer moves, it drags
a portion of the fluid along with itself in the direction of motion, according to the no-slip
condition, while simultaneously sending fluid backward in order to propel itself forward. As
a result of fluid being forced forward and backward, the fluid is pulled in from either side
of the swimmer, contracting lengthwise gridlines.
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Chapter 6

Applications

6.1 General Applications

Robosnail 1 and Robosnail 2 type robots may find use in a variety of applications that

require locomotion or the application of force, where high speeds are not essential. At low

Reynolds numbers a Robosnail-1 type robot would be effective in moving itself or other

objects in the presence of a thin layer of fluid. Small-scale robots for navigating the human

body would likely be traveling at low Re due to their small size and low speeds. In many

cases, they may come into contact with, or be completely immersed in non-Newtonian fluids.

6.2 Downhole locomotion

In the oil drilling industry, it is sometimes necessary to send sensing robots into the ground

to gather data from a potential drilling site. The holes drilled for data collection and

subsequent oil extraction (downholes) are typically pressurized and filled with natural or

synthetic muds. It can be difficult to send robots into the drilled holes, as the presence

of mud often limits traction, creating a lubrication layer that allows conventional gripping

surfaces to slip on the substrate. A snail-like device, however, would be able to exploit the

viscous and/or non-Newtonian properties of mud to move through such difficult terrains.

A robosnail 1 device is being patented [9] for this application.



6.3 Rigless tool Deployment

In addition to sending powered tools and logging equipment into downholes, another appli-

cation would be to use a stationary device to push measurement tools into the downhole.

These devices must be capable of sustaining extremely high forces to counteract the extreme

pressure of the fluids within the downhole. Current technologies involve gripping tools with

solid grippers, which risks damaging the surface of the tools from the stress concentrations

at the gripping point. A sliding gripper with a design based on that of Robosnail 2, given

the correct yield-stress fluid, would be able to continuously support a tool.

6.4 Flexible robotics

The interest in snails and snail locomotion has inspired a new type of flexible robot dubbed

the "Squishbot". As its name implies, the Squishbot is designed to radically change its

size and shape in order to navigate tight places and squeeze through narrow constrictions.

Robosnail 2 was designed with soft actuators in mind; as these become more efficient and

effective, the next step is to incorporate soft actuators as muscles to replace the rigid

transmission system of robosnail 2. In this sense it would approach the simplicity of design

and versatility of its natural counterpart.



Figure 6-1: "Squishbot", a proposed flexible robot capable of changing size and shape. Such
a robot will use flexible actuators and apply a method of locomotion similar to robosnail
2. Squishbot a joint project between MIT and Boston Dynamics, and is funded by the
Defense Sciences Office at DARPA as part of the Chembots program. Artwork is from
Boston Dynamics [2]
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Chapter 7

Conclusion

We have introduced three novel methods of locomotion through viscous Newtonian and

non-Newtonian fluids. Research on Robosnail 1 has shown that peristaltic waves of a

membrane can generate significant propulsive forces when lubricated with a Newtonian

fluid and brought close to a solid substrate. The theory and numerical simulations reveal

the various characteristic forces and velocities that can be attained by changing the waving

profile, and experimental results confirm the results for the basic, sinusoidal wave shape.

The numerical simulations also showed the relative effect of leakage flows when the width

of the snail was finite.

Robosnail 2 exploited the non-Newtonian properties of shear-thinning fluids to move

in a way analogous to live snails, which use shear - thinning mucus to propel themselves.

Like its live counterparts, robosnail 2 was able to climb walls and ceilings. We have formed

a general theory to relate the velocity and force to the snail geometry, as well as a more

specific theory to describe the motion in the special case where the lubricating fluid is a

Bingham fluid. Experiments using aqueous suspensions of Carbopol and Laponite, synthetic

shear-thinning fluids, led to successful tests of locomotion on a range of inclines from 0 to

180 degrees.

The three-link swimmer was shown to propel itself successfully as Purcell predicted. It

was found that the swimming velocity was greatest when the fins were the same length as

the body, this being the expectation as much smaller or much larger fins would be closer to

the limiting cases where displacement is known to be zero. Flow visualization experiments

illuminated the process by which the fluid is displaced as the swimmer moves. The optimum



fin size for maximizing distance traveled per cycle was found experimentally.

7.1 Future work

The three-link swimmer was built as a proof-of-concept. While it functioned as we expected,

it did not consist of a geometry as mathematically simple as the thin forms studied by Becker

and Tam. The shape consisting of flattened panels was adopted as a matter of practicality.

Future generations of the three-link swimmer should incorporate thin filamentous sections;

we would expect the experimental results to closely match the theoretical results of Becker

and Tam. In addition to three-link swimmer, Tam wrote numerical simulations of n-link

swimmers, and found optimal swimming patterns for such multi-link devices. Experimental

verification of these as well as other swimming methods would be important in the quest

to build better low-Re devices. Furthermore, the Tam swimmer varied from the prototype

three-link swimmer in that not only was the optimal geometry studied, but the stroke

cycle. Tam et al. found that the stroke pattern could be further optimized by incorporating

overlapping strokes between the two fins; for the most efficient swimmer, one fin would

still be moving when the second fin begins to flap. Experimental verification of the phase

overlap optimization has not yet been done but could be achieved with a more sophisticated

actuation mechanism.

This research was carried out with the intention to determine the feasibility of new types

of locomotion in fluid. While each of the devices was capable of locomotion in a manner

consistent by the theory, they were rigid and designed to move in a straight line. The next

obvious step would be to add control and steering. In the case of the snail, the goal would

also include taking full advantage of a live snail's flexibility by incorporating a soft foot. The

snail-like devices shown here were limited also by the fact that they did not carry their own

mucus supply, unlike real snails. Future generations should be completely self-contained

in this respect. It was found that a robosnail 1 employing various wave profiles could be

optimized for various situations. It would be useful to design and test prototype snails that

used these non-sinusoidal wave profiles.

Two of the three mechanisms presented here have been actuated using rotational actu-

ators, but could be simplified with the use of linear actuators. The use of soft, muscle-like

linear actuators would result in a robot very much like the invertebrate on which it is based.



A robosnail 2 using a soft foot would be more effective at conforming to irregular terrains.

The evolution of these devices along with new innovations in soft actuators may lead to

machines with functionalities that match or surpass that of natural organisms.
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