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   Abstract  

    
This dissertation proposes a framework and a group of systematic methodologies to 
construct a computational Multi-Disciplinary Design System (MDDS) that can 
support the design of complex systems within a variety of domains. The way in 
which the resulting design system is constructed, and the capabilities it brings to 
bare, are totally different from the methods used in traditional sequential design. 
 
The MDDS embraces diverse areas of research that include design science, systems 
theory, artificial intelligence, design synthesis and generative algorithms, 
mathematical modeling and disciplinary analyses, optimization theory, data 
management and model integration, and experimental design among many others. 
 
There are five phases to generate the MDDS. These phases involve decomposition, 
formulation, modeling, integration, and exploration. These phases are not carried 
out in a sequential manner, but rather in a continuous move back and forth between 
the different phases.  
 
The process of building the MDDS begins with a top-down decomposition of a 
design concept. The design, seen as an object, is decomposed into its components 
and aspects, while the design, seen as a process, is decomposed into developmental 
levels and design activities. Then based on the process decomposition, the 
architecture of the MDDS is formulated into hierarchical levels each of which 
comprises a group of design cycles that include design modules at different degrees 
of abstraction. Based on the design object decomposition, the design activities 
which include synthesis, analysis, evaluation and optimization are modeled within 
the design modules. Subsequently through a bottom-up approach, the design 
modules are integrated into a data flow network. This network forms MDDS as an 
integrated system that acts as a holistic structured functional unit that explores the 
design space in search of satisfactory solutions.  
 
The MDDS emergent properties are not detectable through the properties and 
behaviors of its parts, and can only be enucleated through a holistic approach. The 
MDDS is an adaptable system that is continuously dependent on, and responsive to, 
the uncertainties of the design process. The evolving MDDS is thus characterized a 
multi-level, multi-module, multi-variable and multi-resolution system.  
 
Although the MDDS framework is intended to be domain-independent, several 
MDDS prototypes were developed within this dissertation to generate exploratory 
building designs.  
 
Thesis Advisor: William Mitchell  
Title:  Professor of Architecture and Media Arts and Sciences 
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   1.1. Motivation  

   A design process is highly dependent on the available tools, and at 
the same time, the design processes and tools have a strong impact 
on the designed artifact. Both computer users and non-users share 
the belief that computers have had, and will continue to have, a 
significant and deep influence on design; whether that influence is 
desirable or not is debatable.  

We know that computers can be used in a diligent manner that 
enables humans to surpass their physical limitations. Computational 
design systems have already been developed for the purposes of 
automation and design assistance. These systems free the designer 
from various concerns about effort, labor or complexity.  

Descartes and Kant discuss issues relevant to the potential of 
machines to exceed human limitations. Descartes introduces a 
significant and intriguing position. Descartes’ question “how can a 
designer build a device which outperforms the designer’s 
specifications?” (Cariani, 1991). Kant on the other hand inquired, 
“How can work full of design build itself up without a design and 
without a builder?” (Jaki, 1981).  

Clearly the ability of a computational design system in releasing the 
designer from various concerns owes basically to the power of the 
human mind, which can invent devices that can exceed its own 
limitations. However, can such actions be considered intelligent 
behavior?  

The dilemma of intelligent behavior in design systems is that such 
intelligence is often not understood enough in the first place. Such a 
dilemma might be resolved by either augmenting our understanding 
or by producing systems that do not only automate design processes 
but as Descartes stated go beyond the specifications given to them 
(Cariani, 1991). The latter is the approach pursued in this thesis.  

1. Introduction 
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   1.2 Challenges in Computational Design Systems 

   Design involves solving what Herbert Simon terms an ill-structured 
problem (Simon, 1973). An ill-structured problem is one that cannot 
be solved by a linear chain of reasoning derived from the problem 
statement. Furthermore, it might not have a unique solution but a 
multiplicity of solutions. These design problem characteristics imply 
the need for many assumptions within the design process that can 
only be verified after a solution is reached. Given the numerous 
inputs that feed into design, it is not surprising that design presents 
a technical challenge even for relatively well understood products 
(Eppinger and Gebala, 1991). The problem is further complicated in 
multi-disciplinary design by the need to satisfy each discipline’s 
performance criteria. This makes computational design systems a 
difficult area of study, where creating effective systems requires the 
development of new ways to represent designs and evaluate their 
different disciplines’ performance criteria collectively.  

   Recent possibilities facilitated by advancements in computational 
power and new developments in computer-based modeling and 
analysis methods, such as finite element analysis (FEA), 
computational fluid dynamics (CFD), visualization, process simulation 
and others, have enabled the simulation of design performance in 
virtual environments. This provided designers and engineers with 
information that can assist in some decision making (Paydarfar, 
2001). However, these design models are usually discipline specific 
and hence lack the ability to supply sufficient understanding of the 
possible tradeoffs between different disciplines. Therefore the 
design insight gained through these tools and technologies remains 
limited and their potential to enhance and inform the design process 
has not been fully realized. 

   Design is a complex activity requiring knowledge spanning many 
different domains. Even the most rudimentary design activities 
demand scientific knowledge, engineering skills and artistic 
creativity. Many real-world design problems cannot be modeled by 
one single model. Systems like aircrafts, automobiles or skyscrapers 
consist of continually and mutually interacting subsystems. The 
behavior of such complex systems and products is controlled by a 
variety of physical phenomena that are analyzed by different 
disciplines and that interact at the same time. Therefore, they 
require using groups of complementary tools and models that 
integrated together can describe the whole process (Yilmaz and 
Oren, 2004; Zeigler et al., 2000). However, there are often 
integration-related difficulties in multidisciplinary computational 
design, especially regarding information gathering, flow and 
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translation.  

   Given that computer-aided design tools produce more data than 
conventional methods, a large amount of information will 
accumulate during the design process.  Furthermore, the complexity 
with which this information flows contributes significantly to the 
difficulty of computational design systems. Examples of such 
complexities include information circuits, in which the information 
flow within a design activity is circular. These information circuits are 
a consequence of design iteration in which decisions are revised due 
to incomplete or imperfect available information. It is thus important 
to reduce the time and effort that computational design systems 
require to integrate and coordinate information in order to complete 
design iteration (Eppinger and Gebala, 1991). 

   In addition, transferring the design and analysis results from one 
discipline to another group is not as straightforward as it may seem. 
Sometimes it is required to convert the results of one group or 
model into a form that others can use. This can take the form of 
simply translating the syntax of one program output into another 
program input but it also can get more complex, such as the 
interpolation from a finite element structures grid to an aerodynamic 
analysis mesh. 

   With the integration and automation of many discipline models, data 
management issues such as data architecture, data configuration 
control, data deletion, data translation, data quality, and data access, 
will present a challenge to the whole integration process. A lack of 
robust integration of design discipline models adds a programmatic 
cost that often reduces the sum of each model’s individual benefits. 
Therefore, the effective management and exchange of information 
among different disciplines is necessary in order to realize expected 
cost, time and quality benefits. Achieving this requires better 
software technologies as well as more active planning, 
communication and synchronicity. This is particularly difficult for 
non-colocated models, tools and teams. 

   Currently many designers spend most of their time trying to manage 
design information rather than performing actual design activities. 
The amount of time spent in generating and evaluating alternatives 
using computational design models and tools forces many designers 
to use these methods for validating a selected alternative rather 
than exploring and quantitatively analyzing multiple alternatives and 
speculative scenarios. This leaves a wide range of the design space 
unexplored. This unexplored space often comprises better 
performing solutions than others ever previously considered (Shea 
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et al., 2005).  

   As mentioned earlier, design of complex systems and artifacts 
depends on diverse design and engineering domains; these design 
problems usually comprise conflicting objectives. This constitutes 
another design challenge. To overcome this there is a need to 
support the rapid generation and evaluation of design alternatives to 
provide satisfactory design space search. 

   In regards to the challenges mentioned above, some progress has 
been made in both the processes involved with multidisciplinary 
design as well as the development of promising technologies that 
support the design process.  

   In 1985 Dr. Siu Tong, a graduate from MIT working at General Electric 
Corporate Research and Development Center, and his team 
deployed a generic engineering design management and 
optimization tool called the “software robot”. The purpose of this 
software shell was the automation and integration of simulation 
models to provide optimal designs with special focus on the design 
and analysis of aircraft engines. This was later developed into 
“Engineous” which automates the process of running simulation-
based design systems (Tong, 2001; Hedberg, 2005). The main 
concept behind this tool was performing manual iterations which are 
typically undertaken by engineers in the design process. 

   This and many similar efforts were developed in the aerospace 
industry for multidisciplinary design analysis (MDA) in which 
mathematical analysis models and tools and their integration and 
automation were utilized leading to an enhanced understanding of 
the design performance.  

   Using centralized databases and associated management systems 
contributed to resolving complex interconnections among multiple 
models that exchange large amounts of data. Furthermore, more 
vigorous component management tools are applied to smaller 
interacting computation-intensive components and applications. 
These are driven by the recent “component ware” focus in the 
software industry, in which systems offer generic tools to manage 
interacting software components. 

   Based on the success in MDA, many attempts were made by the 
aerospace industry to link MDA with advanced optimization 
techniques and algorithms. This was driven by the need for strict 
integration between vehicle components in order to meet tough 
performance requirements. This necessity of integration in the 
context of tight performance coupling between system components 



 

    

Introduction 

The Multi-Disciplinary Design System         21 

posed a real challenge for traditional design paradigms. The 
aerospace industry addressed these challenges by developing 
automated multidisciplinary design optimization (MDO) (Bowcutt et 
al., 2004). 

   MDO provides many powerful techniques for exploring very large 
design spaces and obtaining optimal solutions in large trade-space 
situations (McManus et al. 2004). MDO methods are especially useful 
in preliminary design activities which comprise multidisciplinary 
interactions and aim at achieving a design through rational trade-offs 
that satisfy constraints and at the same time maximize some 
objectives (Kroo, 1997a).  

 Figure 1.1: 

Aircraft Design 
Optimization 

Framework Using 
MDO. Adopted from 
Martins, J. MDO Lab, 

University of Toronto 

 

   MDO in essence is a formalization of the design process that 
promotes careful and explicit problem formulation. This often 
creates a barrier to MDO application, but in general it can decrease 
the probability of costly redesign later on in product development. 
Figure 1.1.  
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MDO has been applied in many design problems. Examples of such 
applications were demonstrated in commercial transport aircraft 
research and design at Boeing and McDonnell-Douglas (Liebeck et 
al., 1996). This work resulted in the McDonnell-Douglas Blended 
Wing Body Concept (BWB), which constituted a non-traditional 
solution to the large subsonic transport problem. The BWB is an 
unstable tailless aircraft that has its passengers inside the center 
wing section and exploits boundary layer ingestion for improved fuel 
economy. In this design, many disciplines were tightly tied together, 
such as aerodynamics, structures, propulsion, stability, and control. 
This made the multidisciplinary analysis and design approach much 
more significant.  Figure 1.2. 
 

  

 

 

 

 

 

 

Figure 1.2: 

MDO Framework for 
Blended Wing Body 

Concept  
(de Weck and 

Willcox, 2005). 

 

 

   The processes and technologies mentioned above have clearly 
advanced our understanding of computational design. They have 
attempted to address problems involving multi-disciplines as well as 
the use of several analysis models. They have also developed 
promising technologies that handle issues of integration, the 
management of several conflicting objectives as well as proposing 
methods for searching vast design spaces. However a few 
shortcomings still remain.  

   The design synthesis capabilities of such systems remain rudimentary 
even with the use of sophisticated CAD software. Although 
parametric models are powerful tools, capable of generating vast 
design spaces. Most of MDO application in literature demonstrates 
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simple dimensional parametric synthesis models. Within such 
examples the designer fixes topological variations of artifacts or 
elements, and the optimization merely varies dimensionality. Clearly 
better methods should be used for generating more varied design 
spaces.  This will presumably enable multidisciplinary design teams 
to formally explore the performance of many more design 
alternatives, which should lead consequently to more novel designs 
and enhanced performance.  

   Another shortfall of current methods and technologies such as MDO 
is that they are restricted in their ability to evaluate the nature of 
evolving design requirements and how they might change during 
development and operation. Most work on MDO does not take into 
consideration the evolution of design complexity. Instead it deals 
with the problem of minimizing or maximizing a specified function 
with respect to a specified set of design parameters.  

   Design descriptions change as projects progress. Synthesis and 
analysis methods as well as constraints have to evolve consequently. 
A design cannot be described at the level required for manufacturing 
at the launch of the project. Due to this evolution, the complexity of 
both the design description of an artifact and the corresponding 
design models increase as design progresses.   

   Furthermore, the design technologies discussed focus on 
quantitative analysis and on optimization and searching for optimum 
solutions. However, these technologies do not take into account 
qualitative attributes of the design. An optimum solution 
quantitatively might not necessarily be the best solution. Better 
exploration of the design space might reveal solutions with better 
qualitative merits. 

   1.3 Research Methodology 

   In response to the challenges mentioned so far, the thesis will aim at 
developing a framework that employs computational design 
techniques that can improve the design and development of 
multidisciplinary complex systems and artifacts. To help develop a 
foundation and a theoretical discourse an investigation of theory, 
both of design science and methods and of systems theory, will be 
necessary. Later the framework for developing a multidisciplinary 
computational design system will be proposed. Along the way, 
knowledge from different domains will be sought to support the 
presented approach.  

   Many view design as a mysterious activity that does not lend itself to 
scientific examination, but that is not the case. Publications on 
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design methods date back to Roman times, particularly by Vitruvius 
(Gero, 1990). Design research continued and led to design thinking in 
the 19th century that articulated design as a process (Britt, 2000). In 
the 1960s major design research programs were also established. 
Further efforts led to information-processing models which were 
based on AI principles. These principles provided a momentum for 
renewed research into design in its various aspects (Simon, 1973; 
Coyne et al., 1990). 

   Designing is an activity that occurs with the prospect that the 
designed artifact will operate in both the natural and social worlds. 
Both these worlds introduce constraints on the variables and their 
associated values. As a result, design in this context can be viewed as 
a goal-oriented, constrained, decision making activity (Gero, 1990). 
Design can also be seen as an evolutionary process that evolves over 
time. Such a process can assist in handling design complexity by 
breaking the design into stages that move from the simple and 
abstract to the more complex and concrete.    

   Recently systems theory also provided a significant view on the 
process of system design, architecture and structure. It provides a 
framework for the description of several groups and objects that act 
in concert to produce some result. It investigates the principles 
common to all complex entities and the models which can be used to 
describe them. Both the computational software tools used for the 
purpose of design and the complex designed artifacts produced are 
considered systems. It follows that in order to better understand 
them, we need to understand systems and systems architecture. 

   As the title suggests, this thesis attempts to develop a Multi-
Disciplinary Design System (MDDS) framework that would enhance 
the design of complex systems and artifacts through an efficient 
process. The framework that will be presented supports the design 
of multidisciplinary complex systems and artifacts within a variety of 
domains.  

   This framework would embrace and integrate diverse areas of 
research such as design science, systems theory, process modeling 
techniques, generative synthesis algorithms, multidisciplinary 
analysis, optimization theory, data management and integration, and 
design space exploration techniques. In addition the MDDS 
framework supports the exploitation of a group of emerging design 
computing technologies and software products to accomplish 
design and performance benefits. 

   The MDDS framework is a generic framework that suggests a group 
of systematic methodologies that eventually lead to a fully realized 
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and integrated design system. Within this system, complexities of 
the design should be handled and the uncertainty of its evolution can 
be managed. In addition, vast design spaces can be searched while 
solutions are intelligently modified, their performance evaluated, 
and their results aggregated into a compatible set of design 
decisions. 

   There are many stages however to generating the MDDS. These 
stages involve decomposition, formulation, modeling, integration, 
and exploration. These stages are not carried out in a sequential 
manner, but rather there is a continuous need to move back and 
forth to previous and subsequent stages. Figure 1.3. 

   After a design team identifies a design concept at a certain level 
which can best perform the design requirements, a top down 
decomposition of the concept is implemented by each discipline 
involved in the design. Complexity of a design can be managed or 
solved through partitioning it into smaller elements and observing 
each independently. There are different decomposition strategies 
that can be applied to the design artifact as well as to the design 
process. 

   Design process modeling then follows through formulation, 
providing an improved understanding of the process properties. 
Formulation enables the visualization of data and control flow. 
Different design processes and architectures can be compared and 
evaluated. MDDS architecture is broken down into hierarchical levels 
each of which comprises a group of cycles and modules at different 
degrees of abstraction. An iterative cycle between decomposition 
and formulation is required to reach an acceptable system 
architecture.  

   Mathematical models for each of the elementary modules are then 
developed. Each module represents a design activity that is 
formalized into computational models. These include synthesis, 
analysis evaluation and optimization modules which are later 
connected together in order to automate the process of design 
search.  

   One of the main challenges presented earlier is adequate design 
generation, also known traditionally as synthesis. Through several 
attempts to shorten design cycles and getting more robust solutions, 
design synthesis processes have been formalized. In the computer 
age, formal design methodologies, together with algorithmic 
descriptions, could be used to obtain automatic design synthesis 
while handling problems that might not be open to solution by the 
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unaided human mind. 

   Therefore, within the proposed framework the design concept will 
be decomposed into a set of synthesis models by extracting design 
intentions and formulating a collection of design variables, 
parameters, rules and algorithms. This mode of representation and 
formalism can be used within a computational environment to breed 
new design configurations. 

   Analysis models and simulations are then used to predict the 
behavior and performance of a specific design. An analysis model 
infers from a design solution characteristics that are relevant to a 
particular discipline. A design problem usually combines different 
disciplines, with each discipline developing one or more analysis 
models. MDDS depends on validated analysis algorithms to verify the 
robustness of the process. 

   In order to enhance the level of automation in the process, 
optimization can be introduced. In case a specific design does not 
meet the original design requirements, it is modified and evaluated 
again in a search process for the best design possible, thus 
reformulating the design configuration. 

   Optimization models are design space search mechanisms.  
Searching the design space entails finding the best solution(s) within 
a domain of feasible solutions. An optimization model seeks to 
minimize or maximize an objective function by varying the values of 
design variables within an allowed domain. The choice of an 
appropriate search algorithm depends on several factors including 
the design synthesis model, the nature of the analysis models, the 
number of design variables, the existence of constraints, and the 
linearity of either the design variables or constraints. 

   In single objective optimization, the search direction can be well 
defined and a single solution, if it exists, could be found. However, in 
the real-world, decision-making problems are usually too complex 
and ill-defined, and have several possibly contradicting objectives. 
This implies that there is no single optimal solution but rather a 
whole set of possible solutions of equivalent quality (Abraham et al., 
2005). Therefore, there is a need for evaluation models that can help 
in making decisions in the presence of trade-offs between conflicting 
objectives.  As computational optimization processes evolve by 
generating and evaluating multiple design variations, they result in a 
group or ‘point cloud’ of optimized designs from the selection of 
good designs can take place based on design performance or other 
design viewpoints (Shea and Luebkeman, 2005). 
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 Figure 1.3: 

Proposed Framework 
for the 

Multidisciplinary 
Design System  

(MDDS) 

 

 

 

   Through a bottom up approach all the mathematical models that 
were developed as software components and modules are 
connected into a data flow network that includes clusters and 
subsystems. Software integration tools are used to satisfy the 
requirements of the MDDS process through efficiently automating 
the exchange of module information. The end result of a typical 
MDDS process is an integrated system model. 

   MDDS also supports the exploration techniques of the design space 
to help the lateral thinking among designers and to better describe 
and understand the complex relations between design variations 
and performance trade-offs. The MDDS can be continuously adjusted 
through several process iterations in order to investigate the 
influence of different parameter modifications. This aids designers 
by enhancing multidisciplinary negotiations which hopefully lead to 
better design quality. 
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   While MDO techniques work on turning down the tradespace 
complexities into optimal solutions, the eventual goal of MDDS is to 
comprehend the tradespace itself, involving as much complexity as 
can be used by decision makers. This represents an alternate 
approach to MDO, which at the same time does not recognize 
qualitative design aspects. 

   The resulting MDDS is described by an evolutionary model moving 
from simple and generic ideas into further complex and detailed 
ones throughout the process. The system model is a dynamic and 
complex whole, interacting as a holistic structured functional unit. 
The system emergent properties are not detectable through the 
properties and behaviors of its modules, and can only be enucleated 
through a holistic approach. The solution found by this system is 
expected to be superior to the design found by solving and 
optimizing each discipline sequentially, since it can exploit the 
interactions between the disciplines. 

   The MDDS approach introduces a scenario where the idea that 
performance drives design is clearly identified. Performance based 
design, as a promising design paradigm, provides the basis by which 
design is guided through performance. The hope is that by 
incorporating the MDDS designers can gain a marketing edge 
through enhanced design quality and performance and improved 
collaboration among multidisciplinary design teams that would lead 
to reduced design time and cost. 

   In today’s increasingly competitive market, design solutions that 
merely meet minimum project requirements are no longer 
guaranteed to prevail. Solutions must be cost-effective and 
generated through efficient multidisciplinary processes (Carty, 2002). 
An effective evaluation of these solutions involves therefore the 
integration of multiple disciplines. MDDS allows for identifying 
counter-intuitive solutions and functions of multiple design 
disciplines. Resultant integrated system models in MDDS are 
specifically tailored to problems in hand. 

   The concepts introduced in this thesis offer definitions that can be 
further enhanced. The computer products and experiments will act 
as system prototypes that can be used as starting points and 
developed further for more robust systems.   

   The prototypes that will be presented will focus on the early stages 
of design development. These include stages of conceptual and 
preliminary design. I will explore these stages as they are typically 
where most innovations and technological breakthroughs take 
place. At the same time, they are also where expensive, threatening 
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and hard to fix mistakes can occur. Major design solution approaches 
and design decisions are determined at the end of these stages. 
These decisions usually determine around 80% of the ultimate 
program cost and schedule (INCOSE 2002). This occurs due to the 
fact that the early design stages are where multidisciplinary trades 
matter the most. It is also where designers realize the significance of 
interdisciplinary relations and interactions, and where MDDS is highly 
expected to offer the most unambiguous short-term benefits.  

   Although the MDDS framework is domain-independent, prototypes 
will be developed for exploratory building design. I hope this will 
demonstrate the potential of such a computational design system 
and will provide a proof of concept for the framework presented in 
this thesis. 

   1.4 Thesis Structure  

   In his famous 1956 paper, the cognitive psychologist George A. Miller 
showed many coincidences between the channel capacity of human 
cognitive and perceptual tasks. The effective channel capacity is 
normally equivalent to a number between 5 and 9 equally-weighted 
error-less choices, which represents 2.80735 bits of information on 
average. Miller, not drawing any strong conclusions, hypothesized 
that the recurring sevens might represent something deep or just be 
a Pythagorean coincidence (Miller, 1956). 

   Following Miller’s hypothesis, and given my own limited capacity, I 
have decided to loosely partition the thesis into eight chapters (not 
counting the introduction and conclusion), the contents of which 
intersect necessarily (figure 1.4). The chapter descriptions follow. 

   1. Theoretical Background. This will provide a literature review of 
design science theories of interest as well as a background on the 
emergence of system thinking and system theory and its influence 
on the design process. 

2. Decomposition. This represents the first step of the MDDS 
framework and proposes approaches for partitioning design artifacts 
as well as design processes. 

3. Formulation. This section will present some of the methods used 
for process modeling in different disciplines with an emphasis on 
methods used in both system and software engineering.  The MDDS 
architecture formulation will be discussed later in the MDDS 
framework. 

4. Modeling. Here the concept of mathematical modeling for design 
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will be presented. Each model’s input, output, structure and 
algorithms will be introduced.  These models will include synthesis, 
analysis, evaluation and optimization. 

5. Integration. This chapter will address issues of integrating 
different distributed models and components for building the MDDS. 
Several software technologies will be discussed and presented.  

6. Exploration. After the MDDS has been built we can start 
experimenting and exploring the design space. This chapter will 
present some methods that can be used to better understand the 
design space and the solutions generated.   

7. The MDDS Framework. This chapter will present a framework for 
building the MDDS. All the five stages will be incorporated in this 
framework. The system behavior and evolution will also be 
discussed. In addition, implications of the MDDS on the design team 
and the computational design environment will be presented.    

8. Experiments. This chapter will showcase the prototypes 
developed using the MDDS.  It is intended to give a sample of 
successful applications of the described technologies. 

   The following chapters will attempt to address and answer some of 
the following questions:  
 
What is design science? 
What are systems and systems theory?  
How can we decompose the design artifact and the design process?  
How will we formulate the design system architecture?  
How will we model the different design activities?  
How will we integrate the different models into a coherent system?  
How will we use the system to assist in exploring the design space?  
 
Furthermore, the MDDS is expected to pose new challenges such as: 
 
What is the expected behavior of the MDDS? 
How will it evolve with the evolution of the design? 
Will it require new design tools and environments?  
How will it affect the structure of the design team? 
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Figure 1.4: 
 

A simplified network 
that includes some 

of the topics that 
compose the MDDS 

discussed in this 
thesis.  
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   2.1 Design Science  

   It was argued by Simon (1973) that a science of design could exist 
someday where design can be discussed in terms of well-established 
theories and practices. Simon claimed that design should move 
through multiple stages from its then current pre-science stage in 
order to become a mature science. He described that mature stage 
as acquiring a state of discipline where a consistent body of scientific 
research and practice exists and encompasses law, theory, 
application, and instrumentation (Kuhn, 1970).  

Dixon (1987) argued that in engineering design particularly, both 
education and practice are led mostly by expert empiricism and 
intuition and specialized experience without sufficient scientific 
foundation. He stated that design in this case is very different from 
disciplines such as physics, chemistry, or biology where theories can 
be tested by controlled experiments. He argued that design was 
more complex than other fields because it involved not only people 
and organizations, but also the natural physical world and the in-
progress design, which refers to the to-be-manufactured-sold-and-
used physical artifact of a system. This complexity also lies in design 
being a process, where processes are not the typical subjects of 
theoretical formulations. 

Hongo (1985) defines a design science or a scientific study of design 
activities as a collection of logically connected knowledge such as 
design methodology and design technique. A detailed definition 
implies that design theory is a system of methodical rules that 
identify the procedures possibly expected to conduct a planned 
route towards achieving a desired goal. He classifies types of rules 
according to methods of thinking, such as intuitive or discursive, and 
according to goals and applications, such as methods for solution 
search, evaluation, and calculation. 

Coyne et al. (1990) provide another definition of science and design. 
As opposed to science, which formulates knowledge through 
deriving relationships between observed phenomena, design can be 
described as an action that starts with intentions and uses available 
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knowledge to reach a specific entity whose properties should meet 
those original intentions. The role of design is defined as that which 
utilizes that knowledge to transform a formless description into a 
specific description of form. This description, known as the design 
solution, is generated pragmatically according to the capacity of 
knowledge available to the designer. It is a compromise, rather than 
an ideal or correct solution, that meets to some extent the original 
intentions. 

   2.1.1 Design as an Object and a Process 

   All artifacts in the surrounding environment are the result of 
designing. Design can imply many meanings. The word “Design” can 
be both a noun and a verb (figure 2.1).  

As a noun it can refer to an artifact or object that is a system usually 
defined by its geometric configuration, the materials used, and the 
task it performs (Papalambros and Wilde, 2000). According to 
Bahrami and Dagli (1994), design involves the development of plans 
or schemes of action. Their definition implies that design can be that 
developed plan or scheme, whether it is just embedded in the mind 
of the designer or externalized as a drawing or model.  

As a verb, design can refer to the actual decision-making activities or 
processes involved in generating that artifact (Eggert, 2004). These 
processes determine an object’s form according to the required 
functions. Simon (1973) viewed design as a problem-solving process, 
a natural human activity that involves searching through a state 
space. The states in this space represent the design solution. 

 Figure 2.1:  

Design can be 
considered both as 

an object and a 
process. 

 

 

 
   Coyne et al. (1990) define design as a purposeful activity that 

involves conscious efforts to reach a state of affairs in which specific 
characteristics are apparent. In this regard, design is initiated by 
recognizing the basic problem requirements. Being discontent with 
the existing state of affairs, the designer then becomes conscious 
that some sort of action should occur to correct the problem. 

Louis Kahn, the famous architect, described design as a process 
where the inspirational forms of thinking and feeling generate form 
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realization (Bahrami and Dagli, 1994). To Kahn, thinking was 
considered a tool by which he would articulate feeling, his ideal 
mode of functioning, into expressive shape. He believed that the 
design process was understood intuitively by the creative mind as a 
single unified and consistent whole, as he used to synthesize 
elements from many sources into this whole rather than focusing on 
details of specific problems. He would pay more attention and dive 
into the core of the matter rather than going into finer-grain 
problems that were not really required at this point (Tyng, 1984). The 
question then becomes how a design evolves from fuzzy mental 
images and abstract generic concepts into a crisp design.  

Design as a process is generally described as a systematic approach 
where the design process, as part of generating a product, is 
partitioned into general working levels. This allows for a transparent 
design approach that is both rational and independent of any 
particular field or industry. In this general approach, the problem is 
first analyzed, understood and decomposed into sub-problems. Sub-
solutions are then generated and integrated to produce an overall 
solution (Cross, 1989). 

There are several methods, intellectual frameworks, and tools that 
help support this process, including traditional engineering design 
(Pahl and Beitz, 1991), axiomatic design (Suh, 1990), and product 
design and development (Ulrich and Eppinger, 2000).  

According to Papalambros and Wilde (2000) design is a complex 
human process that cannot be easily or completely described or 
understood. Therefore in the following chapters, will use models to 
help us define and understand the design process. Models are 
different from theories. According to Dixon (1987), a model does not 
establish a theory, but rather the theory is established when model 
behavior can be robustly explained through testing. Models then do 
not explain certain phenomena or predict specific behaviors, and so 
in a sense they are less ambitious than theories. They are however 
content with the provided explanations and predictions of 
phenomena, and can explain and sometimes replicate specific 
aspects of design behavior (Coyne et al., 1990).  

In building useful models, the mathematical relationships between 
components are mostly required. It is easier for a designer to 
describe how a specific product is designed than to translate his 
behavior into a mathematical model unless a certain framework is 
developed for that purpose. The process of building computational 
models of design involves concepts from many disciplines such as 
artificial intelligence and problem solving, such as space search 
techniques, expert systems and neural networks, logic and fuzzy 
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logic, object-oriented methodology database, and language theory 
(Bahrami and Dagli, 1994). By implementing some of these concepts, 
our proposed design system can be better defined, studied and 
understood.  

 Figure 2.2: 

The proposed design 
system should 

imitate the design 
process to produce 

the artifact.  

 

 

 

 

 

 

 

 

 

 

 

   As stated In the introduction, this thesis is concerned with creating a 
computational design system that attempts to imitate the design 
process to create the designed artifact (figure 2.2). Therefore, the 
primary focus will be on the notion of design as a process rather than 
design as artifact.  

There is a relationship between the design artifact, which represents 
the designed system, and the design process, which is represented 
within the design system. We need to introduce a framework to map 
between both the design process and object. Since the system 
should lend itself well to computation, we need to build a 
computational model that that can assist in the design process. 

   2.1.2 Design Process Domains  

   How does design as a process map between the stakeholders’ needs 
and the physical embodiment of those needs in an artifact? To 
understand this relation I will discuss briefly the Axiomatic design 
theory.  

The early ideas of axiomatic design, developed by Suh and his 
colleagues at MIT, were first published in 1978 (Suh et al 1978), but 
the framework was initiated with the publication of the first 
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Axiomatic Design book by (Suh 1990).  

The main motivation for establishing axiomatic design was primarily 
educational. It aimed at providing a scientific basis for the field of 
design in general (Suh 1990) to make the process of teaching and 
learning design more systematic and generalizable, based on the 
belief that designers should learn good decision making built on a 
scientific basis, and that there are core axioms that govern the 
design process. 

Design has been described by Suh (1990) as the process of creating 
product solutions that satisfy customer attributes through mapping 
functional requirements in the functional domain into design 
parameters in the physical domain. According to Suh (1990), design 
thus is an interaction between what is to be achieved and how to 
achieve it in four domains: customer, functional, physical and process 
(figure 2.3). The success of the product in this sense especially in the 
marketplace is determined by the degree to which the functional 
requirements are met in the solution according to the decisions that 
the designer made. In the design process, functional requirements 
are considered negotiable aspects. 

 Figure 2.3: 

Four design domains 
in the axiomatic 

design (Suh 1990) 

 
 
 
 
 
 
 
 
 
 

   The elements pertaining to each domain, mentioned earlier, are the 
customer attributes (CAs), functional requirements (FRs), design 
parameters (DPs), and process variables (PVs). The domain on the 
left relative to that on the right indicates what the problems are, or 
the objectives that are to be achieved. The domain on the right 
denotes the solutions, or ways to achieve those objectives. So in this 
case, CAs are to be satisfied by corresponding FRs that are the 
results of mapping CAs from the customer to the functional domain 
(Mullens et al., 2005). The general goal in any design problem is to 
choose DPs that determine FRs which consequently maximize 
satisfaction of the CAs that are subject to relevant design constraints 
(Cunningham, 1998). 
 
Several axioms were originally proposed (Suh et al. 1978), but later 
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some were viewed as redundant and were eventually integrated or 
completely removed. Suh (1990) identified two of these axioms as 
fundamental, through examining common elements in good designs 
related to products, processes, and systems. These axioms were 
believed to provide designers with a tool that structures their 
thought processes in early design stages. 

The first axiom, known as the Independence Axiom, states that the 
independence of FRs must be maintained, implying that design 
decisions should be made without breaking the independence of 
each FR from the other requirements. The FRs therefore must be 
independent to each other and they should be reduced in number in 
order to be just sufficient to characterize the design (Suh 1990; 
Cunningham, 1998; Mullens et al., 2005). The strength of this axiom 
comes from the fact that it encourages designers to look for 
solutions that satisfy FRs independently, and so the issue of 
managing interactions is resolved.  

 Figure 2.4: 

Zigzagging process 
between functional 

and physical 
domains. 

 

 

 

 

 

   The second design axiom, known as the Information Axiom, dictates 
minimizing the information content related to the task of fulfilling 
FRs in the design (Suh 1990; Cunningham, 1998; Mullens et al., 2005). 
The design chosen from the pool of alternatives satisfying the first 
axiom and at the same time comprising minimum information 
content is thus considered the best design. Information content is 
defined by axiomatic design as the log inverse of the probability of 
success to satisfy the FRs based on both axioms (Suh 1990). 

Two governing rules in general should be maintained according to 
axiomatic design during this process in order to achieve good design. 
The first one implies following the two design axioms discussed 
earlier, while the second implies performing the zigzagging principle 
during decomposition (Mullens et al., 2005).  

The zigzagging principle, illustrated in figure 2.4, guides the 
decomposition process from a high level to low detailed levels, thus 
guiding designers to zigzag between domains when they design. In 
the mapping between functional and physical domains, lower level 
FRs should be derived from the higher level FR while taking into 
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account the corresponding DP of the higher level FR. This means that 
designers should decide the corresponding higher level DPs that 
satisfy the FRs before the higher level FRs are decomposed into 
further sub-requirements (Cunningham, 1998). 

In figure 2.5, mapping at any level takes place as the functions are 
assigned to discrete physical elements, shown by the arrows going 
from left to right, implying that the architecture is dictated. The 
physical solution is then utilized to guide decomposition in the 
functional domain. This is denoted by the arrows that go back to the 
functional domain horizontally and vertically only in the functional 
domain. 

 Figure 2.5: 

Functional domain 
and physical domain 

hierarchies. 

 

 

 

   Design is thus a process of mapping between domains which 
develops a hierarchy from the system level to the detailed 
component level. The term mapping here refers to the process of 
translating customer needs into technical specifications, or 
functions. These functions are then translated into physical design 
characteristics or attributes, and then finally into process attributes 
which generate the requirements for production (Cunningham, 
1998). 

Designers usually map many functions to one high level element of 
the product, rather than decomposing functions and mapping them 
to the associated physical elements.  

The way by which the functional hierarchy maps to the physical 
domain can be more complex than initially intended by designers. 
This creates supplementary interfaces between physical elements 
whose influence on function is almost impossible to predict. 

It should be noted however that the mappings between the 
customer and functional domains and physical and process domains 
are loosely structured and defined, as opposed to the mapping 
between functional and physical domains.   
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   2.1.3 Design Process Evolution  

   The design processes is an evolutionary process which occurs 
between the time when a problem is assigned to the designer and 
the time the design is passed on to the manufacturer (Dasgupta, 
1989). During this period the design evolves and changes its form 
(figure 2.8). 

 Figure 2.6: 

Short conception 
design phase with 

unequal distribution 
of improved quality 

and integrated 
disciplines for 
optimization. 

 

 

 

 

 

 

   However, throughout this progression of design evolution, there is 
an inherent relationship that is the core of all design development 
processes: the inverse relationship between design knowledge and 
freedom.  

 Figure 2.7: 

Life cycle-cost 
committed versus 

incurred by life-cycle 
phase. 

 

 

 

 

 

   As the design evolves, design freedom rapidly decays while 
knowledge about the design object continuously increases. As the 
process moves forward, designers gain knowledge but lose freedom 
to act on that knowledge, as illustrated in figure 2.6. This has a key 
effect on the control of life cycle costs which are determined by the 
design concept and are very difficult to change significantly past this 
stage, as illustrated in figure 2.7. 
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Figure 2.8: 

An example of a 
building skin 
component. 

Knowledge about the 
design is increased as 

the design evolves 
over time.   

 Duvvuru et al. (1989) provided a classification of the design process 
comprised of four categories: creative design, innovative design, 
redesign, and routine design. In the creative design category, there is 
no a priori plan for the problem solution. In this case, design is 
considered as an abstract decomposition of the problem into levels 
that represent choices for the problem components. The main  focus 
in this category is the transformation from the subconscious to the 
conscious.  

In the innovative design category, the decomposition of the problem 
is known, but the alternatives for each of its subparts do not exist 
and must be synthesized. Design can be an authentic or unique 
combination of existing components. Duvvuru et al. argue that 
creativity plays a role to a certain extent in this category. In the 
redesign category, an existing design is altered in order to meet the 
required changes in the initial functional requirements.  

In the last category of routine design, there is an a priori plan of the 
solution. The subparts and alternatives are known ahead as a result 
possibly of either a creative or innovative process. This type of 
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process deals with finding for each of the subparts the suitable 
alternatives that satisfy the given constraints. Duvvuru et al. (1989) 
show that the design process is more fuzzy, spontaneous and 
imaginative at the creative end of the spectrum, while it is more 
precise, crisp, predetermined, systematic, and mathematical at the 
other end which represents routine design (figure 2.9). 

 Figure 2.9: 

At the creative end of 
the spectrum, design 

is very fuzzy. As it 
moves to routine 

design, it gets 
precise, crisp, and 

predetermined 
(Bahrami and Dagli, 

1994). 

 

 

 

 

 

   2.1.4 Design Process Activities 

   Human problem solving including design is done using an iterative 
process (Simon, 1973; Asimow, 1962; Cross, 1989; Steadman, 1979). 
Designs typically evolve through a cycle that involves a synthesis 
activity and an analysis activity which is also known as the generate 
and test cycle (Rowe, 1987). 

There is a fundamental difference, however, between synthesis and 
analysis design activities. To apply analysis, we are first provided with 
well-structured information about the object under study, and then 
we are asked to predict its behavior. This information is usually 
related to the form of an object such as shape, configuration, size, 
material composition, or even manufacturing processes. Through 
studying basic sciences and mathematics, object behavior can be 
modeled as a function of some input data. Predicted behavior in this 
context is generally the solution to an analysis problem (Eggert, 
2004). 

In the design synthesis activity, information pertaining to the desired 
function is provided, and the resulting solution to the design 
problem is concerned with form. In this case, there are many 
possible design solutions that can satisfy the desired function, and 
therefore design synthesis problems can have more than one 
solution, as they are more open-ended. There is no one structured 
procedure that can guarantee that unique solution. This happens due 
to the fundamental difference between analysis and design synthesis 
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processes. Information about the object of design is ill-structured. 

Research in design methods suggests that designers first generate 
(or synthesize) a design proposal in response to the client’s brief 
statement of requirements. After a proposal is generated, it is then 
checked or analyzed. If the design does not fulfill the requirements, a 
new design has to be synthesized (Cross, 1989). This happens 
through a loop of refinement, which can be very complicated and can 
turn out to be the most time-consuming part of the design process.  
This continuous iteration and evolutionary process can lead to a 
closed loop of decision-making, where refinements in one part of the 
design result in modifications or problems in other parts (Cross, 
1989). 

Minsky suggests the need for an additional mechanism which he 
terms the progress principle (Minsky, 1988). This is an optimization 
activity that guides the search and refinement rather than blindly 
generating all possible solutions. From this combined cycle, design 
could be considered an optimization process, as stated by Simon 
(Simon, 1973). 

   2.2 System Theory  

   2.2.1 System Concepts 

   Papalambros and Wilde (2000) define a system as a collection of 
entities that perform a specified set of tasks. For example, an 
automobile is a system that transports passengers. Schmidt and 
Taylor (1970) define a system as a collection of entities, such as 
people or machines, which act and interact together toward the 
accomplishment of some logical end.  
 
Purposeful action is a key feature of any system. Sage and Armstrong 
(2000) define a system as a group of components that work together 
for a specified purpose. This implies that any system has to perform 
specific tasks that achieve its purposes. Systems are sometimes 
categorized in this context according to their ultimate purposes, 
which could be service-oriented (such as an airport), product-
oriented (such as an automobile assembly plant), or process-oriented 
(such as an oil refinery).  
 
A system is shown to be very perspective-dependent, where 
different components of the system could be grouped according to 
different perspectives to build up different notions of systems (Sage 
and Armstrong, 2000). In the engineering of the system, it is thus 
important to carefully define the nature of the system, its exact 
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scope of components as well as the interfaces to it.  
 
Law and Kelton show that, in practice, the objectives of a particular 
study determine what is meant by a system. The collection of entities 
that constitute a system for a specific study may be only a subset of 
the overall system for another. Law and Kelton thus define what is 
called the state of the system, which is that group of variables that 
describes a system relative to the objectives of a study at a particular 
time (Law and Kelton, 1999). 
 
A system in general has a group of basic characteristics. Any system 
should satisfy certain functions and consist of objects that are the 
physical or abstract parts, elements or variables within the system. It 
also consists of attributes which define the properties of the system 
and its objects, and internal relationships among its objects. In 
addition, any system exists in an environment, such that a system 
consists of a group of entities that affect one another within an 
environment and build up a larger pattern that is different from any 
of those initial entities.   
 
In general a system includes the following features: wholeness and 
interdependence (the whole is more than the sum of all parts), 
correlations, causality, inputs/outputs, chain of influence, hierarchy, 
self-regulation and control, interchange with the environment, the 
need for balance/homeostasis, change and adaptability, and 
equifinality. (Littlejohn 1998). 
 
A useful approach to understand systems is system analysis. System 
analysis was developed independently of systems theory. While 
systems theory models changes in a network of coupled variables, 
system analysis applies systems principles for the purpose of helping 
decision makers with several problems pertaining to systems. These 
include identifying, reformulating, controlling, and optimizing a 
system. Systems analysis takes into consideration diverse objectives, 
constraints, risks, costs, benefits and resources, and works to 
identify possible courses of action.  
 
A system usually operates under causality, where the system tasks 
are performed due to some kind of stimulus or input (Papalambros 
and Wilde, 2000). This implies that these inputs have a significant 
effect on the system behavior. What actually constitutes an input or 
output relies primarily on the viewpoint from which the system is 
examined. Each systems viewpoint in general is based on a specific 
level of knowledge of the components of the system and its internal 
structure, the complexity of the system performance in relation to 
the environment, in addition to other engineering and management 
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issues. A system is analyzed at a specific level of complexity that 
corresponds to the interests of the individuals studying it. 
 
Usually designers perceive given problems subjectively in issues 
related to purpose formulation, and the conceptualization of linked 
system components that operate in constrained environments. It is 
thus significant to identify a system that is relevant and responsive to 
the problem being addressed.  This can be achieved through several 
concepts, such as system-environment boundary, black box 
approach, component integration, and system state.  
 
A system boundary around any subsystem is the entity that cuts 
across the links with the system environment and determines the 
input/output characterization. Figure 2.10 shows an example of a 
building system boundary. 
 
Boundaries are crucial to defining architecture as they identify the 
deliverables and responsibilities of the different design teams, and at 
the same time they define what exactly is fixed or constrained at the 
boundaries. Anything that crosses that boundary must be facilitated 
by an interface. 
 

 Figure2.10: 

The boundary around 
an office building 

system determines 
its relation with the 

environment  

 
 
 
 
 
 
 
 
 
 
 
 
 

   The black box behavioral approach, represented schematically in 
figure 2.11, is used when little or nothing is known about the 
composition of a specific system or its internal connections. The 
system is analyzed in terms of the black box system response to any 
given input, where the system device is considered as an all-
embracing impenetrable black box (Meredith et al., 1985). 
 
In many cases, it may be more suitable and convenient to consider a 
system as a black box system although there may be partial 
knowledge about it. This is due to the fact that in many design 
situations, the relevant and required information is more related to 
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system performance as a whole in terms of the relationships 
between system inputs and outputs, rather than the complex 
interrelationships among internal system components and their own 
individual behavior.  
 

 Figure2.11: 

The black box 
approach identifies 

system performance 
in terms of inputs and 

outputs.  

  
 
 
 
 
 
 

   Once a clear and explicit relationship exists between a group of 
elements belonging to known input variables and another belonging 
to required solution output variables, a systems problem can be 
solved. The behavior of the black box system is depicted and 
analyzed in terms of the changing values over time of both groups. 
There is no need then for the knowledge of the internal structure of 
the system components once the functional performance criteria for 
the input-output behavior have been established. 
 
In most design and engineering problems, the required solution is 
achieved through the construction of a group of physically linked 
components (that can be considered black boxes) that are 
connected in a specific configuration. The system components in this 
case consist of specifically designed and built-in functions and have 
known attributes. The configuration that integrates the components 
together, which denotes the component integration approach, 
determines the intrinsic structure and behavior potential of the 
whole system (Meredith et al., 1985). An important feature of this 
approach is how interrelated problem and solution components 
interact with each other. Aspects of a given problem are sometimes 
a function of how these components interact (Sage and Armstrong, 
2000). This approach is also applicable to design situations that deal 
with work processes and planned sequential actions, and not only 
physically connected components. 
 
In the component integration approach, the whole is not simply an 
aggregation of individual components. From a systems point of view, 
it is important to distinguish between different components or 
subsystems due to the complexity of the system. This is usually done 
by organizing the different components into groups based on 
function or another principle, such as organizing systems into 
hierarchies.  
 
Given that the behavior of a complex system changes frequently 
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over time, systems engineers usually use the concept of the state of 
a system for analysis and modeling purposes. State is a collection of 
variables that can be considered a snapshot of a particular system at 
an instant of time (Sage and Armstrong, 2000). The main interest of 
the state theory approach is the description of the state of the 
system and the detection of changes in the system state according 
to new inputs. The effort lies in describing the internal responses of 
the system in terms of a minimal consistent set of system indicators.  
 
The state vector provides a simple approach to understanding 
system behavior, as it denotes a set of reference variables that give a 
descriptive measure of the system state at any given instant in time 
(Meredith et al., 1985). Each reference variable is known as the state 
variable of the system. The systems view of the state of an airport, 
for example, can include variables such as the number of planes 
waiting to land or takeoff, or the number of available parking spaces. 
The system behavior then depends primarily on the changing values 
of each of these variables, whether they are captured continuously 
or at discrete times along the life of the system. The nature of a state 
variable and the number of entries in the required state vector are 
closely coupled with the purpose being modeled and the complexity 
of the system being formulated. Choosing a set in particular out of 
many variables enables the development of a system description. 
Choosing a different set may allow a totally different system 
description. For example, if the concern in the state of the airport is 
enhancing passenger convenience, this would probably require 
modeling parking spaces. If the concern however is enhancing air 
traffic safety, car parking spaces would not be relevant, and 
therefore would not be modeled (Sage and Armstrong, 2000). 
 

   2.2.2 System Architecture 

   Every system has an architecture, which in essence strongly affects 
its behavior (Crawley et al., 2004). Architecture is significant in a 
variety of disciplines and in many technical fields. The typical 
connotation describes civil architecture of buildings, but the term 
also extends to include physical products, engineering systems, and 
infrastructures, in addition to informational artifacts such as 
software and computer networks.  
  
“Architecture” in Webster’s Online Dictionary is a “formation or 
construction resulting from or as if from a conscious act,” or “a 
unifying or coherent form or structure”.

 

Crawley (2003) describes a 
generic architecture as “the conceptualization, description, and 
design of a system, its components, their interfaces and relationships 
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with internal and external entities, as they evolve over time”.  
 
There are multiple definitions for “architecture” which are largely 
dependent on the context in hand (Hastings, 2004). Different 
disciplines look at architecture from different perspectives. Such 
disciplines include product development, mechanical systems, 
engineering systems and others.  From a product development 
viewpoint, for example, architecture is described by Ulrich and 
Eppinger (2000) to be an “arrangement of the functional elements 
into physical blocks”. In the engineering systems field, system 
architecture is defined by the ESD Architecture Committee at MIT as 
“an abstract description of the entities of a system and the 
relationships between those entities” (Crawley et al., 2004).

 

They 
also state that architecture, which embraces meanings such as an 
“arrangement of entities and relationships between them” or as 
“relationship between form and function”, represents the physical 
embodiment that the designer finds in order to perform the required 
functions of the design problem.  
 
These definitions share many things in common. The basic common 
characteristics of architecture include the description of the system 
elements, the functional character of these elements, and the 
structure of the interrelationships among them. Every discipline, 
however, differs in terms of the specifics of what those parts are and 
how accurately they are connected together. Another characteristic 
involves the development of system concepts, which comprise 
internal form and function, while taking into consideration at the 
same time the holistic view and thinking out of the box (Crawley, 
2003). 
 
Defining an architecture for a system serves many goals, such as 
abstraction, reducing the impact of continuous changes, and 
facilitating communication (Zachman, 1987). An architecture 
abstracts complex systems through describing simple models. This 
abstraction enables the definition and control of interfaces and the 
integration of system components. An architecture also enables 
reducing the impact of changes to fewer steps especially in redesign 
processes. It focuses on parts that require major change. As an 
architecture offers multiple abstract views on the system, it provides 
a means of communication during the design or re-design process, 
where useful discussion occurs to represent the perception of each 
communicating party of the problem in hand.  
 
Perry and Wolf (1992) draw an analogy between system architecture 
and the architecture of buildings. They describe how architecture 
provides multiple views, abstractions, architectural styles, and how 
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engineering principles and materials significantly affect the 
architecture of a building. A building architect’s interaction with a 
client versus a contractor for example, the architect provides 
different views of the building in which there is a focus on some 
specific aspect. He provides elevations and floor plans in addition to 
scale models for the client in order to give him a good impression of 
the building. The contractor however is provided with the same floor 
plans in addition to structural views that provide detailed 
information about diverse design considerations.  
 
Architectures can arise within a variety of mechanisms (Crawley et 
al., 2004). These include the deliberate design of a system from 
scratch, the evolution of a design from previous designs with strong 
legacy constraints, obeying regulations, standards, and protocols, 
the expansion of smaller systems with their own architectures, or the 
exploration of form and behavior requirements through dialogue 
between architects and users. 
 

   2.2.2.1 Form and Function 

   Form 

   The determination of form to satisfy and execute a required function 
represents the essence of design. Eggert (2004) defines form as 
what the product looks like, what materials it is made of, and how it 
is made. He identifies the basic characteristics of the form of a 
product to be shape, size, configuration, material, and the 
manufacturing processes used to make the product.  
 
Form, according to Crawley (2003), refers to the physical or 
informational embodiment that exists or has the potential to exist. 
Form represents the thing that is eventually implemented and 
operated in a solution specific domain. Implementation here can 
include manufacturing, building, writing, composing, etc. Operation 
can refer to running, repairing, updating, etc.  
 
Form can be represented as the sum of elements and structure, 
where elements are segments of the whole of the form, and 
structure denotes the formal relationships among the elements.  
 

   Function 

   Form is intimately related to function. The quotation by the famous 
architect Louis Sullivan, “Form ever follows function”, supports this 
idea that the form of an object is highly dependent upon the function 
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it performs. Similarly function is associated with form and emerges 
as form is assembled, as well as when different sub-functions are 
aggregated together yielding what the whole system eventually 
“does” (Crawley, 2003). 
 
According to Eggert (2004), the function of a product is what it is 
expected to perform. Crawley (2003) defines function as a product 
or system attribute, conceived by the architect, that denotes the 
activities, operations and transformations that cause, create or 
contribute to performance and meet the required goals. Ideally, 
function is expressed in a language that is solution neutral. 
 
There are three fundamental entities, or functional building blocks, 
that compose the media on which systems operate and function 
(Kossiakoff and Sweet, 2002). These are information, material and 
energy. Information refers to knowledge content and 
communication. Material refers to the substance of physical objects, 
while energy boosts the operation of the active system components. 
The physical embodiment of individual functional elements is thus 
usually configured through the construction of material, the control 
of external information, and the power of a source of energy, 
regardless of the primary function and classification. Information can 
be further subdivided into two classes. The first class involves signal 
elements that sense and communicate information, such as radio 
signals. The second class involves data elements that interpret, 
analyze, organize and manipulate information, such as computer 
programs. This results in a total of four functional blocks. System 
functions usually perform a purposeful alteration in some of the 
characteristics of these building blocks. Therefore these blocks are 
considered fundamental for identifying and categorizing the main 
system functional units.  
 
As our main concern is man-made architectures in complex systems, 
it is important to understand that these systems have specific 
primary functions, in addition to other properties known as ilities 
(Crawley et al., 2004) which include adaptability, durability, 
maintainability, flexibility, etc. Primary functions denote the 
immediate value of a product or system, such as flying for airplanes, 
delivering products for companies, and so on. Ilities have life-cycle 
value that describes properties of “performing things well”. 
 
Designing complex systems that accomplish all primary functions 
and all ilities is inherently a complex task. There are often 
compromises that have to be made when it comes to conflicts 
between desirable short-term properties and life-cycle properties. 
The system architecture strongly affects how ilities are achieved, 
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how they internally interact with each other, and how they interact 
with primary functions. These systems will require additional 
resources, leading most probably to increased system complexity, 
which can cast doubt on the benefits of these typical architectural 
decisions. Their results may only be fully known in the future.  De 
Neufville et al. (2004) discuss some methods for assessing such 
uncertainties and relevant precautions. 
 
Another significant factor that can increase complexity is that 
architectures may evolve over time, especially in prolonged systems 
such as infrastructures. Systems vary in their response over time. 
Some systems serve their intended function successfully throughout 
the whole long life cycle. Other systems perform outstandingly with 
time concerning the original function and handle more functions that 
were not perceived in the initial design. Others do not fulfill the 
original function and quickly run out of service, thus being unusable 
for other functions.  
 
System architects should develop systems that can adapt and grow 
within the initial rules and structural arrangements in order to reduce 
the unfavorable severe constraints that are inherited from the 
original conditions. 
 

   2.2.2.2 Architectures of Integrality and Modularity 
 

   Mapping function to physical elements (Form) within hierarchical 
structures is significant in design theory as discussed earlier. Ulrich 
and Eppinger (2000) define two categories of functional mapping 
related to product architecture, which refers to the scheme by which 
functions are mapped to physical elements and the internal 
interactions between those elements are defined. These categories 
are modular architectures and integral architectures. 

The basic characteristic of modular architectures is the relatively 
strong and direct one-to-one mapping of functional elements to 
physical elements. Since the role that interfaces play for each 
function among the different physical elements is well defined, 
modular products become more appealing. Moreover, individual 
physical components can be designed relatively independently by 
functionally decoupling them. Downstream integration throughout 
the design process thus becomes less complex.  

Integral architecture, however, involves a complex mapping of 
functions to physical elements. There is no direct mapping and the 
interfaces of physical elements acquire complex relations to 
functions (Ulrich,1995). The consequent effects of element 
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interactions on functions are hard to recognize, or incidental (Ulrich 
and Eppinger, 2000). Functions in inherently integral products are 
delivered in a coupled fashion, meaning that modifications in a part, 
feature, or sub-element of a product affect the global system 
performance in many functions. The term “inherently integral” is 
used here to refer to products that have many functions shared by 
many of the same physical elements. 

As illustrated in figure 2.12, the lateral lines that run among physical 
elements denote the distributed nature of functions among a variety 
of elements. This is not the case in modular design where there is a 
close match between the functional and physical hierarchies. 

 Figure 2.12: 

In modular 
architecture there is a 
close match between 

the functional and 
physical hierarchies. 

In Integral 
architecture 

functions are 
distributed among a 
variety of elements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

 

 

 Some design theory literature considers modular architecture ideal 
and considers a design to be inferior if designers could not achieve 
modular design. However, what occurs in reality implies that designs 
with integral characteristics can represent a higher degree of success 
and goal accomplishment by their designers (Ulrich and Seering, 
1990; Whitney, 1996) (figure 2.14). In a real design problem, designers 
are faced with many goals to achieve. These goals often conflict with 
each other and cannot all be attained equally well (figure 2.13). 
Resolving those conflicts to a reasonable degree should be 
acknowledged rather than blaming designers for failing to achieve a 
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Figure 2.13: 

An Example of two 
Building Skins with 
one representing a 

modular architecture 
and the other 

representing an 
Integrated 

architecture. 

Project Credit of 
Integrated 

Architecture Skin:   
Anas Alfaris, 

Alexandros Tsamis.   

modular design. 
 
It is important to consider the relevance and use of both modular 
and integral architectures when it comes to the field of research in 
product development. Integral architectures can be deployed in the 
case of simple products (Ulrich and Ellison, 1999) and even in 
complex inherently integral products which do not conform to ideal 
models or where modularity is not desirable. Even when considering 
engineering issues, integral architectures are still relevant. Modular 
architectures are needed, however, and become more relevant in 
situations where strategic issues are included, such as outsourcing 
and new architecture development.   
 
Therefore, in short, the modular scheme can be viewed as one which 
exhibits strategic goals such as additions, adaptation, flexible 
processes, and diversity of production (Ulrich, 1995), due to direct 
mapping. The integral scheme, however, accommodates better 
overall performance at the expense of strategies (Ulrich and Seering, 
1990 ; Whitney, 1996).  
 

  

 

Modular Architecture  Integrated Architecture  
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 Figure 2.14: 

Modular Architecture 
in physical product 

design is not always 
superior to 
integrated 

architecture as is 
illustrated in this nail 

clipper example 
(Ulrich, 1995). 

 

 
 
 

   2.2.2.3 System Structure 
 

   Structure describes the relationships among system objects 
(Crawley, 2003). It can describe connections that take place both in 
form and in function while operating. Connections that are 
descriptions of form include concepts of spatial location, proximity, 
topology, or assembly process. Connections that are descriptions of 
function include flow of information, energy, and material. Products 
and systems are separated from other supporting systems and 
operands by a boundary.  
 
In the next two sections, two main types of structural models will be 
introduced. First a discussion of hierarchies will be presented 
followed by a discussion of networks. Hierarchies represent partially 
ordered sets with more constrained relations while networks 
represent a more general and encompassing term, as they denote 
sets of entities with interconnections.  
 

   Hierarchies 

   Hierarchy theory is an emerging part of the work of researchers in 
different disciplines, such as the economist Herbert Simon, chemist, 
Ilya Prigogine, and psychologist, Jean Piaget (Allen, 1998). It 
descends from general systems theory, and it focuses on 
organization levels and scale issues. Hierarchy theory builds on 
simple principles to organize the behavior and structure of complex 
systems with multiple levels, as illustrated in figure 2.15. 
 
Simon (1973) provides various examples of hierarchy. He mentions 
organizations, but at the same time points out that hierarchy does 
not necessarily imply top-down relations of authority. Simon basically 
sees that problems can be solved more easily when they are 
decomposed into sub-problems whose solutions can be combined 
into a solution to the problem as a whole.  
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 Figure 2.15: 

The structure of 
complex systems can 

have multiple  
hierarchical levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Kossiakoff and Sweet (2002) suggest that a complex system builds 
on hierarchical structures consisting of interacting sub-systems, 
which are further composed of simpler functional entities, and so on 
down to primitive elements, referred to as parts or components. 
According to Kossiakoff and Sweet, any system can be, in practice, 
applicable to various levels of aggregation of complex interacting 
elements. Every system can therefore be a sub-system that belongs 
to some kind of higher-level system, and every sub-system can be 
regarded by itself and its components as a system. 
 
Simon viewed hierarchy as a general principle of not just complex 
structures, but of complexity in general, where he considers it the 
main form of architecture of complex systems (Simon, 1973). He 
argued that hierarchy emerges almost inevitably through a wide 
variety of evolutionary processes simply because hierarchical 
structures are stable (Agre, 2003). 
 
Simon, while reflecting on general systems theory, points out that 
inferring the characteristics of one whole is a complex process given 
the properties of the components of that whole and their interaction 
laws to begin with. He concludes that “an in-principle reductionist 
may be at the same time a pragmatic holist”, thus declaring the fact 
that the whole is pragmatically more than just the sum of its parts.  
 
In this view, sub-systems may be regarded as quite complex on their 
own. They perform similarly to and acquire properties of a system. 
The fundamental difference is that the capability of performing a 
meaningful function requires the presence and functionality of other 
companion sub-systems for the general system to work.  
 
Simon (1973) describes complex problems in terms of hierarchical 
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structures that consist of “nearly decomposable systems”. In this 
concept of near-decomposability, the upper levels in hierarchy 
emerge due to the fact that their corresponding parts are not 
completely separate. The basic structure of this near-decomposable 
nature implies that the strongest interactions occur within groups 
while weaker (but not negligible) interactions occur among groups. 
In these interactions, the short-run behavior of each sub-system is 
almost independent from that of other sub-systems. The behavior of 
any sub-system in the long run, however, depends on the behavior of 
others only in the aggregate sense and not as individual components. 
Simon (1973) describes a variety of systems ranging from business 
organizations to biological systems that exhibit the property of being 
“nearly decomposable”. 
 
One of the basic features of nearly decomposable systems is that 
what connects any element at a hierarchic level with the relevant 
elements at the next lower level is actually the relation of a system 
(as a whole) and its elements (components or parts). Therefore, the 
systematic effect should take place from a level to its next higher 
level. This indicates that elements at different levels have different 
characteristics. When a level is traversed, qualitative change must 
occur. 
 
Two main factors control how a system is perceived in view of 
hierarchical structure: constraints and possibilities. Constraints come 
from upper levels, while limits of possibility come from lower levels. 
To perceive a system hierarchically, one must pay attention to what 
is allowed by upper level constraints as a response to higher system 
purposes. This is due to the fact that the lowest level entities 
become constrained, losing degrees of freedom, and are held against 
the upper level constraint to give constant behavior.  At the same 
time, the mechanisms that define the limits of physical possibility for 
the parts of the system to work as a whole have to be considered. 
Unless there is a distinction between these two factors, the concept 
of hierarchy becomes confused (Allen, 1998). 
 
Hierarchies can generally be classified into nested and non-nested 
hierarchies. Nested hierarchies typically involve upper levels that 
consist of and are made of lower levels, e.g. an army is a nested 
hierarchy which consists of a number of soldiers who make up that 
army. On the other hand, the containment requirement is not that 
strict in non-nested hierarchies, e.g. a military command is a non-
nested hierarchy with regard to army soldiers, as a general does not 
consist of his soldiers (Allen, 1998). 
 
Mathematically speaking, hierarchy is a partially ordered set (Allen, 
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1998). In simple terms, hierarchy implies a group of parts inside a 
whole, containing upper levels that are above lower levels, and 
sustaining a relationship which is asymmetric between both levels. 
These hierarchical levels are occupied by entities which distinguish 
the identity of each level. An entity can reside on any number of 
levels, depending on the relationship between the hierarchical levels.  
 

Hierarchies are typically associated with an ordering, that is a ≤ 
relationship (Magee et al., 2006). This partial ordering can be 
represented through depth of layer or numbered levels for each 

single node in the hierarchical structure. A ≤ ordering contains 
internal cycles. Nodes can have direct edges to their “brother” or 
“parent” nodes. Strict orders (a < relationship) however have no 
internal cycles.  
 
Based on the topology and the relation between entities and levels, 
hierarchies can be classified into three basic types: tree structured 
hierarchies, which are sometimes known simply as hierarchies; 
layered hierarchical structures; and mixed or hybrid trees and layers 
(Magee et al., 2006). 
 
Trees can represent small, medium and large structures in both 
human organizations and engineering systems. Tree structures are 
associated with top-down design. They are hierarchies that represent 
a reductionistic approach to decomposing problems into smaller sub-
problems. Poor decompositions are likely though due to the 
generality of this approach. Tree structures are characterized by 
having exactly one parent in the immediate preceding level. The only 
exception is the root node.  
 

 Figure 2.16: 

A tree with 8 nodes 
and 7 edges or links, 

5 paths from root 
node to bottom or 
leaf nodes, 3 levels  

(Magee et al, 2006). 

 
 
 
 
 
 
 
 
 

   Pure trees are not considered relatively flexible. It becomes difficult 
to make internal changes or get around a non-functional node or 
edge while maintaining the same pure structure. An important 
aspect related to tree structures is that they lend themselves easily 
to competitive environments (Magee et al., 2006). Specific 
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subsystems may be assigned to individuals whose performance is 
judged in relation to others residing at the same hierarchical level. 
Figure 2.16 illustrates an example of a tree structure. 
 

 Figure 2.17: 

Non-standard trees: 
an impure relatively 

complex tree with 
non-standard 

interconnections  
(Magee et al, 2006). 

 
 
 
 
 
 
 
 
 
 

   Layered structures usually have multiple parents rather than just one 
parent in the immediate preceding level. They can also change 
parents readily. Layered systems therefore can attain high 
complexity, as there are many potential interconnections both 
between and within layers. For example, a layered structure with 
multiple layers and no horizontal interconnections can connect to all 
nodes in the layer immediately above or below it (Magee et al., 
2006). 
 

 Figure 2.18: 

Layered hierarchies 
with horizontal 

interconnections 
(Magee et al, 2006). 

 

 

 

 

 

 

   Horizontal interconnections are typical of layered structures and not 
tree structures. They usually support teamwork and cooperation. 
Such interconnections add to the complexity of the nodes and 
consequently the overall system. Layer skipping is not allowed in 
pure layered structures. This does not usually constitute a problem, 
as the system is context aware. Hierarchies do not undergo cycles 
except within single layers. This is considered a modeling limitation, 
however, one cycle could be introduced to allow for feedback 
(Magee et al., 2006).  Figures 2.18 and 2.19 illustrate examples of 
layered structures. Mixed or hybrid tree and layered structures are 
used in human organizations in addition to some technical systems. 
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 Figure 2.19: 

Three layers, a root 
node, 10 nodes, with 

horizontal 
interconnections 

(Magee et al, 2006). 

  

 

 

 

 

 

 

   Networks 

   A network represents a set of items with connections between 
them. The items are known in network terminology as vertices or 
nodes, while connections are known as links. Items can be assigned 
names, sizes and levels of significance, while connections can be 
assigned lengths and capacities.  
 
The basic intrinsic characteristic of networks is their ability to 
represent systems, where the systems consist of items and their 
inter-relationships and connections (Magee et al., 2006). Items can 
be physical, such as locations or individuals, or abstract such as 
processes and tasks. Similarly, connections can be physical, like roads 
between different locations, or abstract, such as information flows 
between processes and tasks. Looking at networks as a whole, 
network representations themselves can be specific, in that they 
identify the different items and the different connections, or 
abstract, where they convey very little about the items or 
connections.   
 
There are numerous types of systems that take the form of 
networks. Examples of such systems include the Internet, social 
networks between individuals, organizational networks, 
transportation networks, and many other types of networks.  
 
In mathematical literature networks are mostly known as “graphs” 
and are considered one of the basic concepts in discrete 
mathematics. Euler's graph in the 18th century is probably the first 
true proof in graph theory which later developed into a substantial 
body of knowledge in the twentieth century (Newman, 2003).  
 
According to graph theory, a graph is a pair of sets V and E, where 
each element of the set E is a two-member set whose members are 
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elements of V. The set V consists of vertices known as nodes. The set 
E consists of edges known as arcs, links or bonds. Edges are drawn as 
lines connecting two vertices at their endpoints. Graphs are mostly 
preferred to be perceived graphically. The following is an example of 
a graph: 

 
V = {a, b, c}, E = {{a, b}, {a, c}} 

 
The significant issue however in graph theory and networks is the 
pattern of connections and not the geometry (Hayes, 2000). These 
patterns include connectivity, resource exchange, and locality of 
action (National Research Council, 2006). Networks have well-
defined connectivity, or connection topology, where each node has a 
finite number of defined dynamic connections to other nodes (figure 
2.20). These connections between nodes exist only if there are one 
or more classes of resources, which are important and meaningful to 
the networked system that can be exchanged among them. This 
exchange of resources only occurs and is effective in local 
interactions, represented in node-to-node interactions.  

