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Abstract

Nano-science has exploited the hybridization and de-hybridization phenomena of DNA which
are one of its fundamental functions. In particular, conjugates of gold nanoparticles and DNA
(Au NP-DNA) have been extensively explored for their potential in biological applications
such as DNA delivery for gene therapy and disease detection. However, DNA strands are
known to adsorb onto the Au NP surface, which can severely limit the hybridization ability of
Au NP-DNA conjugates. Therefore, methods of chemical modification of Au NP surfaces and
evaluating DNA conformation via Ferguson analysis of gel electrophoresis are proposed in
the thesis. Conjugates of DNA with Au NP of different sizes and coverages are evaluated with
Ferguson analysis to characterize important parameters such as hydrodynamic size and zeta-
potential. Surface modified Au NP exhibits enhanced stability and hybridization specificity in
the system, which infers the effectiveness of those methods towards biological systems where
non-specific adsorption is problematic. To confirm the validity of the concept, Au NP-
antisense DNA experiments for gene silencing are performed in the work. Antisense DNA is
designed to inhibit ribosomal activity on mRNAs and cooperatively works with Au NPs to
enhance physical blocking mechanisms. However, the result shows that Au NP-DNA
conjugates can enhance in vitro gene expression depending on DNA sequence and coverage
of the conjugates. Suggestions are made for further investigation on proof and improvement
of the translation enhancer concept.

Thesis Supervisor: Kimberly Hamad-Schifferli
Title: Assistant Professor of Mechanical Engineering
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Chapter 1. Introduction

1.1 Introduction to nanoparticle and biomolecule conjugates study

Nanoparticles have attracted many interests due to their unique electronic, optical and

catalytic properties."' 2 Those properties are strongly dependent on the materials and structures

constructing the particles. For example, quantum dots (QDs) are made of metal/semi-

conducting metal, and sized/structured to have specific energy bands such that they have

desired wavelength of absorbance or fluorescence emission and are utilized in bio-imaging

and target-molecule sensing.3-6 Noble metals such as gold and silver are also popularly used.

Especially gold nanoparticles (Au NPs) have been extensively explored and utilized recently

owing to their relatively low reactivity in random environment while maintaining versatility

in surface modification and conjugation to a variety of biomolecules. I 2 Magnetic particles are

also frequently used in that they are responsive to external magnetic field so that they are

easily directed and collected in solutions.'-' Hyperthermia is an interesting area concerning

about using alternating magnetic field to generate thermal energy in localized spots like

human tumors. ,' 12 Not only metal based nanoparticles but also polymeric

micro/nanoparticles have long history and well established synthesis techniques'3 . In addition,

metal-polymer composite particles are recently being developed by various methods such as

polymer swelling-metal particle uptake' 4 -16 , block co-polymer polymerization 17' 18 and direct

synthesis from raw materials."

Due to their size range similar to that of biomolecules (a few nanometer to some

hundred nanometers) nanoparticles have been utilized in self-assembly, gene delivery, bio-



molecular target sensing, and control. 1' 20-28 Functionalized biomolecules are attached to

nanoparticles directly or via linkers depending on the type of particles and biomolecules.' For

example, short single stranded DNA (ssDNA) modified with C-6 thiol group at 5' end makes

a strong covalent bond with a gold atom (Au-S) on the surface of Au NPs.29 The ability to

hybridize with its complementary strand, which is the primary functionality of DNA, together

with the inertness of Au NPs makes Au NP-DNA conjugates widely used in bio-applications.

One or more types ofAu NPs can be modified with ssDNA and/or its complementary DNA

such that those particles are connected to each other by forming double stranded DNA

(dsDNA). 29-33 Once aggregates of Au NPs are formed the peak of extinction spectra, which is

normally at -520nm, shifts to higher wavelength 34 and the color of bulk solution changes.

DNA strands on Au NPs can be designed to detect a certain target biomolecules such that

aggregated Au NPs are re-dissolved and each Au NP-DNA conjugate binds to the target so

that the change in color indicates the presence of the targets. 21 Other techniques including

using chips or evaluating size change are also available for Au NP-DNA based sensing.2 -

Au NP-DNA Nanoparticles have been tested as vectors of drug/DNA delivery"3 and it has

been shown that DNA is transferred better into cells by being conjugated with Au NPs. 24

However, it is known that DNA strands are non-specifically adsorbed on Au NPs'

surface depending on nucleotide content, DNA length, and coverage (# DNA strands / NP).3 6 '

37 These phenomena should be controlled since non-specific adsorption can significantly limit

the capacity of DNA to hybridize to its target and ruin the functionality of designed Au NP-

DNA for real applications. In most of the previous research performed with Au NP-DNA

systems this issue has not been recognized or addressed, and it is believed that the

hybridization efficiency of the Au NP-DNA systems used has been limited. In addition,



conjugation ofbiomolecules and nanoparticles results in significant change in charge

distribution so that conjugated DNA or biomolecules may function differently. Charge

interaction becomes even more complicated when real biological systems are involved since

ionic conditions in physiological systems vary significantly.

Therefore, conformation and charge status of designed Au NP-DNA conjugates should

be evaluated before utilized. Furthermore, DNA conformation on Au NPs must be controlled

to make DNA strands easily hybridize with target complementary strands. The primary goal

of this thesis is to propose fundamental tools of evaluating and controlling nanoparticle-

biomolecule conjugates to make the molecules behave in a predicted way and to achieve

better efficiency and stability in real biological applications.

1.2 Topics in the thesis

In Chapter 2, Ferguson analysis is introduced as a method of particle sizing and free

mobility measurements. Ferguson analysis is based on gel electrophoresis at different polymer

concentrations and varying running buffer concentrations. Electrophoresis and Ferguson

analysis theories are intensively reviewed and summarized. Actual Au NPs (5-20nm) are

tested with Ferguson analysis and the effectiveness of the method is proven. Zeta-potential is

an important parameter of particles and is a function of particle size, buffer condition and

surface charge state. Zeta-potential is calculated from the Ferguson analysis data by use of

some conventional theories such as Henry's solutions and Ohshima's solutions.

In Chapter 3, Au NP-DNA conjugates are subjected to Ferguson analysis and it is

shown that Ferguson analysis is more reliable and repeatable method for Au NP-DNA



conjugates compared with commercial dynamic light scattering or zeta-potential measurement

devices. Au NP-DNA conjugation techniques are described and quantification of conjugated

DNA is done by fluorescence measurement of dye-functionalized DNA. Once Au NP-DNA

system to be used is synthesized, non-specific adsorption between Au NP and DNA should be

eliminated. This is performed by surface modification of Au NP-DNA with 6-mercapto- 1-

hexanol. Ferguson analysis and fluorescence test confirms that DNA hybridization to

complementary strands is improved, which means that most of the non-specific adsorption

sites are eliminated.

In Chapter 4, in vitro antisense regulation of enhanced green fluorescent protein

(eGFP) expression is discussed as a biological application of Au NP-DNA conjugate.

Antisense DNA is hybridized to a specific sequence of messenger ribonucleic acid (mRNA)

and sterically blocks ribosomal activity so that translation into protein is limited. It is

proposed that Au NPs are attached to antisense DNA to enhance mechanical blocking

efficiency in that antisense DNA strand alone is not enough to limit very active ribosomal

functionality. Characteristics of Au NP-antisense DNA conjugates such as coverage and size

are evaluated by fluorescence measurement and Ferguson analysis. However, the result shows

that Au NP-antisense DNA conjugates actually enhance eGFP expression depending on DNA

sequence design and coverage of the conjugates. The phenomena may be due to Au NP-

DNA's recruiting of translation molecules to mRNA. Suggestions will be made for further

investigation on proof and optimization of the concept.
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Chapter 2. Ferguson analysis: Particle sizing and 4-potential measurement.

2.1 Introduction

Gel electrophoresis has been found to be highly effective for separating Au NPs and

Au NP-DNAs based on their mobility difference in gels.1 -3 The mobility of a species is a

function of both size and charge of the particles, type and concentrations of the running buffer,

and gel concentrations. 4 However, recent research has focused primarily on using

electrophoresis for separation of NP-bio-polymers as a function of size since electrophoresis

is intensively utilized for separations of uniformly charged bio-polymers at a small range of

gel and buffer concentrations. For example, there is a simple correlation between the mobility

of a DNA strand and its number of base pairs. In the case of highly surface-modified Au NPs

and Au NP-DNA conjugates, the effect of charge and buffer concentration can significantly

affect mobility, and band separations in the gel are a function of both size and charge.

In this chapter, it is proposed that Ferguson analysis is an integrated gel

electrophoresis technique that can relate the mobility of Au NP-based molecules to both their

size and surface charge. We use Ferguson analysis to evaluate Au NPs (D- 5 to 20 nm) as a

function of size and surface functionalization. It is shown that certain ranges of electrokinetic

formulas are necessary for NPs of this size range. In Chapter 3 and 4, developed techniques of

Ferguson analysis are utilized to evaluate Au NP-DNA conjugates to obtain information on

the DNA behavior on the NP surface.



2.2 Theories of nanoparticle characterization

2.2.1 Ferguson analysis theories

The behavior of molecules in gel electrophoresis can be predicted by some models for

random meshwork or cylindrical hollow pore.5-7 Due to some researchers' early work, the

below relationship had been established.6

V- V M
VV = M (2.1)

T - V M

f is the fraction of available volume to molecules V to total volume of gel VT, and it is

assumed to be the same as the ratio of mobility M to free mobility Mo . Void volume V, is

identically subtracted from both the volumes. Mobility is defined as migration velocity

divided by electric field strength. f is expressed in different forms, depending on the

assumptions made on geometry of molecules and gel material, which are highly associated

with the collision behavior between them." For spherical molecules, Ogston model" had been

established and expressed as:

f= exp(-sL) : 2-D gel structure (2.2)

f = exp(-lS / 4) : 1-D gel structure (2.3)

f = exp(-n 0V) : O-D gel structure (2.4)

A gel with random planes is called a 2-D structure and 1-D gel denotes a fibrous structure. If

the volume of each gel fiber is very small compared to the molecules running in gel, it is

called a O-D gel. s is the surface area of the planes per unit volume of 2-D gel, and L is the



mean length of the molecule. For 1-D gel, I is the total length of fibers per unit volume and S

is coupled surface area of molecules and fibers considering collisions between them. no and

V of 0-D gel means the number of gel fibers per unit volume and coupled volume of

molecules and fibers respectively. S and V are given below.

S = 4i(R + r)

4
V = -Z(R + r)'

: Coupled surface area in 1-D gel

: Coupled volume in 0-D gel

(2.5)

(2.6)

R is the radius of molecule and r is that of gel fiber.

Equation 2.7 shows the combined effect of gel pieces in different dimensions.

f = exp {-(sL +IS + noV)} (2.7)

In reality, 1-D elements dominate in gel structure. . Equation 2.1, 2.3 and 2.5 thus can be

combined as

MM = exp (M 0
-c(R + r) 21)

Note that / is in [cm / ml] and M is in [cm 2 / V . s]. By taking logarithm,

log,o M = loglo M o -(logo e).-zrl(R + r) 2

= log,0 M 0 - (log, e) . L(R + r) 2' TS0 100

= log10 o M 0 - K, T

where T is gel percentage (%, [g /100ml]) and L= / T ([cm / g]) is the total length of fibers

per unit mass of gel material. From equation 2.9, we can see that retardation coefficient KR,

which is given by (log,,, e).(1/ 100)L(R + r)', is the slope of linear equation between the

(2.8)

(2.9)



logarithm of the mobility and gel percentage. Note that the fitting extrapolated to T =0 will

give free mobility M0 . In addition, if we take a square root of the KR,

1 

= (logo e)TrL}.R +{ logo e. Vfbr} (2.10)

where Vfiber is the volume of fiber per unit mass, given as zr 2L ([cm3 / g]). Because this value

is an intrinsic property of gel material that is constant, J is linearly fitted as a function of

R . According to equation 2.10, larger particle gives bigger slope of Ferguson plot. This

means that large molecules experience much more retardation in gel due to frequent collision

with gel structure. Figure 2.1 shows pictures of 0.5% and 4.5% agarose gel in 0.5xTBE with

5.5-20nm gold particles. They clearly show the relation between slopes and size.

(a) (b)

Figure 2.1 Pictures of agarose gel with gold particles. D=5.5, 9.4, 15 and 20nm from the
left. Electric field strength is about 4 V/cm. Gel percentage is (a) 0.5%, (b) 4.5%

Unfortunately, the actual fitting of log10 M and T is generally convex or concave

depending on type of molecules. Random coiled DNA experiences reptation, which results in



much less change of mobility at high gel percentage range. 9-1 On the contrary, spherical

molecules experience more collisions than expected at high gel percentage, therefore the

mobility rapidly decreases as T becomes high.7 ' 10 Figure 2.2 shows a Ferguson plot with

agarose gel and ligand modified gold particles of 20nm diameter (i.e., 10nmn in radius).

Running buffer used is 0.5xTBE.

-3.6-

-3.8-

-4.0-

-4.2-

-4.4-

-4.6-

-4.8-

SI I I

0 1 2 3

Gel Percentage (%)

Figure 2.2 Ferguson plot with agarose gel and gold
diameter. Gel percentage is from 0.5% to 4.5%.

I 5

4 5

particles in 20nm

At low gel concentrations, the slope of the plot decreases, which means the particles

hardly experience collisions below a certain level of gel concentration and shows very little

change of mobility. To explain this convex behavior, a modified form of equation 2.9 was

suggested.7

loglo M = log Mo - a T(2.11)
(2.11)

= loglo Mo - K, ' T

Note K R,' a -T '. In this case, K-R' and R is fitted to the sigmoidal function rather than

linear relation.

i R=lOnm I



KR = (A - A
2) + A,

1 + (R / Ro)

A,, A, , p and R0 are determined by fitting the data. R0 is an inflection point of the sigmoidal

curve. From the experience, however, it was found that it is hard to get consistent KR' from

the fitting because it contains T'- term whose exponent is very close to zero. A significant

error arises from equation 2.12, too.

To utilize equation 2.9, we need to limit the range of gel concentration. 5 For example,

gold particles in 5.5 - 20nm diameter give linear Ferguson plots when agarose gel percentages

are below -3.5% (Figure 2.3).

-3.8-

-4.0-

-4.2-

V D=5.5nn
A D=9.4nn
* D=15nm
* D=20nm

1.5 2.0 2.5 3.0 3.5 4.0
Gel Percentage (%)

Figure 2.3 Ferguson plot with agarose gel and gold particles in 5.5-20nm
diameter. Gel percentage is from 1.5% to 3.5%

KR can be calculated from the square root of the slopes in Figure 2.3. These values are

fitted again as a function of R (see equation 2.10). Very nice linear fitting has been achieved

in Figure 2.4. The fitted equation is shown in the graph and will be utilized to calculate

effective size from KR of samples of unknown size.

I I r I I

(2.12)



0.50

0.45

0.40

0.35
5 sqrt(K)

0.30

1 2 3 4 5 6 7 8 9 10 11

Mean Radius of Au particles (nm)

= 0.23935 + 0.02345-R

Figure 2.4 K vs. R of Ferguson plots of gold particles in 5.5-20nm diameter.

Agarose gel percentage is from 1.5% to 3.5%

2.2.2 Mobility of DNA in gel

Gel electrophoresis is widely used for separating DNA fragments. The mobility of

DNA is strongly related with its chain length. The polymer chain sufficiently longer than its

persistence length composes globular random coil (see Chapter 3). It behaves like a spherical

molecule if gel concentration is low. At high gel concentration, however, the pore size may be

smaller than the random coil. Under the external electric field, a part of their strand is

unraveled and sneaks through the gel pores." This is called reptation. To explain this

phenomenon, the gel structure is treated as a porous material, rather than a matrix of fibers

described in the previous section.

Classical models of mobility in porous gel structure are given below.5' 12

I . I . I I , I . i II



M R
= 1 (2.13)

M=(= 1R (2.14)M 0  1E

M 1- 2.104 + 2.09 0.95 (2.15)

M =  1-2.104 +2.09 -0.95 R (2.16)
Mo P P P PE

PE is effective gel pore size, empirically determind by standard molecules with known

size. It decreases as gel concentration increases. But equation 2.13-16 are still based on the

assumption of spherical molecules, thus they cannot be used for reptating DNA strands.

As far as DNA strands are concerned, the size of molecule is usually given as the

number of bases in the strand No, rather than the average end-to-end length. 9-  For reptating

DNA, the following formula known as vWBR is often used. 9' '~

M =b+a(le, ) (2.17)

a, b and Nc are experimentally determined. N. is a critical number of DNA bases that

is a function of gel percentage. If No is replaced with zero, equation 2.17 gives

M(No=O)=l/b - M,, which means the asymptotic mobility of very small DNA fragment.

From the other extreme, M(No--oo) gives 1/( b+ a)- M,, the mobility of infinitely long DNA

chain. Equation 2.17 then can be rewritten as 9' '1

M1 -1 e 
(2.18)

M M MM



1 1
M M ,
1 1 =(2.19)

M M

The equation looks like equation 2.8, but No is used as the size parameter instead of R.

Note that the information on gel percentage is contained in Nc.

2.2.3 Free mobility and zeta-potential

As mentioned in the previous section, M0 extrapolated to T=0% is an estimator of the

free mobility of a given sample. Mo is a function of the particle's zeta-potential, , which is

determined by the surface charge density of the particle and the Debye-length of the salt

media. Debye-length of ionic media varies with ionic strength of the solution. I, Ionic strength,

is given by equation 2.20.

1
-= 2 C -Z (2.20)

where C, is concentration and Z, is charge valance of ionic species i. For NxTBE, which is a

very popular buffer used for gel electrophoresis, is expressed by

1 1
I = - C(a + ) N(89mol / m3)(a + 0) (2.21)

2 2

Note that 0.5 xTBE is composed of 45mM tris, 45mM boric acid, and I mM EDTA.

