

 Emergence Through Conflict
The Multi-Disciplinary Design System (MDDS)

Signature of

author

Certified by:

Accepted by:

By
Anas Alfaris

Master of Science Candidate in Computation for Design and Optimization
Massachusetts Institute of Technology, 2009

Master of Science in Architecture Studies
University of Pennsylvania, 2002

Master of Architecture and Building Technology
University of Pennsylvania, 2000

Bachelor of Science in Architecture and Building Engineering
King Saud University, 1998

Submitted to the Department of Architecture in the Partial Fulfillment of
the Requirement for the degree of

Doctor of Philosophy in Architecture, Design and Computation

At the

Massachusetts Institute of Technology

June 2009

© Anas Alfaris All rights reserved

The author herby grants MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in
part in any medium now known or hereafter created.

Department of Architecture, MIT
May 1st, 2009

William Mitchell
Professor of Architecture and Media Arts and Sciences

 Massachusetts Institute of Technology
Dissertation Advisor

Julian Beinart
Professor of Architecture

Massachusetts Institute of Technology
Chair, Department Committee on Graduate Students

 The Multi-Disciplinary Design System 3

Dissertation Committee

William Mitchell
Professor of Architecture and Media Arts and Sciences

Department of Architecture, MIT
Dissertation Advisor

Olivier de Weck
Associate Professor of Aeronautics and Astronautics

and Engineering Systems
Department of Aeronautics and Astronautics

and Engineering Systems Division, MIT

Terry Knight
Professor of Design and Computation

Department of Architecture, MIT

John Williams
Associate Professor of Information Engineering, Civil and Environmental

Engineering, and Engineering Systems
Department of Civil and Environmental Engineering

and Engineering Systems Division, MIT

 The Multi-Disciplinary Design System 4

 The Multi-Disciplinary Design System 5

 Emergence Through Conflict:
The Multi-Disciplinary Design System (MDDS)
By Anas Alfaris

Submitted to the Department of Architecture on May 1st, 2009
in the Partial Fulfillment of the Requirement for the Degree of
Doctor of Philosophy in Architecture, Design and Computation

 Abstract

This dissertation proposes a framework and a group of systematic methodologies to
construct a computational Multi-Disciplinary Design System (MDDS) that can
support the design of complex systems within a variety of domains. The way in
which the resulting design system is constructed, and the capabilities it brings to
bare, are totally different from the methods used in traditional sequential design.

The MDDS embraces diverse areas of research that include design science, systems
theory, artificial intelligence, design synthesis and generative algorithms,
mathematical modeling and disciplinary analyses, optimization theory, data
management and model integration, and experimental design among many others.

There are five phases to generate the MDDS. These phases involve decomposition,
formulation, modeling, integration, and exploration. These phases are not carried
out in a sequential manner, but rather in a continuous move back and forth between
the different phases.

The process of building the MDDS begins with a top-down decomposition of a
design concept. The design, seen as an object, is decomposed into its components
and aspects, while the design, seen as a process, is decomposed into developmental
levels and design activities. Then based on the process decomposition, the
architecture of the MDDS is formulated into hierarchical levels each of which
comprises a group of design cycles that include design modules at different degrees
of abstraction. Based on the design object decomposition, the design activities
which include synthesis, analysis, evaluation and optimization are modeled within
the design modules. Subsequently through a bottom-up approach, the design
modules are integrated into a data flow network. This network forms MDDS as an
integrated system that acts as a holistic structured functional unit that explores the
design space in search of satisfactory solutions.

The MDDS emergent properties are not detectable through the properties and
behaviors of its parts, and can only be enucleated through a holistic approach. The
MDDS is an adaptable system that is continuously dependent on, and responsive to,
the uncertainties of the design process. The evolving MDDS is thus characterized a
multi-level, multi-module, multi-variable and multi-resolution system.

Although the MDDS framework is intended to be domain-independent, several
MDDS prototypes were developed within this dissertation to generate exploratory
building designs.