 Figure 2.20: 

Networks with the 
same topology  

 

 

   Network theory and graph theory have been used extensively to 
measure networks, discover connections, and determine how the 
flow of information, energy, and material between entities occurs 
(Sterman 2000). The current literature assumes often both identical 
nodes and links. Many authors (Watts and Strogatz 1998; Strogatz 
2001) have studied graph properties to predict the resulting behavior 
if certain nodes are removed, or if control of the network’s paths is 
decentralized.  
 
There are many types of networks, some more complex than just a 
set of vertices simply connected by edges (figure 2.21). Edges point in 
only one direction, and are thus called directed edges.  Graphs that 
consist of directed edges are known as directed graphs or digraphs 
(Newman, 2003), such as graphs representing email messages. 
Digraphs can be either cyclic or acyclic, that is they can contain 
closed loops of edges or not. Edges that connect more than two 
vertices together are known as hyperedges. Graphs that consist of 
such edges are called hypergraphs. Graphs that contain multiple 
edges connecting the same pair of vertices are known as multigraphs 
(Hayes, 2000).  
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 Figure 2.21: 

There are many types 
of networks which 

depend on the type 
of edges connecting 

vertices 
 (Hayes, 2000). 

 
 
 
 
 
 
 
 
 
 
 
 
 

   Graphs can be metric graphs, where links have real lengths and node 
positions obey triangle inequality, or non-metric, which consists of 
just a logical layout. Edges can carry weights to denote strength or 
weakness of a specific relation. All vertices need not be connected by 
edges. Disconnected vertices or components can still constitute 
elements in a single graph. There may be more than one type of 
vertex or more than one type of edge in a given network. Vertices 
and edges may represent different types of associated attributes.  
 

 Figure 2.22: 

Taxonomy of 
networks  

(Magee et al, 2006).  

 

 
   Graphs can also have other properties and types, such as changing 

over time, where vertices or edges appear or disappear occasionally, 
or their values are modified. There is still much to explore about the 
different possibilities and types of networks. Figure 2.22 shows 
different types of networks. 
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   2.2.2.4 Behavior 

   The term “behavior”, according to Eggert (2004) describes how a 
product actually performs. The aim of system design in general, and 
of architectural design in particular, is to achieve the desired 
behaviors that are outputs of functions plus ilities while predicting 
and limiting undesired behaviors.  
 
Large complex systems have behaviors that are usually not 
attributed to their individual sub-components. Some of the behaviors 
are considered to be deliberate and intentionally developed through 
methodical design activity. These behaviors can be desirable or 
undesirable.  
 
Other behaviors are mostly unanticipated and therefore known as 
emergent behaviors (Crawley et al., 2004).  Emergent behaviors are 
very similar to what Ulrich and Eppinger (2000) identified as 
“incidental interactions”. They exist when the system or its 
interactions with the surrounding context are not fully 
comprehended. They can exist due to other unpredictable factors, 
such as future system changes or the difficulty of modeling every 
single system state.  
 
Emergent properties can be desirable or undesirable when thought 
of in retrospect. For example, automobiles were intentionally 
designed for personal transport purposes, but in retrospect, there 
are many behaviors that emerged later on. Unexpected behaviors 
included suburban growth, expansion in shopping malls, and 
developing a sense of personal freedom.  
 

   2.2.2.5 Process of Creating Architecture   

   Creating architectures is an important process in terms of generating 
working systems that fulfill desired requirements in a defined fashion 
within certain constraints (Crawley et al., 2004). Architecture is thus 
necessary to design and understand the behavior of systems. 
Architecture as an “arrangement of entities and interrelationships 
among them” determines a variety of ways in which the system 
behaves. Thus designers can use architecture to create systems with 
the desired behaviors. They can then structure them to facilitate the 
process of design and manufacturing. These processes can be 
conflicting however in some circumstances.  
 
Although architecture is a necessary aspect in complex engineering 
systems, it is still not fully comprehended. There are no algorithmic 
procedures for generating architectures to serve desired behaviors, 
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in terms of selecting elements and linking them together. There are 
also no tools that could identify unintended emergent behaviors 
through looking at the behaviors of individual elements.  
 
A powerful notion of process integration seems to be embedded in 
the definition of architecture, which implies all relationships between 
all system elements. The main focus however lies in determining 
what constitutes a system in terms of components, parts, and 
assemblies, in addition to how these components function and how 
they interfere with each other.  
 
Systems have numerous architectures as well as different 
architectural hierarchies. This can happen because of the way the 
system boundary is defined. It can also happen because the system 
encloses a physical architecture in addition to various virtual 
architectures that catch significant views of system behavior. Most 
of these virtual architectures are consistent with mental models of 
different behaviors. Many representations are required to describe 
systems and their architectures.  
 
As a system, the design system proposed in this thesis will have an 
architecture and will be made up of different parts that perform 
different functions. Within the proposed design system, the system 
can be viewed as being composed of small design cycles. Complex 
processes can be made up of many processes that are themselves 
made up of many other processes. The architecture of the system 
should relate these processes. It also should be comprised of 
modules that have interconnections between them that evolve over 
time. 

The following chapters will attempt to address and answer the 
following questions: How will we decompose the design artifact and 
the design process? How will we formulate the design system 
architecture? How will we model the different design activities? How 
will we integrate the different models into a coherent system? How 
will we use the system to assist in exploring the design space?  
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   3.1. What is Decomposition?  
   I use the term “decomposition” to refer to the act of breaking a 

large problem into a set of smaller problems or elements, whether it 
be a function that must be performed, a physical entity that must be 
designed, a design development stage, or a design cycle .  
 
Smith and Brown (1993) point out that decomposition, where a 
problem is divided into simpler sub-problems, is the prototypical 
means of addressing complexity in design problems.  
 

 Figure 3.1: 
 

Alexander’s 
representation of the 

design problem as a 
network.   

 
 

   The process of creating (synthesizing) or understanding (analyzing) 
the architecture of a system often follows a process of 
decomposition. The basic expectations and assumptions underlying 
decomposition are that (1) each part by itself is easier to grasp and 
understand, and (2) understanding the behavior and interaction of 
individual parts can lead to a better understanding of the system 
behavior as a whole. Whether we are synthesizing or analyzing a 
system, decomposition can provide several useful design views and 
perspectives.   

3. Decomposition 
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Considerable literature exists on the subject of decomposition. The 
principal research in this literature was initiated with the work of 
Alexander (1964) on using networks for representing and 
decomposing design problems according to customer needs. Figure 
3.1 shows a network representation of a design problem. 

In this representation, designs are decomposed (or partitioned) into 
minimally coupled groups. Vertices denote functional requirements 
while edges denote interactions between them. The interaction 
strength between functional requirements is inversely proportional 
to edge lengths. Groups of connected functional requirements 
represent sub-problems that are relatively independent of other 
functional requirements and consequently other sub-problems. 
Clustering in this manner allows for a representation of higher 
interaction within groups and lower interaction between groups. The 
individual clusters containing smaller and relatively independent sub-
problems can then be solved with minimal effect on the rest of the 
design. 

   The two main system structures discussed in chapter two, 
hierarchical and network structures, are used in decomposition. In a 
hierarchical decomposition the structure normally transitions from 
general at the top to specific at the bottom. It continues into finer 
and finer levels of detail until the lower levels become clearly 
defined. A network decomposition on the other hand, comprises 
sub-problems of analogous hierarchies that are directly linked to 
each other. Figure 3.2 shows an example of hierarchical and network 
decompositions.  

 Figure 3.2: 
 

Hierarchical and 
Network 

decompositions. 
 

 

 

   There are several themes along which a design can be decomposed. 
In the previous chapter I discussed how design can be considered as 
an object as well as a process. My focus in this chapter will be to 
represent themes of decomposition that address these two visions. 
As an Object, design can be decomposed into form, function and 
discipline aspects. As a process, design can be decomposed into 
development stages, as well as design activities. In the rest of this 
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chapter, and building on research in design science and system 
engineering, among other fields, I will show models of 
decomposition for each of these themes in some detail, focusing on 
the inherent processes that occur within them. The discussed models 
will provide a foundation for the MDDS framework that will be 
discussed later on. 

 Figure 3.3: 
 

Design 
decomposition can 

consist of object and 
process 

decompositions. 
Object decomposition 

includes Component 
and Aspect 

decompositions, 
while Process 

decomposition 
includes Development 

and Activity 
decompositions 

 

 

 

   3.2. Design Object Decomposition 

   Object decomposition refers to hierarchically related modules, 
where each module represents a subsystem, presented 
schematically as a pyramid whose top is the higher-level system and 
base is the lower level subsystem. Subsystems may correspond to 
physical components, and in this case the decomposition is called 
component decomposition. Subsystems can also correspond to 
functions and the engineering disciplines which contribute to the 
system design. In this case the decomposition is referred to as aspect 
decomposition. 

   The Axiomatic approach discussed in the second chapter, which 
attempts to map functional requirements to physical components, is 
a good design model that describes object decomposition. Object 
decomposition typically occurs in a top-level fashion, where the 
system’s required functions are broken down into subfunctions. In 
parallel the system in its physical form is broken down into 
subsystems that can perform the subfunctions. Decomposition 
continues similarly until it reaches single parts. Throughout the 
process, design and testing of physical components are assigned to 
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different disciplinary parties. This facilitates the synchronized 
development of different parts of the product by these parties. 

   It should be noted however that in system synthesis and analysis, it is 
not typical that designers persistently follow a top-down 
decomposition process to the level of single parts. They can also 
iterate between upper and lower system decomposition levels 
according to what they can potentially learn within the process 
about the implications of some of their architectural decisions. 

   3.2.1. Component/Physical Decomposition 

   Component decomposition breaks down the problem in relation to 
the known physical parts (or components). The hierarchy of this 
breakdown is such that a product’s physical elements are organized 
usually into physical building blocks called chunks. Chunks consist of 
a group of components that execute the functions required for the 
product, as illustrated in figure 3.4. 

 Figure 3.4: 

 Power train 
component 

decomposition.  

 

 

 

 

 

   Some physical elements become more defined, usually with design 
progress, while others are dictated by the product concept. The 
outcome of this kind of decomposition is affected by the themes 
selected for component decomposition, which in turn are influenced 
by the desired functions that should be performed. Figure 3.5 shows 
an example of component decomposition for an office building. 

 Figure 3.5: 

Office building 
component 

decomposition. 
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   3.2.2. Design Aspects Decomposition 

   Aspect decomposition (also known as disciplinary decomposition) 
involves breaking down a problem according to its functions, which 
in turn can be assigned to a specific discipline that can handle the 
different physics of the system. 
The act of decomposing in aspect decomposition is oriented towards 
the different domains of knowledge involved in the design problem 
formulation rather than the physical components. Synthesis and 
analysis of systems are implemented according to specialties by 
decomposing the root node which is populated by a high-level 
function that in turn fulfills lower level technical functions and 
requirements. 
 

 Figure 3.6: 

Office building aspect 
decomposition. 

 

 

 

 

   Aspect decomposition usually divides the design system into well-
defined categories. For example, automobile design is often divided 
into a power train team, an interior team, or a ride quality team, etc.  

   Figure 3.6 shows an example of aspect decomposition in an office 
building. Several functional-aspects affect the system and are the 
subject of evaluation (e.g. lighting, air distribution, heat transfer, 
structural analysis, etc).  

Aspect decomposition, however, may fail to account for disciplinary 
coupling, despite the fact that data exchange may be involved. 

   In practice, both component and aspect decomposition (or 
partitioning) are typically used interchangeably. This is often done in 
an ad hoc manner and is not systematically generated in order to 
reduce coupling or partition elimination.  

   3.3. Design Process Decomposition 

   3.3.1. Design Development Decomposition  

   By design development, I refer to the complex process which 
involves the evolution of new designs of systems, artifacts, projects 
and products over time. This process starts from the moment a need 
for new designs is recognized and a feasible technical approach is 
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identified, and continues through developing and introducing the 
product as a well-formed design.      

   The need to break down this process originates from many factors 
debated among a variety of sources. Kossiakoff and Sweet (2002) 
refer to the large commitments of resources required increasingly 
throughout design progress. They also refer to inevitable risks which 
must be identified and resolved as early as possible. Therefore, by 
decomposing the design development process, the design evolution 
follows a step-by-step approach. In this approach, the success of 
each step is demonstrated, and the basis for the next one validated, 
before decisions are made to proceed to the next phase.  

   3.3.1.1. Design Development Models 

   Design researchers have proposed several models to represent 
design development decomposition. According to Eggert (2004), a 
design evolves through phases from the identification of customer 
needs to the realization of a detailed design.  

Kossiakoff and Sweet (2002) define the development stages as the 
concept development stage, the preliminary development stage, and 
the detailed development stage. In this definition, a design concept 
that is perceived to best satisfy a valid need is initially formulated and 
defined. Through a process of continuous development, the concept 
is finally translated into a validated physical system design meeting 
the operational, cost, and schedule requirements. 

   Pahl and Beitz (Pahl and Beitz, 1996) proposed four phases that 
differ slightly from those proposed by Kossiakoff and Sweet (2002). 
For the first phase, they introduce task clarification, which deals with 
design constraints and gathering information about the 
requirements that need to be embodied in the design solution. They 
define the concept design phase as that where function structures 
are established and solution principles are developed to identify 
concept variants. The embodiment design phase then involves form 
determination and developing a product in accordance with 
technical and economic considerations. Finally, the detailed design 
phase is concerned with laying out materials, surface properties, 
dimensions, form and arrangement. This phase also involves re-
checking economic and technical feasibility, and generating all 
drawings and other production and specifications documents. 

   Some systematic approaches to the development process were 
distilled into specific guidelines. VDI 2221 (VDI, 1985) is a guideline 
which has attempted to encapsulate the available methodologies 
into a working framework. Similar to Pahl and Beitz, VDI 2221 
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suggests four main phases for design development: task clarification, 
conceptual design, embodiment design and detailed design. Other 
engineering design researchers extended the embodiment design 
phase. Dixon and Poli (1995) split it into two phases: configuration 
and parametric design. Dieter (2000) included product architecture 
as an additional phase before configuration design.  

   By looking at the RIBA handbook (1965), a large “plan of work” 
shows 12 strategies in the design development process. These 
strategies, described as logical courses of action, include inception, 
feasibility, outline proposals, scheme design, detail design, 
production information, bills of quantities, tender action, project 
planning, operations on site, completion, and feedback. Another 
simplified version which uses “usual terminology” reduces these into 
briefing, sketch plans, working drawings, and site operations. 

 Figure 3.7: 

Design development 
can be decomposed 
into several stages.  

 

 

 

 

 

 

 

   Although all development phases define a sequence of self-
contained processes, there should be a reasonable “overlap” and 
transition at the boundaries of each phase when it comes to real 
practice. At every step, a decision has to be made as to whether 
“iterative cycles” of these steps should be carried out in order to 
proceed to the next activity within the process. (Black, 1990). 

   Based on the development models discussed above, I will assume 
that design development is decomposed into conceptual, 
preliminary, and detailed design, followed by a phase of 
manufacturing and production (figure 3.7). In the following sections I 
will discuss these main development stages in more detail.  
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   Concept Development  

   The concept development stage involves the necessary analysis and 
planning to understand the needs or requirements for a certain 
product and the ultimate system foreseen to fulfill those 
requirements. Several approaches have been discussed to identify 
the detailed nature of this stage (Sydenham, 2003; Kossiakoff and 
Sweet, 2002; Eggert, 2004).  

The general approach in this stage involves customer or client 
requirements. These requirements are translated into functions that 
should be satisfied by the system or artifact. These functions are 
then synthesized by a team of design specialists into one or more 
design concepts. Several design alternatives or scenarios are 
generated in order to select the best alternative for further 
development. Lower level functional requirements are then assigned 
to specific system components (Ref07). 

   Kossiakoff and Sweet (2002) expand this approach to embrace three 
main subdivisions: the analysis phase, the concept exploration phase, 
and the concept definition phase. In the analysis phase, the basic 
needs and requirements for a new product are defined in a 
continuous search for a “practical approach” that can possibly satisfy 
those requirements. The concept exploration phase tends to 
formulate and validate specific performance requirements for a set 
of potential proposed concepts. This phase focuses on how these 
performance measures address the original requirements and sets a 
valid goal for a new product. This is done for all potential concepts 
before exerting major effort on individual development. The concept 
definition phase looks at key characteristics of the alternative 
concepts and selects the most beneficial in terms of performance, 
estimated cost, development and operational life. After defining the 
functional characteristics of the preferred concept, major resources 
are committed to carry this concept forward to subsequent phases 
of preliminary and detailed development.             

   Eggert (2004) focuses on problem formulation as the key activity in 
the concept development phase. In this approach, greater attention 
is dedicated to understanding the problem, exploring the stated 
needs of the customer, clarifying the expected system performance 
and determining required disciplines. During concept design, the 
performance of alternative concepts or working principles is 
evaluated using simple calculations or physics relations in order to 
choose the best candidate by means of a set of evaluation criteria.  

   This process of design concept synthesis is considered the most 
creative part in the evolution of a design. This is where the designer 
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creates a new concept by use of an impulsive synthesis of intuition 
and previous knowledge, depending on special skills and experience. 

Designers usually view the initial concept design activity as intuitive 
rather than scientific. There is thus very little communication 
between designers at this point, which makes it difficult to extract 
from them any organized information. 

   In order to arrive at a satisfactory concept, an iterative process is 
sometimes required. This includes identifying the overall design 
objectives, defining a concept, gathering data for assigning model 
parameters and design vectors if possible, and gathering information 
on the system structure and operating procedures (Lawson, 2005). It 
is never enough to have one single person or document to perform 
these operations. 
 

   Sydenham (2003) describes some of the methods that are used to 
set a basis of comparison for alternative concepts so that their 
distinguished features may be scrutinized. Some of these include 
mind-maps, rough CAD models, systems dynamics, scenario building, 
and other motivational modeling methods. Sydenham (2003) states 
that development along the concept design phase is best performed 
with top-down thinking initiated by the customer requirements, but 
also informed by some bottom-up knowledge to maintain practical 
possibility. 

   Preliminary/Embodiment Development 

   Although it appears to be easy for design practitioners to define task 
clarification, concept design or detailed design, the definition and 
location of the preliminary design, also known as embodiment 
design, in the overall process structure is not clearly defined (Pugh 
and Morley, 1989).  

   The significance of the embodiment phase arises from its being able 
to bridge between conceptual and detailed activities. The crude 
nature of concept design models does not allow for a comprehensive 
evaluation in terms of cost, time and performance practicality. The 
main contribution of the embodiment phase is the ability to assess 
the feasibility of a candidate design from both an integration and 
implementation point of view (Sydenham, 2003). In this context, a 
better and more realistic understanding about the realization of 
candidate solutions and their practical limitations should be 
achieved. The end result of this understanding should be a definitive 
output, providing a selected candidate that seems outstandingly 
promising. 
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   According to Black (1990), solution concepts are translated within 
the embodiment stage into geometrically precise “layouts” that are 
representational models of the product configuration. This 
configuration contains all the necessary information in terms of 
geometry, material, position and topology for its subsystems and 
components. This allows for the development of a technical system 
that satisfies the requirements of functionality, constructability, cost 
and other factors (Hubka et al., 1988).   

   Eggert (2004) offers a broader definition of embodiment design, 
which refers to configuration design as well as parametric design. 
The configuration design phase is where the alternative layouts and 
configurations are generated, analyzed and evaluated against 
technical and economic criteria in order to select a best candidate. 
Parametric design, however, involves defining values for controllable 
parameters and design variables for the configuration, shape, size 
and material of the design. Using formulas, experiments and 
computer programs, the performance of these designs is analyzed, 
and the analysis results are checked to ensure acceptable 
performance and constraint satisfaction. Otherwise, new 
alternatives are generated with new design variables for another 
reiteration of analysis and evaluation, and so on.  

   Detailed Development 

   The main bulk of the process of engineering the system to satisfy the 
functions and requirements specified earlier in the concept and 
embodiment phases lies in the detailed design development stage. In 
this phase, specialist area engineering designers acquire maximum 
knowledge about the object of design while developing the actual 
nuts and bolts decisions that allow its physical formation (Sydenham, 
2003). 

   This increased knowledge is expressed in the form of highly 
elaborated packages of manufacturing specifications and assembly 
procedures. These include detail and assembly drawings, bills of 
materials, manufacturing process recommendations, and prototype 
performance test results (Eggert, 2004).  In addition, product 
specifications are also key constituents of this phase, such as height, 
width, depth, weight and expected performance. All these forms of 
design output prescribe the physical features of the assembled parts 
that generate the required system when fabricated.   

   Here, design freedom is at its minimum, where it becomes extremely 
expensive and time-consuming to correct any errors or to modify any 
features in the design (Sydenham, 2003). The output of this stage is 
usually irreversible. The project is transformed from the paper or 
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computer model phase to a “cut metal” commitment. There is no 
time to lose on modifications if some features are wrong, and the 
output is otherwise sent to scrap.   

   The detailed development design phase is where all issues of 
reliability, constructability and maintainability, hinted to  in earlier 
phases, are of highest priority. This phase manages the engineering 
change process to maintain configuration and interface control. It 
also manages the integration and testing of the product components 
to function within the system. At the individual component level, this 
phase also guarantees the reliable implementation of all functionality 
and compatibility requirements.  

   The detailed development design phase involves the realization of an 
integrated complex system as a whole consisting of engineered 
components, as well as the evaluation and testing of the system 
operation in a real environment.  

   3.3.1.2. Proposed Design Development Model 

   The design development model proposed in this thesis is concerned 
with setting certain requirements, deliverables, targets and 
milestones for each stage in the design evolution and development.  

The design development model can be decomposed into the three 
design stages mentioned earlier, or it can be divided into many more. 
For example, the three main development stages proposed can each 
be decomposed into several other sub-stages. 

It should be noted, however, that the design development 
decomposition is a description not of the process but of the required 
products of that process. It tells us not how the design team works 
but, what must be produced in each stage. Further, it also details the 
services provided by the design team and therefore can be used to 
determine agreed stages of work which could attract staged 
payments. So the plan of work may also be seen as part of a business 
transaction; it tells clients what they will get, and describes what the 
design team must do. It does not necessarily tell us how it is done 
(Lawson, 2005). This will be discussed in the following section. 

   3.3.2. Design Activity Decomposition 

   In this section, I propose a model of design activity decomposition. In 
order to do so, I will first discuss the definition of design activities 
and their evolution through tracing and reviewing previous models 
of design activities. 
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   3.3.2.1. Design Activity Models 

   Several models and attempts were made during the late 1950s and 
the 1960s to describe the creative problem-solving process in design 
by means of a structured series of phases that define dominant 
activities, such as synthesis, analysis, evaluation, and so on (Rowe, 
1987). Some of these models prescribe what they perceive as a better 
or more suitable pattern of activities and are called prescriptive 
models of design. Others tend to simply describe the sequences of 
activities that typically occur in the design process and are thus called 
descriptive models. (Cross, 1989). 
 

   The primary concern of prescriptive models of design is encouraging 
designers to adopt a specific design methodology while working. 
This is usually in the form of algorithmic or systematic procedures to 
follow. 
 

   On the other hand, the descriptive models of the design process 
simply describe the conventional “heuristic” process of design. In 
this approach, the primary focus is on the synthesis process in order 
to come up with a solution early on, thus reflecting the solution-
focused nature of design thinking. This preliminary solution is then 
followed by analysis against design goals and constraints, and then 
consequently evaluation, refinement and optimization. The analysis 
processes usually point out basic problems in the preliminary 
solution, and so it has to be replaced with another solution, which is 
synthesized and the loop goes on. The endpoint of this process is the 
communication of a new design. 

   RIBA’s model 

   The RIBA Architectural Practice and Management Handbook (1965) 
suggests a prescriptive model in which the design process is divided 
into four phases: assimilation, general study, development, and 
communication, (shown in figure 3.8). The assimilation phase deals 
with the accumulation and ordering of information related to the 
design problem. The general study phase investigates the nature of 
the problem, while exploring means of possible solutions. The 
development phase involves developing and refining one or more of 
the candidate solutions outlined during the previous phase. The final 
phase communicates one or more candidate solutions to people 
inside or outside the design team. 
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 Figure 3.8: 

RIBA’s four phase 
model which includes: 

assimilation, general 
study, development, 
and communication. 

 

 

 

 

 

   Although it may seem from the logically sequential nature of the 
diagram that these phases progress smoothly in the same manner, a 
closer reading reveals quite a different scenario. In reality, there is a 
continuous interaction back and forth between most of these 
phases. A designer can rarely know what information to collect in the 
assimilation phase unless some investigation of the nature of the 
problem is done in the general study phase (Lawson, 2005). 

   Moreover, development and refinement does not ideally progress 
into one solution. Sometimes more detailed refinement requires that 
the designer go back to better understand the problem and gather 
other relevant or unconsidered information in the first place. 
Another common scenario could even take the designer from the 
final phase back to square one, where presenting a fully 
implemented design solution to a client forces the client to go back 
and describe the problem again more clearly.  

   Analyzing this type of design map could reveal innumerable similar 
scenarios. The bottom line, however, is that the designer has to 
collect information, investigate the problem, develop a solution and 
implement it for communication purposes. These activities need not 
be done in that specific order. There can be unpredictable loops 
among these activities, but this model does not specify the nature or 
frequency of these loops.   

   Archer’s model 

   Archer (Archer, 1984) developed a prescriptive model which focuses 
on interactions with the world outside the design process, such as 
client requirements and inputs, the designer experience and training, 
and other sources of information. The output in this model is the 
communication of a particular solution. These inputs and outputs to 
and from the design process are shown as external to the design 
process in the flow diagram in figure 3.9, which also exhibits many 
feedback loops. 
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 Figure 3.9: 

Archer’s model 
includes six types of 

design activity: 
programming, data 
collection, analysis, 

synthesis, 
development and 

communication.  

 

 

 

 

 

 

 

 

   Archer identified six types of design activity within this model: 
programming, data collection, analysis, synthesis, development and 
communication. Programming involves the establishment of 
fundamental issues and proposes a main course of action. Through 
data collection, classification and storage is achieved. Analysis is then 
performed to identify sub-problems, prepare design performance 
specifications and reappraise proposed programs and estimates. The 
synthesis process proceeds to prepare outline design proposals, 
which are developed into prototype designs and prepared for 
validation studies. Finally, the design communication process follows 
through preparing manufacturing documentation. 
 
For Archer design was a sequence of identifiable activities that occur 
in a logical and predictable order and are defined by the type of task 
involved. Although the activities are identifiable, the phasing is less 
discretely defined than in the RIBA Model owing to the strong 
feedback loops and relationships between activities. Archer 
suggested three interconnected domains within this process: 
external representation, process of activities, and the problem 
solver. He therefore demonstrated a distinction between explicit 
behavior and the cognitive realm, where the emphasis always 
remains on the explicit behavior apparent in the sequence of 
activities. 
 
Archer reduced these activities by dividing the design process into 
three broad phases: analytical, creative and executive phases, (as 
shown in figure 3.10). The analytical phase requires objective 
observation and inductive reasoning, while the creative phase, the 
heart of the process, requires involvement, subjective judgment, and 
deductive reasoning. After making most of the important decisions, 
the design process evolves into an execution phase, which involves 
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the objective and descriptive production of working drawings, 
schedules, etc. The design process is described in this context to be a 
“creative sandwich”, where the creative act lies always in the middle 
between layers, thick or thin, of objective and systematic analysis. 
This model therefore suggests a basic structure of synthesis-analysis-
evaluation-refinement. 
 

 Figure 3.10: 

Archer’s reduced 
model with three 

broad phases: 
analytical, creative 

and executive phases. 

 

 

 

 

 

 

 

 

 

 

   Eggert Design Model 

   Eggert’s (2004) model, as shown in figure 3.11, describes four basic 
phases: formulating, generating, analyzing and evaluating. The 
formulation phase includes all activities and decision-making 
processes implemented in order to understand design problems and 
plan their solutions. In this phase, information is gathered regarding 
customer needs and required performance. Constraints are also set 
to determine economic, technical, legal and safety considerations. In 
this phase, detailed engineering design specifications are developed 
to guide decisions downstream. 
 
The generating phase describes the activities and decision-making 
processes used to create candidate designs to be scrutinized later in 
the analysis and evaluation phases. The methods used to generate 
such candidates at the concept design level can include creative 
methods, such as brainstorming and Synectics. The generation 
process then progresses into more developed stages, with more 
defined layouts, configurations, shapes, sizes, materials, or 
manufacturing processes. 
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 Figure 3.11: 

Eggert’s design model 
includes four basic 

phases: formulating, 
generating, analyzing, 

and evaluating. 

 

 
 

   The analyzing phase is concerned with predicting the behavior of a 
design candidate. This is accomplished by preparing engineering 
models using knowledge from the basic sciences and computational 
skills from mathematics to predict the performance of each 
candidate design. This phase determines if the design should 
continue into developing phases or if a reiteration is required. This 
reiteration implies that new values for the design form are selected, 
and then the redesigned candidate is consequently reanalyzed. This 
is illustrated by the solid reiteration loop in figure 3.11. The design 
problem may require a complete redefinition of specification or 
constraints if no appropriate candidates are satisfactory. 
 
The evaluating phase is concerned with comparing the predicted 
performance of each “working” design candidate to determine the 
“best” or optimum design alternative. The evaluation criteria, which 
exist in the engineering design specifications, include performance 
measures such as speed, size, reliability, maintenance intervals, 
power, weight, and cost. New candidate designs can be 
automatically regenerated using some computerized numerical 
techniques in order to enhance overall quality and performance. 
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   In engineering design problems, the value or weight of some 
evaluation criteria may be more significant than others (e.g. strength 
vs. cost). This requires embedding decision-making methods that 
exhibit compromises of candidate solutions, where some 
performance measures can be promoted while the others are 
degraded. In this case, these logical methods, as in the analysis 
process, will replace numerical equation solving. 

   March’s PDI model 

   March (1984) suggested a design process that deals with the 
solution-focused nature of design thinking. As shown in figure 3.12, 
March argued that the two conventionally understood forms of 
reasoning - inductive and deductive - only apply logically to the 
evaluative and analytical types of activity in design. He considered 
synthesis as the type of activity that is most specifically associated 
with design, as it does not entail any commonly acknowledged form 
of reasoning.  

 Figure 3.12: 

March’s PDI 
production, 

deduction, induction  
model. 

 

 

 

 

 

 

 

 

 

 

 

   This model drew on the work of the philosopher Peirce to identify 
this missing concept of “abductive reasoning”. Deduction involves 
proving that something “must be”; induction implies that something 
is “operative”; while abduction suggests the fact that something 
“may be”. In this hypothesis, it is clear that synthesis, referred to as 
what “may be”, is the act significant for the process of designing, 
since it is concerned with generation or production. March thus 
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coined such a reasoning process as “productive reasoning”. His 
model for a rational design process was therefore called the PDI 
(production – deduction – induction) model.  

In this model, the first phase, productive reasoning, draws on a 
preliminary statement of requirements and some presuppositions 
about solution types in order to produce or describe a design 
proposal. From this proposal and established theory (e.g. 
engineering science) it is possible to deduce or predict the 
performance of the design. From these predicted performance 
characteristics, it is possible to evaluate further suppositions or 
possibilities through induction, leading to changes or refinements in 
the design proposal. 
 

   The Function Behavior Structure Framework  

   The function–behavior–structure (FBS) framework by Gero (1990) 
introduces an important formal representation of the design 
process. Three main classes of variables describe aspects of a design 
object within this framework: function (F), behavior (B) and 
structure (S). (F) variables describe what the object is for, or the 
teleology of the object. (B) variables describe what the object does, 
in the form of the attributes that are derived or expected to be 
derived from the object’s (S) variables. (S) variables describe what 
the object is, in terms of its components and their relationships. 

   The FBS framework thus represents the act of designing by a group 
of processes which link function, behavior and structure together, as 
illustrated in figure 3.13. These three aspects are viewed in this 
framework as different states of the developing design. 

   In the general context of designing, a function F (where F is a set) is 
transformed into a design description (D) of a particular artifact that 
can produce this function. The design description takes the form of 
drawings in this case. A preliminary model of this design is denoted 
by: F  D, where    is a transformation. However, no direct 
transformation is capable of attaining this result. Structure (S) 
represents the elements of the artifact and their relationships. 

   Another activity of design is F  S. Similarly, no direct 
transformation between function and structure exists. This therefore 
requires an indirect transformation between function and structure. 
Bobrow (Bobrow, 1984) has defined function as the relation 
between goals of a human user and system behavior. In the design 
process, behavior is regarded in two ways. The behavior of the 
structure (Bs), which is a process of analysis that marks out which 
behaviors to determine, is directly derivable from structure 
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according to the relation: S  Bs. 

   The other view of behavior in the design process is concerned with 
transforming function to expected behaviors (Be). The expected 
behavior provides the syntax by which the semantics represented by 
function can be achieved: F  Be.  

   The predicted behavior of the structure (Bs) can be compared with 
the expected behavior (Be) which is required to determine if the 
synthesized structure can produce the functions, according to the 
relation: Be  Bs, where   is a comparison.  

   Another model of design is F  B, Be  S(Bs). Here, the function is 
transformed to expected behavior. The expected behavior is then 
used to select the design artifact structure based on knowledge of 
the behaviors produced by this structure. Finally, through some 
drafting tools, structure can be transformed into a design 
description, represented by the relation: S  D.  

   Therefore, within this framework, the designer creates associations 
and relationships between these three states through experience. 
Function is assigned to behavior, while behavior is derived from the 
object structure. As mentioned earlier, there is no direct connection 
between function and structure. 
 
Gero highlights eight processes in the FBS framework as shown in 
the diagram, arguing that they are fundamental for all designing. 
Process 1 (formulation) transforms the design requirements, 
expressed in function (F), into the expected behavior to enable that 
function (Be). Process 2 (synthesis) transforms the expected 
behavior (Be) into a solution structure (S) to exhibit that required 
behavior. Process 3 (analysis) extracts the actual behavior (Bs) from 
the previously synthesized structure (S). Process 4 (evaluation) 
compares (Bs) with (Be) to generate decisions regarding accepting 
or rejecting the proposed design solution. Process 5 
(documentation) generates the design description (D) for product 
manufacturing. 
 
Processes 6, 7 and 8 (reformulation types 1, 2 and 3) are the most 
significant types of processes that do not appear in most 
conventional design models. They reflect a different and non-static 
view of the world of designing in the FBS framework. Reformulation 
occurs usually when the behaviors produced by specific structures 
alter the range of expected behaviors and consequently the initial 
functions. It can also happen due to an evaluation which yields an 
unsatisfactory relation between (Bs) and (Be), which at the same 
time cannot be made satisfactory by changing the structure. A 
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change in expected behavior thus occurs in this case. Reformulation 
type 1 is the most explored process, however, as it is evident in 
examples like case-based reasoning (7) and structure analogy (8). 
Some empirical design studies (9) confirm that the reformulation 
type 1 is the prevalent type, while the activity of reformulation in 
types 2 and 3 diminishes but does not disappear during the design 
process. 
  

 Figure 3.13: 

The Function–
Behavior–structure 

(FBS) Framework 
(Gero , 1990) 
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   3.3.2.2. Proposed Activity Decomposition Model 

   Based on the several activity models presented, I will propose a 
simple design activity model that will be the basis for the design 
activity decomposition within this thesis. This model will be 
composed of synthesis, analysis, evaluation and optimization design 
activities and will be organized in a cycle.   

 Figure 3.14: 

Design activity model. 
Four phases are 

included: Synthesis, 
Analysis, Evaluation, 

and Optimization. 

 

 

 

 

 

 

 

 

 

 

   The synthesis and analysis design activities are similar to the 
activities discussed in this chapter and in the previous chapter. The 
optimization activity is based on Minsky’s Progress Principle 
mentioned in chapter two. This activity helps guide the design 
generation.  

This optimization activity is easy to understand if the design has only 
one objective since progress then simply implies making that 
objective better. But when there are many different or even 
conflicting objectives, progress becomes harder to define. An 
evaluation activity is needed to handle the decision process in such 
design problems and to manage the tradeoffs between the different 
objectives. Based on this the design activity cycle will include: 
synthesis, analysis, evaluation, and optimization (figure 3.14). 

   3.3.3. Hybrid Design Process Models 

   For reasons of clarity within this thesis, both development and 
activity process decompositions are treated as two distinct views of 
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the design process.  However, there is a strong relationship between 
both design processes. Several design models were developed that 
attempt to capture that relationship.   

   Asimow’s Model 

   The work of Asimow, an industrial engineer well-known in the 1950s 
and 1960s, illustrates further contribution to the logical structure of 
phases of activities within the design process. Asimow (Asimow, 
1962) described two structures in the design process: a vertical and a 
horizontal structure, (as shown in figure 3.15). 

 Figure 3.15: 

Asimow’s design 
model includes a 

vertical and a 
horizontal structure. 

(Mesarovic, 1964) 

 

   The vertical structure involves a chronological phasing of activities, 
starting from the definition of needs, moving through feasibility 
study, preliminary design, detailed design, production planning, and 
finally production. The overall sequence of activities was viewed by 
Asimow to move from abstract considerations at the beginning to 
more concrete and solid ones further on. Feedback loops were 
integrated between phases for the purpose of tracking information 
or any problems through the whole process and responding 
accordingly. Asimow represented the horizontal structure as an 
iterative decision-making cycle that lies both within and between the 
various phases of activity. This cycle begins with analysis, and then 
proceeds through synthesis and evaluation to communication 
(Rowe, 1987). 
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   Markus and Maver Model 

   Tom Markus (1969) and Tom Maver (1970) produced maps for an 
architectural design process, where they argued that a fully 
integrated map requires both a “decision sequence” and a “design 
process” or “morphology”. They suggest that the decision sequence 
consists of the phases of analysis, synthesis, appraisal and decision, 
which occur at increasingly detailed levels of the design process. 

 Figure 3.16: 

The Markus/Maver 
model includes a 

decision sequence 
and a design process. 

 

 

 

 

 

 

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 It should be noted that some of the terminology and names used to 
describe these activities in this model are different in meaning than 
in other models mentioned earlier, although analogous in their 
terms. Analysis, for example, implies here the exploration of 
relationships and patterns of available information, leading to the 
defining goals and objectives. In this context, it does not map to the 
same definition of analysis in the scope of my research, as it 
corresponds to an earlier activity of problem structuring and 
ordering and information gathering. Synthesis is described in this 
model as the attempt to progress and generate a response or 
solution to the problem. Appraisal deals with the critical evaluation 
of proposed candidate solutions against the goals specified earlier in 
the so-called analysis phase. The appraisal phase in this sense 
corresponds to the conventional analysis phase in most of the 
models mentioned here. 
 
As in most models described earlier, the Markus/Maver model 
accounts for return loops between activities within the process. For 
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Figure 3.17: 
 

The city car project 
demonstrates that a 

design can have 
several decomposed 

views. 

example, if the designer finds a specific solution he had proposed 
during the synthesis activity not fulfilling the required goals, he 
would propose another idea, thus making a return loop in the 
decision sequence from appraisal to synthesis again (figure 3.16). 

  

 

 

 

   3.3.4. Decomposition and Design Views 

  

 

 

 It should be noted that there is a relationship between all 
decomposition views suggested in this chapter. As the design 
evolves it can be decomposed into anyone of the four different 
views discussed in this chapter as illustrated in figures 3.17 and 3.18.  

[ Component
Decomposition ]

[ Development ]
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Figure 3.18: 

In this school project 
several 

decomposition views 
are produced 

simultaneously. 
  

 

 

Project Credits:  
Anas Alfaris,  

Kenneth Namkung 
Meredith Elbaum 
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   4.1. What is Formulation? 
 

   The Webster online dictionary defines formulation as an act of giving 
form or shape to something or of taking form. It can imply 
developing something, something that is formed, the way by which a 
thing is formed, or an arrangement of a group of people or things in 
a prescribed manner or for a specific purpose.  
 

   When synthesizing and analyzing a system, it is hard to identify when 
decomposition ends and when formulation starts or vice versa. In 
fact much of the literature on design does not distinguish between 
both processes.  In the context of the MDDS framework, if 
decomposition is the stage where the designed artifact or system 
and the processes used to design it are broken down into several 
components, then the formulation stage is where those components 
are put together to create the MDDS architecture (figure 4.1).  
 

 Figure 4.1: 
 

Decomposition 
breaks a system into 

components whereas 
formulation puts 

them together. 

 
 
 
 
 
 
 
 
 
 
 

               We must distinguish, however, between the physical embodiment, 
which emphasizes the physical artifact, and the informational and 
design processes, which are oriented towards the design activities. In 
this chapter, we will look at both while focusing on the design 
process in which formulation can be viewed as the process of 
designing and modeling the design process.   
 

   This design process modeling is based on the fact that design 
processes comprise a number of smaller design activities. The design 

4. Formulation  
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process can be modeled by tracing design information exchanged 
between different design activities.  
 

   In addition, at different design phases, there is a need to represent 
different levels of description of an object or to vary its depth of 
decomposition. When setting a building within a site for instance, the 
whole building may be viewed as one single element. Information 
about details such as the building stories, rooms and spaces becomes 
irrelevant. A general representation is thus needed to enable shifting 
between one view and the other in a way that sustains component 
encapsulation (Rosenman and Simoff, 2001). 
 

   Within the MDDS framework, formulation defines the system 
architecture, describes different degrees of abstraction, and 
demonstrates how various design activities are going to be 
connected together through compatible interfaces. An iterative loop 
should link decomposition and formulation to achieve a reasonable 
architecture for this process. 
 

   Formulation in the context of the MDDS framework would typically 
take place before mathematical modeling and software 
programming to avoid major reprogramming later on. It basically 
promotes the interaction among the system architects, design 
specialists and other project members, as well as allowing the 
visualization of control flow and data. 
 

   However, with the large number of constituents and increasing 
complexity of the architecture of individual design activities, the 
need arises to agree on and adopt a generic formulation modeling 
language, notation, ontology or meta-model to describe and plan the 
sequence of applications and interactions, and provide a common 
basis for all the disciplines and parties involved in the process. 
 

   Different tools, notations and methods are needed for the process of 
creating system structures and architectures. Some notations include 
software structural analysis and design, while others deal with 
system engineering build block diagrams or developing data flow 
diagrams; other kinds of notation involve modeling languages such 
as UML and SysML. These notations and many others will be 
discussed briefly in this chapter.  
 

   4.2 Process Analysis and Structuring  
 

   In the process of designing the MDDS design process, it is necessary 
to structure the information and different components extracted 
from the design concept in the decomposition phase.    
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To learn more about how such structuring is accomplished, this 
section will discuss process analysis and structuring techniques in 
general, focusing on the design structure matrix (DSM) as a method 
for complex system structuring.  
 

   One of the early attempts to define structural formulation 
techniques was carried out by Chermayeff and Alexander 
(Chermayeff and Alexander, 1963) who pointed out that there are 
structural patterns pertinent to each problem. They suggested that 
“good design” relies primarily on the ability of the designer to act 
according to these structural patterns. In order to highlight these 
patterns, they proposed a method in the early 1960s that implements 
hierarchical structuring. This method, developed in Alexander’s Notes 
on the Synthesis of Form (Alexander, 1964), enumerates and 
organizes elementary problem statements. 
 

   The structure highlighted by Chermayeff and Alexander identifies 
links between the given problem issues (figure 4.2). The links are 
defined through designer common sense and experience. The links 
affect each other through different patterns. The significance in this 
structure lies in those patterns and not the links as such. The issue of 
patterns was later developed in Alexander’s book A Pattern Language 
(Alexander et al., 1977).  
 

 Figure 4.2: 
 

There are structural 
patterns pertinent to 

each problem 
(Chermayeff and 

Alexander, 1963). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Links between sub-problems are defined in terms of “clusters” or 
groups of related issues that share many connections, as it is difficult 
to consider each and every link due to their large number. This 
grouping becomes significant in the structuring process and is 
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difficult to achieve. It requires grouping issues that are strongly 
related together, while considering that elements in different groups 
need to be significantly independent of one another (figure 4.3). 
  

 Figure 4.3: 
 

Issues that share 
many connections are 

grouped together 
(Chermayeff and 

Alexander, 1963). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Matrix theory has been used in multiple disciplines, such as sciences, 
mathematics and engineering, to represent systems pertaining to 
equations, constraints and state variables. It has also been used in 
design theory within the context of design structure matrices (DSM). 
DSM, also known as N² diagrams, originated from the work of Donald 
Steward (Steward, 1981), who highlighted the use of matrix-based 
techniques for analyzing the design structure of systems. DSM is 
typically used in systems engineering to display component 
interactions (Grady, 1994). 
 

 Figure 4.4: 
 

An activity-based 
DSM for the 

development of a 
soda bottle  

(McCord 1993).  

 
 
 
 
 
 
 
 
 
 
 

   Design structure matrices are representations of complex systems 
that capture system transactions in a simple format and represent 
the relationships between system components, activities or teams in 
a highly visual and analytical format. They are thus useful for 
modeling systems, networks and processes. They are particularly 
useful for defining activity clusters and tracking interfaces, as they 
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capture a snapshot of the flow of information. Figure 4.4 illustrates 
an activity-based DSM for the development of a soda-bottle. 
 
In order to simplify the system interface and enhance the system 
architecture effectively while preserving the functional conditions, 
the structure and conventions of the DSM matrix have to be 
comprehended. A DSM contains identical row and column labels 
representing the same set of architectural elements. The matrix 
reveals the interaction of activities. Reading across rows defines the 
other activities on which a specific activity relies for information; in 
other words it identifies sources of input. Reading down columns, 
however, defines which other activities are provided with 
information from that specific activity; in other words, it identifies 
output sinks.   
 

   For each pair of elements or activities in the matrix, there are two 
squares above and below the diagonal. The cells above the diagonal 
are selected to represent interfaces that have their source on the left 
side of a diagonal square to the top of a lower diagonal square. The 
cells below the diagonal are selected to represent interfaces that 
have their source on the right side of a diagonal square to the 
bottom of a higher diagonal square (Grady, 1994). Off-diagonal dark 
squares denote the transfer of information or activity dependencies.  
 

 Table 4.1: 
 

A taxonomy of types 
of system element 

interactions (Pimmler 
and Eppinger, 1994).   

 
 

Spatial Associations of physical space and alignment; needs for 
adjacency of orientation between two elements. 
 

Energy Needs for energy transfer/exchange between two elements 
(e.g. power supply). 
 

Information Needs for data or signal exchange between two elements. 
 

Material Needs for material exchange between two elements. 
 

 
 

   The order of elements or activities can also be reshuffled with 
respect to the organization of the design elements. This is done as a 
means of reducing cross-element interfaces while also preserving 
functional allocation. This can be performed by relocating a row and 
its corresponding column in the matrix within a different subsystem 
based on the off-diagonal interface count. This will render the 
configuration unchanged, as the interfaces will automatically adapt 
to the new configuration. There are many analysis and reorganization 
tools and algorithms available that automate this procedure (Gebala 
and Eppinger, 1991). 
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The types of interactions that occur in DSM vary from one project to 
the next. Pimmler and Eppinger (1994) suggest a taxonomy for the 
types of system element interactions based on four main types of 
interactions: spatial, energy, information, and material, (as shown in 
table 4.1). These are similar to the type of functions discussed earlier 
in chapter two. 
 

 Table 4.2: 
 

Scale used to 
represent different 

interactions (Pimmler 
and Eppinger, 1994).  

 
 
 
 
 

 Detrimental Undesired Indifferent Desired Required 
Spatial -2 -1 0 +1 +2 
Energy -2 -1 0 +1 +2 

Information -2 -1 0 +1 +2 
Material -2 -1 0 +1 +2 

 Daily Weekly Monthly None 
Frequency of 

Interaction 
    

   They also provide a quantification scheme for these interactions, 
where the square marks are replaced by numbers or colors. Table 4.2 
illustrates different schemes to represent interactions. This provides 
a more comprehensive view of the overall system, as the 
relationships and interfaces between elements are investigated in 
more depth (figure 4.5). 
 

 Figure 4.5: 
 

Application of a 
quantification 

scheme in a DSM 
(Pimmler and 

Eppinger, 1994). 
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   Browning (1998) identifies four different types of DSM, their 
similarities, differences and applications (figure 4.6). These types are 
the component-based DSM, team-based DSM, activity-based DSM, 
and the parameter-based DSM. Activity-based DSM will be 
highlighted, as it pertains to the focus of this thesis, the informational 
and activity-based world rather than the physical world.  
 

 Figure 4.6: 
 

Four different types 
of DSM 

(Browning,1998) 

 

 
   1- Component-Based or Architecture DSM: This DSM is useful for the 

modeling process of component relationships and enabling different 
decomposition strategies.  
 
2- Team-Based or Organization DSM: This DSM is useful for the design 
of organizational structures that consider the information flow in 
design teams. 
 
3- Activity-Based or Schedule DSM: This DSM illustrates in a highly 
visual format the modeling of design process iterations, input/output 
activity relationships, information flow structure, and project 
schedules in multi-activity systems based on activity information 
dependencies, sequences and arrangements. This capability is not 
provided by most conventional PERT/CPM techniques (Browning, 
1998). Experience, historical data and the knowledge of design work 
to the most practical lowest level are all key players when it comes to 
building such a DSM model and prescribing activity sequence and 
project schedule. Designers can effectively control schedule risks by 
understanding which activities rely on and generate which types of 
information (Browning, 1998). 
 
4- Parameter-Based or Low Level Schedule DSM: This DSM uses 
physical design parameter relationships for the purpose of planning 
design decisions and activities.  
 

   4.3 Iteration and coupling  
 

   The process of structuring the components of the MDDS design has 
an effect on the complexity of information flow within the MDDS and 
the time it takes to complete a design iteration.  
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   Iteration is part of any design process. Its significance has been and 
can be defined as the repetition of activities to improve an evolving 
design (Eppinger et al., 1997).  Smith and Eppinger (1996) explain that 
iterations occur for two reasons: the design fails to meet established 
criteria or new information is obtained since a prior iteration. 
 

   There are two types of iterations: intentional iterations and 
unintentional iterations. Iterations are intentional if the design is 
meant to progress to a specific desirable solution. Iterations are 
unintentional if new information that comes late in the process 
affects the design outcomes or results. This can result from fluid 
requirements, design goals and mistakes, or out of sequence 
activities (Browning, 1998).  
 

   In order to reduce the cycle variation and time of design 
development, unintentional iterations have to be minimized. This 
entails making sure that the sequencing of activities is enhanced, 
such that the correct information is available at the right place when 
it is time to perform the activity. It also means that the requirements 
are strongly defined as early as possible, the relevant constraints are 
provided and the mistakes are reduced to the minimum.   
  

   In addition to the tremendous magnitude of information involved in 
each iteration, the interdependency and coupling between design 
activities contributes significantly to the information flow complexity. 
 

 Figure 4.7: 
 

Activity information 
flow and their 

equivalents  
(Eppinger, 1991). 

 

 
   Eppinger (1991) identifies three types of dependencies: serial 

(dependent), parallel (independent), and coupled (interdependent). 
Figure 4.7 illustrates directed graphs of three possible ways in which 
two design activities A and B can be related together.  
 

   An activity is said to be dependent or performed in series if task A just 
requires the output of B (or vice versa). The two activities are said to 
be independent or performed in parallel if activities A and B can be 
done with no interaction between designers. The two activities are 
said to be interdependent or coupled if A requires information from B 
and at the same time B requires knowledge of the results of activity 



 

    The Multi-Disciplinary Design System         99 

Formulation 

A. Organizing and coordinating dependent or independent activities 
is much less challenging and time consuming  than interdependent 
activities. This is due to the typical iterations of information transfer 
and design time required in the process (Suh et al., 1978). 
 

   Figure 4.8 illustrates two activity information flows and their 
corresponding DSM equivalents (Browning, 1998). Through this 
translation, system formulation models can be converted into 
activity-based DSM equivalents.  
 

 Figure 4.8: 
 

Activity information 
flows and their 

corresponding DSM 
equivalents 

(Browning, 1998). 
 

 
   As shown in the previous figure, if the activities are inserted in the 

sequence in which they are to be performed, introducing a sub-
diagonal mark in the activity-based DSM denotes information 
feedforward, while introducing a super-diagonal mark denotes 
information feedback. This indicates a counter-clockwise information 
flow. By resequencing the activities, that is by reshuffling the rows 
and columns of the DSM, a prescriptive DSM is revealed which 
reduces feedback in the process to the minimum. This minimization 
of feedback then gets the maximum possible interfaces below the 
diagonal of the DSM. The remaining feedback super-diagonal 
interfaces, apart from constraints, will be due to interdependent 
activities (Browning, 1998).  
 

   4.4 Process and Formulation Modeling  
 

   Designing the design process introduces technical challenges even 
for relatively well-structured problems. These challenges are the 
result of the large number of inputs that feed into the design activity, 
the huge magnitude of information that is created and transferred at 
various levels and stages, and the complexity of information flow 
within the process.  The main goal of system formulation modeling is 
to capture the complexity of design processes and to work towards 
their improvement.  
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   These challenges demand types of information representations that 
can aid the understanding of the design process and the structure of 
information flow.  Formulation models and notations depend 
primarily on the idea that the design process as such has a similar 
underlying structure in spite of the fact that designs exist in different 
projects. A lot of effort has been made to introduce such 
representations and notations, starting from the early 1920’s 
following the development of process charting theory (Graham, 
2004).  Other efforts involve process engineering and reengineering 
methodologies for supporting the analysis and documentation of 
design and organizational processes (Scholz-Reiter and Stickel, 1996).  
 

   In the following sections, we look at formulation models that 
implement certain notations. These notations are implemented in 
two different disciplines, namely system engineering notations that 
represent the physical artifacts, and software engineering notations 
that represent information activities. 
 

   4.4.1 Network Models  
 

   Network models use a variety of techniques to model design 
activities as networks of discrete-event activities or tasks with design 
information flowing in between. Some features can be added or 
deduced from theses network models such as cost, process time, 
sequence of data flow and transfer, etc. They are usually appropriate 
for the purpose of planning activities or tasks that are serial or 
parallel. Network models are influenced primarily by graph theory.  
 

   Next we will discuss data flow diagrams, functional flow block 
diagrams, and their variations. 
 

   4.4.1.1 Data Flow Diagrams 
 

   A Data Flow Diagram (DFD) is based on Directed Graphs. It stems 
from the software engineering discipline. A DFD is a graphical 
notation of the decomposition of a system. It basically highlights 
data flow between the different functions of a system (DeMarco, 
1979). In such a process, a DFD identifies data transformations from 
input to output (Ward and Mellor, 1985).  
 

   DFDs focus on data flow rather than control. Therefore there are no 
control constructs that explicitly indicate the sequence of the 
processes. A DFD usually defines the content of each and every 
activity and the processes flowing in and out, but does not define the 
sequence in which these activities occur. Identifying time-ordering 
requires another technique. 
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   There are various notations for drawing DFDs, but they usually 
consist of four main symbols: a process or activity, dataflow, a 
terminator, and a data store. Each node in the diagram represents a 
function or activity. Data triggers a process or activity, which in turn 
produces data. A link between two processes represents data flow 
between them. A terminator is a data source or sink located at the 
system boundary. A data store is similar but located within the 
system. The choice of process node location however is arbitrary in 
DFDs. This becomes crucial when there are a large number of nodes 
that could bring disorder to the model (figure 4.9).   
 

 Figure 4.9: 
 

Data Flow Diagram 
(DFD). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   4.4.1.2 Functional Flow Block Diagrams 
 

   Function Flow Block Diagrams (FFBDs) were the first network model 
to be favored by system engineers and continue to be widely used 
today (Blanchard and Fabrycky, 1990). FFBDs define the 
decomposition of a specific system, and at the same time provide the 
logical and sequential relationship between processes, thus the time 
sequence of functional events can be illustrated.  
 

   Each function, represented by a block, occurs following the 
preceding function. Some functions may be performed in parallel or 
alternate paths may be taken. The diagram outlines the control of 
flow between processes and the order in which they are enabled and 
performed. The order can be specified from the set of available 
control constructs. Proper sequencing of activities and design 
relationships are established including critical design interfaces. 



 

    The Multi-Disciplinary Design System         102 

Formulation 

 Figure 4.10: 
 

Function Flow Block 
Diagrams (FFBDs). 

 Decomposition can be applied to define lower-level functions and 
sequencing relationships. This allows for vertical traceability through 
the levels and creates a hierarchical structure, which is a key step in 
developing the system architecture from which designs may be 
synthesized. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   The basic FFBD diagram components consist of functional blocks, 
flow connectors, numbering, referencing, gates, and go and no-go 
paths. Functional blocks represent the system processes. They are 
connected by lines indicating functional flow. Arrows indicate the 
direction of this flow, which is usually from left to right. Numbers are 
used within the blocks to indicate the sequence of processes starting 
from the origin. As FFBDs are developed in a series of levels, a 
numbering scheme is used for each level. This traces functional flow 
between different levels. FFBDs can also contain references to other 
functional diagrams. Control constructs are used to direct the 
direction of flow. They are represented by gates of two main types: 
AND/OR. “AND” gates specify the need for parallel functions to 
satisfy requirements of all connected paths before proceeding. “OR” 
gates have the capability of providing passage if one of the 
connecting paths requirements is satisfied. Figure 4.10 shows the 
flow down structure of a set of FFBDs. 
 
FFBDs provide an overall understanding of the system operation. 
They also point out locations where modification in procedure can 
possibly simplify this operation. What FFBDs do not provide however 
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is information about the type of data flowing across functions. 
Therefore it is a more function oriented rather than solution oriented 
approach (Long, 2002), where there is no specific answer to how a 
function is performed. 
 

 Figure 4.11: 
 

Characteristics of the 
model element 

design review 
(Andersson et al., 

1998). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Over the years a number of variations and developments were made 
on FFBDs. These include Enhanced FFBDs, which provide additional 
representation of data as inputs and outputs to functions (Oliver, 
1994).  Further process characteristics were later added by 
Andersson et al.  (1998), where design information flows were used 
to connect two main model elements: design tasks and design 
reviews. 
 
Process characteristics, such as task cost per unit time (figures 4.11 & 
4.12) and execution time, were introduced to design tasks. These can 
be adaptive to the advance of the design progress. The task 
characteristics were even made to vary with the number of iterations 
involved. For example, the first iteration in a design process, with 
considerable amount of CAD modeling, would require models to be 
created. In subsequent iterations, only modifications need to be 
made. This would result in more flexible and accurate model, and at 
the same time a less time-intensive process with step reduction in 
task time. Such tasks, where execution time changes with every 
design iteration, are modeled as “learning-by-doing” tasks with an 
associated learning curve function (Andersson et al., 1998). 
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 Figure 4.12:  
 

Characteristics of the 
model element 

design review 
(Andersson et al., 

1998). 

 
 
 
 
 
 
 
 
 

   The design review model element illustrates the probability of 
advancing to subsequent design tasks (figure 4.13). Without this 
element the process would retreat back to earlier tasks (Andersson 
et al., 1998). The evaluation of this model element is done using a 
random function. Another relationship is established in design 
review model elements, where the characteristics of the design 
review are a function of the number of iterations. The relationship 
between number of iterations and design review probability can also 
be represented by a “learning-by-doing” function. The method is 
particularly useful for comparing design processes based on the 
global variables of process costs and lead time. 
 

 Figure 4.13: 
 

Design development 
process 

(Andersson et al., 
1998). 

  

 
 
 
 
 
 
 
 

   In the field of software engineering IDEF0 was developed in order to 
represent data flow information. In software engineering models in 
general, functions are executed if there is both a data trigger and an 
enabling by control. A function is said to be triggered if the stimulus 
data becomes available to the function. A function is said to be 
enabled if the preceding function in the control flow specification is 
completely executed. 
 



 

    The Multi-Disciplinary Design System         105 

Formulation 

 Figure 4.14: 
 

Sample Enhanced 
FFBD 

(Long, 2002). 

 
 

   4.4.2 Formulation Modeling Languages  
 

   4.4.2.1 Unified Modeling Language 
 

   UML (or Unified Modeling Language) is a general-purpose, 
standardized visual specification modeling language. It uses 
graphical diagrammatic representation to create an abstract model 
of a system, enabling software developers to model computer 
applications. This model is referred to as a UML model. It is mostly 
used to model structure, behavior, and architecture, even business 
process and data structure. It has introduced a revolution in the 
flexibility of reading and circulating system structure and design 
plans. 
 

   The release of UML open standard by the Object Management Group 
(OMG) in 1997 involved the joint efforts of modeling languages of 
three main system development methods: Grady Booch's Booch ‘93 
method, James Rumbaugh's Object Modeling Technique (OMT)-2 
method, and Ivar Jacobson's Object Oriented Software Engineering 
(OOSE) method.  Together with methods from information systems 
and engineering practices, OMG formed a new modeling language. 
Concepts from many object-oriented methods were also integrated 
with UML aiming at object-oriented support. 
 

   One of the main reasons UML is used as a standard modeling 
language is that it is a language, as opposed to a methodology, so it 
easily fits into any way of doing business without much modification. 
As it is not a methodology, it does not require any formal work 



 

    The Multi-Disciplinary Design System         106 

Formulation 

products. It provides, however, many diagram types that help in the 
understanding of an application under development when used 
within a given methodology.  
 

   In addition, UML is programming-language independent and 
platform-independent. Its tools are used at length in J2EE and .NET 
shops. It has thus enabled software developers to focus more on 
design and architecture due to this stable and common design 
language. Due to the broad and rich coverage emphasized in the 
real-time systems domain, UML is used in many engineering 
problems, such as single process, single user applications as well as 
concurrent, distributed systems. 
 

   UML models are different from the represented set of diagrams of a 
system. A diagram is a partial graphical representation of the model. 
The model at the same time contains written use cases which act as 
documentation that drives the model elements and diagrams.  
 

   There are three main processes involved in UML models: visualizing, 
constructing, and documenting. Visualizing involves using diagrams 
for communicating the model as an idea into an expression in the 
form of diagrams. Constructing uses these visual illustrations in a 
prescriptive manner to build the system. Documenting involves using 
models and diagrams to capture knowledge of the requirements and 
system throughout the process. 
 

   UML Views 
 

   UML defines thirteen types of diagrams which represent three 
different views of a system model. Six diagram types represent static 
application structure; three represent general types of behavior; and 
four represent different aspects of interaction. In the following 
sections I will demonstrate some of these views and diagrams. 
 

   Static structural view 
 

   This view emphasizes the static structure of a system, meaning what 
must exist in the modeled system. This is done by using objects, 
attributes, operations, and relationships. Structure diagrams include 
the following diagrams: class diagrams, object diagrams, component 
diagrams, composite structure diagrams, package diagrams, and 
deployment diagrams.  
 

   A class diagram visually represents the classes, or entities, of an 
application and the relationships between them. It depicts the 
overall static structures of the system. The notation of a class in a 
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class diagram is a rectangle with three horizontal sections (figure 
4.15). The upper section represents the class name, the middle 
section consists of the class attributes, and the lower section 
represents the class operations and methods. 
 

 Figure 4.15: 
 

Sample class object in 
a class diagram 

(Pender , 2002). 

 
 

 
 
 
 
 
 
 

 
   In general, a class diagram contains the following types of elements: 

a class representing a general concept an association representing a 
relationship between classes, an attribute representing the 
knowledge of objects in the class, and an operation, representing 
what objects in the class can perform as operations. Association 
relationships are represented as solid lines if both classes are aware 
of each other and lines with open arrowheads if the association is 
known by only one of the classes. Inheritance relationships, on the 
other hand, are drawn as lines with arrowheads pointing to the 
super class. 
 

 Figure 4.16: 
 

A complete class 
diagram 

(Pender , 2002). 

 
 
 
 
 
 
 

   A component diagram (figure 4.16) shows the implementation of a 
system. It provides a physical view of the system, depicting the 
dependencies that the software has on other software components 
in the system. In general, component diagrams consist of major 
system components and their relationships. Component diagrams 
have the following types of elements: a component representing a 
part of the system that exists while the system is executing; and a 
dependency relationship, which represents that the client 
component consumes or depends on the supplier component. 
Similar to object-oriented methods, component-based diagrams are 
based on principles of abstraction, encapsulation, generalization, 
and polymorphism. The main difference however lies in focusing on 
components rather than objects. 
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 Figure 4.17: 
 

A component 
diagram shows 

interdependencies of 
various software 
components the 

system comprises 
(Pender , 2002). 

 
 
 
 
 
 
 
 
 
 

   A deployment diagram (figure 4.17) illustrates the implementation 
environment of a system. In this sense, both component and 
deployment diagrams are specific types of what is known as 
implementation diagrams. The deployment diagram describes the 
physical deployment of a system in the hardware environment. It 
illustrates where different components of the system run physically 
and how they communicate together, in addition to modeling the 
physical runtime of the system.  
 

   The notation system in a deployment diagram is analogous to that 
used in a component diagram. The concept of a node is added 
however. A node here represents either a physical or a virtual 
machine node. A component that resides on a node is nested inside 
the node. Deployment diagrams have the following types of 
elements: a node representing a resource that is available during 
execution time; and a communication association, which represents 
a communication path between the nodes. 
 
Behavior view 
 
This view focuses on the dynamic behavior within a system, including 
changes to the internal states of objects. It also stresses on the 
collaborative activities and decisions among objects, describing what 
must happen in the modeled system. Behavior diagrams are primarily 
flowcharts and DFDs that are used to acquire the general flow of the 
code. They include the following diagrams: use case diagrams,  
activity diagrams, and state machine diagrams.  
 
A use case diagram (figure 4.19) basically works on communicating 
high-level functions of the system scope. In doing this, it captures 
the functional requirements of a system, thus helping development 
teams visualize those requirements. Use case diagrams are thus 
widely used by software engineers. The diagram is useful in the 
process of describing those functional requirements during the 
analysis, design, implementation and documentation stages. 
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 Figure 4.18: 
 

Deployment diagram 
(Pender , 2002). 

 

 
 

   The use case diagram clearly shows the relationship of actors, who 
represent human beings interacting with the system, to basic 
processes, in addition to the relationships among different use cases. 
It therefore does not provide all the functions required in interface 
management or in defining scenarios, as it relies basically on 
demonstrating human initiated functionality. Typically, a use case 
diagram shows groups of use cases. This is done by either showing 
the complete set of use cases for the whole system, or by showing a 
functionally related group of use cases 
 

 Figure 4.19: 
 

Sample use-case 
diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   An activity diagram depicts the procedural flow of control between 
two or more class objects while processing an activity. An activity 
diagram can model both high-level business processes at the 
business unit level and low-level internal class actions. An activity is 
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essentially modeled by drawing a rectangle with rounded edges. This 
rectangle encloses the activity name. The notation system is similar 
to the state diagram. Activities can either be linked to other activities 
through transition lines, or to decision points. These points then link 
to the various activities controlled by the state of the decision point. 
At the point of termination of the modeling process, an activity is 
connected to a termination point. Activities can optionally be 
grouped into “swimlanes” (figure 4.20). These are used to denote 
the object that in reality performs the activity. 
 
State diagrams, which are also known as statechart diagrams, show 
the lifecycle of a system component. State diagrams model the 
different states or conditions which a class can exist in. More 
importantly, they model the process of class transitioning from one 
state to another. Usually every class possesses a state, but should 
not necessarily have a state diagram. Along system activity, only 
those classes that have three or more potential states are considered 
interesting to model. 
 

 Figure 4.20: 
 

Activity diagram with 
3 swimlanes 

(Pender,2002). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

   State diagrams have the following types of elements: a state which 
represents the condition of a component; an event describing the 
occurrence of message receipt; a transition; an initial state; and a 
final state. As a component is created, it enters an initial state. The 
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transition starting from the initial state is labeled with the event that 
creates the component. As the component enters its final state, it is 
destroyed. The transition to the final state is labeled with the event 
that destroys the component (figure 4.21). 
 

 Figure 4.21: 
 

Statechart diagram 
showing the various 

states that classes 
pass through in a 

functioning system 
(Pender, 2002) 

 
 

   Interactions View 
 

   The Interaction diagram is a subset of behavior diagrams. It focuses 
however on the flow of data and control among the objects in the 
modeled system. Interaction diagrams include the following 
diagrams: sequence diagrams, communication diagrams, timing 
diagrams, and interaction overview diagrams. 
 

   Sequence diagrams (figure 4.22) are primarily interested in the time 
and ordering factor. Widely used among software engineers, 
sequence diagrams show how different physical components 
interact over time. Interaction in this context refers to the exchange 
of messages or calls. Calls among objects as well as different calls to 
different objects can be depicted, all visualized according to time 
sequence. The content of sequence diagrams is concerned with 
specifying the data flow between a subset of system components. 
They can illustrate a detailed flow for a specific use case or a 
segment of a particular use case.  
 