Dissociation factor a and p are given as

10 (pKa(acid)- pH)

a= +1 0 pKa(acid) pH) (2.22a)(1±10 (/K~i ) "'



10 - (p1 pKa
( bas

e ))

= + 10(pH-pKa(base) (2.22b)

Then Debye-length is calculated by

1 kT
= T4K2  (2.23)

where E is the permittivity of the media, kB is the Boltzmann constant, T the absolute

temperature, N4 Avogadro's number, e= -1.602x 10-19C.

Ionic strength of TBE is calculated by using literature values of the pKa of tris base

(-8.15) and boric acid (-9.14), and experimentally measured pH (8.4 - 8.6) at room

temperature. Based on the calculation, Debye length of TBE is shown in Figure 2.5.
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Figure 2.5 Debye length of NxTBE

From the given particle size and measured M0, (can be calculated by conventional

theories. When Debye length is much larger than the particle size (1 >> R ), the particle

behaves like a point charge in the medium (Hiickel's solutions). On the contrary, charged ions

are distributed very nearly to the particle surface when Debye length is much smaller than the



1particle size (- << R). Electrophoresis of the particle is very similar to electroosmosis at flat
K

walls in the case (Smoluchowski's solutions).

ion concentrations

KR << 1 KR >> 1

Figure 2.6 Two extreme cases of relative magnitude between Debye length and particle size

From Hiickel's solutions, zeta-potential and mobility are given as

Q
4;tRe

U 2 
Mo - __

E 3r

(2.24)

(2.25)

where Q is total charge of particle, Uo is free migration velocity of the particle, E is electric

field strength, and 7 is viscosity of the media. Results of Smoluchowski's solutions are also

expressed by

cr, 1
C K

Mo =

(2.26)

(2.27)



where 7, is surface charge density of the particle. It can be noted that mobility of a particle

differs by factor of 2/3 in the two solutions by comparing equation 2.25 and 2.27 when given

zeta potential is the same.

The two solutions explained above deal only with extreme cases of cR. By solving

governing equations of electrophoresis, Henry's solutions are approximated as 13

=f (kR) 7
1

(2.28)Mo = 1+ 1+

where -2.5. f(rR) is shown in Figure 2.7.
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Once gis calculated from a measured Mo, surface charge density is obtained from:

R,
S= R)

E(1+ oR)
(2.29)

and the effective total charge is given as 47R 2 a

-------- -----



Henry's solutions become less precise when the ionic species surrounding the particles

are retarded relative to the particles as they migrate through the gel. This occurs when the

ionic mobility is low or 4of the particle is high, resulting in a distorted velocity field and

electric field of media around the particle, 14 and consequently decreasing particle mobility.

TBE is a widely used gel running buffer but it possesses a very low ionic mobility (Tris:

2.7x10 4cm2/Vs, Borate: 3.3x 10-4cm2/Vs at 250C) 15 that is even comparable to typical

measured mobility of the Au NPs in -1 Onm diameter. A suggested asymptotic formula with

the correction of charge retardation is:13

Mo = jf(KR)- ___t, ( R) + -f 4 (KR) (2.30)
7 3 k T 2

2 ckB TJ
m ie

317 , pr e
(2.31)

m± is non-dimensional ionic drag coefficient that is inversely proportional to free mobility

(p ) and valence (z,) of positive or negative ionic species. The first term in the square brackets

is the same as f(KR) in Henry's solutions and the rest are correction terms.

RR (R + 1.3exp (-0.18KR)+ 2.5(
f 3(KR) = 3(2.32)

2 (KR+ 1.2 exp(-7.4KR) +4.83

9KR {KR + 5.2 exp (-3.9KR) + 5.6}S(R) + 6.02
8 rKR -1.55 exp (-0.32KR) + 6.02)

fj (KR) andj4 (KR) have maxima around O(KR)-1, but vanish as KR approach to zero or infinite.

(2.33)
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2.3 Gold nanoparticle synthesis

Theories of particle characterization are summarized in the previous section. Before

proceed to the discussion in detail, general procedure of Au NP synthesis and Au NP DNA

conjugations are described.

Au NPs were synthesized by reduction of HAuCl4 according to literature methods. 16

For the synthesis, 1% HAuC14xH20, 1% Sodium Citrate, 1% Tannic acid and 0.265% Sodium

Carbonate solutions are prepared. Tannic acid is used to nucleate small Au seeds in the

solution and additional Au ions being reduced are adsorbed on the seeds, therefore Au NPs

grow. By changing the amount of Tannic acid or the other chemicals in the solution, size

distribution of synthesized particles can be tuned.

100ml of-I I;nm Au NPs are synthesized by following protocol. In mixture A, 79ml of

water and lml of 1% HAtuCl4 -xH2 O are mixed and heated on bench-top hot plate. In mixture

B, 16.8 ml of water, 3 ml of 1% Sodium Citrate, 100il of 1% Tannic acid, and 100 il of

0. 2 6 5 % Sodium Carbonate are mixed and heated, too. When the temperature of the mixtures

reaches 60 0C, they are mixed quickly and stirred for 10min. at the same temperature. At the

beginning the color of the solution is purple but changes into red as reaction goes on. After the

time is elapsed, the solution is removed from the hot plated and cooled down in room

temperature. A few hours later the temperature of the solution should not be much different

from the room temperature. Then small amount of BPS (bis(p-sulfonatophenyl)

phenylphosphine), negatively charged ligand (see Figure 2.9), is added and mildly stirred

during overnight. Phosphorus atom of the molecules composes dipolar bonds with Au atoms

of the particle surface and stabilizes the Au NPs electrostatically. Another popular ligand,



mPEG-SH (Methoxypolyethylene glycol thiol), is also shown in Figure 2.9. mPEG is neutral

polymer and one end of the chains is modified with a thiol group which facilitates a covalent

bond to an Au atom. Hydrophobic property of the mPEG is generally amplified as chain

length gets larger.

Au NPs are generated; however, there still exist the agents used for synthesis in the

solution. To separate the NPs from the original solutions, enough amount of sodium chloride

is added into the solution such that Au NPs are aggregated due to charge screening caused by

significant ionic strength. The solution is centrifuged to collect the sediment of aggregated Au

NPs at the bottom of spin tubes. The Supernatent is discarded and the sediment is re-dispersed

in small amount of pure water. For further purification, 1-1.5% agarose gel with 0.5xTBE is

prepared. The particles are placed in gel and subject to 3-4 Vcm of electric field. Once the

band of particles migrates by a few centimeters, the band is cut out and placed into several

milliliters of 0.5 xTBE. After 1 or 2 days, most of the particles diffuse from the gel piece to

TBE buffer. Collect the solution and centrifuge it again to achieve a layer of dark red Au NPs

at the bottom of the spin tube. Collect the layer and finally filter it with 0.2pm spin columns to

get rid of impurities.

After the synthesis is completed, transmission electron microscopy (TEM) pictures are

taken to evaluate size distribution of the particles. Figure 2.9 shows a sample TEM picture of

10.8nm Au NPs. With the aid of image analysis software like ImageJ, particle boundaries are

determined and the number of pixels within the boundaries are counted and then translated

into size of the particles. From the distribution, average and standard deviation can be

calculated.
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mPEG-SH (Methoxypolyethylene glycol thiol)
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Figure 2.9 TEM (JEOL 2011, 200keV) picture of 10.8nm Au NP with size bar of 20nm in length.
ImageJ drawing is generated and the numbers of pixels are counted. The bottom graph shows size
distribution evaluated. Particles are modified with BPS ligand shown. Phosphorus atom is attached to
Au NP via dipolar bond. mPEG thiol is neutral ligand and forms a covalent bond between gold and
sulfur atoms.



Once size is determined, concentration of the Au NP solution is determined by

absorption spectra measurement. Au NPs (- Onm) show absorption peak around 520nm

(Figure 2.10) and follow Beer-Lambert law (equation 2.34).

A = abs,, -C (2.34)

where A is absorbance which is defined as logarithm of the ratio of light intensity (Log( )

,abs [cm-1 M'] is extinction coefficient of particle, / (cm) is path length of light and C [M] is

concentration of particles in the solution.

The absorbance at the wavelength that gives a peak of the spectra is a function of the

number of gold atoms consisting of a particle (n). A correlation developed from lab

experience is given as equation 2.35 and n is expressed as equation 2.36. Gold nanoparticles

are assumed to have bulk structure of gold and the population of the atoms in unit volume

(-5.9x 10m n) is found elsewhere.17

Ln ,, = 1. 1338 .In n + 6.7429 (2.35)

n = 4 rR3 (5.9 x 1028m - ) (2.36)
3

For example, a 10.8nm Au NP is composed of approximately 38900 atoms and extinction

coefficient is about 1.36x 108 cm A I . Concentration of a certain Au NP solution is then

calculated by equation 2.37. Absorbance at 800nm is subtracted from the peak absorbance as

a baseline value.
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Figure 2.10 UV-VIS absorbance spectra of 10.8n71 Au NP solution (-5.7nM in 0.5xTBE)

(2.37)



2.4 Ferguson analysis on Au NP

In this section, it is demonstrated that Ferguson analysis is a versatile method for

simultaneously measuring size and zeta-potential of small (<-20nm) particles. Particles of

different size and different surface charge density are tested to confirm the superiority of the

methods.

Using Au NPs are synthesized or commercially obtained. Particles are functionalized

with BPS as in section 2.3. Average sizes of the particles are 5.1, 7.5, 10.9, 12.5 and 18.2nm,

obtained by analyzing TEM pictures (Figure 2.11). 10.9nm Au NPs with BPS were then

incubated in mPEG-SH (n=6, MW = 356.5) bath for -24hrs with different ratios of Au

NP:mPEG-SH (1:200, 1:1000 and 1:2000, [Au NP] = 5 x 10-7M) to allow thiol linkages

between Au NP and mPEGs. Solutions are centrifuged and supernatant is discarded to get rid

of free mPEG-SH molecules. Final Au NP-mPEG molecules are dispersed in 0.5xTBE. Thiol

group is very common chemical residue that makes a covalent bond between gold and sulfur

atom. This will be described further in Chapter 3.

Gel electrophoresis was done with the generated samples. Varying parameters are

agarose gel percentage, T (0.5, 1, 1.5, 2, 2.5 and 3%) and TBE concentration (0.25, 0.5, 1 and

2xTBE). An example of gel pictures is shown in Figure 2.12. Applied electric field is 3.7-3.8

V/cm and running time is recorded (1.5-2 hrs). Digital images are taken immediately after the

applied field is removed to minimize broadening of bands by diffusion. A ruler is placed right

next to the gel to be a reference of length. The actual migration distances are measured by

ImageJ, and then divided by elapsed time and electric field strength to achieve mobility, M.
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Figure 2.11 Size distributions of 5.1, 7.5, 10.9, 12.5 and 18.2nm Au NPs. Standard deviation of the
particles are 0.51, 0.59, 1.0, 0.76 and 1.lnm, respectively.
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Figure 2.12 Example gel. 2% Agarose gel run for 2hrs in 0.5x TBE under 3.8 V/cm. Lanes 1-4: 5.1,
7.5, 12.5, and 18.2nm Au NPs respectively. Lanes 5-8: 1:0, 1:200, 1:1000 and 1:2000 incubation of Au
NP (10.9nm) : mPEG-SH for -24hrs under the condition of [Au NP]=5 x 10-7M.

Ferguson plots of the samples are shown in figure 2.13. Mobility of the samples is

generally smaller when buffer concentration is elevated. When buffer concentration is high

(2xTBE) and gel percentage is low (0.5%), mobility difference among particles of different

size almost vanishes. This implies that low percentage agarose gel in high running buffer

concentration may not be suitable for size comparison between nanoparticles because

particles experience much less collisions with gel fiber - size effect on retardation mechanism

thus very small - and surface charge cannot alter mobility much due to charge screening by

counter-ions.
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Figure 2.13 Ferguson plots of 5.1, 7.5, 10.9, 12.5 and 18.2nm Au NP, and Au NP with 1:200, 1:1000 and
1:2000 mPEG modifications. Gel running buffer is in (a) 0.25, (b) 0.5, (c) 1 and (d) 2xTBE. (continued
on next page)
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Figure 2.13 (continued) Ferguson plots of 5.1, 7.5, 10.9, 12.5 and 18.2nm Au NP, and Au NP with
1:200, 1:1000 and 1:2000 mPEG modifications. Gel running buffer is in (a) 0.25, (b) 0.5, (c) 1 and (d)
2xTBE.
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Figure 2.14 (a) Ferguson plots of 18.2nm Au NP (circles) and mPEG (1:2000) modified 10.9m
Au NP (triangles) in 0.25x and 2x TBE. Mobility M is in [cm2 Vs]. (b) Ferguson plots of 10.9 nm
Au NP with 1:0, 1:200, 1:1000 and 1:2000 ratio of mPEG-SH incubation for -24hrs in 0.25x and
2x TBE.

The Ferguson plots also illustrate an important aspect of gel electrophoresis. Figure

2.14 (a) compares the mobility of 10.9nm Au NP with the greatest loading of mPEG, or the

least negatively charged, to that of 18.2nm Au NP without mPEG modification. In 0.25xTBE

18.2nm Au NP has a smaller mobility in higher gel percentages due to its size, but runs faster

than the 10.9nm Au NP in lower gel percentages ( T< 2.0%) due to its greater charge density.

The Ferguson plots in Figure 2.14 (a) clearly show this mobility inversion upon the variation

of gel concentration. However, this phenomenon was not observed in higher buffer
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concentrations such as 2xTBE. This data shows that mobility is a function of both particle

size and charge, and underscores the necessity of multiple gel running conditions for a proper

assessment of particle characteristics.

In Figure 2.14 (b) the mobility of 10.9nm Au NPs with different mPEG loading is

plotted. The M vs. Tplots change in vertical offset with mPEG functionalization, but the

slopes of the plots do not. This confirms that particle size does not change with surface charge

variation. Since the mPEG used is small and charge-neutral, the conjugation does not change

the hydrodynamic size of the particles, but results in reduced charge density that leads to a

smaller Mo (y-intercept). This vertical offset of Mo is enhanced at higher buffer concentrations,

due to the fact that zeta-potential decreases under higher ionic strength.
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2xTBE: K= 0.21134+0.02249-R

Figure 2.15 Size calibration standards for Ferguson analysis for 0.25, 0.5, 1 and 2xTBE
made from mobility analysis of 5.1, 7.5, 10.9, 12.5 and 18.2nmi Au NPs. Square roots of
the slope of Ferguson plots ((KR) ) have a linear relationship with Au NP size.



Slopes of Ferguson plots are taken and square roots are drawn as a function of particle

size as describe in section 2.2.1. Figure 2.15 shows graphs of (KR)" vs. particle size in TBE of

different concentrations. For Au NP and Au NP-DNA conjugate with unknown size, Figure

2.15 can be sizing standards to calculate hydrodynamic size from the slope of Ferguson plots

of the samples.
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Figure 2.16 Effective size (D,.f, nrn) and free mobility (Mo, cm 2/Vs) of Au NPs in 0.25, 0.5, 1 and
2xTBE calculated by Ferguson analysis with (a) different Au NP sizes (D = 5.1, 7.5, 10.9, 12.5
and 18.2nm) and (b) different mPEG modifications (1:0, 1:200, 1:1000 and 1:2000 Au NP:mPEG-
SH incubation for -24hrs) on 10.9nm Au NP. Error bars show 95% confidence intervals.

The size of the particles used as standards is reproduced with the fitted equation

(Figure 2.16 (a), upper plot) and different charge modifications on 10.9nm Au NPs does not
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change particle size (Figure 2.16 (b), upper plot). Different concentrations of buffer rarely

affect evaluated size as long as the sizing standard was generated from the given buffer

concentration. In contrast, Mo (Figure 2.16, lower plots) tends to decrease in higher buffer

concentration and decreases further with higher loading of mPEG. Mo varies with surface

charge and buffer concentration in addition to particle size, as expected.

In Figure 2.17 (a) and (b) gcalculated from Henry's solutions (upper panels, equation

2.28) and Ohshima's solutions (middle panels, equation 2.30) are compared. The difference is

greater than 20% for most of the samples. It should be noted that the evaluated gin this work

are an order of magnitude higher than the particles used in a paper]8 that studied larger

particles of lower mobility, for which Henry's solution can still be utilized. The correction

terms in Ohshima's solutions are amplified under the condition of greater ionic drag

coefficients of TBE. Therefore, Ohshima's solutions are much more suitable than Henry's

solutions for this case. Regardless of the choice of formula, however, 'decreases with

increasing TBE concentration and increased loading of mPEG. Size difference of the particles

does not influence on zeta-potential significantly.

Calculated total charges are also plotted (Figure 2.17 (a) and (b), bottom plots). The

total charge is greater when the particle is bigger. In addition, increased mPEG

functionalization leads to decreased total charge, as expected. The total charge, a physical

property of the particle, is reduced when placed in higher buffer concentration. This could be

due to increased binding of counter ions onto the particle surface.

By using the Ohshima's solutions, the graph in the middle panel of Figure 2.17 (a)

shows size-independent zeta-potential behavior. This may be the result of the how the particle



is functionalized with the BPS ligand. During functionalization, particles and excessive BPS

molecules are incubated for a long time.
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Figure 2.17 Zeta-potential is calculated by Henry's solutions (equation 2.21, upper panels) or
Ohshima's solutions (equation 2.23, middle panels). Total charge (bottom panels) is based on the
Ohshima's solutions and equation 2.22. Plots were generated based on (a) different Au NP size
(5.1, 7.5, 10.9, 12.5 and 18.2nm) and (b) different mPEG modifications (1:0, 1:200, 1:1000 and
1:2000 Au NP:mPEG-SH incubation for -24hrs) on 10.9nm Au NP.
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Therefore the zeta-potential on the particle increases until it reaches a saturated value that

balances the affinity of dipolar bonds formation between particle and BPS and repulsive

energy between the zeta-potential and an incoming BPS molecule's charge. This phenomenon

is most likely independent of the particle size.