Thesis Advisor: William Mitchell
Title: Professor of Architecture and Media Arts and Sciences

 The Multi-Disciplinary Design System 6

Acknowledgment

The Multi-Disciplinary Design System 7

 This was the last part of my thesis, and I found myself writing it the night
before submitting my final copy. Nevertheless, it was one of the hardest
parts to write, perhaps because it includes so much of what my Ph.D.
journey was all about.

I remember when I first sat down with Professor Fahad Alsaeed at KFUPM
to discuss my interest in earning a Ph.D. He explained to me that it would be
a long but rewarding journey that would eventually provide me with a skill
set for overcoming important problems. Yet, when I started this journey I
did not realize that my Ph.D. lay beyond several years of hard work, three
Master degrees, over fifty courses, qualifying exams, several presentations
and committee meetings.

Now that I have come to the end of my journey, I realize that several
professors, collaborators, friends, institutions, and family members have
helped me reach my final destination. However, acknowledging everyone
who has helped me along the way would be an impossible task.

I would first like to thank my advisor, Professor William Mitchell, for sharing
his life of experience and for his inspiring intellectual leadership. He has
exceeded every positive expectation I had for my advisor. I cannot imagine
a better mentor for my personality and interests. He never forced an
agenda on my research but instead contributed important guidance to help
me pursue my own path. In spite of the pressure to be confined within a
well-defined discipline for the sake of developing deep understanding, Bill
taught me that engineering design has no boundaries and that depth can
also exist across disciplines. From him, I learned how to tackle problems
with an open mind and not to fear new and unstructured problems but to
seek them. Bill has also opened wide domains of research for me, whether
at the Media Lab or Design Lab, and for that I will always be grateful.

I was also fortunate to have three additional faculty members on my
committee who all think outside the normal bounds of traditional
disciplines: Professors Oliver de Weck, Terry Knight and John Williams. Each
member was selected for my doctoral committee because of their
perspectives on joining design with computation.

I cannot express in words what it has meant to me to have had the
opportunity to work with Professor Oliver de Weck. His exceptional
experience with multi-disciplinary optimization and system engineering and
architecture had a strong influence on my work and research. Oli provided

Acknowledgment

Acknowledgment

The Multi-Disciplinary Design System 8

me with valuable advice throughout this academic endeavor and always
believed in my ideas and my work. I also cannot thank him enough for
providing me with amazing research opportunities whether at the System
Engineering Division or the Strategic Engineering Group.

Professor Terry Knight has inspired my interest in generative synthesis
models. She was incredibly influential in guiding my intellectual growth and
has provided invaluable insights and contributions. She always encouraged
me to recognize the value of my work and showed me how to view the
world from new perspectives.

Although I previously believed I was a decent programmer, I believe now
that the moment I started working with professor Williams was the first
time I truly learned to program. John brought to this research precious
contributions in relation to information technology and systems that drew
from his extensive knowledge of the field and theoretical background, and
for that I am deeply thankful.

I would especially like to acknowledge Professor George Stiny. Though not
a member of my committee, he provided invaluable feedback and support,
both academic and personal, throughout my doctoral journey. I would also
like to thank Professors John Fernandez and John de Manchaux who were
both influential in my joining MIT.

I have enjoyed my time at MIT tremendously and had the chance to meet a
collection of great minds. I was lucky to find many homes at MIT in different
programs and departments. I would like to thank great faculty, colleagues,
and friends in the Department of Architecture, the Media Lab, CSAIL, and
the Engineering Systems Division (ESD), the School of Engineering, Design
Lab, the Strategic Engineering Group, the Design and Computation Group
and the Computation for Design and Optimization Program.

So many people contributed to this thesis, knowingly and unknowingly.
From those I would like to acknowledge Riccardo Merello, a great friend
and collaborator to whom I owe a huge debt of gratitude. He dedicated
time and effort to the maturation of my ideas toward practical thinking. The
experiments in the last section of this thesis would not have been possible if
not for his insight and contributions. I will always remember our long hours
online discussing different parts of those experiments. I would also like to
thank Maher Elkhaldi for being a great friend at MIT and beyond. Our
discussions and his help in the synthesis models chapter were invaluable. He
was always there when I needed him, and he has always been patient with
my short temper, and for that I cannot thank him enough. I would also like
to acknowledge Saud Sharaf for our many long and useful informal
discussions about the thesis and what the future may hold for us.