A sequence diagram has two basic dimensions: the vertical 
dimension, which shows the time sequence of messages; and the 
horizontal dimension, which shows the objects involved in the 
interaction, specifically the instances to which the messages are 
sent. Unlike FFBDs, EFFBDs and behavior diagrams, however, 
sequence diagrams cannot characterize control in terms of 
constructs. Specification of control in the sequence diagram notation 
is incomplete and consequently cannot be implemented.  
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 Figure 4.22: 
 

A sample sequence 
diagram 

(Pender,2002). 

 

 
 

   In general, there is no restriction as to the appearance of all UML 
components on any types of UML diagrams. In terms of notation, 
usually the presence of a comment or note is allowed in a UML 
diagram, so that intent, usage, or constraints can be expressed and 
explained clearly. This is traced back to the conventional notation 
system used in engineering drawings. 
 

   4.4.2.2  Systems Modeling Language (SysML) 
 

   OMG SysML™ is a general-purpose graphical modeling language 
characterized by having computer-sensible semantics (OMG, 2007a). 
The main purpose of this language is the identification, analysis, 
design, and verification of complex systems. In a way, SysML adapts 
UML™, which is primarily used for modeling software-intensive 
systems, for the purpose of systems engineering applications. Similar 
to the UML approach in unifying modeling languages in the software 
industry, SysML reuses a subset of UML 2 to unify the wide range of 
modeling languages, tools and techniques currently in use by 
systems engineers. 
 

   The history of SysML goes back to 2001 when the International 
Council on Systems Engineering’s (INCOSE) Model Driven Systems 
Design workgroup decided to customize UML for systems 
engineering applications. Two main bodies, the INCOSE and the 
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Object Management Group (OMG) (which maintains UML 
specification), collaborated as a result and jointly developed with the 
assistance of other groups the specifications for the SysML in March 
2003 (OMG, 2007a). 
 

   SysML uses UML 2.0 and its extensions as its basic foundation. 
Therefore both systems engineers using SysML and software 
engineers who model using UML 2 can collaborate effortlessly on 
models of software-intensive systems. This enhanced 
communication among participants in the systems development 
process advances interoperability among modeling tools. It is most 
likely that SysML will be customized to model domain-specific 
applications, such as automotive, aerospace, communications, and 
information systems. 
 

   Figure 4.23 illustrates the SysML diagram taxonomy, representing 
the concrete notation for the diagrams, together with the 
corresponding specification of the UML extensions. Compared to 
UML, SysML is a smaller language, both in diagram types and total 
constructs, as it reduces many of UML's software-centric constructs. 
This makes it an easier language to learn and apply, and much more 
flexible and expressive. 
 
SysML, like UML, supports allocation tables, a tabular format that is 
dynamically derived from allocation relationships. While UML 
provides only limited support for tabular notations, SysML is 
characterized by flexible allocation tables that support requirement, 
functional and structural allocation. SysML constructs for model 
management extend UML capabilities and support models, views, 
and viewpoints. 
 

 Figure 4.23: 
 

SysML diagram 
taxonomy 

(OMG,2007b) 
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   SysML implements a total of nine diagram types, seven of which 
belong to the original thirteen UML 2.0 diagrams. It adds two other 
diagram types: requirements, used for requirements management; 
and parametric diagrams, used for performance and quantitative 
analysis.  
 

   A requirement specifies a condition that should be met. A 
requirement may specify a function that a system must execute or a 
performance specification a system must achieve. The requirements 
diagram can depict the requirements in graphical, tabular, or tree 
structure format. Other diagrams can also have requirements appear 
on them to show their relationship to other modeling elements. 
Modeling constructs are supplied in SysML to represent text-based 
requirements and their relation to other modeling elements. The 
requirements modeling constructs were developed to bridge 
between traditional requirements management tools and the other 
SysML models (OMG, 2007b). 
 

   Parametrics primarily supports engineering analysis of critical system 
parameters, well known as a crucial aspect of systems engineering. 
This analysis includes the evaluation of performance, reliability, and 
physical characteristics (OMG, 2007b). Parametrics addresses the 
gap in previous modeling languages such as UML, IDEF, and behavior 
diagrams. It also provides a mechanism that deals with problems in 
non-standardized engineering analysis models. Previous non-
standardized engineering analysis models lack the integration and 
synchronization with system architectural models, which specify the 
behavioral and structural aspects of a system, due to the complexity 
and diversity of engineering analysis models. Parametrics integrates 
engineering analysis models with system requirements and design 
models for behavior and structure. It is also represents constraints in 
order to capture other types of knowledge beyond engineering 
analysis.  
 

   With these augmentations, SysML can model many systems, 
including hardware, software, information, processes, personnel, 
and facilities. Principal terminology in SysML parametrics includes 
the following terms: 
 

• Constraints are similar to equations. This is useful in most 
engineering problems. A constraint block defines this 
equation in a way that makes it reusable. A constraint 
property is a specific instance of usage of a generic constraint 
block (for example, supporting engineering analysis of a 
particular design).  

• Parameters represent variables of an equation or a 
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constraint.  
• Value properties represent any measurable attributes of a 

system architectural model or its components that are 
subject to analysis (e.g. mass). Through binding, the generic 
equations are linked to the value properties that specify the 
system and its components. Thus, the value properties are 
said to be bound to the parameters of a constraint.  
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   5.1 What is a Model? 
 

   In general, a model is an imitation or approximate representation of 
a system or of complex functions (Papalambros and Wilde, 2000). It 
is a simplified or abstract view of the complex reality using a physical, 
mathematical, or logical representation of the system of entities, 
phenomena, or processes. It may focus on specific views, thus 
facilitating the understanding and analysis of complex problems 
through decomposition.  
 

   Modeling, as an efficient communication tool, illustrates how 
systems and processes work and induces creative thinking about 
their enhancement. It is used by artists, architects, engineers, 
designers, planners, operations researchers, economists, managers, 
scientists, and others to study, plan, design, or control systems and 
artifacts. The basic concept that these uses build upon is the fact 
that model behavior represents to a great extent that of the system 
or artifact in an abstract and simple manner.  
 

   Modeling usually reduces cost, risk, and flow time of certain tasks. 
Most often modeling remains the sole method to perform tests and 
experiments as it is sometimes unfeasible, costly or disruptive to use 
the actual system or artifact for these purposes (Averill, 2006). The 
system or artifact that is to be modeled might not even exist in 
reality but we may want to propose multiple configurations and 
study different alternatives to find out how it should be initially 
designed. It is therefore important to construct a model and study it 
as a substitute for the actual system (Averill, 2006). 
 

   Models represent a simplification because they extract only the 
highly significant aspects of the real artifact for efficiency, reliability, 
and ease of analysis purposes. Models can replace a specific 
phenomenon in an unknown field with representation in another 
field with which the user is more familiar. Phenomena can thus be 
made simple, many relevant attributes can be extracted, and effects 
can be scaled in space and time to acquire tailored levels of detail 
while maintaining the modeling experimentation convenience. The 

5. Modeling 
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question always remains as to whether the model reflects accurately 
the system or artifact for the purposes of the decisions that are to be 
made. 
 

   Models usually fall into one of two categories, physical or symbolic 
models (Jacoby and Kowalik, 1980). A model is considered a physical 
or material model if the system representation is a tangible and 
material representation (Papalambros and Wilde, 2000), comprising 
model elements made of materials and hardware. These models 
typically include smaller scale versions of real objects, such as a ship 
model, and are basically intended for experimentation, study and 
display (Maki and Thompson, 2006). 
 

   A model is considered to be a symbolic or formal model if the system 
representation is theoretical or symbolic, and conducted by tools 
developed primarily for abstraction purposes, such as drawings, 
logic, mathematics or verbalization (Papalambros and Wilde, 2000). 
A building blueprint is considered a pictorial symbolic model. Words 
connected with logical statements form complex verbal symbolic 
models. Computer languages are an extension of these ideas as well 
(Papalambros and Wilde, 2000).  Here we are concerned with 
symbolic models and specifically mathematical models. These are 
models that can be implemented in a computer environment. 
 

   5.2 The Mathematical Model 
 

   A mathematical model is a formal model that comprises symbols, 
assumptions about the symbols, the relations among the symbols, 
and connections between the actual model and these symbols and 
relations (Maki and Thompson, 2006). Within a design problem it 
consists of a set of quantitative and logical statements that 
represent relevant features of a specific artifact or system in terms 
of mathematical concepts, symbols and language including variables, 
parameters, and relationships such as equations and inequalities 
(Jacoby and Kowalik, 1980; Maki and Thompson, 2006).  
 

   A mathematical model becomes a computational model as soon as 
its associated equations are coded into a computer program where it 
can be studied numerically and graphically (Maki and Thompson, 
2006). Simulation, as one of the applications that involves intense 
computation, deals primarily with the process of designing a model 
of a system and conducting experiments on that model. The 
relationships in the model are manipulated to observe how the 
model reacts, and how the system would eventually react 
accordingly if the mathematical model were valid (Averill, 2006). This 
allows for testing hypotheses at a much lower cost than actually 
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performing that activity in reality. 
 

   If we assume the output of the system is y, the input is x, and f is a 
mathematical function that calculates a value of y for each value of x. 
Then the following equation is a mathematical model of the system: 

y=f(x) 

   This representation is merely symbolic. The actual function can be a 
system of algebraic or differential equations or a computer-based 
subroutine. In order to provide a mathematical model of a design, it 
has to be fully defined through assigning values to every single 
involved quantity. These values have to satisfy the mathematical 
relations that represent the performance of a specific task 
(Papalambros and Wilde, 2000).  
 

 Figure 5.1: 

Block diagram 
representation of a 

mathematical model. 

 

 

 
   We also can represent this mathematical model of the system using a 

block diagram representation (figure 5.1). If a set of relations 
representing the physical system mechanism were enclosed in a 
block or box that could be only approached through input and 
output terminals, that box is known as a closed box (Jacoby and 
Kowalik, 1980). It is impossible to tell apart from other boxes that 
can generate the same outputs from the same inputs. By adding 
input or input terminals, these boxes can be made more “open”, 
that is to say they can be made distinct from each other. The only 
difference then between an open and a closed box is a quantitative 
and not a qualitative difference, as the number of added terminals 
affects the closed and open nature of that box. 
 

   5.2.1 Elements of mathematical models 
 

   Mathematical models generally consist of a model interior, a 
boundary, and a group of boundary and initial conditions that 
represent aspects of the artifact environment relevant to the 
modeling experiments.  
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   The boundary and the set of boundary and initial conditions 
represent aspects of the system and artifact environment that relate 
to the modeling experiments. The model interior on the other hand 
is mostly structured and comprises interconnected components that 
represent parts of the artifact or system. Overall, the model interior 
includes variables, parameters, constants, mathematical relations, 
and algorithms. 
 

   Variables represent different system states by assuming different 
values that are possible within an acceptable range. The solution we 
usually seek for the model experiment consists of the values of the 
variables satisfying the modeling expressions. The choice of variable 
types depends on the system we are dealing with.   
 

   Parameters represent fixed quantities that are assigned one 
particular value in a particular model experiment but may 
nevertheless be changed from one experiment to another. They are 
assigned and fixed by the model application and not the underlying 
phenomenon.  
 

   It is important to distinguish especially in the modeling stage 
between variables and parameters. Variables that are fixed in a 
particular modeling experiment are considered parameters. 
Selecting which quantities will be assigned or categorized as 
variables or parameters is a subjective decision. It is basically 
determined by selections in hierarchical level, boundary isolation, 
and intended use of the model (Papalambros and Wilde, 2000).  
 

   Constants are quantities that are fixed and assigned by the specific 
phenomenon and not by the model statement. They are usually 
natural or design requirement quantities that cannot be affected or 
changed by the designer.  
 

   Mathematical relations, such as equations or inequalities, merge the 
variables, parameters and constants together. The most difficult part 
of modeling is the issue of stating these relations which aim to 
describe the system function within the conditions and constraints 
set by its environment (Papalambros and Wilde, 2000).  
 

   Algorithms are broadly defined as step-by-step procedure for solving 
a problem or achieving some end (Daffa', 1977). The words algorism 
and algorithm stem from Algoritmi, the Latinization of the name of 
Al-Khwarizmi, a Muslim mathematician born around 780. The name 
was later modified from the Arabic name to Medieval Latin 
algorismus, then to Old French & Medieval Latin, then to the Middle 
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English word algorisme, which was later altered to algorithm. 

   Algorithms may be expressed differently according to the medium 
where they are tackled. Algorithms can be computed by either 
humans or machines, so they are not machine-dependent. An 
algorithm can take the form of numbers, verbs, actions and drawings 
in the case of humans, while it takes the form of numbers in 
computers. 
 

   Finding an algorithm that can solve a given problem effectively has 
long been difficult for mathematicians and eventually led to the 
theory of computability by Turing in 1936 (Kalay, 2004). This difficulty 
proved not only a matter of which problems lend themselves to 
mechanical or computational solutions, but also of finding the most 
effective algorithm to solve these problems. The algorithm must 
accomplish its designated task within a sensible time frame and 
using reasonable computing resources. 
 

   Some problems are appropriate for either iterative or recursive 
implementations. The process of iteration in general can describe the 
repetition of any process within a computer program. It can also 
describe a particular form of repetition with a variable state. 
Repetitive constructs are employed in these iterative algorithms, 
such as loops and often some additional data structures such as 
stacks, in order to solve the given problems.  
 

   Recursive algorithms, a method common to functional 
programming, describe those algorithms that call or refer to 
themselves continuously and repeatedly until a specific condition is 
met. The strength in using recursion lies in the ability to define an 
infinite set of objects by a finite statement and an infinite number of 
computations by a finite recursive program even if it does not overtly 
contain any repetitions (Wirth, 1976).  
 

   In computers, algorithms are usually executed in three ways: serial, 
parallel or distributed. Serial computing is where algorithms are 
computed by a processor only one at time sequentially. In parallel 
computing, algorithms are computed simultaneously by more 
processes, thus requiring the algorithm structure to enable such 
computing. The third type of algorithms, distributed algorithms, can 
use several computers connected through networks.  
 

   5.2.2 Constructing Mathematical Models 
 

   This section is concerned with the scope of the modeling process 
which generally relies on the project objectives, performance 



 

    The Multi-Disciplinary Design System         122 

Modeling 

measures, availability of data, credibility concerns, computer 
constraints, time and money constraints, and the time frame for the 
study and the required resources. The scope of the model is also 
highly dependent on and driven by design intent which is the group 
of objectives that a certain system or artifact expresses or helps 
realize. This is categorized into two main classes: quantifiable design 
intents and qualitative design intents. Quantifiable design intents can 
be identified, expressed and managed easily as their performances 
can be measured numerically, whereas qualitative design intents 
cannot. It follows that defining the scope is extremely reliant on the 
model developer and designer.  
 

   Many experts are required for successful model construction. It is 
important to be able to identify those aspects of the design problem 
that are relevant to answering questions about the artifact or system 
behavior in a real world situation. Usually this is done by individuals 
who are knowledgeable and familiar with the origin of the design 
problem and the involved discipline. These individuals and model 
developers are the ones who initiate the first steps in model building. 
They do this by closely studying the system and its conditions in 
detail and recognizing analogies to other conditions before moving 
on to basic assumptions about the problem under study. The intent 
is to define the boundaries of the models, which is an important 
challenge in model construction. It involves primarily selecting the 
elements to include, the features and attributes to consider, and the 
level of detail.  
 

   Selecting the level of detail of a model is not an easy task; it is rather 
an art. The ultimate limit of the model detail tends to mimic exactly 
the artifact or even become the artifact itself. This limit can be 
achieved in very few design situations (Jacoby and Kowalik, 1980). 
One good practice is to start with a relatively simple bounded scope 
that comprises the most basic elements of the system and then add 
more layers of detail or new elements according to the accumulated 
understanding developed along the process. This way models start 
as rough estimates of reality and then progressively reach the 
complexity of the studied system or artifact.  
 

   The intent underlying the mathematical model is usually guided by 
the intent that it represents and the purpose it serves. This is mainly 
a challenge as it is an economic decision which is based on model 
developer experience with no magical recipe. There is often no need 
to model each and every aspect of the system in order to make 
effective decisions, as this could result in high model execution time, 
or conceal valuable system or artifact factors. Level of detail is not 
usually analogous to higher-fidelity models, as some models are 
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better broken to certain combinations to guarantee execution speed 
and a degree of specificity. The aim is to make the design problem as 
simple and accurate as could be through a process of simplifications 
and approximations. This is done by eliminating information that is 
not necessary and simplifying the necessary information as much as 
possible, and thus not all the detail of the real world has to be taken 
into account and fewer objects and processes can be dealt with 
(Maki and Thompson, 2006). 
 

   Another key step is identifying the operative processes at work with 
the goal of expressing them symbolically. This process often 
demands high levels of creativity where all the quantities and 
processes are represented through mathematical operations and 
symbols. At the same time, it determines the validity of results, as 
the unsuitable mapping between the real and mathematical worlds 
could lead to results that are not that useful. It is therefore 
important to observe that the mathematical operations are error-
free. This is done by observing that there has been no significant 
omission in the step from the real world to the mathematical model 
and that the mathematical model reflects all the necessary aspects 
of the real model. Ideally everything observed should be accounted 
for in the mathematical conclusions, and all the predictions would 
thus be verified by experiment. This does not typically occur, 
however, especially if it is the first attempt. The usual situation is that 
some of these conclusions agree with the experiment outcomes and 
some do not. Every step in the process has to be scrutinized again in 
this case (Maki and Thompson, 2006). 
 

   Usually the whole process operates iteratively through continuous 
refinements until an acceptable model is generated. The outcome is 
not necessarily a unique mathematical model, but it is shown that 
some of the several generated models can be distinctly better than 
the others. It may also occur that a number of models turn out to be 
useful for the same situation, where each model contributes to one 
but not all aspects of the problem under study. There is therefore 
not necessarily a “best” model. Choosing the model to use relies 
basically on the exact questions of the study (Maki and Thompson, 
2006). 
 

   A model is generally judged by its performance in the tasks it was 
originally intended for, whether the model was designed to explain, 
predict or facilitate decision-making. In the case of explanation, the 
model is judged by its ability to offer a suitable description of the 
observed phenomena. In the case of prediction, it is judged through 
the degree of precision of the predictions it was based on. In the 
case of decision-making, it is judged by the efficiency and precision 
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of decisions it was based on, in comparison to decisions that are 
based on other criteria (Maki and Thompson, 2006).  
 

   Once the model and a mathematical structure are defined 
programming and computer software can be used in order to 
simulate the situation under study. Graphical and numerical output 
can be generated through simulation over different sets of 
conditions or relations of interest. That output is then evaluated, and 
the results are utilized to conclude about the situation under study 
or make a specific decision. The primary concern of this evaluation, 
however, is how representative the output is. 
 

   5.2.3 Types of Mathematical Models in Design 
 

   Coyne et al. 1990 have written that “In modeling design we do not 
attempt to say what design is or how human designers do what they 
do, but rather provide models by which we can explain and perhaps 
even replicate certain aspect of design behavior.”  
 

   To model a design mathematically we must be able to define it fully. 
Designers and engineers regularly utilize mathematical models to 
perform typical design activities. These activities include generating 
one or more physical configurations, known as synthesis. They also 
include studying the performance and behavior of these 
configurations through engineering and science which is known as 
analysis. Designers and engineers then have to make design 
decisions about the results, which is known as evaluation. Finally 
they have to devise mechanisms for searching for the best 
alternative(s), which is known as optimization (Papalambros and 
Wilde, 2000). With a powerful tool like modeling, complex systems 
can be synthesized, analyzed, evaluated and optimized. 
Mathematical models are especially well-suited for design due to 
their flexibility and ease of modification (Jacoby and Kowalik, 1980). 
 

   Synthesis Models 
 

   Configuration synthesis, a unique and open-ended attribute of the 
design process, is well known to be the most significant and 
innovative part in design evolution. The synthesis process comprises 
decisions involving the overall arrangement of parts, how they can 
be assembled together, in addition to geometrical forms, kinds of 
motion, force transmission, etc (Papalambros and Wilde, 2000). It 
also enables the fulfillment of requirements by generating physical 
and informational structures, including machines, software, and 
organizations (Suh, 1990).  
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   Although this process has historically been one that required human 
ingenuity and skill, many researchers have attempted to structurally 
formalize it, aiming at achieving shorter design cycles and more 
robust solutions. With the introduction of computers, formal design 
methodologies and structured algorithmic descriptions, automatic 
design synthesis can be accomplished computationally. This 
computational approach has the advantage of managing and 
tackling problems that are not open to solution by humans. 
 

   Analysis Models 
 

   Analysis models are developed according to principles of engineering 
science (Papalambros and Wilde, 2000). These models, which 
incorporate different analysis results, are constructed with the 
purpose of predicting the overall performance of the design. In the 
analysis process, engineers usually construct a descriptive 
mathematical model. This model constitutes a hypothesis and 
estimate of how the artifact could possibly work, or how 
unpredicted events could affect that system or artifact.  
 

   Evaluation Models  
 

   Evaluation models aid the process of selecting good designs that 
constitute a compromise of several different requirements. This 
means that a design can be altered to create different alternatives 
with the ultimate goal being to choose the most desirable 
alternative. A decision has to be made once there is more than one 
alternative to choose from. 
  

   The model helps provide a clear explanation, prediction and a 
foundation for objective decision-making. The rational selection of 
an alternative requires a criterion which helps evaluate all 
alternatives and rank them according to best fit. The criterion used in 
such models is known as the objective of the model (Papalambros 
and Wilde, 2000). It is not unique, however, and its selection will be 
affected by a variety of factors. These include the design application, 
timing, point of view, the designers’ own judgment, and the position 
of the individual in the hierarchy of the organization (Papalambros 
and Wilde, 2000). 
 

   Optimization Models  
 

   This type of mathematical model enables moving from one 
configuration to the other in the ongoing search for better solutions, 
but more importantly it is established with the aim of control and 
guidance.  
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   Optimization techniques are often used to determine potential 
design configurations by optimizing them according to the functional 
objectives and requirements developed in evaluation models. The 
solution to the problem is generally developed through solving the 
mathematical model which consists of an objective function that is 
to be optimized, and a group of constraints that act as resource 
limitations (Bahrami and Dagli, 1994). Optimization usually offers 
crucial solutions in situations where design problems can be 
formulated according to the objective and functional requirements. 
In this optimization process, simulation can be used in computing 
variables of the design vector. If not appropriate, variables of the 
design can be altered and the process is then repeated. 
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   5.3 Synthesis Models 
 

   5.3.1 What is a Synthesis Model? 
 

   Historically synthesis has been a human effort that usually required 
skill and creativity. Through several attempts to shorten design 
cycles and achieve more robust solutions, design synthesis processes 
have been formalized. In the computer age, formal design 
methodologies, together with algorithmic descriptions, could be 
used to obtain automatic design synthesis computationally and 
handle problems that that may exceed human capabilities.  
 
According to specific user needs and technical limitations, analysis 
and synthesis models and algorithms have evolved fully 
independently of each other although they are very closely related. 
Both fields are crucial to the design of complex systems, as design 
solutions are only identified through synthesis mechanisms, while 
there is no scientific basis for any of those solutions without analysis. 
 
Synthesis models gain strength from being able to generate 
solutions that may be unpredictable or surprising, even to the 
designers themselves. These unpredictable solutions may be either 
beneficial or not. The interesting notion, however, is that synthesis 
models exhibit inherently a theoretical interest as they challenge the 
basic principles of the designer-machine relation. This can lead to 
results that are mostly outstanding and better than intended. 
 
Synthesis models are primarily based on the fundamental concept of 
computation, where input information is operated on by functions in 
a computer which follows some algorithms to generate some sort of 
output. These models rely on analyzing specific design processes and 
programming them into computers. By developing shape 
manipulation algorithms, designers can use computers to generate 
many shape configurations. Designers use these systems to explore 
formal design concepts, describe the generated forms via computer 
algorithms, and ultimately use the algorithms as design tools for 
developing product forms. 
 
In general, generative synthesis algorithms present a powerful 
formalism that can generate solutions within the design space 
defined by the system design language. By using these generative 
synthesis algorithms, computers become powerful design assistants 
and go beyond their traditional roles in design such as drafting, 
visualization or analysis. By embedding various performance 
requirements from the different design disciplines in the synthesis 
algorithm, many multidisciplinary alternatives can be created, thus 
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minimizing the search space and leading to feasible solutions. 
 

   5.3.2 The Synthesis Model Structure 
 

   Synthesis models are constructed via a number of components and 
modules that represent operations and algorithmic procedures. They 
also require a type of representation, specifically for the geometric 
attributes of the artifact. The input to the synthesis model is a design 
vector. Both the design vector and the structure of the synthesis 
model affect the nature of the solution space. Within the MDDS 
framework the synthesis model is expected to output a solution and 
certain attributes that then become the input to the analysis models 
(figure 5.2). 
 

 figure 5.2 : 
 

Expected input and 
output of the 

synthesis model   

 

 
 

   5.3.2.1 Algorithms in design 
 

   An algorithmic approach to design is a systematic encapsulation of 
design thinking to express the design process. A design algorithm is 
an articulation of either a strategic plan for solving a tractable 
problem, or a stochastic search towards possible solutions to an 
intractable problem (Terzidis, 2006). Describing design processes 
through procedures is a rationalization process. These descriptions 
require clearly defined objectives and design languages (Yessios, 
1975). 
 
Design can be expressed via different representations, and so are 
synthesis algorithms. Some algorithms are better expressed as 
numbers while others are better presented graphically.  
 
As discussed previously, design is implemented in an iterative 
process.  A specific type of iteration is known as recursion. Recursion 
is a form of repetition of a local condition where iteration is a more 
general repetition.  
 
Recursion algorithms are typically known as those that “call” 
themselves until a stopping condition is found. Repetition should not 
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be viewed as the reappearance of elements or attributes, but rather 
the re-implementation of algorithms. A famous example of a 
recursive algorithm is the Koch curve (Mandelbrot, 1983) (Figure 5.3). 
 

 Figure 5.3: 
 

Koch curve is a 
recursive synthesis 

algorithm 

 
 
 
 
 
 
 
 
 
 

   As stated earlier, designing via algorithms is a rationalization process 
which forces designers to structure their thinking around causal 
relationships and the sequence of tasks. This process can be used to 
devise new designs as well as express existing ones (figure 5.4). 
 
Structures of algorithm vary based on the design problem at hand. 
The most important fact is that the problem must be describable. 
Mapping methodologies of problem components, from mere 
information to algorithmic procedures within the synthesis model, is 
a design skill. 
 
Using Synthesis algorithms, concepts and processes that are seen as 
inconceivable, unpredictable, or simply impossible by a human 
designer can be explored algorithmically by computers. However, to 
achieve their intended goals, synthesis algorithms must be time 
efficient, deployed within a tractable scope, and implemented to 
achieve clearly described design intent. 
 

   5.3.2.2 Parameters 
 

  
 

  

 In mathematics, parameters represent constants in equations that 
vary in other equations of the same general form. For example, in the 
equation of a curve or surface, parameters can be varied to 
represent a family of curves or surfaces. In geometry, parametric 
equations define shapes (curve, surface, etc.) without assigning 
direct connections between the coordinates of its points, but rather 
by expressing these coordinates in relation to one or more 
independent  parameters (figures 5.5 ).   
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 Figure 5.4: 
 

An example of a 
synthesis algorithm 

that generates 
variations of 

components that 
create a structure. 
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Figure 5.5: 
 

A space truss is 
generated using a set 

of parameters   
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   The computer science implementation of parametric equations 
requires those parameters to hold values before performing a 
computation. For example, describing a shape with equations is not 
enough to generate a graphical representation of it. 
 
Describing relationships in terms of parameters is referred to as 
Parameterization. Since parameters are expressed in numerical 
values, anything that can be represented by numbers can be 
parameterized. Parameters can be variable or be fixed. Parameters 
can be driving numerical values, or a set of algorithms, or geometric 
elements. They can also be dependent or independent. Dependent 
parameters are those explicitly defined in terms of other elements. 
Independent parameters are those that require direct input.  
 
Parameters can act as an interface between input methods and the 
internal model components. In a synthesis model, parameters may 
represent value ranges, Boolean conditions, strings, or even 
algorithms. In this sense, any design component can be 
parameterized. 
 
Parameters offer control over equations, artifacts properties, or 
even calculations. This provides the designer of the synthesis model 
with the ability to manipulate the embedded algorithms and 
generate a variety of solutions.  
 

   5.3.2.3 Design Relationships 
 

   We established that synthesis models are structures of operations 
and algorithms that drive the generation of artifact designs. These 
designs should facilitate, perform or express a set of clearly defined 
design intents. These models can be controlled via parameters that 
expose the model’s internal components allowing for control over 
models behaviors. However, parameters do not provide control 
constructs within an algorithm. Relationships are ways to control the 
behavior of the synthesis model. Relationships include: associations, 
constraints and rules. 
 

   Associations  
 

   Earlier we introduced the concept of independent and dependent 
parameters. Designers can set relationships within a model to 
generate internal feedback loops. Communication among synthesis 
model components is possible through associations. Associations 
enforce relationships between components such that one drivers the 
other. For example, a relationship that expresses the value of X = 
Y+1, is a relationship that associates the value of X to be always 
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higher than that of Y by one.  
 
Associations can generally be viewed as two types: bi-directional and 
mono-directional. Bi-directional relationships allow information to 
flow in both directions. Mono-directional relationships enforce 
Parent-Children hierarchies that propagate information only in a top 
down fashion. 
 

   Constraints 
 

   Designers and engineers deal with constraints in every design. 
Constraints are conditions that must remain satisfied for a synthesis 
model solution to be feasible, thus they can be used to ensure a 
specific model behavior. Constraints are mainly numerical. For 
example: the value of X cannot exceed 5, or the angle between line-A 
and line-B must remain within 45 degrees. 
 

   Rules 
 

   The concept of using rules within design is not new.  Vitruvius’s (c. 28 
BC) Ten Books on Architecture are known to be the first document 
account of design rules. Vitruvius’s work came in the form of recipes 
to describe roman architectural, engineering and city planning 
designs. His work had a great influence on Renaissance architects 
and revived fascination with Roman culture and classicism in 
subsequent periods. Andrea Palladio’s (1570) work also took the 
form of recipes that described various buildings’ parts such as 
columns, vaults, domes, spatial layout, etc. In his Four Books on 
Architecture, Palladio provides explicit instructions on how to 
construct a “proper” Ionic column: “To form the capital, the foot of 
the column must be divided into eighteen parts, and nineteen of 
these [same] parts is the height and width of the abaco, half thereof 
is the height of the capital with the volutae, which is, therefore, nine 
parts and a half; one part and a half must be given to the abaco with 
cimacio, the other eight remain for the volutae, which is thus made.” 
(Kalay, 2004). 
 
Nowadays designers from many fields such as architecture, 
engineering, computer science and artificial intelligence are 
developing methods and techniques to rationalize synthesis 
processes in design. But, just as designers previously approached 
solving synthesis problems, many of these methods rely on heuristics 
to build the design rules. Building these rules involves knowledge 
engineering where designers encode a series of facts, preferences, 
conditions or circumstances within the design rules (Kalay, 2004) 
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Figure 5.6: 
 

A building skin 
generated from a set 
of synthesis rules and 

an algorithm that 
generates a Voronoi 

diagram   
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   Building design rules defines a mode of operation. Designers 
rationally analyze and critically unpack relationships and 
dependencies within a design problem to be able to describe it via a 
set of clearly defined rules. As the same time, rules offer an 
opportunity to inspect the logic embedded within a synthesis model. 
  
Rules can facilitate some control on the synthesis model and can help 
regulate the design progress. In addition, while the synthesis model 
attempts to fulfill the design rules, interesting design solutions may 
emerge (figure 5.6). 
 
Within a computational synthesis model, the typical form for 
embedding knowledge is constructing an IF-THEN condition-action 
model. The IF portion describes the condition in which the THEN part 
can be triggered. The THEN part includes the action description, 
which in the case of our model is the design synthesis algorithm. 
However, conditional statements are not limited to IF-THEN but also 
include other forms: DO-UNTILL, or WHILE-LOOP, or FOR EACH-
NEXT, etc.  
 
Generally, within a computer program, the rule application is 
performed by a control mechanism known as inference engine. This 
engine deals with reasoning about current conditions by deductive or 
abductive methods. In deductive reasoning (also known as 
“forward” reasoning) the inference engine searches for a rule whose 
premise (IF part) provides facts. These facts are then added to the 
system overall repository of facts. In abductive reasoning (also 
known as “backward” reasoning), the inference engine chooses a 
specific result and attempts to “prove” it as a conclusion that can be 
derived from other known facts. In other words, inference engine 
looks for the THEN-part, and adds that to the overall system facts 
(Kalay, 2004). An example of a forward chaining reasoning is a 
production system. 
 

   5.3.2.4 Formal Grammars 
 

   In the previous section relationships and rules were discussed as part 
of the synthesis model. This section will introduce well established 
formalisms that are intended to capture design intent and relations. 
These are known as formal grammars and include: L-systems, Graph 
Grammars, Cellular Automata and Shape Grammars among others. 
 
The term formal grammar originated from Chomsky’s work on 
linguistics in 1956 (Chomsky, 2002). A formal grammar is a set of 
instructions for sequencing a set of symbols to form valid words. The 
set of all words generated by a grammar formulates a language. 
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Building vocabulary is similar to mathematical modeling for it entails 
describing sequences of symbols and operations. The study of formal 
grammar properties in mathematics is called formal language theory.  
 
Formal grammars, do not only provide instructions to synthesize 
(generate) strings (concatenations of symbols) in a language, but 
also determine if a given string belongs to a language through 
analyzing its internal structure. In computer science, such a process is 
called parsing.  
 
Grammars demonstrate a robust structure for processing 
information as they can pack logic of a whole language, and generate 
its entire set of solutions.   
 
A synthesis grammar language is typically expressed as G = {V, R, S}. 
The grammar G is a model that includes: a set of vocabulary V, a set 
of rules R and a set of initial states S. 
 
The set of vocabulary V is expressed via a certain representation. The 
notion of symbol manipulation in formal grammars indicates that 
they deal with clearly defined vocabulary which is not limited to 
alphabets. In general terms, a symbol in a vocabulary is a 
representation of an element.  
 
The rules set R includes conditional constructs (IF-THEN, DO UNTILL, 
etc) that fire replacement algorithms. Formal grammars sequences 
(instructions) manipulate symbols by a process of replacement and 
therefore can be treated within a computer program as production 
systems. Replacement rules are typically expressed in the form of 
X Y, which means IF X is found, THEN it should be replaced by Y. 
Replacement rules can be sequenced in many fashions such as 
stochastic, procedural approaching a certain state, or recursive 
where a rule keeps invoking itself until a certain condition is achieved 
(Mitchell, 1990). 
 
Synthesis grammars also require an input which is a set of initial 
states S. The initial states set includes the left side of design rules. 
Initial states define the nuclei that can be used to initiate a solution 
and resemble the left side of design rules. 
 
Building a synthesis grammar is very similar to devising design 
processes and rules. Designers tend to formalize and sometimes 
standardize ways of dealing with design issues. This comes in the 
form of sequencing a set of actions, and defining characteristics of 
the final outcome (language). Thus, design grammars enable the 
designers to critically evaluate design problems, unpack relationships 
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and consequently build a clearer understanding of methodologies for 
solving them. Some of the other advantages are externalizing 
standards, or design criteria to ensure a certain level of quality 
control over the generated solution; and the ability to generate 
options that the designers can compare and select from.  
  
Formalisms that will be discussed in this section include: 
Lindenmayer Systems, which originally was developed to model 
plants (Prusinkiewicz and Lindenmayer 1991) but has been used in 
many other fields for design purposes including robotic design 
(Hornby and Pollack, 2001); Graph grammars, which have been used 
in many industrial design domains(Alber, 2002); Cellular Automata, 
which have also been used in a variety of domains including building 
design and city planning (Batty, 2005); and Shape grammars, which 
were used in the generation of buildings (Stiny and Mitchell, 1978; 
Downing and Fleming, 198), and Product Design (Agarwal and Cagan, 
1998). 
 

   A) L-Systems 
 

   Based on Thue’s concept of rewrite systems, Aristid Lindenmayer 
introduced L-systems in 1968 as a method to describe and simulate 
growth of multi-cellular organisms, typically plants. L-systems 
perform two main tasks: representing (packaging) information in 
symbols and interpreting those symbols as growth patterns. The 
elements (symbols) that exist in an L-system are called axioms. The 
initial string is a composite of axioms (need not include all axioms). L-
systems operate by replacing symbols with one another based on 
replacement rules. Rules rewrite input strings sequentially. Each step 
of rules execution represents a generation. Expressing generations 
(outcome) in an L-system is analogical to providing instructions of 
how a solution unfolds as opposed to providing blueprints that 
describe every element in the final solution (Hemberg, 2001). 
 
Strings generated by L-systems can be interpreted as topological 
maps for they describe connectivity relationships between 
generations across a production. Mapping the symbols replacement 
process as connections linking nodes portrays a typical tree 
structure. If the mapping was interpreted geometrically, one can 
view a tree like structure. However, L-systems should not only be 
defined as generators of tree-like geometric objects. Symbols in L-
systems are typically maps of instructions where one triggers the 
other.  
 
The most widely used implementation of L-systems as instructions 
calculator is that of Turtle Graphics by Prusinkiewicz. In a Turtle 
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Graphics system, an object (turtle) moves forward, backward, left or 
right by interpreting generations of strings (symbols) that were 
created by implementing a number of replacement rules. 
Furthermore, L-systems are implemented in parallel as opposed to 
sequential (Hemberg, 2001). The nature of rule implementation in an 
L-system makes it hard to hand-make the system produce a specific 
result. A typical rule representation in an L-system is shown below.  
 
The following rules replace “a” with “ab”, and “b” with “ba”. 
 
a  a b 
 
b  b a 
 
if started with the symbol a, produces the following strings, 
 
a 
 
ab 
 
ab ba 
 
ab ba ba ab 
 
The implementation of the current rules set applies to all symbols 
across a generation. Thus, the rules are applied in parallel and not 
sequentially (figure 5.7). 
 
Rules application in an L-system can be guided by parameters that 
determine which one to execute. This type is known as Parametric L-
systems. It differs from basic L-systems in that the production rules 
have parameters that can hold algebraic expressions. In a Parametric 
L-system, rules consist of three components: the predecessor, the 
condition and the successor. For example, a production with 
predecessor A(𝑛𝑛₀,𝑛𝑛₁), condition n1 > 5  
 
and successor 𝐵𝐵(𝑛𝑛₁ + 1)𝑐𝑐𝑐𝑐(𝑛𝑛1 + 0.5,𝑛𝑛₀− 2) is written as: 
 
𝐴𝐴(𝑛𝑛₀,𝑛𝑛₁):𝑛𝑛₁ > 5 → 𝐵𝐵(𝑛𝑛₁ + 1)𝑐𝑐𝑐𝑐(𝑛𝑛1 + 0.5,𝑛𝑛₀− 2) 
 

   A production matches a module in a parametric word iff the letter in 
the module and the letter in the production predecessor are the 
same, the number of actual parameters in the module is equal to the 
number of formal parameters in the production predecessor, and the 
condition evaluates to true if the actual parameter values are 
substituted for the formal parameters in the production (Hornby and 
Pollack, 2001).  
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Figure 5.7: 
 

A building skin 
structure and 

materiality generated 
using a set of L-System 

rules 
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   For example , the PL system, 
 
   𝑎𝑎(𝑛𝑛) ∶ (𝑛𝑛 > 1) → 𝑎𝑎(𝑛𝑛 − 1)𝑏𝑏(𝑛𝑛) 
 𝑎𝑎(𝑛𝑛) ∶ (𝑛𝑛 ≤ 1) → 𝑎𝑎(0) 
 𝑏𝑏(𝑛𝑛) ∶ (𝑛𝑛 > 2) → 𝑏𝑏 �𝑛𝑛

2
�𝑎𝑎(𝑛𝑛 − 1) 

 𝑏𝑏(𝑛𝑛) ∶ (𝑛𝑛 ≤ 2) → 𝑏𝑏(0) 
 
When started with (4) , produces the following sequence of strings, 
 
𝑎𝑎(0) 
 
𝑎𝑎(3) 𝑏𝑏(4) 
 
𝑎𝑎(2)𝑏𝑏(3)𝑏𝑏(2)𝑎𝑎(3) 
 
𝑎𝑎(1)𝑏𝑏(2)𝑏𝑏(1.5)𝑎𝑎(2)𝑏𝑏(0)𝑏𝑏(1.5)𝑎𝑎(2) 
 
𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(1)𝑏𝑏(2)𝑏𝑏(0)𝑎𝑎(1)𝑏𝑏(2)𝑏𝑏(1.5)𝑎𝑎(2) 
 
𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(1) 𝑏𝑏(2) 
 
𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0) 𝑏𝑏(0) 
 

   B) Graph Grammars 
 

   Graphs are well suited for representing technical design objects for 
they deal with symbols. They are commonly used in modeling 
knowledge in many engineering applications. They are used to create 
network graphs, petri nets, part-occurrence trees and class-diagrams 
in software engineering etc (Alber, 2002). 
 
A a graph G(N,E) consists of a set of nodes N and a set of relations 
𝐸𝐸 ⊆ 𝑁𝑁 × 𝑁𝑁 called edges, whereby the graph nodes as well as the 
edges have a label assigned to each. Nodes can include information 
such as attributes or constraints. Constraints define, or rather filter, 
the set of relationships between nodes by providing information on 
what can be considered as valid relationships (Alber, 2002).  
 
The notion of nodes attributes and constraints leads to the concept 
of ports, which are highly used in engineering modeling (Heisserman 
et al., 2000). A port acts as an interface between nodes providing 
connectors and rules for valid relationships. Figure 5.8 shows a graph 
formalism. In this illustration ports are symbolized by the smaller 
circles which in case a port is unused, reside inside a node or in case it 
contributes to a relation is aligned to the respective edge. 
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Graph grammars are similar to other types of synthesis grammars in 
that they are composed of an initial vocabulary V, and a set of rules 
R, and initial states S. The vocabulary consists of labeled and 
attributed nodes. The initial state𝑠𝑠𝑖𝑖  is any structured combination of 
the vocabulary elements. A specific axiom or initial state together 
with an ordered set of rules out of define a production system and 
corresponds to one specific graph which can be constructed 
following this program.  Table 5.1 gives an overview of the analogies 
between formal languages and graph languages. 
 

 Figure 5.8: 
 

The graph formalism 
(Alber, 2002) 

 

 
 

  
 
 

Table 5.1:  
 

Analogies between 
formal and graph 

languages 
(Alber, 2002) 

 During the execution of a production system the initial graph 𝑠𝑠𝑖𝑖  is 
modified by the graph rules thereby evolving in several stages and 
forming the graph evolution sequence �𝐺𝐺𝑖𝑖0,𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖2, … . . ,𝐺𝐺𝑖𝑖𝑛𝑛� 
with𝐺𝐺𝑖𝑖0 = 𝑠𝑠𝑖𝑖 .  
 
Graph grammars deal with attributes and constraints dictating what 
links may be valid. They also deal with modifying, editing, removing 
elements from the graph structure when inserting new nodes. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 Formal language Graph language 
vocabulary Symbols 𝑉𝑉 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … . } Graph nodes 𝑉𝑉 = 𝑁𝑁 
rules Substitution rules 𝑅𝑅 =

{𝑎𝑎 → 𝑎𝑎𝑏𝑏, 𝑏𝑏 → 𝑏𝑏𝑐𝑐𝑏𝑏 , … . . } 
Graph rule 𝑅𝑅 

Initial states start symbol sets 𝑆𝑆 =
 {𝑎𝑎, 𝑎𝑎𝑏𝑏𝑎𝑎, 𝑏𝑏𝑎𝑎, … . } 

Start graphs  𝑆𝑆 

Production 
system 

1 start symbol set + ordered list 
of substitution rules 

1 start graph + ordered list of 
graph rules 

sentence Structurized symbol set 
𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎𝑐𝑐𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 

graph 

language Entirety of producible sets Entirety of producible graphs 

   T The syntax for a graph modification rule can be represented by an 
arrangement of graph elements (nodes and edges) in a 2D plane 
divided into 4 quadrants Q1...Q4 as illustrated in figure 5.9. The two 
leftmost quadrants Q1 and Q2 contain the conditional part of the 
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graph rule Graph 𝐺𝐺𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 . At execution a rule a search is performed to 
check if there exists any subgraph isomorphism between 𝐺𝐺𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐  and 
the actual graph 𝐺𝐺𝑘𝑘 . If an isomorphic subgraph is identified, the 
generative part of the rule is executed. The modification of the graph 
is described by the elements contained in Q1, Q3, and Q4, thus, giving 
the Elements in Q1 a role in the conditional as well as in the 
generative part of the rule (Alber, 2002). 
 

 Figure 5.9:  
 

Graph Rules 
(Alber, 2002) 

  

 
 

    

 
 

   Nodes in Q1 mark deletions and will be removed from 
𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐 ℎ   together with all edges leading to these nodes. The graph 
nodes contained in Q2 and Q4 play the role of a context in order to 
specify the embedding of nodes which will be cut out of or pasted 
into 𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐 ℎ  . Hereby the contents of Q2 and Q4 are identical in their 
nodes but not necessarily in their edges. In this way Q4 can be used 
to furthermore define a rearrangement in the connection topology 
of 𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐 ℎ  by removing or adding edges between the identified nodes 
(figures 5.10 and 5.11) (Alber, 2002). 
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 Figure 5.10: 
 

Graph generation by 
a production system 

(Alber, 2002) 

  

 
 

    

 
 
 

  
 

Figure 5.11: 
 

Expansion of a 
grammatically 

defined sentence and 
the corresponding 

object 
(Alber, 2002) 
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   C) Cellular Automata  
 

   A cellular automaton (plural: cellular automata) is a collection of cells 
organized in orthogonal grids, each with a finite set of states (usually 
denoted as colors). This collection of cells evolves over discrete time 
steps based on the notion of neighborhoods.  
 
A cell changes its state based on its current state and its neighboring 
cells states following rules. A solution in CA is generated once every 
cell in the collection runs the embedded rules. CA are sequential, 
meaning the behavior (state change) in each cell depends on how its 
neighbors behave. Unlike L-systems were rules are applied in parallel. 
The first documented account of cellular automata was noted by von 
Neumann. Neumann was trying to build a model of reproduction 
where a system rebuilds itself continuously based on embedded 
rules. Each part in the system has the same set of embedded rules 
like every other component, thus system administration is local to 
each. One of the famous examples on Cellular Automata is the game 
of life, designed by John Conway. Cellular automata proved 
applicable to many engineering, mathematics and biology domains 
(Wolfram, 2002). 
 
The simplest type of cellular automata is linear, known as elementary 
CA. Each cell in elementary cellular automata has two states, black or 
white. To calculate the number of possible neighborhoods of three 
cells, we raise the number of states to the number of cells in a 
neighborhood, so 2 ^ 3 = 8 types of neighborhoods. To calculate the 
number of possible combinations of 8 neighborhoods with two 
states, we raise the number of states to the number of 
neighborhoods, 2 ^8 = 256 possible combinations of neighborhoods 
of 3 cells each and 2 states per cell. The total number of possible 
neighborhoods is known as possible CA rules.  
 

 Figure 5.12: 
 

Rule 30 cellular 
automaton 

 

 

 
 

  
 
 
 

 Rules in elementary CA are represented as arrays of back (1) and 
white (0) unites. They are labeled by calculating the locations of 
black cells on a binary scale of 128 64 32 16 8 4 2 1. In these location, 
any black cells. So the representation for a rule 30 is as follows  
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Figure 5.13:  

 
Rule application of a 

CA  

00011110  (0*128) + (0 * 64) + (0*32) + (16*1) + (8*1) + (4*1) + (2*1) + 
(0*1) = 0+0+0+16+8+4+2+0 = 30. 
 
Figure 5.12 shows the result of rule 30. 
 
Cellular automata are known to demonstrate four types of behavior: 
fixed point, periodic, chaotic and random. These types are defined 
based on the pattern of occurrence of certain behaviors over a 
defined time period. Most of Cellular automata behavior is known to 
be periodic, and random. Chaotic behavior, which is viewed as a sign 
of performing universal calculation, is very limited. This bounds the 
implementation of CA within a design context to being very limited. 
Another reason to the limited implementation of CA in design is that 
it is very hard to predict the outcome of a CA because the system 
evolves sequentially based on how neighborhoods interact. 
However, the very same nature of CA behavior makes them 
reasonable to model and simulate complex systems that result from 
an aggregate of local simple interactions at the cells level. Below is a 
diagram showing how CA rules are typically applied. 
 

 
 
 
 
 
 
 
 
 
 
 
 
   D) Shape Grammars 

 
   Invented by Stiny and Gips in 1972 (Stiny and Gips, 1972), Shape 

Grammars laid the foundations for major research into algorithmic 
design approaches in the context of design analysis and design 
synthesis. The use of Shape grammars for design analysis focused on 
assessing the amount of embedded knowledge in a given design 
languages; thus the ability to produce variations that belong to the 
same family of design languages. Shape Grammars have been used 
mostly in the design of civil architectural. Some of the most famous 
grammars used for the analysis of architectural design languages are 
the Palladian Grammar (Stiny and Mitchell, 1978), Wright’s Prairie 
Houses (Koning and Eizenberg, 1981), Buffalo bungalows (Downing 
and Flemming, 1981) to name a few (figure 5.14). 
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   Shape grammars are a geometrical construct that express 

production algorithms and rules through basic geometric elements, 
points and lines. Shape grammar rules can be interpreted as 
replacement rules for they consist of a left side (initial shape), an 
arrow noting an operation, and a right side (the result). Shape 
grammar operations include can be summarized addition, 
subtraction, intersection, and transformations. Transformations 
include: translation, reflection, rotation and scale. 
 
In shape grammars, shapes are more of topological structures than 
geometric representations (Cagan, 2001). Topological elements do 
not intersect. They may exist in spaces of similar of higher 
dimensionality. The following table describes the algebra of shapes 
as Uij, where i represents the dimension of the topological element, 
and j represents the space that accommodates it. For example the 
symbol U12 means it is a segment element that exists in a plane 
space.  
 
U00  U01  U02  U03  
 U11  U12  U13 
  U22  U23  
   U33  
 
Like L-systems, Shape grammars can be also parameterized. A 
Parametric shape grammar is composed of the following tuple: (S, L, 
T, G, I). S is the expression of a Shape Grammar rule in the form (A 
B) which typically means: if shape A is found, it is to be replaced by 
shape B. L is the set of labels. Labels are notations added to the 
Shape Grammar rules. They are typically represented as dots (can be 
also colored). They are part of the rules, not the shapes being 
calculated. T is the set of geometric transformations that build into 
the Shape grammar rules. G is a set of functions that assign values to 
rules parameters (attributes) such as height, width, rotation angles, 
etc. I is the set of initial shapes which Shape Grammar rules use as to 
start the calculation. Initial shapes are the left side of a Shape 
grammar rule (Kalay, 2004).  
 
Shape grammar rules that combine various representations are 
known as parallel grammars such as combining description and 
shape rules in a grammar. While shape rules are applied to the 
evolving design geometric shapes, the corresponding description 
rules are applied to the evolving description. Thus, as the generation 
of the design evolves, the description of the design is constructed. 
 
Representing design aspects via different combinations of shape 
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grammars facilitates the manipulation of complex design problems, 
by breaking them into smaller ones. 
 

 Figure 5.14: 
 

Prairie-style house 
shape grammar  

(Koning and 
Eizenberg, 1981)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   A key feature in Shape Grammars is that they are built on the 
promise of mimicking the process of thinking a designer goes 
through based on the notion of recognition. For example, a designer 
may envision, or recognize a certain shape in a complex assembly of 
lines even though the shape is not explicitly defined (figure 5.15).  
 

 Figure 5.15: 
 

In this composition a 
designer might pick 

the upper square, the 
lower one, or the one 

generated by their 
intersection  

 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

 Recognition in Shape Grammars is based on the notion that shapes 
are non-atomic. They can be decomposed and recomposed freely at 
the discretion of the designer. Decomposition of elements in Shape 
Grammars is based on the notions of Embedding and Maximal 
Elements. Any element is considered a maximal element that 
includes all elements of similar topology but in smaller size. For 
example, a line includes all of the embedded smaller lines that can be 
“seen” inside of it. Thus, if a rule applies to an initial shape, line, it 
may affect the whole line, or any part of it. This notion of recognition 
in shape grammars make them virtually unlimited. As long as the 
system is able to recognize an initial shape that a rule requires, the 
system will keep running. 
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Figure 5.16: 

 
A set of Shape 

Grammar rules can 
generate many 
variations of a 

component 
 

 
This allows for emergence of new shapes given that designers can 
pick any shape, edit any rule, and operate in any order. Emergence 
within this context is the ability to recognize shapes throughout a 
computation that were not explicitly defined (Duarte, 2001). 
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   However shape grammars do not lend themselves well to 
computational implementation due to the complications associated 
with representing shapes numerically as well as the lack of current 
computational algorithms to recognize emergent shapes. 
 
Nevertheless, Shape Grammars serve as an excellent design 
development environment as they help formally express design 
intent through shapes, pushing designer to think in algorithmic, clear 
terms. This helps casting the design process in a hierarchical fashion 
where stages and design priorities are expressed and formalized 
(figure 5.16).  
 

   Interpretation 
 

   The main difference between the above mentioned formalisms is the 
need for interpretation. Driven by the design problem, 
interpretations of manipulated units vary. For example, one might 
use a CA algorithm to drive the states of units in a neighborhood of 
cells; then interpret those states as land use (Batty, 2005). In regards 
to defining the geometry of artifacts, all formalisms mentioned need 
a mechanism of interpretation between the actual formalism and its 
interpreted geometry, except for shape grammars. The nature of the 
shape grammar formalism lends itself well to geometry as it 
describes design elements as shapes. However Shape grammars can 
use interpreters for aspects of design synthesis that are not captured 
by geometry. 
 

   5.3.3 Computational Representation of Synthesis Models 
 

   Synthesis design models capture the artifacts form attributes. These 
could include material properties or shape characteristics. The latter 
will be the focus of this section, and thus, the representation of 
interest will be mainly geometric.  
 
Representation is a structure of symbols that expresses the 
environment or design intent through a set of mapping rules (Kalay, 
1989). Representations serve as interfaces that define how we 
interact with and study artifacts properties.  
 
The representation of artifacts in synthesis models requires setting 
up clear definitions of their composing elements, and the operations 
that can help implement them. Modeling artifacts is typically partial 
and so are the representations expressing them.  
 
Geometric representation of artifacts in a computer environment can 
be constructed in the form of wireframes, surface or solid 
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representations. Wireframe representations can be thought of as a 
set of curves that describe space discontinuities. Surface 
representations are built off of wireframes. They describe two 
dimensional spaces. Wireframe and surface representations are 
ambiguous. They do not provide information on what is inside or 
outside, what is filled or empty. Solid models offer a better depiction 
of physical artifacts for they are un-ambiguous. They provide 
information on closure (or water-tightness), boundaries, inside and 
outside, and well-formedness allowing for automated manipulation 
and testing (Kalay, 1989). In the rest of this section, geometric 
representation will be explored through solids. 
 
In the 1950s, numerically controlled machines were introduced at 
MIT. Because those machines were mainly used in domains like 
aerospace engineering and automotive design, interest in sculpting 
and smooth modeling arose. In this period, came the works of 
Bezier, Coons, Gordon and others in the early 1960s which provided 
methods to describe surfaces mathematically. In parallel, research 
into parametric wireframe drafting was also being developed at MIT 
and the first drafting software that emerged was Sutherland’s 
sketchpad in 1963. 
 
Later in the 1970s, there was a desire to represent artifacts as solids 
due to the limitations inherent in wireframe and surface 
representations. In this period, two camps were formulated: the first 
under Ian Braid in the University of Cambridge who worked on 
representing solids with bounding surfaces, and the second under 
Requicha and Voelcher at the University of Rochester who worked 
on representing solids as Boolean combinations of primitives. Their 
method was later known as Constructive Solid Geometry (CSG). 
Later, in 1975, came the work of Baumgart on winged-edge structure 
as a method to build boundary representations for solids (Shah and 
Mäntylä, 1995). Following Baumgart’s structure was the work of 
Eastman on split-edge structure at Carnegie Mellon in 1977.  

A solid representation is an abstract notion of a symbol that is 1) 
rigid: has invariant configuration or shape, which is independent of 
location and orientation; 2) homogeneous in three dimensions: has 
an interior, connected boundaries with no isolated or "dangling" 
portions; 3) finite: occupies a finite portion of space; 4) closed: 
remains a closed water-tight artifact under transformations 
(translations and/or rotations) or operations that add or remove 
material (welding, machining); 5) describe-able: has a finite set of 
faces and edges; 6) boundary-determinable: has an inside and 
outside (Requicha, 1980).  
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Solids are typically built by representation schemes. “a 
representation scheme is defined formally as a relation s: m r. We 
denote the domain of s by d, and the range or image of d under s by 
v. Any representation in the range v is said to be valid since it is both 
syntactically and semantically correct (i.e., it belongs to r and has 
corresponding elements in the domain d)” (Requicha, 1980).  
 
Schemes for representing solids rely on two components: data 
abstraction and hierarchy of elements (Kalay, 1989). The first 
component, data abstraction, describes geometrical and topological 
notions, such as space, surface, line, point, and shell, face, edge, and 
vertex respectively. Data should be mathematically modeled for 
three reasons: (1) mathematical models can be studied 
independently of computational considerations; (2) such important 
concepts such as representational validity and ambiguity can be 
defined mathematically; and (3) a rich body of mathematical 
knowledge can be applied to the study of geometric modeling 
(Requicha, 1980). The second component, hierarchy, describes 
techniques for structuring data. Hierarchies define the relationships 
between the composing elements of solids (abstract data), leading 
to defining topologies of solids. Hierarchies describe these 
relationships in a bottom-up fashion. A number of schemes for 
building solid representations follow: 

• Spatial Occupancy Enumeration (SOE) of voxels: space is 
subdivided into regular cells, and the target artifact is specified by 
the set of cells it occupies. Models described this way lend 
themselves to finite difference analysis. This is usually done after a 
model is made, as part of automated pre-processing for analysis 
software. 
 
• Cellular Decomposition (CD): similar to "spatial occupancy", but 
the cells are neither regular, nor "prefabricated". Models described 
this way lend themselves to finite element analyses (FEA). This is 
usually done after a model is made, as part of automated pre-
processing for analysis software. 
 
• Sweeping: an area feature is "swept out" by moving a primitive 
along a path to form a solid feature. These volumes either add to the 
artifact "extrusion" or remove material "cutter path". Also known as 
'sketch based modeling'. Sweeping is analogous to various 
manufacturing techniques such as extrusion, milling, lathe and 
others. 
 
• Boundary Representation (B-rep): a solid artifact is represented by 
boundary surfaces. Surfaces definition is based on edges, also 
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knowing as 'surfacing'. Thus, B-reps are verbose. Each object comes 
with it explicitly defining surfaces. 
 
• Constructive Solid Geometry (CSG): simple artifacts (primitives) are 
combined using Boolean operations (union, difference, intersection) 
and linear transformations (Kalay, 1989).  
 
Schemes for building solid representation may be also combined into 
Hybrid representations. Examples on Hybrid representations include: 
1) CSG/B-rep hybrid, which is used as the basis for the input language 
of some geometric molding software; and 2) CSG/Sweep hybrid, 
which useful for the verification of programs for numerically 
controlled machine tools (Requicha, 1980). 
 
Operations used in manipulating solid representations typically with 
construction and transformation of shapes. Construction methods 
describe shapes using Boolean operations (Union, subtraction and 
intersection); axial sweeps (extrusions) and rotational (revolves); 
Lofts; among other operations (Kalay, 1989). 
 
Transformations are operations that change one instance into 
another, while preserving its properties. Geometric properties are 
those that remain invariant under isometric transformations. 
Transformations are of two types: proper and improper. Proper 
transformations are translation, scale and rotation. They do not 
change the artifacts’ properties or relationships among the artifact’s 
topological elements (vertexes, edges and faces). Proper 
transformations preserve angles and scales relationships, but not 
necessarily distances. For example, scaling an object isometrically 
changes its size, but not the angles among its faces or the length 
ratios among its edges. Improper transformations are those that 
change relationships among artifacts topological levels such as 
reflection (Mitchell, 1986). 
The accuracy of solid representation facilitates automated 
generation of documentations, and detection of interferences, 
embedding of artifact information, among other things.  
 
Although solid modeling was a pivotal development in the 
manufacturing field due to its accurate representation, it fell short in 
providing ways to regenerate artifacts’ representations based on 
parametric variation. Later, an enhanced type of modeling systems, 
where designers can access geometry parameters and reorder the 
stack of operations, was introduced.  
 
Within a Parametric CAD modeling system, parameters act as place 
holders for numeric values that drive the geometric and topological 
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structures of an artifact. They offer the ability to regenerate (vs. 
redraw) new representations of artifacts. Regeneration (or updating 
parameters) can be viewed at three levels. The first deals with 
parametric entry. At this level, designers create artifacts by entering 
a number of parameters through a user interface. The second level 
deals with parametric editing where users can edit any created 
artifact at anytime and regenerate new representations by either 
changing the stack of operations or editing parameters values. The 
third level offers parametric updating. At this level, users selectively 
update, edit and link parameters to one another allowing for robust 
control of parts and assemblies (Sacks et al., 2004). Controlling 
artifacts attributes via parameters triggers chains of update cycles 
that reevaluate dependencies while satisfying topological and 
geometric relationships.  
 

  
 
 
 
 

 Parametric CAD systems typically offer two types of parametric 
objects: typed and type-less. Typed objects are usually solids. They 
resort in libraries of ready-made parameterized geometries that 
require specific contexts to trigger them. Typless parametric objects 
typically include: primitive solids such as cubes, spheres, cylinders, 
cones and torai; and surfaces and wiresframes such as NURBS (Non-
Uniform Rational Bezier Splines) and NURBS surfaces. Unlike 
primitive solids, NURBS describe topology with various geometric 
representations via degrees of curvatures and orders of polynomials 
describing them. What makes NURBS curves and surfaces interesting 
is the ability to easily control their shape by interactively 
manipulating the control points, weights and knots, and hence the 
ability to reshape objects as if they were made of an elastic material 
(figure 5.17).   
 
Parametric modelers evolved to include relationships such as: 
constraints (of various types); associations (defining a parameter in 
terms of other parameters or measures), and rules that allowed for 
additional control over the created parts and assemblies.  
 
Associations express relationships between different geometric 
entities. As discussed previously, associations can be Bi-directional 
relationships allow information to flow in both directions. Mono-
directional relationships enforce Parent-Children hierarchies. 
Associations can also be expressed as equations defining a 
parameter in terms of other parameters or measures. For example, 
one may define the height of a wall-A as h = area of slab *0.5, or h= 
the height of wall-B *1.2.  
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 Figure 5.17: 

 
various NURBS can 
be constructed by 

the same number of 
control points with 

various degrees 

 Constraints are expressions that define how artifacts’ behaves within 
a defined context (Sacks et al., 2004). Current parametric systems 
offer three main types of constraints: geometric, engineering, and 
time. Geometric constraints dictate how two entities relate to one 
another in space. These include relationships pertaining to location 
and orientation such as parallelism, perpendicularity, coincidence, 
offset, rotations, etc. They also include measurements such as 
distances, lengths, angles, etc. Engineering constraints deal with 
materials properties, and machining processes. Time constraints are 
typically applied at assembly levels to control how different parts 
interact with one another through time (Anderl and Mendgen, 1996). 
Time constraints aid in: the development of procurement and 
construction schedules; and the analysis of buildings’ behaviors over 
time. Artifacts can be over constrained, constrained, under-
constrained, and un-constrained. Constrained artifacts are those 
which a designer have full control over their behavior. Parametric 
modeling systems rely on constraint solvers to offer valid solutions. 
The number of possible behaviors (solutions) an artifact exhibits is a 
reflection of the set of imposed constraints and the performance of 
constraints solvers.  
 
Some parametric CAD modeling systems (such as CATIA) offer 
additional form of control via rules. Integration of rules offers 
contextual control leading to embedding knowledge in parametric 
models. Rules are usually expressed in the form of “if… then”. 
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Embedding knowledgebase modules in parametric models can 
regulate the development of design solutions where each group of 
domain experts contributes to the design process. Embedding 
constraints and rules allows for building robust assemblies leading 
robust design automation processes.  
 

   5.3.4 Modeling Variation  
 

   In the previous sections the internal parts of the synthesis model 
were discussed. These models include various types of 
representations, rules and algorithms, and parameters which are 
fixed, associated or varied. In this section we will discuss the input to 
the synthesis model, namely the design vector. A design vector is the 
set of model variables that provide means to control the generation 
of solutions. The number and type of variables included in the design 
vector affects the generated solution space. The solution space is 
also affected by the knowledge embedded within the synthesis 
model it’s self.   
 

   5.3.4.1 Synthesis Design Vector 
 

   Modeling system requires expertise in defining the scope and 
boundaries of the design intent. Designers never operate on a closed 
set of requirements, thus design intent may very well vary. In this 
context, model developers face many challenges such as: Which 
parts of the system should vary and which ones should be fixed? 
What are the valid ranges of the different variables? And so on.  
 
The set of variables that are allowed to vary at every design iteration 
is known as the design vector (DV). Variables in the design vector can 
represent any component or property in the model. They may 
include a range of numerical values, a design rules, or even an initial 
state. The design vector can include a set of elements from the 
synthesis model that are allowed to vary, and not necessarily all the 
elements. 
 
The values of the variables in a design vector at a point in time define 
a configuration. The design solution generated by a certain design 
vector configuration is an instant and represents a point in the 
solution space.  
 
Extreme care should be taken while building design vectors to 
account for problems of generating unfeasible solutions that can 
occur due to several reasons such as defects in the structure of the 
synthesis model or the manner in which the design vector maps to 
the synthesis model. 



 

    The Multi-Disciplinary Design System         156 

Modeling 

 
There can be more than one way to represent the relationship 
between the design vector and the synthesis models. One way is to 
consider a one to one mapping between a variable in the design 
vector and a property in the synthesis model. For example the 
variable x in the design vector can map to a parameter in the 
synthesis model that represents a component’s length. If x is varied 
the length will also vary. This one to one representation is intuitive 
and easy to implement. However there are several issues with this 
implementation including scalability and knowledge of the 
components relationships (Bentley and Kumar 1999). With small 
numbers of variables there are no major limitations but when scaling 
up and increasing the number of variables the implementation 
becomes more tedious and might produce undesirable combinations 
of the variables that generate unfeasible solutions. This is an aspect 
that cannot be controlled with a one to one mapping. 
 
Another implementation of design vectors considers a one-to-many 
mapping. This type of implementation advocates defining a limited 
number of design variables that can control a larger set of properties 
within the synthesis model.  This mode of implementation relies on 
wiring using rules a group of internal component properties within 
the synthesis model that can be controlled by single design variable 
in the design vector. An example of such an implementation is by 
imbedding an initial state in the design vector and using a formal 
grammar in the synthesis model. With every iteration when the initial 
state is changed, the grammar triggers a chain of reactions internally 
within the model producing a different solution.  
 
Furthermore, with such an implementation more control over the 
design solution can be achieved due to packaging of several 
preferred property combinations and relationships in the synthesis 
model and hence producing more feasible solutions. 
 
 The relationship between design vectors and synthesis models 
demonstrates a rich area for investigation in almost every design 
problem. The question of which implementation to follow is highly 
dependent on the domain of application, level of control desired, 
design intent, and the designer skill. 
 

   5.3.4. 2 Solution Space 
 

  
 
 
 
 

 A solution space may vary in size or nature depending on the 
synthesis model that defines it and the amount of variations allowed 
by the design vector that controls it. Due to their vast size, solution 
spaces are best explored through automated execution of 
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computational synthesis models.  
 
Human immediate interpretation or understanding may not 
comprehend the size of possible solution spaces, or envision the 
types of solutions possible to be found. 
  
To better explain the notions of solution spaces, consider the 
following example. An LCD screen offers a fixed number of pixels. 
Each pixel can carry a fixed number of colors. In today’s available 
technology, LCD monitors can hold colors of 16 bits, meaning that 
each pixel may have 65,536 possible values (216 = 65,536 colors). In a 
monitor 1280 x 800 resolution, we can get the following number of 
display solutions 65536 1024000. . Such a number of possible solutions 
seem hard to comprehend. Let’s consider colors of 1 bit, black or 
white, and a smaller screen resolution of 640 X 480. The number of 
possible color combinations is 2307200. This is still a huge number.  
 