2.5 Limitation of Ferguson analysis

Ferguson analysis is basically for measuring free mobility and size of particles.

However, conventional dynamic light scattering (DLS) based zeta-potentiometers also can do

the same work. Most of the current generation zeta-potentiometers are based on PALS (Phase

Analysis Light Scattering). A laser beam is emitted from the source and split to incident beam

and reference beam. Incident beam pass through the cell containing particles in solution and

then put together with the reference beam. Phase of the incident beam is shifted when it is

scattered by particles. The amount of shift is proportional to particle velocity, i.e. free mobility

of the particle at a given electric field strength. 19, 20 The signals are detected and analyzed

accordingly. While measuring, zeta-potentiometers apply sinusoidal or square form of electric

field to the samples. Particles move back and forth under the electric field, and DLS

measurement of he movements are processed by software.

These measurements are preferred in many cases in that results come in very quickly

and only small amount of samples are necessary. In case of very small particles (<20nm),

however, DLS is prone to unexpected fluctuations of the samples and becomes sensitive to

impurities. Furthermore, when particles are modified with polymers such as DNA and mPEG

the movement of the particles under the wave forms of electric field is not very ideal for

PALS. Polymers have their own persistence length; therefore drag force between Au NP-

polymer and fluid is not defined very well. Initiation and termination of electrophoretic

movement under the electric field cycles must be different from those of hard spheres.

What zeta-potentiometers actually measure is free mobility. Displayed zeta-potentials

are nothing but algebraic calculations of conventional solutions (equation 2.25, 2.27 or 2.28).



Actual zeta-potentiometer (90Plus, BIC) measurement data of Au NPs used in section 2.4 is

shown in Figure 2.19. The results are highly inconsistent compared with free mobility

calculations by Ferguson analysis in Figure 2.16.
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Figure 2.18 Schematic diagram of phase analysis light scattering (PALS) '9
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Figure 2.19 Free mobility (Mo) data measured from a zeta-potentiometer (90Plus, BIC). For each
sample and TBE concentration (0.25, 0.5, 1 and 2xTBE) at least 6 measurements (> 40cycles) from
the zeta-potentiometer were averaged. 5.1, 7.5, 12.5, 18.2 and 10.9nm Au NP and 10.9nm Au NP with
1:200, 1:1000 and 1:2000 mPEG modification (-24hrs incubation)

Capillary electrophoresis more directly measures free mobility of particles.

Electrophoresis is performed in very narrow tubes (capillaries) of sub-millimeter diameter

under external electric field so that the movement of the particle is well limited in l-D.

However, measured free mobility should be compensated for electroosmotic flow (EOF)

generated inside the tubes. Due to surface charge of inner tube wall, fluid flow is driven by

unbound counter-ion species in the buffer. Even if particles in the tubes are neutral, measured

free mobility is non-zero owing to the phenomena. In other words, magnitude of EOF can be

measured by reference neutral particles placed in the tube and then utilized for the

compensation of measured free mobility of particles of interest. Figure 2.20 illustrates

schematics of capillary electrophoresis device and electroosmosis.2 Detectors are typically

either UV-VIS spectrometer or fluorometer depending on samples' characteristic. Migration

times of samples differ depending on their zeta-potential and size. Velocity profile of EOF in



tubes is flat for most of the region since flow is highly viscous and inertia effect is negligible

due to very small length scale.
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0 Migration time

Figure 2.20 Schematic diagrams of capillary electrophoresis. 21 Inner wall of the tube is charged such
that flat-profiled electroosmotic flow is generated. Depending on zeta-potential and size, particles
show different time for a given migration distance.

EOF is an important issue not only for capillary electrophoresis but also for gel

electrophoresis. It has been shown that polymer gel is subject to non-negligible degree of EOF

depending on types of polymer and running buffer,22' 23 and EOF is the most significant



among ordinary gels especially when TBE buffer is used for agarose gel. Borates are possibly

bound to agarose fibers and make the gel structure negatively charged. It was also pointed out

that free mobility extrapolated to 0% by Ferguson plot can be different from capillary

electrophoresis measurement of free mobility due to EOF in agarose gel. 24 But mobility shift

caused by EOF of commercial agarose gel (- 0.3 x 10-4 m 2/Vs) is an order of magnitude lower

than observed mobility of the Au NPs used in section 2.4 so that we can safely neglect EOF.

If EOF compensation is required, adjusted free mobility should be a smaller number in case of

negatively charged Au NPs used in this work since EOF in negatively charged agarose gel is

from cathode (-) to anode (+).

We have discussed mainly about Ogston model (equation 2.2 - 4) for Ferguson

analysis, but there are some other functional forms available for the relationship between

mobility of particle and polymer concentration in gel. Slater group particularly suggested that

migration of particles in gel is characterized by trapping and releasing from the polymeric

structure, and a polynomial relationship is a proper fitting for Ferguson analysis. 2 ' 26

-- = ao + aT + aT + aT +... (2.38)

By taking logarithm and expanding the equation for small T, we can get

LogM = LogM0 + aT + 2a a +... (2.39)

and the coefficients a,, a2 , ... are determined by some important gel parameters such as

particle size, electric field strength and gel pore size. An important issue that the group

pointed out is that "dead-ends" formed in gel structure are a major cause for Ogston model's

deviation from real experimental data. Once particles are trapped in very deep entanglement

of polymers, they cannot escape from the traps especially when electric field is high such that



Brownian fluctuation doesn't allow the particles to leap from the holes. From stochastic

simulation of particles in periodic or random gel structure, They have argued that scaled

electric field intensity e'= qEPE / 2 kBT, is a key parameter that determines the shape of

Ferguson plots. The numerator is the energy necessary for a particle of charge qe to escape

from a trap of depth PE under electric field strength E, and the denominator is thermal

fluctuation energy. The greater the scaled field intensity is the smaller the averaged mobility

in the gel is expected. Figure 2.21 shows some result from numerical study. 27 Gel structure is

assumed to be 2-D matrix and each element is randomly noted as either empty or occupied by

polymer. Vertical axis is the ratio of mobility to free mobility and horizontal axis is gel

concentration.
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Figure 2.21 Numerical simulation of particle mobility in random gel structure with or without trapping
model. 27 Mobility is significantly reduced when scaled electric field intensity is high.



In our cases, however, electric field strength used is about -400 V/mrn and particle

charge is at most 5 x 10-18C from figure 2.17. Since pore size of typical agarose gel is less than

100nm from equation 2.13-16 associated with lab experience, the scaled electric field

intensity should be around 0.02 at largest. The figure shows that this number is small enough

to ignore the suggested dead-ends effect.

In conclusion, Ferguson analysis is shown to analyze size, free mobility, zeta-potential

and total charge of small molecules (<20nm) reliably and effectively. Even though running

gels takes quite a lot of time, it is possible to place several samples of interest in the same gels

so that experiments are highly controlled and the overall time to test all the samples is not

necessarily longer. In addition, impurities are separated out while running in gels, which is

another benefit of electrophoresis. Although there are newer theories and techniques that add

a little more accuracy on the analysis and measurement, suggested Ferguson analysis and

Ogston model shows reasonable accuracy in the range of the particle size and zeta-potential

that is mainly used.



2.6 Nomenclatures

A Absorbance

a A parameter in vWBR model

b A parameter in vWBR model

a Dissociation factor of acidic ionic species

fl Dissociation factor of basic ionic species

C Concentration [ M ]

D ,f  Effective hydrodynamic size of molecule

3 Numerical parameter in Henry's solutions

E Electric field strength [ V / m or V / cm ]

e Permittivity (= coE, )

e' Scaled electric field intensity (= qcEPE / 2kT )

Co  Vacuum permittivity (=8.854x 10- 2 F / m )

cl Relativity permittivity

"abh Extinction coefficient [ cm '/M ]

.f Fractional volume

r7 Viscosity of fluid [ kg / m. s ]

I Intensity of light [ W / m]

KR Retardation coefficient

KR' Modified retardation coefficient

kB Boltzmann constant (= 1.38x 1023J / K)

ki Debye length

L Fiber length per unit mass [ cm / g ]

L Mean length of molecule

/ Fiber length per unit volume [ cm / ml]

M Mobility, U/E [cm2 /V.s]

Mo Free mobility

M Asymptotic mobility of very small DNA fragment

M, Asymptotic mobility of very long DNA

Mobility of ionic species

N, Avogadro number (=6.022x 10 >mol ')

No The number of monomers in polymer chain



N, Critical number of monomers, a parameter in vWBR model

n Number of atoms per each particle

no  The number of point-like gel fibers per unit volume [ mln ]

PE Effective gel pore size

q, Charge of particle [ C ]

R Radius of molecule

Ro Reflection point of sigmoidal model of Ferguson plot

r Radius of cylindrical gel fiber

S Coupled surface area of molecule and 1-D gel (= 41z(R + r)2)

s Surface area of 2-D gel plane per unit volume [cm2 / ml ] or [cm ]

-, Surface charge density

T Gel percentage [ g / 00ml ]

T, Absolute temperature [K]

U Migration velocity

V Coupled volume of molecule and O-D gel (= 4 / 3 (R + r)3 )

Available volume of gel to molecules

Void volume of gel

VT Total volume of gel

V,,ib Volume of fiber per unit mass (= zr2 L)

Z Valence of ionic species

" Zeta-potential ( / )



2.7 References

(1) Park, S.; Brown, K. A.; Hamad-Schifferli, K. Nano Lett. 2004, 4, 1925-1929.
(2) Zanchet, D.; Micheel, C. M.; Parak, W. J.; Gerion, D.; Alivisatos, A. P. Nano Lett. 2001,
1, 32-35.
(3) Zanchet, D.; Micheel, C. M.; Parak, W. J.; Gerion, D.; Williams, S. C.; Alivisatos, A. P. J.
Phys. Chem. B 2002, 106, 11758-11763.
(4) Viovy, J.-L. Rev. Mod. Phys. 2000, 72, 813-872.
(5) Griess, G. A.; Moreno, E. T.; Easom, R. A.; Serwer, P. Biopolymers 1989, 28, 1475-1484.
(6) Rodbard, D.; Chrambach, A. Proc. Natl. Acad. Sci. 1970, 65, 970-977.
(7) Tietz, D.; Chrambach, A. Electrophoresis 1986, 7, 241-250.
(8) Ogston, A. G.; Preston, B. N.; Wells, J. D. Proc. R. Soc. Lond. A. 1973, 333, 297-316.
(9) Rill, R. L.; Beheshti, A.; Winkle, D. H. V. Electrophoresis 2002, 23, 2710-2719.
(10) Serwer, P. Electrophoresis 1989, 10, 327-331.
(11) Slater, G. W. Electrophoresis 2002, 23, 1410-1416.
(12) Deen, W. M. AIChEJ. 1987, 33, 1409-1425.
(13) Ohshima, H., Theory of Colloid and Interfacial Electric Phenomena. I ed.; Academic
Press: London, 2006; Vol. 12.
(14) O'Brien, R. W.; White, L. R. J. Chem. Soc., Faraday trans 2 1978, 74, 1607-1626.
(15) Michov, B. M. Electrophoresis 1984, 5, 171.
(16) Beesley, J. E., Colloidal Gold. A New Perspective for Cytochemical Marking. 1 ed.;
Oxford University Press: Oxford, 1989.
(17) Kittel, C., Introduction to Solid State Physics. 7 ed.; John Wiley & Sons, Inc.: New York,
1996.
(18) Hanauer, M.; Pierrat, S.; Zins, I.; Lotz, A.; Sonnichsen, C. Nano Lett. 2007, 7, 2881-
2885.
(19) Zeta-potential Theory.
http :'i/www. nbtc.cornell .edu/fac i liti es/downloads/Zetasizcr" o20ch apter%2016.pdf
(20) McNeil-Watson, F.; Tscharnuter, W.; Miller, J. Colloids Surf A 1998, 140, 53-57.
(21) Background Theory and Principles of Capillary Electrophoresis.
http://www.rsc.org/pdf/books/capelectrosc.pdf
(22) Guo, Y.; Li, X.; Fang, Y. Electrophoresis 1998, 19, 1311-1313.
(23) Stellwagen, N. C.; Gelfi, C.; Righetti, P. G. Biopolymers 2000, 54, 137-142.
(24) Strutz, K.; Stellwagen, N. C. Electrophoresis 1998, 19, 635-642.
(25) Slater, G. W.; Guo, H. L. Electrophoresis 1996, 17, 977-988.
(26) Slater, G. W.; Guo, H. L. Electrophoresis 1996, 17, 1407-1415.
(27) Gauthier, M. G.; Slater, G. W. J. Chem. Phys. 2002, 117, 6745-6756.



Chapter 3. Au NP-DNA characterization and surface modification

3.1 Introduction

Gold nanoparticle (Au NP) and their conjugates with DNA have many applications in

self-assembly, gene delivery, bio-molecular target sensing, and control. 1-9 One of the key

issues is to preserve DNA's ability to hybridize to its complementary strands.' - 15 However,

DNA strands are known to adsorb non-specifically on the surface ofAu NPs depending on

oligonucleotide content, oligo length, and coverage. 14' 15 These phenomena should be

controlled since non-specific adsorption can significantly limit the capacity of DNA to

hybridize to its target and ruin the functionality of designed Au NP-DNA for real applications.

The conformation of DNA adsorbed onto Au NPs differs from those of adsorption-free

DNA and thus leads to different effective sizes (D,11) of the conjugates. Evaluating NP-DNA

conjugate size thus can assess the ability of the functionality of the DNA in the conjugate. 1 17

Therefore, theories of DNA and Au NP-DNA conformations are reviewed and summarized.

Ferguson analysis is re-introduced to see the feasibility of the methods for evaluating effective

size and zeta-potential of Au NP-DNA. In addition, surface of Au NP-DNA is modified with

6-mercapto- I -hexanol (MCH) and examined how much of non-specific adsorptions are

removed. Ferguson analysis discussed in Chapter 2 is further utilized with varying

combinations of Au NP-DNA and surface modifications, and the chemistry of surface

modification and the actual improvement of hybridization capacity are confirmed by

fluorescence measurement techniques.

52



Finally, sequence dependent adsorption behavior of DNA is investigated. Bases of

high affinity are placed in different region of DNA such that Au NP-DNA conjugates'

conformation varies and is evaluated by Ferguson Analysis. It will be shown that Au NP-

DNA conformation become similar and hybridization capacity is improved after MCH

treatment on each combinations of Au NP-DNA.

()

strong interaction

cannot hybridize to target

cannot hybridize to target

weak interaction

hybridize to target

hybridize to target

Figure 3.1 The strength of interaction between Au NP and DNA determines DNA conformation on the
particle (top image'). Au NP-DNA can not be hybridized to target sequence if non-specific adsorptions
are not properly removed.

111-- ---



3.2 Fluorescence measurement of Au NP-DNA

Fluorescence is one of the most commonly used methods in modem biological science.

Fluorescence is the phenomenon in which absorption of light of a given wavelength by a

fluorescent molecule is followed by the emission of light at longer wavelengths. There are

many kinds of fluorophores having their own excitation and emission spectra. The most

remarkable advantage of fluorescence over other optical techniques is its sensitivity.

Absorbance measurements are generally performed with micromolar oligo concentration,

whereas conventional fluorometers reliably work with nanomolar or even picomolar

concentration. Another advantage is design possibility of fluorescence emission-quenching.

Quencher is a molecule that has strong absorption peak at similar wavelength of a certain

fluorophore's emission peak. If emission and absorption peaks of both of the molecules are

close enough to each other then fluorescence signal is quenched and not detected by external

measurement device. Table 3.1 shows some commercial fluorophores and quenchers. ' It is

also known that metal particles are very strong quenchers.9 2 For example, 10nm Au NPs

have an absorbance peak at 520 nm. Thus emission of fluorescein, with an emission peak at

520 nm, is mostly quenched by nearby gold particles.

However, fluorescence intensity of fluorophores varies with many other parameters

such as pH and temperature of medium. In addition, emission intensity generally decreases as

the fluorophores are repeatedly exposed to excitation light due to deterioration of the

molecular structure. Therefore control experiment should be done very carefully when

measurement of fluorescence is for the purpose of quantification of the number or

concentration of certain molecules like DNA oligos to which the fluorophores are attached.



Fluorophore Max. Abs. Max. Emi.

6-FAM 495nm 517nm

CY3 550 570

CY5 650 667

CY5.5 675 694

Fluorescein 495 520

HEX 537 553

JOE 520 548

LightCycler Red 640 625 640

LightCycler Red 705 680 705

Oregon Green 488 495 521

Oregon Green 500 499 519

Oregon Green 514 506 526

Rhodamine 564 603

Rhodamine6G 524 557

Rhodamine Green 504 532

Rhodamine Red 570 590

ROX 581 607

TAMRA 550 576

TET 521 538

Texas Red 589 610

Quencher Max. Abs. Max. Emi.

BHQ-1 Dark 535nm None

BHQ-2 Dark 579 None

BHQ-3 Dark 672 None

DABCYL Dark 453 None

DABCYL-dT Dark 453 None

QSY-7 560 None

TAMRA 550 576nm

Table 3.1 Maximum absorbance and emission

wave length of fluorophores and quenchers in
common use.common use.