The generation of the complete solution space by enumeration is 
possible only if the design vector is small. For its term, enumeration 
entails highly intensive number crunching. This is achieved through 
systematic combinatorial solving of the synthesis model (Kalay, 
2004).  A graphic representation of all solutions is a tree where 
branches demonstrate variations within a certain configuration 
(figure 5.18) 
 
Depending on the design vector, the number of enumerated 
solutions may possibly be larger than what any computer can 
calculate. In such situations, designer should consider investing in 
searching and developing specific areas within a solution space.  
 
Feasible solution space 
 
While solution spaces are defined by synthesis models and design 
vectors, they may offer solutions that do not satisfy certain 
expectations. This leads to the notion of feasible spaces. The 
feasibility of solution spaces can be controlled via rules and 
constraints. Constraints provide means to filter or rather disqualify 
unsatisfactory behaviors or solutions generated (discovered) by the 
system. A feasible solution space is one that not only satisfies the 
synthesis design rules, but also abides by the imposed constraints. 
An accepted solution is known as a feasible design. 
 
Typically, the larger the solution space is, the higher the possibility of 
finding valid and possibly novel, designs. However, a smaller solution 
spaces provides faster navigation and search for qualified solution 
candidates. 
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Figure 5.18: 

 
An enumeration tree 
for an ingress-egress 

system 
 

Project credits:   
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    The Multi-Disciplinary Design System         159 

Modeling 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

    The Multi-Disciplinary Design System         160 

Modeling 

   The problem with a solution space is that it can include a large 
number of unwanted design solutions. This can be controlled by 
embedding knowledge and performance evaluation as will be 
discussed next. 
 

   5.3.4.3 Knowledge and Performance Encoding 
 

   In the previous sections, rules were mentioned as a construct that 
allows for embedding functional knowledge in synthesis models. This 
knowledge is typically used for the assessment of an evolving design 
solution. This built in assessment of a synthesized design solution 
serves as a guide for the generation of solutions.  
 
It is important to note that the analysis of a candidate solution could 
be a time consuming processes (as will be discussed later in analysis 
models). This is not only a problem of analysis models, but also of 
synthesis models, which are responsible for generating the low 
performing solutions in the first place. Avoiding such problems helps 
built more robust and resource efficient systems. This depends on 
the designer’s experience in building synthesis models. 
 
Knowledge can be embedded in the form of information about the 
required context within which an artifact will function, or about its 
internal structure, or its limitations, etc. Such information can be 
encoded within synthesis models using rules and algorithms to help 
avoid generating unsatisfactory results.  
 
Mitchell introduced the idea of function modeling in 1991 in a 
function grammar (Mitchell, 1991). These serve as definitions of 
possible combinations of functions that a grammar (model) can 
generate or handle. Fenves and Baker (1987) presented a function 
grammar for the conceptual design of structures, using architectural 
and structural critics to guide the design configuration. Similarly, 
Rinderle (1991) presented an attribute grammar. It included strings 
describing parametric and behavioral properties of the used symbols. 
Finger and Rinderle (1989) introduced a grammar for the form and 
function configurations of mechanical systems, they called bone 
graph grammar. All of these grammars form an expression, of a 
function (Cagan, 2001). 
 
Embedding basic understanding of functions in the synthesis model 
can help minimize the size of the solution space. In the first case, 
where designs are still at an intermediate stage, integration of 
functions requires more sophisticated mappings and designing of 
rules.  
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However not all functions can be embedded due to their nature such 
as functions that can cannot be assessed incrementally but can only 
be assessed after the full solution is generated.  In such cases the 
assessment will be left to the analysis model.  
 
Defining the scope of synthesis models depends on the experience 
and skills of the model designer. Defining the scope of the model is 
typically driven by design intent. Design intent can be expressed 
through functional requirements, which intern can be encoded in the 
model. These will help guide the generation process of feasible 
solutions.  
 

   Restrictive vs. unrestrictive systems 
 

   Synthesis models can be restrictive (knowledge-intensive) or 
unrestrictive. While embedding knowledge can guide the synthesis 
of feasible spaces, they may lead to omitting other unexpected, or 
rather novel solutions (Cagan, 2001).  
 
Consider figure 5.19 in which the big ellipse shows a design space, 
and the smaller ellipse-like shapes show solution spaces defined by 
two synthesis models A and B. Synthesis model A is restricted to 
produce a solution space that fully falls within the space of feasible 
solutions. While synthesis model B produces a larger solution space 
that can have many more interesting solutions, but the space is not 
fully confined to the feasible design space and therefore might 
produce unfeasible solutions.  
  

 Figure 5.19: 
 

Various synthesis 
models can 

generated different 
solution spaces  

 

 
 
 
 
 
 
 
 
 
 
 
 

   The ability of an unrestrictive synthesis model to span large design 
spaces can help locate interesting and novel solutions that are also 
feasible but are not part of the original feasible space, although this 
might require extensive search (figure 5.20).  
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 Figure 5.20: 
 

An unrestrictive 
model may be able to 
span several feasible 

solution spaces 

 
 
 
 
 
 
 
 
 
 
 
 

    
Deciding between a restricting synthesis model and an unrestrictive 
one is not an easy task.  On one hand, restricting synthesis models 
ensures generating a valid set of feasible solutions that can be better 
searched and therefore cuts time of generating unsatisfactory ones. 
On the other hand, building unrestrictive systems may lead to 
generating unexpected novel solutions that still satisfy the 
requirements. However because they are less constrained, 
unrestrictive systems can generate many unsatisfactory solutions. 
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   5.4 Analysis Models  
 

   5.4.1. What is an Analysis Model? 
 

   Analysis is defined by Alexander (1964) as the measure of how well a 
proposed or given design solution fits the goals it is intended to 
meet. An analysis model in this sense infers certain behaviors from a 
design solution that are relevant to that specific model or discipline. 
The model operates on design solution data through laws of physics 
and geometry to produce the desired rating. It also depends on 
specialized disciplinary knowledge such as heuristics, formulae, or 
simulations to determine how this data is transformed into behavior 
and performance characteristics.  
 
The key issue in the predictive nature of these models is that their 
behavior is assumed to be analogous to that of the artifact, and thus 
they are used to study that behavior. This assumed similarity should 
be based on sufficient understanding of both the artifact and the 
model that represents it. 
 
In an analysis model the inputs denote the specific attributes under 
which the behavior of that artifact is examined, while the output 
defines that behavior (figure 5.21). Those attributes are represented 
in terms of geometry, parameter values, boundaries, and initial 
conditions. This thesis will apply mathematical models to predict the 
behavior of a synthesized system or artifact. These will comprise 
many types of models, including analytical, numerical, surrogate 
models and others.  
 

 Figure 5.21: 

Expected input and 
output of the analysis 

model.   

 

   Variables, parameters, equations, inequalities, and algorithms in 
abstract mathematical form are used to represent these models 
(Jacoby and Kowalik, 1980). The interior of the model is mostly 
structured and comprises a group of interconnected components 
that represent an aspect of the artifact or system. The complexity of 
these interconnections always leads to enormous amounts of 
computation and information manipulation, requiring the use of 
computers to handle the models. Selecting the appropriate solution 



 

    The Multi-Disciplinary Design System         164 

Modeling 

scheme strongly affects the modeling purpose. There are many 
challenges and difficulties associated with using computers in 
analysis models. 
 
Sometimes the lack of sufficient theoretical understanding of the 
artifact makes it hard to define the mathematical relationships 
representing that artifact. Assuming that these relationships are 
even defined, assembling them together may not necessarily build 
up a problem that is solvable. At the same time, enough data may 
not always be available for a solution if the problem is presumed to 
be solvable. There may still be errors that result from the intertwined 
approximations and computations involved in the modeling process. 
Other challenges include computational cost and difficulty of 
validation.  
 
Models can even have overlaps with each model containing a variety 
of abstract structures. An analysis model will usually be coupled to 
only some aspects of the phenomenon that is in question. Two 
models related to the same phenomenon can differ to a great 
extent. This can result from differences in initial model requirements, 
conceptual differences or ongoing decisions made along the 
modeling process.  
 
When it comes to selecting a modeling method or deciding on which 
type of model to construct, there is a wide range of methods that 
can be employed to model different aspects of the artifact or 
system. As mentioned earlier, these methods rely primarily on the 
purpose of the model. This entails determining the required type, 
level and fidelity of information, in addition to the amount of detail 
or level of abstraction or granularity of the model. In general, 
mathematical analysis models can be classified according to the type 
of model data, parameters and mathematical expressions, or the 
degree of model refinement and fidelity. In the remainder of this 
section we discuss the different types of models in terms of these 
classifications. 
 

   5.4.2. Model classifications based on the nature of model 

   Analysis models can generally be classified into the following basic 
categories: qualitative or quantitative, continuous or discrete, 
deterministic or stochastic, static or dynamic, linear or nonlinear, or 
any combination of these categories (Figure 5.22). Here we discuss 
these categories and highlight the main characteristics of the models 
accordingly.     
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 Figure 5.22: 

Analysis models vary 
based on their 

mathematical nature. 

 

 

 

 

 

 

 

 

 

   5.4.2.1 Qualitative and Quantitative Models 

   Analysis factors can be classified into two distinct types: qualitative, 
or quantitative. Qualitative analysis is subjective while quantitative 
analysis is objective. Knowing the difference between these two 
types is crucial in understanding the techniques for evaluating 
performance and behavior characteristics.  
 
The qualitative analysis approach involves mostly more words than 
numbers. Some qualitative methods for this type of analysis include 
brainstorming, professional experience, questionnaires, interviews 
and surveys. Qualitative analysis is not physics based but instead is 
based primarily on subjective opinions, perception and judgment. 
The difficulty with this type of analysis is that its results cannot be 
generalized or extended to broader application with the same 
degree of certainty. Data used for this analysis is not only hard to 
collect and measure but also creates differences of opinion when 
interpreted and yields performance assessments that could be 
conflicting over time. 
 
The quantitative approach on the other hand is mostly physics based, 
where precise features are identified and enumerated, and models 
are built to predict artifact or system behavior. Results and findings, 
if analysis was carried out correctly, are reliable and can provide 
direct comparisons between different design solutions. The data in 
this approach is much easier to collect, implement and process using 
computers. Most of the models used in this thesis are quantitative 
models. 
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Although the quantitative approach introduces an easy way by which 
stakeholders examine and understand design solutions, and can 
present a quick fix when performance data is required for 
investment justification purposes, there are some precautions that 
should be taken into account when dealing with this approach. 
Results can often lead to simplistic judgments while disregarding the 
bigger and more complex picture. At the same time, the evaluation 
process, described here as being reliable, can be distorted if we only 
pay attention to what is easily measurable and ignore factors that 
are not. 
 

   5.4.2.2 Continuous and Discrete Models 

   Variables in general are either continuous or discrete. Real numbers 
for example represent continuous variables. Between any two values 
of a given continuous variable there always exist an infinite number 
of other possible values consisting of intervals. These continuous 
variables can be represented by functions. Variables within these 
functions are continuous themselves. On the other hand, there are 
variables that are clearly distinct from each other, and are called 
discrete variables where the set of possible values consist of only 
isolated points. Examples of these variables include integers. 
 
If all the data, parameters and relationships associated with a 
mathematical analysis model are continuous, this model is said to be 
continuous. It is otherwise said to be discrete (Jacoby and Kowalik, 
1980). Discrete models are, however, not always used to model 
discrete systems, and vice versa (Averill, 2006). Deciding when to use 
discrete or continuous models for any given systems relies basically 
on the specific objectives of the study.  
 
Models are not necessarily continuous at all times; they can be 
continuous only at certain time instants. If the interactions between 
the variables of these models occur at discrete times only or are 
separated by intervals where no interaction happens, these models 
become discontinuous, such as the case with models that involve 
stochastic effects.  
 

   5.4.2.3 Deterministic and Stochastic Models 

   Mathematical models are deterministic if elements within them are 
so specified and do not contain any probabilistic or random 
components to the extent that their behavior, performance or 
operation can be uniquely determined. As soon as model 
relationships and input quantities are specified, the output of these 
models becomes determined with no uncertainties involved (Averill, 
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2006; Maki and Thompson, 2006). Therefore they perform in the 
same manner for a given set of initial conditions. 
  
Models are said to be stochastic if they involve uncertainties or 
stochastic data or elements, or if the parameter values are 
determined in terms of probability distributions and random input 
components rather than unique values. Stochastic simulation 
models, also known as Monte Carlo simulations, employ random 
number generators for modeling random events. The output result 
of these models is a probabilistic or random model behavior, 
performance or operation, therefore they must be seen as 
approximations or estimates of the actual model characteristics 
(Jacoby and Kowalik, 1980; Averill, 2006). 
 
A stochastic model thus makes predictions about the probabilities of 
events and expected values of numerical outcomes (Maki and 
Thompson, 2006). These predictions intrinsically involve uncertainty 
regardless of how much is known about a specific situation. This is 
not the case with deterministic models where predictions are made 
in specified terms and involve no uncertainties. The reality is, 
however, that the mathematical description of many models in the 
real world, and especially in social sciences, involves uncertainty and 
chance to a great extent.  
 
Selecting and deciding on the type of model to be used, whether 
deterministic or stochastic, involves a number of factors, but is 
mainly left to the model developer. Sometimes both deterministic 
and stochastic models are used for the same situation, augmented 
by a validity check through comparing predictions from types of 
models. Deterministic models are regularly used as first 
approximations in cases where stochastic models seem more 
suitable for the situation under examination but prove too complex. 
Generally however, the pros and cons of each type of model vary 
from one situation to another, and the predictions of each type are 
not necessarily better or worse than the other for all situations (Maki 
and Thompson, 2006). 
 

   5.4.2.4 Static and Dynamic Models 

   Mathematical models are considered dynamic or unsteady if their 
behavior is variable with time. Time here thus exists in the model as 
an independent variable. Dynamic simulations typically model the 
changes that take place in a system in response to variable input 
signals. Differential equations are thus used to represent unsteady-
state models. 
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Static or steady-state models, however, are characterized by 
constant behavior that is not variable with time. They represent a 
system at a specific instant in time, and are therefore used to 
represent systems in which time plays no significant role (Averill, 
2006). Steady-state models use equations that define the different 
relationships between the modeled system elements. In doing so, 
they tend to identify a state of equilibrium for the system. These 
models are sometimes employed to simulate physical systems to 
provide a simpler modeling case before any dynamic simulation is 
done. 
 
There are other cases where an unsteady prototype behavior is 
represented by a sequence of steady-state modeling experiments. 
This yields models known as quasi-steady-state models (Jacoby and 
Kowalik, 1980). 
 
In some cases, unsteady models can be used for studying the 
behavior of a steady-state prototype or artifact. The reason for this is 
mostly computational. A frequently used strategy for solving steady-
state modeling problems employs solutions of unsteady-state 
problems in an attempt to approach the desired steady state. This 
occurs through a process known as recursive modeling (Jacoby and 
Kowalik, 1980), where an unsteady or quasi-steady-state model is 
said to be recursive if its state at a specific time instant or interval is 
dependent on its state at an earlier time instant or interval. Recursive 
modeling is thus typically related to time as the model state at a 
certain time is not defined without defining it at an earlier time. 
  

   5.4.2.5 Linear and Nonlinear Models 

   Typically in any mathematical model, variables are acted upon by a 
number of operators that include algebraic operators, functions, 
differential operators, etc. A mathematical model is said to be linear 
if all these operators introduce linearity. It is considered nonlinear 
otherwise. This nonlinearity is mostly related to chaos and 
irreversibility. Generally, but with a few exceptions, it is more difficult 
to study nonlinear systems and models in comparison to linear 
models. 
 

   5.4.3. Analysis Algorithms 

   High-fidelity simulations are generally considered better predictors 
of performance than low fidelity simulations, as they better resemble 
the artifact if administered correctly. However, the amount of fidelity 
necessary to guarantee good prediction is unknown. Also, there are 
some disadvantages to high-fidelity simulations that may render 
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them less useful, such as trading off speed for accuracy. These types 
of simulations are not as quick and easy to construct as low-fidelity 
models.  
 
Low-fidelity prototypes are generally used to quickly demonstrate 
general artifact performance and abstract conceptual approaches in 
early design stages without providing much detail or requiring much 
investment in development. They are mostly used if some required 
data for the analysis model are not available, if the model cannot be 
easily quantified, or if a high-fidelity analysis is beyond the scope and 
accuracy level of the design description. Low-fidelity models also 
require a facilitator who knows and understands the domain in detail 
in order to illustrate or test the model.  
 
Based on the degree of fidelity, analysis models can be classified into 
empirical models, theoretical models, and reduced-order (or 
approximation) models.  
 
Empirical models, which are typically low-fidelity models, are derived 
from observation and approximate data fitting rather than physics 
and first principles.  
 
Theoretical models, on the other hand, are more physics-based and 
are derived using first-principle equations. They include both 
analytical and numerical models. Analytical models are mostly low-
fidelity models whereas numerical models tend to be high-fidelity 
(high order) models that include models like Finite Element Analysis 
(FEA) and Computational Fluid Dynamics (CFD).  
 
Reduced-order or approximation models are surrogate models that 
provide simplified abstractions and calculations. They include 
response surface models, neural networks and Kriging models. These 
models approximate the behavior of a design solution as closely as 
possible while maintaining low-fidelity, which is computationally 
cheaper.  
 
Although complexity typically enhances the fit of a model, it 
sometimes makes the model difficult to understand and operate on, 
in addition to introducing some computational problems such as 
numerical instability. Engineers thus often make and accept some 
approximations and reduce the model size appropriately in order to 
obtain a more robust and simple model. 
 
The Occam’s Razor principle is specifically applicable to modeling. 
Among models that have almost similar predictive accuracy, the 
simplest one is the most desirable. During the model selection 
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process, the designer must choose the best compromise between 
the demand for simplification and the necessity to clearly identify, 
describe and rate the targeted physical mechanism. A trade-off must 
be made between fidelity and analysis time and between simplicity 
and the accuracy of the model.  
 
In the following sections, our review of analysis algorithms will focus 
on theoretical models and surrogate models rather than empirical 
models. 
 

   5.4.3.1 Theoretical Models 

   As mentioned earlier, theoretical models comprise both analytical 
and numerical models. Techniques in these models tend to explore 
the behavior of a model. In most cases, however, finding the model 
in the first place is the most difficult, interesting, and important 
question (Gershenfeld, 1998).  

   5.4.3.1.1 Analytical Models 

  

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 5.23: 
 

Simple analytical 
models are used to 
assess the behavior 

of a building skin.  

 Analytical models are typically employed when the model and the 
relationships making it up are simple enough such that mathematical 
methods (e.g. algebra, calculus, or probability theory) can work with 
these relationships and quantities to obtain precise and explicit 
information regarding questions of interest (Averill, 2006). This 
information is known as an analytical solution or a closed-form 
solution that can be simply arrived at with merely paper and pencil 
(Gershenfeld, 1998). This analytical solution allows for the prediction 
of system behavior through a set of initial conditions and parameters 
(figures 5.23 and 5.24). 

Analytical modeling is mostly done with analytic functions (Saff & 
Snider, 1993), and therefore the functions encountered are always 
assumed to be expanded in a power series. Analytical models are still 
considered very significant due to their power. It is almost always 
possible to deduce everything that needs to be known about a 
system using these models. This comes however at the expense of 
limited applicability, as many systems in the world are too complex 
to be described in this manner (Gershenfeld, 1998). 
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Figure 5.24: 
 

Simple analytical 
models are used to 
assess the behavior 

of a building skin. 
 

Project Credits: 
Anas Alfaris 

Alexandros Tsamis 

 Using such simplified low-fidelity analysis models has many benefits. 
First, these models generate a quick and rough estimate of the 
artifact’s performance. Second, it does not require detailed 
information or information that is not currently available at this early 
stage of design, as opposed to a high-fidelity model. Most 
importantly, however, these low-fidelity analysis models introduce 
less computational burden (Huebner et al., 2001). This type of model 
should be treated cautiously since using simplifying assumptions that 
ignore problems or difficulties could sometimes leads to erroneous 
results or inaccuracies. 
 

 
 

 

 

 

 

 

 

 

 

 

   5.4.3.1.2 Numerical Models  

   Although I stated above that analytical models are not 
computationally intensive, analytical solutions can occasionally be 
complex and call for immense computing resources. Obtaining a 
numerical solution for a situation where an analytical formula exists 
in theory, could be a very difficult task, such as the example of 
inverting a large nonsparse matrix (Averill, 2006).  

Also, in many cases the closed form solution implied by analytical 
modeling is not usable for modeling experiments (Jacoby and 
Kowalik, 1980). If for example the model consists of a series that 
comprises many terms that need to be computed for solution 
accuracy purposes, the process of reformulating the problem as a 
numerical problem might be more economical. This reformulation 
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takes the form of a sequence of consecutive approximations to the 
solution that are computed in an iterative manner. In these 
iterations, each approximation is “better” than its predecessor.  

However, it is always preferred to study a mathematical model 
analytically rather than numerically if an analytical solution exists and 
is computationally efficient. Analytical models still remain an 
important factor in some approximation techniques using 
computers. This extends to include numerical methods, where these 
methods can use bits and pieces of analytical solutions to render the 
numerical steps more effective. They also employ symbolic methods 
that can extend quantitative abilities and introduce important 
qualitative implications, such as in enhancing the methods to 
perform higher-order approximation theory (Gershenfeld, 1998). 

Many real-world systems are too complex for analytical modeling or 
evaluation. It is clear then that not many differential equations can 
really be solved with precisely the same effort analytically. As we 
move farther from linearity, it becomes obvious that special 
techniques are required and enormous effort must be made to be 
able to write down a closed form or analytical solution (Gershenfeld, 
1998). In the computer environment, differential equation models 
are typically reformulated and expressed in terms of difference 
equation approximations. Therefore the issue is reduced 
computationally to solving problems in the form of a set of algebraic 
equations (Jacoby and Kowalik, 1980).   

Models should thus be studied by means of simulations. This is done 
by numerically evaluating the model inputs to observe their effect on 
the output performance measures (figure 5.25). In this evaluation, an 
abundance of data is collected to provide estimates of the required 
real model characteristics (Averill, 2006). The main goals of modern 
numerical analysis are the design and analysis of techniques that aim 
at obtaining approximate solutions to complex problems rather than 
getting exact answers, while at the same time preserving reasonable 
bounds on errors, since it is impossible to get exact answers in 
practice.  

  

 

 

 

 

 According to Jacoby and Kowalik (1980), numerical solution methods 
for modeling problems basically have three main goals. These include 
computational efficiency, precision and error control, and solution 
convergence, where it is possible at some point to end the 
computation. They also add a few more points that could also be 
taken into account, such as the ability to solve altered or extended 
formulations, the availability of software that can successfully 
implement a specific method, and the conceptual clearness and ease 
of use of solution methods.  
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Figure 5.25: 
 

A high-fidelity 
analysis model for 

day-lighting is used to 
assess the lighting 
quality in different 

spaces. 
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   Several efficiency measures have been developed for numerical 
methods. These include the counts of arithmetic operations required 
to solve problems and the order of solution convergence in the case 
of iterative processes. One of the most practical measures of 
efficiency, however, is the total computer resource required for 
solving the given problem, including time and storage space (Jacoby 
and Kowalik, 1980). 
 
It is often hard to relate the latter measure to more theoretical 
properties of the model formulation and solution method. There are 
thus a group of mathematical techniques that help reduce the total 
computer resource needed for a solution. These include the 
decomposition of large-scale problems into smaller components in a 
semi-independent manner, using linearization if possible, data 
compression, and the process of reducing problems with unknown 
degrees of difficulty into well-known problems with which the model 
user is familiar and has relevant experience.  
 
Accuracy of the numerical solution is another issue, which largely 
relies on the quality of data, the degree of model approximation, and 
the numerical properties of the solution method. Any one of these 
factors can nullify the solution results by itself. Recent developments 
in numerical analysis have made it easier for model users to 
comprehend many of the issues regarding error analysis and the 
conditioning of numerical problems and algorithms. These 
developments have enabled the understanding of the conditions 
under which any analysis mathematical model can be successful and 
useful.  
 
The numerical results of the model should be interpretable and 
validated in the system space or else this information will remain 
uninterpretable in the analysis model space and would thus become 
unfamiliar to the model user. The mathematical modeling problem 
itself must be solvable in order to conduct the experiments correctly. 
This implies two conditions, existence and stability, meaning that the 
solution to the problem must exist theoretically and at the same time 
must always rely on the given side conditions. Any discontinuity must 
be accounted for appropriately.  
 
Another condition for the success of the analysis model is 
uniqueness, where it should be understood beforehand whether the 
mathematical modeling problem allows for more than one solution 
or not. Whether or not the problem is well-conditioned is another 
important factor. This implies knowing whether small 
approximations in problem data result in small approximations in the 
final solution or not.  
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Finally, the feasibility of a computational process for numerical 
approximation is another important condition, where the model user 
must be allowed to keep the approximation error under control 
(Jacoby and Kowalik, 1980). Studying errors constitutes a very 
significant part of numerical analysis.  
 
Errors can be introduced in the solution of the problem in a variety of 
ways. Round-off errors exist because it is impossible to represent all 
real numbers precisely on finite-state machines such as digital 
computers. Truncation errors exist after an iterative method is 
terminated and the approximate solution turns out to be different 
from the exact solution. Discretization errors also occur in the same 
manner, when the solution of the discrete problem does not match 
the solution of the continuous problem. As a general rule, an error 
generally propagates through the calculation once it is generated. If 
this propagation does not grow and accumulate in the input data and 
intermediate calculations causing a meaningless output, the 
algorithm is said to be numerically stable. This stability occurs only if 
the problem is well-conditioned, implying that the solution only 
changes by a small amount when the problem data is changed by a 
small amount. A well-conditioned problem does not necessarily 
guarantee the numerical stability of the algorithm, but an ill-
conditioned problem definitely leads to error accumulation and 
consequently instability. 
 
There have been several methods and algorithms developed for 
numerical models. These could be direct or iterative methods. 
Iterative methods are generally more common in numerical analysis 
than direct methods.  
 
In direct methods, the solution to a given problem is computed in a 
finite number of steps. The accurate answer can be provided through 
these methods if they are performed in infinite precision arithmetic. 
Finite precision is used in practice, and the end result represents an 
approximation of the true solution assuming stability. Examples of 
these methods include Gaussian elimination, the QR factorization 
method for solving systems of linear equations, as well as Cholesky 
and LU factorization (Trefethen and Bau, 1997). 
 
Iterative methods are usually needed for large problems in 
computational matrix algebra. Unlike direct methods, iterative 
methods are not expected to be complete in a specific number of 
steps. They start from an initial guess to construct consecutive 
approximations that converge to the exact solution only in the limit. 
To determine when an accurate solution is found, a convergence 
criterion is specified. In general, even if iterative methods use infinite 
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precision arithmetic, the solution would not be reached within a 
finite number of steps. Some examples include Newton’s method, 
the bisection method, and Jacobi iteration (Trefethen and Bau, 
1997).  
 
Some methods, although direct in principle, are used as if they were 
not, such as GMRES and the conjugate gradient method. In these 
methods, the required number of steps to obtain an exact solution is 
large to the extent that approximations are accepted similar to the 
case of iterative methods.  
 
Many methods have been developed for solving systems of linear 
equations. Standard direct methods that use matrix decomposition 
include Gaussian elimination, LU decomposition, Cholesky 
decomposition for symmetric and positive-definite matrix, and QR 
decomposition for non-square matrices. For large systems, iterative 
methods are preferred, such as the Jacobi method, Gauss–Seidel 
method, the successive over-relaxation and conjugate gradient 
method (Trefethen and Bau, 1997). Root-finding algorithms and 
linearization are both techniques that are used for solving nonlinear 
equations. Newton’s method is also used but when the function is 
differentiable and the derivative is known.  
 
There are many other methods that are used to solve partial 
differential equations. Discretization is an approach that describes 
the process in which a continuous problem is substituted by a 
discrete problem whose solution is known to approximate that of 
the continuous problem.  These methods face a major challenge that 
requires generating an equation that approximates the equation to 
be studied while being numerically stable. One of the methods used 
in this regard is the Finite Element Method, which is a good choice 
for solving partial differential equations. We describe this method in 
the following section, followed by a brief overview of computational 
fluid dynamics as another prominent numerical analysis method. 
 

   The Finite Element Method (FEM)  
 

   It is becoming more and more important in engineering situations to 
provide approximate numerical solutions to problems instead of 
closed-form or analytical solutions. These solutions rarely exist, for 
example, in cases where the geometry or any other feature of the 
problem is irregular or arbitrary (figure 5.27). 
 
One of the common approximate numerical analysis methods is the 
finite difference scheme. The finite difference model of a problem 
provides a pointwise approximation to the governing equations. As 
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more points are used, the model is improved, as it employs 
difference equations for an array of grid points. Although finite 
difference techniques can solve fairly difficult problems, they are 
harder to use with irregular geometry or unusual specification of 
boundary conditions. 
 
Another approximate numerical analysis method is the Finite 
Element Method (FEM). As opposed to visualizing the solution 
region as an array of grid points, FEM visualizes it in terms of 
numerous small and interconnected sub-regions or elements, and so 
provides a piecewise approximation to the governing equations 
(Huebner et al., 2001). Figure 5.26 shows how a finite difference 
model and a finite element model can be used to represent a 
complex geometrical shape. Using the finite difference techniques, a 
uniform mesh would cover the whole solution region, but the 
boundaries would have to be approximated through horizontal and 
vertical lines analogous to stair steps. The FEM would however 
provide a better approximation to the region using triangles as the 
simplest 2D elements in addition to straight lines of different 
inclinations that also give better approximation to the curved 
boundary shape. The main purpose here is to show that the FEM is 
better suited than the finite different method for problems that 
comprise complex geometries and not necessarily for all types of 
problems. 
 

 Figure 5.26: 

 (a) Finite difference 
and (b) finite element 

discretizations of a 
turbine blade profile 

(Huebner et al., 
2001). 

 

 

 

   FEM first evolved in civil and aeronautical engineering where there 
was a need to solve complex problems related to elasticity and 
structural analysis. It was later extended and applied to continuum 
mechanics and a wide range of engineering problems (Huebner et 
al., 2001). 
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The FEM represents a numerical technique for finding approximate 
solutions of partial differential equations in addition to integral 
equations. This is done by either eliminating the differential equation 
completely or turning it into an approximating system of ordinary 
differential equations that are then integrated numerically by 
standard techniques, such as Euler's method or Runge-Kutta.  

Briefly, the way by which FEM works involves primarily the concept 
of meshing. This is done after model geometry is developed in a CAD 
program, and the problem is identified through defining material 
properties and boundary conditions. Meshing the model basically 
deals with defining a finite number of elements to represent the 
geometric structure or solution region (Huebner et al., 2001). These 
elements can represent very complex shapes since they can be 
assembled in various ways. Although more elements imply higher 
accuracy, they also entail more computational time for reaching a 
solution. A sense of balance thus must be maintained between the 
required time to solve a problem and the acceptable level of error 
that can result from high complexity.  

This finite element discretization transforms the problem from a 
problem of infinite unknowns into one of a finite number of 
unknowns. After dividing the solution region into elements, the 
unknown field variables are described in terms of assumed 
approximating functions within each element known as interpolation 
functions.  

The points at which these functions are defined in terms of the field 
variable values are known as nodes or nodal points. There are 
boundary nodes on the element boundaries where adjacent 
elements are connected in addition to some interior nodes. The 
behavior of the field variable is entirely defined by its nodal values 
and also by the interpolation functions for the elements. As the 
nodal values here become the unknowns themselves, as soon as they 
are found, the interpolation functions define the field variable during 
the process of putting the elements together.  

This shows that the chosen interpolation functions greatly affect the 
nature of the solution and the degree of approximation, which does 
not rely solely on the size and number of elements. These functions 
are not selected arbitrarily, as some compatibility conditions need to 
be fulfilled. They are rather chosen mostly so that the field variable 
or its derivatives are continuous across adjoining boundaries of 
elements. This is then applied to the formulation of different element 
types.  
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 Figure 5.27: 

Finite Element 
Analysis of different 
components in this 
vehicle egress and 

digress system. 

Project credits:   
Anas Alfaris, 

 Nii Armar 
 and Martin McBrien  

 

 

 

 Computational Fluid Dynamics (CFD) 

  Computational fluid dynamics (CFD) was initiated in the early 1970’s 
as a branch of fluid mechanics that roots from physics, numerical 
mathematics and computer sciences, and uses numerical methods 
and algorithms to solve, analyze and simulate problems related to 
fluid flows (Blazek, 2001). CFD methodologies today are regularly 
used in aircraft, car, ship, and building design (figure 5.28). 

One of the first applications of CFD was the simulation of transonic 
flows based on solving the non-linear potential equation. In the early 
1980’s, the solution to the first 2D and later 3D Euler equations 
became possible. It was then also possible to compute inviscid flows 
in aircraft configurations owing to the increasing speed of 
supercomputers and many numerical acceleration techniques such 
as multigrid (Blazek, 2001).  

There was a shift of focus in the mid 1980’s to the more important 
and demanding simulation of viscous flows which was governed by 
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Figure 5.28: 

CFD Model for a 
building site to study 

the airflow around 
the building.  

Project Credits:  
Anas Alfaris,  

Kenneth Namkung 
Meredith Elbaum 

the Navier-Stokes equations. In addition, a number of turbulence 
models were developed. (Blazek, 2001). 

The rising demand on the complexity and fidelity of flow simulations 
led to further development and greater sophistication of grid 
generation methods. These methods evolved from simple structured 
meshes using algebraic methods or partial differential equations in 
the decomposition of grids into topologically simpler blocks, known 
as the multi-block approach. Subsequent research focused, however, 
on developing unstructured grid generators due to the slow nature 
of the structured multiblock grid in dealing with complicated 
geometry. These unstructured generators or “flow solvers” yielded 
considerably reduced setup times with minor user intervention in 
addition to introducing solution based grid adaptation (Blazek, 2001). 

Before any numerical solution method can be implemented, the way 
by which the method affects the stability and convergence behavior 
of the CFD code must be determined or at least approximated. 
Blazek (2001) refers to the Von Neumann stability analysis as 
providing a good assessment of the properties of a numerical 
scheme in this context. 
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   Since CFD methods are primarily concerned with solving equations of 
motion of fluids and the interaction of fluids with solid bodies, the 
governing equations are Navier-Stokes equations that describe the 
motion of viscous fluids and Euler equations that describe the 
motion of inviscid fluids (Blazek, 2001). Through a series of 
simplifications, these equations can yield linearized potential 
equations. By first removing certain terms that describe viscosity, 
Navier-Stokes equations can be simplified to generate Euler 
equations. By removing terms that describe vorticity, full potential 
equations can be produced.  

In CFD, the geometry or physical bounds of the problem are defined 
during preprocessing. One of the challenges is generating structured 
or unstructured body-fitted grids around complex geometries which 
would then be used to discretize the governing equations in space. 
In this process, the volume that the fluid occupies is divided into 
discrete cells. These cells constitute a mesh which is either regular or 
irregular in form. The quality of the grid greatly affects the precision 
of the flow solution (Blazek, 2001). In terms of computational cost 
and memory storage, the regularity or irregularity of the formed 
meshes is highly significant.  

A discretization error is introduced for each discretization of the 
governing equations. The discretization scheme thus has to satisfy 
multiple consistency requirements to guarantee that the solution of 
the discretized equations closely approximates that of the original 
equations. 

Following discretization, physical modeling is then defined, including 
for instance equations of motions, enthalpy, and radiation. This is 
followed by defining boundary conditions, where the fluid behavior 
and properties at the problem boundaries are identified in order to 
account for the specific features of a particular problem and find a 
unique solution for the governing equations. There are two types of 
boundary conditions: physical and numerical (Blazek, 2001). Initial 
conditions are also identified in case of transient problems. 

As the simulation process begins, equations are solved iteratively as 
a steady-state or transient. Suitable algorithms are applied to solve 
the equations of motion, both the Euler equations for inviscid and 
the Navier-Stokes equations for viscous flow. Most often other 
equations are solved in parallel to the Navier-Stokes equations. 
These can include equations describing mass transfer, chemical 
reactions, heat transfer, etc. 

In this process of solving the equations, either one of two 
approaches can be used. The steady-state governing equations can 
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be solved directly, or the unsteady governing equations can be 
integrated with respect to time. The latter approach is also known as 
time-stepping schemes (Blazek, 2001). Time-stepping can be divided 
into two classes, one that comprises explicit time-stepping schemes, 
while the other class comprises implicit time-stepping schemes. After 
solving the equations, the final process in CFD is the analysis and 
visualization of the resulting solution.  

   5.4.3.2 Approximation Techniques 

   As mentioned earlier, most engineering design problems require 
experiments or simulations in order to evaluate design objectives 
and constraint functions as a function of design variables. As single 
simulations are time consuming, routine tasks such as design 
optimization, design space exploration, sensitivity analysis and what-
if analysis become impossible to achieve as they require numerous 
simulation evaluations.  
 
Since there is no novel architecture that is expected to address these 
issues and offer a direct solution to this problem, it is crucial to 
recognize the importance of developing approximate analyses that 
are quicker, simpler and more efficient in runtime (Kroo, 1997a). 
Approximation concepts are primarily used to create surrogate 
behavior models that replace expensive computer analysis and 
simulation programs for the purpose of quick analysis predictions. A 
wide variety of techniques has been developed for generating 
surrogate models, ranging from classical forms of curve fitting to 
more recent concepts of neural networks and Kriging (Papalambros 
and Wilde, 2000). 
 
Surrogate models extract simpler analysis models from sophisticated 
ones by applying various data-handling techniques. The actual 
internal simulation code of the sophisticated model and how it works 
is not assumed to be known or even comprehended. Using the 
sophisticated model as a source of “computational experiments”, 
analogous to physical experiments, provide a collection of data 
points (Papalambros and Wilde, 2000). Building on these data points, 
a surrogate model can be derived with new simpler functions that 
represent the system functions in an explicit manner with reasonable 
accuracy.  
 
These surrogate models, which now contain the simpler functions, 
then replace the sophisticated model in any succeeding uses. This 
dramatically minimizes computational load in large and complex 
design models that comprise multiple analysis models. The 
sophisticated model can be used after the final design is attained in 
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order to obtain more accurate estimates (Papalambros and Wilde, 
2000). 
 
Using these simpler models facilitates the computational use of 
various design exploration techniques, including optimization and 
expensive probabilistic analysis/optimization methods in particular, 
in large-scale complex design problems (Koch et al., 2002). 
 
Not only do these surrogate models increase efficiency, but they also 
get rid of the computational noise in simulation programs comprising 
outputs that fluctuate frequently upon gradual changes in input 
parameters (Phoenix Integration, 2004), such as that in large-scale 
problems, eigen frequency problems, impact problems, and 
nonlinear problems (Sakata et al., 2003). As this noise typically has an 
unfavorable effect on optimization by generating many local optima, 
approximation models can thus smooth the response functions and 
increasingly enhance convergence. 
 

   Classical curve fitting techniques 

   The basic concept behind curve-fitting techniques involves collecting 
data from experiments or other empirical sources to derive 
functional relationships between dependent and independent 
variables. This data, which is typically a function representation in 
tabular or graphical form, is converted into more convenient and 
useful equation or algebraic form (Papalambros and Wilde, 2000). 
Through understanding the relationships between these variables, 
models could be developed for prediction of behavior (Koch et al., 
2002). In general, this approach is beneficial for further analysis or 
for computational purposes.  
 
One of the useful approximation tools in this context is the Taylor-
series approximation, which is based on modeling functions as 
truncated Taylor series with typically only first-order terms included. 
Unknown functions are therefore modeled as first-degree 
polynomials where the constant term is defined by the function 
value at the baseline design. The coefficients in the polynomial are 
gradients of the function that are usually defined using the finite 
difference method (Koch et al., 2002). 
 
The Taylor series representation is, however, different from a 
general polynomial. The basic distinction is that the Taylor series uses 
localized derivative information (figure 5.29) while polynomial fitting 
uses information from different points (figure 5.30). If the derivatives 
are calculated numerically with finite differences, these differences 
begin to disappear. This is typical of all numerical schemes that 
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involve derivatives. It is worth noting that functional forms, other 
than polynomials, may be used for curve fitting (Papalambros and 
Wilde, 2000). 
 

 Figure 5.29: 

Taylor series uses 
localized derivative 

information at point 
X0. 

 
 
 
 
 
 
 
 
 
 
 

   There can be conditions where the polynomial with the least total 
deviation from the data points simply does not pass through any of 
the points. The best-fit polynomial has to be defined then through 
some sort of formal procedure.  
 
One way to do this is calculating absolute values for the deviations 
from the data points and locating the polynomial that minimizes the 
sum of those values.  
 
Another way, known as the least-squares fit method (Papalambros 
and Wilde, 2000), finds the polynomial that minimizes the sum of the 
squares of the deviations. This method can be implemented to not 
only polynomials, but also to any function chosen for data 
representation. 
 

 Figure 5.30: 

Polynomial fitting 
uses information 

from different points 
for each curve. 

 

 

 

 

 

 

   There are some difficulties to working with least-squares fit 
methods, however. Basically employing this method does not 
necessarily imply that the curve fitting is good. If the data was 
scattered for instance, the method could produce a correct answer, 
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but one that is meaningless. 
 
Another faulty result can be generated especially if the degree of the 
fitting curve is too low, where the method could produce the best 
possible “bad” solution.  
 
Overfitting can also take place, where a function form seems too 
“wiggly” between data points and has to be followed closely 
(Papalambros and Wilde, 2000).  
 
Another problem arises from ill-conditioning. This results from 
increasing the polynomial degree to achieve fidelity which produces 
a different order of magnitude between low and high-degree terms.  
 

   Response Surface Models 

   Response surface models (RSM), which are mostly low order 
polynomial models, constitute one of the most common types of 
approximating methods (Myers and Montgomery 1995).  
 
The number of data points required to fit a RSM is directly related to 
the number of terms in the model. For any n number of terms, there 
exists a minimum number of n+1 points, where the additional point is 
used for estimating the mean or constant term (Koch et al., 2002).  
 
RSM usually requires assuming the order of the approximated base 
function as the approximation process is conducted via the least 
square method for the unknown coefficients of the function (Sakata 
et al., 2003; Kaymaz, 2005). The designer must thus assess the 
schematic shape of the objective function over the whole solution 
region.  
 
As this demands a clear perception of the qualitative tendency of the 
whole design space, it is often difficult to do. So in the case of noisy 
known objective functions for instance, it is quite adequate to 
provide a subjectively assumed base function.  
 
One of the other difficulties in RSM that Shi et al. describes is the 
complexity of applying them based on experimental programming to 
design problems with a large number of design variables. Yet 
another difficulty with the response surface optimization methods is 
their limited range of application (Balabanov and Venter, 2004). 
 
Therefore, simple approximate models, such as response surfaces, 
can be seen as appropriate only in a constrained region of the design 
space (Kroo, 1997b).  
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   Neural Network 

   As mentioned earlier, least-square models usually determine 
coefficient values within an algebraic expression. But prior to 
defining those values, the desired form of this expression must be 
clearly identified. Artificial neural networks (also known as neural 
networks or neural nets [NN] for short) address this issue through an 
automated approach for data fitting.  
 
Neural networks represent mathematical or computational models 
that are based primarily on biological neural networks. They are 
analogous to the biological neural networks in the sense that 
functions within the network are conducted simultaneously and 
collectively by the units without a sharply defined task assignment 
for each unit.  
 
The core of neural networks is quite similar to that of nonlinear-least 
squares (Papalambros and Wilde, 2000). They look for a set of 
coefficients within an algebraic function that reduces the sum of 
approximation errors of the function evaluation to the minimum at 
the sample points when compared with data in order to increase the 
precision of the approximated value at a given sample point (Sakata 
et al., 2003). 
 
Although neural networks cannot be described as adaptive as such, 
they can modify their structure according to the flow of external or 
internal information through the network during the learning phase.  
Neurons in neural networks behave similarly to power terms in least-
square fits, where they constitute the building blocks of the network. 
Each neuron has a weight w and bias b that define how the neuron 
behaves for a given input. It then combines the weighted inputs 
linearly, adds a bias, and produces an output. The output is between 
0 and 1 based on a weighted sum of the inputs. If the sum is greater 
than a certain bias (b), the output is considered to be “on” if greater 
than ½ and “off” if less than 1/2 (Papalambros and Wilde, 2000). 
 
Figure 5.31 shows how inputs to some neurons are considered as 
outputs from others in complex functions, all connected together to 
form a neural net. In this net, each neuron has an output that relies 
only on its own inputs, and so one equation exists for each single 
neuron. As illustrated in the figure, there is a middle layer of neurons 
that generates the intermediate values. This layer is known as the 
hidden layer. The net here can thus be described as a neural net with 
a single hidden layer consisting of five nodes (Papalambros and 
Wilde, 2000). 
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The weights and biases mentioned earlier define the response y out 
for a given stimuli x in a similar fashion to the role of coefficients in 
nonlinear least squares, and therefore should be determined for a 
specific dataset early on in a process known as training the neural 
net (Papalambros and Wilde, 2000).  
 
Due to their extremely nonlinear nature however, weights and biases 
are not unique, implying that any two neural nets with totally 
different weights and biases can model a specific dataset equally 
well.  
 

 Figure 5.31: 

A diagram for a single 
neuron on the left 

and a neural net on 
the right 

(Papalambros and 
Wilde, 2000). 

 

 

   It was reported by Carpenter et al. that neural net approximation 
provides more flexibility to enable fitting than RSM (Balabanov and 
Venter, 2004).  In figure 5.32, a comparison is done between the 
responses of a neural net and four hidden nodes to least-squares 
polynomials of different orders (Papalambros and Wilde, 2000). 
 

 Figure 5.32: 

A neural net and 
three other 

polynomials 
modeling the same 
data (Papalambros 

and Wilde, 2000). 
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   Neural networks present a fast and effective method for modeling 
nonlinear data, and in particular when no algebraic form is readily 
available. However, they introduce some practical difficulties. Some 
of these are related to the computational cost accompanying the 
learning process. Others have to do with requiring a skilled and 
experienced operator in using neural networks. 
 

   Kriging Method 

   The Kriging method, named after D. G. Krige who first developed it 
(Papalambros and Wilde, 2000), can also be generally thought of as a 
mathematical “curve fit” through a set of data generated by the 
analysis code (Phoenix Integration, 2004). It is a method of spatial 
prediction or estimation based on minimizing the mean error of the 
weighting sum of the sampling values (Sakata et a., 2003).  
 
In order to generate the surrogate model for this method, which 
interpolates Kriging models, the analysis model is executed in a 
series of runs and the results of each run are stored. The input 
variable values for this series of runs are selected to estimate the 
design space in an efficient manner. 
 
Spatial estimation using the Kriging method involves a number of 
steps like determining a semivariogram model, estimating 
parameters for a semivariogram and calculating the weighting 
coefficients for a spatial predictor. A semivariogram is a variance 
function in a probabilistic field that expresses data dispersion.  
 
While the Kriging method reduces estimation errors via the variance 
of estimated values, it demands the assumption of the kind of 
semivariogram model for the purpose of generating an estimated 
surface. There are many types of semivariograms including linear 
models, exponential models, Gaussian-type semivariogram models 
and others (Sakata et al., 2003). An estimated surface using the 
Gaussian-type semivariogram model for example should be 
appropriate for optimizing as it is smooth and continuous. 
 
In general, the Kriging method is preferred over response surface 
models that are based on experimental programming methods, as 
well as neural network approximation methods that encounter high 
computational learning cost (figure 5.33). 
 
 



 

    The Multi-Disciplinary Design System         190 

Modeling 

 Figure 5.33: 

A kriging model for a 
two dimensional 

function. Two top 
plots are the actual 

function and the two 
lower plots are the 

kringing model 
(Papalambros and 

Wilde, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Variable complexity approximation (Multi-fidelity Analysis) 

   Variable complexity approximation models or multiple-fidelity 
analysis models combine high and low-fidelity analyses to reduce 
computational cost (Koch et al., 2002). They are generated by means 
of two analysis tools that model the same physical phenomenon 
using different degrees of fidelity; one is a high-fidelity and more 
precise cost simulation code, and the other is a less precise 
simulation code which is computationally cheaper (figure 5.34).  
 
The fundamental idea of these models is using multiplicative or 
additive correction factors. These correction factors are applied to 
outputs of lower fidelity efficient codes and used to predict function 
values that would be obtained if higher fidelity complex codes were 
used. The factors are acquired by collecting data points using both 
codes (Koch et al., 2002). 
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For instance, a response surface can be generated from a small 
number of high-fidelity analyses. Low-fidelity analyses are then 
conducted for the same points and a response surface for low-
fidelity analyses is thus created. By using the correction factor for the 
response surfaces or the analysis results, the low-fidelity analysis 
results can be transformed into high-fidelity analysis results 
(Balabanov et al., 2004).  
 
An important drawback of this method, however, is that the results 
of high and low-fidelity analyses have to be correlated from time to 
time during optimization. This correlation can be complicated in 
situations involving a large number of design variables and 
responses, especially when each response uses its own correction 
factor. This would introduce the limitation more clearly in the 
number of design variables and responses employed. 
 

 Figure 5.34: 

Within an 
optimization both 

high-fidelity and low- 
fidelity models can be 

utilized.  
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   5.5 Evaluation Models 

   5.5.1 What is an Evaluation Model? 

   Evaluation models are in essence decision-making tools. An 
evaluation model provides a quantitative assessment of the effects 
of design decisions on the system being considered.  An evaluation 
model provides an objective evaluation as opposed to a subjective 
evaluation of system behavior. 
 
In single objective design problems, the optimization and search 
direction can be well defined and a single solution, if it exists, could 
be found. However, as the design develops, more than one objective 
function will often be identified. These objectives may be competing 
and therefore trade-offs must be made. This implies that there is no 
single optimal solution but rather a whole set of possible solutions of 
equivalent quality (Abraham et al., 2005). 
 
Once there is more than one option, a choice must be made. Rational 
choice requires a criterion to evaluate the different alternatives and 
rank them based on a figure of merit describing the quality of a 
design solution (Papalambros and Wilde, 2000). This should be an 
objective criterion which will help in the selection of the best solution 
from the generated alternatives. This criterion for evaluating 
alternatives is not unique but is rather influenced by many design 
factors, such as application, timing, the designer’s point of view, 
among other factors. In addition a criterion may change over time as 
more information is gathered about the design. The formulation of 
the objective function is vital to the outcome of the design space 
search. 
 
Addressing multiple objective problems may require techniques that 
differ from standard single objective optimization methods. Having 
several objectives leads to a vector objective rather than a scalar one. 
There are several methods that have been developed to formulate 
and solve such multi-objective problems. 
 
This objective is articulated based on the decision-maker’s 
preferences either before or after the search.  When the preference 
is expressed beforehand, the designer decides how to aggregate 
different conflicting objectives into a single objective function before 
the actual search is performed (Horn, 1997). A commonly adopted 
approach is scalarization. This consists of combining several 
objectives into one scalar cost function. There are different 
scalarization methods, such as the weighted-sum approach and the 
utility function method among others.  
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When using a single-objective search, the result of the optimization is 
a single design point (Gries, 2004). If the weights are changed, the 
full search needs to be repeated. Furthermore, depending on the 
shape of the objective function that aggregates several objectives, 
certain regions of the design space might be inaccessible.  
 
When a search is performed before making a decision, the search is 
performed with multiple objectives at the same time. The solution 
space becomes partially ordered with a set of optimal trade-offs 
between the conflicting objectives. This set is called the Pareto 
optimal set. The actual choice of one of the solutions depends on 
further constraints or objective functions that apply combinations of 
the objectives used for the search (Gries, 2004). 
 

 Figure 5.35: 

Expected input and 
output of the analysis 

model.   

 

 
 

   In the context of the MDDS, Evaluation models help make decisions 
about the multiobjevte nature of the design problem. If preference is 
expressed before search then the evaluation model aggregates the 
behavior of the different analysis models into one single objective 
that the optimization model can then use to search the design space 
(figure 5.35). If decision making is delayed after search, then the 
evaluation model becomes part of the optimization model.  
 
A brief review of multiobjective methods will follow. This review is 
not intended to be comprehensive, but will focus on the most 
popular multiobjective methods.  
 

   5.5.2 Single and Multi Objective Evaluation and Optimization 

   When the optimization task is composed of only one objective, the 
design problem is called a mono- or single-objective problem. The 
main goal of a single-objective optimization is to find the “best” 
solution, which implies the minimization or maximization of an 
objective function that consists of a design vector that includes 
design variables and is subject to both equality and inequality 
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constraints. In single objective optimization, the search space is often 
well defined. 
 
Many design problems need to achieve several objectives such as: 
maximize performance, minimize deviations from desired levels, and 
minimize cost. Design problems may also have several multiple 
conflicting objectives. As soon as there are several -possibly 
contradicting- objectives to be optimized simultaneously, a single 
optimal solution no longer exists. 
 
Using a single-objective optimization to solve a problem with several 
objectives entails grouping all different objectives into one single 
objective function (Savic, 2002).  However, although some design 
problems may be reduced to a single objective, very often it is 
difficult to define all the features of the design problem in terms of a 
single objective.  Also a single-objective optimization usually cannot 
provide a set of alternative solutions that show different objectives 
against each other. Different objectives may show tight relations to 
other objectives but optimizing with a single objective may reveal 
severe trade-offs with respect to the other objectives (Gries, 2004).  
 
Therefore, defining multiple objectives often gives a better idea of 
the design space and the possible trade-offs between conflicting 
objectives. The interaction among different objectives gives rise to a 
set of compromised solutions of equivalent quality, mostly known as 
the trade-off, non-dominated, non-inferior or Pareto-optimal 
solutions (Savic, 2002). Mathematically, the multi-objective 
optimization problem can be stated in its general form as: 
 
                                                  min J (x, p) 
                                                  s. t.   g(x, p) ≤ 0 
                                                           h(x, p) = 0 
 

X i.LB ≤ Xi ≤ Xi,UB (i = 1, … , n) 
x ∈ S 

Where 
𝐽𝐽 = [ 𝐽𝐽1(𝑥𝑥) . . . 𝐽𝐽𝑧𝑧(𝑥𝑥) ]𝑇𝑇  
𝑥𝑥 = [𝑥𝑥1 … 𝑥𝑥𝑖𝑖 … 𝑥𝑥𝑛𝑛 ]𝑇𝑇       

  𝑔𝑔 = [𝑔𝑔1(𝑥𝑥) … 𝑔𝑔𝑚𝑚1 (𝑥𝑥)]𝑇𝑇  
  ℎ = [ℎ1(𝑥𝑥) … ℎ𝑚𝑚2 (𝑥𝑥)]𝑇𝑇  

 
   Here, J is a column vector of z objectives, whereby 𝐽𝐽𝑖𝑖 ∈ ℝ. The 

individual objectives are dependent on the design vector x of n 
design variables. In order for a particular design x to be feasible, both 
a vector of inequality constraints g, and equality constraints h, have 
to be satisfied. The problem is to minimize (or maximize) 
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simultaneously all elements of the objective vector (de Weck, 2004). 
 
Although the mathematical formulation of the optimization problem 
looks quite similar to single-objective optimization, they are 
considerably different. In multi-objective optimization, in addition to 
the design space in which each combination of design variables is 
available, a second space with the attainable objective function 
values exists, where a mapping process occurs for a design 
represented by the design vector x in the feasible design space S to 
the attainable objective space J (figure 5.36). 
 

 Figure 5.36: 

Illustration of design 
space and objective 

space.  

 

 

 

 

 

 

 

   Multiobjective methodologies provide more realistic models of a 
problem because many objectives are considered and the emphasis 
on multiobjective thinking helps avoid potentially sub-optimal point 
designs (Cohon, 1978). Most design problems are characterized by a 
large and often infinite number of alternatives. A wider range of 
these alternatives is usually identified when multi-objective 
methodologies are implemented. (Cohon, 1978). 
 
Although multiobjective optimization has been in use for some time 
now and its application in design problems has been continuously 
increasing, relatively few techniques have been developed compared 
to the large number of techniques available for single-objective 
optimization (Abraham et al., 2005). 
 

   5.5.3 Multiobjective Methods 
 

  

 

 

 Multiobjective optimization methods can be broadly classified into 
two categories: Decision making before search methods which are 
also known as Scalarization approaches, and Search before decision 
making methods which are also known as Pareto approaches. While 
different names are used for these categories, the fundamental 
differences are always the same (de Weck, 2004). 
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Table 5.2: 

Different 
Scalarization and 
Pareto Methods 

(de Weck, 2004). 

 
In the first category of methods the designer decides how to 
aggregate different objectives into a single objective function before 
the actual search is performed (Gries, 2004). This requires the 
formation of a single objective function that contains contributions 
from the sub-objectives in vector J. The formation of the aggregate 
objective function requires that the preferences or weights between 
objectives are assigned before the results of the optimization 
process are known. In this way, well-established single optimization 
methods can be applied (de Weck, 2004). 
 
 

  
Scalaraization Methods 
(apriori preference expression) 
 

Pareto Methods 
(a-posteriori preference expression) 
 

• Weighted Sum Approach 
• Multiattribute Utility Analysis (MAUA) – Utility 

Theory. 
• Compromise Programming (Non-linear 

combinations). 
• Physical Programming, Goal Programming. 
• Lexicographic Approaches. 
• Acceptability Functions, Fuzzy Logic. 

 

• Exploration and Pareto Filtering. 
• Multiobjective Genetic Algorithms (MOGA). 
• Weighted Sum Approach (with weight 

scanning). 
• Adaptive Weighted Sum method (AWS). 
• Normal Boundary Intersection (NBI). 
• Multiobjective Simulated Annealing (MOSA). 

 
 

   In the second category, the search for optimal solutions is performed 
with multiple objectives kept separate during the search. These 
Pareto methods typically use the concept of dominance to 
differentiate between inferior and non-inferior solutions. The result 
of the search is a set of Pareto-optimal solutions. Additional criteria 
or preferences can be applied after the search to find an optimal 
solution for a given problem. In this manner an unbiased search can 
be performed.  In addition, a single search can serve several problem-
specific decisions without the need to repeat the search (Gries, 
2004). 
 
Therefore, the selection of a single- or a multi-objective search 
algorithm influences not only the point of time when design 
objectives are defined, but also influences the whole exploration 
process (Gries, 2004). However the end goal of all these methods 
remains the same: to provide designers and decision makers with a 
set of alternatives to choose from (de Weck, 2004). Table 5.5.1 
provides an overview of Multi-Objective Optimization Methods. 
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   5.5.3.1  Decision Making before Search 
 

   In the decision making before search approach, multi-objectives are 
formulated into a scalar substitute problem that has a scalar 
objective and can be solved with the usual single objective 
optimization methods. This method is called scalarization and is 
based on the assumptions that the designer preferences are known 
and assigned before searching the design space for design solutions.  
 
The scalar objective has the form f(x, p), where p is a vector of 
preference parameters that can be tuned to the designer’s subjective 
preferences. The z objectives can be aggregated to express a utility, 
U, a dimensionless scalar quantity expressing the quality of a 
particular design. 
 

max {U(J1, J2, … , Jz)} 
              s. t.    Ji = fi(x, p)    1 ≤ i ≤ z 

      x ∈ S, U ∈ R+ 
 
Several scalarization methods have been developed (Table 5.5.1). The 
focus in the following will be on two of these methods namely the 
weighted-sum approach and the utility function approach.  
 

   5.5.3.1.1 Method of Weighted-Objectives 
 

   One of the most common and easiest to understand scalarization 
techniques is the weighted sum approach which is also known as the 
method of weighted-objectives. The scalar substitute objective is 
obtained by assigning subjective weights to each objective and 
summing up all objectives multiplied by their corresponding weight 
(Papalambros and Wilde, 2000). 
 
The decision maker weights the different criteria according to their 
relative importance in determining the quality of a solution. This 
numerical treatment facilitates comparison among criteria that are 
not related (Kockler et al., 1990). Weighting should follow a logical 
breakdown.  
 
This approach is characterized by one composite or utility function U 
declared by aggregating multiple objective functions with individual 
weighting factors λj.  
 
                        max        U �J(x, p)� 

                        where    U = �λj

z

j=1

𝐽𝐽𝑗𝑗
𝑠𝑠𝑠𝑠𝑗𝑗

 with λ = [ 𝜆𝜆1  𝜆𝜆2  …  𝜆𝜆𝑧𝑧  ]T  
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                        and         𝜆𝜆 ∈  Rz     |    λi > 0,�  𝜆𝜆𝑖𝑖 

z

i=1

= 1 

                        and         x ∈ S 
 
Formulated in this manner the objective U always forms a strictly 
convex combination of objectives. The individual objectives are 
typically normalized, and since the optima of the problem does not 
change if all weights are multiplied by a constant value, weights are 
chosen such that they add to unity and are themselves positive 
scalars (de Weck, 2004).  
 
It is apparent that the preference of an objective can be changed by 
modifying the corresponding weighting factor which leads to 
another solution point. In the case of two equally scaled objectives: 
 

U = 𝜆𝜆 𝐽𝐽1 + (1 − 𝜆𝜆)𝐽𝐽2 
 
The ratio of the weights defines the constant slope of the line. 
Varying λ gradually in small incrementing steps exposes a set of 
optimal solutions as the weight is gradually shifted from one 
objective to another. This sequential variation of some weighting 
factors can be used to find as much trade-off solutions as possible. 
 

 Figure 5.37: 

Sequential variation 
of weighting factors 

can be used to find 
trade-off solutions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   This approach can be utilized to find the Pareto-front by obtaining 
different points on the curve with different combinations of 
weighting factors (figure 5.37). Although this approach can work for 
convex Pareto-fronts, it does not work for non-convex cases since 
not all points on the Pareto-front can be determined.  It is apparent 
from figure 5.38 that many points in the non-convex case will never 
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be reached with any combination of the weights and the resulting 
optima are unevenly distributed. 
 

   5.5.3.1.2 Utility  
 

   Another scalarization approach is the utility functions approach 
which is based on the general formulations of utility theory.  Utility 
functions may be developed using engineering judgment or a more 
quantitative approach. The range of the utility function covers a 
range of acceptable alternatives. Most scalarization approaches can 
be represented via the utility function approach (de Weck, 2004).  
 
A mathematical construction of a utility function allows non-linear 
combinations of objectives via intermediate utility functions, which 
are then combined into an overall utility function that will serve as a 
single objective. The method assigns costs to each objective, 
converting everything to minimum cost (Papalambros and Wilde, 
2000). The method normalizes the utility functions. This provides for 
a mediating capability by translating diverse criteria into a common 
scale (Kockler et al., 1990).  
 

  

 
 

 Figure 5.38: 

Different utility 
functions 

classifications  
(Cook 1997, Messac 

2000).   

 Utility functions have been classified by various researchers into their 
most prevalent shapes (Cook 1997, Messac 2000).  For example a 
larger-is-better or smaller-is-better relationship is represented by a 
monotonically increasing or decreasing relationship between the 
objective Ji and its corresponding utility Ui, whereas a nominal-is-
better or in range-is-better type of utility can be represented by a 
convex or concave functions (figure 5.38).  
 
Although utility functions are effective and commonly used they are 
hard to implement and require extensive interviews to determine 
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appropriate utility functions and weights. However, once the utility 
functions have been constructed, optimization can be performed in 
search of the design with maximal utility (de Weck, 2004).  
 

   Scalarization Methods Discussion 
 

   In the previously discussed scalarization methods, multiple objectives 
are aggregated into one objective using some knowledge of the 
design problem being solved. Using scalarization methods and the 
optimization of a single-objective may only provide a single Pareto-
optimal solution point for a convex Pareto-front. However, designers 
usually need different alternatives and need to carry out trade-offs 
between different objectives. Therefore, in order to increase the 
number of points on the Pareto-front, the same problem can be 
solved several times with variable weight settings. However, this 
process may not work effectively for a non-convex Pareto- front.  
 
Furthermore scalarization methods may include some subjective 
information and therefore may be misleading in regards to the 
character of the optimum design solution (Papalambros and Wilde, 
2000).  In addition, solutions obtained using scalarization methods 
mainly depend on the method settings such as the underlying 
weight-vector for the weighted sum approach or the manner in 
which the utility interviews were conducted.  
 
Another weakness of these methods is that they require knowledge 
of the optima prior to starting the optimization, but design 
preferences are rarely known precisely a priori. Shifts in preference 
values can occur once the set of feasible designs becomes known. 
Therefore trade-offs become more evident with time. 
 
Nonetheless, scalarization methods are useful in gaining fast single 
solutions especially if a single-objective optimization method is the 
only available method (Keskin, 2007).  
 

   5.5.3.2 Search Before decision making 
 

   One of the first scientists to introduce the concept of trade-offs 
between objectives was F.Y Edgeworth in 1881. Edgeworth was a 
Professor of economics and defined an optimum for multicriteria 
economic decision-making (Edgeworth 1881). He did so for the multi-
utility problem within the context of two hypothetical consumer 
criteria, P and π: “It is required to find a point (x,y,) such that in 
whatever direction we take an infinitely small step, P and π do not 
increase together but that, while one increases, the other decreases.”  
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Vilfredo Pareto (1848-1923), a contemporary of Edgeworth who was 
working in Florence as a civil engineer, was one of the first to analyze 
economic problems with mathematical tools. His concept, named the 
Pareto Optimum, found broad acceptance (Pareto 1906): “The 
optimum allocation of the resources of a society is not attained so long 
as it is possible to make at least one individual better off in his own 
estimation while keeping others as well off as before in their own 
estimation.” Since then, multi-objective optimization has penetrated 
design and engineering and has developed at a rapidly increasing 
pace (de Weck, 2004). 
 
A solution may be better, worse or indifferent to other solutions, 
neither dominating nor dominated with respect to the objective 
values (Abraham et al., 2005). In a multi-objective optimization 
problem there exists a set of solutions which are superior to the rest 
of the solutions in the search space when all objectives are 
considered but inferior to other solutions in the space in at least one 
objective. These are optimal solutions that are not dominated by any 
other solution in the search space (figure 5.39). Such optimal 
solutions are called Pareto optimal, and the entire set of such optimal 
trade-offs solutions is called the Pareto optimal set, where the rest of 
the solutions are called dominated solutions (Abraham et al., 2005).  
 

 Figure 5.39: 

Points A,B,C and D 
are optimal solutions 

that are not 
dominated by any 

other solution in the 
search space.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   All elements in the Pareto optimal set define reasonable solutions 
and are subject to further decision factors in order to choose a design 
for a given problem (Gries, 2004). As evident, in a real world situation 
a decision-making (trade-off) process is required to obtain the 
optimal solution (Abraham et al., 2005). 
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Although there are several methods to approach a multiobjective 
optimization problem, most work is concentrated on the 
approximation of the Pareto set (Abraham et al., 2005). 
 
Pareto methods attempt to find a set of efficient solutions, 𝑥𝑥∗𝑗𝑗  , such 
that the objective vectors corresponding to those solutions are non-
dominated in the objective space. 
 
To explain the Pareto criterion for dominance we will assume, 
without loss of generality, two feasible objective vectors  𝐽𝐽1 and 𝐽𝐽2. 
For all objectives, respectively,  𝐽𝐽1 dominants 𝐽𝐽2  if and only if: 
 

 𝐽𝐽𝑖𝑖1 ≥ 𝐽𝐽𝑖𝑖2   ∀ 𝑖𝑖 
And    𝐽𝐽𝑖𝑖1 ≥ 𝐽𝐽𝑖𝑖2    for at least one 𝑖𝑖 

 
This means a dominant solution is at least better in one objective 
while being at least the same in all other objectives. For strong 
(strict) dominance requires  𝐽𝐽1  to be better in all objectives than  𝐽𝐽2 .  
 
Based on the notion of dominance, the simplest approach address 
the multi object decision is a combination of design space 
exploration and dominance (Pareto) filtering.  
 
The advantage of multi-objective optimization compared to single 
objective optimization is to provide different solutions to the design 
problem that the designer can choose from. To pick one solution 
over another might require problem knowledge and additional 
decision criteria which are not necessarily formulated in the design 
task.  Therefore, it may be useful to have a wide range of non-
dominated solutions from which one or more solutions can be 
chosen.  
 
Two goals can be pursued simultaneously in multi-objective 
optimization (Deb 2001). The first goal is to find a diverse set of 
solutions. However, this set won’t be comprehensive due to the n-
dimensionality of the design vector x.  
 
The Second goal is to find a set of solutions as close as possible to the 
Pareto-optimal front. Given that the points only satisfy non-
dominance, the solutions obtained are only approximations of the 
Pareto Front.  
 