DNA is commercially ordered to be modified with fluorophores if quantitative

analysis is necessary. The concentration of DNA in solution is easily achieved by measuring

fluorescence signals. Peak emission intensity is proportional to concentration of DNA-

fluorophore most of the cases (Figure 3.2). The measured intensity should not be affected by

other emitters or quenchers for better accuracy. To address the degree of fluorescence

quenching by Au NP in solutions, F6rster (or fluorescence) resonance energy transfer (FRET)

should be fully understood. Light energy that excited donor molecule is emitted at longer

wavelength, thermally dissipated, or transferred to nearby acceptors. Dipole-dipole coupling

between donor and acceptor is the cause of resonant energy transfer and this phenomenon



happens only within very short length scale (<lOnm). Energy transfer rate (or efficiency) E is

calculated by equation 3.1.21

2500000 lO 2nmi

O 3nm/
2000000 A 5nm/

V,

500000

0.0 2.0xlO- 4,0x10 6.0x10O- 8.0x10O 1.x10 - 1.2x10O

Concentration (M)

Figure 3.2 Fluorescence intensity vs. concentration of 40mer DNA-TAMRA (5'-HS-
26(T)CGGCCCGTATAATT-TAMRA-3'). Samples in I xPBS. The intensity is proportional
to the concentration. The wider the slit size, the stronger the intensity is. Using machine is
Fluoromnax 3.

1
E=

I+ R6

Ro0

(3.1)

Ro is called F6rster distance where 50% of energy is resonantly transferred to acceptor. Ro is

calculated by equation 3.222

Ro = [(8.79 x 10 ).K 2 -n4 1 d ]6 [nm] (3.2)

where c orientation factor, n refractive index of solvent, 0, quantum efficiency of donor, and

Ji, overlap integral. e is 2/3 for freely moving and rotating dyes and t, is 0-1. Overlap



integral is determined by emission spectra of donor (FD(X)) and absorbance spectra of

acceptor (&r(X)). The more the overlap of both specta is the higher the efficiency of energy

transfer is.

F (D ()d.AJda f FAd [M 1.cm3]

FD() should be normalized such that the maximum emission intensity is scaled to 1. The

absorbance spectra cA(2) is also scaled to the intensity of 1M solution of donor.

To demonstrate energy transfer from fluorophores to Au NPs, fluorescein and TAMRA

modified DNAs are commercially obtained (Table 3.2). Au NPs of 1 lnm diameter were also

synthesized and BPS modified as in section 2.3. For calculation of overlap integral, emission

and absorbance spectra were measured and scaled accordingly (Figure 3.3).

(b)

A
* *

I 0 DNA-Fluores

B DNA-TAMRA

* S

cein

I

500 550 600 650 700
Wavelength (nm)

1.2x10-

8.0x10 7O

4.0x10 7'

0.0-

450 500 550 660 650 70

Wavelength (nm)
)0 750

Figure 3.3 (a) Emission spectra of DNA-Fluorescein and DNA-TAMRA normalized to I at the peak.
(b) Absorbance spectra of 1 Inm Au NP normalized to the intensity of IM solution. All the samples are
placed in 1 xPBS buffer.
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Sequence

DNA-Fluorescein 5'-(Fluorescein)CGGGCCGAATTATA-3'

DNA-TAMRA 5'-(TAMRA)CTAATCCACAATGGG-3' Table 3.2 Sequence of using DNAs

All the necessary numbers were plugged into equation 3.2 and , is assumed to be 1.

Then Ro calculated is 342nm for DNA-Fluorescein and 311 nm for DNA-TAMRA. Their

numbers are much grater than the order of magnitude of typical resonance energy transfer

(< 10nm).

To determine experimentally the quenching effect of Au NPs, different amount of

11 nm Au NPs were put into DNA-Fluorescein and DNA-TAMRA solution at 2 x 10- M

concentration and IM PBS buffer, and then fluorescence intensity at peak was measured and

normalized to pure DNA-flourophore emission intensity (Figure 3.4). At low concentration of

Au NP (<- I x 10-9 O ) fluorescence intensity is not much quenched, but the intensity vanishes

when concentration of Au NP is high ((> -5x 10-M). It is shown from the measurement that

fluorescence from DNA-fluorophore is half-way quenched when the concentration of I I11nm

Au NP is around Ix 108M.

U 0.8

~0.6
0 .
3 0.4 nE DNA-TAMRA A

A DNA-Fluorescein
0.2

E 0.0

z NoAu 1E-10M 1E-9M 1E-8M 5E-8M

Figure 3.4 Fluorescence intensity of 2x 10-8M DNA-TAMRA and DNA-Fluorescein in
1 xPBS. As Au NPs are put into the solution fluorescence intensity vanishes to zero.



It can be shown that this result matches with the result from the calculation of F6rster

distance (either 311 nm or 342nm). To roughly estimate energy transfer efficiency, it is

assumed that fluorophores within the Forster distance from an Au NPs are all quenched and

the ones outside the distance are not affected (solid line, Figure 3.5). If overlaps of the

quenching volumes of different Au NPs are neglected, then the energy transfer efficiency is

roughly

1L
4 

(3.4)
-zRo C N

where C,,, is concentration of Au NP and NA is Avogadro number. Estimation of the necessary

1 lnm Au NP concentration that quenches 50% of fluorescence intensity (E=0.5) is listed in

Table 3.3. The results show that calculated values are quite similar to the actual experimental

result in Figure 3.4. Although fluorescence quenching by Au NP is not attributed to resonance

energy transfer in terms of much different length scales, the calculation based on overlap of

emission and absorbance spectra is still valid.

1.0 . ,

0.8

- 0.6
(D)

C 0.4
LU

0.2-

0.0
0.0 0.5 1.0 1.5 2.0

R/Ro

Figure 3.5 Energy transfer rate (or efficiency) vs. normalized distance between donor
and acceptor. Dotted line shows equation 3.1. For easier calculation of equation 3.4 solid
line is used instead.



Table 3.3 11 nm Au NP concentration
that quenches 50% intensity of DNA-
Fluorescein or DNA-TAMRA.
Solutions are in 1 xPBS.

Better accuracy is achieved by using equation 3.1 and allowing the overlapped effect

of the energy transfer profiles. Au NPs are ordered in 3-D lattices with the same intervals that

are determined by the concentration of Au NP and a fluorophore is randomly placed in the

space (Figure 3.6). Energy transfer from the fluorophore to nearby Au NPs is added up until

the sum converges. By repeating the calculations for different positions of fluorophore and by

averaging them the relation between the degree of quenching and Au NP concentration is

achieved. In Figure 3.7, it is recognized that fluorescence emission is mostly quenched when

acceptor (or quencher) concentration is above 5 x 10-M in case F6rster distance is around 200-

300nm.

Figure 3.6 A fluorophore is quenched by nearby Au NPs. The quenching effect is added
up until the summation of the energy transfer converges. Calculations are repeated for
different positions of the fluorophore and then the results are averaged.

Ro CAu of 50% quenching

DNA-Fluorescein 342nm 1.0x 10 M

DNA-TAMRA 311nm 1.3x10 8 M
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Figure 3.7 Energy transfer efficiency is calculated by equation 3.1 and Au NP
arrangement shown in Figure 3.5. Fluorescence emission is mostly quenched when
acceptor (or quencher) concentration is abo\e 5 x 10 hM.

In conclusion, concentration of Au NP (-l10nm) should be low enough (<1 x 10- M) to

avoid disrupting measurement of fluorophore's emission intensity when the measurement is

done for the purpose of quantification of DNA.
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3.3 Theories of DNA and Au NP-DNA conformation

3.3.1 Basic theories on persistence length

Measurement and/or calculation of the persistence length of polymer have been an

extensive topic for the last a few decades because the rigidity of polymer is a main parameter

for its conformation. Persistence length is conceptually defined as the length over which the

average deflection of the polymer axis caused by thermal agitation is one radian.23 More

rigorously, it is the sum of the average projections of all chain segments on the direction of a

given segment or simply the first segment. 24 25 Due to recent emphasis on biology and

biotechnology, the persistence length of biomolecules including DNA has become an

important issue. Conformational changes of biomolecules are directly related with their

activity, and inversely we can influence them by changing external force and stress.26 For

example, a single-stranded DNA (ssDNA) has different ability to hybridize with its

complementary strand according to their conformation. In addition, when transcriptions occur,

double stranded DNA (dsDNA) partially open their double helix structures. It might be

possible to control these phenomena by understanding the exact picture of the behavior.

Generally two kinds of persistence length are mentioned in DNA related research. One

is from enthalpic contribution and the other is from entropic contribution.27' 28 The latter is due

to the statistical distribution of DNA conformation, while the former is mainly because of the

rigidity of DNA itself. In general, short DNA strands have fewer number of possible

conformations, the enthalpic persistence length thus dominates. Some other researchers using

DNA electrophoresis employ different classifications such as intrinsic and electrostatic

contributions. n Since DNA strands have charges on their backbones, ionic strength of the



medium becomes very important to describe charge-screening behavior, which induces

reduction of charge repulsion between DNA bases. In any case, the overall persistence length

p is considered as the sum of the two persistence lengths, because the entropic or electrostatic

term gives additional stiffness.

P = Po + Pe (3.5)

po denotes the enthalpic (or intrinsic) persistence length, and pe means the entropic

(or electrostatic) persistence length for different situation. When electrostatic contribution to

the persistence length is considered, Debye length K' becomes important parameter. It is

associated with Bjerrum length,

ek = (3.6)

the distance where the electrostatic energy between two counter ions with unit charge e is the

same as thermal fluctuation kBTJ, where kB is Boltzmann constant and T is absolute

temperature. Then k-1 (equation 2.23) can be expressed as

1 1
K Nl (3.7)

and p, is approximated for intrinsically stiff polymer like short DNA strand as 29, 33

P, 4Z2p I, = 4 2 , (3.8)

where z is the valence of the ions, q is line charge density, and I is the ionic strength of the

buffer solutions (equation 2.20).29, 34 Although the equation is not applicable to all cases, it

shows that smaller Debye length, which can be caused by high salt concentration or high

valence, induces less electrostatic stiffness.



One more description on the classification is found in other literature, 23, 35 where

static(p,) and dynamic(pdj) contribution of persistence length are mentioned. Dynamic

contribution is the persistence based on thermal fluctuation. Hence the static persistence

length may contain all the other effect such as intrinsic and electrostatic contributions. The

authors defined the overall persistence length in a different way.23, 35

11 1- = -+ (3.9)
P P, Pd,

It is understood from the formula that both contributions making the DNA "pliable" give rise

to the decrease of the overall persistence length.

From the understanding of persistence length, some theories for the conformation of

polymer chains were suggested. Among them, Freely Jointed Chain (FJC) model and Worm-

Like Chain (WLC) model are most commonly used. FJC model assumes that polymer is a

series of orientationally independent statistical segments (Kuhn segments).:6 On the contrary,

WLC model consider polymers continuous, thin and flexible chains, which give23' 36

t(s) +As) exp -- (3.10)

where t(s) is the unit tangential vector of the contour. Persistence length p is involved

in WLC model. From well established theories, the root-mean-square end-to-end length R

under the absence of force is given as

R=RNb = : FJC (3.11)

R= 2p -+exp - 1 :WLC (3.12)P P



For FJC, the chain length L can be expressed as the product of the Kuhn length b and

the number of Kuhn segments N. It also can be written as simply monomer length times the

number of monomers, but practically not for FJC. Sometimes b of FJC is treated as 2p due to

the fact that R of WLC becomes close to 2Lp as L becomes much larger than p. More

specifically, the probability distribution of R for WLC model is known by64

4zAr -3t
P(r, t)= r2)9/2Xp (3.13)

where

A = 4(3t / 4)3 2 exp(3t / 4)

(3t/4) (3t/ 4) (3t/ 4)

with t=L / p and r=R / L.

All these equations can be argued by excluded-volume interaction, which means that a

position in space cannot be occupied by two monomers simultaneously. ' 3 When the volume

scale of polymer Ld 2 (d: polymer diameter) is much larger than the cube of Kuhn length, the

excluded-volume may affect the end-to-end size of the polymer.

R = N"b= C'b (3.15)

where v is known as Flory exponent, approximately equal to 0.632, 37, 38 Also if lcf is

comparable to or bigger than the polymer diameter, the excluded volume becomes the order

of (K1) 3, and the end-to-end length may follow a different rule. 32

Some useful approximations are found also from force-extension relation. 28 ' 33, 39

R= L coth jj L]-- ;I+F : FJC (3.16)
k BT4 2 Fp K



(kT 1 -1R F
F + -- : WLC (3.17)

p 4(1-R/L+F/K) 4 L K

where K is elastic bending stiffness of the chain. Above equations contain enthalpic

contribution term F / K that is due to elastic stretching of polymer structure itself. But

practically this term is negligible in case of random coil.39 An approach for more exact

solution is given in literature.33 ' 39 Based on WLC model, energy stored in chain can be

expressed as

E Lc =(s) -FcosO(s) ds (3.18)
EHl2c (3.18)

The first term of the integrand is the stored energy due to bending, and the relation p=K / kqT1

holds. The Boltzman factor e ",' k T, is used to get partition function Z, and finally the

relation

R kT ,  In Z
L L , F (3.19)
L L dF

is used for numerical calculation of force-extension relation. By comparing with equation

3.13, the author39 simply added correction terms up to 7th order,

F K 4(-/) -_+l+ ~a, ij (3.20)
p 4(1-1) 4 ,=2

where =R/L-F / K.

An important thing to note is that force-free end-to-end length or force-extension

relation contain persistence length term, though its definition in the formula changes

somewhat (e.g., a half of Kuhn length or bending stiffness over thennal fluctuation).

Therefore we can get persistence length of DNA by comparing the theoretical models with



some experimental result showing the above relations. Also it can be more exactly compared

with direct simulation of FJC or WLC model.

3.3.2 Double-stranded DNA's persistence length

There has been intensive research on dsDNA's persistence length, and it has been a

typical way of the research to figure out the relationships between force and DNA's

configuration. One way of DNA stretching is to use electrophoresis. External electric field

gives rise to motion of DNA, and the force is balanced by drag force from relative fluid

motion. ° Therefore DNA moves with constant velocity during electrophoresis (or at rest).

DNA is stained by fluorescence materials, which gives the information about its

conformations. From FJC model, a relationship is given as3o

I sinhaL= n ~inh(3.21)
a R= aL

where a =E0 qb/kRT-, Eo is electric field strength and q is line charge density. Therefore Eoqb

is a local force acting on one Kuhn segment. The author compared experimental data of 2-

phage DNA with equation 3.21 with varying q, finally got q=15e per p(=b/2). To get the

persistence length through FJC simulation, electric field was removed to compose a random

coil. By measuring the average end-to-end length, p -80nm was achieved. The approaches in

the article may be argued because excluded volume effect was not considered. Since W is in

the order of 1-3nm for highly charged polymer such as DNA in general salt condition 9,32

and the case of TBE in Figure 2.5, effective diameter of DNA is similar to d+2K1 rather than

just d. Electro-osmotic flow may affect the force balance in the case.40



Actually there have been some arguments on the situation involving both

hydrodynamic force and electrostatic force, because the electro-osmosis flow is sometimes

underestimated (see section 2.5). In addition, fluid motion induced by one monomer (or a part

equivalent to Kuhn length) also may affect other monomers. It is not appropriate to say that

the local force balanced by fluid drag is simply Eoqb.32, 40 At the same time, the total force is

not Eoqb. A more realistic overall force balance equation is given below.32, 40

F - (vu,,,i - po0E) = 0 (3.22)

po is the mobility under the absence of external fluid flow. When external fluid velocity is

zero (i.e. most of the gel electrophoresis cases),

F = -oEi, = 67qR-,oEo ~ qRpoEO (3.23)

where is excluded volume parameter, Rh, is hydrodynamic radius and R, is the radius of

gyration originated from intrinsic viscosity of polymers. 4 1 Considering equation 3. 1 or 3.15,

and 3.23, we can reach the below relation.

F - R - R L (or L° ) (3.24)

Note that the mobility yo is almost constant regardless of its length when reptation occurs. 42

This force-chain length behavior was confirmed experimentally by use of fluid flow,43 by

fixing one end of DNA with optical trapping. The experiment shows that the free end of DNA

is not very stable. 33 42 The fluctuation is caused by a variation in the hydrodynamic drag force

as the DNA conformation changes.



Since there is uncertainty for the conformation when we let one or both ends of the

DNA free, direct stretching of both ends may be preferred to get clearer picture. Due to recent

technology like optical trap, it is possible to control both force (-pN) and position in a very

precise manner. Very popular experiment was done on B-form A-Phage DNA to get enthalpic

contribution to the persistence length.38 As described earlier, stretching random coiled DNA

mainly depends on entropic feature, whereas nearly linear polymer is subjected to enthalpic

behavior. Equation 3.16 or 3.17 can be recalled. The author reported that force-extension

experiment gives linear relationship up to F -60pN. Around 65 pN, the DNA suddenly

stretched to -1.7 times its B-form contour length, which means the rupture of one of its

strands. Twisted coil becomes straight at this stage. But it recovers its shape when released,

though there is a certain time scale for the recovery. It is stated that the required force for the

sudden behavior becomes small when ionic strength becomes low. Low degree of charge

screening causes electrostatic repulsion between DNA backbones. Another experiment with

optical tweezer2 8 shows that multi-valent ions in solution gives low persistence length

compared to mono-valent ions. It is in agreement with the explanation given on equation 3.7

and 3.8. In 10mM Na salt condition, the persistence length achieved is 47nm, but reduces to

39nni in 100M Mg 2+ solution, which is much lower concentration compared to Na'. But no

further drop of the persistence length is observed for higher salt condition, thus we can infer

that the intrinsic persistence length is about 39nm.

Regarding with equation 3.9, cryo-electron microscopy can be used to instantaneously

immobilize and image the DNA 23 . dsDNA trapped between 40-50nm slabs is rapidly cooled

with the rate of 106 K/s. It is fast enough to capture a single state out of many different

dynamic fluctuations. By comparing the actual DNA conformation with numerical simulation



of equation 3.10, dynamic persistence pd is evaluated as 80nm. If we assume the overall

persistence length is 50nm (or 45nm from this article), then the static persistence length is

about 130nm from equation 3.9. This static persistence length is much longer than the values

called "intrinsic" persistence length from the above. The author explains that the overall

persistence length is basically containing the pliability originated from thermal fluctuation,

therefore DNA becomes stiffer if thermal effect is got rid of.