An optimum to the problem is found if they satisfy the multi-
objective version of the Karush-Kuhn-Tucker (KKT) optimality 
conditions (de Weck, 2004): 
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If 𝑥𝑥∗ is non-inferior (=Pareto optimal) it satisfies the following KKT 
conditions: 
 

a) 𝑥𝑥∗ is feasible, i.e.  𝑥𝑥∗ ∈ 𝑆𝑆  and  𝑆𝑆 = ∅ 
b) All objective functions 𝐽𝐽𝑖𝑖  and constraints 𝑔𝑔𝑗𝑗  are differentiable 
c) At 𝑥𝑥∗ the constraints are satisfied 𝑔𝑔𝑖𝑖(𝑥𝑥∗) ≤ 0 ∀ 𝑗𝑗 = 1,2, … ,𝑚𝑚 

and 𝜆𝜆𝑗𝑗𝑔𝑔𝑗𝑗  (𝑥𝑥∗) = 0  whereby  𝜆𝜆𝑗𝑗 ≥ 0 ∀   𝑗𝑗 = 1, … ,𝑚𝑚 
d) There exist 𝜇𝜇𝑖𝑖 ≥ 0 ∀  𝑖𝑖 = 1, …  ,𝑛𝑛  with strict inequality 

holding for at least one 𝑖𝑖 such that the condition 
∑ 𝜇𝜇𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∇𝐽𝐽𝑖𝑖(𝑥𝑥∗) + ∑ 𝜆𝜆𝑗𝑗𝑚𝑚

𝑗𝑗=1 ∇𝑔𝑔𝑗𝑗 (𝑥𝑥
∗) = 0  is true. 

 
The condition described in (d) expresses the fact that the gradients 
of the objectives and gradients of the constraints are in equilibrium 
with each other at a Pareto-optimal point. Note, that among 
multipliers, the preferences μi are the corollary to the weights ( λi), 
while the λ j’s  are the Lagrange multipliers. 
  

   5.5.3.2.1 MOGA 
 

   Several stochastic optimization techniques such as simulated 
annealing; tabu search, ant colony optimization etc. could be used to 
generate the Pareto set. However, due to the manner that these 
algorithms work, the solutions generated tend to be stuck at good 
approximations and do not guarantee the identification of optimal 
trade-offs (Abraham et al., 2005) 
 
In recent years there has been a rising interest in evolutionary 
multiobjective optimization algorithms which combine both 
evolutionary computation and multicriteria decision making. One of 
the strongest appeals of such algorithms is that they require very 
little knowledge about the design problem being solved, and are easy 
to implement, robust and could be implemented in a parallel 
environment (Abraham et al., 2005) 
 
Several evolutionary algorithms have been proposed and successfully 
applied to various design problems. The Multi-Objective Genetic 
Algorithm (MOGA) proposed by Fonseca and Fleming (1993) has 
particularly gained increased acceptance among the Pareto 
approaches in recent years. 
 
MOGA’s evolve populations of designs gradually so that they 
approximate a Pareto frontier as closely as possible (de Weck, 2004). 
The approach consists of a scheme in which the rank of a certain 
individual corresponds to the number of individuals in the current 
population by which it is dominated. All non-dominated individuals 
are assigned rank 1, while dominated ones are penalized according to 
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the population density of the corresponding region of the trade-off 
surface (Coello, 2001). Fitness assignment is performed in the 
following way (Fonseca and Fleming, 1993):  
 
1. Sort population according to rank.  
 
2. Assign fitness to individuals by interpolating from the best (rank 1) 
to the worst (rank n < M) in the way proposed by Goldberg (1989) 
(the so-called Pareto ranking assignment process), according to 
some function, usually linear, but not necessarily.  
 
3. Average the fitnesses of individuals with the same rank, so that all 
of them will be sampled at the same rate. This procedure keeps the 
global population fitness constant while maintaining appropriate 
selective pressure, as defined by the function used.  
 
Since the use of a blocked fitness assignment scheme as the one 
indicated before is likely to produce a large selection pressure that 
might produce premature convergence (Goldberg, 1989), the use of 
a niche-formation method proposed to distribute the population 
over the Pareto-optimal region (Deb and Goldberg, 1989). Sharing is 
performed on the objective function values. MOGA also uses mating 
restrictions.  
 
While MOGA is an effective method and doesn’t require apriori 
assignments of weights, there are a few challenges (de Weck, 2004). 
The main challenges are the large computational expense as well as a 
tendency for niching (clumping of solutions in objective space) which 
results in underrepresented regions of the Pareto front (de Weck, 
2004).  There is a need to minimize the distance of the generated 
solutions to the Pareto set and to maximize the diversity of the 
developed Pareto set. A good Pareto set may be obtained by 
appropriate guiding of the search process through careful design of 
reproduction operators and fitness assignment strategies. To obtain 
diversification special care has to be taken in the selection process. 
Special care is also to be taken care to prevent non-dominated 
solutions from being lost (Abraham et al., 2005). All of these issues 
(and others) are subjects of ongoing research in the multiobjective 
optimization community. 
 
 



 

    The Multi-Disciplinary Design System         205 

Modeling 

   5.6 Optimization Models  

   5.6.1 What is an Optimization Model? 

   Optimization was first coined with the development of the gradient 
steepest descent algorithm by Guass. It served as the first building 
block of the science of optimization.  Later, in the 1940s, George 
Dantzig invented the term linear programming which gave way to 
the development of the remaining well-known optimization schemes 
(Elster, 1993). Throughout the 1970s and 1980s, the field of Artificial 
Intelligence (AI) introduced the heuristic approach to solving 
optimization problems. Today, optimization plays an important role 
in most of the major fields, which include engineering and design, 
operations research and economics.  
 
Conventional design procedures are for finding a suitable design 
which satisfies the functional objective(s) and requirements of the 
problem. In general, there will be more than one acceptable design 
or design alternative. The purpose of optimization is to evaluate and 
choose the fittest of the available acceptable designs based on the 
functional objective(s) and the design requirements and restrictions.  
 
Optimization can be explicated as improving or fine-tuning a design 
or system in terms of one or more performance criteria 

(Papalambros, 2000). It formalizes what humans have always done 
intelligently. Optimization can be used in refining any design or 
system that includes some form of an analysis component, and is 
therefore subjected to the same limitations of the design. Generally, 
an optimization problem consists the following (Papalambros and 
Wilde, 2000): 
 

• A set of variables that describe the design alternatives.  
• An objective function(s), expressed by the design variables, 

to minimize or maximize.  
• A set of constraints, expressed in terms of the design 

variables, to be satisfied by any suitable design.  
• A set of values for the design variables, which satisfies all the 

constraints. 
 

Certain design features are determined in the synthesis model, and 
the behavior corresponding to each design is determined in the 
analysis model. The evaluation model attempts to handle the multi-
objective criteria of the design problem. Optimizing models are then 
used to determine optimal designs. 
 
The input to an optimizing model is an objective function. This could 
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be the output of an evaluation model. The output of an optimization 
model is a new design vector that in turn is the input to the synthesis 
model (figure 5.40). 
 

 Figure 5.40: 

Expected input and 
output of the 

optimization model.   

 
 

 

 
   The rising demand for industry to lower production costs has 

encouraged professionals to seek precise and accurate means for 
decision-making, leading them to utilize new optimization schemes. 
Optimization methods today have reached a high degree of 
sophistication, contributing to their use in a wide range of industries. 
With the rapid advancement of computer technology, the size and 
the complexity of the problems being solved using optimization 
techniques are also increasing.  
 
In this section, optimization will be discussed in general. I will start by 
explaining how optimization problems are mathematically 
formulated and classified. Next, the main optimization algorithms will 
be discussed.  
 

   5.6.2 Mathematical Formulation  

   Mathematically, optimization is the minimization or maximization of 
a function subject to constraints on its variables (Nocedal and Wright, 
2000). The objective function is sometimes called a “cost” function, 
since minimum cost is often taken to characterize the “best” design. 
In general, the criterion (objective function) for selection of the 
optimal design is a function of the design variables of the model. 
 
The following notations are used to represent a model (Papalambros 
and Wilde, 2000): 
 

• x is the vector of variables, also called unknowns or 
parameters. 

• f is the objective function, a (scalar) function of x that is 
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maximized or minimized. 
• cj are constraint functions, which are scalar functions of x that 

define certain equations and inequalities that the unknown 
vector x must satisfy. 

 
 Figure 5.41: 

An optimization 
problem has an 

objective function 
and can have several 
constraints to insure 

feasibility.  

 

 

 

 

 

 

 

 

 

   Using this notation, the optimization problem can be written as 
follows: 

 
minx∈Rn 𝑓𝑓(𝑥𝑥) subject to 

 
𝑐𝑐𝑗𝑗 (𝑥𝑥) ≥ 0, 𝑖𝑖 ∈ 𝐼𝐼 
𝑐𝑐𝑗𝑗 (𝑥𝑥) = 0, 𝑖𝑖 ∈ 𝐸𝐸 

 
Here E and I are sets of indices for equality and inequality constraints, 
respectively. 
 
The variables are expected to be interrelated by physical laws, like 
the conservation of mass or energy, Kirchhoff’s voltage and current 
laws, or other system equalities that must be satisfied (Antoniou et 
al., 2007).  Similarly a collection of constraints may be imposed on the 
variables to ensure physical reliability, compatibility, or even to 
simplify the modeling of the problem (Nocedal and Wright, 
2000)(figure 5.41). 
 

   5.6.3 Classification of Optimization Problems  

   The classification of an optimization problem depends on more than 
one factor. It can be the objective function, constraints, design 
variables etc. This will be discussed further in the following. 
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   5.6.3.1  Based on Constraints 
 

   Depending on the ranges allowable for the design variables, 
optimization problems can be classified as unconstrained and 
constrained optimization problems. 
 

   Unconstrained optimization 
 

   In some problems there might be no need to have constraints on the 
variables, or it might be safe to ignore them as they do not have an 
effect on the solution and do not interfere with algorithms. 
Unconstrained problems can also arise from reformulations of 
constrained optimization problems, in which the constraints are 
replaced by penalization terms added to the objective function, that 
have the effect of restricting constraint violations (Nocedal and 
Wright, 2000).  
 
Mathematically an unconstrained problem is represented as: 
 

Find 𝐗𝐗 = �
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛
�  which minimizes 𝑓𝑓(𝐗𝐗) 

 
 

   Constrained optimization 
 

   These kinds of problems come up from models in which constraints 
play an essential role i.e. they are necessary, for example in imposing 
budgetary constraints in an economic problem or shape constraints 
in a design problem (Nocedal and Wright, 2000).  
 
Mathematically a constrained problem can be stated as follows: 
 

Find 𝐗𝐗 = �
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛
�  which minimizes 𝑓𝑓(𝐗𝐗) 

 
Subject to the constraints 

 
𝑔𝑔𝑗𝑗 (𝑋𝑋) ≥ 0, 𝑗𝑗 = 1,2, … … ,𝑚𝑚 
𝑙𝑙𝑗𝑗 (𝑋𝑋) = 0, 𝑗𝑗 = 1,2, … … ,𝑝𝑝 

Where X is an n-dimensional vector called the design vector, f(X) is 
the objective function, and the constraints are, gj (X) for inequality, 
and lj (X) for equality (Rao, 1996). 
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   5.6.3.2  Based on Design Variables  
 

   Depending on the values allowable for the design variables, 
optimization problems can be classified as integer (Discrete) and real-
valued (Continuous) programming problems. 
 
Models with continuous variables are in general easier to solve with 
techniques based on differential calculus. However, models with 
discrete variables are combinatorial in nature and an optimal solution 
is difficult to identify without sometimes complete enumeration of all 
possible combinations which is not always practical (Papalambros, 
2000). 
 

   Discrete Variables 
 

   If some or all of the design variables  x1, x2, . . . , xn  are restricted to 
take on only integer or discrete values, then the  problem is called an 
integer programming problem. The behavior of the objective function 
and constraints may change as we move from one possible point to 
another, even if the two points are “close” by some measure 
(Nocedal and Wright, 2000). 
 

   Continuous Variables 
 

   Similarly, if all the design variables can take any real value, the 
optimization problem is called a real-valued or continuous 
programming problem. These problems are in general easier to solve 
because of the smoothness of the function, which makes it feasible 
to use the objective function and constraint information at a 
particular point x, to realize the function’s behavior at all points close 
to x. (Nocedal and Wright, 2000) 
 

   5.6.3.3  Based on nature of objective function 
 

   If the modeling relationships and the objective function are linear, 
the optimization problem is linear. This type of problem is usually 
referred to as a linear programming problem. If either the modeling 
relationships and/or the objective function are nonlinear the 
optimization problem is nonlinear, or a nonlinear programming 
problem.  

 
Frequently very large-scale nonlinear or linear programming 
problems are decomposed into a set of interconnected (and in some 
sense) simpler problems (Papalambros, 2000). 
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   Linear programming 
 

   When the objective function and all its constraints, are linear in terms 
of x, the problem is called a linear programming problem. These types 
of problems are perhaps the most widely formulated and solved of 
all optimization problems, mainly in management, financial, and 
economic applications. (Nocedal and Wright, 2000) 
 
The mathematical representation of a  linear programming problem in 
standard form: 

Find 𝐗𝐗 = �
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛
� 

 
This minimizes 

 
𝑓𝑓(𝑿𝑿) = ∑𝑖𝑖=1

𝑛𝑛 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖  
 

Subject to the constraints 
 

∑𝑖𝑖=1
𝑛𝑛 𝑎𝑎𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖 = 𝑏𝑏𝑖𝑖 , 𝑗𝑗 = 1,2, … … ,𝑚𝑚 

𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … … ,𝑛𝑛 
 
Where ci, bj, and aij are known constants, and xi are the decision 
variables. (Rao, 1996) 
 

   Nonlinear programming 
 

   Problems, in which at least some of the constraints or the objectives 
are nonlinear functions, are called Nonlinear programming problems. 
They tend to occur naturally in the physical sciences and engineering, 
and are becoming more widely used in management and economic 
sciences as well (Nocedal and Wright, 2000). 
 
A nonlinear programming problem with a quadratic objective 
function and linear constraints is considered a Quadratic 
Programming Problem. Mathematically it is formulated as follows: 
 

𝐹𝐹(𝑋𝑋) = 𝑐𝑐 + ∑𝑖𝑖=1
𝑛𝑛 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖 + ∑𝑖𝑖=1

𝑛𝑛 ∑𝑗𝑗=1
𝑛𝑛 𝑄𝑄𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  

 
Subject to 

 
∑𝑖𝑖=1
𝑛𝑛 𝑎𝑎𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖 = 𝑏𝑏𝑖𝑖 , 𝑗𝑗 = 1,2, … … ,𝑚𝑚 

       𝑥𝑥𝑖𝑖 ≥ 0,                 𝑖𝑖 = 1,2, … … ,𝑛𝑛 
 
Where, c, qi, Qij, aij, and bj are constants (Rao, 1996). 
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   5.6.4 Classification of Optimization Algorithms  
 

 Figure 5.42: 

A simple taxonomy of 
optimization 

algorithms discussed 
in the thesis.  

 Optimization Algorithms can be classified into either Deterministic or 
Stochastic (Heuristic) methods. Deterministic methods can be 
classified into Derivative-Free methods and Gradient Based methods. 
Stochastic (Heuristic) methods include several algorithms such as 
Evolutionary Algorithms, Simulated Annealing and Tabu Search 
(figure 5.42). In the following sections emphasis will be given to some 
better known optimization algorithms.   
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   5.6.4.1 Deterministic Algorithms 

   5.6.4.1. 1 Derivative-Free Methods 

   Simplex Method 

   Linear programming and the Simplex method have been the most 
widely used amongst optimization tools since the 1950s 
(Luenberger, 2003). Linear programs have linear objective functions 
and constraints that include both equalities and inequalities. The 
standard form of linear programs is: 
 

min  𝑐𝑐𝑇𝑇𝑥𝑥, 
𝑠𝑠𝑠𝑠𝑏𝑏𝑗𝑗𝑠𝑠𝑐𝑐𝑠𝑠 𝑠𝑠𝑡𝑡 𝐴𝐴𝑥𝑥 = 𝑏𝑏, 𝑥𝑥 ≥ 0, 

 
Where c and x are vectors in Rn, b is a vector in Rm, and A is an m × n 
matrix. 
 
In geometric terms, the feasible set defined by the linear constraints 
is a polytope, an n-dimensional convex, defined by the intersections 
of a number of half-spaces in n-dimensional Euclidean space 
(Luenberger, 2003).  
 
The vertices of this polytope are the points that do not lie on a 
straight line between two other points in the set (Nocedal and 
Wright, 2000). Algebraically, the vertices are exactly the basic 
feasible points defined above (figure 5.43). The contours of the 
objective function are planar and the set of optimal points can be a 
single vertex, an edge or face, or an entire feasible set (Luenberger, 
2003).  

 Figure 5.43: 
 

 Linear program in 
two dimensions with 

solution at x*=cTx 
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   Simplex Method Algorithm 

   
The idea of the simplex method is to proceed from one basic feasible 
solution of a problem in standard form to another, in a manner that 
continually decreases or increases the value of the objective function 
until an optimum is reached (Luenberger, 2003). The changing of a 
non-basic variable value and adjusting the values of the basic 
variables, while maintaining feasibility, corresponds to moving along 
an edge of the convex set (Dantzig, 1998). 
 
Therefore, interior points can be ignored while focusing only on the 
edges, because the simplex algorithm attempts to find a single 
optimal point.  Hence, the simplex algorithm begins at a vertex and 
moves along the edges of the polytope until it reaches the vertex of 
the optimum solution. The Simplex Method provides an efficient 
method for moving among basic solutions to an optimal solution 
(Luenberger, 2003). 
 
To apply the simplex algorithm, the linear programming problem has 
to be transformed into the augmented form. The optimization 
problem is formulated in matrix form as follows: 
 

Maximize Z in:  

�1 −𝑐𝑐𝑇𝑇 0
0 𝐴𝐴 𝐼𝐼

�  �
𝑍𝑍
𝑋𝑋
𝑋𝑋𝑆𝑆
� = �0𝑏𝑏� 

 
𝑋𝑋,  𝑋𝑋𝑆𝑆 ≥ 0 

 
where Z are the variables to be maximized, x are the variables from 
the standard form,  xs are slack variables from the augmented form, 
c contains the optimization coefficients, A and b describe the 
constraints.  
 
This form helps defining the initial basic feasible solution. All 
variables from the standard form are nonbasic variables that have a 
zero value, whereas the new variables introduced in the augmented 
form are basic variables that have a nonzero value. 
 
The algorithm starts at some vertex of the polytope and at every 
iteration selects an adjacent vertex that does not decrease the value 
of the objective function. If no such vertex exists then a solution to 
the problem is found. However often an adjacent vertex is not 
unique and a pivot rule must be applied to establish the next vertex 
to select.  
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   Revised Simplex method Algorithm  

   Rather than spend time updating tableaus and dictionaries at the 
end of each iteration, the Revised Simplex Method does most of its 
calculation at the beginning of each iteration which results in less 
calculation at the end.  
 
However in computer implementation, the physical limitations of the 
computer can become an issue since round-off errors are a common 
problem in matrix manipulations particularly since matrices 
generated from the Revised Simplex Method are not usually well-
conditioned. Therefore, the task of implementing the Revised 
Simplex Method is more than just coding and programming the 
algorithm but is also an exercise in numerical stability. 
 

   Duality Theory 

   For every linear programming problem, also known as a primal 
problem, there is a corresponding dual linear programming problem 
that provides an upper bound on the optimal value of the primal 
problem (Luenberger, 2003). 
 
If the primal problem is formulated in matrix form as follows 

Maximize   𝑐𝑐𝑇𝑇𝑥𝑥   
subject to   𝐴𝐴𝑥𝑥 ≤ 𝑏𝑏,   𝑥𝑥 ≥ 0 

 
Then the corresponding dual problem is formulated in matrix form 
as follows: 

Minimize    𝑏𝑏𝑇𝑇𝑦𝑦  
subject to  𝐴𝐴𝑇𝑇𝑦𝑦 ≥ 𝑐𝑐, 𝑦𝑦 ≥ 0  

 
where y is used instead of x as variable vector. 
 
Both problems are constructed from the same underlying cost and 
constraint coefficients but in a manner that if one of these problems 
is minimized then the other is maximized, and if the optimal values 
of the corresponding objective functions exist, then they are equal 
(Luenberger, 2003). 
 
The variables of the dual problem can be interpreted as prices 
associated with the constraints of the original (primal) problem. 
Through this association it is possible to give an economically 
meaningful characterization to the dual. Furthermore, the variables 
of the dual problem are also related to the calculation of the relative 
cost coefficients in the simplex method. The consideration of the 
linear programming problem from both the primal and dual 
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viewpoints usually provides insight and significant computational 
advantage (Luenberger, 2003). 
 
There are two important duality theorems that should also be 
discussed: the weak duality theorem and the strong duality theorem. 
The weak duality theorem states that the value of the objective 
function of the dual is always greater than or equal to the value of 
the objective function of the primal. On the other hand, the strong 
duality theorem states that if the primal has an optimal solution x*, 
then the dual also has an optimal solution y*, such that cTx* = bTy*. 
 

   Integer Programming 

   When formulating a Linear Programming problem, if certain 
variables need to be integer values then we are faced by a more 
difficult type of problem called integer programs (IP's). 
 
Integer programs occur frequently because many decisions are 
essentially discrete. A pure integer programming problem is one 
where all variables in the integer programming problem are integers.  
A mixed integer programming problem is one where only some 
variables are restricted to being integers. A binary integer 
programming problem is one where the integer variables are 
restricted to be 0 or 1.  
 
There are two well-known algorithms for solving integer 
programming problems, namely the Branch and Bound algorithm 
and the cutting plane algorithm. The Branch and Bound algorithm is 
based on dividing the problem into a number of smaller problems. 
The cutting plane algorithm, on the other hand, is based on adding 
constraints to force integrality. 
 
Both methods involve solving a series of linear programs by first 
solving a relaxed version of the problem, and then adding 
constraints until an integer solution is found. Given the integer 
program: 

Minimize (or maximize)  ci 
 subject to Ai = b 
i ≥ 0 and integr 

 
It’s associated linear relaxation:  
 

Minimize (or maximize)  ci 
subject to Ai = b 

i ≥ 0 
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The linear relaxation problem is formed by dropping the integrality 
constrains and therefore is less constrained than integer 
programming. 
  
Solving a linear relaxation problem provides some information about 
the problem and sets a bound on the optimal value. However, it 
must be noted that rounding the solution of linear relaxation is not 
expected to produce the optimal solution of an integer program and 
that other techniques have to be implemented.  
 

   Branch and Bound 

  

 

 

 

 

 

 

  

 The Branch and Bound method was first introduced by Land and 
Doig in the early 1960's. The algorithm solves an integer 
programming problem by enumerating feasible solutions such that 
the optimal integer solution is found. However, unlike a complete 
enumeration, this method does not consider each possible 
enumeration because that is likely to be too large. This is an 
important factor that enables the tree search to work and find 
solutions that would be very hard if complete enumeration was 
used. 
 
A branch-and-bound method requires two procedures. The first is a 
branching procedure that given a set of candidates returns two or 
more smaller sets. This procedure is a recursive procedure that 
defines a tree structure whose nodes are the subsets of the original 
set.  The second procedure is a bounding procedure that computes 
upper and lower bounds of the given a subset.   
 
The way the algorithm works is by first solving the relaxed version of 
the problem. If the solution is not an integer, then the branching 
procedure is implemented splitting the problem into two sub-
problems. If while solving any of the sub-problems an integer 
solution is found, the nodes of the enumeration tree that are 
descendents of the current node are pruned since no better solution 
will be found by branching into even more sub-problems (Wolsey 
and Nemhauser, 1999). The method is repeated until there are no 
active sub-problems. 
 

   The Cutting Plane Algorithm 

  

 

 An alternative to the branch and bound method is the cutting planes 
method which can also be used to solve integer programs.  
 
The cutting plane algorithm works by first finding the solution to the 
relaxed version of the problem (Papadimitriou and Steiglitz, 1998). 
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The fundamental idea behind cutting planes is to add constraints to a 
linear program until the optimal basic feasible solution takes on 
integer values.  
 
Care however should be taken while adding the constraints in a 
manner that does not change the actual problem. A cut, which is a 
special constraint that is relative to a current fractional solution, is 
added such that every feasible integer solution has to be feasible for 
the cut, but that the current fractional solution is not feasible for the 
cut. If the solution found has non-integer elements, then new cuts 
are imposed that eliminate the previously found solution, but do not 
eliminate any feasible integer solutions, until a solution with all 
integer elements is found (Papadimitriou and Steiglitz, 1998). 
 
One of the known methods used to generate cutting planes is called 
the Gomory cuts which can generate cuts from any linear 
programming tableau. This method’s strength is in its ability to solve 
any integer programming problem. However its weakness is its 
slowness. Another approach to generating cutting planes depends 
on understanding the structure of the optimization problem to 
generate efficient cuts. Although this could provide powerful 
methods, it is problem specific.   
 
In general, the cutting plane algorithms suffer from two main 
disadvantages. First, difficulties caused by round-off errors. And 
second, the large number of constraints generated. These two 
disadvantages are enough to render the cutting plane algorithm 
unfeasible. Nevertheless this method, combined with the branch and 
bound method could be a robust method in special types of 
problems.  
 

   In summary, the Integer programming is an NP-hard problem and is 
likely to remain so for the foreseeable future.  In this section two 
algorithms for solving integer programming problems were 
discussed briefly namely the branch and bound algorithm and the 
cutting planes algorithm. Both algorithms are based on repetitively 
solving relaxed versions of the original problem and modifying it 
until an integer solution is found.  
 
For both algorithms there is no guarantee on the time needed to 
reach a solution.  In a worst case scenario, it is possible that we could 
build the entire enumeration tree using branch and bound. Based on 
the structure of the problem, the cutting plane algorithm may 
require many iterations and numerous cuts before arriving at an 
integer solution. 
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    5.6.4.1. 2 Gradient Methods  

   Gradient methods depend on gradient information. Originally they 
were developed for unconstrained optimization problems. Variations 
of these methods were also developed to handle constrained 
optimization problems. The following sections will discuss both 
approaches.   
 

   Unconstrained Gradient Methods  
 

   Gradient methods are generally grouped into two categories, first-
order and second-order methods. First-order methods are based on 
the linear approximation of the Taylor series, and therefore only 
require gradient information. Second-order methods, on the other 
hand, are based on the quadratic approximation of the Taylor series 
and require both the gradient and the hessian (Antoniou et al., 
2007). 
 
There are several gradient methods that range in their 
sophistication. In this section, some of the more basic methods will 
be presented namely:  the steepest-descent method and the Newton 
method.  
 

   Steepest Descent 

   The steepest-descent method is a first-order method since it is based 
on the linear approximation of the Taylor series. The steepest-
descent method is also considered the simplest of the gradient 
methods.  
 
To find a local minimum of a function f using steepest descent, we 
need to choose the direction d where f decreases most rapidly. 
Assuming that a function f(xi) is continuous in the neighborhood of 
point xi. We take steps proportional to the opposite (negative) of the 
gradient ∇𝑓𝑓 (𝑋𝑋𝑖𝑖) of the function at the current point xi. Generally d 
does not point in the direction of x*  (local optimum) and therefore 
an iterative procedure must be used for the solution.  
 
The search starts at an arbitrary point 𝑋𝑋0 for a local minimum of f, 
and considers the sequence  𝑋𝑋0 ,𝑋𝑋1,𝑋𝑋2,   .  .  .  formally, the iterative 
procedure is 
 

𝑋𝑋𝑘𝑘 + 1 = 𝑋𝑋𝑘𝑘 −  𝜆𝜆𝑘𝑘  𝛻𝛻 𝑓𝑓(𝑋𝑋𝑘𝑘  ) 
 

k = 1, 2, . . . n 
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With any luck the sequence (𝑋𝑋𝑘𝑘) converges to the desired local 
minimum as we move down the gradient until we are close enough 
to the solution.  

 Figure 5.44: 
 

In the steepest 
descent the 

trajectory to the 
solution follows a 

zigzag pattern  
 

 

 

 

 

 

 

 

 

 

   Note that the value of the step size  𝜆𝜆𝑘𝑘   is allowed to change at every 
iteration. Obviously, we want to move to the point where the 
function f takes on a minimum value, which is where the directional 
derivative is zero. The choice of  𝜆𝜆𝑘𝑘  is made such that the successive 
directions are orthogonal. The next step is taken in the direction of 
the negative gradient at this new point.  This implies a minimization 
problem along a line, where the line equation is given by  𝑋𝑋𝑘𝑘 + 1 =
𝑋𝑋𝑘𝑘 −  𝜆𝜆𝑘𝑘  ∇ 𝑓𝑓(𝑋𝑋𝑘𝑘  )  for different 𝜆𝜆𝑘𝑘  values. This is solved by a line 
search for a minimum point along a line.  
 
The iteration is repeated until the local minimum has been 
determined within a chosen accuracy ε. The trajectory to the solution 
follows a zigzag pattern (figure 5.44). 
 
The Steepest Descent method is a simple, easy to apply, and fast 
method. It is also fairly stable.  However the method has a few 
disadvantages. It generally has slow convergence and it is also highly 
dependent on a good starting point.  
 

   Newton Method  

   Unlike the steepest-descent method which is a first-order method 
based on the linear approximation of the Taylor series, the Newton 
method is a second-order method developed by using the quadratic 
approximation of the Taylor series of a given function f(x). The 
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information of the second derivative is used to locate the minimum 
of the function f(x).  This is repeated in each iteration till the 
minimum is reached.  
 
Any quadratic function has a Hessian which is constant for any point 
x. The quadratic function for x in an appropriate neighborhood of 
the current point 𝑋𝑋𝑘𝑘  is given by a truncated Taylor series:  
 

𝑓𝑓(𝑥𝑥) ≈ 𝑓𝑓(𝑋𝑋𝑘𝑘) + (𝑋𝑋 − 𝑋𝑋𝑘𝑘)𝑇𝑇 .𝑔𝑔𝑘𝑘 +
1
2

(𝑋𝑋 − 𝑋𝑋𝑘𝑘)𝑇𝑇 .𝐻𝐻𝑘𝑘 . (𝑋𝑋 − 𝑋𝑋𝑘𝑘) 

 
Where both the gradient 𝑔𝑔𝑘𝑘  and the Hessian matrix 𝐻𝐻𝑘𝑘  are evaluated 
at 𝑋𝑋𝑘𝑘  . If we take the derivative of this we get:  
 

𝛻𝛻𝑓𝑓(𝑋𝑋) = 𝑔𝑔𝑘𝑘 +
1
2
𝐻𝐻𝑘𝑘 . (𝑋𝑋 − 𝑋𝑋𝑘𝑘) +

1
2
𝐻𝐻𝐾𝐾𝑇𝑇 . (𝑋𝑋 − 𝑋𝑋𝑘𝑘) 

   
If the function 𝑋𝑋𝑘𝑘  is twice continuously differentiable at every point 
then the Hessian matrix is symmetric. Therefore we get 
 

𝛻𝛻𝑓𝑓(𝑋𝑋) = 𝑔𝑔𝑘𝑘 +𝐻𝐻𝑘𝑘 . (𝑋𝑋 − 𝑋𝑋𝑘𝑘) 
   
If x* is the minimum of f(x) then the gradient is zero:  

 
(𝑋𝑋∗ − 𝑋𝑋𝑘𝑘) + 𝑔𝑔𝑘𝑘 = 0 

   
x* is considered the next current point, resulting in the iterative 
formula: 
 

Xk+1 = Xk − Hk
−1. gk  

k=0, 1 , . . . , 
   
Where −𝐻𝐻𝑘𝑘−1.𝑔𝑔𝑘𝑘  is the Newton direction.  
 
If the function has a minimum, and the second order sufficiency 
conditions for a minimum hold, then H is positive definite and, 
therefore, nonsingular at any point x. 
 
If f(x) is a n-dimensional quadratic function, then the Newton 
method will converge in only one step from any starting point. If not, 
the Newton method will iterate incorporating a line search to 
calculate changes in x.  
 
Based on the number of iterations the convergence may seem fast. 
However, each iteration includes the calculation of the second 
derivative and handling of the Hessian which can be very time-
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consuming, especially for large systems. Another drawback of the 
Newton method is that it may not converge from any starting point.  
 
Nevertheless, the Newton method is still considered a popular 
optimization technique for unconstrained nonlinear problems due to 
its fast quadratic convergence.  
 

   Constrained Gradient Methods  

    The gradient based algorithms described earlier are generally 
developed for unconstrained optimization problems. However, there 
are a certain class of algorithms that use the unconstrained 
optimization techniques to solve constrained problems. In the 
following I will discuss some methods that belong to that class. 
 

   Penalty-Methods 
 

   Penalty methods generally replace a constraint optimization 
problem by a sequence of unconstrained problems. The 
corresponding minimization problems are formed using a 
mathematical function that adds a penalty term to the objective 
function. The penalty function will increase the objective (for a 
minimization problem) depending on the value of the violated 
constraints but would remain constant otherwise. 
 
Two major classes of Penalty methods exist depending on the 
formulation of the penalty function. The first class are known as 
Exterior Penalty Methods and use a sequence of infeasible points 
while adding a penalty for infeasibility. Feasibility is obtained only at 
the optimum.  On the other hand, the second class of penalty 
methods adds a barrier to ensure that a feasible solution never 
becomes infeasible. These are referred to as Interior Penalty Methods 
or barrier function methods. 
 
It is important to ensure that the penalty does not dominate the 
objective function during initial iterations of exterior point method. 
There are many methods to choose the penalty parameter sequence 
but the simplest is to keep it constant during all iterations.  
 
Interior penalty methods have the advantage that if convergence is 
not achieved, a feasible solution is still maintained. Exterior penalty 
methods on the other hand have the advantage that they are less 
likely to be stuck in a local minimum. They are also more robust 
because in practice it is not always possible to have a feasible 
starting point.  However, Exterior penalty functions typically require 
more function evaluations.  
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In general, these methods are sufficient for special purposes and 
provide easy techniques to consider constraints in an optimization 
problem using unconstrained optimization algorithms. 
 

   Sequential Quadratic Programming 

   Sequential Quadratic Programming (SQP) is one of the most popular 
and robust methods for solving nonlinearly constrained optimization 
problems. Like many other optimization methods, SQP is not a single 
unique algorithm, but rather a theoretical method from which 
several particular algorithms have evolved (Boggs and Tolle, 1995). 
 
The basic method of SQP is analogous to Newton's method for 
unconstrained optimization in which an iterative approach is 
implemented to solving a series of subproblems that hopefully yield 
a step toward the problem solution. 
 
The SQP models a nonlinear program at a given approximate 
solution 𝑋𝑋𝑘𝑘  using a quadratic programming subproblem that 
substitutes the objective function with the quadratic approximation 
and replaces the constraint functions by linear approximations. 
 

𝑞𝑞𝑘𝑘(𝑑𝑑) = 𝛻𝛻𝑓𝑓(𝑋𝑋𝑘𝑘)𝑇𝑇𝑑𝑑 +
1
2
𝑑𝑑𝑇𝑇𝛻𝛻𝑥𝑥𝑥𝑥2 ℒ(𝑥𝑥𝑘𝑘1𝜆𝜆𝑘𝑘)𝑑𝑑 

 
This defines a search direction dk as a solution to the quadratic 
programming subproblem. The solution to this subproblem is then 
used to construct a better approximation  𝑋𝑋𝑘𝑘+1. This process is 
iterated to create a sequence of approximations that hopefully will 
converge to a solution  𝑋𝑋∗ (Boggs and Tolle, 1995). If the starting 
point x0 is close to 𝑋𝑋∗ and the Lagrange multiplier estimates {𝜆𝜆𝑘𝑘} are 
close to  𝜆𝜆∗ , then the sequence generated converges to 𝑋𝑋∗ at a 
second-order rate. 
 
If the problem is unconstrained, then only the objective function is 
approximated, and the local model is quadratic, thus the SQP 
functions like the Newton's method. If the problem only includes 
equality constraints, then the method is similar to applying the 
Newton's method to the first-order optimality conditions or the 
Karush-Kuhn-Tucker conditions. 
 
In SQP, the determination of the search direction based on solving 
quadratic subproblems requires considerably more computational 
effort than simple search methods. Based on the similarity with the 
Newton method it would be expected that the SQP method would 
share characteristics such as rapid convergence when the iterates 
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are close to the solution, the need for controlling the behavior when 
the iterates are far from a solution. However, the presence of 
constraints makes both the analysis and implementation of SQP 
methods considerably more complex (Boggs and Tolle, 1995). 
 
It is worth noting that the SQP is not a feasible-point method and 
therefore neither the initial point nor any of the subsequent iterates 
need be feasible. This is an important feature in SQP since finding a 
feasible point with the existence nonlinear constraints may be nearly 
as hard as solving nonlinear program itself (Boggs and Tolle, 1995). 
 

   5.6.4.2 Heuristic Algorithms  
 

   Heuristic algorithms are a class of algorithms that are able to find an 
acceptable solution(s) to an optimization problem, but for which 
there is no formal mathematical proof of its correctness.  This class 
of optimization algorithms has proved to be practical in many 
scenarios. In the following sections I will discuss a few of the better 
known algorithms of this class.  
  

   5.6.4.2.1 Evolutionary Algorithms 
 

   Evolutionary search algorithms are inspired by and based upon 
evolution in nature. They permit us to exploit the remarkable 
properties of natural evolution. These algorithms typically use an 
analogy with natural evolution to search by evolving solutions to 
problems. Instead of working with one solution at a time in the 
search space, these algorithms consider a large collection or 
population of solutions at once (Bentley, 1999). 
 
There are four main types of evolutionary algorithms in use today, 
three of which were independently developed more than forty years 
ago, with the fourth being developed in the last couple of decades. 
These algorithms are:  
 
Genetic algorithms  
Genetic algorithms (GA) were developed by John Holland (University 
of Michigan in Ann Arbor) in the early 1960s, and made famous by 
David Goldberg (1989). Holland's original intention was to 
understand the principles of adaptive systems (Dumitrescu, 2000). 
 
Evolutionary programming 
Evolutionary programming (EP) was devised by Lawrence J. Fogel 
(1962) and developed further by his son David Fogel (1992), as an 
attempt to simulate intelligent behavior by means of finite-state 
machines (Dumitrescu, 2000; Corne and Bentley, 2002). 
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Evolution strategies 
Evolution strategies (ES) (1965) originate in the work of Bienert, 
Rechenberg, and Schwefel concerning a method to optimize 
parameters for aerotechnology devices. Today this method is 
strongly promoted by Thomas Back (1996) (Dumitrescu, 2000; Corne 
and Bentley, 2002). 
 
Genetic programming 
Genetic Programming (GP) is a more recent and very popular 
development of John Koza (1989). The aim of genetic programming 
is to develop, in an automated way, computer programs for solving 
specific problems. Genetic programming is therefore a domain-
independent approach to automatic programming (Dumitrescu, 
2000) 
 
The field of evolutionary computation has grown up around these 
techniques. Evolution-based algorithms have been found to be some 
of the most flexible, efficient, and robust of all search and 
optimization algorithms known to computer science (Goldberg, 
1989). In the following section I will focus on discussing genetic 
algorithms. 
 

 Figure 5.45: 

The difference 
between a local 
minimum and a 

global minimum  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Genetic algorithms 
 

   Genetic algorithms are a particular class of evolutionary algorithms. 
They provide optimization and search techniques adequate for 
searching noisy solution spaces. GAs are categorized as global search 
heuristics because they search a population of solutions instead of a 
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single solution which limits the probability of getting trapped in a 
local minimum (figure 5.45). 
 
GAs search by randomly sampling the solution space, and then use 
genetic operators to direct a hill-climbing process based on fitness 
(objective) function values (Goldberg 1989). GAs require a genetic 
representation of the solution as well as a fitness function to 
evaluate it.  
 
GAs are implemented as abstract representations called 
chromosomes or genotypes of the candidate solutions, also called 
individuals or phenotypes. These genotypes are usually represented 
as binary strings, but other encodings are also possible. 
 
A GA works by producing a group of solutions called a population. 
Each new population created is called a generation. GAs use genetic 
operators inspired by evolutionary biology such as selection, 
mutation and crossover.  
 
Constraints are implemented through the use of penalty functions. If 
a solution does not meet constrains in the system, then a penalty is 
added to the fitness of the design solution according to the degree 
of violation. 
 
The GA starts by producing a population of randomly generated 
individuals. This is carried out in successive generations. In each 
generation, the fitness of each individual in the population is 
assessed. Based on their fitness, a number of individuals are selected 
from the current population and modified using genetic operators to 
produce a new population with higher average fitness than the 
previous population. This new population is then used in the next 
iteration of the algorithm and the cycle continues till a termination 
criterion is reached.  
 

   Genetic Representation 

   The GA’s representation is done at two levels, namely at the 
genotype level and the phenotype level. The genotype is the implicit 
representation of an individual design solution. The standard 
representation of the genotype is a sequence of coded instructions 
stored in an array of bits called a chromosome. The chromosome 
encodes the parameters of interest that are related to that individual. 
A chromosome is formed of alleles that represent the coding bits. All 
the genetic operations including crossover and mutation happen at 
the genotype level. 
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The standard genetic representation has a fixed size which facilitates 
simple crossover operations because parts of the genotype are easily 
aligned. Representations that utilize a variable length can also be 
used although crossover implementation becomes more difficult.  
 
The phenotype, on the other hand, is the interpretation of genotype 
at the physical level. It is the external perceptible representation of 
the genotype. The behaviors of a design solution can be observed at 
this level. Therefore, the analysis task is performed to design 
solutions at this level. 
 

   Fitness function 
 

   A fitness function of any particular individual corresponds to the 
value of the objective function that measures the quality of a 
chromosome.  It is then ranked against all the other chromosomes. 
The probability of selecting a specific solution for reproduction is 
proportional to the fitness of that solution. 
 

   Population Size 
 

   The GA produces a group of solutions called a population. The initial 
population is generated randomly and should cover the entire search 
space. Solutions may also be seeded in regions where good solutions 
maybe found. 
 
The population size depends on the nature of the problem. A very 
small population would not contain enough diversity in the initial 
genetic pool to ensure that good solutions are found by the 
algorithm (Goldberg, 1989). Therefore, the initial population must be 
large enough to provide a diverse genetic pool that contains 
substantial information in the search space that would eventually 
lead to better convergence. However, a large population needs many 
generations to converge which would cause time penalties. Hence, a 
moderate-sized population may be a sensible compromise between 
finding good solutions and speed.  
 

   Genetic operators 
 

   Once we have the genetic representation, the fitness function and 
the population size defined, the GA can proceed by initializing a 
random population. Genetic operators control and improve the 
evolution of successive generations. The three basic genetic 
operators are selection, crossover and mutation.  
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   -Selection  
 

   In each successive generation, a number of solutions from the 
current population are selected to breed a new generation. These 
solutions are selected on the basis of their fitness.  
 
There are several selection methods. Some methods evaluate the 
fitness of each solution and then select the best solutions. Other 
methods only evaluate a sample of the population to minimize time 
expenditure.  
 
In general, most methods are stochastic and allow a small proportion 
of less fit solutions to be selected. This facilitates the diversification 
of the population which then can help in preventing premature 
convergence. 
 
Common selection methods include biased roulette wheel selection 
and tournament selection methods.  
 
In the biased roulette wheel selection method, each current 
individual in the population has a roulette wheel slot sized in 
proportion to its fitness (Goldberg, 1989). This fitness is used to 
define a probability of selection to each individual. If fx is the fitness 
of individual x in the population, Then its probability of being 
selected is:  
 

P(x) =
𝑓𝑓(x)

∑ 𝑓𝑓n
j=1 (j)

 

 
where n is the number of individuals in the population.  
 
Using this method, individuals with a higher fitness have a higher 
probability of being selected to the next generation.  However, 
individuals with poor fitness also have a chance of being selected, 
albeit a smaller chance.  
 
The tournament selection method chooses a random group of 
individuals from the population to run a tournament among.  The 
winner is selected based on fitness. If the tournament group size is 
large, individuals with a poor fitness have a smaller chance of being 
selected. 
 
Other strategies that can be implemented in conjunction with 
selection include elitism. Employing elitism in the GA implies passing 
the best solution from one generation to the next with the goal of 
preserving good genetic information contained in that solution. 
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   - Crossover 
 

   Crossover is a genetic operator used to vary the encoding of 
chromosomes from one generation to the next. That is achieved by 
swapping parts of two randomly chosen chromosomes to create a 
new individual but not new genetic information. It is similar to 
biological crossover on which genetic algorithms are based.  
 
Elite solutions do not go through crossover, but rather an exact copy 
of them is carried to the next generation. Many crossover operators 
exist, but the most common are the one-point crossover, two-point 
crossover and uniform crossover.  
 
In a single crossover point, the algorithm identifies a crossover point 
on the chromosomes of the two parents selected for reproduction. 
The information left on either chromosomes is swapped between the 
two parents creating new offspring.  
 
The two-point crossover is similar, but two crossover points are 
selected on the parent chromosomes. The rest of the information 
between the two points is swapped between the parents creating 
new offspring. 
 
In the uniform crossover, bits in chromosomes of two parents are 
swapped with an equal probability of typically 0.5 to create new 
offspring. 
 

   - Mutation 
 

   Mutation in GAs is similar to biological mutation and is used to 
maintain genetic diversity from one generation to the next. The 
mutation operator involves a probability that a random allele in a 
chromosome will be changed from its original state to identify new 
points in the search space. Mutation is therefore an operator that 
acts locally. 
 
A general method for applying the mutation operator is to generate 
a random variable for each allele in a chromosome. This variable will 
help determine whether or not a particular allele will be mutated. 
This mutation will introduce new genetic information that was not 
contained in the initial population. 
 
The main reason for implementing mutation in GAs is to assist the 
algorithm in avoiding local optima by preventing it from generating 
populations of similar chromosomes that affect the evolution and 
result in premature convergence. 
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   Termination 
 

   The GA will continue generating populations until a termination 
condition has been reached. This could be due to reaching the 
maximum number of generations, or a solution or set of solutions 
have been found with satisfactory fitness levels, or the highest 
fitness levels reached a plateau and successive iterations are not 
producing better results.  
 

   5.6.4.2.2 Simulated Annealing 
 

   Simulated annealing (SA) is another general heuristic technique for 
solving optimization problems. It incorporates randomization 
techniques and is often used for discrete search space. 
 
SA may be more efficient than exhaustive enumeration for certain 
problems, especially if the intent is to identify an acceptable solution 
rather than the optimum solution.  
 
The method was first introduced in 1983 by S. Kirkpatrick et al. 
(1983). Simulated annealing is based on the analogy between 
annealing in metallurgy and solving optimization problems.  
Annealing in metallurgy is a technique that involves both a heating 
and controlled cooling processes of a metal solid to reduce its 
crystals defects and increase their size.  
 
Initially the metal solid is heated up and melted, causing the particles 
to move from their initial state of minimum internal energy into 
states of higher energy and rearrange themselves in the liquid phase.  
 
This is followed by a slow lowering of the temperature which gives 
them a chance of finding configurations with lower internal energy. If 
the cooling is too fast and the solid does not reach thermal 
equilibrium for each temperature value, then defects get frozen into 
the solid producing metastable amorphous structures instead of the 
low-energy crystalline lattice structure (van Laarhoven, 1987).  
 
By analogy, each point i of the search space corresponds to a state of 
some physical system, and the function E(i) to be minimized 
corresponds to the internal energy of the system in that state. The 
aim is to move the system from an arbitrary initial state to a state 
with the minimum possible energy. 
 
The SA algorithm functions like a sequence of Metropolis algorithms 
that are executed at decreasing values of the control parameter. 
Each step of the SA algorithm substitutes the current state by a 
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random neighbor state that is chosen based on a probability that 
depends on the difference between the corresponding function 
values and on a control parameter temperature T. 
 

   Algorithm 
 

   - The basic iteration 
 

   At each iteration, given a current state i, the algorithm generates a 
possible transition from that state to a neighbor j. For each state i, a 
neighborhood N(i) consists of all the states that can be reached from 
i.  
 
If that neighbor has a lower cost, the current solution may be 
replaced by it. A probability decides between moving the system to 
the new state j or remaining at state i. The probabilities are selected 
so that the system eventually moves to a state of lower energy. This 
step is iterated until an acceptable state (solution) is reached or the 
algorithm is terminated due to the exhaustion of computational 
resources or time restrictions.  
 

   - Acceptance probability 

   The acceptance probability P indicates the probability of accepting 
the candidate state j. The function P(e,e',T) depends on the energies 
of the two states,  e = E(i) and e' = E(j), as well as the temperature T 
which is a time-varying control parameter.  
 
The new state j is accepted with a probability of 1 when e' < e which 
implies a move downhill. If e' > e the new state j can still be accepted, 
although that implies that the method moves to a worse state with 
higher energy. This is an important feature that prevents the method 
from being locked in a local minimum. 
 
As the difference (e' − e) increases the probability of accepting a 
move decreases which makes large uphill moves less likely. As the 
control parameter T goes to zero, and if e’ < e, then the probability P 
goes to a positive value or to zero if e' > e. Therefore for small T 
values the method will prefer moves that go downhill to lower 
energy values. This process continues at each value of the control 
parameter T until equilibrium is reached. 
 

   - The cooling schedule 
 

   Initially T is set to a high value and is gradually decreased (cooled) at 
each iteration according to an annealing schedule. There are two 
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kinds of cooling schedules: static and dynamic (Aarts et al., 1997). In 
the static cooling schedule, the parameters remain unchanged 
through the implementation of the algorithm. On the other hand, the 
parameters in the dynamic cooling schedule are changed adaptively 
during the implementation of the algorithm.  
 
It has been demonstrated theoretically that for any given finite 
problem, the probability that the simulated annealing algorithm 
terminates with the global optimal solution approaches 1 as the 
annealing schedule is extended (Granville et al., 1994).  
 
In practice the algorithm can be terminated when a state is obtained 
whose objective function value is no worse than any of its neighbors 
(van Laarhoven, 1987) or if the value of the objective function 
remains unchanged for a number of consecutive trials.  

   5.6.4.2.3 Tabu Search 
 

   Tabu search is a heuristic algorithm that searches local 
neighborhoods for the best possible path to progress (Hertz et aI., 
1997). It was initially introduced by Fred Glover (Glover, 1989).  
 
Tabu search utilizes a neighborhood search approach to iteratively 
move from a solution i to a solution j in the neighborhood N(i), until 
some termination criterion has been satisfied.  
 
Unlike hill-climbing methods, which can easily be trapped in local 
minima, Tabu search continues exploration picking the best available 
move at each step even if it is a non-improving one. This presents the 
risk of visiting once more a solution that has already been evaluated 
which could generate cycles within the search process. Therefore, 
when a solution has been identified it is marked as tabu (taboo) so 
that the algorithm does not visit that solution again. 
 
The tabu search algorithm adjusts the neighborhood structure of 
each solution as the search advances to explore the unexplored 
regions in the search space. The new neighborhood solutions 
allowed in N(i) are determined by the use of memory structures.  
 
Tabu search makes use of a form of short-term memory to maintain 
information on the journey through the final solutions visited. This 
information is stored in a list of size T called a tabu list and 
determines the solutions admitted to N(i). It includes solutions that 
have been visited in the recent past and excludes solutions already in 
the tabu list. Therefore, the structure of the neighborhood N(i) will 
thus depend on the journey followed to reach i.  
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Due to large memory use, it may be unfeasible to store lists of 
solutions, hence Tabu Search uses a list of moves instead and often 
stores only a portion of the attributes required to describe a move or 
the solution to which it is applied (Glover, 1989).  This portion of the 
attributes may potentially be shared by other moves or solutions. 
This might prohibit not yet visited solutions that have certain 
attributes. Some excellent solutions might now be avoided. To solve 
this problem aspiration criteria are implemented.  An example of an 
aspiration criterion is to keep solutions that are better than the 
current best solution. This way, aspiration criteria can include 
otherwise-excluded solutions.  
 
In addition to short-term memory, tabu Search also uses 
intermediate and long-term memory structures. Intermediate 
memory is used to carry out temporary intensification of the search 
around a certain area of the solution space that contains a good 
solution. This is done by storing and comparing attributes from 
current best solutions. Common attributes are considered when 
searching for new solutions. Long-term memory is implemented to 
provide a diversification process of the search. The diversification 
process guides the search to regions in contrast to ones examined by 
penalizing attributes that are found to be common in previous 
executions of the search process (Glover, 1989). This provides the 
ability to learn from previous steps and solutions in the search 
journey. 
 
One apparent feature in tabu Search is that it functions as a greedy 
algorithm. According to Glover (1989) this is based on two 
considerations: firstly, that many optimization problems can be 
solved optimally by making the best move at each step; secondly, 
that local optimality does not represent an obstacle for Tabu Search 
because of its procedural organization and its use of short-term 
memory. 
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   6.1 What is Integration? 
 

   The term “integration”, similar to the term “system”, although 
widely used, has a lot of connotations which may carry some 
ambiguity for the listener or reader. The Webster online dictionary 
defines integration as the “act of combining parts into an integral 
whole”. The key notion of integration is the assembly and 
combination of individual parts and design components into a 
“system” that collectively satisfies all the functional and operational 
requirements which would not be achieved by its subsets alone 
(Grady, 1994).  
 
Decomposition and formulation usually lie at the front end of the 
MDDS development process, while integration lies at the tail end. 
The design modeling process lies in the middle, where the synthesis, 
analysis, evaluation and optimization activities occur. Integration is 
the materialization of the formulation and modeling processes. If the 
formulation stage is where an architecture plan is devised, then 
integration is where the final stages of that plan are executed. 
Integration within the MDDS context deals with connecting the 
different modules into one coherent software.  
 
Like formulation, integration can occur at different levels, especially 
in the development of the system. Achieving a system in final 
product form, as highlighted by Eppinger (1997), requires integration 
at various levels, such as the integration of components into sub-
systems, sub-systems into systems, and systems into products. 
Integration works mainly on unifying product components and 
process components into one whole. The success of integration and 
subsequent evaluation lies, however, in the correctness, precision 
and coordination of engineering activities at each level. 
 
System integration efforts by design teams are usually complex and 
rely heavily on technical expertise and advanced planning and 
preparation in the formulation stage. These design teams usually 
work on an evolving, complex problem, through its sub-systems and 
components, on two basic levels: within and across teams. The cross-

6. Integration 
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functional team approach, a common practice of concurrent 
engineering (Eppinger, 1997), involves the simultaneous efforts of 
addressing design and production.  Here the interest in sub-systems 
and components of complex systems exists at the intersection of 
multiple teams, disciplines and technologies, in order to satisfy 
solutions for complex problems. This necessity originates from basic 
principles of system engineering, human psychology, and human 
existence (Grady, 1994). Although human limitations seem to drive 
integration, the issue of combining the work of multiple teams from 
varying functional disciplines is not a simple one, as it also entails 
working in several process steps over time on a variety of product 
system components. 
 
In this chapter, we are interested in integrating components to 
produce a software product or system that can generate design 
solutions of physical artifacts. Our system will include subsystems 
that must interface with other subsystems in order to exchange 
information. The components of each subsystem must interact in the 
same fashion. Our focus here will be on the integration of design 
systems from the informational perspective, rather than the physical 
perspective. Since the design system is computational, we will focus 
on the integration of information and computational systems. 
 

   6.2 Interface Design 
 

   An interface is defined as the place where communication of 
information or activities is facilitated between the different 
components and modules of a specific system (Grady, 1994).  
 
Baldwin and Clark (2000) define an interface as a pre-established 
way to resolve potential conflicts between interacting parts of a 
design. It is like a treaty between two or more subelements. To 
minimize conflict, the terms of these treaties—the detailed interface 
specifications—need to be set in advance and known to the affected 
parties. Thus interfaces are part of a common information set that 
those working on the design need to assimilate. Interfaces are visible 
information. 
 
In general, interfaces are completed between components through 
interface media, such as electrical or radio signals, physical contact, 
flow of fluids, etc. Interface media are usually provided by the 
system environment or a component of the system architecture. The 
interface however is represented in the functionality facilitated by 
the media rather than the media itself. 
 
An interface can represent both distinct worlds discussed earlier, the 
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physical and the informational. Physical interfaces are usually 
associated with the physical form of the component fitting or 
matching, such as the mounting bolts in a column beam connection. 
Function can also be represented through the flow of forces, such as 
the load bearing function flowing from beams to columns. 
  
In the software world, a similar matching or compatibility must occur 
between input and output data of the system modules. Compatibility 
here refers to the correct and meaningful way by which two 
activities interact semantically (Gao et al., 2003).  
 
It is known that the system functionality of large complex problems 
is decomposed into smaller system elements and smaller problems. 
These problems have interfaces between them that must have 
compatible representations on both terminals (figure 6.1). Hence, 
every module defines the specifications and requirements for its 
subordinate modules. At the same time, these subordinate modules 
are precisely constructed and specified according to these 
requirements. 
 

 Figure 6.1: 
 

Interfaces between 
different modules 

have to be 
compatible.  

 
 
 
 
 
 
 
 
 
 
 
 
 

   The major complexity occurs, however, when different disciplines or 
team specialists are responsible for the integration at these opposite 
terminals of the interface. The greatest effort in this cross product 
integration lies in trying to manage the matching process between 
interface terminals and checking data compatibility at both ends 
(figure 6.2). 
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 Figure 6.2: 
  

Matching interfaces 
between modules 

with many variables 
can be a difficult task.  

 
 
 

 
   In order to arrive at an optimized system architecture and interface, 

the need arises to accurately and clearly define the location of 
interface planes in the system, the responsibility of disciplines and 
specialists, and the congruent understanding of concept 
requirements and specifications by both media and specialists. This 
process is often referred to as interface analysis (Grady, 1994).  
 
The methods proposed previously in formulation can be used to 
define system interfaces through a combination of schematic block 
diagrams, integration models, DSM/N2 diagrams and interface 
dictionaries. Changes may occur in the system architecture during 
this process due to allocation of system functionality.  
 
However, the principal technique for resolving complexity of 
interface compatibility, whether in a physical or information system, 
lies in minimizing the number of interfaces. In general, this can be 
achieved by maximizing the capability of system component 
interaction while minimizing the need for the system to interact. At 
the same time, components of the system architecture can be 
aggregated in order to reduce the need for cross-organizational and 
cross-discipline interfaces.  
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   6.3 Module Integration Modes 
 

   Software system integration involves the combination of individually 
tested software components into an integrated whole. This occurs 
when the components are combined into subsystems or when 
subsystems are combined into products (Software Engineering 
Institute, 2008). The field of application integration comes in many 
forms, whether it describes the integration between components of 
a single software system or the integration between different 
systems.  
 
Several technologies have been developed to address integration. 
One of these technologies is component-based software engineering 
(CBSE) which emerged as a branch of software engineering which 
involves the decomposition of systems into functional components 
that have well-defined interfaces used for component integration.  
In CBSE, components are basically objects that are written to a 
specification and adhere to it. They are of a higher level of 
abstraction than objects; they do not share state and communicate 
by means of data exchange. 
 
When software is considered as a component, it describes a system 
element that offers a predefined service or event, and is able to 
communicate with other components. Messerschmitt and Szyperski 
(2003) describe some fundamental characteristics for a software 
component. In their definition, a software component is a unit of 
independent deployment and versioning that is non context-specific, 
encapsulated, of multiple use, and composable with other 
components.  
 
The essence of integration lies primarily in careful management of 
component interfaces. According to component interfaces, this 
involves the assumptions that the programmers of each component 
can safely make about the other component. Integration is assumed 
to progress smoothly between components if these interfaces are 
well-defined and carefully documented (Parnas, 1972).  
 
Software components usually take the form of objects or groups of 
objects, in the object-oriented programming context, that hold on to 
an interface language of some sort. This requires that all the 
information and assumptions about the component behavior, its 
consumed resources, its response in reaction to errors, and the 
mechanism of connection and interaction with other components 
are all well-defined, taken into consideration and evaluated in 
planning and budgeting phases. 
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Reusability is a significant characteristic of a high-quality software 
component when it comes to accessing or sharing components 
across execution contexts or network links. The component should 
be designed and executed in a way that enables its reuse in many 
different programs.  
 
In the 1960s scientific subroutine libraries were constructed and 
were reusable in a wide range of engineering and scientific 
applications. However, these libraries had a limited domain of 
application although they reused well-defined algorithms effectively. 
Modern reusable components work on encapsulating both the data 
structures and the algorithms that are applied to them 
In order for a software component to be effectively reusable, there 
has to be a lot of effort exerted in writing the component. It needs 
to be fully documented and constructed while considering that it will 
actually be exposed to unpredicted uses.  
 
It should be noted that the literature uses both terms, components 
and modules, usually to describe the same thing. The main difference 
between them is usually in the reuse scope of each. Because a 
software module is developed for a specific project it tends to have a 
narrow reuse scope. A modern software component, on the other 
hand, provides multiple-level granularities for reuse on a large scope 
(Gao et al., 2003). In this thesis I will be using both terms 
interchangeably. The mathematical models described in the previous 
chapter can represent such a module or component.  
 
There are different approaches to achieve integration between 
system components. These include having all the applications totally 
integrated in one software, or using middleware, such as distributed 
technologies, or applying technologies, such as wrapping which has 
been widely used in many problem-solving environments. Another 
approach involves using web services to provide for the data 
integration between different components. 
 

   6.3.1 Middleware 
 

   Middleware is essentially a piece of computer software that 
connects software components or applications for the purpose of 
data exchange. Middleware became popular as a solution to the 
problem of linking newer applications to older legacy systems. It also 
permits distributed processing, where multiple processes and 
applications that run on one or several machines are connected to 
create a larger application and interact together across a network 
(Software Engineering Institute, 2008). Middleware is defined by 
Object Web as “the software layer that lies between the operating 
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system and applications on each side of a distributed computing 
system in a network” (Object web open source Middleware, 2008).  
 
Middleware allows users to share distributed resources such as 
applications, data, computers, and networks. It supports effective 
collaboration and communication tools. Middleware is also vital for 
Internet computing, and high-performance parallel computing. It 
also provides working architectures and approaches that can be 
extended to the larger set of Internet and network users (Sun and 
Blatecky, 2004).  
 
Middleware provides a functional set of application programming 
interfaces and uses a particular class of software products that act as 
intermediaries between user interfaces on one hand and data 
generators and repositories on the other. In general, it comprises a 
library of functions and allows multiple applications to communicate 
to those functions from the common library instead of regenerating 
them for each application.  
 
Middleware allows applications to be independent from network 
services. It also makes applications reliable and always available 
when compared to the operating system and network services. At 
the same time, it makes the applications locate transparently across 
the network. This facilitates the interaction mechanism with other 
services or applications and provides consistency, security, privacy, 
and capabilities (Sun and Blatecky, 2004). Middleware technology 
supports the shift to interoperability and coherent distributed 
architectures and includes web servers, transaction monitors, and 
messaging-and-queuing software.  
 
In general, middleware is used for distributed computing, distributed 
technologies and distributed application frameworks that have been 
used to build complex services. Types of middleware typically include 
middleware between applications and database servers, such as 
SQL-oriented Data Access, and application servers which are pieces 
of software that run multiple software components and facilitate the 
running of other applications. Combining application servers and 
software components is usually known as distributed computing.  
 
Examples of distributed technologies include Enterprise JavaBeans 
from Sun Microsystems, the Java specific EJB (Enterprise Java 
Beans), distributed computing software components, such as .NET 
Remoting from Microsoft, Web Services, XML-RPC, the predecessor 
of SOAP, CORBA and the CORBA Component Model from the Object 
Management Group, and CORBA (Common Object Request Broker 
Architecture) which is both platform and language independent. 
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CORBA has specifically been successful as a distributed component 
framework in many areas including telecommunications, finance, e-
commerce, and healthcare. That is why it is worth discussing here.  
 
CORBA is an open standard for distributed object computing defined 
by the Object Management Group (OMG), a not-for-profit 
consortium. Software components written in multiple computer 
languages and running on multiple computers and operating 
systems can use the vendor-independent architecture and 
infrastructure of CORBA to call on each other’s services and work 
together over networks. As an object bus, it allows clients to invoke 
methods on remote objects at the server independent of their 
location and the language they are originally written in.  
 
The CORBA specification specifies an object request broker (ORB) by 
which the application interacts with other objects. ORB mediates the 
interaction between client and server on both the client and server 
sides, where the communication typically takes place via the Internet 
Inter-ORB Protocol (IIOP). CORBA objects in this case can either be 
collocated with the client or distributed on a remote server without 
having any effect on their implementation or use. ORBs take care of 
the details of this process.  
 
The Interface Definition Language (IDL) defines the capabilities of 
CORBA objects, that is its operations or methods. These operations 
can take in input parameters and return values corresponding to 
some CORBA data-types and can also raise exceptions. CORBA uses 
the IDL to specify the interfaces that its objects will introduce to the 
outside world. It then specifies a mapping scheme from IDL to a 
specific implementation language such as C++ or Java. (Software 
Engineering Institute, 2008).  
 
Some programming languages, e.g. Java, allow users to define a 
compilable specification separate from the body, where keeping a 
continuously integrated system using full specifications was found to 
be time and cost efficient for integration purposes. Although these 
languages are especially useful in catching integration bugs early on, 
they do not allow the specification of the full semantic interfaces of 
components (Software Engineering Institute, 2008). IDLs, on the 
other hand, describe an interface that facilitates communication 
between software components that do not essentially share a 
language. They offer a language-neutral bridge between two 
different systems, whether these systems use different operating 
systems or computer languages, which is typical in remote 
procedure call software. 
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Although the IDL interface definition is independent of any 
programming language, it has mappings through OMG standards to 
all popular languages like C, C++, Java, COBOL, Smalltalk, Ada, Lisp, 
Python, and IDLscript. This capacity to enable interoperability and 
separate interface from implementation is facilitated by OMG IDL 
and constitutes the essence of CORBA.  
 
While the interface to each object is defined very explicitly, its 
implementation, running code and data are hidden from the rest of 
the system, or in other words encapsulated behind a boundary that 
clients may not cross. Clients thus access objects only through their 
advertised interface. They can only call the operations that the 
object exposes through its IDL interface. In addition, they can only 
address the input and output parameters that are included in those 
call specifications (Object Management Group, 2008). 
 
Not only does CORBA provide users with a language and a platform-
neutral remote procedure call specification, but also it defines 
services that are commonly required such as transactions and 
security, events, time, as well as some other domain-specific 
interface models. Moreover it is designed to be operating system-
independent, so it can run on many platforms such as Win32, UNIX 
and real-time embedded systems.  
 

   6.3.1.1 Encapsulation (Wrappers) 
 

   Software encapsulation is based on the technology of wrapping. 
Thomas Dietrich of IBM first introduced the concept of the 
“wrapper” at the 00PSLA Conference in 1988 as the solution for 
existing legacy software in a new object oriented architecture 
(Dietrich, 1989).  
 
One of the key properties of wrappers is that they are generic. 
Phoenix Integration (2007) defines a wrapper as a set of instructions 
that describe inputs, output, and how to execute an analysis. 
According to the property of generality, wrappers for a specific 
component should work generically for any component of the same 
type (e.g. A wrapper for Excel should work for any Excel document). 
At the same time, wrappers should provide functionality such that 
data can be input into that component, and any data type could be 
extracted. 
 
According to Mowbray and Zahari’s (1994), an object wrapper 
provides access to a legacy system through what is called an 
encapsulation layer. This encapsulation exposes only the properties 
and operations desired by the software architect. Mowbray and 
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Zahari describe seven basic techniques for wrapper implementation: 
remote procedure calls, file transfers, sockets or docking, application 
program interfaces, script procedures, macros and common headers. 
These techniques can be implemented individually or with each other 
to build connections between a service requester and a service 
provider (Mowbray and Zahari, 1994). 
 
Ian Graham defines a wrapper as a software controller layer that 
allows object-oriented programs to access conventional programs as 
if they were objects (Sneed, 2000). According to Graham’s Semantic 
Object Modeling Architecture (SOMA), the implementation of 
wrapping existing software components is significant, but it is not 
that easy. The wrapper software has to adapt incoming requests to 
wrapped software interfaces in a dynamic fashion due to data type 
incompatibility.  
 
According to Seacord (2001) wrapping is a technique for integrating 
components whose interfaces cannot be controlled. These 
components include ones that are mined or acquired by means of a 
third party. It involves writing software that works as a mediator 
between the expected interface and the interface that the used 
component comes with. In pure wrapping, there is no alteration in 
the component; instead a new thin layer of software is introduced 
between the original component and its clients (Software 
Engineering Institute, 2008). This layer provides the new interface by 
translating to and from the original component.  
 
One of the advantages of wrapping is the concept of reusing existing 
assets with little or no internal modification. Wrapping inhibits the 
ripple effect that occurs when any modification takes place, thus 
preventing the influences on other associated software that happen 
due to documentation and test case changes. Instead, wrapping a 
kind of an "as-is" reuse of many of the component associated assets, 
such as its test cases and internal design documentation (Phoenix 
Integration, 2007).  
 
Wrapping is also seen as a substitute strategy to reengineering and 
redevelopment in the context of encapsulating existing legacy 
software for reuse in new distributed architectures (Sneed, 2000), as 
it is lower in cost and has lower risks than conventional 
reengineering. Application wrappers encapsulate batch processes or 
online transactions. Legacy components are considered by new 
client applications as objects. These objects are invoked to perform 
specific tasks such as producing reports. Function wrappers provide 
interfaces to call individual functions within wrapped programs. 
There is only limited access however, as only specific parts can be 
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called and not the whole program. 
 
Wrapping legacy software is usually done in three basic steps: first, 
the wrapper should be constructed; next, the target programs 
should be adapted; finally, testing should occur to validate the 
interaction between the wrapper and the target programs. In 
general, a wrapper uses message-passing mechanisms to connect to 
its clients. As input, it receives incoming requests. It then reformats 
them, loads the wrapped object and calls upon it using the 
reformatted arguments. Concerning output, the wrapper obtains the 
results from the wrapped object, reformats and sends them back 
accordingly to the original requester.  
 
The way a wrapper works is described as follows. Being a shell 
between middle software and user software, the wrapper first 
receives messages from the client application. It translates these 
messages into an internal format and then calls upon the target 
software. It also converts the target software outputs to an external 
format. Finally, it sends the outputs back to the client application. 
 
There are still no automatic wrapper generators for legacy codes 
that can operate at different degrees of granularity, or that can wrap 
the entire code or code sub-routines automatically. Some progress 
has been made though towards achieving this goal.  
The lack of these types of wrappers primarily owes to the fact that 
current tools, such as Fortran and Java translators, cannot manage 
the specialized data types appropriately and are  insufficient for 
translating large application codes (Li et al. 2004). 
 

   6.3.1.2 Web Services 
 

   Web services represent an emerging distributed middleware 
technology. They employ a simple XML-based protocol to enable 
data exchange between applications across the Web. Services here 
are described in terms of the accepted and created messages. Users 
of these services do not need to have any knowledge of the object 
model, programming language or other details of the 
implementation. The only thing they need to do is to be capable of 
sending and receiving messages. 
 
SOAP (simple object access protocol) lies at the core of web services. 
SOAP is an XML based communication protocol for interacting with 
Web services. Specifications or interfaces of the services can be 
described using WSDL (web services description language). WSDL is 
an XML-based general framework that describes network services as 
groups of communication endpoints that can exchange messages. It 
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identifies the location of a service, what operations are supported, as 
well as the format of the messages that are to be exchanged 
according to the way the service is called upon. 
 

   6.3.1.2.1 EXtensible Markup Language (XML) 
 

   EXtensible Markup Language (XML) is a task and schema 
specification and a set of rules that provide standard ways to define 
processes and information and design text formats for information 
structuring (Harrison et al., 2004). XML is a standards-based protocol 
that can be used as a means of communication between software 
components. Many integration opportunities can be realized, 
whether the integration occurs between components of a single 
software system or between systems. XML can simply be considered 
as a mark-up language for annotating text documents. It specifies 
how tags, which are denoted by angle brackets, are used to organize 
written information.  
 
XML provides an improvement over binary or textual information, as 
it describes a hierarchical relationship between all data elements. 
Parsers in XML can be written using standards like DOM or SAX in 
modern languages such as C++ and Java (Harrison et al., 2004). Since 
XML is platform-independent, the integration of external 
applications becomes less dependent on the software platform in 
which the applications are executed. This integration can be done 
using an XML derivative, such as SOAP or any standard industry-
based XML extensions. An integrated solution can be realized 
through the connectivity that can be implemented using messaging 
queuing technologies, such as those available through IBM, 
Microsoft and other vendors.  
 
Potential for component reusability has been greatly improved with 
the growing number of developed XML-based standards. The 
numerous published XML formats for encoded data allow for the 
development of cross-system code. The components that process 
format-specific XML can be reused once generated to process any 
given data type.  
 
As XML reduces data manipulation and delivery time, most database 
vendors use it to provide interfaces to their engines. At the same 
time, most database servers support data access using XML. XML 
also works well as a data formatting method for passing data across 
the Internet. This is extremely beneficial for users developing 
components in existing systems. The process of adding web 
interfaces to application components can be simplified according to 
the number of available XML integration packages.  
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A wide range of data specific formats is available to allow 
interoperability, and several tools and applications currently 
implement import/export options to accept and write out XML. In 
order to facilitate automated access to complex services, some 
companies, led by Microsoft and IBM and being handled recently by 
the XML Protocol Activity group under W3C, have standardized on 
SOAP as a lightweight protocol that is based on XML to exchange 
messages over the Web. It is worth noting that XML on its own is not 
considered middleware, but SOAP, as a middleware specification, 
makes use of it. 
 

   6.3.1.2.2 SOAP 
 

   As mentioned earlier, SOAP is an emerging distributed middleware 
technology. It employs a lightweight and simple XML-based protocol 
to enable applications to support the exchange of structured and 
typed information across the Web based on a shared, decentralized, 
and open web infrastructure.  
SOAP applications can be written in a variety of programming 
languages including Java, C++, C, Perl, and C#. These languages are 
used together with a multitude of Internet protocols and formats 
such as HTTP, SMTP, and MIME. Together they can support many 
applications, ranging from messaging systems to RPC (remote 
procedure calls). Any SOAP architecture consists of three basic parts: 
an envelope that describes the contents of a message and how to 
process it; a set of encoding rules to express instances of application-
defined datatypes; and a convention to represent remote procedure 
calls and responses (Schmidt, 2001). 
 
SOAP is therefore similar to CORBA's IIOP as it is a protocol whose 
purpose is to convey messages between applications (Schmidt, 
2001). However, one of the main distinctions between CORBA and 
web service technologies like SOAP is that CORBA provides real 
object-oriented component architecture. Web services on the other 
hand are message based and not object-based. Also, there is a tight 
coupling between clients and servers in CORBA. They must both 
share the same interface, with a stub on the client-side and the 
corresponding skeleton on the server-side. Intermediation is not 
required in the direct interaction between client and server, except 
from the ORB which runs at both ends.  
 
Everything is decoupled, however, in web services. The client sends 
and receives a message, while the response does not give immediate 
access to the next step. Web services are thus evolving into a role 
characterized by the integration of middleware rather than 
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competing with existing middleware technologies. It involves more 
middleware integration than middleware replacement. It is 
important to identify what this integration looks like, since 
middleware, in its own right, is seen as an integration technology. 
This has to do with the issue of application choreography but at a 
business process level (Schmidt, 2001). 
 
In web services, integration seems to be moving toward a level of 
granularity more coarse-grained than typical CORBA-based 
integration and toward more loosely coupled systems. This loose 
coupling is achieved by minimizing interface dependencies and 
paying more attention to the exchange of XML-defined data, and so 
objects are considered more document-oriented than method-
oriented (Schmidt, 2001). 
 
Although CORBA sends information across networks, as opposed to 
the mere description of data in the case of XML on which most web 
services depend, this information exchange and system integration 
takes place within controlled environments (e.g. within intranets 
owned by a single company). Web services however are promising 
for integration both on the level of intranet and across the Internet 
(Schmidt, 2001). 
 
This does not imply however that all other middleware technologies, 
including CORBA, are going to disappear. CORBA has already been 
shown capable of solving many distributed computing and 
integration problems. It has been able to provide solutions to 
problems that were insolvable otherwise through its high 
performance, dependability, scalability, and great flexibility. Other 
middleware technologies still have their places also, including .NET, 
J2EE, and EAI. (Schmidt, 2001). Further research is required to extend 
these potentials in the context of engineering design. 
 

   6.3.2 Integrated Computing Environments 
 

   Many key players participate in the design of any product. One of the 
important factors leading to success in product design is involving all 
these players early on in the product life cycle (Eppinger, 1995).  
 
Each of the players may have computer models in their own tools of 
preference or in multiple software applications, including 
applications for math analysis, CAD systems, databases, 
spreadsheets and others. While all the built models represent a 
single product, there is no connectivity between the tools, thus 
requiring integration between them for facilitating data transfer. 
Based on the module integration modes discussed in the 



 

    The Multi-Disciplinary Design System         247 

Integration 

previous section and other modes of integration, a variety of 
approaches and system architectures have been carried out to 
provide the required connectivity between the different design 
tools. We illustrate some below. 
 

   6.3.2.1 The One-Software Approach 
 

   This approach solves the connectivity between models by designing 
the functionality of many tools and embedding them into a single 
giant software or as extensions to it. Solving the connectivity and 
integration is thus less of a problem for the design team, since the 
software vendor solved these problems and provided the team with 
a set of tools within one package. Examples include CAD systems like 
CATIA, Unigraphics, and SolidWorks that integrate the functionality 
of spreadsheets finite element analysis, and computational fluid 
dynamics in one tool.  
 
There are some considerable disadvantages, however, to this 
approach. The low level of comfort associated with being forced to 
use only one tool may cause engineers to be less productive. All the 
investment in the tools that would no longer be used is also lost. In 
terms of the integrated packages themselves, adding a lot of 
functionality to any piece of software does not necessarily enhance 
it. On the contrary, it could most probably make it less stable and 
less user friendly.  
 

   6.3.2.2 Problem Solving Environments 
 

   A Problem Solving Environment (PSE), as defined by Gallopoulos et 
al. (1994), is a complete, integrated computing environment for 
composing, compiling, and running applications in a specific area. 
This computer software aims at solving one class of problems 
through an easy to use interface (GUI) that is oriented primarily 
towards specialists in fields other than computer science. 
 
PSEs were first introduced in the 1990s. For some years they were 
available for some specific domains. It was only in recent years that 
multi-disciplinary PSEs (M-PSEs) became widespread. Examples of M-
PSEs include different kinds of Process Integration and Design 
Optimization (PIDO) Software. PSEs also exist as extensions to 
scientific programs like Matlab, Maple, and Mathematics (Li et al. 
2004). 
 
The main focus in PSEs lies in the ability to remotely use existing 
software in addition to reusing existing software libraries such as 
mathematical and visualization routines. Grid Computing is one of 
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the most significant fields in which PSEs are specifically used, where 
scientists and engineers at remote sites can interact through PSEs 
using standard software interfaces. Through this interaction, 
especially using distributed object technologies, such as CORBA and 
Java, the productivity of scientists and engineers is greatly 
enhanced. 
 
Current work in PSEs has generally focused on building application 
specific PSEs. In general, a PSE must contain application 
development tools that allow end users to construct new 
applications or integrate libraries from other current applications in a 
way that makes it easier for users to extend within their domain. It 
must also contain development tools that facilitate the application 
implementation on a set of resources. Components (modules) can 
exist in different languages, locations, or platforms. They can be 
either created from scratch or wrapped from legacy codes. 
 
A component is a self-contained program which has an interface that 
defines how it can be called upon by means of another component in 
addition to identifying the returned results upon operation 
completion. An interface in this context thus defines the different 
datatypes and return types associated with the component in 
addition to an execution model that describes all the libraries that 
should be taken into consideration to enable execution of the 
component (Li et al. 2004).  
 
Through component interfaces, users can search for components 
that are appropriate for a specific application. The system 
components can be configured on instantiation, registered with 
event listeners and shared between repositories. Components are 
then connected together into data flow graphs and sent to a 
resource manager, where the application is executed on a 
workstation cluster or a combination of workstations and high 
performance machines. 
 
Components can access a variety of available services according to 
the involved execution environment, such as an event service, a 
naming service, or a security service. Event services enable the 
coordination of activities between modules. Naming services 
facilitate the location of other modules. Security services verify 
module access, making sure that access to a specific module is only 
made from an authenticated module owner. 
 
An important implementation technology for PSE infrastructure is 
component-based development, which allows wrapping existing 
scientific codes as components instead of rewriting them (Li et al. 
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2004).  
 
The PSE infrastructure must support two types of users: application 
scientists or engineers who use PSEs to solve a specific problem, and 
programmers and software vendors who help accomplish the 
objectives of those scientists by developing components. PSE 
infrastructure should also allow the integration of third party 
products and application specific libraries.  
 
PSEs should also support visual applications and web-based task 
submission. They must benefit from industry standards such as 
middleware (e.g. CORBA) and document tagging (XML). PSEs must 
include both resource management tools and application 
construction tools in an integrated fashion in order to run and 
schedule the constructed applications in an efficient manner. The 
tools required to build the required applications should be mostly 
domain independent. Most PSEs, however, do not actually provide 
an intuitive way to construct scientific applications through plugging 
software components together. 
 
According to Li et al. (2004) some parts of the PSE should be 
considered domain independent and may be used for constructing 
applications in different domains, such as the Visual Programming 
Composition Environment (VPCE). Other parts are domain specific, 
where rules support particular types of components (Shields et al., 
2004). The VPCE is a component repository that serves as a user 
interface for a PSE. The user can select a set of in-house components 
and combine them using a graphical composition area in the 
interface. The VPCE uses Java and CORBA to provide tools that allow 
building scientific applications from components. These tools ease 
the process of configuring components, integrating legacy codes 
into components and the process of designing and building new 
components.  
 
There are current PSE projects that use component models, but 
most of them do not provide wrapping of existing scientific codes. 
They focus instead on creating data flow environments or on 
enabling users to write their own modules.  
 
The advantage of the PSE approach is that it connects the tools that 
engineers are comfortable with in a generic way such that these 
connections can be managed by any Windows user (Wallace et al, 
2000). It should allow engineers to continue using their preferred 
tools while easing the process of communication between those 
tools. On the software side, the only thing required from the new 
software is to facilitate the connectivity of legacy software.  
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Process Integration and Design Optimization (PIDO) Software 
 

   Process Integration and Design Optimization (PIDO) is an emerging 
line of software products. It aims at enabling users to integrate 
processes that use multiple digital design and analysis tools 
(Software Engineering Institute, 2008). These products allow the 
“wrapping” of software tools and legacy codes, in addition to 
publishing them on a computing network.  
 
Through the graphical environment enabled by PIDO tools, users can 
generate an integrated MDA model by choosing published 
components and graphically linking their inputs and outputs. 
Through this approach, all disciplines can keep ownership of their 
codes. They can easily maintain and upgrade their codes as well as 
serving them from desired computing platforms. Engineers 
therefore do not have to learn new software. Examples include 
ModelCenter, AnalysisServer, DOME & Oculus Technologies, ISight, 
and Esteco. Since I will be using ModelCenter heavily in the thesis I 
will discuss it briefly in the following section.   
 

   ModelCenter 
 

   Phoenix Integration (2007) define ModelCenter as a tool that helps 
engineers design and analyze systems through automating multiple 
common computing tasks. The goal of using the software is to 
increase the efficiency of the design process by automating and 
simplifying these computing tasks. It saves engineering time and 
makes the design process less error prone. Multiple programs are 
connected together to form systems engineering models. Trade 
studies are performed on the models, and the results from multiple 
studies can be archived into a single project.  
 
The first step in the process of using ModelCenter is wrapping a 
program on the Analysis Server. This program can be either an in-
house code that uses input and output files, a commercial finite 
element program, or a Microsoft Excel spreadsheet. The Analysis 
Server is Java-based and runs on many platforms, allowing any 
analysis program to be wrapped and run on its own platform without 
further modification. The wrapped program produced by the 
Analysis Server is known as a component in ModelCenter, where the 
different components are accessible from other networked 
computers. A Model is thus a set of integrated components. Other 
ways to create components include the Script Component and 
Common Components. 
 
ModelCenter graphically builds a model after the wrapping process is 
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complete. The model construction process involves selecting 
components in the Server Browser followed by dragging and 
dropping them into the Analysis View which provides a system-level 
model view. Instant relationships can be defined between the 
wrapped modules as soon as they are placed in the “work bench” 
environment. Attributes from a CAD module, for example, can be 
linked through ModelCenter’s link editor to the corresponding 
parameters in a Matlab module or cells in an Excel spreadsheet 
module. Components are displayed as icons, while links are displayed 
as lines between the components (figure 6.3). Users can create, edit, 
and view links using the Link Editor. Viewing and editing model 
values can be done using the Component Tree which displays the 
model and all of its components and variables in a hierarchical 
fashion. Variables are displayed differently according to the variable 
types and states (Phoenix Integration 2007).  
 

 Figure 6.3: 
 

In ModelCenter, 
components are 

displayed as icons 
while links are 

displayed as lines 
between the 
components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Once alterations and iterations are carried out on one module, they 
are instantly propagated to other modules; this is an attribute that is 
promising for optimization. ModelCenter uses sophisticated 
algorithms to track different changes and impacts of variables. 
ModelCenter then uses a scheduler to decide which components to 
run and in what exact sequence (Phoenix Integration 2007). 
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   7.1. What is Exploration? 

   Changes in the design variables of one part of the system are rapidly 
spread throughout the system. This leads to the need for 
investigating “what if” scenarios. These scenarios can be 
implemented through exploration experiments and techniques. 
 
Exploration experiments and techniques are not intended to validate 
the system as a whole as much as they validate some of the design 
decisions made within the MDDS, such as what variables to include in 
the design vector or the structure of the objective function. 
 
These techniques are important for comprehending the effects of 
design variables, the shape of a design space, the decisions that 
should be made while choosing alternatives and the associated 
consequences. This allows for simultaneous consideration of many 
dimensions of the problem as well as the management of the design 
process.  
 

 Figure 7.1: 

Exploration should 
be carried out  before 
and after Search and 

Optimization  

 

 
 

7. Exploration 
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   A key difficulty in the optimization process is usually the large 
number of design parameters involved. Many algorithms cannot 
handle problems of more than 100 variables, and in particular if there 
is no good and feasible point known to begin with. Such limitations 
have led to a growing interest in applying design space exploration 
techniques to limit the size of the design vectors involved.   

Furthermore, solutions found may be sensitive to perturbations of 
the design variables or constraints which might render those 
solutions as less adequate or even infeasible. Sensitivity experiments 
should be carried out to investigate the effects of changes in input 
data on the output results (figure 7.1). 
 

   7.2. Pre-Search  

    Working with design problems with a large number of design 
variables (parameters) is a difficult task for any optimization 
algorithm, especially if a good feasible starting point does not exist.  
 
Several pre-optimization exploration processes can, however, be 
applied to develop an overview of the design space or a region of 
that space around a specific design point.  
 
Initial points must be analyzed so that an initial design point for 
optimization can be chosen. In addition, a screening procedure can 
be implemented to identify critical parameters.  These include 
parameters that have the largest effect on the objective and 
constraint functions. These parameters define a subset of the 
original design vector which, if reduced enough, can make 
optimization more successful (Koch et al., 2002). 
 
In this section pre-optimization exploration processes will be 
presented. These will include parametric studies and One-Factor-At-
A-Time (OFAT) analysis, Design of Experiments (DOE), as well as 
Latin Hypercubes and Orthogonal Array sampling.  
 

   7.2.1. Parameter Studies  

   Many design studies still rely on sequential parametric studies in 
which one or two (sometimes three) design variables are changed to 
examine the effect on the design.  
 
Parametric studies involve analyzing one variable at a time to study 
the effects of assumptions about particular data. Carpet plots can be 
used to show the effect of these variables on each of the system 
constraints or objectives. Carpet plot studies analyze two 
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independent variables by varying the two items over ranges and 
evaluating the resultant behavior of another parameter. 
 
The number of parameters n in this type of study is limited by the 
dimensionality that can be perceived graphically and by the 3n 
growth rate in a number of cases that must be examined using this 
type of grid searching technique. Still, parametric studies provide 
visibility into the effects of the parameters that are studied and can 
yield insight into problems that is not available through more 
complex multi-dimensional optimization results (Kroo, 1997a). 
 
After specifying each level (value) of each factor (variable), a 
parametric study can be performed by changing one factor at a time 
while keeping all other factors at a base level (table 7.1). Each factor 
is considered at every level and the best result for each factor is 
selected. The best design is then chosen by extrapolating each 
factor’s behavior. 
 

 Table 7.1: 

In a parametric study  
one factor is changed 

at a time while 
keeping all other 

factors at a base level 

 
Expt 
No. 

Factor 
A B C D 

1 A1 B1 C1 D1 
2 A2 B1 C1 D1 
3 A3 B1 C1 D1 
4 A1 B2 C1 D1 
5 A1 B3 C1 D1 
6 A1 B1 C2 D1 
7 A1 B1 C3 D1 
8 A1 B1 C1 D2 
9 A1 B1 C1 D3 

 
 
 

   Using a parametric study, the chances of evaluating the “best 
design” as part of the study are very low, since interactions between 
factors are not considered. When the need for a more methodical 
approach to parameter tuning is acknowledged, designers may 
attempt a One-Factor-At-A-Time (OFAT) analysis.  
 
Similar to a regular parametric study, OFAT involves tuning a single 
factor when all others are fixed. However, if the output is improved 
then the new level is kept for that factor and then moving to the 
following factor and repeating this process with each factor one at a 
time (Ridge, 2007).  
 
With OFAT the “best design” is expected to be a member of the 

1 + 𝑛𝑛(𝐼𝐼 − 1) = 
1 + 4(3 − 1) = 9 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

4 factors, 3 levels each: 
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matrix experiment. Unlike with a regular parametric study, with 
OFAT some interactions between parameters are captured, although 
the result depends on the order of the factors (de Weck and Willcox, 
2005). 
 

   7.2.2. Design of Experiments  
 

   Design of experiments (DOE) is a statistical technique proposed by 
Sir R. A. Fisher in England in the early 1920s. Fisher’s main objective 
was to establish the optimum water, rain, sunshine, fertilizer, and 
soil conditions needed to generate the finest crop. Fisher was able to 
identify all combinations (treatments) of the factors included in 
experimental study using DOE techniques. These combinations were 
created using a matrix which allowed each factor an identical 
number of test conditions. By introducing the DOE technique, Fisher 
devised the first method to analyze the effect of more than one 
factor at a time (Roy, 2001). 
 

 Figure 7.2: 

Multiple 
combinations of 

factors and levels are 
used to analyze the 

design space  

 
 
 
 
 

   The National Institute of Standards and Technology defines Design 
Of Experiments (DOE) as: 
 
. . . a systematic, rigorous approach to engineering problem-solving 
that applies principles and techniques at the data collection stage so as 
to ensure the generation of valid, defensible, and supportable 
engineering conclusions. In addition, all of this is carried out under the 
constraint of a minimal expenditure of engineering runs, time, and 
money (NIST, 2006). 
 
DOE is a collection of statistical techniques that provide a systematic 
and efficient way to sample and analyze the design space through 
the analysis of multiple factors (figure 7.2). The systematic approach 
is drawn from the methodologies and experiment designs used by 
DOE. By creating a matrix of runs and using a range of algorithms, 
the effects on numerous responses can be recognized. The DOE 
principles of data gathering ensure that only adequate data is 
collected, improving the efficiency and cost of the experiment 
(Ridge, 2007).  
 
Some of the capabilities of DOE discussed by (Ridge, 2007) include: 
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Quantify multiple variables simultaneously: the effects of multiple 
factors on one or more responses can be studied and examined. This 
can help identify appropriate factor ranges as well as identify 
achievable responses and objectives.  
 
Identify variable interactions: the combined effect of factors on a 
response can be identified. 
 
Identify high impact variables:  key drivers among potential factors 
and their relative importance can be ranked.  
 
Predictive capability within design space: performance of solutions at 
new points in the design space may be predicted. 
 
These capabilities make DOE an essential approach for any research 
dealing with large and expensive experiments.  
 
DOE techniques help with the study of many factors simultaneously 
in an economic fashion. Factor levels are varied so as to maximize 
the information extracted from the resulting simulations. By 
studying the effects of individual factors on the results, the best 
factor combination can be determined (Roy, 2001). 
  
DOE can be used in support of traditional optimization procedures 
(Koch et al., 2002). DOE techniques and similar strategies are often 
used before setting up a formal optimization problem (de Weck and 
Willcox, 2005). Using information obtained from a well-defined DOE 
study can help optimization models to seek out the best design 
among many alternatives.  
 

   7.2.2.1. Factors, Levels and Responses 
 

   A factor is an independent variable chosen from the design vector. 
The various values at which the factor can be set are known as its 
levels. 
 
Factors can be divided into either primary or secondary factors. 
Primary factors, also known as design factors, are those factors that 
are studied because their effects on the responses are of interest. 
Secondary factors, also known as held-constant factors, are those 
factors that are held at a constant value throughout all experiments 
because they are not of interest in the current study (Ridge, 2007).  
 
The response variable is the output of a certain experiment and 
represents a measure of the variables of interest. 
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   7.2.2.2. Treatments 

   A treatment is a particular combination of factor levels. The specific 
treatments will depend on the experiment design and on the factor’s 
variation range. There are various possible experiment designs. The 
design will depend on several aspects including the research 
question, stage of research and the resources available (Ridge, 
2007). 
 
Experiments can be represented in a matrix. Within this experiments 
matrix each row corresponds to one experiment and each column 
corresponds to one factor (table 7.2). Each experiment corresponds 
to a different treatment of factor levels that provides an observation 
(de Weck and Willcox, 2005). 

 
 Table 7.2: 

Experiments can be 
represented in a 

matrix where each 
row corresponds to 
one experiment and 

each column 
corresponds to one 

factor 

 
 
 
 
 
 
 
 
 
 
 
 

Expt No. Factor A Factor B Observation 

1 A1 B1 ή1 

2 A1 B2 ή2 

3 A2 B1 ή3 

4 A2 B2 ή4 

   7.2.2.3. Effects 
 

   Once the experiments have been completed, the results can be used 
to calculate effects. An effect of a factor is the change in the 
response due to a change in one or more factors as the level of the 
factor is changed. There are two types of effects: main and 
interaction effects.  
 
The main effect of a factor is an averaged individual measure of the 
effects of factors. It is a measure of the change in the response 
variable to changes in the level of the factor averaged across all 
levels of all the other factors. 
 
An Interaction effect is the effect that occurs when the effect of a 
factor depends on the level of another factor and the combined 
change in both factors produces an effect greater than or less than 
that of the sum of their expected effects.  These are also called 
higher-order effects that depend on the number of effects involved. 
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For example a second-order effect is due to two factors, a third-
order to three and so on (Ridge, 2007). 
 
Two other important concepts relating to effects are confounding 
and aliasing. It is essential to stress the difference between 
confounding and aliasing. Confounding occurs when it is impossible 
to separate the effects of two or more effects due to bad 
experimental planning and implementation, particularly to poor 
control of factors. Aliasing, on the other hand, is an inability to 
distinguish several effects due to the nature of the experiment 
design rather than poor execution (Ridge, 2007). 
 
Several DOE techniques exist. A comprehensive review of many 
techniques and their use in engineering design is provided by 
Simpson et al. (1997). In this Chapter two methods will be presented, 
the full factorial design method and the fractional factorial design 
method.    
 

   7.2.2.4. Full Factorial  
 

   The term "factorial" may not have been used before 1935, when 
Fisher used it in his book The Design of Experiments (Fisher, 1975). A 
full factorial design consists of a crossing of all levels of all factors. It 
measures the response of every possible treatment combinations of 
factors and factor levels.  
 
As with any statistical experiment, the experimental runs in a 
factorial experiment need to be randomized to lower the influence 
of bias on the experimental results. 
 
Full factorial design provides greater efficiency in the use of available 
experimental resources and the knowledge learned in comparison to 
the same number of experimental runs in a less structured context 
such as OFAT (Czitrom, 1999).  
 
Because the factor levels are all crossed with one another, a full 
factorial design provides information on the effects of each factor on 
the response variable which can be analyzed for every main effect 
and every interaction effect.  
 
Furthermore, the results of a full factorial design are more inclusive 
over a wider range of conditions due to the combining of factor 
levels in one experiment.  
 
If a simple factorial experiment contains two levels for each of two 
factors then it is a 22 factorial experiment, because it considers two 
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levels (the base) for each of two factors (the power), producing 22= 4 
factorial points. The effects of three factors with two levels each can 
be evaluated in eight experimental treatments that represent the 
corners of a cube. 
 

# levels #factors 
 
Full factorial design is an extremely powerful but expensive method. 
As the number of factors grows, the number of treatments also 
rapidly, grows and at some point it overwhelms the experimental 
resources and becomes infeasible due to high cost.  For example, a 
full factorial design experiment with 10 factors at two levels each will 
require an expensive 210 = 1024 treatments. 
 
The full factorial experiment is the ideal design for many design 
problems, but the size of design spaces limits its applicability. A more 
efficient design is required if the number of treatments in a full 
factorial design is too high to be logistically feasible. In this case, a 
fractional factorial design may be used, in which some of the 
possible treatments are omitted. 
 

   7.2.2.5. Fractional Factorial Design  
 

   As mentioned previously, due to the combinatorial explosion and the 
increase in expense of factorial designs with the increase in the 
design factors we cannot usually perform a full factorial experiment 
Instead a subset (fraction) of the possible treatments is carefully 
considered in a manner that can balance experimental cost with 
design space coverage. 
 
The subset is selected to utilize the sparsity-of-effects principle. This 
states that a system or process is likely to be most influenced by 
some main effects and low-order interactions and less influenced by 
higher-order interactions (Ridge, 2007).  
 
Fractional designs are expressed using the notation ln − k, where l is 
the number of levels of each factor studied, n is the number of 
factors studied, and k describes the size of the fraction of the full 
factorial used where 1/(lk) represents the fraction of the full factorial 
design. 
 
For example, for an experiment with five factors and two levels for 
each factor and choosing k to be two, the fractional factorial design 
is 25 − 2 which is 1/4 of a full factorial design. So this experiment 
requires only eight runs rather than the 32 runs that would be 
required for the full factorial experiment. 
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The fractional factorial design can assist in providing information 
about the most important features of the problem studied while 
using a fraction of the effort and resources of a full factorial design. 
 
However, there is a price to pay for the fractional factorial’s 
reduction in number of experimental treatments. Some effects will 
be aliased and therefore indistinguishable from one another. If an 
alias group seems statistically significant more treatments can be 
added to separate these aliased effects. This sequential 
experimentation represents one of the advantages of the fractional 
factorial.  
 
Depending on the number of factors, and accordingly the design 
space size, a range of fractional factorials can be implemented from 
a full factorial. Initially, it may be useful to look at a large number of 
factors superficially rather than a small number of factors in detail 
(de Weck and Willcox, 2005).  
 
The methodology to generate fractional factorial designs for more 
than two levels is very hard and could even be infeasible. Other 
methods, such as response surface methodology (discussed 
previously in the analysis section), are more efficient in determining 
the relationships between the response and factors at multiple 
levels. 
 

 Table 7.3: 
 

In Fractional designs  
levels are 

specified for 
each factor and 

outputs are 
evaluated at 

every 
combination of 

values. 
 

 

  
Expt 
No. 

Factor 
A B 

1 A1 B1 
2 A1 B2 
3 A1 B3 
4 A2 B1 
5 A2 B2 
6 A2 B3 
7 A3 B1 
8 A3 B2 
9 A3 B3 

 

   7.2.3. Latin Hypercubes 

   The Latin hypercube is a generalization of a Latin square with a larger 
number of dimensions. A Latin square is a square grid containing 
sample positions with only one sample in each row and each column.  
 
Latin hypercube sampling was developed in the statistics community 
and was first described by McKay et al. (1979).  It gained interest in 

𝐼𝐼𝑛𝑛 = 34 = 81 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
4 factors, 3 levels each: 

𝐼𝐼𝑛𝑛 = 32 = 9 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
2 factors, 3 levels each: 
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engineering design in 1989 after Sacks et al. (1989) computer 
experiments.  
 
The statistical method of Latin hypercube sampling was developed 
to generate a distribution of reasonable collections of parameter 
values from a multidimensional distribution.  
 
A Latin hypercube is a matrix of M rows and N columns where M is 
the number of levels being examined and N is the number of the 
factors. Each of the N columns contains the levels 1, 2, 3..., M, 
randomly permuted. The randomly permuted M levels of N columns 
are matched to form the M Latin hypercube. When sampling a 
function of N factors, the range of each factor is divided into M 
equally probable intervals. M sample points are then placed to satisfy 
the Latin hypercube requirements. This forces the number of 
divisions, M, to be equal for each factor. Each level of a factor is used 
only once (de Weck and Willcox, 2005). 
 
Latin hypercube sampling offers flexible sample sizes while ensuring 
stratified sampling. This sampling scheme does not require more 
samples for more dimensions (variables); this independence is one of 
the main advantages of this sampling scheme. Another advantage is 
that random samples can be taken one at a time, remembering 
which samples were taken so far (figure 7.3). 
 

 Figure 7.3:  

An example of a Latin 
hypercube sampling 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   The maximum number of combinations for a Latin hypercube of M 
levels and N factors (i.e., dimensions) can be computed with the 
following formula: 
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�(𝑀𝑀− 𝑛𝑛)𝑁𝑁−1
𝑁𝑁

𝑛𝑛=0

 

 
Latin hypercube sampling is particularly well suited for computer 
experiments, since design points are spread throughout the design 
space, and more levels are generally taken for each factor than with 
the other designs (Koch et al., 2002). The approach, however, can 
produce poor coverage and the results are not repeatable (de Weck 
and Willcox, 2005). 
 

   7.2.4. Orthogonal Arrays 

   Orthogonal array sampling requires that the entire sample space be 
sampled evenly. Orthogonal arrays specify levels for each factor. 
Arrays are used to choose a subset of the full factorial experiment 
that maintains orthogonality between factors. 
 

 Table 7.4: 

In the balancing 
property, for any pair 

of columns, all 
combinations of 

factor levels occur an 
equal number of 

times. 
 

 
 
 
 

L9 (34) 
 

 

 

 

 

 

 

Expt 
No. 

Factor 
A B C D 

1 A1 B1 C1 D1 
2 A1 B2 C2 D2 
3 A1 B3 C3 D3 
4 A2 B1 C2 D3 
5 A2 B2 C3 D1 
6 A2 B3 C1 D2 
7 A3 B1 C3 D2 
8 A3 B2 C1 D3 
9 A3 B3 C2 D1 

   Although orthogonal array sampling does not capture all 
interactions, it is still considered an efficient sampling and the 
experiment is balanced.  For any pair of columns, all combinations of 
factor levels occur and they occur an equal number of times. This is 
the balancing property (Table 7.4). In general, the balancing property 
is sufficient for orthogonality (de Weck and Willcox, 2005). 
 
Although more efficient than Latin hypercube sampling, the 
orthogonal array sampling approach is more difficult to execute 
since all random samples must be generated at the same time. 

3 levels 
4 factors 9 expts 
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   7.3. Post-Search  

   7.3.1. Sensitivity Analysis  
 

   Exploration techniques used after search and optimization are 
mainly sensitivity analysis processes. The importance of sensitivity 
analysis stems from the fact that all the mathematical models used in 
the MDDS are approximations to the actual artifact and system (De 
Neufville, 1990). Some data in the mathematical model are inherently 
uncertain.  
 
Input is generally affected by many sources of uncertainty including 
errors in data, lack of information and limited understanding of the 
design problem. This uncertainty affects our trust in the output of 
our models. Therefore the examination of the effect of input data on 
the output results is important. 
 
Sensitivity analysis is primarily concerned with how the specific 
response of a chosen solution changes due to the modification of 
design problem formulation. Sensitivity analysis tries to identify what 
source of uncertainty has a greater effect on the final solutions.  
 
The problem formulation of sensitivity analysis is similar to DOE 
discussed earlier. In DOE we investigate the effect of some 
'treatment' on the performance. In sensitivity analysis, on the other 
hand, we study the effect of varying the inputs of a mathematical 
model on the solution. 
 
Sensitivity analysis is key to understanding which design variables, 
constraints and parameters are important drivers for the optimum 
solutions. Using sensitivity analysis techniques we can verify the 
effects of changing the design variables, parameters and constraints 
on the “optimal” solutions selected. There are several sensitivity 
analysis techniques such as simple derivates, sampling and screening, 
Monte Carlo filtering, and variance based approaches among others 
(Helton et al., 2006).  
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   8.1 What is the MDDS ? 

   In the previous chapters I discussed different concepts that 
represent the stages needed to construct what I call the Multi-
Disciplinary Design System (MDDS).   In this chapter I will attempt to 
tie these concepts together into a coherent framework.  

The MDDS represents a design process rather than a specific design 
tool. The core of this process involves creating integrated 
computational systems. There are five steps to generating an MDDS: 
decomposition, formulation, modeling, integration, and exploration. 
These steps are not carried out in a sequential manner, but rather in 
a continuous back and forth between the different steps as the 
design progresses and evolves (figure 8.1). 

As discussed earlier, design can be seen as both an object and a 
process. This has strong implications for how we decompose an 
artifact in the attempt to build the MDDS, since we have to 
decompose both the artifact object as well as the design process 
that was used to produce it.  In formulation, many tools have been 
suggested for the task of structuring and formulating the 
information produced from the decomposition stage into a coherent 
MDDS architecture. Methods for activity modeling that include 
synthesis, analysis, evaluation and optimization were discussed in the 
modeling chapter.  Later in the integration chapter different 
integration software technologies were suggested to connect the 
different activity modules. Finally, in the exploration chapter 
different tools and techniques were discussed for the task of design 
space exploration. 

In this chapter I will expand on these ideas and will propose a 
framework that demonstrates the processes and relationships 
involved in building the MDDS. I will then discuss how this system will 
evolve as the design of the artifact evolves. Concepts for handling 
complexity will be discussed including multi-variable, multi-module, 
multi-levels, and multi-resolution processes.   

After discussing the MDDS evolution, I will then discuss the expected 

8. MDDS 
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behavior of the system. This will include the system’s emergent 
qualities and its multidisciplinary and performance-driven behaviors.  
Finally, I will discuss the affects of using such a system on structuring 
the design team and the implications for developing new design 
tools and environments. 

   8.2 MDDS Framework  

   The design team must identify the design concept that can best 
perform the design requirements. Specialists from many fields work 
with the system architect to ensure that the solution considers all 
specialty requirements that the system architect may not have been 
fully aware of.  If there is more than one concept involved, the 
alternative concepts are usually swapped among each other in order 
to come up with a preferable solution.  
 

 Figure 8.1: 
  

MDDS Framework 
includes five phases: 

decomposition, 
formulation, 

modeling, 
integration, and 

exploration 
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   As stated earlier, the MDDS is applied after a design concept has 
been developed. As mentioned earlier, Duvvuru et al. (1989) divided 
the design process into four basic categories: creative design, 
innovative design, redesign, and routine design. I believe the MDDS 
can be used for routine design, redesign, and even innovative design. 
However, creative design, which involves the initiation to create the 
main design concept, has to be carried out by the human design 
team (figure 8.2). This is typically the most difficult stage of the 
whole design process, but as the design space narrows down 
incrementally downstream, later stages become more defined and 
more suitable for the MDDS implementation.  

 Figure 8.2: 

MDDS application in 
relation to Duvvuru 

design categories 

 

 

 

   While developing the concept, the design team can define and 
suggest the design vector variables and even the main objective 
function to be used in the MDDS, although there will be a need to 
further refine them in later stages. The resulting design is then 
integrated in the MDDS and is used as a point-of-departure reference 
to provide a rough estimate for the design of the artifact or system in 
order to start the MDDS building process.  

The first stage in building the MDDS is Decomposition. Here the 
artifact or system design concept is broken down into, on one hand, 
the different components and aspects that make up its physical 
object, and, on the other, the developmental levels and design 
activities that can be used to construct the design process. A 
comprehensive list of disciplines and information required from each 
discipline for design and development should be established. The 
design team should also define the initial design vector variables, in 
addition to establishing preliminary objective functions if they have 
not been established yet. In this stage, the starting point for the 
process of problem formulation and modeling is setup. 
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Then, the Formulation stage defines how various modules will be 
interconnected. In order to arrive at a reasonable system 
architecture, there must be an iterative cycle or loop between 
decomposition and formulation. The input and output parameters 
should also be explored for each of the involved activity modules. 
The formulation of this system architecture can lead to important 
enhancements concerning design turnaround times in addition to 
significant minimization of unnecessary additional performed tasks 
(Atherton, 2002).  

MDDS offers a framework where the modeling of complex design 
problems can be achieved by aggregating sub-problems. The design 
system is typically modeled in terms of modules which are 
interacting objects that represent individually specific design 
activities. The Modeling stage is where these mathematical models 
are developed. These modules can contain engineering models in 
addition to data or software applications. Furthermore, both the 
design vector variables and the objective function are better defined 
in this stage but can still be modified further according to 
investigations made in the design exploration stage.  

In the Integration stage, the modules are integrated such that the 
necessary design information is passed between them. With modules 
being able to represent various parts of the problem simultaneously, 
the integrated MDDS is realized as a computational design tool 
capable of producing design solutions.  

Exploration is the fifth and final stage of the MDDS framework and 
occurs after the MDDS is fully developed and verified. Automated 
multivariable parametric studies and trade studies can be conducted 
to evaluate the design vector and the design objectives. 
Furthermore, the sensitivity of the solutions to the design 
constraints can be studied. Design vector parameters and the 
objective function are varied in this stage in order to explore the 
design space. 
 

   8.2.1 Decomposition 

   One of the basic assumptions of the proposed framework involves 
the fundamental idea of decomposition. This decomposition process 
takes place at the front end of the MDDS construction development. 
Initially, through a top down approach the design concept will be 
decomposed iteratively by each discipline involved in the design. The 
decomposition is carried from a high-level diagram ending in 
manageable smaller sub-problems. These sub-problems facilitate, in 
addition to the problem solution, a better understanding of the 
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design problem domain.  

Decomposition strategies have been discussed earlier in the 
decomposition chapter. Two modes of decomposition were 
presented, namely the object and process decompositions. Both 
modes are essential for building the MDDS (figure 8.3). 

Process decomposition is composed of both development and 
activity decompositions and represents the main elements needed 
later in the formulation stage. Development decomposition informs 
the formulation stage about the proposed hierarchy and multilevel 
structure of the MDDS. Activity decomposition on the other hand is 
essential in identifying the design activity modules within every level.  

 Figure 8.3: 

Object 
decomposition 

includes both 
component and 

aspect 
decompositions 

while process 
decomposition 

includes both 
development and 

activity 
decompositions 
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   Furthermore, object decomposition is needed in the modeling stage. 
As discussed earlier object decomposition includes component and 
aspect decompositions. Component decomposition divides the 
system or artifact according to the physical system elements. 
Component decomposition is essential to the synthesis modeling. 
Aspect decomposition, on the other hand, treats the problem 
according to the system physics and therefore is critical for the 
analysis models. 

   8.2.2 Formulation  

   In this stage the architecture of the MDDS is created. To represent 
the MDDS we use different levels of aggregation of complex 
interacting elements. Similar to decomposition, while formulating 
the MDDS we have to make choices on the level of abstraction 
needed. High abstractions do not usually require domain knowledge, 
and are therefore used to summarize, generalize, and compare. Low 
abstractions require domain knowledge, and thus provide valid 
details where differences are explicable. In our context formulation 
is primarily based on the idea that MDDS encompass a number of 
levels and design activities. 

A system that comprises design activities with high complexity 
cannot be easily or efficiently managed as a monolithic entity, and so 
it has to be broken down into development levels. Therefore, the 
MDDS is broken into hierarchical levels in order to manage design 
complexities, where each lower level becomes more detailed and 
refined as the design progresses (figure 8.4). 

 Figure 8.4: 

MDDS is broken into 
hierarchical levels 

 

 

 

 

 

 

 

   MDDS is made of modules, where each module represents a design 
activity. Similar activity modules can be interconnected to create 
assemblies. MDDS comprises a group of modules and cycles which 
represent a system at different levels of abstraction and also possibly 
at multiple development stages. The system architecture identifies 
which modules will be part of the system and provides descriptions 
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of their roles. The MDDS as a whole can be seen as a set of 
interrelated modules that collectively can produce design solutions 
(figure8.5). 

 Figure 8.5: 

MDDS comprises a 
group of modules 

 

 
 

   Iteration is a basic concept in all design processes. Researchers have 
discussed different approaches for managing these iterations (Smith 
and Eppinger, 1997). I refer to iterations within the context of MDDS 
as design cycles, were each cycle includes all four design activities 
mentioned earlier, namely synthesis, analysis, evaluation, and 
optimization. Through a bottom-up approach, the design activity 
modules are connected into a design cycle that represents a data 
flow network. Each design cycle resides in a design level within the 
MDDS (figure 8.6). 

 Figure 8.6: 

Each design cycle 
resides in a design 

level within the 
MDDS 

 

 

 

 

 

 

 

 

 

 

 

   Given the descriptions above, it is clear that the MDDS includes both 
hierarchical and non-hierarchical structures. Within its hierarchical 
structure, it is possible to define discrete tree-like interaction 
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 patterns which offer well-guided navigation within the process. This 
hierarchical layout enables multilevel problem formulation. The 
MDDS levels are of such a structure. These hierarchies can also be 
layered hierarchies where horizontal relations could be established 
within a single design level and between two or more design cycles.  

The non-hierarchical structures define relations between the 
different elements within an MDDS level. These elements include 
modules, assemblies and design cycles. A data flow network is 
created between the different elements with links that represent the 
interactions between them.  These links allow the flow of 
information between the different modules. 

 Figure 8.7:  

A design cycle can 
include sub-cycles 

 

 

 

 

   The MDDS also evolves and grows over time, either vertically by 
adding more levels or horizontally by adding more modules and 
cycles (figure 8.8). This will be discussed further in the Evolution 
section of this chapter. 
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 Figure 8.8: 

The MDDS evolves 
and grows over time, 

either vertically by 
adding more levels or 

horizontally by 
adding more modules 

and cycles 

 The MDDS architectures developed in this stage should be fed back 
to the decomposition process in order to fine-tune the lower levels 
of functional analysis according to the evolving higher-level 
solutions. This is a process which should be done with careful pacing. 

The tools and notations discussed in the formulation chapter can be 
useful in formulating the order of activities and interactions in the 
MDDS. The DSM for example, could be used to refine the interaction 
between modules and minimize iterations as well as determining 
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crucial activities that influence process lead-time and cost. 
Formulation notations that include network notations, such as Data 
Flow Diagrams or IDEF0, or even formulation modeling languages, 
such as UML and SysML, can be of great use in designing the MDDS 
architecture and defining its hierarchical levels, cycles, assemblies 
and module interactions.  

In summary, formulation works on promoting the interaction among 
the system architects, design specialists and other design team 
members. It occurs prior to modeling and programming in order to 
avoid major reprogramming later on. Formulation also enables the 
visualization of data and control flow. This is very useful for the 
system architect, as it affords him a lot of time and effort in 
examining the MDDS model. 
 

   8.2.3 Modeling 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 As discussed earlier in the modeling chapter, models are abstract 
descriptions of the real world that provide approximate 
representations of more complex functions of physical systems 
(Papalambros, 2000). Many design problems require using a group of 
complementary models, instead of one single model, which together 
aim at modeling and describing the whole design problem. The 
modeling process that encompasses many issues in large problems 
requires specialized knowledge in many disciplines (Pahng et al., 
1997). No single designer can excel in all these disciplines, hence 
there is a need for different people who have the suitable principal 
competencies to model and solve different aspects of the design 
problem (Eppinger, et al. 1994).  

Within the MDDS we are concerned with mathematical models. 
These are models that can be implemented in a computer 
environment. We aim at building a mathematical model for each 
activity module. These include the synthesis, analysis, evaluation, and 
optimization activities (figure 8.9).  Modules for data storage and 
constrains can also be included. These are modules that store the 
parameters and constants and the design system constraints. Extra 
modules for data flow control could also be implemented.   

Each module has a boundary that cuts across its links to the 
environment defining that module’s input and output. Each module 
acts like a black box transforming data from one form to another. 
The behavior of each module contributes not only to the design 
aspect and discipline it is modeled after, but to the design system as 
a whole.  
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 Figure 8.9: 

A design cycle that 
regenerates a design 

concept should 
include synthesis, 

analysis, evaluation, 
and optimization 

activities 

 Domain knowledge of each discipline involved in the design informs 
the synthesis modules to create meaningful designs and 
representations. The outcome of the synthesis modules is analyzed 
by the different discipline analysis modules to predict the properties 
of a particular solution. The evaluation modules then handle the 
multi-objective nature of the design. The optimization modules 
search the design space and automate the synthesis, analysis and 
evaluation in search of new solutions. The process continues until 
the optimization has converged and a family of acceptable solutions 
is found. 

Modeling can take place through one of two basic approaches: 
programming the model in a programming language such as C or 
C++; or constructing it in simulation software such as CAD, FEA, or 
CFD. Using programming languages provides better program control 
and a low purchase cost. Simulation software however minimizes 
programming time and thus lowers project cost. After constructing 
the model, it is validated to make sure the original assumptions were 
acceptable. 

The scope of the model is primarily based on the fidelity degree 
needed at a certain MDDS level. This is an essential issue in modeling 
activities and will be discussed further in the MDDS Evolution 
section. 
 

   8.2.3.1 Synthesis 

   The synthesis mathematical model defines the system configurations 
to be modeled. These models are influenced by the component 
decomposition completed in earlier stages. The design concept is 
decomposed into a set of synthesis models by extracting design 
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intentions and formulating a collection of design parameters, rules or 
algorithms. This collection provides for a representation of the 
design language which in turn defines a design space. This mode of 
representation provides for a formalism that can be used within a 
computational environment to breed new designs.  

The design vector or variables within it are the input to this type of 
module. As discussed previously in the modeling chapter, the 
number and type of variables included in the design vector depends 
on the algorithms and structure of the synthesis model.   Synthesis 
modules can offer precise feedback for the MDDS on the influence of 
parameter variations within the design vector on geometric data. 

Synthesis modules output data to analysis modules. This data 
includes design attributes such as dimensions, areas, volumes, 
locations, vectors, and mass properties. The need for integrating 
synthesis and analysis modules affects to a great extent the 
modeling requirements for both design activities.  

Synthesis models should provide for a generative mechanism. This 
could be done through the different techniques discussed in the 
modeling chapter, such as parametric and algorithmic models. 
Parametric models provide for a description of the artifact through 
parameters and relationships that allow for variation. Algorithmic 
models provide a description of the artifact through a set of rules 
and algorithms. Some good examples of algorithmic models are 
formal Grammars. These include grammars like Shape Grammars, 
Graph Grammars, Lindenmayer Systems, and Cellular Automata.  

The representation of generative synthesis models should encode 
design knowledge. The relationship between form and performance 
should be embedded within the representation formalism. This 
provides restrictions on permitted designs and ensures that the rules 
discard designs that do not comply with constraints. However, since 
synthesis models do not include performance feedback loops, it is 
difficult for such models to direct the generation and navigation of 
the design space of multi-performance design problems.     

Furthermore, the geometry resulting from the synthesis process 
must be robust enough to cope with the intense variations that take 
place in later trade studies. After all these modules come into place, 
the utility of each module is evaluated by conducting various 
verification cases and design studies (Atherton, 2002). 
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   8.2.3.2 Analysis  

   An analysis model infers from a design solution characteristics that 
are relevant to a particular discipline. A design problem usually 
combines different disciplines with each discipline developing one or 
more analysis models.  

The outcome produced by a synthesis module is the input to the 
analysis module. These may range from simple parameters and data 
such as areas or volumes, to full CAD models for use in numerical 
analysis like FEM and CFD. The outputs of the analysis module are 
performance and behavior measures that will eventually be used 
within an evaluation module to assess the effectiveness of a system 
configuration.   

In the modeling chapter several analysis models were discussed. 
These models range in their amount of required information input 
and their degree of accuracy output. Analytical models are mainly 
low-order (low-fidelity) models that are fairly fast but with low 
accuracy. On the other hand, numerical models like finite element 
analysis (FEA) and computational fluid dynamics (CFD) are high-order 
(high-fidelity) models which have higher accuracy but result in long 
durations which has a compound effect when such a model is run 
several times in a design exploration and multidisciplinary 
optimization process. Many low-processing approximation concepts 
have been utilized to generate surrogate behavior models to replace 
expensive and detailed analysis and simulation software when 
testing numerous scenarios with various input parameters (Koch et 
al., 2002; Bletzinger and Lähr, 2006).  

In choosing a model the designer must select the best compromise 
between the demand for simplification and the necessity to clearly 
identify, describe and rate the targeted physical mechanism. A trade-
off will have to be made between fidelity and analysis time. 

   8.2.3.3 Evaluation  

   The need for the evaluation of results arises while observing systems 
in multidisciplinary contexts. Evaluation modules are in essence 
decision-making tools. The input to an evaluation module is the 
output of several analysis modules. Evaluation therefore refers to 
the overall result of a design analysis, which encompasses multiple 
analysis computations.  

The output of the evaluation module depends on the strategy used 
in the evaluation and whether the evaluation is done before or after 
optimization. An evaluation is usually performed by means of an 
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objective function which consists of a figure of merit describing the 
quality of a design solution. The formulation of the objective function 
is vital to the outcome of the design space search. A solution is 
expressed in an n-dimensional design space. “n” relies directly on the 
number of design objectives. Results from the evaluation module 
usually yield a dimensionless quantity known as the quality for each 
solution.  

In order to make a decision about rationally choosing one of the 
alternatives, a criterion is required which assesses all alternatives and 
ranks them in a certain way. The criterion, which is called the 
objective of the model, cannot be unique, as its choice is usually 
affected by several factors. These factors include the design 
application, timing, point of view, and designer judgment and may 
change with time.  (Papalambros and Wilde, 2000).  

In single objective optimization, the search direction can be well 
defined and a single solution, if it exists, could be found. However, in 
the real world, design problems are usually too complex and ill-
defined and have several possibly contradicting objectives. This 
implies that there is no single optimal solution but rather a whole set 
of possible solutions of equivalent quality. In this set, each objective 
is optimized with the understanding that if any further optimization 
is attempted, the other objectives could be affected as a 
consequence. Therefore, decisions need to be taken in the presence 
of trade-offs between conflicting objectives. 

Addressing multiple objective problems may require techniques that 
are different from standard single objective optimization methods. 
This evaluation of multiple objectives is articulated based on the 
decision-maker’s preferences either before or after the search.   

When the preference is expressed beforehand, the designer decides 
how to aggregate different conflicting objectives into a single 
objective function before the actual search is performed. A 
commonly adopted approach is scalarization which consists of 
combining several objectives into one scalar cost function. There are 
different scalarization methods, such as the weighted-sum approach 
and the utility function method among others.  

When search is performed before decision-making, the search is 
performed with multiple objectives at the same time. The solution 
space becomes partially ordered with a set of optimal trade-offs 
between the conflicting objectives. This set is called the Pareto 
optimal set. 
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   8.2.3.4 Optimization  

   The final step in the design cycle involves optimizing the design to 
investigate the performance benefit increase. Many configurations 
can basically meet similar design goals. Thus an optimization problem 
can be put forward in order to search for an optimum configuration. 
Each configuration has its individual group of design variables and 
functions. This implies that a design can be changed to provide 
various alternatives (Papalambros and Wilde, 2000). 

The goal of optimization studies in this context involves studying 
how a design performs and how this performance can be influenced 
in order to choose the most desirable alternative or alternatives 
(Bletzinger and Lähr, 2006).  

Optimization modules are design space search machines.  Searching 
the design space entails finding the best solution(s) within a domain 
of feasible solutions. The choice of an appropriate search algorithm 
depends on several factors, including the design synthesis model, the 
nature of the analysis models, the number of design variables, the 
existence of constraints, and the linearity of either the design 
variables or constraints. 

The input to the optimization module is an objective function that 
depends on a number of continuous or discrete values. The 
optimization module seeks to minimize or maximize an objective 
function by varying the values of those variables within an allowed 
domain. The outputs of the optimization module are new values for 
the design vector variables.  

As discussed earlier optimization algorithms could be divided into 
discrete numerical optimization techniques or heuristic algorithms. 
Some numerical optimization techniques that handle constraints 
include the simplex method, sequential quadratic programming, and 
the exterior and interior penalty methods among others.  Discrete 
numerical optimization techniques that handle unconstrained 
problems are generally gradient-based algorithms. These include 
Newton's method, steepest descent, and conjugate gradient among 
others. Within the interconnected and highly nonlinear nature of 
multidisciplinary design problems, it cannot be supposed that a given 
solution is globally optimal merely because it may be locally optimal 
(Atherton, 2002). Conventional gradient-based methods may not be 
suitable for this purpose, since they locate the optimum solution 
according to the point in the function space at which they started. 
On the other hand, heuristic algorithms are generally non-gradient 
methods, like evolutionary algorithms, simulated annealing, and tabu 
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search, can escape local optima. However, no existing optimization 
technique is guaranteed to find the global optimum of a nonlinear, 
non-convex problem.  

Gradient-based methods find local optima with high reliability but 
might not escape a local optimum. Heuristic algorithms might find a 
good solution, but its optimality cannot be guaranteed since they 
often tend to find a different design each time they are run. In 
addition, they do not converge to a solution in the same effective 
manner as gradient-based methods do. 

Furthermore, no single optimization technique is applicable in 
general to all types of engineering design problems. Studies in the 
field of nonlinear constrained problems, which are common in 
complex engineering design problems, have demonstrated that no 
single optimization technique performs best for the majority of 
design problems.  

For a given design problem, a combination of techniques often  
performs better than single techniques. Using the two dissimilar 
methods in a complementary way creates a ‘hybrid’ optimization 
strategy that can address the problem efficiently. This strategy 
would ideally promote relative strengths of both methods and 
restrain their weaknesses in order to provide maximum analytical 
benefits. A heuristic technique, for example, can be applied to a 
problem with a high degree of nonlinearity and multiple predicted 
local optima to globally identify within the design space regions 
where best solutions may lie. Starting from the solution or solutions 
obtained in this exploratory search, a numerical technique can then 
be applied to search locally for the best solution in this specified 
region of interest, or also to fine-tune it. The most effective way 
however to solve a given problem will always be dependent on the 
specifics and details of that unique problem (Koch et al., 2002 ). 

There still remain some issues when novice users apply optimization 
techniques in complex design problems. These include choice of the 
starting point, the number of system analyses required for 
optimization, uncertainties in problem formulation and design 
parameters, and their effects on the optimization (Koch et al., 2002). 
Other questions and challenges relative to optimization exist at both 
the system and discipline level. How to handle the problem of 
multilevel optimization, how the optimum solution is established, 
what it is sensitive to, how robust is it, and how to determine if it is 
really the optimum solution will be discussed in the MDDS evolution 
section. 
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   8.2.4 Integration 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Integration takes place at the tail end of the MDDS development. 
Integration mainly aims at facilitating the coupling of activity 
modules and simulation programs regardless of discipline, 
programming language or format (Koch et al., 2002).  

As discussed earlier the idea of a single super software is not really 
compelling practically when it comes to building simulation tools to 
cover a wide range of disciplines. This software cannot simply be 
tailored to address in detail any single domain within its range of 
applicability. If only one set of tools exists, one analysis process, or 
one design philosophy, then there would be very little space for 
genuine creativity and innovation. 

The benefits of smaller interacting components and modules and the 
component-assembly approach in the software industry have been 
recognized in many applications and have resulted in recent focus on 
component-ware (Kroo, 1997). Software modules enable their design 
specialists to exchange and discuss design information, alterations in 
design tasks and design decisions with other specialists. 

Selected modules that were modeled and created by design 
specialists are then assembled and integrated in the MDDS (figure 
8.10). Interfaces describe the group of services that a module can 
provide (Pahng et al., 1997). They demonstrate detailed descriptions 
of how different modules interact together. This includes how the 
modules fit together, connect, and communicate. If these interfaces 
are compatible, modules can consequently interact with each other. 
The interface analysis process is useful as it aids in refining the 
architecture along the lines of minimized cross-organizational 
interfaces (Grady, 1994). 

The integration between the different modules can be carried out 
using one of the integration technologies discussed earlier in the 
integration chapter, such as middleware, web services or a 
combination of both.  The system architect decides on the data that 
will be shared from one module or tool to the next so as to assemble 
an efficient MDDS.  This data should pass between modules in an 
automatic fashion as soon as it is all linked together. The design 
teams can then focus on the design problem independently.  

Managing dataflow from one module to the next, which has always 
been extremely time-consuming in the past, would be overcome by 
providing execution scheduling functionality and easing module 
communication. Design information that a certain module desires to 
receive represents module interests. These interests could trigger 
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Figure 8.10: 

The different design 
activity modules are 

integrated in the 
MDDS 

the action of receiving the well-suited design information as soon as 
it is generated by any other module. Implementing automation 
within the MDDS would surely minimize the time required to run 
design iterations. 
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   Furthermore, the MDDS should be built on the idea that all system 
variables should be accessible and monitored from a central location 
or framework, but the modules that distribute these variables should 
be free to run on any platform independent of the controlling 
framework (Atherton, 2002). As a whole, the organization of design 
teams is considered as a distributed design environment where both 
design specialists and software modules of different design teams 
are geographically dispersed. 

There are certain risks that the MDDS may not actually work as 
formerly planned. Testing the system involves running the 
simulations and reviewing the model validity. With increased 
experience, system architects can predict more of these risky and 
negative interactions until the integration task becomes much easier. 

   8.2.5 Exploration 

   After building and integrating the MDDS, it would be useful to carry 
out a few experiments that could help explore the design space. 
Exploration experiments and techniques are not intended as a 
validation of the system as a whole as much as they are a validation 
of some of the design decisions made within the MDDS, such as what 
variables to include in the design vector, the systems constraints or 
the structure of the objective function. 

A key difficulty in the optimization process is the large number of 
design parameters involved. Many algorithms cannot handle 
problems of more than 100 variables, and in particular if there is no 
good, feasible point known to begin with. Furthermore, optimization 
studies typically need multiple computer iterations which may be 
expensive or time consuming, especially in the case of large, complex 
systems. These limitations have led to a growing interest in design 
space exploration techniques (Koch et al., 2002).   

Design space exploration can delve into “what-if” scenarios and 
assess trade-off situations. This makes it an essential tool for 
analyzing the effects of design variables and the shape of design 
spaces, providing a better understanding of the decisions that are 
made in design selection and the corresponding consequences.  

Exploration techniques such as DOE can be used to provide an 
overview of the design space or a local region of the design space 
around an initial design. DOE concepts define a systematic and 
efficient means by which a design space is analyzed, basic design 
variable screening is provided, design variable effect is evaluated, 
and important design variable interactions are identified (Koch et al., 
2002).  The parameters that have the largest effect on the objective 



 

    The Multi-Disciplinary Design System         284 

MDDS 

and constraint functions identify a subset of the original design 
variables set. Optimization can become more feasible if this set is 
reduced in number. A new and feasible or enhanced initial point for 
optimization can sometimes be chosen using the initial points 
analyzed from the DOE study. Approximations of the original analysis 
or simulation programs can be generated using the full set of DOE 
points.  

Sensitivity analyses can also be utilized to identify what model 
factors have key influence on performance measures. This implies 
consequently modeling those factors carefully. Sensitivity analysis is 
primarily concerned with how the specific response of a system 
changes due to the modification of some other specific input 
parameters (Bletzinger and Lähr, 2006). This includes exploring the 
design space for the solution sensitivity with respect to input 
parameters at specified design points. The degree of dependence of 
the result, for example, from the input parameters or possible 
extrema regarding those parameters can be assessed. Sensitivity 
relies in its computation method on the partial derivation of the 
quality regarding the input parameter (Bletzinger and Lähr, 2006).  

Traditionally, conducting a multidisciplinary trade study is 
characterized by being a time consuming process which is largely 
dominated by the reformatting, transforming, and translating of data 
between design disciplines and analysis modules (Atherton, 2002). 
However, the MDDS approach can offer the design team the 
flexibility in addressing dissimilar and large trade-spaces by allowing 
the quick interchange of individual modules, leading to the easy 
testing of the effect of these modules on the design solutions. 
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   8.3 System Evolution 

   8.3.1 Complexity  

   One of the basic issues in engineering and designing systems is the 
issue of complexity. There are several definitions of complex 
systems. A complex system is defined by Crawley et al. (2004) as a 
system that comprises components and interconnections, 
interactions, or interdependencies, all of which are hard to describe, 
understand, predict, manage, design, or change. 

In design, managing complexity represents a huge challenge. Nature 
however, offers the most compelling examples in relation to 
complex system design, since they are the outcome of an 
evolutionary design process that encompasses ever-changing 
complexity.  

Similarly, the nature of the MDDS process is one that involves 
evolution. This notion of an evolving system yields an MDDS that is 
continuously dependent on and responsive to the uncertainties of 
design progress.  

The MDDS design development decomposition recognizes the 
evolution and the hierarchies inherent in the design process. The 
MDDS design should be viewed as an incrementally changing process 
that grows from the top to bottom as a combination of multiple 
quasi-interdependent levels. Therefore, the MDDS resulting system 
model can be described as an evolutionary model.  

Designers move from simple and generic designs into more complex 
and detailed ones throughout the design process. Early on in the 
process, the exact structure of design objects is not clearly defined 
(Rosenman and Simoff, 2001). With project progress, the design 
description must evolve and change, as well as the constraints and 
synthesis and analysis models. Practically, the level of description of 
a specific design should be directly proportional to the amount of 
information available at a specific project stage. A design could not 
be described at the fabrication level when the project is still at an 
early stage, as too much information impedes the project’s progress.  

That is primarily why design development is divided into conceptual, 
preliminary, and detailed design (Kroo, 1997a). Design description 
complexity and mathematical model sophistication increase as more 
detail is added, moving from simple representations to more detailed 
descriptions.  

Although the design development process appears to be sequential 
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with steps following each other, the reality is that certain knowledge 
can be gained or some circumstances can change as the process 
moves forward, thus questioning decisions early on in the process. 
The selection of properties or design vectors may change based on 
specific knowledge acquired along the analytical model development 
(McManus et al. 2004). Most MDO efforts do not take the evolution 
of design complexity in consideration. They are only limited to the 
problem of minimizing a specified function according to an assigned 
group of design parameters (Kroo, 1997a).  

The MDDS can be described as encompassing a dynamic architecture 
and structure which is affected by several factors. These include the 
number of modules and cycles needed at a particular design level 
and phase. Additional factors also include the number and type of 
variables in a specific design vector, as well as the required degree of 
fidelity. Therefore, in addition to being multi-disciplinary, the MDDS 
can be characterized as comprising multi-levels, multi-modules, multi-
variables and multi-resolutions. These characteristics are described 
below (figure 8.11). 

   8.3.1.1 Multi-Level 

   Hierarchical levels can be identified in the system definition. Each 
system is decomposed into subsystems. These can be further 
decomposed with the different subsystems being linked together. 
The analysis of each system occurs at a specific level of complexity 
that is compatible with the interests of the individual who studies the 
system. 

Both the artifact design and the design process can be viewed in 
terms of hierarchical decompositions, where they are decomposed 
into multi-levels. Therefore, MDDS should also be considered as a 
multi-level hierarchical system.  

Effective planning is required, however, where there is an evolution 
from one level of maturity to the other. Hence, at each level of the 
MDDS, design problem decomposition and formulation should take 
uncertainty of lower levels into consideration. 

Solution coordination is an important factor in achieving a solution to 
the full design problem through multiple solutions for the 
decomposed multi-levels. Through the formulation of design 
problems at different levels of the decomposed problem and the 
transfer of information across these levels, the MDDS goals can be 
reached.  
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   8.3.1.2 Multi-Module  

   Modules are distinct abstractions that have simple interfaces. The 
abstraction hides the complexity of the modules, while the interface 
indicates how that module interacts with the larger system (Baldwin 
and Clark, 2000). 

This notion of abstraction is very much related to the concept of 
information hiding, which was first introduced by David Parnas in 
software engineering (Parnas, 1972), and is applicable to any 
complex system. Parnas argued that if the details of a specific block 
of code were deliberately hidden from other blocks, alterations to 
the block could take place without changing the rest of the system. 
Designers should then divide the design parameters into two main 
categories: visible information and hidden information. This will 
indicate which parameters interact outside their module, in addition 
to how potential interactions will be managed across modules. 

Therefore, an MDDS, at a certain level, will comprise several 
modules. These modules are combined in assemblies and cycles. 
There could be several assemblies in one cycle as well as several 
cycles within one level. 

Given the multi-module and multi-level characteristics of the MDDS, 
the state of the system should be observed both horizontally and 
vertically. 

   8.3.1.3 Multi-Variable  

   The design vector and its set of variables evolve and change between 
the different levels of the MDDS. In this evolution, some variables 
might continue to evolve by continuing to vary in subsequent levels; 
others might be locked and thus removed from the design vector, 
while other new variables might be added to the design vector. The 
number of variables within the design vector is known as the number 
of degrees of freedom.  

As discussed earlier, specific degrees of freedom should be enabled 
within a design cycle for the purpose of experimentation. However, 
redesign of the design vector(s) is required in successive levels. This 
redesign process must be strongly built on the experience acquired 
from working on different MDDS architectures. 

These observations are significant for a suitable MDDS cycle 
definition which will constitute the core for building its different 
mathematical models. Depending on the number of cycles per level, 
the MDDS can be represented as a single design vector for a single 
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cycle on a level or as a group of design vectors in different cycles that 
should be synchronized and managed at a global system level. This 
becomes critical to modeling decisions as the system increases in 
size. 