Besides the methods mentioned above, some other imaging and stretching methods

such as scanning force microscopy 36 , 44 and moving meniscus 45 have been utilized. Through

wide range of research, the persistence length of dsDNA is believed to be in the order of 50nm

with some variation.

3.3.3 Persistence length of single-stranded DNA

In general, single-stranded DNA (ssDNA) has much smaller persistence length

compared to dsDNAs which compose sturdy double helix structures. From the force-

extension relation given in equation 3.16 and 3.17, we can see that a small persistence length

requires greater force to stretch, but results in small end-to-end length according to equation

3.11 and 3.12.

Stretching experiment with optical tweezers was done on single-stranded DNA

(ssDNA). 3' The procedure is identical with that of dsDNA experiment given in the previous

sections. In the early stage of stretching, ssDNA is much more contractile than dsDNA, but

overstretch behavior is similar to dsDNA because only one of the two strands is dominant

during the dsDNA overstretching. From the experiment and FJC model, calculated p (=b/2)

was only 0.75nnm which is comparable to the length of two bases only.



The ssDNA's persistence lengths were calculated for different salt conditions and

chain length. 31 It was done by measuring the diffusivity of each random coil ssDNA, by use

of fluorescence recovery after photobleaching(FRAP). Stokes-Einstein relation is given in

equation 3.25.

D- kBTI kBT 4
67crlR 6z7 (4R ) (3.25)

Radius of gyration R, is given as41

R (3.26)

for long WLC. Intrinsic viscosity is considered in equation 3.25, and excluded volume effect

comes in 4, rather than in the end-to-end length. The author" took 0.5<g<0.664 from various

sources. In addition, L is the product of the number of bases Lo and monomer length ho

(-0.437nn for ssDNA in this article, but may be argued). From equation 3.25 and 3.26, we can

see DNo -' - 5 for fixed p. If excluded volume effect is considered in end-to-end length, D,

No-' should hold. Since the diffusivity data exactly fit in these relation,3 ' ssDNA length

dependent behavior of p was not observed. It is understood from the fact that the smallest

ssDNA used for the experiment is No=280, long enough to be WLC.3 '

An important point made by the experiment is that the persistence length of ssDNA

highly depends on ionic strength (Figure 3.8). Data from another article 3' agree with the graph

in rich salt condition, which gives intrinsic persistence length.
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Figure 3.8 Persistence length change with the ion concentration
C,(mol/L) with =0.5. The arrow denotes the data from38 . Image is
from '".

Rather than using randomly sequenced long chain, we may be interested in short

ssDNA. However, it is difficult to image the actual contour due to its very small size.

Recently fluorescence resonance energy transfer (FRET, see section 3.2) experiment was

carried out with short ssDNA (No =10-70) wholly composed of thymines. 46 Figure 3.9 shows

a schematic of the DNA used for the experiment. One advantage of the experiment is that we

do not concern about each strand, but measure the overall intensity from the bulk solution. R,

donor-acceptor distance in the energy transfer efficiency E (equation 3.1) is equal to the

average end-to-end length of dTNO from the Figure 3.9, and Ro depends on salt condition and

the characteristics of donor and acceptor,47 but it is about 6nm for various NaCl

concentrations (25mM-2M) and Cy3-Cy5 pair used in the experiment.
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Figure 3.9 A Schematic of dTN tailed, fluorescence labeled DNA. No
varies from 10 to 70.46

If the probability distribution of the end-to-end length is considered given in equation

3.13, we can modify the transfer efficiency as

1 1E = P(r) L OI dr (3.28)

where r=R/L. To get chain length L, the monomer length is assumed to be 0.63nm, calculated

from computerized molecular construction software. This value is a little different from that

of another article 31 due to sequence dependent persistence behavior that will be explained later.

Figure 3.6 shows the change of E with the number of bases and salt concentration.

Each line for different salt concentration comes from the numerical simulation with the

optimal persistence length that gives the best fit with the experiment data of E. This also

shows that high salt concentration induces intrinsic persistence length due to charge screening

of DNA backbones. The range of the persistence length is 1.5nm-3nm, similar to the result of

diffusivity experiment on long chains.3 1
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Figure 3.10 FRET efficiencies for different sizes of DNA and salt
concentration. Image from 46.

Short and homogeneous series of thymines were also used in other experiments. 36, 48

To get detectable conformation change, dTNo is introduced only in the middle of dsDNA

(Figure 3.11). Double stranded parts are nearly straight since their lengths are within the range

of the persistence length of dsDNA.
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Figure 3.7 A schematic of ssDNA having dsDNA wings. Image from 48



The DNA chain given in Figure 3.11 is comprised with sections of different

persistence length. The overall end-to-end length is related with all of the p's, section lengths,

and angles of each joint. The formula is given in the literature. 36

V I N- 1 ( 1 n 1+ ,, P,,. p, cos,,(I e p, e 1,,,_ (3.29) " -e

n=1 mn+2 \Y i ii=n+l

N+ 1 is the total number of sections and N is the number of joints. p, and L, are the

persistence length and section length of n th segment.,, is the angle between the tangent

vectors of n th and (n+ 1) ' segment at the joint. Smooth chain gives /,, =0. The only unknown

is ssDNA's persistence length, and all other parameters are supposed to be known including

end-to-end length available from SFM image. Experiments were done on several kinds of

chains with various number and length of sections. Under the presence of divalent ions, p is

about 1.3nii for short dTv. 36

There is some consideration for the difference caused by DNA sequence. "48 49 Since the

strand being comprised entirely of thymines has minimal stacking interactions, 36 a series of

whole adenine may give higher persistence length. It was confirmed by WLC simulation and

the experiment done the similar DNA's given in Figure 3.9.48 p and monomer length bo of

dTo are 2-3nmi and 0.5-0.7nm, respectively. In case of dANo, however, they are 7.8nm and

0.32nmw at 4"C. It seems that poly-adenines are more closely stacked (low bo) due to strong

interaction between bases, thus high persistence length is induced. More generally, the

information on stacking free energy for different combinations of bases can be found in



literature.50 It can be inferred that the additional rigidity of dANo is mostly enthalpic, rather

than entropic. Another thing to note is that if only one different kind of base is introduced in

the homogenous short chain, the stiffness is significantly reduced49 by making a kink on the

position. Some authors argue that the traditional model of DNA structure must be revised to

include these sequence dependent rigidity of single-stranded DNA.4 9

3.3.4 Application to Au NP-DNA conjugates

Each of the using Au NP-DNA molecules in the thesis consist of an Au NP, a possible

single-stranded offset, and a double-stranded part which can have a fluorophore-quencher pair.

Figure 3.12 shows how we can model this system to use equation 3.29. L 1 is the same as

particle's radius and the persistence length of the section is infinite. The joint angle between

section 1 and 2 (=i 1) is more or less vague. We may use chemical bond angle between gold

and sulfur at the joint, but also we can think that the ssDNA is perpendicular to the gold

surface (P1= 0) due to ligand and surface modification layer on the surface. A is zero if

smooth chain is assumed. R1 denotes the average length from particle center to the end of

ssDNA and R2 is measured from the particle center to the end of dsDNA.

L2

Ftp ci
Fr //

Figure 3.12 Equivalent polymer chain ofAu-ssDNA-dsDNA series.



Since short dsDNA is nearly straight due to its long persistence length, we can think that the

dsDNA section exists between RI and R 2 in average. The weakness of this modeling is that the

gold particle really excludes a lot of volume. It will change the actual conformation of the

DNA. If the size of the gold is not very big compared to the chain length of DNA, however,

the model may give a close answer.

Table 3.4 gives an example. The offset strand is a homogeneous 25mer poly-T with

the assumption ofpl=2nm, dsDNA is 15mer, and ll, / are zero. To deal with the infinite

persistence length, we need to use the relation below.

L 1 L +I L 1(L
1-e ", = 1- 1 . - " as p,-+ (3.30)

1 p,, 2 p,, p,, 2 p,

This leads to the following two equations.

P 2 

p,, -e L as p,,---> (3.32)

Finally we can simplify equation 3.29 for R1 and R2.

L L, 2
1 2 L

R, =2i2 L) +p2 - e ] +LP 1-e 4 (3.33)

I= P12 L1 2 L

R, 2= L P 1- e j+p 3  1-e
2 P p3 i

(3.34)

+LP, 2 +-e +Pp 1-e 1-e +Lp e 1-e



Section 1 (gold) Section 2 (ssDNA) Section 3 (dsDNA)

b) 5nm 0.63 nm 0.34 nm

No 1 25 15

L = No bo 5 nm 15.75 nm 5.1 nmi

p 00 2 nm 50 nm

RI 10.0 nm

R, 12.0 nm

Table 3.4 End-to-end length of Au-ssDNA-dsDNA chain. 10nm Au particle, 25mer poly-T, and
15mer dsDNA are considered.

From the table 3.2, dsDNA of the Au NP-DNA conjugate is supposed to be away from the

particle center by 10nmn-12nm. Although overall chain length is greater than 20nnm, the actual

size of Au NP-DNA is much less. This fact will be confirmed again by doing Ferguson

analysis on Au NP-DNA in following chapters.



3.4 Au NP-DNA conjugation and coverage evaluation

Linking of bio-molecules to inorganic nanoparticles has been widely studied. ' 51 A

pair of linker and functional group can be selected from either nature like streptavidin and

biotin or chemical means like introducing C-6 thiol group at the end of DNA oligos. Thiol

chemistry is especially convenient and effective when Au NPs are used to conjugate with

DNA strands. 5' or 3' end of short DNA oliogs are commercially ordered to be modified with

thiol groups and easily attached to Au NPs surface by forming very strong covalent bonds

between gold and sulfur atoms.

linker /- FG

nanopartide biomolecule

Figure 3.13 General methods of coupling nanoparticles and biomolecules. FG stands for
functional group. 1

Stock thiol-modified DNA oligos, however, form disulfide bonds originated from the

thiol groups and are rarely conjugated to Au atoms as they are. Disulfide bonds should be

reduced to thiol groups again. This is done by incubating DNA oligos in Dithiolthreitol (DTT)

solutions. From lab experience, 0.1pg/pul DNA is mixed with 0.05M DTT for -24hrs for the

best result. Then DTT should be removed from the solution before being put together with Au



NPs since it also reduce Au-S bonds such that Au NP and DNA conjugations are not achieved.

DTT is removed by adding 3 or 4 times as much as ethyl acetate to the solution and then

vortexing and centrifuging. After centrifuged, the solution is separated into two layers. The

bottom layer is water and DNA mixture, and the top is ethyl acetate layer that contains DTT

that is discarded. By repeating the washing process at least 4 times, the content of DTT is

minimized in the DNA solution.

Once DTT is removed, DNA solution is immediately put into Au NP (see section 2.3)

solution of desired concentration. The solutions are put together and then brought into a

lyophilizing chamber. Although thiol bond is highly favorable to form, formations of the

bonds can be accelerated by concentrating, i.e. drying the solution. It should be noted that the

solution must be in ionic buffer such that electrostatic repulsion between negatively charge Au

NPs and DNAs can be shielded when they are get closer while being dried.

After the sample is completely dried, it is re-dispersed in -2xTBE or -I xPBS and

kept in refrigerator for I or 2 days to allow further conjugation. Free DNAs are separated

either by agarose gel electrophoresis or by repeating centrifuging and re-dispersing as

described in section 2.3. Final concentration of Au NP-DNA is measured by evaluating

absorbance of the Au NPs by assuming that conjugating DNAs does not affect the absorbance

of Au NPs much.

Coverage (average # DNA strands / particle) is measured by completely displacing the

DNA from the NP in concentrated MCH solutions (lmM MCH) for extended time (-24 hrs),

doing centrifugation, and measuring intensity of fluorescence marker in the supernatant. 19

Intensity vs. DNA concentration relation like Figure 3.2 should be prepared with using DNA-

fluorophores to interpret measured intensity into concentration of DNA. If the DNA used



doesn't have fluorescence marker, the DNA strands in the supernatant can be fluorescence-

stained by use of commercial dyes like Cyber gold. Figure 3.14 shows schematic of the

process.

MCH

1mM
24hrs

Dye< ,

rf%

Centrifug.Ir f

Figure 3.14 Steps of quantification of coverage. Au NP-DNAs are incubated in excessive MCH
environment (1 mM MCH) for a day. Aggregated Au NPs are discarded by centrifugation. Fluorescence
of supernatent is either from fluorophores attached to DNAs or commercial staining dye like Cyber-
gold.

/dJrq



3.5 Ferguson analysis on Au NP-DNA conjugates

It is shown in Chapter 2 that nanoparticles can be characterized via Ferguson analysis.

In this section, the method is extended to Au NP-DNA for evaluating effective size and zeta-

potential of the conjugates. Effect of ionic strength on Au NP-DNA is also discussed.

10.9nm Au NPs (sample 1) were prepared as in section 2.3. The Au NPs were

incubated with mPEG-SH (1:200, [Au NP] = 5x 10 7 M) for -24hrs (sample 2). A portion of

sample 2 was lyophilized in the presence of TAMRA functionalized thiol-DNA (5'-HS-

TTTTTTCGGCCCGTATAATT-TAMRA-3') and re-dispersed (sample 3). Au NPs without

mPEGs (sample 1) were directly lyophilized with DNA (sample 4), then put in 0.1mM 6-

mercapto-1-hexanol (MCH) solutions for 1 min. and washed with ethyl acetate three times at

3x volume (sample 5). The same treatment was done also with mPEG-SH (sample 6) instead

of MCH. All the DNA lyophilization processes were done with the ratio of Au NP:DNA = 1:13,

followed by incubation in -2x TBE for 2 days to maximize DNA loading on the NPs. The Au

NP concentration was 5 x 10-7 M for mPEG-SH and MCH modification. Free mPEG-SH and

DNA were separated from the NPs and NP-DNA conjugates by centrifuging the solutions and

removing the supernatant. All the samples were finally re-dispersed in 0.5x TBE. Note that

the method of MCH modification (Sample 5) reduces non-specific adsorption of DNA onto

Au NP and induces conformational change ofAu NP-DNA. This will be discussed in the next

section in detail.

Agarose gel electrophoresis was done for the prepared samples. Gel percentage varies

from 0.5% to 3% and running buffer used are 0.25, 0.5, 1 and 2xTBE. Electric field strength



is 3.7-3.8 V/cm and gel running time is 1.5-2 hrs. One of the gel pictures is shown in Figure

3.15 (0.5xTBE, 0.5% agarose gel).

Figure 3.15 Example gel. 0.5% Agarose gel run for 2hrs in 0.5x TBE under electric field strength
3.8 V/cm. Sample 1: Au NP, 2: Au NP-mPEG (1:200 incubation), 3: Au NP-mPEG followed by
DNA conjugations, 4: Au NP-DNA, 5: Au NP-DNA followed by MCH modification (0. 1 mM
MCH, 1min, ethyl acetate washing), 6: Au NP-DNA followed by mPEG modification.

Size evaluation by Ferguson analysis on the samples is shown in Figure 3.16 (a)

(upper plot). Coverage is plotted in the lower plot of Figure 3.16 (a). Sample 3 has a relatively

low coverage and smaller Dfj compared to those of samples 4-6, indicating that the pre-

coating with mPEG before DNA conjugation limits the amount of thiolated DNA that can

react with the Au NP. MCH or mPEG modified Au NP-DNA (samples 5 and 6) have a slightly

lower DNA coverage than unmodified Au NP-DNA (sample 4) due to loss of DNA during the

surface modification process. However, the D./i of samples 5 and 6 are larger, suggesting that

the conformation of the DNA on the particle surface is extended more radially from the NP

upon the surface modification, and that non-specific adsorption is reduced. This is discussed

further in detail in the next section. Another observation is that the change in Df- of samples



4-6 decreases at higher TBE concentrations. This can be attributed to stronger charge

screening effect that makes DNA strands more floppy (section 3.3) diminishing the

hydrodynamic size of the Au NP-DNA conjugates. Finally, the magnitude of size increase

upon DNA conjugation and further increase with MCH/mPEG reaction is smaller than the

contour length of DNA strands used, which confirms again the Au NP-DNA conformation

modeling presented in section 3.3.

Figure 3.16 (b) shows calculated "and the effective total charge of the species by use

of Ohshima's solutions (equation 2.29 and 2.30). As DNA is added to NP surface, the total

charge of the conjugate increases, as expected. However, the difference of the charge between

Au NP (sample 1) and Au NP-DNA (sample 4) is only on the order of lx 10'18C, which is less

than the actual charge added by conjugating 10 stands of 20bp DNA on each particle (32x 10-

18C). Therefore, this suggests that charge screening of the DNA in the conjugate exists at these

TBE concentrations. Screening is probably more complicated for Au NP-DNA than for a

simple spherical particle as counterions can screen the DNA and NP from each other (Figure

3.16 (c)). This model highlights the fact that the charge distributions and screening effects in

Au NP-DNA conjugates are not spherically homogeneous.

In Figure 3.17 DLS zeta-potentiometer (Plus 90, BIC) measurement ofAu NP-DNA's

free mobility is shown. It is again confirmed that Ferguson analysis is superior to DLS

measurement of Au NP-DNA's free mobility. Not only the averaged free mobility fluctuates

but also standard error of measurements is much greater for the zeta-potentiometer.