   8.3.1.4 Multi-Resolution  

   In early conceptual design stages, MDDS can be used to synthesize 
many alternatives, and pertinent analysis can be conducted. In later 
phases, however, more detail is required to perform elaborate 
synthesis and analysis. These are conducted using higher-fidelity 
modeling and tools. A simple system such as one that incorporates 
beam representations of structures can be easily modeled. But, 
when it is substituted by a plate or finite element model, the number 
of design degrees of freedom and system dimensionality increase 
remarkably. With this evolution, higher-fidelity analysis is often 
required (McManus et al. 2004).  

For the evolving MDDS, modules with different resolutions and 
granularity levels are needed. By altering modules or exchanging 
existing disciplinary synthesis and analysis modules for more suitable 
fidelity levels, existing MDDS level models can be evolved to lower 
successive levels. 

Furthermore, the nature of the design problem itself can change 
with design progress. In emergent situations, initial design vectors, 
parameters and models may become irrelevant. In order to move 
forward with identifying solutions and exploring design spaces, 
relevant models have to be identified and instantiated. This involves 
dealing with more and more complex design parameters and results, 
which increase computation time, making the enhancement of the 
fidelity of disciplinary analyses a difficult task (McManus et al. 2004).  

Multi-resolution can be implemented in two directions: vertically and 
horizontally. As discussed above, vertical multi-resolution takes place 
between the different levels of the MDDS. On the other hand, 
horizontal multi-resolution can occur within one design cycle. For 
example, two modules could model the same aspect with one 
module running at a higher-fidelity level, and therefore taking a 
longer time to run, while the lower-fidelity module runs faster but 
does not provide accurate answers. In this case, the system architect 
could use the faster low fidelity module within the optimization, and 
at different intervals of the optimization verify its results using the 
higher fidelity module (Similar concepts were discussed earlier in the 
modeling chapter). 

However, these multi-resolution representations will have various 
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modeling needs that can intensify the design challenge. The primary 
concern of multi-resolution modeling is resolving representational 
discrepancies that evolve among modules (Davis and Bigelow, 2002).  
Having different modules working at different levels or within design 
cycles implies the need to preserve consistency at each abstraction 
level. Reynolds et al. (1997) discuss the challenges in this process. 
Design strategies that take these potential discrepancies into 
consideration are necessary for designing these cross-resolution 
models.  

   8.3.1.5 Decoupling  

   Decoupling within the MDDS takes place when the interactions 
between parts of the system disappear. This happens when the 
various interconnected disciplines, aspects and analyses are 
decomposed into subgroups which do not require the output of 
another group as their input. The system structure is thus simplified 
and can benefit from parallelism.  

   Horizontally: Modules and Cycles 

   Modularity, as mentioned earlier, is a specific design structure where 
parameters and tasks are interdependent within modules and 
independent across them. Modules in a larger system work together 
as units but are structurally independent of one another. This implies 
that a module’s internal structural elements are strongly linked 
among themselves but weakly linked, with gradations of modularity 
to elements in other modules (Baldwin and Clark, 2000). This notion 
of independence and interdependence of modules must be 
identified for any design. The system architecture must allow for 
both the independence of structure and the integration of function. 

Coupling or dependency within this context is defined as the degree 
to which each module relies on each one of the other modules in a 
given system (Kroo, 1997a). Low coupling, or "loose" or "weak", 
denotes a relationship where one module interacts with another one 
through a stable interface without any concern about the internal 
implementation of the other module. Thus a change in one module 
does not require a change in the implementation of the other one. 

High coupling, or “tight” or “strong”, occurs if one module changes 
or relies on the internal implementation of another module, such as 
accessing local data from it, and so the dependent module will 
change according to manipulations in the way the other module 
produces data. This is also known as content coupling (Kroo, 1997a).  

The term decoupling is thus used in a single design cycle to identify 
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the segregation of modules that should not be dependent on each 
other. Doing so usually minimizes the degree and risk of failure in any 
one part of a system if another part is altered. 

   Vertically: Levels  

  

 

 

 

 

  Figure 8.11: 

MDDS captures 
design evolution 

 Here we describe the decoupling that happens between successive 
levels within an MDDS as the system evolves. As the design of an 
artifact progresses, physical parts and components and their 
associated functions and aspects that are weakly related and have 
very little influence on other components and aspects can be 
synthesized and analyzed individually.  

A design cycle within a specific level that is intended to generate 
certain component configurations can therefore evolve in 
subsequent lower levels of the MDDS into two or more decoupled 
design cycles. Furthermore, new cycles and new modules may be 
created as new levels surface in the MDDS.  Therefore, the MDDS 
architecture is expected to be integrated in higher design levels and 
modular in the lower levels. 

  

 

 

 

 

 

 

   8.3.2 Adaptability  

   Holland (1992) thoroughly discusses in his book Adaptation in Natural 
and Artificial Systems the concept of adaptation or the adaptive 
process, which involves progressively changing a certain structure. 
He states that a set of structural modifiers or operators is generated 
through carefully observing successive structural modifications. 
Consequently, the observed modification sequences are generated 
through the repeated action of these operators.  

These operators represent actions in complex adaptive systems that 
modify existing structures into new structures in well-defined ways. 
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Operators in this sense are similar to verbs in a language or functions 
in mathematics. They identify a group of paths by which the system 
can change, evolve and become more complex using their powers of 
conversion (Baldwin and Clark, 2000). Holland highlights the fact 
that a system that involves the combination of operators that act on 
structures at every stage is a system that experiences adaptation. 

Within the MDDS, modularity is a concept that demonstrates 
adaptation. Modularity has been be very useful in many domains 
involved in complex system design.  

Within the MDDS many design cycle, options can be generated using 
the modular mix-and-match flexibility leading to a final design cycle 
that suits its current needs. In this dynamic process, and as new 
modules are tested and incorporated into larger design cycles, the 
MDDS as a whole will start to change and evolve. 

There are several features and actions that can take place among 
modules. Four main actions can be done in an MDDS: a module 
design can be substituted by another; a new module can be added to 
the system; a module can be deleted from the system; and a module 
can be reused in another model. 

Modules that share common services can be swapped to investigate 
diverse solution alternatives in a problem model (Pahng et al., 1997). 
This potential of swapping or substitution constitutes the core of 
economic competition, which can be only reasonable if two different 
modules can serve the same ends, but not equally well (Baldwin and 
Clark, 2000). If knowing in advance which module will be better is 
not possible, then both modules can be generated and tested 
against each other. The essence of substitution in this context lies in 
the notion that the better design will win this competition.   

In MDDS, a user can select at the beginning a set of modules to meet 
his or her needs. In this context, MDDS is said to be configurable. It 
can also be reconfigurable according to changing needs, where the 
user can augment (or add) modules to the system to give it some 
new kind of functionality, or exclude (or subtract) modules that are 
no longer needed (Baldwin and Clark, 2000). MDDS is also 
considered reconfigurable through the substitutions mentioned 
earlier which represent the upgrading of existing modules. Modules 
can also be potentially reusable in other problems.  

Reusing well-structured and generic modules significantly minimizes 
the time required to build models for new design problems. After the 
construction of building blocks within the design process, these 
blocks can be saved to a library to facilitate its reuse and sharing 
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among other projects. They can also be reused as templates for 
generating similar activity modules (Koch et al., 2002). 

By supporting interchangeability, modularity enables designers to 
control how changes in processes or requirements affect the 
designed product. The flexibility by which they can meet these 
changing processes enables them to delay design decisions until 
more information becomes available (Gershenson et al., 2003). 

In this context, an existing MDDS at a specific level can evolve to a 
lower level through changing or replacing existing modules for those 
with better-suited fidelity levels. In addition modules can be added or 
removed from the design cycles in that level.   

   8.3.3 Optimality  

   Within the MDDS a set of optimization tuning parameters can be 
established for each design cycle and level. These could include 
parameters like the maximum number of iterations or convergence 
criteria among others. The optimization can be carried out in a multi-
step decomposed optimization plan that integrates various levels of 
the MDDS. Using a successive filtering of solutions, certain solutions 
are moved from one level to the next to be optimized further. This is 
a sequential optimization technique between the different levels 
which is not expected to necessarily lead to an optimum solution. 

However, the question of optimality within this context is debatable 
since it depends on many factors including the initial design concept, 
what is included in the design vector, the analysis modules 
implemented, the objective functions and constraints applied among 
many other factors. Given an initial concept the goal of optimization 
within MDDS is to guide the evolution of the design towards 
solutions with higher performance and not necessarily to an 
optimum solution.   

One of the difficulties associated with optimization in MDDS is the 
high level of uncertainty involved between the levels since, in many 
cases, the lower levels are not yet known. However, after the full 
design has evolved and further optimization of the full system is 
sought, several multi-level optimization techniques can be 
implemented.  

Three of these methods have been studied in detail, including: 
concurrent subspace optimization (CSSO), collaborative 
optimization, (CO) and Analytical target cascading (ATC).  

CSSO depends on partitioning the design problem into various 
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subspaces pertaining to the specific disciplines. Each of these 
subspaces attempts to minimize a global objective, while at the same 
time sharing responsibility for the satisfaction of the system 
constraints. This process is managed differently by system level 
algorithms according to the implementation.  

CO also deals with simultaneous subproblem optimization. 
Disciplinary teams, however, are responsible for satisfying local 
constraints in the process of attempting to meet the target values 
assigned by system coordinators. These shared target values are 
tweaked by the system in order to reduce some objectives while 
enabling the subspaces to meet those targets. The CO method is 
appealing in many domains due to the simplification it offers in 
analysis integration and communication. It also allows the domain 
specific selection of optimization algorithms. It is particularly 
appropriate for analyses already coupled with optimization. There 
are still some limitations to existing CO applications including slow 
system-level convergence and sensitivity to subspace feasibility 
tolerances (Kroo, 1997b). In general, however, this method has great 
potential for large problems with low dimensionality interdisciplinary 
coupling. 

Analytical target cascading (ATC) is another technique developed for 
hierarchical multilevel system optimization. This methodology, unlike 
the case with MDOs, basically addresses hierarchies that are 
decomposed by objects or physical subsystems and not aspects or 
disciplines. 

ATC methodology is based primarily on the idea that the 
performance of a system element can be derived analytically as a 
function of its decision variables (Choudharyet al., 2005), and 
therefore performance goals can be embodied as design targets, 
which can be accomplished through design decisions. Some 
performance goals can be defined as global design targets, and 
proposed as part of the initial problem definition. The compatible 
targets and performance specifications can be derived 
computationally as functions of design decisions by using analysis 
and simulation models. Concurrent design can thus be achieved by 
solving the sub-problems in isolation in more detail (Choudharyet al., 
2005).   

   8.3.4 Time  

   To gain the maximum benefit from MDDS, design iteration time 
should be significantly minimized so that many solutions can be 
achieved in the process as a whole. Usually the design team spends 
less time executing or specifying information pertaining to design 
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and analysis and instead spends most of the time in managing that 
information.  

MDDS can have a significant role in minimizing design iteration time 
through a set of methodologies and technologies. These include 
mathematical modeling, systems approach, integrated design 
schemas, automated synthesis, discipline analysis and 
multidisciplinary optimization, which all lead to enhanced 
performance in both process and product.  

This reduction in iteration time enables design teams to explore the 
performance of many more alternatives during conceptual design 
than what is now possible, thus leading to potential improvement in 
initial cost, performance and overall quality results. Many concepts 
can be analyzed in parallel and related trade studies can be 
conducted to investigate the design space.  

This resultant efficiency does not however come without a price, 
particularly when it comes to setup time. A lot of initial investment is 
required in setup time and process planning. This is compensated for 
though throughout the life cycle of the design system. Through 
controlling previous design activity processes and modules during 
model construction, the scale of this investment can be significantly 
reduced. 
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   8.4 System Behavior 

   The MDDS should primarily work on maximizing performance. 
However, since each discipline involved in the design can have more 
than one performance attribute or requirement, a balance should 
exist between these performance attributes, although conflicts are 
highly expected. These conflicts are not expected only within a single 
discipline, but also between different disciplines. The notion of 
emergence through conflict is thus clear, as the attempt to resolve 
these conflicts usually produces unexpected solutions known as 
emergent solutions.  

   8.4.1 Performance Driven Design 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A design process that is usually driven by meeting a group of budget, 
constraints, and functionality criteria often produces an end-product 
that merely satisfies these minimum criteria. The design team has to 
work collaboratively in order to accomplish performance that is 
better than just average. Establishing performance goals early on in 
the design process augments these efforts and makes it easier to 
achieve these better results. 

Performance based design provides the basis by which design is 
guided through performance. This provides an all-inclusive 
methodology to artifact design through embracing a set of 
performance-based priorities and simulation technologies of analysis. 
This widespread scope of performance-based design implies crossing 
many worlds, including the financial, cultural and technical. The 
MDDS approach introduces a scenario where this idea of 
performance driving design is clearly identified. 

The analysis in this approach will not rely on the artifact’s original 
geometric definition, but the geometry itself will reflect analysis 
results. This is due to feedback loops from analysis to synthesis using 
optimization. This definitely represents a more efficient approach 
than the process where design synthesis takes place first followed by 
working exhaustively on what the real artifact is required to be 
(Carty and Davies, 2004).  

Applying these methods should establish designs with high 
performance, but should not disregard or overlook the vast diversity 
in design configurations and physical characteristics. Generated 
designs with similar performances are likely to have in some cases 
remarkable differences in their form and configuration. Therefore, 
the performance-based approach has significance and potential 
success in not only promoting high performance but also catalyzing 
the design process, as it demonstrates that similar performances can 
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Figure 8.12: 

A guided missile is 
conceived from the 
perspective of each 

design specialist 
individually 

be attained through many different ways. Within the MDDS 
performance goals and search procedures can be set and applied to 
identify which design features are closest in achieving the desired 
targets. The actual payoff in this situation arises when this approach 
is used repeatedly and automatically. 

The dilemma remains in specifying which performance criteria we 
should be optimizing for. It is clear that although various disciplines 
and design specialists are involved in an artifact design, these 
specialists mostly aim at optimizing specific aspects of their own 
discipline that they best understand (Sydenham, 2003). Figure 8.12 
reflects such an aspect, as it illustrates how a guided missile is 
conceived from the perspective of each design specialist individually, 
and how each optimizes the system aspect that suits their discipline. 
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   8.4.2 Collaborative Multidisciplinary Perspective 
 

   Designing complex systems is a multidisciplinary process performed 
by design specialists who could possibly be geographically dispersed. 
These specialists use a variety of design activity modules and 
software to achieve a common purpose (Khedro, 1996). Results of 
one analysis module in the design process often affect results in 
other analysis modules. At the same time, evaluating a design 
effectively requires the integration of multiple disciplines (Atherton, 
2002).  

Design specialists mostly focus on issues that are directly related to 
their area of technical expertise and responsibilities although they 
understand that artifacts and systems are groups of components 
that offer a specific set of capabilities in combination. On the other 
hand, systems architects must focus continuously on system design 
globally. Their way of attending to design specialty issues is valid as 
long as it addresses global performance, developmental risk, cost, or 
long term system viability.  It is therefore the role of the systems 
architect to orient system development in such a way that 
guarantees that the appropriate balance is achieved between 
attention and resources while reaching optimal system behavior.  

Usually in the design process, design specialists first satisfy the 
difficult design requirements and constraints while performing 
design tasks in order to guarantee correctness of the design. Then 
they move on to optimizing the design from their viewpoint through 
satisfying other soft constraints and criteria (Khedro, 1996). These 
soft constraints can be changed during the design process and do 
not represent a fundamental factor for achieving a safe and sound 
design. As long as the design solutions satisfy the hard design 
constraints regardless of fulfilling all soft constraints, complex 
system design problems remain under-constrained problems. 

Design specialists tend to make and communicate design decisions 
based on the performance of many design tasks, both in a 
synchronous and asynchronous fashion. Cases can happen however 
where the decisions they make conflict with the hard or soft 
constraints of other specialists due to their limited knowledge of 
them. In this case, the specialists can relax only their soft constraints 
in an attempt to resolve those conflicts and arrive at a shared and 
reasonable agreement about the design. The hard constraints 
however cannot be relaxed. 

Khedro (1996) classifies design conflicts into two main types: critical 
and non-critical. Critical design conflicts are an outcome of hard 
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constraint violation. These always have to be resolved, as it is 
necessary to satisfy hard constraints to arrive at feasible designs. 
Non-critical design conflicts are an outcome of soft constraint 
violation, and therefore these constraints have to be relaxed by the 
design specialist to reach a reasonable agreement. 

Therefore, one of the basic functions of building an MDDS is to 
constitute a state of balance among the different disciplines and 
design specialists involved in the artifact design. The MDDS therefore 
implies significant focus on balance, in an attempt to certify that no 
particular attribute can thrive at the expense of an equally important 
or even more important attribute, such as performance growing at 
the expense of reasonable cost. 

Addressing a design problem from a multi-discipline perspective 
allows a more genuine understanding of the system level design 
trade-space than does a myopic view of individual discipline impacts 
on the system (Atherton, 2002). 

Several tools that address conflicting criteria were discussed in the 
modeling and exploration chapters. However, regardless of the tools 
used the outcome cannot be predicted nor expected but is rather 
emergent. 

   8.4.3 Emergence 

   In this section, we examine the concept of emergence which is one 
of the main concepts for developing and understanding MDDS. 
Views regarding the concept of emergence are influenced by 
explorations in the disciplines of evolutionary biology, philosophy of 
science, cybernetics, systems theory, and artificial life. This is due to 
the ambiguous role of a concept such as emergence. (McCormack 
and Dorin, 2001). 

Emergence is a broad term comprising hardly related meanings 
within different disciplines. This makes it harder to clearly define and 
even understand. Every author has offered his or her own 
classification of emergence and its various forms, making little room 
for agreement between individual authors, as well as between 
disciplines. There is continuous debate about defining emergence in 
terms of linguistic, epistemic or ontological constructs (McCormack 
and Dorin, 2001). 

The concept of emergence originated in the nineteenth century 
where it was studied in fields of physical, chemical and biological 
systems. The common interpretation of emergence, which does not 
belong to any special domain, denotes the revelation, appearance, or 
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the action of making visible of an event, object or outcome of any 
process. In design, emergence represents novelty, surprise, or 
spontaneity as well (McCormack and Dorin, 2001). 

An important difference has been pointed out between emergent 
properties that can be explained in terms of products of lower level 
interactions, and others that cannot. This implies the concept of the 
whole being more than the sum of its parts. In addition, emergence is 
only recognized after it takes place as it cannot be hypothetically 
predicted (McCormack and Dorin, 2001).  

After assembling the MDDS, it becomes a dynamic and complex 
whole, interacting as a holistic structured functional unit that 
searches the design space for satisfactory solutions. The system 
emergent properties are not detectable through the properties and 
behaviors of its modules, and can only be enucleated through a 
holistic approach. The solution found by this system is expected to 
be superior to the design found by solving and optimizing each 
discipline sequentially, since it can exploit the interactions between 
the disciplines. While MDDS is active, emergent or spontaneous 
patterns can materialize as different forces compete.  

One of the very intriguing issues about emergence in the context of 
MDDS is that it establishes an attractive methodology that addresses 
Descartes’ Dictum: “how can a designer build a device which 
outperforms the designer's specifications?” (Cariani, 1991). This is 
due to its strong relation to qualitatively novel structures and 
behaviors that are not reducible to those hierarchically below them 
(Channon and Damper, 1998). This leads to creating designs that can 
that cannot be predicted by an MDDS creators. Therefore the MDDS 
can be described as having intelligent behaviors. 
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   8.5 MDDS Team and Environment 
 

   8.5.1 MDDS Team 
 

   The desire to integrate the work of multiple disciplines is rooted in 
basic principles of design and engineering, as large complex systems 
comprise components that are of interest for several disciplines and 
technologies. These systems must satisfy many complex needs that 
cannot be reconciled with simple solutions. However, humans are 
faced with two basic challenges pertaining to the production of 
technology and information. Humans are limited in the information, 
knowledge, and technology that they can manage and excel in. At 
the same time, the knowledge generated in these processes 
surpasses by far human individual limitations (Grady, 1994). Those 
who make use of all available knowledge resources can economically 
solve more complex problems than others who can only hold smaller 
knowledge bases. With the evolution of technology, mankind comes 
across innovative and complex challenges, and thus promotes more 
complex combinations of the available technology. To meet those 
challenges Grady (1994) argues that the general solution to the 
dilemma between the human capacity and the available knowledge 
resources lies in the specialization solution.  
 
This solution involves the specialization of individuals in limited 
disciplines while devising means to bring together the skills and 
talents of a team of specialists to constitute a different type of 
specialist, namely the system architect. The truth of the matter is 
that it would be more efficient and less chaotic if a single human 
mind could tackle a design problem rather than multiple people 
trying to work together. There is no doubt, however, that a system 
created by a well-led team of specialists would have the upper hand 
when put into comparison with one created by a single individual 
(Grady, 1994). A team, consisting of design specialists and system 
architects, therefore would jointly be capable of grasping a larger 
body of knowledge and experience.  
 
The importance of design specialists here lies in gaining maximum 
advantage from their expanded experiences. The role of design 
specialists is to guarantee that their share of the requirements and 
constraints in the design process are matched by their performance 
of specific design tasks and suitable design decisions (Khedro, 1996). 
These tasks include building modules and assemblies that perform 
design activities.  There is a need, however, during the process, to 
identify how a design specialist is affected by the design decisions of 
another specialist. In this multidisciplinary environment, specialists 
can be knowledgeable of their own discipline, but limited in 
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knowledge about others. They would therefore not know how the 
system would respond if some parameters in their modules were 
altered (Bletzinger and Lähr, 2006). 
 
The role of system architects is to perform the task of system 
architecture design and integration. This involves putting modules 
together into cycles, making sure that they function together as a 
system, and investigating possible failures if the system does not 
functionally operate. System architects should have a broad 
spectrum of knowledge, as they will be continually asked to 
assemble multiple types of systems. It is of extreme importance to 
know how deep that knowledge should be. It cannot obviously be 
equivalent to the knowledge of the design specialists in their 
detailed disciplines (figure 8.13). It should be wide enough to take 
into account several factors, such as risks, technological 
performance limits, and interfacing requirements, and sufficient to 
enable performing trade-off analyses among design alternatives 
(Kossiakoff et al., 2003).  
 

 Figure 8.13: 
 

Knowledge domains 
of systems engineer 

and design specialist. 

 

 
 
 

  
 
 
 
 
 

 The knowledge of  system architects should extend from the highest 
level of the system architecture and its environment down to the 
lowest level system building blocks and modules. In parallel, the 
knowledge of the design specialist should extend conversely from 
the lowest level of modules, upward passing through the full 
functional level of the module (Kossiakoff et al., 2003).  These two 
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knowledge domains intersect and overlap in this manner such that 
the system architect and the design specialist define the various 
technical problems through effective communication. They also 
discuss and negotiate acceptable solutions that take into account the 
general capabilities of the artifact and the MDDS design process.  
 
Responsibilities of both system architects and design specialists can 
be defined by means of the MDDS hierarchical structure (figure 8.14). 
Modules and sub-cycles denote elements that that lie within the 
domain of design specialists who can adjust them to a specific 
application given a group of specifications.  
 
System architects should be able to manage the complexity of 
formulating the system architecture. The number of levels, the 
number and type of activity modules and the technical tradeoffs that 
will influence system capabilities must all be resolved by the system 
architect. Interface conflicts must also be settled to arrive at a 
balanced design across the system as a whole. Systems architects 
should be ready to learn enough about the behavior of modules or 
sub-cycles that are critical to the operation of the MDDS in order to 
detect their possible influence on the entire system. 
 

 Figure 8.14: 
 

Responsibilities of 
the system architect 
and design specialist 

intersect. 
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   8.5.2 MDDS Environment  
 

   As discussed previously, component-based software engineering and 
the component-assembly approach for design have been evolving 
and become increasingly appealing in the software industry. Both 
the design workspace and process are affected by this approach. 
Instances of modules and components are brought together to 
produce the MDDS cycles and levels. As the MDDS is essentially a 
program designed as an assembly of linked components, the 
environment that can help create the MDDS can be considered a 
virtual design studio that implements the component-assembly 
approach. 
 
Therefore, this component-assembly approach identifies the role of 
the system architect as an assembler who links and puts components 
together. Different representations are acquired when assemblies 
are dealt with as components or modules. The view of the design 
specialist who initially designed the assembly is distinguished from 
that of the system architect who treats that assembly as a module.  
In this environment, creating an MDDS does not require writing 
extensive code to link or create programs. The MDDS environment 
should offer tools that manage the interaction of software 
components. The environment should also preferably work on 
standard computing infrastructures to allow for cross-platform code 
integration.  
 
The MDDS design environment should enable generating integrated 
models by allowing all design participants to embed collaboratively 
their specific software tools or models into modules. Hence, each 
module acts as a standalone software component. The services it can 
offer and the services that must be offered to it are pointed out 
through its public interface.  
 
In this environment, the modular format in which the integration of 
models and software applications occurs enables users to select well-
suited models based on the required level of fidelity in addition to 
being tailored to address the type of design problem. This allows 
designers to focus on the problem as the generated data is linked 
and passed automatically between analysis modules.  
 
This environment can provide powerful management tools that can 
be applied to computation-intensive design activities. An internal 
dataflow management can be assigned for such an environment.  
 
Data flow visualization is also needed in an MDDS developing 
environment. This would afford the user a reflective view of the 
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model during the MDDS assembly process. The environment 
therefore should be augmented with a user-friendly graphic user 
interface (GUI) that encompasses module data linking and post 
processing.  
 
The environment should inform the system architect, who acts as the 
central dataflow manager, of events that affect the dataflow of any 
iteration. The automated data transfer that results will certainly 
participate in minimizing the time consumed in evaluating and 
evolving designs.  
 
The environment should also implement groups of design 
exploration tools for design space exploration. In addition, solution 
monitoring, and result visualization and post processing should be 
sustained. 
 
Other capabilities that could also be implemented and empowered 
by automated tools include generating graphs, conducting 
optimization studies, creating reports, or viewing 3D model 
representations.  
 
In addition, the environment should be able to store modules 
developed by design team members for use in similar design 
problems. The module can also be made publicly available to other 
design participants.  In this manner MDDS environments could 
benefit from business models that are more widespread within 
subclasses of the technology business sector, such as the direct 
business model, which is utilized by many companies including Dell. 
This could also benefit from the increasing popularity of the World 
Wide Web by publishing models on the Internet (Pahng et al., 1997). 
Furthermore, the environment should be capable of running 
distributed models (Atherton, 2002). 
 
Within the MDDS environment the synthesis, analysis, evaluation or 
optimization modules can be published by experts and organizations 
as live services available through service marketplaces over the 
Internet.  
 
Such a marketplace can offer a new paradigm for design 
development. The competition between different firms will lie not 
only in their ability to design new products, but also on developing 
mathematical models and embodying and publishing new design 
services. In this context, designers and suppliers come closer 
together as a result of highly responsive modeling and simulation 
systems (Abrahamson et al., 2000). 
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   I will now demonstrate the applicability of the Multi-Disciplinary 
Design System through some experiments that I hope will express 
the strength of the MDDS in generating interesting design solutions. 
Riccardo Merello collaborated with me on all these experiments 
while Philipp Geyer collaborated on experiment one level two.  

The first experiment will demonstrate the ability of the MDDS in 
handling complexity through evolution and decoupling horizontally 
and vertically. The second experiment will demonstrate the 
adaptability of the MDDS framework.  

   9.1 Experiment 1 - Level 1 

   9.1.1 Concept 

 Figure 9.1: 

The formalism of the 
design concept 

shows five spatial 
components with 

interrelations 
between them 

wrapped by a skin 

 The design concept of our experiment includes a simple allocation of 
discrete but interdependent spatial components within a rectangular 
site that is divided into an n x m grid of cells. These spatial 
components are wrapped within a skin that defines their interface 
with the environment. When a configuration of the spatial 
components is reached, a structural frame is generated. The spatial 
components are allowed to relocate and deform to satisfy multiple 
performance and objective requirements (Figure 9.1).  

  

 

 

 

 

 

 

9. Experiments 
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   9.1.2 Decomposition  

   9.1.2.1 Component Decomposition 

   The design concept will be decomposed initially into four main 
components. These will be the spatial components, the floors, the 
skin and the structural framing (figure 9.2). Based on the design 
concept it is clear that there is a strong dependency between all 
four components and that all four are integrated within the design 
process. For example, if a spatial component changes its location, 
then the floors are affected and the skin is modified which also 
affects the structural frame. This dependency will have to be taken 
into account in the aspect decomposition.  Furthermore, both the 
skin and structure will be further decomposed in the subsequent 
level. The synthesis modules will have to generate these different 
components. 

 Figure 9.2: 

Component 
Decomposition 

 

 
 
 
 
 
 
 
 

   9.1.2.2 Aspect Decomposition  

   Based on the dependency between the different components in the 
initial developmental level, the aspects of interest in all four 
components will have to be identified simultaneously.  

 Figure 9.3: 

Aspect 
Decomposition 

 
   In the case of level one, the aspects will be first decomposed into 

spatial planning, environmental and structural aspects. Spatial 
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planning aspects will be further decomposed into adjacency, area, 
proportion, and real estate aspects. Environmental aspects will be 
decomposed into thermal and lighting aspects. Structural aspects 
will not be decomposed further (figure 9.3). These will represent the 
main aspects that we will analyze for. 
 

   9.1.2.3. Development Decomposition  

   Within development decomposition decisions have to be made on 
what will be included in a certain level and what will be left for 
subsequent levels. This will identify the expected deliverables of a 
certain level.  

Within our current experiment, the deliverables of level one will 
include a configuration of the spatial components, the floors, the 
skin and structural frame (figure 9.4). These configurations will have 
to be assessed for adjacency, area, proportion, real estate, thermal 
and lighting.  

 Figure 9.4: 

Development 
decomposition 

 
 
 
 
 
 
 
 
 
 

   9.1.2.4. Activity Decomposition  

   Based on the design concept and the mapping between components 
and aspects we noticed that structural frame only maps to the 
structural aspect. For the sake of simplifying the design task, and 
although the structural frame is dependent on the other 
components in its design process, the design team made a decision 
to decouple structure at this level (figure 9.5). 

This will generate two design cycles at this level. The first tries to 
solve the spatial planning aspects as well as the environmental 
aspects. The second should take the output of this cycle and 
generate the sizing of the structural system. This experiment will 
focus on the first cycle.  

This design cycle can be further decomposed into design activity 
modules. These design activity modules will include synthesis, 
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analysis, evaluation and optimization modules. Given a design 
vector, the synthesis modules will generate the spatial components, 
floor, and skin. The analysis modules will analyze for adjacency, area, 
proportions, real estate, thermal and lighting behaviors. The 
evaluation modules will aggregate the different behaviors of the 
different analysis modules into a general performance quantity. 
Finally, given the outputs of the evaluation modules, the 
optimization modules will search the design space and specify a new 
design vector. 

 Figure 9.5: 

Component and 
aspect 

decomposition 
mapping  

 

   9.1.3 Formulation 

   As opposed to the top down decomposition of the design concept 
into modules, the process of assembling and formulating the current 
MDDS design cycle is a bottom up approach (figure 9.6). 

As stated in decomposition, the synthesis modules, given a design 
vector, should generate the spatial components, floor and skin. This 
will be achieved by an assembly of three synthesis modules: the rule 
set module, the data structure module and the inference engine. 
These three modules will work together as a unit. This synthesis 
assembly receives the decoded design variables from the design 
vectors module in the optimization cluster and outputs a design 
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solution (phenotype) that can be analyzed.  

Within the analysis cluster, each of the six analysis modules receives 
relevant data from the synthesis assembly. Each module should then 
provide a measurement of the design performance for a certain 
aspect.  

 Figure9.6:  
 

The MDDS cycle on 
level one 

 

   The evaluation module controls the flow of data by making sure that 
those designs that do not comply with the constraints are not sent 
to the synthesis assembly to be further developed into a full design 
solution (phenotype). In fact, the data flow path between the 
synthesis assembly and the analysis cluster represents a bottleneck 
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within the cycle due to its computational burden. Therefore, it has to 
be managed efficiently. If the constraints fail there is no need for a 
phenotype to either be formulated or analyzed, since doing so would 
only waste computational resources.  However, if the constraints are 
not violated, the performance measurements generated by the 
different analysis modules are then aggregated into an objective 
function that acts as a figure of merit. The evaluation modules 
handle the multi-objective output generated by the different analysis 
modules. 

Due to fact that we are at an early stage of design, a GA heuristic 
algorithm was chosen as the optimization algorithm. The GA in the 
optimization assembly will evaluate the fitness of the design 
solutions in the population. Several solutions will be chosen based 
on their fitness and undergo genetic transformations to form a new 
population. The GA runs until satisfactory fitness levels are reached. 

   9.1.4 Modeling  

   9.1.4.1 Synthesis Modules  

   The synthesis assembly will mainly consist of three modules: the data 
structure module, the rule set module, and the inference engine 
module. In constructing the geometry of a design solution, a 
bottom-up approach is taken within the data structure module. 
Three main data structures are implemented: cells, spatial 
components and skin. The data structure module is organized 
hierarchically with feedback loops between the different data 
structures.  

   A cell represents the elementary unit of the space in which the 
spatial components are to be allocated. It is defined by a set of 
control and boundary points and construction lines. It has 
knowledge about its location and its neighboring cells. It also knows 
the status of its occupancy and by which component it is occupied. 
In this experiment we implemented eight cells. Each cell contains 
four control points with at least two shared with neighboring cells. 
There are a total of twenty-two control points. 

A spatial component grows in a cell, inheriting all its base geometry. 
It has a reference to the component object, which in this case is the 
spatial component spline Furthermore, when the skin is generated, 
the component knows which skin regions it is associated with. It also 
has a set of attributes that include perimeter and area of the spatial 
component, length of each segment of the component region, and 
the normal angles that define the orientation of each segment.  
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The skin is generated from the geometric configuration of 
components. The skin grows sequentially from supports that are 
generated from both the components and the cells they occupy. The 
data structure includes a reference to the skin’s object, which in this 
case is the skin profile spline. It also includes an attribute that 
defines the area enclosed by the skin. 

In regards to the rule set, our approach draws from shape grammars 
pioneered by Stiny and Gips (Stiny and Gips, 1972).  Although the 
spatial relations and dependencies can be coded directly in the 
grammar, the automation of general shape grammars is difficult due 
to the recurrent emergence of new shapes in the process. A class of 
shape grammars that is applicable to computer implementation is 
set grammars (Stiny 1982). Set grammars consider shapes as 
symbolic objects and therefore do not require difficult sub-shape 
matching procedures. This is the approach used here. The grammar 
implemented is based on three fundamental design-rule sets (figure 
9.7). These rules draw from knowledge built into the data structures 
and are organized hierarchically.  

The first set of design rules deals with the allocation of spatial 
components. There are six rules in this set. The second set of design 
rules deals with the deformation of the spatial components by 
altering the coordinates of the control-points that define the spatial 
components in both the x and y directions. There are two rules in 
this set, one for each coordinate. 

The wrapper skin poses considerable difficulty. Since the 
components configuration boundary is not a convex hull, the skin 
cannot be formulated using known algorithms for that class of 
problem. A possible approach to solve the problem would be by 
using a local optimization loop. However, this would create an extra 
layer of complexity that would be computationally exhaustive.  An 
alternative approach would be using a set of parametric rules that 
can generate the skin directly. This is the approach assumed here. 
These rules compose the third rule set.  

Each rule in the third rule set is applied locally to each cell and each 
component in a counterclockwise fashion generating the skin 
supports from which the skin grows. The skin starting and ending 
control points are based on the cell-underlying grid. There are 
nineteen rules in this set that can capture all the different generated 
configurations. Each rule divides the skin into regions. This partition 
of the skin is a useful representation for many of the analysis 
modules implemented, since it determines each component exposed 
regions in an additive piecewise manner. Each component region is 
in turn broken down into segments. Depending on the rule applied 
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the number of these segments range from one to four (figure 9.8).  

The synthesis grammar rule sets implemented here are fundamental 
operators that cannot be decomposed or recomposed. The rule sets 
contain all required rules and the aim of the generative mechanism is 
to find satisfactory sequences of these rules. 

 Figure 9.7: 
  

Three rule sets define 
the synthesis 

grammar. 
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 Figure 9.8:  

The sequence of 
application of the 

three rule sets. 
Starting with the first 

cell at time t =0 and 
ending with the last 

cell at time t =8. 

 The design vector that provides the inputs to the synthesis phase is 
divided into two types of variables, namely topological and 
geometrical. These topological and geometrical variables have 
generally been implemented separately in space planning problems. 
They are handled within the synthesis phase by the first and second 
rule sets respectively. The third rule set builds on the outcome of the 
first and second rule sets. 

The inference engine scheduler applies the rule sets sequentially in 
an orderly manner. The interpreter searches each rule set for the 
matching rules of the current state and fires them when appropriate. 
The rules of the third rule set are context sensitive and function like 
a simple two dimensional cellular automata that analyses each 
neighbor’s occupancy and decides which rule to apply. All three 
synthesis modules were implemented in the CATIA VBA 
environment.   
 
To summarize, the inputs to the synthesis modules are: 
a- Location of the spatial components which handles the topological 
variables 
b- Location of the control points in the system which handles the 
geometrical variables 
 
And the outputs are: 
a- Area of each spatial component  
b- Perimeter of each spatial component 
c- Length of each spatial component region 
d- Length of each segment composing a region 
e- Orientation of each segment composing a region 
f- Total area enclosed by skin 
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   9.1.4.2 Analysis Modules 

   In the proposed experiment, the design concept will be broken 
down into multiple single-disciplinary analysis modules in order to 
evaluate how well it performs from the point of view of each 
discipline separately. These modules include: an adjacency module, 
an area module, a real estate module, a proportion module, a 
thermal module and a lighting module (Figure 9.9). 

 Figure 9.9: 

The analysis phase 
includes six analysis 

modules. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Since we are working at the design concept stage, the level of detail 
of the overall design constitutes a simplification of reality. Any 
rigorous analysis may go beyond the scope and the precision of the 
overall design description. Therefore, the models we will use for the 
different discipline modules will be based on heuristics or simplified 
representations to test the feasibility of design solutions. The 
modules are implemented in VB Scripts or Excel and built in VBA 
Scripts. 
 

   Adjacency Module 

   A functional rationale determines the adjacency requirements that 
the spatial components have to comply with. These requirements 
are treated and quantified as a set of “bond forces” that tie together 
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all components pair-wise. In the adjacency module, the actual 
design–in terms of the location of the spatial components–is 
examined and rated against these requirements. 

An example of a set of adjacency requirements is given in table 9.1 (a 
higher adjacency attraction corresponds to a higher number). 
 
 

 Table 9.1:  
 

Adjacency 
requirements. 

 

 

 

 

 

 

 SC
-0

1 

SC
-0

2 

SC
-0

3 

SC
-0

4 

SC
-0

5 

SC-01   0 2 1 0 
SC-02 0   0 1 1 
SC-03 2 0   0 0 
SC-04 1 1 0   1 
SC-05 0 1 0 1   

   Given a spatial component A, the module considers its “neighbours” 
and checks whether any of those is associated to A in the adjacency 
table, and how strong the intensity of the bond is. That figure is then 
multiplied by a geometric coefficient that quantifies how “close” the 
neighbours are, according to table 9.1. 

   As the above figure shows, this filter strongly amplifies the score of 
the N-S neighbourhood relationship; E-W adjacency comes second 
since it involves the crossing of the circulation spine, being amplified 
by a factor two, then at last any diagonal relationships are 
considered. Any more distant  are not considered. In symbolic terms, 
the rating for one component is given by: 

   ∑
=

=
N

j
ijijiadja gaJ

1
, , 

where 

 aij is the element in the ith row and jth column of the 
adjacency matrix (Table 9.1), and 

gij represents the geometric coefficient given in figure 9.10, 
when component i lies at the centre of the diagram and 
component j. 

The total output is given by: 

 pena

N

i
iadjaadja JJJ += ∑

=1
,  
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Where 

Jadja,i are the output from each component and 

Jpena is a penalty that applies if the entrance is not on the 
West side of the building (were the street is supposed to be). 

 

 Figure 9.10: 
 

Adjacency score 
amplifying factors g.  

N 

 

 

 

 

S 

 

 1 3 1  
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 1 3 1  

   Area Module 

The area module compares the areas of the spatial components 
generated by the synthesis phase with the areas prescribed by the 
architectural area program. It favours solutions with a high 
compliance with the program and flags solutions that show a worse 
compliance. 

For each spatial component, the following function is calculated: 

 
ireq

act

act

req
iarea A

A
A
A

J
,

, ,min 









=  

)1;0(, ∈iareaJ  

Where: 

Areq is the area of the ith spatial component, as specified by 
the program, and 

Aact is the value corresponding to the actual design. 

The values from all spatial components are then averaged to obtain 
an overall value: 
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 ∑
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=
N

i
iareaarea J

N
J

1
,

1  

Jarea lies in the range (0,1); an optimal design corresponds to an 
output of 1, whereas lower values flag solutions that show a worse 
compliance with the program. 

Real estate Module 

This module compares the floor plan’s net area to its gross area. It 
aims at minimizing the space between the spatial components. 
These are areas that are allocated to circulation, but have a lower 
real estate value.  

The circulation area is calculated as: 

 ∑
=

−=
N

i
itotcirc AAA

1  
Where 

Atot is the total floor area enclosed within the skin boundary, 
and 

Ai is the area of the ith spatial component. 

The scalar: 

 







−=

tot

circ
circ A

A
J 1  

is output to the performance module; it ranges in the interval (0;1), 
the higher values corresponding to a more favourable design. 

 
   Proportion Module 

   The shape of the spatial components is determined by the location 
of the control points. A spatial component may have a multitude of 
possible shapes due to the location of the control points. This 
module aims at promoting more skewed or slanted shapes that 
produce aesthetically more appealing layouts, while keeping 
elongation and distortions within acceptable limits. This module 
filters any regular or fairly irregular shapes and discourages highly 
irregular forms. 

The proportions module was designed to quantify and rate this 
aspect of the design. The ratio: 
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24

p
Ae π=  

was elected as the numerical benchmark for proportion. In fact, for 
all closed curves, the Isoperimetric Inequality states that 1≤e , the 
equality exclusively holding for the circle. Lower values of e 
correspond to more slanted or oblong curves. As such, the output 
function of the module was built to filter with a higher rating any 
regular or fairly irregular shapes and to discourage highly irregular 
forms, according to the following law: 

 

α

















=

0
, ,1min

e
eJ iprop  

where e0 and α are shape parameters that control the width of the 
plateau and the slope of the descending branch, respectively. The 
average of the above output functions, as there is one per spatial 
component, is sent to the performance module: 

  ∑
=

=
N

i
ipropprop J

N
J

1
,

1

 

   Thermal Module 

   Assuming that we are building in a cold climate, it is important to 
provide a design that minimizes thermal losses and favoured solar 
gain. A simple thermal module was devised to measure the energy 
balance. A few simple assumptions were adopted, due to the 
minimalism of the design model. Yet these simple assumptions 
proved capable of capturing the fundamental relationship between 
the shape of a building and its environmental performance.  

The assumptions that were used in the module include:  

○ The heat exchange is duo-dimensional or, equivalently, the 
material properties of the cladding materials do not vary along 
the floor height. 

○ Heat exchange solely takes place in the exposed regions of the 
spatial components’ perimeter, as these are possible 
fenestration locations. This crude but reasonable assumption 
neglects the energy dispersed through the walls, as this is usually 
considerably smaller than the heat flow lost through the 
windows panels. 
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○ Solar gain depends on the local orientation of the façade, being 
maximum on the South side and negligible on the North side. Its 
maximum relative intensity–with respect to the conductive and 
convective mechanism–is a design parameter, and can be varied 
according to the intended location of the house. 

According to these assumptions, a simple algorithm computes the 
heat exchange balance: 

 ( )∑
=

=
R

j
jqj kLQ

1
,  

where 

R is the number of exposed regions, 

Lj is the length of the jth exposed region and 

kq,j is a parameter that defines the normalized heat loss per unit 
length of the region. kq,j depends on the average orientation of the 
region and includes both conduction and convection and solar gain. 
The relative importance of these two mechanisms is determined by a 
parameter and can hence be adapted to the geographical, climatic 
and technological conditions. kq varies as shown in Figure 9.11. 

 Figure 9.11:  

Variation of kq (and 
kL) with orientation. 

 

 

 

 
   The total heat loss Q is then normalized with respect to a 

characteristic length of the building, obtained as the square root of 
the total floor area: 

 Q
A

Q
tot

1
=  
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   The most advantageous design in terms of heat loss would generate 
a minimum normalized loss Q = 0 (no heat loss). Higher scores 
correspond to solutions with a worse balance. The final module 
output Jther is a transform of Q  according to a monotonic function:  

 ( )QJJ therther =  

Note that Jther needs to be maximized, and its optimum value 
corresponds to 1. Its graph is shown in Figure 9.12. 

 Figure 9.12: 

 The function Jther(q). 

 

 

 

 

 

 

   Lighting Module 

   The day lighting performance is assessed by adopting a simple 
geometric model. The module measures, for each exposed region in 
a spatial component, the fraction of the area that is exposed to 
sunlight and multiplies it by a coefficient that depends on 
orientation. A number of physical simplifications were also adopted.  

 jLjlitjlit kAA ,,mod,, =  

For each region, the illuminated fraction Alit,i of the total component 
area is the area of the curvilinear figure bounded by the exposed 
region, its offset at a distance d toward the centre of the 
component. The coefficients kL,i depend on the average orientation 
of the region, according to figure 10. 

The variation of kL against orientation is given by a sinusoidal law 
whose maximum (kL = 1) corresponds to the South and its minimum 
(kL = kL,min) to the North: 

 [ ]1;min,LL kk ∈   [*] 

kL,min is a parameter that can be modified according to the location of 
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the building and varies with orientation. The total value is then 
calculated: 

∑
=

=
R

j
ilitlit AA

1
mod,,mod,  [**] 

Note that if ke,j = 1  j  then Alit,mod would physically represent the total 
illuminated area. Otherwise, the ke coefficients act as a filter and 
decrease the scores of the regions that do not face South. Alit,mod is 
then divided by the total physical floor area to obtain the output Jlite: 

 
tot

lit
lite A

A
J mod,=  [***] 

It follows from [*], [**] and [***] that 0 [ Jlite < 1, unity corresponding 
to an optimum performance. 

   Constraints Modules 

   There are two main constraint modules implemented. The first is a 
topological constraint module; and the second is a geometric 
constraint module. Both modules act on the design vectors and not 
on the design solution generated from the synthesis phase.  

In the topological constraints module the spatial components are 
tested against the adjacency requirements specified by the designer. 
Two components may have a strong bond, a weak bond or no bond 
at all. The solution generated by the synthesis assembly may or may 
not comply with the requirements, and, in particular, some of the 
strong-bond relationships may not be obeyed. The topological 
constraints ensure that the number of violated strong-bond 
relationships does not exceed a pre-set threshold. 

Although the design vector module implemented in the optimization 
phase constrains implicitly the coordinates of the control points to lie 
in a predefined order within the row or column they belong to, this 
condition is not sufficient to keep the deformation of the grid within 
acceptable limits. The geometric module handles the deformations 
and prevents any excessive distortion of the grid that might create 
non-convex spatial components. 

In addition to the constraints modules, a constants and data storage 
module was also implemented. This module contains all the 
constants and parameters used by the different modules such as 
location, climate, and area program among others.   
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In order to avoid any excessive distortion of the grid, each control 
point must lie within a specific region, delimited by the red lines in 
figure 9.13.  Each red line is obtained by offsetting the corresponding 
gray line by an amount d. 

 Figure 9.13: 

Graphical 
representation of the 

geometric 
constraints. 

 

 

 

 

 

 

 

 

   These constraints prevent each quadrilateral region from assuming a 
non-convex, hourglass-like shape, resulting in computational 
problems and in an unacceptable design. This kind of constraint is 
defined by the following equations (in the case of quadrant NE): 

 
( ) ( )22

1
1
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d

uv
uv
uv

−+−
>  

Where: 

uc, vc are the coordinate of the point subject to the 
constraint; 

uE, uN, and vE, vN are the coordinate of the adjacent points, 
respectively to the East and North of point C. 

   9.1.4.3 Evaluation Modules 

   There are three evaluation modules implemented. The first is a flow 
control module that evaluates if the design vector violates the 
constraint modules in the analysis cluster. It acts as a switch directing 
the data flow to either of the other two evaluation modules. The 
other two modules are the feasible design and infeasible design 
modules. The flow control module triggers the infeasible design 
evaluation module if the constraints are severely violated. If the 
constraints are not violated, the flow control module triggers the 
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feasible design evaluation module.  

Although the constraints are handled by the optimization modules, 
the flow control module is important from a design-process 
management point of view. If the design vector is infeasible the flow 
control module would bypass the synthesis and analysis modules 
saving extensive computational time.   

The infeasible design module simply signals the violation to the 
optimization modules and ranks the design solution in proportion to 
the number of violated constraints. 

The feasible design evaluation module on the other hand triggers the 
synthesis and analysis modules. All the ratings (Jarea, Jcirc, etc.) of the 
disciplinary performances that originate from the analysis modules 
converge into the feasible design evaluation module, where they are 
aggregated to generate an overall evaluation of the design, 
according to the standard scalarization approach. 

The final multi-disciplinary performance J is the weighted average of 
the normalized output from the various modules: 

 

∑
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where 

M = 6 is the total number of analysis modules; 

Xm is the normalized output from the mth analysis module, 
and wm denotes the corresponding weight. In particular, Xm is 
obtained by normalizing the actual output of the mth module 
Jm according to: 

min,max,

min,

mm

mm
m JJ

JJ
X

−

−
=  

By adopting scalarization, it becomes straightforward and 
convenient to explore the influence of one or more disciplines on the 
overall design by amplifying the corresponding weights wm. 
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   9.1.4.4 Optimization Modules 

   The optimization modules consist of two groups of modules. The 
first contains the optimization algorithm, and the second is a 
converter module which converts the outputs of the optimization 
algorithm into data which the synthesis modules can understand. 

The design concept clearly entails a multi-performance space-
planning problem. Space-planning problems have been studied by 
many researchers (Buffa et al, 1964). They are considered one of the 
most interesting and difficult of formal design problems 

The NP-Completeness of the space-planning problem makes it 
impossible for any process to guarantee finding the optimal solution 
within a reasonable time. There are no known algorithms for this 
problem. Its difficulty arises from its complex nonlinear nature and 
from the combinatorial character of generated solutions (Jo 
and Gero, 1998). 

During the synthesis phase a large number of possible solutions can 
be generated even with a small number of space components. The 
number of solutions grows exponentially as the number of space 
components increases. During the analysis phase, the multiple 
performance and objective requirements involve expensive 
computations due to the very large number of solutions to be 
analyzed. 

   Design Vectors Modules 

   The design vector contains the design variables. It guides the design 
solutions by informing the synthesis modules, like the DNA of an 
organism. These design variables are produced by the optimizing 
algorithm, which “learns” from the performance history of the 
previous generations and tries to find values for the variable that 
increase its collective performance. Two major categories of design 
variables have been considered in our experiment and are 
implemented in two different modules these are: the topological 
variables module and the geometric variables module.  

The topological variables module defines the cell location of each 
spatial component. Instead of creating constraints that prohibit the 
allocation of two different spatial components in the same cell, this 
check is performed implicitly within this module. This guarantees 
that no two spatial components are placed in the same cell.  

The geometric variables module on the other hand guarantees that 
the control points in a row or a column remain distributed in an 
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organized manner, in order to minimize singularities while 
generating the cells. 

   Genetic Algorithm Module 

   The optimization algorithm to be implemented has to maximize the 
multi-disciplinary performance J formulated in the evaluation 
module. Due to the nature of the design space, the search algorithm 
implemented should not be limited by restrictions of continuity or 
existence of derivatives. Therefore, a heuristic search algorithm was 
considered to be suitable for this case. A Genetic Algorithm (GA) was 
implemented.  

Genetic algorithms are modeled after natural evolution, which is able 
to create a large set of creatures that are suited for their 
environments. The GA’s representation is done at two levels, namely 
the genotype level and the phenotype level.  

The genotype is the implicit representation of an individual design 
solution. It consists of a sequence of coded instructions analogous to 
DNA in natural evolution. In our experiment these instructions are of 
two types: topological instructions for allocating spatial 
components, and geometric instructions for modifying control points 
that affect the cells. All the genetic transformations including 
crossover and mutation happen at the genotype level.  

On the other hand, the phenotype is the interpretation of genotype 
at the physical level. It is the external perceptible representation of 
the genotype. The behaviors of a design solution can be observed at 
this level. Therefore, the analysis task is performed to design 
solutions at this level.  

The evolution starts from a population of randomly generated design 
solutions, in addition to a few seeded acceptable design solutions to 
guide the evolution. (A successive seeding methodology was 
implemented; three seeding phases were applied throughout the 
evolution). Evolution happens in generations. For each generation, 
the fitness of every design solution in the population is evaluated. 
Based on the fitness the selection operator shortlists the individuals 
that will survive and breed to form the future generations. In our 
experiment this fitness is represented by the multi-disciplinary 
performance J formulated in the evaluation module. 

Constraints are implemented through the use of penalty functions. If 
a solution does not comply with the constraints in the system a 
penalty is added to the fitness of the design solution according to 
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the degree of violation. 

Due to the existence of multi-objectives, the aim is not to produce a 
global optimum solution, but rather to direct the evolutionary 
process to produce populations of good solutions. These solutions 
would be used to study the tradeoffs between the different 
objectives. 

   Topological Design Vector (DV01) 

   For this experiment we have five spatial components and eight 
potential cell locations.  DV01 has the following form: 

      { }5,01...2,011,0101 dvdvdvDV =  

Every element is a real numbers in the range [0,1], and corresponds 
to a spatial component. An algorithm turns the scalars into actual 
locations of the spatial components and stores them in the location 
vector LV: 

 LV = {lv,i} i = 1-8 

lv,i can either be null (if the ith location is empty) or hold the name of 
a spatial component. As such, this algorithm decodes the cryptic 
information contained in the design vector DV01 (the genome of the 
design) into a tangible design configuration (the location vector). 

   Geometric Design Vector (DV02) 

   DV02 contains all the information that generates the geometry of the 
design in terms of the positions of the Control Points. DV02 has the 
following form: 

   { }58,02...2,021,0202 dvdvdvDV =  

All variables dv02,i are in the range [0,1]. The coordinates of the 
control points, summarized in the array CP (22 x 2), are computed 
from the design variable according to a set of algebraic relationships. 

As an example, the following equations determine the x-coordinates 
of control points 3, 4 and 5: 

CP(3,1) = CP03,Xcoord = dv02_04/sum(dv02_04 + dv02_05 + 
dv02_06 + dv02_07) 

CP(4,1) = CP04,Xcoord = dv02_04 + dv02_05/sum(dv02_04 + 
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dv02_05 + dv02_06 + dv02_07) 

CP(5,1) = CP05,Xcoord = dv02_04 + dv02_05 + 
dv02_06/sum(dv02_04 + dv02_05 + dv02_06 + dv02_07) 

Similarly, all other control points are defined. It is important to note 
that, although the application that transforms DV02 into the array CP 
is not injective, it is surjective, therefore the design (phenotype) 
associated to a design vector (genotype) is uniquely defined. 

   Genetic Algorithm Module 

   The GA’s parameters used in the experiment were: 

Population Size: 24 
Maximum Generations: 600 
Selection Scheme: Multiple elitist 
Preserved Designs: 8 
Operator Probabilities 
    Discrete Variable Crossover: 1.0 
    Discrete Variable Mutation: 0.15 
Constraint Tolerance 
    Maximum Constraint Margin: 0.05 
    Percent Penalty: 0.5 
Number of Top Designs Stored: 12 
Random Number Seed: 4335 
 

   9.1.5 Integration & Exploration  

  

 

 

 

 

 

 

 

 

 

 When all the modules discussed earlier have been built and their 
validity verified, the data flow model of the design system is 
implemented and the modules are integrated. For the integration 
ModelCenter from Phoenix Integration was used. As discussed 
earlier in the integration chapter, ModelCenter encapsulates the 
different programs using wrappers that provide interfaces that 
facilitate the integration (figure 9.14). The integration of the different 
design modules produces a powerful design system that acts as a 
holistic, structured functional unit, capable of searching the design 
space for valuable solutions. 

The MDDS demonstrated promising results (figure 9.15). It managed 
to generate interesting solutions to our multi-performance space-
planning problem. It managed to improve the overall performance of 
the design solutions beyond our initial seeded solutions. The design 
solutions in the final populations tended to be compact in their 
shape. This implies that the design drivers were mostly the adjacency 
and real estate modules, which were highly weighted in our objective 
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Figure 9.14: 

MDDS Module 
Integration 

function.   As had been expected, both the lighting and thermal 
modules were in clear conflict with each other. Since they were both 
given identical weights, they tended to balance out each other. The 
program and proportion modules did not seem to have an obvious 
effect on the design solutions. 
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 Figure 9.15: 
  

The evolution of 
solutions. Solutions 

in the final runs tend 
to be more compact 

in their shape. 
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   9.2 Experiment 1 | Level 2 

   9.2.1 Design Concept 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This experiment builds on the output of the previous higher level 
experiment where the spatial components, floor and building skin 
were established. This section attempts to present MDDS evolving 
from the first level into a lower level with more detail. At this level 
the MDDS will include a new design cycle that will be used to design 
a building skin. 

The design of a building skin is a complex process that involves many 
disciplines and competencies. The skin is a crucial, active part of the 
building, because it constitutes its interface with the exterior. It is 
meant to block or allow the flow of matter, such as rain, people, and 
energy, in the form of light, heat (or cold) and radiation, following a 
number of functional criteria. In addition, the skin is the “face” and 
the “business card” of a building toward the exterior, and must 
therefore comply with aesthetic requirements and formal 
equilibrium (or dis-equilibrium). 

Therefore, it is evident that the very nature of skin design for 
buildings is a multidisciplinary one. The skin must meet numerous 
architectural and technical requirements, such as transparency, 
sufficient light intake, minimal thermal loss, structural safety, and 
limited cost of building materials. 

The skin in this experiment will be composed of hexagonal cells 
organized in a “beehive” pattern. Each cell can either host a window 
or a cladding panel (figure 9.16). It is supported by a two 
dimensional, non-planar truss of steel pipes, connecting at the nodes 
in welded joints. 

The topology of the “beehive” does not change during the design 
process, i.e. no new cells can be generated and no cells can 
disappear, but distances between nodes can vary, and, 
consequently, the areas of the cells are variable, as well as the 
lengths of the connecting segments and the amplitude of the 
angles. The geometry of the grid is described by the spatial 
coordinates of the nodes.  

The nodes are allowed to move on the surface of the façade, 
generating cells with very different areas and geometry, depending 
on the requirements and on the constraints. During the design 
process, the nodes move, driven by the “need” for optimum 
performance: more light in the interior, less energy loss, increased 
structural efficiency, architectural preference, etc. Each cell is also 
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Figure 9.16: 
  

CAD models of the 
design concept 

characterized by a material variable, which can assume three states: 
transparent – corresponding to glass –, semi-transparent (shaded 
glass) and opaque (cladding panel). 

During the design process, the need for more light in the interior and 
for a lower heat loss through the skin forces the cells to turn 
transparent or opaque. The goal of the design process is to 
determine the spatial form of the façade and the material that each 
cell will be made of. 

A MDDS was developed, capable of optimizing the design of the skin 
on the basis of a lighting analysis of the interior, a thermal analysis of 
the cooling loads corresponding to the skin configuration, and a 
finite elements analysis of the supporting structure. The system also 
considers the architectural need for transparency in the façade due 
to view requirements of the occupants, and the cost of cladding 
materials. 

The system was developed in three phases/experiments, with more 
complexity and variation being added to every new experiment. 
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   9.2.2 Decomposition  

   9.2.2.1 Component Decomposition  

   In this experiment the focus will be on the skin component. Based 
on the design concept the skin is comprised of several skin 
components. As mentioned earlier in the previous higher-level 
experiment, each spatial component has one or more regions that 
define its interface with the outside environment. Each region is 
represented with a skin component. Each skin component is 
composed of two subcomponents. These are an exoskeleton grid 
and a number of skin panels (figure 9.17). There is a dependency 
between both components. If the exoskeleton changes size, the 
panels also change their size. This will have to be taken into account 
in the aspect decomposition.  

 Figure 9.17: 
 

Component 
decomposition 

 
   9.2.2.2 Aspect Decomposition  

   Based on the dependency between the subcomponents of the skin 
component it will have to be treated as one entity in the aspect 
decomposition. Therefore, the skin component will be decomposed 
into five aspects. These are architecture (view requirements), 
lighting, thermal, structure, and economy (figure 9.18). 

 Figure 9.18: 
 

Aspect 
decomposition 
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   9.2.2.3 Development Decomposition  

   In this second level of the MDDS, the deliverables will be skin 
component configuration and structural member sizing. These two 
deliverables are decoupled in the proposed design and therefore 
can be implemented in parallel. The focus in this experiment will only 
be on the skin component (figure 9.19). 

 Figure 9.19: 
 

Development 
decomposition 

 

 

 

 

 

 

 

   9.2.2.4 Activity Decomposition  

   Based on the design concept and the mapping between 
components and aspects we notice that both are fully integrated 
and coupled (figure 9.20). Therefore, one MDDS cycle will be 
implemented. It will be expected to determine the spatial form of 
the façade and the material that each cell will be made of on the 
basis of a lighting analysis of the interior, a thermal analysis of the 
cooling loads corresponding to the skin configuration, and of a finite 
elements analysis of the supporting structure. The system also 
should consider the architectural need for transparency in the 
façade due to view requirements of the occupants, and the cost of 
cladding materials (figure 9.21). 

 Figure 9.20: 
 

Component and 
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decomposition 
mapping 
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 Figure 9.21: 
 

Design cycle one and 
its design activities 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   9.2.3 Formulation 

   A N2 Diagram of the design activity modules was developed, 
following a disciplinary breakdown (Figure 9.22). The architecture of 
the cycle was grouped into four clusters, namely synthesis, analysis, 
evaluation and optimization (Figure 9.23). 

The synthesis assembly includes geometry and material modules.  
The analysis cluster includes the five analysis modules (lighting, 
thermal, architecture, structures and economy). The evaluation 
assembly includes modules for the assessment of the overall 
performance. Finally, the optimization assembly includes the 
optimization algorithms. All the assemblies are described in the 
following paragraphs.  
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 Figure 9.22: 

 Structure of the N² 
Diagram 

 

 Figure 9.23: 

 The MDDS cycle on 
level two 
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   9.2.4 Modeling  

   9.2.4.1 Synthesis  

   The portion that this study focuses upon is a rectangular surface 5 m 
wide and 3 m high of our building skin.  This portion of the skin is for 
a building located in Boston, MA, U.S.A. – latitude 42° N, and is 
oriented towards the South. The Skin represents the interface of a 
spatial component 6 m deep. The maximum out/inward deflection of 
the skin was kept at 0.5 m. 

   Design Vector 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The design vector is composed of two main groups of design 
variables: the geometric and the material variables.  

The geometry of the façade is completely described by its nodes. 
There are 98 or 242 nodes, depending on the experiment, their 
positions being defined by three Cartesian coordinates (X, Y, and Z) 
in space, and by “deformed” coordinates on the skin (u, v) and in 
the perpendicular direction (w). 

Due to the constraints on the displacement of the nodes, the 
Jacobian of the transformation between the two sets of coordinates 
(X, Y) and (u, v) is always nonzero, i.e. the transformation is non-
singular. 

Given the computational complexity, only a subset of the nodes was 
chosen to describe the geometry of the skin. These points are called 
control points (Figure 9.24). The displacement of each point on the 
grid is uniquely defined by the position of the control points.  

There are 32 Control Points, 16 interior Control Points (four rows and 
four columns), plus another 16 on the borders.  The geometry is 
therefore fully described by 48 design variables (2 coordinates [u, v] 
per control point plus 1 coordinate per CP on the border). 

The Geometry module, developed in CATIA™ of Dasault Systems, is 
responsible for the construction of the skin geometry. 

The coordinates of the control points are passed to CATIA, which 
then calculates the positions of all nodes via parametric synthesis 
model. It also produces the measures of the cells’ areas and all other 
geometric, parametrically-defined properties of the façade. 

In addition, CATIA parametrically generates all the structural and 
non-structural façade components, such as the shading devices, the 



 

    The Multi-Disciplinary Design System         337 

Experiments 

 

 

 

Figure 9.24: 

The distribution of 
materials and 

control Points on the 
Skin 

steel pipes, the joints, etc., and renders the design. 

The second set of design Variables consists of the cell materials. 
Each cell can be made of glass, shaded glass, or opaque cladding. 
These materials correspond to three degrees of transparency. The 
degree of transparency of a cell determines its permeability to light 
and to heat. 

The distribution of materials on the skin is therefore described by 
100 discrete variables, which can assume 3 states each (Figure 9.24).  
As a consequence, the design is controlled by a total of 132 variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Constraints  

   There are several types of constraints that were built within the 
model.   

Firstly, each control point must lie in a specific region, delimited by 
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red lines in figure 9.25. Each red line is obtained by offsetting the 
corresponding gray line by an amount d. These constraints prevent 
each quadrilateral region from assuming a non-convex shape, a fact 
that would create computational problems and would result in 
unaesthetic design. 

 Figure 9.25: 

Graphical 
representation of the 

geometric 
constraints 

 

 

 

 

 

 

 

 

   This kind of constraint is defined by the following equations (in the 
case of quadrant NE): 
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where: 

uc, vc  are the coordinates of the point subject to the 
constraint 
uE,N, and vE,N  are the coordinate of the adjacent points that lies 

respectively to the East and North of point C 
 
Thus, there are 64 constraints of the first type (geometric 
constraints), considering the control points on the borders. Each of 
these constraints only applies to the correspondent geometric 
design variable. 

Secondly, a constraint on the overall illuminance sets Ei70 > 300 lux, 
providing a lower bound for the amount of light measured at 70% of 
the room depth. Note that this illuminance constraint affects all the 
design variables with different sensitivity. 
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   9.2.4.2 Analysis 

   A brief description of the analysis modules is provided in the 
following paragraphs. 

   Lighting Module 

   This module calculates the actual illuminance at 70% of the room 
depth, using the IESNA method, and based on four reference dates 
of the year.  

The Coefficient of Utilization is used to implement an approximation 
function for better performance (maximum error ±10%): 

CUk = (0.362∙RW3 - 5.98∙RW2 + 33.1∙RW + 0.0253) ∙ 0.0107∙RR - 1.49 
CUg =  (0.26∙RW3 - 4.1∙RW2 + 21∙RW + 1.55) ∙ 0.0093∙w_RR - 1.28 
 
With: 

RR =  
heightwindow

depthroom
_

_  

RW = 
heightwindow
widthwindow

_
_  

CUk,g Coefficients of Utilization for lighting calculation (sky, 
ground) 

The illuminance for each single cell is calculated as follows: 

Ei70 = (CUk ∙ Exvk + CUg ∙ Exgk ) ∙ τ 

where:  

Ei70  Illuminance indoor at 70% of the room depth [lux] 
Exvk, Exgk Illuminance outdoor (vertical, ground) [lux] 
τ  Light transmittance of the glazing [%] 
 
The overall illuminance (Ei70) is obtained as the sum of  all the single 
cells results.  

   Thermal Module 

   This module calculates the energy consumption due to heating and 
cooling. It considers thermal transmission as well as radiation. 

The energy flows are calculated as follows: 
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QH = ∑ (Ui Ai) ∙ DDH 

QC = ∑(Ui Ai) ∙ DDC + SHG ∙ SHGF ∙ Atr 

and finally: 

Qtot = QH + QC 

where: 

QH,C  kWh/m2y Energy required for heating / cooling 
Utr,op  W/m2K  Coeff. for heat transmission (transp / 
opaque) 
Atr,op  m2  Area (transparent / opaque) 
DDH,C d°C  Degree days for heating and cooling 
SHG W/m2y  Solar heat gain per one summer 
SHGF %                Portion passing through glazing  
Qtot kWh/y/m2 Total energy consumption 
 

   Architecture Module 

   This module ensures that the density of transparent cells increases 
toward the center of the façade, for the occupants to have a view to 
the exterior. In addition it also tends to increase the sizes of the cells 
toward the center of the façade. 

The zone of preference for transparency is defined by a preference 
matrix, with as many elements as cells, whose values are higher 
where more transparency is needed. 

Multiplying this preference matrix by the actual transparency 
distribution on the façade, and summing up the terms, provides the 
rating for architecture. 

∑
=

⋅=
cells

i
iiarch ZmatDVJ

#

1
)(   

where: 

DV(mat)i is the degree of transparency of cell i (1, 2, or 3), and 
Zi is the desired zoning preference for that cell. 
 