In conclusion, Ferguson analysis can reliably analyze the size and zeta-potential of not

only Au NPs but also Au NP-DNAs and surface modified Au NP-DNAs. With the assurance,

surface modification on Au NP-DNA is studied in more detail in the next section.
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Figure 3.16 (a) Effective size (Det) of Au NP and Au NP-DNA with different chemical modifications
and in different TBE concentrations for 10.9nm Au NPs. Sample 1: Au NP, 2: Au NP-mPEG (1:200
incubation), 3: Au NP-mPEG followed by DNA conjugation, 4: Au NP-DNA, 5: Au NP-DNA followed
by MCH modification (0. 1mM MCH, 1min, ethyl acetate washing), 6: Au NP-DNA followed by mPEG
modification. [Au NP] was held at 5x10 7M for both mPEG-SH and MCH reactions. Coverage is
measured by complete displacement of conjugated DNA by incubating the particles in ImM MCH bath
for -24hrs and measurement of fluorescence intensity of TAMRA. Error bars show 95% confidence
intervals. (b) Calculated zeta-potential (4) and effective charge of the same samples via equation 2.22
and 2.23. (c) An illustration that shows complicated conformation and charge distribution of Au NP-
DNA. Salt ions bind to Au NP-DNA and alter charge status of the conjugates.



3 Zeta-potentiometer measurements
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Figure 3.17 Comparison of Mo data measured from a zeta-potentiometer (90Plus, BIC) and
those estimated from Ferguson analysis. For each sample and TBE concentration (0.25, 0.5, 1
and 2x TBE) at least 6 measurements (> 40cycles) from the zeta-potentiometer were averaged.
Sample 1: Au NP (10.9nmn), 2: Au NP-mPEG (1:200 incubation), 3: Au NP-mPEG followed by
DNA conjugations, 4: Au NP-DNA, 5: Au NP-DNA followed by MCH modification (0.1mM
MCH, Imin, ethyl acetate washing), 6: Au NP-DNA followed by mPEG modification. Error
bars show 95% confidence intervals.



3.6 Surface modification with 6-mercapto-l-hexanol

According to previous research, 6-mercapto-1-hexanol (MCH) composes self-

assembled monolayer (SAM) on flat gold surface. 52 The monolayer prevents DNA adsorption,

thus enhancing the ability to hybridize with their complementary strands. This gives us an

idea on how to modify our Au-DNA system to be suitable for biological applications.

However, gold particles are much more difficult to deal with compared to flat surface since

they easily aggregate in liquid if they do not have enough charge to repel each other. From the

experience of MCH treatment, MCH replaces not only bases' adsorption sites but also

displaces the charged ligand from the nanoparticle surface.

The molecular structure of MCH is given in Figure 3.18. The structure is the same as

thiol modification part of DNA oligo except for -OH group that gives a little solubility in

water. Thus MCH molecules don't screen any of bases of oligo on particle surface (Figure

3.19).

H-S O -H

Figure 3.18 Molecular structure of 6-rnercapto- -hexanol (MCH)

Figure 3.19 shows how MCH reaction changes the conformation of Au NP-DNA

conjugates. Oligos on gold particles are mostly adsorbed to the particle's surface before MCH

being introduced. After MCH (short rod in the Figure 3.19) is added to the solution, MCH

molecules start replacing the adsorption sites with themselves (step 2 in Figure 3.19).



Consequently, the DNA oligo strands point outward, although they are still attached to the

particle by thiol linkage. Further MCH reaction, however, displaces charged ligand and oligos

as well as the adsorption sites (step 3) from the NP surface. For extended time the particles

lose all the ligands and oligos on the surface, and then aggregate in the solution. To get Au-

DNA samples at step 2 that can be used for the applications like antisense, MCH reaction

should stop during some time at step 2. This can be done by selective extraction of MCH with

ethyl acetate.
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Figure 3.19 Conformation change of Au NP-DNA conjugate upon MCH reaction.
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Gold nanoparticles with mean diameters 9.4nm were commercially obtained and

functionalized with BPS as in section 2.3. DNA oligonucleotides are purchased with C-6 thiol

group on the 5' end and a FAM on the 3' end. The oligos were 15mers with a sequence 5'-HS-

CCCATTGTGGATTAG-FAM-3' (DNA-SH) and purified by HPLC. Conjugation of the Au

NPs and DNA-SHs was done by the method as in section 3.4. Au NP-DNAs were then re-

suspended in buffer 0.5xTBE.

Table 3.5 Sequence of using DNAs

The conjugates were then exposed to MCH in water, at concentrations ranging from

lPM to I M with reaction times 1 minute to 10 minutes. The reaction concentration of Au-

DNA conjugate was 1.5x10 -7 M. Reactions were halted by adding 3 x volume of ethyl acetate

(EtAc) three times, which extracts the excess MCH into EtAc away from the DNA in H20.

The extraction of MCH is crucial as it permits control of reaction time. The samples after

removal of MCH were stable as aqueous solutions at least for a month, though it is subject to

the initial DNA coverage in that negative charges on DNA act as surface charge of Au NP that

repells other particles. If the samples are exposed to MCH for extended periods of time, they

aggregate, as the particles become neutrally charged and are no longer fully soluble in

aqueous solutions due to the loss of BPS and DNA from their surface.

Ferguson analysis is used in order to test the change in effective size D,f upon reaction

with MCH. Figure 3.20 shows a 3% agarose gel containing Au NP-DNA (-1:3.7 Au NP-DNA

coverage) samples that have been exposed to various MCH reaction conditions. Electric field

Sequence

DNA-SH 5'-HS-CCCATTGTGGATTAG-FAM-3'

DNA-c 5'-TAMRA-CTAATCCACAATGGG-3'



strength was at 3.87 V/cm. Lane 1: Au NP alone, 2: Au NP-DNA, 3: Au NP-DNA with 1puM

MCH for 1min, 4: Au NP-DNA with 1IpM MCH for 10min, etc. 0.5 xTBE was used as

running buffer. The bands shift slightly upon treatment with low concentration MCH.

However, samples that have been exposed to MCH at high concentration do not shift as much,

which suggests that reaction with concentrated MCH displaces the oligo from the nanoparticle

surface and results in size decrease.

Figure 3.20 Agarose gel (3%)
electrophoresis of 9.4nm Au - DNA-SH
conjugate (~1:3.7) with various MCH
treatment. Electric field strength at
3.87 V/cm. Lane 1: Au only, 2: Au-DNA, 3:
Au-DNA with 11M MCH, Imin reaction,
4: 1pM, 10min, 5: 10/iM, Imin, 6: 1OupM,

1 2 3 4 5 6 7 8 9 10min, 7: 0.1mM, 1min, 8: 0.1mM, 10min,
9: ImM, Imin

Gel electrophoresis was repeated for 1.5, 2, 2.5, 3 and 3.5% agarose gel in 0.5xTBE.

Figure 3.21 shows a Ferguson plot generated by collection the mobility for Au NP-DNA

under different MCH treatments as a function of gel percentage. As control experiments,

MCH was treated on plain Au NPs (dotted line). It is confirmed that treating 10mM rarely



change mobility of Au NP (triangles) in all gel percentage range. However, treating the same

concentration MCH on Au NP-DNA (inverted triangles) actually change the slope of the

Ferguson plot, which means that conformation of DNA is different from that of untreated Au

NP-DNA (diamonds). The inset shows that extrapolation to 0% gel mobility reflects the

charge status of the samples. Au NP-DNA with 1mM MCH/lmin treatment has smaller free

mobility such that a great portion of surface charge which is from both BPS and DNA has

been replaced with charge-neutral MCH.

Au (dotted line)
Au, 10mM, 1min
Au-DNA, no MCH
Au-DNA, 10mM, imir
Au-DNA, 1mM, 1min

0.0 0.2 0.4 0.6 0.8 1.0

1.5 2.0 2.5 3.0

gel percentage (%)

3.5

Figure 3.21 Loglj! vs gel percentage for Au NP and Au NP-DNA (9.4nm/1:3.7) with
different MCH treatments. Inset: enlargement of low gel percentage region (<1%)
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By using equation 2.9 and sizing standard in Figure 2.4 effective size of the samples is

calculated. Figure 3.22 (a) shows the ADe, the difference between the diameter of Au NP-

DNA and the diameter of the plain Au NP, obtained as a function of the MCH concentration

(lupM-lmM) for a reaction time of 1 min or 10 min. Only samples stable for at least a month

after reaction with MCH are shown. ADef1 ofAu:DNA of 1:3.7, 1 min curve (open circles),

shows an initial increase upon functionalization with the DNA strands. With 10/M MCH, Deff

increases additionally by 0.6nm, indicating that the oligo adopts a slightly more radial

configuration, increasing the effective size of the conjugate. This level of increase is smaller

than the length of DNA, as dealt in section 3.3. At MCH concentrations >0. 1mM, the Deg1

decreases to below the value of the Au-DNA conjugates. The reaction at high MCH

concentration was sometimes accompanied by particle aggregation, suggesting that the MCH

completely displaced the DNA-SH and BPS. This shows that controlling the MCH

concentration is key to obtaining the proper conformation of the DNA. For longer reaction

times (10 min, filled circles) the behavior is similar to the I min reactions except at high

concentrations ( 0. 1mM) D,1f approaches a smaller value. Au-DNA ratios after these MCH

treatments are shown in Figure 3.22 (b) as a function of MCH concentration. The coverage is

constant for MCH concentrations up to 10upM, but decreases >0.1mM, illustrating that the

DNA is not removed until this threshold value.

No significant size changes were observed from MCH reaction of plain Au particles

(stars). MCH treatment was also repeated for Au NP:DNA ratios of 1:0.4 (squares), 0.7

(inverted triangles), 1.5 (diamonds), and 2.1 (triangles). 10 PM MCH still resulted in an

increased Dfef for 2.1 and 1.5. For coverages <1:1, no increase in D11f was observed, probably

due to the fact that there were not enough DNAs on the particles to change hydrodynamic



behavior in the gel regardless of conformation. Increased aggregation was also observed for

concentrations >1 mM, making it unfeasible to obtain mobility information.

-0- 1 min,
-A- 1min,
--- 1 min,
-V- 1min,
-- 1 min,
-- 1 min,

(a)

(b)

0C-to

o

c-0
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1:3.7
1:2.1
1:1.5
1:0.7
1:0.4
Au only

-- 0- 10min,
-A-- 10min,
-+- 10min,
-V- 10min,
--- 10min,
-- *- 10min,

Au Au-DNA 1tM MCH 10pM 0.1mM 1mM

Figure 3.22 (a) AD,# obtained for MCH of different reaction conditions as a function
of MCH concentration for Au NP(9.4nm)-DNA. Open symbols: 1 min reaction time,
filled symbols: 10 min reaction time. Coverage ratio of Au NP-DNA before MCH treat
is from 1:0.4 (squares), 1:0.7 (inverted triangles), 1:1.5 (diamonds), 1:2.1 (triangles),
1:3.7 (circles). AD, 1 of plain Au NPs (stars). (b) DNA per Au NP as a function of MCH
treatment for different starting Au NP:DNA coverage ratios.

1:3.7
1:2.1
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It has been shown that 10 pM MCH reaction does not affect the coverage of Au NP but

change the conformation of DNA. DNA displacement by MCH is quantified by fluorescence

measurements of detached DNA of which FAM is emitting at 520nm. The concentration of

the Au NP-DNA solutions should be low enough to avoid quenching by Au NP. Even if Au

NP concentration is high, however, the trend of graph should not be changed as long as the

intensity data are somehow normalized. Figure 3.23 clearly shows that 0. 1 mM MCH reaction

reduces the coverage but 1 OuM MCH does not.

120000 ... I .... I
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c) 80000

S60000.7 600 0 10microM
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20000

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (min)

Figure 3.23 Fluorescence measurement of kinetics of MCH reaction on 1.5x 10- MAu
NP(9.4nm)-DNA. DNA strands replaced with MCH are set free to the medium and
fluorescence signal of FAM is not quenched by Au NPs. 10mM MCH rarely change the
coverage ratio of Au NP-DNA, but 0. 1mM MCH do change.

It is proven that MCH reaction can change conformation of DNA by use of Ferguson

analysis. Now we need to test if MCH reaction really changes the DNA conformation in such

a way that the actual capacity for forming a hybrid pair is improved. Au NP-DNA conjugates



were hybridized to a complementary strand modified with TAMRA (DNA-c, 5'-TAMRA-

CTAATCCACAATGGG-3'). Dehybridized DNA-c is no longer quenched due to proximity

of Au NPs 19 20 and thus quantification of TAMRA fluorescence provides a measure of the

hybridization capacity of the DNA on the Au NP surface (Figure 3.24).
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Figure 3.24 Fluorescence measurements. Excitation at 555nm and emission at 580nm.
Samples are in 0.5xTBE. Measurement of free DNA-c solution shows temperature
dependence of TAMRA fluorescence (open squares). Hybridized Au NP-DNA and DNA-c
give non-zero intensity at the lowest temperature, which is considered as the effect from free
DNA-c. At high temperature DNA-c is dehybridized and not quenched by Au NP such that
the total fluorescence intensity is from both originally free DNA-c and dehybridized DNA-c
(open triangles). By matching the values at the highest temperature and subtracting the two
curves (solid triangles) only the quenched intensity by DNA-c hybridization is calculated and
converted to the number of hybridized DNA-c.
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Au NP-DNA conjugates with a coverage ratio 1:2.9 were used and the ratio remained

the same after the 10,upM/10min MCH reaction, but decreased to 1:2.3 after the 0. 1 mM/lImin

MCH reaction. After MCH treatment, Au NP-DNA samples were adjusted to be at

concentration of 5 x 10-M and DNA-c was in excess to enhance the hybridization (lx 10-6M),

and the samples were annealed from 700 C to 40 C for about 30min. Excess DNA-c was

partially removed by agarose gel electrophoresis. Control measurement of DNA-c shows that

fluorescence intensity of TAMRA on DNA-c decreases at high temperature, which is mainly

due to pH change of the buffer (0.5 xTBE) at high temperature (open squares in Figure 3.24).

When DNA-c is hybridized to Au NP-DNA, emission from TAMRA on DNA-c is quenched

by Au NP at low temperature, but DNA-c is dehybridized and not quenched by Au NP any

more at elevated temperature (open triangles in Figure 3.24). Therefore non-zero fluorescence

intensity at the lowest temperature is exclusively from free DNA-c still existing in the

solution. At the highest temperature, both hybridized DNA-c and free DNA-c contribute to

the fluorescence intensity. By matching the fluorescence intensity curves of free DNA-c and

Au NP-DNA:DNA-c at the highest temperature and calculating the difference, it is possible to

discard the intensity from free DNA-c and get the quenched fluorescence from only the

hybridized DNA-c (solid triangles in Figure 3.24).

Figure 3.25 shows the number of dehybridized DNA-c per DNA-SH on the Au NP as

a function of temperature. All samples show a sigmoidal step centered about 350 C, the T,,, of

the oligo confirmed by a melting curve of the plain DNA-SH-DNA-c hybrid under identical

salt conditions. Both MCH treated samples show a higher capacity for DNA-c hybridized to

the surface DNA than the non-MCH treated samples 52, 3, in which only <20% of the oligos

are available for hybridization. The 0. 1 mM MCH/lmin sample shows that -70% of DNA-



SH's on the nanoparticle were hybridized with DNA-c, while the 10pM/10min sample shows

only a nominal enhancement (25%) of hybridization over no MCH. Thus, it is believed that

not all the adsorption sites were passivated by MCH in the 10upM/10min reaction.

1.0 . ......... ......... I ......... I....

0.9

0.8
y Q 0.1 mM1min
< u0.7- * 10uMlOmin
0 _ 0.6 A no MCH

_0 0.64< 0.5
S0.4

0 0.2- *

20 30 40 50 60

Temperature (oC)

Figure 3.25 the number of hybridized DNA-c per DNA-SH on the surface of the
nanoparticle, as a function of temperature, obtained by fluorescence spectroscopy. Au NP-
DNA without MCH reaction (triangles), with IOpM/lOmin MCH reaction (circles), and
0.mM/lmin (squares). The initial coverage ofAu NP-DNA is 1:2.9.

Figure 3.26 illustrates possible hydrodynamic behavior induced by the change in DNA

conformation. The contour length of a single stranded 15mer DNA is -6.5nm 31, suggesting

that the DNA is not completely straight on the NP surface even if the C-6 linker were

perfectly packed. This is expected based on estimates for the persistence length of single

stranded DNA, which is 0.75-3nm depending on salt conditions (section 3.3). Therefore, the

oligo would have at least a few bends. The 10zpM/10min MCH reaction (b) has some oligo

adsorption, resulting in an increased DIfro m the no MCH sample (a)is -6.5 , suggesotingadsorption, resulting in an increased D,,, from the no MCH sample (a). Due to this adsorption,



its capacity for hybridization is minimally enhanced. In the case of the 0.lmM/lmin reaction

(c), the MCH covers enough of the particle surface such that the DNA does not adsorb.

Although some of the DNA is displaced, it has an enhanced capacity for hybridization to a

complement. The DNA-SH, which has an inherently different mobility than Au NPs, are not

adsorbed to the surface, and may have a tendency to align with the direction of motion during

electrophoresis ("free draining") 32. Consequently, this phenomenon results in a smaller

measured Dej.f However, it should be noted that the behavior described in Figure 3.26 is only

a hypothesis. It is difficult to predict the real conformation of Au NP-DNA with the type of

(c) during the gel electrophoresis because hard spheres and polymer chains have very

different electrophoretic properties (section 2.2).

a b

stationary

moving in gel A

Figure 3.26 An illustration of Au NP-DNA conformation in gel when the samples are
stationary or moving. Au NP-DNA without MCH reaction (a), with 10pM/10min MCH
reaction (b), and 0.1 mM/Imin MCH reaction (c). Arrows indicate relative motion of
the sample through a gel.

In summary, MCH can be utilized on nanoparticle surfaces to control the

conformation of covalently linked DNA oligos. Upon the reaction with MCH, oligo

adsorption to Au via bases is destabilized, changing the conformation of the oligo to one

which is more amenable for hybridization. Control of both MCH concentration and reaction



times are crucial for achieving the desired effect of oligo conformation change but not

significant displacement from the nanoparticle surface. Further study is necessary to clearly

reveal the electrophoretic behavior of Au NP-DNA conjugate.



3.7 Sequence effects on non-specific adsorptions

DNA adsorption onto Au NP is a strong function of sequence and content of each base.

Experiments studying the adsorption of free nucleotides onto Au NPs by rates of particle

aggregation 11,15 have shown an affinity order of G > C > A > T, while temperature

programmed calorimetry (TPC) and desorption (TPD) have determined affinity orders of C >

G > A> T 12 and G > A > C > T. 1 In contrast, homo-oligonucleotide competition assays have

shown relative affinities of A > G > C > T. 13 Typically, addition of poly-T spacers has been

successful in reducing non-specific adsorption.19 However, biological applications using NP-

DNA conjugates put constraints on sequence choice. Target oligonucleotidess and binding

sites may be rich in high affinity nucleotides. The effect of oligonucleotide length on non-

specific adsorption has been studied,' 4 but variation with position relative to the NP has not.

Therefore the effect of oligonucleotide sequence on non-specific surface adsorption is

investigated. 7.5nm Au NPs were conjugated to DNAs differing in nucleotide composition

and placement within the sequence. Reactivity of the DNAs toward the NP and hybridization

capacity of the conjugates varied with sequence. Removal of non-specific adsorption by MCH

displacement shows that DNA and conjugate behavior can be explained by non-specific

adsorption. 16

near far mid

Figure 3.27 Non-specific adsorption of DNA oligonucleotides on NPs.

100



Table 3.6 DNA oligo sequence

Sequence Complement

A-near 5'-HS-AATAATTTTTTTTTT-3' 5'-FAM-AAAAAAAAAATTATT-3'

A-middle 5'-HS-TTTTTAATAATTTTT-3' 5'-FAM-AAAAATTATTAAAAA-3'

A-far 5'-HS-TTTTTTTTTTAATAA-3' 5'-FAM-TTATTAAAAAAAAAA-3'

G-near 5'-HS-GGTGGTTTTTTTTTT-3' 5'-FAM-AAAAAAAAAACCACC-3'

G-middle 5'-HS-TTTTTGGTGGTTTTT-3' 5'-FAM-AAAAACCACCAAAAA-3'

G-far 5'-HS-TTTTTTTTTTGGTGG-3' 5'-FAM-CCACCAAAAAAAAAA-3'

C-near 5'-HS-CCTCCTTTTTTTTTT-3' 5'-FAM-AAAAAAAAAAGGAGG-3'

C-middle 5'-HS-TTTTTCCTCCTTTTT-3' 5'-FAM-AAAAAGGAGGAAAAA-3'

C-far 5'-HS-TTTTTTTTTTCCTCC-3' 5'-FAM-GGAGGAAAAAAAAAA-3'

T-control 5'-HS-TTTTTTTTTTTTTTT-3' 5'-FAM-AAAAAAAAAAAAAAA-3'

To investigate sequence and sequence location effects, ten DNA oligos were

compared (Table 3.6). Each of the high affinity nucleotides (A, G, C) are surrounded by poly-

T stretches as a low affinity background. The oligos were conjugated with Au NPs by varying

Au NP:DNA ratio and coverage was analyzed as in section 3.4. The same initial ratio of Au

NP to DNA does not guarantee the same coverage after conjugation depending on the samples.

Therefore Au NP-DNA of target coverage -1.5, -3.5 and -7 were collected from variety of

the conjugates after coverage analysis. Conjugated Au NP-DNA was annealed with 2x

concentration of complementary strands in 1 xPBS. Temperature was initially elevated to

300C and brought to 4 "C, and then maintained at the temperature for 16hrs. High temperature

annealing was avoided to make sure that there is no thermal disruption of non-specific

adsorption. The number of hybridized strands was measured by fluorescence scan of FAM in

the complement. Excessive MCH (0. 1mM) was added to hybridize Au NP-DNA to
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completely detach oligos from Au NP and then the solution is centrifuged to separate

aggregated Au NPs.

b
o- 45

" 40
35.

Ca.
c 30.

C 25.

• 20
N 15

•r 10-
>" 5-

0-

C

50
- 45

. 40
U
m 35

ca 30
U
c 25

.o 20
CO
N 15

10

Q 5
= An

L 1.5 DNAINP
3.5 DNA/NP
7 DNA/NP [T T

00/41 9 Y G :C
i3~ ~0!~ /0'/

Figure 3.28 Hybridization capacity of 7.5nm Au NP-DNA conjugates. (a) Au NP-DNA
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Figure 3.28 (a) shows the real coverage of each Au NP-DNA of nominal coverage 1.5.

The amount of hybridized complement strands are in grey bars. Hybridization capacity of

each Au NP-DNA is shown in Figure 3.28 (b). Au NP-(T-control) has the maximum

hybridization capacity as expected. By placing a sticky sequence in the oligos, hybridization

capacity decreases in the order of A > C > G, which may demonstrate the order of adsorption

affinity to Au NP surface. However, hybridization capacity becomes similar and does not

show any sequence dependence after MCH treatment (Figure 3.28 (c)). This clearly shows

that non-specific adsorption of DNA onto Au NP limit hybridization capacity of the DNA and

this phenomenon depends on oligo base type and sequence, which can be cured by surface

modification by using MCH.
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3.8 Nomenclatures

b Kuhn length

C Concentration [ M]

D*. Effective size

d Polymer diameter

E Energy transfer efficiency

. Permittivity (= E0E, )

co Vacuum permittivity (=8.854x 10- 12 F /m)

,r Relativity permittivity

F Force

qDd Quantum efficiency

Jda Overlap integral

K- Debye length

K Orientation factor

kB Boltzmann constant (= 1.38x 10- 3 / K)

L Contour (chain) length of polymer

BI Bjerrum length

1 Wavelength

M Mobility [cm /V.s]

M0  Free mobility

N The number of Kuhn segments

NA Avogadro number (=6.022x 102 mol-' )

n Refractive index

v Flory exponent

p Persistence length

pd Dynamic contribution in persistence length

P, Entropic (or electrostatic) persistence length

p, Static contribution in persistence length

P0  Enthalpic (or intrinsic) persistence length

q Line charge density [C / m m]

R End-to-end length of polymer or distance between two molecules

Ro F6rster distance
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T Gel percentage [ g /100ml ]

Absolute temperature [K ]

U Migration velocity

Excluded volume parameter

Z Partition function

z Valence of ionic species

" Zeta-potential (V )
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Chapter 4. Au NP - Antisense DNA

4.1 Introduction

It has been proposed in the previous chapters that quantitative approach to

conformation and charge can improve the functionality of Au NP-DNA conjugates so that the

efficiency of the conjugates for biological applications can be improved. It would be

beneficial if those concepts are utilized for beginning steps such as determination of Au NP

size, length and sequence of DNA and coverage as well as following steps like any necessary

chemical surface modifications after the conjugates are made. One of the most significant

sources of unexpected behavior of Au NP-DNA in bio-systems is non-specific adsorptions as

pointed out earlier, and the proposed methods possibly optimize the Au NP-DNA systems for

the best result by eliminating or utilizing the adsorptions. In this chapter, Au NP-DNA

conjugates are introduced as an antisense agent which regulates gene expressions in vitro, and

it will be examined how the efficiency can be improved by varying the design of Au NP-DNA

systems.

The central dogma of biology is that messenger ribonucleic acid (mRNA) is

transcribed from DNA and modified within nucleus, then transported to cytoplasm and acts as

a template for protein translation which is catalyzed by ribosome that binds to certain

sequences of mRNA and proceeds along the mRNA strand. Antisense approaches are all about

interfering any of the biological steps that mRNA experiences.1'2 Especially antisense DNA,

which has specific sequences that are hybridized to target mRNA, has been intensively

explored recently.2' Antisense DNA strategy mainly focuses on limiting translation activity
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by degrading or interfering mRNA functionality. Presence of RNA-DNA double strands, for

example, induces RNase H which nonspecifically binds to the double stranded part and

cleaves the mRNA strands. Another approach is using antisense DNA that is complementary

to ribosome binding / protein synthesis initiating sites, which is called Kozak sequence that

includes start codon (AUG) and induces ribosome binding in case of eukaryotic mRNA.2

Antisense DNA designed to hybridize to Kozak sequence sterically hinders ribosomal activity

without irreversible degradation of mRNA.

Antisense
p rotein

AUG mRNA No Protein

Figure 4.1 Protein translations from mRNA under ribosomal activity. Antisense DNA blocks the start
codon (AUG) of mRNA and sterically hinder ribosome binding or proceeding so that gene expression is
limited.

However, placing only antisense DNA onto mRNA does not provide enough resistance

to ribosome binding / proceeding owing to significant enzymatic strength of the ribosome.

Excessive amount of antisense DNA is typically used to regulate gene expression and the

efficiency is generally low. Therefore we propose that the efficiency of mechanical blocking

of ribosome activity is significantly enhanced by attaching gold nanoparticles (Au NPs) to

antisense DNA. The size of Au NP used is about 10nm such that it is large enough to block

the ribosome (~20nm) but also small enough not to interact non-specifically too much with

the ribosome and other biomolecules.
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< lOnm

-20nm

Figure 4.2 Au NP - Antisense DNA conjugates offer better mechanical blocking efficiency compared
with the case using only antisense DNA strands.

Another advantage of using Au NP is that Au NPs are excellent vectors that deliver

DNA-based therapeutics into cytoplasm or even into nucleus.4 ' 5 There are many DNA

delivery systems developed so far such as viruses, cationic polymers, dendrimers, liposomes

and nanoparticles with their own advantages and disadvantages.' -3 It has been particularly

reported that conjugation of Au NPs to DNA or DNA with conventional vectors enhances the

efficiency of delivery into cytoplasm or nucleus.5 It was also shown in recent research that not

only cellular uptake of antisense but also gene regulation within cells is enhanced by using Au

NPs.3

Previous research has demonstrated possibilities of bio-applications of Au NP-DNA

systems, however, mostly ignored optimizing some important parameters such as coverage

and charge of Au NP-DNA systems while functionality of DNA on Au NP must be different

from its free state. Non-specific adsorptions, a key limiting factor of the applicability of the

conjugates, have never been considered either. In this chapter, in vitro regulation of enhanced

green fluorescent protein (eGFP) expression using Au NP-antisense DNA is mainly discussed

to show how conjugation of Au NP affects antisense DNA's functionality. Fluorescence

intensity of translated eGFP directly tells the degree of gene regulation in the samples. eGFP
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gene transcription and translation steps are described and the effects of antisense DNA or Au

NP-antisense DNA on translation are compared by varying antisense molecules concentration,

coverage and Au NP concentrations. It would be surprising that Au NP-antisense DNA

conjugates turn out not to regulate but to enhance the translations under a certain reaction

conditions, which suggests that Au NP-DNA conjugates can be used as an enhancer in

translation systems in vitro. Non-specific adsorptions between translation molecules and Au

NP-DNA conjugates may play a significant role in the enhancement phenomena.

111



4.2 Transcription and translation of eGFP

(a) (b)
12 345 1 2 3 4 5

Figure 4.3 Agarose gel in 0.5xTBE under E-2V/cm and running time -2.5hrs. Gel was stained with
CyberGold (Invitrogen) for 15min and pictures were taken under ultra-violet light illumination. (a) 1%
agarose gel. Lane 1 and 5: 1kbp DNA ladder, Lane 2: Template DNA for PCR reaction, Lane 3: PCR-
amplified DNA without purification, Lane 4: PCR-amplified DNA with purification. (b) 2% agarose gel.
Lane 1: 1kbp DNA ladder, Lane 2: Template DNA for transcription reaction, Lane 3 and 4: transcribed
mRNA with purification and DNase reaction (different batches), Lane 5: 100bp DNA ladder.

Green fluorescent protein (GFP) is naturally found from Aequorea jellyfish and has

two excitation peaks at 395nm and 470nm. eGFP is a modified form of GFP and only one

excitation peak exists at 488nm. eGFP is chemically more stable, and emission intensity is

about 6 times as high as that of wild type GFP. 6, 7 eGFP used in the thesis is encoded in

pEGFP-C1 plasmid (Clontech). Standard T7 promoter is inserted during eGFP DNA

replications using Taq DNA polymerase (New England BioLab). Replicated eGFP DNA is

amplified using PCR and the products are purified with QIAquick PCR Purification Kit

(Qiagen). Concentration of eGFP DNA is determined by measuring optical absorbance at

260nm. Then mRNA is transcribed from the DNA using PROTEINscript II T7 Kit (Ambion)

and purified with RNeasy Mini Kit (Qiagen). Template DNA remaining in the solution is

degraded by RNase-free DNase Kit (Qiagen). Achieved mRNA is quantified by optical
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absorbance at 260nm and stored at -800C. All the processes are performed by manufactures'

protocols suggested. Figure 4.3 (a) shows that PCR reaction amplifies the amount of eGFP

DNA in the solution (compare Lane 2 and 3 or Lane 2 and 4) and the purification process

effectively removes most of the unnecessary molecules like primers from the DNA solutions

(compare Lane 3 and 4). Translated and purified mRNA shows electrophoresis band at

different position from that of template DNA (see Figure 4.3 (b)). All the agarose gel was

made with 0.5 xTBE and electric field strength is -2V/cm and gel running time is - 2.5hrs.

Purified mRNA is used as template for translation reaction with Retic Lysate IVTTM

Kit (Ambin). Fluorescence measurement of the solutions (Figure 4.4) after translation reaction

confirms that eGFP has been actually synthesized. Excitation wavelength of eGFP is 488nm

and emission peak is at -510nm. Putting 0.2ptg of mRNA into 1 batch reaction of translation

results in much more amount of translated eGFP compared with 0.1 tg mRNA condition, but

doubling from 0.2p g to 0.4Vig mRNA does not give that much of increase in eGFP expression.

(see Figure 4.4 (b)) Therefore the mRNA amount of 0. 2 5 tg has been chosen as a standard

amount used per each translation reaction performed in this thesis.

One very important issue about conducting RNA related experiment is the random

effect of RNase existing everywhere. All the tools and disposable tubes/sharps must be clean,

and water used for the experiments should be RNase-free. RNase-free water is either

commercially purchased (Promega) or made by following conventional process using Diethyl

Pyrocarbonate (DEPC). 0. 1% of DEPC-water solution is incubated at 370 C for 12hrs and then

autoclaved. TBE buffer used for gel electrophoresis of mRNA related samples is made from

DEPC-treated water and powdered TBE substances commercially available.
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Figure 4.4 Translation reaction was performed with synthesized mRNA and Retic Lysate IVTTM Kit
(Ambion). Fluorescence measurement of translated solutions was done at 488nm excitation wavelength.
(a) Emission spectra of fluorescence measurement. The amount of template mRNA is 0, 0.1, 0.2 and
0.4pg per each batch of translation reaction. (b) Emission spectrum of No mRNA condition was
subtracted from the other emission scans. Peaks at 510nm are more clear and secondary peak at 560nm
almost vanished.
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4.3 Antisense DNA and Au NP-Antisense DNA

eGFP mRNA used in this experiment has Kozak sequence which includes start codon

of the mRNA. Antisense DNA was designed to target Kozak sequence as shown in Figure 4.5.

Nonsense DNA which has similar structure but does not bind to Kozak sequence was also

designed for control experiments. Additional 10 T's and thiol group (-SH) are placed at 5' end

of the DNA for conjugation to Au NPs. Poly(T) sequence acts as a spacer between Au NP and

antisense (or nonsense) DNA as T is known to be the least sticky to Au NP's surface.8 In

addition, DNA strands of 25 of only T's are designed as a control that has the least binding

affinity to mRNA.

mRNA

5' Kozak sequence 3'
UAUAGGGGUCGCCACCAUGGUGAGCAAGGGCG

3'-TGGTACCACT CGTTC
Antisense DNA I

10(T)-SH-5'

Antisense DNA: 5'-HS-TTTTT TTTTT CTTGC TCACC ATGGT-3'
Nonsense DNA: 5'-HS-TTTTT TTTTT TTTTC CGCCC GTTTA-3'

25(T) DNA: 5'-HS-TTTTT TTTTT TTTTT TTTTT TTTTT-3'

Figure 4.5 Design of antisense DNA, nonsense DNA and 25(T) DNA. Consecutive T's are inserted at 5'
as a spacer between Au NP and actual sequence. 25(T) DNA has the least binding energy to mRNA.

To examine the effect of using antisense DNA on translation reaction, different amount

of antisense DNA, nonsense DNA or 25(T) DNA was put into mRNA solutions and cured at

room temperature for -I hr. Then translation reaction was performed as described in the

previous section. Fluorescence emission at 51 Onm was measured and plotted in Figure 4.6.
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Using antisense DNA apparently reduces eGFP expression. We expected nonsense DNA's

inhibition is minimal in that it does not interfere with mRNA in Kozak Sequence region,

however, nonsense DNA also limits translation as like DNA does although there is a little

difference in the degree of gene regulation. It is practically impossible to design a DNA strand

with a random sequence that avoids any consecutive nucleotides' hybridization to mRNA,

which is about 900 bases long. Furthermore, non-Watson-Crick base pairing between U(or T)

and G of RNA leads to more binding energy available for the mRNA and DNA strands. A

simulation result9 indicates that the designed nonsense DNA has non-negligible amount of

bindings near the start codon of mRNA (Figure 4.7) so that it should have some gene

regulation effect, too. In reality, 25(T) DNA strands shows the least amount of bindings to

mRNA and gene regulation is minimal. Therefore, antisense or nonsense sequence found in

literature 3, 10 is not much optimized in this point of view.