A similar rating function is also used to increase cell sizes towards 
the center.  
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   Structure Module 

   The structural module assesses the physical efficiency of the design. 

A static solution is then calculated and, based on the ratio 
stress/capacity in the members, an overall rating is returned. The 
module calculates the stresses in the members and returns to the 
optimizer a rating function, which “grades” the input geometric 
pattern from a structural point of view. 

In analytical terms, the rating function has the following form: 

2

1

max,11 ∑
=














−−=

N

i y

i

f
Rf

σ
 

where: 

σmax,I    is the maximum stress (absolute value) in member i [MPa] 
N          is the number of elements 
fy          is the yield stress of steel [MPa] 
 

   Economy Module 

   The economy module calculates the cost of glass and cladding 
materials associated with the design vector. The module considers 
first material costs and second costs per piece: 

∑∑
==

⋅+⋅=
3

1
,

3

1
,

i
iin

i
iiA ncAcC   

where: 

cA,i  is the cost of material i per unit area 
Ai  is the area covered with material i 
cn,i  is the cost of installation of material i per cell 
ni  is the number of cells with material i 

This module provides a simple approximation of the manufacturing 
and installation costs. 
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   9.2.4.3 Evaluation  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Two different approaches were implemented within the different 
experiments to asses and evaluate the multi objectives within the 
objective function. Initially a weighted sum approach was used, and 
later a utility functions approach was adopted. 

The weighted sum approach was chosen for combining the distinct 
quantities. Disparities certainly exist between the magnitudes of 
each quantity. However, foreseeing the problem, these quantities 
were normalized based on reference values. These reference values 
represent the achievable maximum in the optimization considering 
only one objective at a time. 

The objective function J for the weighted sum approach has the 
following form (note that it was used for the first experiment, and 
therefore only contains terms related to thermal, architecture and 
lighting): 
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where: 

r1, r2, r3 are reference values used to scale down the output of 
the computational modules, and 

w1, w2, w3  are rating coefficients that “weight” the importance of 
each single objective function. 

 
This objective function attempts to reflect some of  the trade-offs 
between sufficient natural lighting in a room, the energy balance 
due to cooling/heating of the façade, and the architectural intent to 
have windows in view height.  

Later, in the attempt to develop a more rigorous objective function, 
a utility approach was adopted. Because of the multi-objective 
nature of the skin design, each of the modules will have its own 
single objective (total illuminance, energy required for heating and 
cooling, etc…). Each single objective Ji is then transformed by a 
utility function Ui, that assigns a low score to an undesirable value of 
Ji and a high score to a desirable one (0 ≤ Ui ≤ 1). 

The utility functions are scaled in such a way that an excellent 
performance is rated more than 90%, while an unacceptable 
performance has a rating less than 10%  (figure 9.26). The latter is 
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Figure 9.26: 
 

Structure of the 
utility functions 

also considered as a minimum performance determining the 
feasibility of a design (Figure 9.26). 

 

 

 

   The application of utility functions was believed to be necessary 
because for some objectives a “the more the better” or “the less the 
better” approach is not applicable. For instance, an illuminance 
between 300 and 450 lux for lighting is desirable, but to increase the 
illuminance does not improve the usability. In contrast, it causes 
problems of glare in areas close to the windows. An overall objective 
function U takes into account all the multi-objective particular 
utilities Ui. The U function has the following form: 
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Where w1, w2, w3, w4, w5 are weighting coefficients that depend on 
the importance of each single objective function. 

This overall utility function reflects the trade-off between sufficient 
natural lighting in a room, the energy balance due to cooling/heating 
of the façade, the intent to have windows in view height, the 
requirement for structural safety, and limited cost. 

   9.2.4.4 Optimization  

   Within the different experiments, two optimization approaches were 
used: a gradient based and a heuristic algorithm search. In 
Experiment#1, the results of these two different optimization 
techniques were assessed and compared. In the rest of the 
experiments, only the heuristic methods were implemented.  

Gradient Based Optimization 

The Gradient based algorithm selected for the optimization was 
Sequential Quadratic Programming (SQP). It is a widely used method 
in most engineering applications (like non-linear optimization), and it 
is considered to be a robust gradient-based algorithm. It is especially 
reliable because of its strong theoretical basis.  The optimization was 
performed using ModelCenter 6.1.1™, from Phoenix Integration 
Software. 

Heuristic Algorithm Optimization 

The Heuristic method used in the experiments was a Genetic 
Algorithm (GA). GA’s are heuristic algorithms that utilize 
processes analogous to natural selection to search for the best 
designs. They were chosen because they are ideally suited for design 
problems with discrete design variables. Because they do not require 
objective or constraint derivative information, they are able 
to effectively search non-linear and noisy design spaces. The 
optimization was performed using the Darwin Plug-In of Model 
Center 6.1.1™, from Phoenix Integration Software. 

   9.2.5 Integration  

  

 

 Model Center 6.1.1 was used to build the system architecture (figure 
9.27), by integrating the modules, following the overall conception 
of the four design activities phases (synthesis, analysis, evaluation 
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Figure 9.27: 
 

Integration between 
different software 

and optimization).  

The geometry module was built using CATIA™ of Dasault Systems. 
The lighting, thermal, architecture, and economy modules were 
developed within Microsoft Excel™ XP. ANSYS™ 10.0, from Ansys, 
Inc., was used to construct and execute the structural analysis.  

To assess the results of the optimization, a few visualization tools 
were developed. For experiment #1, a material visualization tool was 
programmed in Excel. To display the evolution of the optimization 
results. For experiments #2 and #3 another tool was developed in 
order to visualize the geometry of the optimization solutions; the 
best solutions generated were also recorded. A common interface 
was developed, linking and showing the current design, its geometry 
and materials, and the time-history of the objective function, in one 
common interface (Figure 9.28). 
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 Figure 9.28: 

Interface that plays 
back Evolution 

History 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9.2.6 Exploration 

   9.2.6.1 Experiment 1 

  

 

 

 

 

 

 

 For the first experiment, the material variables were the only part of 
the design vector in the synthesis phase that were allowed to vary. 
Geometry was constant , i.e. the skin configuration was “frozen”. As 
a consequence, the design vector is only populated with material 
variables. A grid of 10x10 cells was selected, and the material 
variables were considered continuous as opposed to discrete to 
allow for the implementation of different optimization algorithms. 

Within the Analysis phase only a subset of the analysis modules was 
selected for this experiment, namely, the thermal, the architecture, 
and the lighting modules. The problem presented in this experiment 
was solved using two algorithms: first, by using a gradient search 
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(SQP, Sequential Quadratic Programming), and later, by using a 
heuristic technique (Genetic Algorithms). 

To asses any scaling concerns, a script was developed to evaluate the 
diagonal terms Hii of the Hessian matrix. All Hii terms had the order of 
magnitude of unity. This was due to the fact that all the design 
variables represent the same physical object, i.e. the degree of 
transparency of the cells, and therefore have the same boundaries (0 
and 1). It naturally follows that the problem was intrinsically well 
scaled with respect to the design variables (in fact, scaling is 
necessary when the design variables can assume very different 
values). Thus, no scaling of the design variables was necessary. 

For this experiment, two types of constraints are present: firstly, 
each design variable has a lower and an upper bound, respectively 0 
and 1; as a consequence, there are 2 x 100 = 200 constraints of the 
first type (transparency constraints, [TC]). Each TC affects only the 
correspondent design variable, so there can be no disparity in 
sensitivity with respect to different variables. 

Secondly, the constraint on the overall illuminance sets Ei70 > 300 lux; 
this illuminance constraint [IC] affects all the design variables with 
different sensitivity, because not all the cells have the same influence 
on the overall illuminance due to their different positions on the 
façade and to their surface areas: the higher the location and the 
wider the surface, the higher the influence. Nonetheless, the ratio 
between the highest and the lowest of the sensitivity coefficients is 
not big enough to justify a scaling of the constraint. 

With regards to parameter sensitivity, the objective function 
increased when the spatial component depth was increased, since 
the associated region surface area enlarges. In fact, within the 
thermal module the objective is expressed as the required energy 
per floor area. The other modules outputs do not demonstrate any 
change.  

Increasing the height of the spatial component enlarges the skin 
area, and therefore results in a decrease of the objective function. In 
fact, the thermal objective decreases while lighting is unable to 
compensate. 

Increasing the light transmissions of the glass increases the lighting 
objective. However, since a higher thermal transmission of glass 
leads to a higher energy consumption, and therefore lowers the 
performance of the thermal objective, the overall objective function 
is lowered.  
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 The illuminance was moved from 300 lux to a stricter value of 400 
lux, and the optimization was rerun. The calculation with a higher 
value of the lighting constraint leads to a reduced performance in 
terms of the objective functions, the thermal aspect overriding the 
positive effects of the other modules. 

For this experiment, the weighted sum approach was adopted to 
combine the distinct objectives. The overall objective function 
reflects the trade-off between sufficient natural lighting in a room, 
the energy balance due to cooling/heating of the façade, and the 
intent to have windows in view height. The request for day-lighting 
drives especially the cells at the top to be transparent to push light 
deeper in the room. 

 Figure 9.29: 

Experiment#1 
Evolution Of Design 

Using SQP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E_i =  440 lux            Q_tot = 14  kWh/y/m2 
Z tot =  1075                               J = 0.484 
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   When the gradient search was used (SQP, Sequential Quadratic 
Programming), the objective function dramatically increased at the 
beginning of the analysis, and then, after finding the main 
illuminance constraint, slowly tuned to the potential optimum. As 
demonstrated in figure 10, a good improvement is obtained with 
respect to the initial point x0 (Figure 9.29).  The solution corresponds 
to a value of the objective function of Jmax = 0.533. 

The cells that lie in the “magnification areas” of the lighting and 
architecture functions, i.e. respectively the cells on top and at the 
center of the façade (thermal, in fact, is not location-dependent), 
were those that massively turned transparent. This matches intuition 
since the cells at the center of the façade have a much greater 
weight due to the architecture module, and the cells on top of the 
façade “weight” more for the lighting module. 

The active constraint is the minimum overall illuminance, plus a 
number of constraints for the transparency of cells, and precisely 
those of the cells that are completely transparent or completely 
opaque. (The design variables, at the end of the optimization, 
actually assume these limit values.) Given the objective function, the 
solution found seemed to match the physical assumptions of the 
model. 

Later, when running the optimization using the Genetic Algorithms 
(GAs), which were terminated after 47 generations, the best 
recorded results were collected, and the optimal solution was found 
to corresponded to a value of the objective function of  Jmax = 0.541. 
(figure 9.30). The above result was obtained by fine-tuning the 
algorithm parameters, which are listed hereafter: 

Population size:   30 
Preserved designs :  13 
Max No. of generations:  50 
Mutation Probability:   0.05 
Selection scheme:   Multiple Elitism Selection 

This result is higher than the previous one found with a gradient-
based search (Sequential Quadratic Programming).  

In order to understand the reasons of this difference, we studied the 
physical implications of the result. In particular, after a first analysis 
of the design vector, it was clear that the number of completely 
transparent cells is higher and, given a cell, its degree of 
transparency is generally higher. Also, the “transparent zones” were 
not just confined to the center and to the upper portion of the 
façade, and the illuminance constraint is far from being active, its 
final value being 1441 lux. 
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In other terms, starting from the “optimum” found by the means of 
a gradient-based algorithm, the GA’s provided evidence that the 
objective function could be “pushed” further up by adding more 
glass, i.e. by turning more cells transparent. It can be inferred that 
the solution found by the SQP algorithm is not the real optimum, 
since a better one exists. Alternatively, it was proven that the 
gradient-based algorithm found a local optimum. 

   9.2.6.2 Experiment 2 

   For this experiment, the nodes were allowed to move in the u and v 
directions on the skin surface. The materials of the cells were also 
allowed to change, but using discrete values for variables. The 10x10 
cells grid used for experiment#1 was kept for experiment #2. 
 
As a consequence, the design vector is populated with the 
coordinates of the 32 Control Points  (2 coords per central CP, 1 coord 
per border CP) and of the material variables , for a total of 48 + 100 = 
148 variables. Within the Analysis phase, the modules that were 
already part of the system architecture of experiment #1 were used – 
i.e. the thermal module, the architecture module, and the lighting 
module –; in addition, a further economy module was added, to 
minimize the cost of cladding materials. 
 
For this experiment the utility function approach was used, in order 
to take into account multi-criteria optima. 
 
The problem presented in this experiment was solved using Genetic 
Algorithms. The Genetic Algorithms were terminated after the max 
number of generation (30) was reached, and the best recorded 
results were collected. The optimal solution that was found, 
corresponded to a value of the objective function of  Jmax = 0.567 
(Figure 9.31). 
 
The above result was obtained by fine-tuning the algorithm 
parameters, which are listed hereafter: 
Population size:   25 
Preserved designs :  13 
Max No. of generations:  30 
Mutation Probability:   0.06 
Selection scheme :  Multiple Elitism Selection 
 
Note this value of the objective function cannot be compared to 
values of the values obtain in experiment #1, due the fact that we 
used a different objective function. The optimal solution that was 
found, corresponded to a value of the Objective.  
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 Figure 9.30: 

Experiment#1, 
Evolution of Design 

using GA’s 
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 Figure 9.31: 

Experiment#2, 
Evolution of Design 
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   The solution shows a particular geometrical and material pattern. 
The cells correctly enlarge at the center of the skin, and they shrink 
as the distance from the center increases.  In addition, in the center 
of the façade a complete region turned to glass, a consequence of 
the architectural module action.  

Away from the center, the density of semi-transparent and opaque 
material grows higher, a sign that a trade-off was reached between 
lighting and architectural requirements on one side, and thermal 
requirements on the other.  
 
To compensate a higher density of transparent cells in the center of 
the skin, which allow for a more abundant light intake, the cells close 
to the border turn opaque to limit the heat loss. This configuration 
slowly becomes evident as the number of generations grows. The 
central pattern of transparent cells develops from an early embryo, 
to fully occupy the whole central region of the skin. 
 
In the distribution of the non-transparent cells, the partition 
between the semi-transparent and the opaque ones does not seem 
to follow a particular scheme.  

It was not possible to understand if a distinguishable pattern might 
have been achieved after more generations. In any case, the slow 
progression of the overall objective function toward the end of the 
process suggests that any further variation in the design vector 
cannot generate a substantial change in the objective, from which it 
may be inferred that the sensitivity of the objective with respect to 
that partition is not very significant. However, it is important to note 
that, like for all heuristic techniques, the convergence of the GA’s 
cannot be mathematically proven. 

   9.2.6.3 Experiment 3 

   For this final experiment, the nodes of the skin were allowed to 
move in the three directions, u, v, and w. Like the previous 
experiments, the materials of the cells were also allowed to change, 
using three discrete values for variables. 

Note that, due to the intense computational burden of the CAD 
systems and the FEA Analysis, instead of the 10x10 cells grid of 
experiment#1 and experiment #2, a 6x6 grid was used. 

As a consequence, the design vector is populated with the 
coordinates of the 12 control points (4 in the middle, plus 8 on the 
borders, 2 coords per central CP, 1 coord per border CP) and of the 
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material variables, for a total of 16 + 36 = 52 variables. 

Within the analysis phase, the modules that were already part of the 
System architecture of Experiment #1 and #2 were used; in addition, 
a further structural module was added, to assess the efficiency of the 
grid from a structural viewpoint. 

 Figure 9.32: 

Experiment#3, 
Evolution of Design 
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   Much like the previous experiment, the utility function approach was 
used to combine the single-discipline objectives, as described earlier. 

The problem presented in this experiment was solved using Genetic 
Algorithms. The GA’s were terminated after 35 generations, and the 
best recorded results were collected. 

The optimal solution that was found, corresponded to a value of the 
objective function of Jmax = 0.699. (figure 9.32). 

The above result was obtained by fine-tuning the algorithm 
parameters, which are listed hereafter: 

Population size               :  40 
Preserved designs :  13 
Max No. of generations: 40 
Mutation Probability     :  0.06 
Selection scheme :  Multiple Elitism Selection 

Note this value of the objective function cannot be compared to the 
values obtained in the previous experiments due to the fact that a 
different design vector was used. 

Similarly to the previous experiments, the evolution of the design 
along the generations of the GA’s can be mapped by analyzing 
previous solutions. Five evenly spaced in “time” solutions were 
chosen.  

The graphical rendering of the solutions proved to be a helpful tool 
to visualize the formation of geometric trends and patterns in 
materials distribution (figure 9.34). 

 Figure 9.33: 

A Pareto front based 
on the thermal and 
lighting objectives  
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   Consistently with the assumptions underlying the form and the 
function of the structural module, it can be observed that the design 
shows a constant tension toward geometric regularity: after the first 
runs, where the skin is characterized by very different cell sizes – 
and, as a consequence, by different beam length – the design of the 
skin becomes more and more organized in a regular disposition of 
cells with more evenly distributed surfaces and more similar shapes. 

Nonetheless, it still holds true that the central cells are wider than 
the ones located near the borders, to reach a compromise with the 
architectural objective.  

 

 Figure 9.34: 

A graphical rendering 
of a solution  
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   9.3 Experiment 2 | Level 1 

   9.3.1 Design Concept 

  
 
 
 

Figure 9.35: 
  

Diagrams explaining 
the changes in the 

Design Concept 

 The design concept of this experiment builds on the concept 
developed in Experiment One. It uses the same logic of allocating the 
spatial components within the rectangular site but within a 3D grid of 
cells, instead of the 2D grid. In addition the wrapper skin for the 
spatial components is constructed of straight lines as opposed to the 
spline used in experiment One. Within the new 3d grid, the spatial 
components are allowed to relocate and deform to satisfy multiple 
performance and objective requirements (figure 9.35).  
 

  

 
 
 
 
 
 
 
 
 
 

   9.3.2 Decomposition  

  9.3.2.1 Component Decomposition  

   Similar to experiment one, the design concept will be decomposed 
initially into four main components. These will be the spatial 
components, the floors, the skin and the structural framing. There is 
a strong dependency between all four components in which changes 
in one component can affect the rest of the components (figure 
9.36).  
 
This dependency will have to be taken into account in the aspect 
decomposition.  The synthesis modules will have to generate these 
different components. 
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 Figure 9.36: 
 

Component 
decomposition 

 
   9.3.2.2 Aspect Decomposition  

   Based on the dependencies that exist between the different 
components in the initial level, the aspects of interest in all four 
components have to be identified simultaneously. Like experiment 
one, level one aspects will be decomposed into spatial planning, 
environmental, and structural aspects.  
 
Similar to Experiment one, the spatial planning will be further 
decomposed into several lower aspects that include adjacency, area, 
proportion, and real-estate. The environmental aspect will be 
decomposed into two lower aspects that include thermal and 
lighting aspects. Structure will not be decomposed further (figure 
9.37). 
 

 Figure 9.37: 
 

Aspect 
decomposition 

 

 
 
 

   9.2.2.3 Development Decomposition  

   Within our current experiment, the deliverables of the MDDS level 
one will include a configuration of the spatial components, the 
floors, the skin and structural frame. These configurations will have 
to be assessed for adjacency, area, proportion, real-estate, thermal, 
and lighting and structure (figure 9.38). 
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 Figure 9.38: 
 

Development 
decomposition 

 

 

 

 
 
 

   9.3.2.4 Activity Decomposition  

    Figure 9.39 shows the mapping between components and aspects. 
This identical to experiment one. However, unlike experiment one, in 
this experiment all aspects will be included. 
 
This will produce only one design cycle for level one. This cycle will 
attempt to solve the spatial planning aspects, the environmental 
aspects as well as the structural aspects.  
 

 Figure 9.39: 
 

Component and 
aspect 

decomposition 
mapping  
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   This cycle will be further decomposed into design activity modules. 
These design activity modules will include synthesis, analysis, 
evaluation and optimization modules. The Synthesis modules given a 
design vector will generate the spatial components, floor, skin and 
structural members. The analysis modules will analyze for adjacency, 
area, proportions, real-estate, thermal, lighting and structural 
behaviors. The evaluation modules will aggregate the different 
behaviors of the different analysis modules into a general 
performance quantity. Finally, given the outputs of the evaluation 
modules, the optimization modules will search the design space and 
specify a new design vector (figure9.40).  
 

 Figure 9.40: 
 

Design cycle one and 
its design activities 

 
 

 

 

 

   9.3.3 Formulation 

   What is interesting in this experiment is that the same MDDS 
architecture for the first cycle in level one which was used in 
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experiment one, is reused in this experiment with minimum 
modifications. These modifications are demonstrated in figure 9.41. 
Two new synthesis modules were added to the synthesis cluster. In 
addition a new structural module was added to the analysis cluster. 
This ability to reuse architectures and modules is one of the 
strengths of the modular approach used in the MDDS.     
 
As stated in the decomposition section, the synthesis modules given 
a design vector should generate the spatial components, floor, skin 
and structural members. This will be achieved by an assembly of 
three synthesis modules. The first will generate the general 
configuration and geometric information needed by most of the 
analysis modules. The second module will generate information 
relevant to the environmental aspects that were not generated by 
the first module. The third module will generate the relevant 
structural information that was not included in the first module.  
These three modules will be connected together and will function as 
a synthesis assembly.  
 
This synthesis assembly will receives the design variables from the 
design vector’s module in the optimization cluster and will output a 
design solution (phenotype) to be analyzed by the analysis cluster.  
 
Within the analysis cluster, each of the seven analysis modules 
receives from the synthesis assembly the relevant information 
needed for its analysis. Each module should then provide a 
measurement of the design performance for its associated aspect.  
 
In the experiment two modes of evaluation will be implemented. The 
first is a scalarization method which will be similar to the evaluation 
module implemented in experiment #1. This module will control the 
flow of data and if no constraints are violated, the performance and 
behavior measurements generated by the different analysis modules 
will be aggregated into an objective function that will be sent to 
optimization. The other mode of evaluation will be based on a Pareto 
filtering approach where the solution will be decided on after search. 
However this mode will still use the same control structures that 
filter out the solutions with high degrees of constraint violation. 
Again, similar to experiment #1, a GA was chosen as the optimization 
algorithm.  
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 Figure 9.41: 
 

The MDDS cycle on 
level one, showing 
extra modules and 
connections added 

 

 
 
 

   9.3.4 Modeling  

   9.3.4.1 Synthesis  

   The synthesis assembly in this experiment will build on the previous 
experiment modules, as well as implement extra modules to handle 
a more complex three-dimensional geometry.  
  
The current synthesis assembly will consist of one sub-assembly and 
two modules. The sub-assembly will be a configuration assembly. 
This will be a modification of the synthesis assembly of experiment 
one and will generate the new crystallized three-dimensional 
geometries. The first of the modules will be a structural synthesis 
module which will generate the structural members for the 
configuration produced by the configuration assembly. The other 
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module will be a lighting and thermal synthesis module which will 
generate the shading patterns for the configuration produced by the 
configuration assembly.   
 
Configuration Synthesis Assembly 
 
This synthesis assembly will generate a configuration of spatial 
components.  This assembly is more complex than the one 
developed in experiment one.  Unlike the one floor design problem 
in experiment #1, this experiment includes two floors. A horizontal 
circulation spine is also added.  In addition a vertical circulation 
component (stairs) is added.  Therefore, in addition to the three main 
data structures; Cells, Spatial Components, and Skin, a circulation 
data structure is added.   
 
Due to the 3D configuration, the shape grammar implemented in this 
experiment is more complex than the one used in the first 
experiment.  The first set of design rules deals with the allocation of 
Spatial Components. The second set of design rules deals with the 
deformation of the Spatial Components. The third set is a parametric 
rule set that generates the skin directly. Each rule in the third rule set 
is applied based on the location of the component and the state of 
the surrounding cells. Each rule in this set also generates the skin 
Regions and each region in turn is broken down into segments. These 
regions and segments will be used by several analysis modules. 
 
Structure Synthesis  Module  
 
The structure of any configuration will be divided into two structural 
systems: a main structural system that supports the main loads of 
the building, and an exoskeleton system that supports the skin 
cladding. Both systems are generated automatically from a given 
spatial component configuration using several rule sets. In addition, 
this module identifies components that are not supported by lower 
components. Supports are then added to each component in the 
cantilever list using context sensitive rules. Given the occupation 
state of the surrounding cells the rule set adds a certain type of 
support to the main structural system.   
 
This module then outputs to the analysis modules all the information 
related to the geometry, type and number of members as well as 
information pertaining to the cantilevering spatial components. 
 
Lighting and thermal Synthesis  Module 
 
Due to the existence of cantilevers, spatial components in the lower 
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level can be affected by shading. The lighting and thermal synthesis 
assembly creates a shading pattern of a given configuration that will 
be used later by both the lighting and thermal analysis modules. 
 
The synthesis algorithm that generates the shading pattern is based 
on the underlying cell grid. Each internal cell has three internal sides 
and one exterior side (N, S, and E or W).  While each end cell has two 
internal and two external sides. The algorithm tests each cell and its 
surrounding cells for occupancy. If a neighboring cell is occupied 
then the corresponding side in the cell being tested is disregarded 
since that implies that there is no cantilever from that direction. 
However, for the sides that are not blocked by any components on 
the lower level, another test is applied to determine if there are 
cantilevers from that side.  A correction penalty is then added if a 
cantilever exists. This penalty factor depends on the area and depth 
of the cantilevering spatial component.  
 

   Design Vector 

   Similar to experiment one, the design vector that provides the inputs 
to the synthesis modules is divided into two types of variables, 
namely topological and geometrical. However, the size of this design 
vector is significantly larger than the one implemented in the first 
experiment.  All three synthesis modules were implemented in the 
CATIA VBA environment.   
 
To summarize, the inputs to the synthesis modules are: 
a- Location of the Spatial Components which is represented by the 
topological variables 
b- Location of the Control Points in the system which is represented 
by the geometrical variables. 
 
And the outputs are: 
a- Area of each Spatial Component  
b- Perimeter of each Spatial Component 
c- Length of each Spatial Component Region 
d- Length of each Segment composing a Region 
e- Orientation of each Segment composing a Region 
f- Total Area enclosed by Skin. 
g- Structural members attributes (number of member, type,  ..etc) 
e- Shading patter of a configuration    
 

   9.3.4.2 Analysis 

   Like experiment one, the design concept will be broken down into 
multiple single-disciplinary analysis modules in order to evaluate how 
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well the design performs from the point of view of each discipline 
separately.  
 
Several modules from experiment one will be reused after some 
modification to accommodate the changes in the number of spatial 
components as well as changes in geometry. These modules include: 
an Adjacency module, an Area module, a Real-Estate module, a 
Proportion module, a Thermal module, and a Lighting module. 
Furthermore, a new module will be added for structural analysis.  
 
Once again this demonstrates the strength and adaptability inherent 
in the modular approach used in MDDS.  
 
Since we are working at the conceptual stage, the analysis models 
developed for the different discipline modules will be based on 
heuristics or simplified representations to test the feasibility of 
design solutions. The modules are implemented directly in VB Scripts 
or in Excel using  VBA Scripts. 
 
For reasons of brevity the focus in this section will be on the 
structural module which is the only new module not discussed 
previously in experiment one. 
 

   Structural Module  

   The Structural Module evaluates the performance of the structure 
within the configuration using two criteria: Regularity (/Utility) and 
Cost. 
 
The Structural Module receives information from the synthesis 
modules such as the coordinates of the CP’s and the location and 
type of cantilevering cells among others, and outputs an overall 
evaluation of the structural performance, JStru,. 
 

   Regularity 

   The algorithm provides an estimate of the structure regularity along 
the longitudinal axis of the building configuration. 
 
Regularity is intended to be optimum if all the projections of the 
distances between consecutive CP’s along the Y-axis (longitudinal 
axis) have the same length. Any deviation from ideality is captured by 
the following formula: 
 

∑
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Such calculation, shown for the first columns (JR,1), is performed for 
all the three columns of CP’s in the longitudinal direction, and results 
are summed to obtain an overall value JRegu. Note that such sum has a 
lower bound of zero, corresponding to optimality. 
 

   Cost 

   Costing is partitioned in: cost of slab and beams, cost of columns, 
cost of bracings and cost of connections. 
 
Cost of slab and beams 
A simple, heuristic method of calculating the cost of slab and beams 
is based on the geometry of each spatial component. Essentially, the 
cost for each bay (spatial component) is assumed to be proportional 
to the longer span and to the square of the shorter span (i.e. the 
direction in which the slab spans): 
 

 ∑∑ ⋅⋅==
i

ilis
i

iss bbCC ,
2

,, β , 

Where: 
β is a fixed coefficient that depends on material properties, 
and is then fixed once such design choice is made. As such, a 
relative comparison of the performances of several designs 
can be performed based solely on the geometry. 

 bs,i is the shorter dimension of the spatial component 
considered 
bl,i is the longer dimension of said component 

 
Cost of columns 
The cost of the columns is calculated based on the consideration that 
the cost is proportional to the section, which in turn is proportional 
to the tributary area and to the loading. As such, columns are 
grouped in five categories, according to the usage of the surface 
above: 

 
Type I: Lower floor, no cells above 
Type II: Lower floor, cells above 
Type III: Lower floor, cantilever A above 
Type IV: Lower floor, cantilever B above 
Type V: Upper floor 

 
Each category has a characteristic value of the cost, which is 
multiplied by the area of the surface: 
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where: 
 k is an index that relates to the aforementioned types of 
columns 

Pk is the cost of the columns of type k per tributary unit area  
Ak is the tributary area for type-k columns 

 
Cost of braces 
This parameter is kept constant, as the dimensions and section sizes 
of the bracing elements are not expected to vary substantially with 
the design. 
 
Cost of connections 
The cost of connections is held proportional to their number. The 
number of connections in a spatial component depends on its 
nature. Depending on whether the component is non-cantilevering, 
is a type-A cantilever or a type-B cantilever, the number of 
connections varies. As such, the total cost of connections results 
from the summation: 
 
 )( 332211 ncncncsCx ++= , 
where: 

s is the cost of one connection 
c1, c2, c3 are the number of connections per type of 
component: non-cantilevering, type-A cantilever and a type-B 
cantilever 
n1, n2, n3 are the numbers of components of type: non-
cantilevering, type-A cantilever and a type-B cantilever, 
respectively 

 
Overall cost 
The overall cost is obtained by weighed summation of the above 
components, and needs to be minimised: 
 xbcst CkCkCkCkJ 4321cos +++=  
Where: 

k1, k2, k3, k4 are weighing coefficients that include all 
proportionality coefficients which were assumed as constant 
in the above singular costs 
 

Combination of results  
As JRegu and JCost are not comparable dimensionally, weighing 
coefficients are used to derive the overall Jstru,0: 
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 tregustru JaJaJ cos210, += , 

 
where a1 and a2 are determined experimentally and kept constant 
along the optimization process. 
 
Note that Jstru,0 which needs to be minimized, is finally filtered 
through the utility function F in order to obtain the definitive Jstru, 
which needs to be maximized: 
 
 )( 0,strustru JFJ =  

 
F is monotonic, decreasing, always positive and its range coincides 
with (0, 1): 
 
 )]exp(exp[ 0,21 struJF ⋅−−= αα , 

 
Where α1 and α2, too, are empirical coefficient that are kept constant 
throughout the experiment. 
 
 

   9.3.4.3 Evaluation  

  

 

 

 

 

 

 

 

 

 

 

 

 

 AS stated earlier in the formulation section, two methods of 
evaluation are implemented in this experiment. The First is a pre-
search evaluation using a scalarization method and the second is a 
post optimization method that will use a Pareto filtering approach.  
 
Both approaches will implement the flow control module that 
evaluates if the design vector violates the constraint modules. This 
module like in experiment one, acts as a switch directing the data 
flow to either of the other two evaluation modules. The other two 
modules are the feasible design and infeasible design modules. The 
flow control module triggers the infeasible design evaluation module 
if the constraints are severely violated. If the constraints are not 
violated the feasible design evaluation module is triggered.  
 
If the design vector is infeasible the flow control module would 
bypass the synthesis and analysis modules saving extensive 
computational time.  The infeasible design module simply signals the 
violation to the optimization modules and ranks the design solution 
in proportion to the number of violated constraints. The feasible 
design evaluation module on the other hand triggers the synthesis 
and analysis modules.  
 
Within the first approach of evaluation where the scalarization 
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approach was used, The three evaluation modules implemented in 
experiment one were reused with little modification.  
 
All the ratings (Jarea, Jcirc, etc.) of the disciplinary performances that 
originate from the analysis modules converge into the feasible 
design evaluation module, where they are aggregated to generate 
an overall evaluation of the design, according to the standard 
scalarization approach. 
 
The final multi-disciplinary performance J is the weighted average of 
the normalized output from the various modules: 
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where 
M = 7 is the total number of analysis modules; 
Xm is the normalized output from the mth analysis module, 
and wm denotes the corresponding weight. In particular, Xm 
is obtained by normalizing the actual output of the mth 
module Jm according to: 
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The second evaluation approach, the Pareto filtering, will be 
discussed in the exploration section after optimization.   
 

   9.3.4.4 Optimization  

  

 

 

 

 

 

 

 

 The optimization modules consist of two modules. The first contains 
the optimization algorithm, and the second is a design vector module 
which converts the outputs of the GA into data which the synthesis 
modules can understand. 
 
Design Vectors Modules 
 
As discussed earlier, two major categories of design variables have 
been considered in our experiment and are implemented in two 
different modules: the topological variables module and the 
geometric variables module.  
 
The topological variables module defines the cell location of each 
Spatial Component. This module guarantees that no two Spatial 
Components are allocated in the same cell. For this experiment we 
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have eleven spatial components and eighteen potential cell 
locations.   
 
The geometric variables module defines the ranges of the control 
points locations. In order to avoid any excessive distortion of the 
grid, each Control Point is forced to lie within a specific region. 
 
Genetic Algorithm Module 
 
Due to the nature of the design space, a Genetic Algorithm (GA) was 
implemented. The GA’s genotype includes instructions for the 
synthesis assemblies to create a phenotype. In our experiment these 
instructions are of two types: topological instructions for allocating 
Spatial Components, and geometric instructions for modifying 
Control Points that affect the Cells. All the genetic transformations 
including crossover and mutation happen at the genotype level.  
 
Constraints are implemented through the use of penalty functions. If 
a solution does not comply with the constraints in the system a 
penalty is added to the fitness of the design solution according to 
the degree of violation. 
 
Due to the existence of multi-objectives the aim is not to produce a 
global optimum solution, but rather to direct the evolutionary 
process to produce populations of good solutions. These solutions 
would be used to study the tradeoffs between the different 
objectives. The GA’s parameters used in the experiment were: 
 
Population Size: 20 
Maximum Generations: 500 
Selection Scheme: Multiple elitist 
Preserved Designs: 10 
Operator Probabilities 
    Discrete Variable Crossover: 1.0 
    Discrete Variable Mutation: 0.15 
Constraint Tolerance 
    Maximum Constraint Margin: 0.05 
    Percent Penalty: 0.5 
Number of Top Designs Stored: 12 
Random Number Seed: 3132 
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 Figure 9.42: 
 

MDDS Module 
Integration 

 

 

 

 
 

   Integration & Exploration 

  
 
 
 
 
 
 

 When all the modules discussed earlier have been built and their 
validity verified, the data flow model of the design system is 
implemented and the modules are integrated (figure 9.42). For the 
integration of the different modules Model Center from Phoenix 
Integration was used. 
 
Optimization runs were started from initial seeded designs.  As 
stated earlier two modes of evaluation were implemented. In the 
first mode a scalarization was attempted. The MDDS demonstrated 
interesting results (9.43).  
 
The plotting of the search progression of the GA shows improvement 
to the overall performance of the design solutions beyond our initial 
seeded solutions. Similar to experiment one, design solutions in the 
final populations tended to be more compact in their shape.  
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 Figure 9.43: 
 

The MDDS evolution 
of solutions. 

 

 
 
 
 
 

 
 
 
 
 
 
 

   In the second mode of evaluation, a Pareto filtering approach was 
implemented. To assess better the trade-offs between the different 
objectives we needed to identify the non dominated solutions. This is 
because it focuses attention on a smaller set of solutions that are 
worth considering. These tradeoffs help select the final design. 
 



 

    The Multi-Disciplinary Design System         373 

Experiments 

 Figure 9.44: 
 

Pareto front of 
non dominated 

solutions 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Despite the fact that this investigation is based on the results of a 
standard GA, the resulting feasible solutions were re-plotted in a 3-
dimensional space in order to provide the design team some insight 
in the tradeoffs possible. These visualizations are useful because they 
show what needs to be given up in one objective to obtain an 
improvement in another.  
 
The design team was interested in studying the tradeoffs between 
lighting and thermal objectives compared to the overall performance 
of the solutions.  
 
Figure 9.44 shows two plots. The first is a 3D plot of solutions. The 
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graph axes represent the thermal and lighting objectives as well as 
the total objective which combines the rest of the design objectives. 
The second plot demonstrates the non-dominated solutions in the 
cloud of feasible solutions. These non-dominated solutions are 
obtained by a simple sorting algorithm and can be considered as a 
rough estimation of the Pareto-front. 
 
As had been expected, both the lighting and thermal modules were 
in clear conflict with each other. Many solutions exist with higher 
overall lighting performance but at the cost of thermal performance 
and vice versa. Such conflicts and contradicting objectives are typical 
for multidisciplinary design problems. The Pareto front of non-
dominated solutions offers the design team a good basis to discuss 
trade-offs between objectives. 
 
However, it should be noted that this study is done based on a single-
objective evaluation, and as the plot in figure 9.44 shows, there are 
undesired gaps in the non-dominated solution front.  
 
Radial plot was later used to visualize the trade-space (figure 9.45). 
However, due to the large number of solutions, as well as objectives, 
the plot was not very useful in identifying the best tradeoff between 
the different objectives.  
 
The design team was then interested in understanding the possible 
tradeoff between all seven objectives. For many dimensions the 3D 
plots are no longer useful and an entirely different mechanism must 
be used. 
 
The design team decided to use a profile plot. The profile is a 
simple representation in which the score of each objective is scaled 
vertically along distinct point on the horizontal axis. The performance 
of any specific non-dominated solution appears as a zigzag horizontal 
line.  
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 Figure 9.45: 
 

Radial Plot to 
visualize the trade-

space 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   This type of representation was useful initially, but became confusing 
as more solutions were displayed simultaneously. This mode of 
presentation is therefore effective only when comparing a few 
solutions (figure 9.46). 
 
Nevertheless, results from the Pareto filtering proved to be rather 
interesting, as understanding the trade-offs between conflicting 
objectives added another dimension towards our ability to interpret 
results. 
 
After assessing the results of the runs a solution was chosen.  
Although this solution performed highly in all seven objectives, it was 
not the one with the highest total performance. This is due to 
qualitative aspects that were not included initially in the MDDS 
formulation but the design team believed were important (figures 
9.47, 9.48, 9.49, 9.50, and 9.51)  
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 Figure 9.46: 
 

A profile plot of the 
solutions and the 

Pareto front. . The 
performance of any 

specific non-
dominated solution 
appears as a zigzag 

horizontal line. 
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 Figure 9.47: 
 

Exterior renderings 
of chosen solution 
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 Figure 9.48: 
 

Renderings of 
structure of chosen 

solution 
 
 

 
 
 
 

 
 
 



 

    The Multi-Disciplinary Design System         379 

Experiments 

 Figure 9.49: 
 

Renderings of the 
interior of the 

structure of the 
chosen solution 
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Figure 9.50: 
 

3D Physical model  of 
the  chosen solution 
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 Figure 9.51: 
 

3D Physical model  of 
the structure of the  

chosen solution 
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   10.1 Thesis Summary  
 

   In this thesis I discussed different concepts that represent the stages 
needed to construct what I called the Multi-Disciplinary Design 
System (MDDS).   There are five phases to generate an MDDS. These 
phases involve decomposition, formulation, modeling, integration, 
and exploration. These phases are not carried out in a sequential 
manner, but rather in a continuous back and forth movement 
between the different steps as the design progresses and evolves. 
 

   10.1 .1 Decomposition 
 

   As mentioned earlier decomposition, is the first process that takes 
place at the front end of the MDDS construction development. As 
discussed earlier, design can be seen as both an object and a process 
and therefore two modes of decomposition were presented in the 
thesis, namely object and process decompositions. In object 
decomposition the artifact or system’s design concept is broken 
down into different components and aspects that make up its 
physical object. In process decomposition the design concept is 
broken down into the developmental levels and design activities that 
can be used to reconstruct the design process. 
 
Process decomposition is required in the MDDS formulation stage in 
which development decomposition informs the formulation stage 
about the proposed hierarchy and multilevel structure of the MDDS 
while activity decomposition is essential in identifying the design 
activity modules within every level of the MDDS formulation. 
Furthermore, object decomposition is needed in the MDDS modeling 
stage were component decomposition is essential for the synthesis 
mathematical models while aspect decomposition is critical for the 
analysis mathematical models. 
 

   10.1 .2 Formulation 
 

   Design process planning follows in the formulation stage which 
provides an improved understanding of the process properties. 

10. Conclusion 
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Formulation can be seen as the process of designing the architecture 
of the MDDS. The MDDS architecture is broken down into 
hierarchical levels, each of which comprises a group of cycles that 
include modules at different degrees of abstraction.  
 
The MDDS is broken into hierarchical levels in order to manage the 
design complexities, where each lower level becomes more detailed 
and refined as the design progresses. Each module within the MDDS 
represents a design activity. Similar activity modules can be 
interconnected to create assemblies. Each cycle within a level 
includes modules that represent all of the four design activities 
mentioned earlier, namely synthesis, analysis, evaluation, and 
optimization. The MDDS as a whole can be seen as a set of 
interrelated modules that collectively can produce design solutions.  
 
MDDS includes both hierarchical and non-hierarchical structures. The 
MDDS levels represent a hierarchical structure while relations 
between the different modules and cycles within an MDDS level 
represent a non-hierarchical structure. 
 
In the formulation chapter, several tools and notations have been 
suggested for the task of structuring and formulating the 
information produced from the decomposition stage into a coherent 
MDDS architecture. The DSM, for example, could be used to refine 
the interaction between modules and minimize iterations as well as 
determining crucial activities that influence process lead-time and 
cost. Formulation notations that include network notations, such as 
Data Flow Diagrams, or IDEF0, or even formulation modeling 
languages such as UML and SysML, can be of great use in designing 
the MDDS architecture and defining its hierarchical levels, cycles, 
assemblies and module interactions. 
 
As suggested previously, formulation enables the visualization of 
data and control flow. Different design processes and architectures 
can be compared and evaluated. It should be noted, however, that in 
order to arrive at a reasonable system architecture there must be an 
iterative cycle or loop between decomposition and formulation.  
 

   10.1 .3 Modeling 
 

   MDDS offers a framework for modeling design activities that include 
synthesis, analysis, evaluation and optimization. These design 
activities are built into modules which can contain mathematical 
models as well as data or software applications that interact 
together in order to automate the process of design search. 
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Each module has a boundary that cuts across its links to the 
environment defining the module’s input and output. Each module 
acts like a black box transforming data from one form to another. 
The behavior of each module contributes not only to the design 
aspect and discipline it is modeled after but to the MDDS as a whole.  
 
Synthesis  
 
The design concept is decomposed into a set of synthesis modules 
by extracting design intentions and formulating a collection of 
design parameters, rules or algorithms. These modules define the 
system components and configurations to be modeled and are 
based on the component decomposition completed in the 
decomposition stage.  
 
Synthesis modules provide a representation of the artifact design 
language which in turn defines the general design space. The design 
vector is the input to this type of module. As discussed previously in 
the modeling chapter, the number and type of variables included in 
the design vector depends on the algorithms and structure of the 
synthesis module.  Synthesis modules output data to analysis 
modules. This data consists of certain artifact’s attributes, such as 
dimensions, areas, volumes and mass properties. The need for 
integrating synthesis and analysis modules affects to a great extent 
modeling requirements for both design activities.  
 
Synthesis models should provide for a generative mechanism. This 
could be done through the different techniques discussed in the 
modeling chapter such as parametric and algorithmic models. 
Parametric models provide for a description of the artifact through 
parameters and relationships that allow for variation. Algorithmic 
models give a description of the artifact through a set of rules and 
algorithms. Generative formal grammars are good examples of 
algorithmic models. These include grammars like shape grammars, 
graph grammars, Lindenmayer Systems, and cellular automata.  
 
It was also noted in thesis that the representation of generative 
synthesis models should encode design knowledge. The relationship 
between form and performance should be embedded within the 
representation formalism. This provides restrictions on permitted 
designs and ensures that the rules discard designs that do not 
comply with constraints. However, since synthesis models do not 
include performance feedback loops, it is difficult for such models to 
direct the generation and navigate the design space of multi-
performance design problems.     
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Analysis  
 
Analysis models and simulations are used to predict the behavior and 
performance of a specific synthesized design. A design problem 
usually combines different disciplines, with each discipline 
developing one or more analysis models. 
 
The outcomes produced by a synthesis module are the inputs to the 
analysis module. These inputs may range from simple parameters 
and data, such as areas or volumes, to full CAD models for use by 
numerical analysis models like FEM and CFD. The outputs of the 
analysis module are performance measures that will eventually be 
used within the evaluation modules in assessing the effectiveness of 
a system configuration.   
 
Analysis models range in their amount of required information input 
and their degree of accuracy output. Three types of analysis models 
were discussed in the modeling chapter: analytical, numerical and 
surrogate models. Analytical models are mainly low-order (low- 
fidelity) models. Numerical models, like FEA and CFD, are considered 
high-order (high-fidelity) models which if combined with search and 
optimization can result in long durations.  Surrogate models, such as 
kriging and response surface models, are low-processing 
approximation techniques that can be utilized to replace expensive 
and detailed numerical models. However, these types of models 
have limited design application.  
 
In choosing an analysis model the design team must select the best 
compromise between the demand for simplification and the 
necessity to clearly identify, describe and rate the targeted physical 
mechanism. A trade-off will have to be made between fidelity and 
analysis time. 
 
Evaluation 
 
Evaluation models are in essence decision-making tools. The need for 
the evaluation of results arises when multi-disciplinary objectives 
exist. The inputs and outputs to an evaluation module depend on the 
structure of the module, the strategy used in the evaluation and 
whether it is done before or after optimization. 
 
When the preference is expressed beforehand, the designer decides 
how to aggregate different conflicting objectives into a single 
objective function before the search is performed. A commonly 
adopted approach is scalarization which consists of combining 
several objectives into one scalar cost function. Different 
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scalarization methods, such as the weighted-sum approach and the 
utility function method, were presented in the modeling chapter.   
 
When a search is performed before decision-making, the search is 
performed with multiple objectives at the same time. The solution 
space becomes partially ordered with a set of optimal trade-offs 
between the conflicting objectives called the Pareto optimal set. 
Several techniques and algorithms for multi-objective optimization, 
such MOGA, were also presented in the modeling chapter.   
 
Optimization  
 
Optimization models are design space search mechanisms.  
Searching the design space entails finding the best solution(s) within 
a domain of feasible solutions. An optimization model seeks to 
minimize or maximize an objective function by varying the values of 
the variables in the design vector.  
 
The input to the optimization module is an objective function(s). The 
outputs of the optimization module are new values for the design 
vector variables. The choice of an appropriate search algorithm 
depends on several factors including the design synthesis model, the 
nature of the analysis models, the number and type of the design 
variables in the design vector, the existence of constraints, and the 
linearity of either the objective function or constraints. 
 
As discussed earlier optimization algorithms could be divided into 
discrete optimization algorithms or heuristic algorithms. Some 
discrete optimization algorithms that handle constraints include the 
simplex method, sequential quadratic programming, and the 
exterior and interior penalty methods among others.  Discrete 
optimization algorithms that handle unconstrained problems are 
generally gradient-based algorithms. These include Newton's 
method, steepest descent and conjugate gradient among others.  
Heuristic algorithms on the other hand include optimization 
algorithms, such as evolutionary algorithms, simulated annealing and 
tabu search.  
 
As mentioned previously, no existing optimization algorithm is 
guaranteed to find the global optimum of a nonlinear, non-convex 
problem. Gradient-based methods find  optima with high reliability 
but might not escape a local optimum. Heuristic algorithms might 
find a good solution, but its optimality cannot be guaranteed since 
they often tend to find a different design each time they are run in 
addition to the fact that they do not converge to a solution in the 
same effective manner as gradient-based methods do. 
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The Design Cycle 
 
In the modeling stage both the design vector variables and the 
objective function are better defined but can still be modified further 
according to investigations made in the design exploration stage, 
either before search or after search.  
 
Domain knowledge of each discipline involved in the design informs 
the synthesis modules to create meaningful designs and 
representations. The outcome of the synthesis modules is analyzed 
by the different discipline analysis modules to predict the properties 
of a particular solution. The evaluation modules then handle the 
multi-objective nature of the design. The optimization modules 
search the design space and automate the synthesis, analysis and 
evaluation in search of new solutions. The process continues until 
the optimization has converged and a family of acceptable solutions 
is found. 
 

   10.1 .4 Integration  
 

   Integration takes place at the tail end of the MDDS development. 
Design activity modules that were modeled and created by design 
specialists are integrated to create an MDDS cycle. Design cycles can 
also be integrated within a level and so on. Through a bottom-up 
approach, all the design activity modules that were developed are 
connected into a data flow network that includes clusters and 
subsystems.  
 
Integration tools are used to satisfy the requirements of the MDDS 
process through efficiently automating the exchange of module 
information. The integration between the different modules can be 
carried out using one of the integration technologies discussed 
earlier in the integration chapter such as middleware, web services 
or a combination of both.  As discussed earlier, MDDS also supports 
the integration of commercial analysis and simulation programs 
through the automation of program execution. Integration mainly 
aims at facilitating the integration of design activity modules and 
simulation programs regardless of discipline or programming 
language. 
 
The end result of a typical MDDS process is an integrated system 
model. The MDDS can then be tested to verify that it actually works 
as formerly planned. Testing the system involves running the 
simulations and reviewing the model validity.  
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   10.1 .5 Exploration  
 

   After building and integrating the MDDS, it would be useful to carry 
out a few experiments that could help explore the design space. 
MDDS can be continuously adjusted through several process 
iterations in order to investigate the influence of the modification of 
different variables in the design vector.  
 
Changes in the design variables of one part of the system are rapidly 
spread throughout the system. Design space exploration can delve 
into “what-if” scenarios and assess trade-off situations. This makes it 
an essential tool for analyzing the effects of design variables and the 
shape of design spaces to provide a better understanding of the 
decisions that are made in design selection and the corresponding 
consequences. This aids designers in the process of determining the 
best trade-off among performance and cost, in addition to 
enhancing multidisciplinary negotiations, leading to better design 
quality. 
 
Exploration experiments and techniques are not intended as a 
validation of the system as a whole as much as they are a validation 
of some of the design decisions made within the MDDS, such as 
what variables to include in the design vector or the structure of the 
objective function. As mentioned previously in the exploration 
chapter, exploration can be carried out before search or after it.  
 
Exploration techniques used before search include methods, such as 
DOE, that can be used to provide an overview of the design space or 
a local region of the design space. These techniques can be used to 
screen factors, thus helping minimize the problem size before the 
optimization process takes place. In addition, a new and feasible or 
enhanced initial point for optimization can sometimes be chosen 
using the initial points analyzed from the DOE study.  
 
Exploration techniques used after search and optimization are 
mainly sensitivity analysis processes. Sensitivity analysis is primarily 
concerned with how the specific response of a chosen solution 
changes due to the modification of design problem formulation. 
Sensitivity analysis tries to identify what source of uncertainty 
affects the final solutions more. The importance of sensitivity 
analysis comes from the fact that all the mathematical models used 
in the MDDS are approximations to the actual artifact and system.  
 

   10.2  Thesis Contributions  
 

   Some of the concepts put forth here are not new, but the 
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contribution of this thesis stems from synthesizing these concepts 
into a coherent whole. In the following I will discuss some of these 
concepts in further detail.      
 

   10.2.1  A Computational Design System Model  
 

   The main idea proposed in this thesis is a framework for developing 
computational multi-disciplinary design systems (MDDS) that would 
enhance the design of complex systems and artifacts through an 
efficient process. This proposed MDDS framework is a generic 
framework that proposes a group of systematic methodologies that 
eventually lead to a fully realized and integrated design system.  
 
As stated previously, the MDDS embraces diverse areas of research 
that include design science, systems theory, artificial intelligence, 
design synthesis and generative algorithms, mathematical modeling 
and design oriented disciplinary analyses, optimization theory, data 
management and model integration, and experimental design 
among many others. 
 
The hope is that this computational design system can assist the 
design team in going beyond their limitations in searching huge 
design spaces. By implementing the framework, vast design spaces 
can be searched while solutions are intelligently modified, their 
performance evaluated, and their results aggregated into a 
compatible set of design decisions. 
 
Within this framework, complexities of the design can be handled 
and the uncertainty of its evolution can be managed. Furthermore, 
MDDS techniques provide a better understanding of not only the 
designed artifact properties, but also of the priorities of the design 
system expectations and objectives.  
 
As demonstrated throughout this thesis, the way in which the 
resulting design system is generated and the capabilities it brings are 
totally different from the tools used in traditional design approaches. 
The MDDS is therefore more of a design process than a specific 
design tool or group of design tools.   
 
In addition, the framework presented supports the design of 
complex systems within a variety of domains. The hope is that by 
incorporating the MDDS designers can gain a market edge through 
enhanced design quality and performance and improved 
collaboration among multi-disciplinary design teams that would lead 
to reduced design time and cost.  
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   10.2.2  A Multidisciplinary Design System Model  
 

   In the traditional design approach, many actors participate in 
different phases, each with diverse competencies and seeking 
solutions to a particular aspect of the design problem. In this 
sequential approach, due to the well-defined boundaries between 
disciplines, different competencies work on the design at different 
times, each one modifying the product of the previous one to 
achieve its objective. 
 
Thus, the final solution is not always the optimal solution or the one 
that requires the least time to figure out. In fact, the overlapping of 
many decision-makers who act separately, and often times have 
conflicting goals, generates recurrent changes and unnecessary 
feedback loops in the design process. If all the requirements and 
partial objectives had been taken into account at an earlier stage, a 
more suitable and economic solution would have been found. 
 
Using MDDS, the design solution is not envisioned a priori, and a very 
wide exploration of potential solutions is encouraged. Each solution 
is rated on the basis of multi-objective criteria operating 
simultaneously. 
 
It is easy to understand the advantages of performance-driven, 
concurrent design with respect to the traditional sequential 
approach that, due to the complexity of the design problem, 
envisions a very limited number of potential solutions, assesses their 
efficiency and checks for feasibility. The “optimality” of the solution, 
in that case, relies heavily on the experience of the designers and of 
the project coordinators, and often lacks the benefits provided by 
the MDDS integrated approach. 
 

   10.2.3  An Evolutionary Design System Model 
 

   Design can be seen as an evolutionary process. One of the main 
attributes of the MDDS framework is that it takes into account this 
evolutionary nature of design. As discussed earlier, design 
descriptions change as projects progress. A design cannot be 
described at the detailed level required for manufacturing at the 
earliest stages of design. The level of description of a specific design 
is directly proportional to the amount of information available at a 
specific project stage. With project design progress and evolution, 
the complexity of both the design description and the corresponding 
design models increase as design progresses. 
  
Therefore, the resulting MDDS model is described by an evolutionary 
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model moving from simple and generic ideas into more complex and 
detailed ones throughout the process. This notion of an evolving 
system yields an MDDS that is continuously dependent on, and 
responsive to, the uncertainties of the design progress. MDDS 
captures the design evolution through an evolving system 
architecture. New levels, new cycles as well as new modules are 
added as the design progresses. MDDS is thus characterized by 
comprising a multi-level, multi-module, multi-variable and multi-
resolution architecture. 
 
Multi-level 
 
Since both the physical artifact and the design process can be viewed 
in terms of hierarchical decompositions where they are decomposed 
into multi-levels, the MDDS architecture should also be considered 
multi-level. The MDDS process should be viewed as an incrementally 
changing process that grows from the top to bottom as a 
combination of multiple quasi-interdependent levels.  Each level in 
the MDDS can be decomposed into design-cycles that can be further 
decomposed into different linked modules. 
 
Multi-module 
 
As discussed earlier, many design problems require using a group of 
complementary models, rather than one single model, which 
collectively aim at modeling and describing the whole design 
problem. This modeling process requires specialized knowledge in 
many disciplines. MDDS facilitates this by its multi-module platform 
for utilizing several design activity modules from different disciplines 
to simulate design problems. 
 
Multi-variable 
 
As the design evolves the set of variables in the design vector also 
evolves and changes between the different levels of the MDDS. 
Design variables at a certain level become constants at a lower level. 
At the same time new variables are added to the design vector at 
lower levels. This multi-variable property changes the degrees of 
freedom of the design system from one level to the next. 
 
Multi-resolution 
 
Furthermore, for the evolving MDDS, modules with different 
resolutions and granularity levels are needed. By altering modules or 
exchanging existing disciplinary synthesis and analysis modules for 
more suitable fidelity levels, existing MDDS level modules can be 
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evolved to lower successive levels. Therefore, MDDS involves a 
multitude of model resolutions. In conceptual design, low-fidelity 
models are used in the MDDS due to the lack of complete and 
sufficient design information. In later phases however, more detail is 
required to perform elaborate synthesis and analysis. Hence, these 
are conducted using higher-fidelity models. 

 
Decoupling 

 
Although MDDS starts with integrated and coupled design cycles, 
these design cycles tend to decouple as the MDDS levels are created 
and evolved. Decoupling takes place both horizontally and vertically 
when the interactions between modules or levels disappear. This 
happens when the various interconnected modules are decomposed 
into different cycles which do not require as their input the output of 
another cycle. The system structure is thus simplified and can benefit 
from parallelism. 
 

   10.2.4 An Adaptable Design System Model 
 

   The MDDS can adapt to changes in the design evolution process due 
to the modular nature of the MDDS; many different options can be 
generated using its modular mix-and-match flexibility. As mentioned 
earlier, a design module can substitute for another, a new module 
can be added to the system, a module can be deleted from the 
system, and a module can be reused in another MDDS.  
 
An existing MDDS level can be evolved in this context to a lower 
level through changing or replacing existing disciplinary analysis 
modules within design cycles to more well-suited modules with the 
adequate fidelity levels. Previously developed modules in another 
MDDS can also be adapted to the current MDDS.   
 
Furthermore, the modular nature of MDDS facilitates conducting 
trade studies and affords the design team with greater flexibility in 
addressing dissimilar and large trade-spaces. Traditionally, 
conducting a multi-disciplinary trade study is characterized as a time 
consuming process which is largely dominated by the transforming 
and translating of data between design disciplines. The MDDS 
approach would allow the quick interchange of individual modules, 
leading to easily testing the effect of these modules on the design 
solutions in addition to customizing different scenarios to the 
specific problem for effective exploration. 
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   10.2.5  A Generative Performance-Driven Design System Model 
 

   One of the important contributions of the thesis lies in incorporating 
generative synthesis models.  As discussed earlier, in most of the 
work done thus far in other design technologies, such as MDO, the 
topology of the artifact is generally fixed by the design team and the 
optimization merely varies its dimensionality. As demonstrated in the 
experiments, MDDS encourages the use of generative synthesis 
models that generate more varied design spaces. This enables 
multidisciplinary design teams to formally explore the performance 
of many more design alternatives, which should lead consequently 
to better designs and enhanced performance. 
 
Furthermore, the MDDS approach introduces a scenario where the 
idea that performance drives design is clearly identified. In today’s 
increasingly competitive market, design solutions that merely meet 
minimum project requirements are no longer guaranteed to prevail. 
Solutions must be cost-effective and generated through efficient 
multi-disciplinary processes. An effective evaluation of these 
solutions therefore involves the integration of multiple disciplines. 
MDDS allows for identifying counter-intuitive solutions and functions 
of multiple design disciplines.  
 
Although MDDS helps generate high performing solutions, these 
performance measures are mostly driven by quantitative aspects of 
the design. I believe, however, that qualitative aspects of the design 
should also be taken into account. A quantitatively optimum solution 
might not necessarily be the best solution. Better exploration of the 
design space might reveal solutions with better qualitative merits. 
That is why the MDDS framework proposes the generation of 
families of quantitatively good solutions that can later be assessed 
by the design team for their qualitative aspects. 
 

   10.2.6  A Design System Model with Emergent Behaviors   
 

   The various modules involved in the MDDS try to optimize the design 
of the artifact, each within its respective discipline.  This clearly 
creates conflicts between the different design modules. From this 
conflict, unexpected solutions can emerge. 
 
As mentioned earlier, the MDDS functions as a dynamic and complex 
whole, interacting as a holistic structured functional unit. The system 
emergent properties are not detectable through the properties and 
behaviors of its modules, and can only be enucleated through a 
holistic approach. The solution found by this system is expected to 
be superior to the design found by solving and optimizing each 
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discipline sequentially, since it can exploit the interactions between 
the different disciplines. 
 
This emergent capability in MDDS is an attractive quality that can 
address Descartes’ Dictum proposed in the introduction of this 
thesis: “how can a designer build a device which outperforms the 
designer's specifications?” (Cariani, 1991). By identifying unexpected 
solutions, the MDDS can help designers reach beyond their manual 
design limitations, and therefore, arguably, can be described as 
exhibiting intelligent behaviors. 
 

   10.2.7  A Model that Reduces Design Iteration Time  
 

   As stated in this thesis, MDDS can significantly minimize design 
iteration time by implementing several methodologies and 
technologies that include integrated design approaches as well as 
automated design activities, leading to enhanced efficiency in design 
iteration time. 
 
This reduction in time can enable design teams to formally explore 
the performance of a variety of design alternatives. This is 
considerably more than is currently possible within the same 
duration using traditional design approaches.  With MDDS more time 
can be spent in the interpretation of results and in choosing between 
design alternatives as well as reshaping the design space in search of 
more promising regions. 
 

   10.2.8  A Model that Redefines the Design team and Studio 
 

   In addition to the design process, both the design team and 
workspace are affected by the MDDS approach. The MDDS proposes 
that the design team should consist of design specialists and system 
architects that can jointly grasp a large body of knowledge and 
experience. The role of design specialists is to guarantee that their 
share of the requirements and constraints in the design process is 
solved. System architects’ role, on the other hand, is to assemble 
multiple parts of the design process into a full system. 
 
Responsibilities of both the system architect and design specialist 
can be defined by means of the MDDS hierarchical structure. 
Modules and sub-cycles denote elements that that lie within the 
domain of design specialist who can adjust them to a specific 
application given a group of specifications. The systems architect 
should be able to manage the complexity of formulating the system 
architecture. The number of levels, as well as the number and type of 
activity modules to be included in addition to the technical tradeoffs 
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that influence the system capabilities, must be resolved by the 
system architect. 
 
Furthermore, the thesis proposes the need for an MDDS 
environment that can generate MDDS models by allowing all design 
participants to embed their specific software tools or models into 
modules collaboratively and then efficiently integrate these modules 
into different cycles and levels to create a full MDDS.  
 
Although some interesting commercial tools to manage some 
aspects of this integration currently exist in the market, these tools 
still remain limited in the scope of their application.  
 
Given that the MDDS is essentially designed as an assembly of linked 
programs and components, the workspace within the MDDS can be 
considered a virtual design studio that implements the component-
assembly approach. The MDDS design environment should provide 
for an infrastructure of data integration tools and methods that 
supports the robust simulation process for product design and 
development throughout the design lifecycle. Through this 
environment, many benefits can be achieved, such as minimized data 
translations, effective data or knowledge configuration control and 
architecture, enhanced distributed collaboration by geographically 
dispersed product teams, and effective data transfer between 
different stages, from conceptual to preliminary to detailed design. It 
should also support the integration of commercial and proprietary 
analysis and simulation programs through flexible coupling methods 
and automation of simulation program execution. It should also 
provide for design space exploration using a suite of design space 
exploration tools. 
 
The system architect, within such a computational environment, 
becomes a master assembler of digital blocks analogous to the 
architect within the physical world as the master builder.  
 

   10.2.9  A Design System for Integral and Modular 
Architectures 
 

   The MDDS can be considered as a modular system for the creation of 
varied architectures. This is because regardless of the intended 
design of the artifact’s system architecture, whether modular or 
integrated, the MDDS can help enhance the artifact’s performance. 
This is due to the fact that, although influencing each other, object 
decomposition and process decomposition are handled separately 
within the MDDS. Therefore, the artifact’s proposed design object 
can have either a modular or an integrated architecture, while the 
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MDDS as a computational design system can remain modular.  
 

   10.2.10 A New Approach to Building Civic Architecture 
 

   Although the MDDS framework is intended to be domain-
independent, several MDDS prototypes were developed within this 
thesis to generate exploratory building designs. I hope these 
examples provide a proof of concept for the validity of the 
framework presented in this thesis and the potential it has on 
influencing the computational design approach. 
 

   10.3.  Limitations and Difficulties  
 

   Although the MDDS framework provides a powerful approach to 
designing multidisciplinary systems, there are still several difficulties 
that need to be investigated and researched further. I will summarize 
here a few of these difficulties, which include issues related to 
synthesis complexity, analysis representation, multi-level optimality, 
evaluation visualization, algorithmic exploration, and setup time. 
 

   10.3.1 Synthesis Complexity  
 

   Most multi-disciplinary optimization problems and applications 
involve tens, and even hundreds or thousands, of design variables 
and constraints. This denotes a significant difficulty for 
computational design both in managing the design variables and in 
the ability to search the multi-dimensional design space adequately.    
 
Furthermore, the algorithmic synthesis models discussed in this 
thesis, such as formal grammars, represent difficulties for both 
analysis and optimization. This is because these systems are in flux 
and can change the number of variables that represent a solution as 
well as the configuration of the solution. There remains a lot of work 
to be done in computational systems for design before workable 
methodologies for these types of problems are realized. 
 

   10.3.2 Analysis Representation  
 

   One of the fundamental challenges with applying the proposed 
MDDS is the issue of large-scale data management and data 
representation.  
 
Extracting and transferring the design information from different 
design models can represent varying difficulties. It can take the form 
of simply translating the syntax of one program output into another 
program input. It can get more complex, such as when a generative 
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synthesis model produces new topologies and geometries at each 
new iteration. This represents considerable modeling difficulty since, 
on one hand, the analysis model has to extract new relevant 
information from the synthesized solution, and, on the other, the 
optimization has to handle a varying size design vector(s).    
 
These challenges are very distinctive from those that have been 
addressed by the industry for a long time. More research has to be 
carried out since methods for dealing with such issues previously 
have been shown to be insufficient for solving this type of problem. 
 

   10.3.3 Multi-Level Optimality  
 

   As stated in the thesis, the MDDS proposes a successive filtering of 
solutions, in which certain solutions, with a certain degree of 
abstraction, are moved from one level to the next lower level to be 
optimized further. This is a sequential optimization technique 
between deferent levels which is not expected to necessarily lead to 
an optimum solution. 
 
As discussed in the thesis, the question of optimality in a 
multidisciplinary environment is debatable especially with the 
existence of qualitative aspects. Several design aspects can only be 
assessed by the stakeholders and design team when more 
knowledge about them becomes available as the design evolves.  
One of the difficulties associated with optimization in MDDS is the 
uncertainty involved within the design process as a design evolves 
from one level to the next. In many cases, the lower levels will not be 
known. However, after the full design has evolved and further 
optimization of the full system is sought, several multi-level 
optimization techniques may be implemented although with a 
limited scope due to the complexity of the design vectors involved. 
   

   10.3.4 Evaluation Visualization  
 

   As was demonstrated in the experiments, the visualization 
techniques of the objective space and Pareto front were limited to a 
few objectives. New visualization techniques need to be developed 
to help the design team and stakeholders understand the trade-off 
possibilities better.   
 

   10.3.5 Algorithmic Exploration  
 

   Not many exploration techniques were implemented in the design 
experiments in this thesis. This is due to type of problem exploration 
techniques are designed for. Exploration techniques are generally 
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designed for a parametric representation and not algorithmic 
representation like the ones used in formal grammars.  
 
New techniques that can gauge and explore a design space 
generated by an algorithmic representation need to be researched 
further.   These challenges are very distinctive from those that have 
been addressed by designers and engineers for a long time. More 
research has to be carried out since methods for dealing with such 
issues previously have been shown to be insufficient for solving 
existing problems. 
 

   10.3.6 Setup Time 
 

   The MDDS efficiency in searching the design space and producing 
several solutions does not come without a price, particularly when it 
comes to setup time. A great deal of initial investment is required in 
setup time and process planning. The hope is that this investment 
can be compensated throughout the design life cycle.  
 
This investment could be reduced if modules are reused between 
different design projects. Furthermore, if different modules are 
made publicly available, such as on the web, time spent on modeling 
can be shortened.  
 
However, this approach may present its own set of drawbacks.  
Designers and engineers may be inclined to use certain modules 
because of their availability rather than their suitability to the design 
problem. Furthermore, modules may be used without fully 
understanding their functionality and hence may jeopardize the 
validity of the design system. 
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