1.2- A

0 1.0

2 0.8

. 0.6

N 0.4

0 100 200 300 400

DNA/mRNA

Figure 4.6 Fluorescence measurement of eGFP at 51 Onm. Translation was done with varying ratio of
DNA:mRNA strands from 25 to 400. 0 ratio indicates control translation experiments conducted without
antisense, nonsense or 25(T) DNA. Squares: Translation with 25(T) DNA. Circles: Translation with
antisense DNA. Triangles: Translations with Nonsense DNA. Intensities were normalized to the intensity
of control experiment in each case.
of control experiment in each case.
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Effect of Au NP on translation also has been tested. Au NPs were synthesized and

average size (-9.5nm) was evaluated from TEM images. Then the particles were put into

translation reactions and fluorescence intensities were measured. As shown in Figure 4.8 (a),

Au NP alone also regulates in vitro eGFP expression. The effect of Au NP on gene regulation

is even greater than antisense DNA in that only the number of Au NP's comparable with that

of mRNA can effectively inhibit the gene expression. The decreased fluorescence intensity at

higher Au NP concentration is not by fluorescence quenching of Au NP itself. Figure 4.8 (b)

shows that only small decrease in fluorescence intensity has been observed when Au NP's

were put into the solutions which contain expressed eGFP already.

Binding with:

eGFP mRNA folding
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Figure 4.7 Simulation result of eGFP mRNA folding and bindings between mRNA and antisense DNA,nonsense DNA or 25(T) DNA. Binding energy (AG) is: -29.6, -11.8 and -3.4 kcal/mol, respectively. 370C
and [Na ] = 1M are assumed. Simulation tool used is available on the website. 9
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It may be argued that Au NP alone can be used as a gene regulator without DNA

conjugation; however, the effect of Au NP in biological systems in vivo must be very non-

specific so that unexpected interaction with other bio-activities also can happen. Therefore Au

NP should be conjugated with DNA for better targeting to a specific mRNA, and surface

modification technique must be followed if charge interaction with other bio-molecules is

significant.

(a)

0 
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O
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N
0.2- O Au NP (9.5nm) only

E
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Au NP / mRNA
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Figure 4.8 (a) Fluorescence measurement of eGFP at 510nm. Translation was done with varying ratio of
Au NP(9.5nm):mRNA strands from 0.5 to 1. O0 ratio indicates control translation experiments conducted
without Au NP. Intensities were normalized to the intensity of control experiment. (b) Au NP's were put
in after control translation reactions were done.

118



To test the Au NP-DNA systems proposed, particles were conjugated with antisense,

nonsense, and 25(T) DNA at the varying Au NP:DNA strands ratio(1:40 to 1:120). Then the

actual coverage of each Au NP-DNA was evaluated by staining free DNA strands after

100mM MCH treatment and measuring fluorescence by following the methods in Chapter 3.

Then some of the samples that have similar coverage are chosen and listed (Table 4.1). One

thing to note is that the concentration of MCH is 100 times higher compared to the cases in

previous chapters since the coverage of Au NP-DNA here is much higher so that more MCH

molecules are necessary to remove DNA strands from the particle surfaces. Another fact of Au

NP-DNA with higher coverage is that the conformation of DNA strands on the Au NP is

almost radial."1 since the hydrodynamic size of lower-coverage samples (26 or 34) revealed

from Ferguson analysis is almost twice of that of bare Au NPs (Figure 4.9). This means that

DNA is in better conformation to hybridize with target mRNA sequence. Au NP-DNA with

higher coverage is supposed to be even more radial according to literature.' 2 This Ferguson

analysis result also matches well with the theoretical calculations done in Table 3.4. Section 2

of Au NP-DNA given in Figure 3.12 is 25mer ssDNA like antisense or nonsense DNA used

here, and the calculated radius of Au NP-ssDNA, R1, is 10nm (D=20nm) when the NP radius,

L, is 5nm (D= 10nm), which is very similar to the case being investigated in this chapter.

Therefore we can conclude that there is not much non-specific adsorption between Au NP

surface and 25mer DNA strands for the coverage utilized in this experiment.

Table 4.1 Actual coverage of Au NP-DNA samples

Coverage Au NP-antisense DNA Au NP-nonsense DNA Au NP-25(T) DNA

High 65 59 54

Low 26 34 31
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Figure 4.9 Hydrodynamic size of Au NP (9.5nm), Au NP-antisense DNA (coverage 26) and Au NP-
nonsense DNA (coverage 34). Error bars are from the standard errors of linear Ferguson plots.

With keeping in mind those properties, Au NP-antisense DNA (1:65) was put into

translation reaction. However, it can be seen in Figure 4.10 (a) that eGFP expression is not

regulated, but enhanced by putting into Au NP-DNA. This is a clear negative result to the

original hypothesis. Free Au NP and free DNA that are not bound to each other do not

enhance the translation and the inhibition effects from both species are added up as shown in

Figure 4.10 (b), but the conjugated molecules ofAu NP and DNA act as an enhancer of in

vitro translations while unbound Au NP or DNA works as an inhibitor. It may be claimed that

the enhancement effect is related with the enlarged size by conjugation of Au NP and DNA,

however, the result of a control experiment with 18.2nm Au NP, which is comparable with Au

NP (9.5nm)-DNA conjugates in the size, shows that larger particle alone perturbs translation

reactions even more. (triangles in Figure 4.10 (b)) Note that fluorescence quenching is not

negligible at high concentration of 18.2nm Au NP due to the large volume of the particles.

The same experiments were repeated with Au NP-antisense DNA with lower coverage

(1:26) and varying coverage for Au NP-nonsense DNA and Au NP-25(T) DNA. The result

shows that the enhancement effect becomes weak when coverage gets smaller in case of Au
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NP-antisense DNA (Figure 4.11 (a)), and the effect quickly fades away at higher Au NP

concentration when Au NP-nonsense DNA's are used (Figure 4.11 (b)). Au NP-25(T) DNA

does not show significant enhancement effect over the varying Au NP:mRNA ratio. Therefore

the translation enhancement must be a function of DNA sequence and coverage of the Au NP-

DNA conjugates.

(a)

DNA / mRNA
" 0 50 100 150 200 250

S1.8. ....................
1.6 0 * Au NP-Antisense DNA (65)

- 0 AuNP
0 1.4 O Antisense DNA
S 1.2
0 1.0 0

a0o 0.8

- 0.4

6 0-2

S0.0E
Z 0 1 2 3 4

Au NP / mRNA
(b)
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[ O Au NP (9.5nm)
SAu NP (9.5nm) and

- 1.0, 70x of antisense DNA
8 A A Au NP (18.2nm)
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Figure 4.10 (a) Fluorescence measurement of eGFP at 510nm. Translation was done with varying
amount of Au NP-antisense DNA (coverage 65, solid circles), Au NP (open squares) or antisense DNA
(open circles). Upper horizontal axis shows the ratio of DNA to mRNA, and lower horizontal axis is for
the ratio of Au NP to mRNA. Fluorescence intensity was normalized to the intensity of the translated
sample without Au NP or DNA. (b) Effect of Au NP (9.5nm, open squares) is compared with that of the
mixture of unbound Au NP and 70 fold as many as antisense DNA strands (solid circles), or with larger
Au NP (18.2nm, open triangles).
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Figure 4.11 (a) Left: Au NP-antisense DNA of coverage 26 was used. Right: the same graph given in
Figure 4.10 (a). Solid circles: Au NP-antisense DNA, open squares: Au NP, open circles: antisense DNA.
Upper horizontal axis shows the ratio of DNA to mRNA, and lower horizontal axis is for the ratio of Au
NP to mRNA. Fluorescence measurement of eGFP at 510nm. Fluorescence intensity was normalized to
the intensity of the translated sample without Au NP or DNA. (b) Repeated for Au NP-nonsense DNA.
Left: coverage 34, right: coverage 59. Solid triangles: Au NP-nonsense DNA, open squares: Au NP, open
triangles: nonsense DNA. (c) Au NP-25(T) DNA. Left: coverage 31, right: coverage 54. Solid triangles
(inverted): Au NP-25(T) DNA, open squares: Au NP, open triangles (inverted): 25(T) DNA.
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4.4 Au NP-DNA as a translation enhancer

Antisense DNA has been commonly utilized as a translation inhibitor, and Au NP also

can interfere with translation process due to non-specific adsorptions including charge

interactions with biomolecules. The original hypothesis of the thesis is based on the idea that

gene regulation efficiency may be much improved by putting those two inhibitors together.

Surprisingly the result shows an unexpected trend in that Au NP-DNA conjugate actually

enhances translation reaction, and this is an opposite result compared with the in vivo

application from another research group. 3 The experiment here is done in vitro and the result

may be different from that of in vivo applications, however, some of their results may be

questioned. Charge distribution is much more complicated in vivo so that the observed

inhibition effect may be due to non-specific bindings between Au NP-DNA and biomolecules.

Moreover, they claimed that there is not any inhibition effect from Au NP-nonsense DNA in

cells; however, it is physically impossible for Au NP-DNA to avoid any non-specific bindings

in real biological systems, therefore there must be some background level of inhibition.

We expect Au NP-DNA conjugates to bind better to mRNA when there are more DNA

strands available on NP surface, and when each DNA strand has higher affinity to the target

mRNA. Antisense DNA strands are designed to fully hybridize to mRNA so that Au NP-

antisense DNA with higher coverage would be the best binder to the mRNA, specifically at

the start codon zone, among different samples. One hypothesis can be made from the

observation is that Au NP-antisense DNA may help recruiting biomolecules necessary for

translations to the start codon area. There are many different types of molecules involved in

translation (e.g. eukaryotic translation initiation factors), and each of them has a specific role
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such as ribosome subunit association or dissociation, ribosome's binding to 5' terminus zone

of mRNA, recognition of Kozak sequence and release of ribosome from mRNA, etc.13, 14

Gene expression can be enhanced or inhibited if the activities of those enzymes and factors

are regulated in some ways. 15, 16 For example, charged ions can be utilized to stabilize mRNA

and enhance in vitro translation. 7 Using Au NP-DNA for translation enhancement is, however,

proposed for the first time in this thesis.

It should be investigated what mechanism actually enhances the translation when Au

NP-antisense DNA is used. Figure 4.12 shows that there are significant bindings between Au

NP (or Au NP-DNA) with translation molecules in that those particles in translation mixture

are retarded in gel electrophoresis. Since many of translation factors and enzymes are charged

either positively or negatively, Au NP-DNA, which is highly negatively charged, must

experience bindings or repulsions with the molecules. Bound molecules may be delivered

better to near 5' terminus or start codon area of mRNA due to the affinity of antisense DNA

on Au NP to the mRNA. However, it is still hard to identify which specific process benefits

from the delivery in that charge interaction is more likely non-specific.

1 2 3 4 5 6 7 8 9

Figure 4.12 1% agarose gel electrophoresis in 0.5xTBE for 90min under E-3.8V/cm. 1: Retic Lysate
Mix only, 2: Au NP (9.5nm), 3: Au NP-antisense DNA (coverage 65), 4: Au NP-nonsense DNA
(coverage 59), 5: Au NP-25(T) DNA (coverage 54), 6: Au NP + Retic Lysate Mix, 7: Au NP-antisense
DNA + Retic Lysate Mix, 8: Au NP-nonsense DNA + Retic Lysate Mix, 9: Au NP-25(T) DNA + Retic
Lysate Mix. All samples were maintained at 30'C for Ihr, then cooled down to 4°C to mimic the
translation process.
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One concern specifically about eGFP is the fact that the translation process is very

susceptible to charged ions and metal ions in solutions. 18, 19 Au NP solutions used in the

experiments inevitably contain buffer ions and possibly Au ions, therefore Au NP-DNA

solutions used for translation reaction must carry some unexpected ions. Buffer ions may be

avoided in Au NP or Au NP-DNA solutions, but this diminishes the stability of the particles in

the solutions, and hybridization of Antisense DNA to target position of mRNA is also

inhibited. Figure 4.13 shows the effect of different TBE buffer concentration used in eGFP

translation of fixed ratio between mRNA and DNA or Au NP-DNA. The buffer concentration

is diluted by about one fifth in the actual translation. This means that eGFP expression is hurt

even in very low TBE concentration.

60000 O 0 Control
* Antisense DNA (DNA:mRNA=70:1)

)50000 0 Nonsense DNA (DNA:mRNA=60:1)
U 0 * Au NP (Au NP:mRNA=1:1)

o> A Au NP-Anti, coverage 26 (Au NP:mRNA=1:1)
40000 Au NP-Non, coverage 34 (Au NP:mRNA=1:1)Ln

- oooo * o30000. 0

20000

) 10000 -

0 4

0.0 0.5 1.0 1.5 2.0

x TBE (when annealed)

Figure 4.13 eGFP translation with fixed ratio of mRNA:DNA and mRNA:Au NP-DNA. TBE
concentration on the horizontal axis is for the hybridization condition of mRNA and DNA or Au NP-
DNA. TBE concentration in translation is 0.23 times that of the hybridization condition. Squares: control
translation without DNA or Au NP-DNA. Filled circles: translation with antisense DNA with the
DNA:mRNA ratio of 70:1. Open circles: with nonsense DNA, DNA:mRNA=60: 1. Filled stars: with bare
Au NP, Au NP:mRNA= 1:1. Filled triangles: with Au NP-antisense DNA (coverage 26), with Au
NP:mRNA=1:1. Open circles: with Au NP-nonsense DNA (coverage 34), with Au NP:mRNA=1:1.

In summary, the potential of Au NP-DNA as an in vitro translation enhancer has been

shown in this chapter. Antisense DNA was designed to hybridize to start codon of mRNA and
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Au NP conjugation to DNA was meant to inhibit ribosomal activity; however, actual

translation result shows that Au NP-antisense DNA can enhance in vitro translation depending

on sequence design and coverage. This strategy can be very beneficial to the existing industry

and research groups who use in vitro translation technique for mass production of protein or

assay of minimal amount of gene. It is proposed that affinity of DNA strands to start codon of

mRNA is a key parameter that drives translation molecules to the mRNA. To confirm the idea,

it is necessary to do more control experiments with different DNA sequences. For example,

DNA strands which are the least sticky to mRNA and whose binding site to mRNA is away

from start codon should have minimal translation effect when they are conjugated with Au NP.

In addition, effect of charge is also important in this application so that it is necessary to

understand charge status of Au NP / Au NP-DNA, and ionic condition of buffer as suggested

in the previous chapters.
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Chapter 5. Summary and future work

Nanoparticle-biomolecule conjugates have been one of the most popular and

important research topics in recent years. Many noble ideas have been introduced and some of

them have achieved a great success either academically or commercially. However, it must be

pointed out that functionality of biomolecules attached to nanoparticles has rarely been

maximized or optimized in most of the research. Especially in Au NP-DNA conjugates study,

DNA's non-specific adsorption onto Au NP surface has been a common knowledge but also

been ignored when Au NP-DNA conjugates are used in actual biological or nano-scientific

applications. DNA's ability to hybridize with its complementary strand is the main power of

Au NP-DNA conjugates system but this function is significantly limited unless non-specific

adsorptions between Au NP and DNA strands are discarded. In addition, Au NP and DNA

conjugates have very irregular charge distribution and conformation such that their behavior

can be significantly different depending on NP size, type of ligand, length of DNA, etc.

Knowing their charge status and conformation is very helpful to understand and predict their

behaviors when being put into real bio/nano systems.

From the motivation it has been proposed in this thesis that Ferguson analysis is a

reliable and repeatable method of measuring size and free mobility of not only nanoparticles

but also nanoparticle-biomolecule conjugates. Ferguson plots are generated from repeated gel

electrophoresis of samples at different polymer concentrations and varying running buffer

concentrations. Actual Au NPs (5-20nm) were tested with Ferguson analysis and the

superiority of the method over conventional dynamic light scattering devices was proven. In
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addition, zeta-potential of particle can be calculated from Ferguson analysis data by use of

Ohshima's equations which take into account buffer ions' lagging behind the particles.

The thesis research was not limited within just evaluating particle characteristics, but

extended to active controlling of Au NP-DNA conformation via chemical modification of Au

NP surface so that non-specific adsorption sites are removed and DNA strands become more

radial on the particles. This improves hybridization ability of DNA therefore Au NP-DNA

systems can be utilized at better efficiency.

As a real application of the proposed concepts, Au NP-antisense DNA was introduced

and tested. Antisense DNA binds to Kozak sequence of mRNA and inhibits ribosomal activity.

A concept originally proposed with antisense technique is that ribosome blocking efficiency

can be improved by conjugating Au NP to DNA due to physical size of the particle. Au NP-

antisense DNA in this thesis was designed to suppress enhanced green fluorescent protein

(eGFP) expression. Measured fluorescence intensity directly tells the degree of gene

regulations. However, the experimental results show that the conjugates actually enhance

translation efficiency, and the trend is a function of DNA sequence and coverage in that those

parameters affect the affinity of the conjugates to mRNA. Although negative result has been

achieved from the original hypothesis it is considered even more beneficial if we can utilize

the enhancement phenomena in a controlled way to achieve better efficiency in production of

desired protein or assay of proteins expressed from minimal amount of gene.

The real mechanism that makes Au NP-antisense DNA enhance translation in vitro has

not been elucidated in the thesis. It is proposed that Au NP-DNA recruits translation

molecules such as ribosome and translation factors due to its affinity to both mRNA and the

translation molecules, therefore broader research on Au NP-DNA's effect on translation
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should be conducted. For example, different DNA sequences can be designed to have

different affinity and binding position to mRNA, and then we can watch how the conjugates

of the DNA and Au NP affect on translation. Also we may use Au NP with different size,

different ligand on Au NP, etc. Since Au NP-DNA conjugate is suggested as an in vitro

translation enhancer for the first time in this thesis, there must be a great room for

improvement, optimization, and commercialization of the Au NP-DNA conjugate systems

depending on the direction of further investigations.
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