In addition, I learned a great deal from many friends at MIT. From this group
of great future educators, I would like to mention Dan Iancu for helping me
understand what optimization theory is all about. I would also like to
acknowledge Harn Wei Kua for being a great friend and taking time from his
busy schedule to teach me all about his combined passion for sports and

Acknowledgment

The Multi-Disciplinary Design System 9

physics. Furthermore, I would like to thank Alexandre Marques, who, with
his superb math skills, helped me a great deal in solving difficult problem
sets.

In addition to the individuals I have already mentioned, I would like to thank
other collaborators who have helped me in several research projects
including Kenneth Namkung, Alexandros Tsamis, Ryan Chin, Meredith
Elbaum, Philip Gayer, and Nii Armar among others. I would also like to
mention other friends and colleagues who have been very supportive
throughout my Ph.D., including Yanni Loukissas, Axel Killian, Dennis
Shelden, Saeed Arida, Kshitij Prakash, Kenfield Griffith, Sergio Araya, Franco
Vairani, Daniel Cardoso, Lira Nikolovska, Carlos Barrios-Hernandez, Neri
Oxman, and Kaustuv De Biswas among others.

I would also like to thank the amazing staff at MIT for providing a sense of
community. I would especially like to thank Renee Caso for always keeping
me on track and on schedule and for her amazing support throughout my
stay at MIT. I would also like to mention Cynthia Wilkes for helping me
navigate Professor Mitchell’s busy schedule for several years. In addition, I
would like to acknowledge Tom Fitzgerald for his superb IT support and for
always being there when I needed him. I would also like to thank Eric
Markowsky who was kind enough to proofread this thesis on very short
notice.

I should also thank a few friends outside the MIT community whose help
and support have been instrumental in completing this journey. I would like
to thank Ahmed Rashad for being a close and loyal friend throughout the
last few years. I have no doubt that I could not have completed this thesis
without his help in formatting it, and this is only one of the many things he
has helped me with over the years. I would also like to acknowledge my
dear friend for fifteen years, Bandar Alkahlan, who stayed up with me two
nights in a row to help me finalize my dissertation defense presentation. I
would like to thank my friend, Sherif Abdelmohsen, without whose help in
editing several chapters of this thesis, I could not have finished on time.

Furthermore, I would like to thank Professors Peter McCleary, Ali Malkawi
Branko Kolarevic, and William Braham from the University of Pennsylvania
for setting me on track early on in this journey. I should also thank my uncle
Professor Abdullah Alrawaf for his continuous support and encouragement
throughout my academic career.

I would also like to thank Phoenix Integration for being so helpful in
providing me with ModelCenter software and for their excellent technical
support, especially Chad Kasell and J Simmons who have been extremely
helpful and patient with my endless inquiries.

I would also like to thank the Saudi Ministry of Higher Education for making
this thesis possible by funding and supporting this research project, and I
would like to thank Ambassador Hamad Alfaris for initially helping me
embark on this journey which would not have happened without his
unwavering support.

Acknowledgment

The Multi-Disciplinary Design System 10

I have received enormous support from my family; without it this thesis
would never have been completed. I would like to thank my dear brother
Eyas, who almost threw me off track on this research, but was also very
supportive in so many ways. I would also like to thank my lovely sister
Nasreen for her endless support and encouragement and my youngest
sister Sawsan for always being there for me.

I want to thank my dear wife Manal Alaamery for sharing this journey with
me and for the wonderful time we spent in Boston. Although burdened by
her own Ph.D. and fellowship, she managed to find time to support me
through all of my ups and downs, though I am sure she felt the downside
more often due to my inclination to complain more than praise. Manal,
thank you for your patience and support during this truly difficult
experience. I would also like to mention my wife's parents who were very
supportive as well.

To my dear son Faris and daughter Aseel, I ask your forgiveness, for you
have been extraordinarily patient throughout this journey although you
have suffered the most from it. Unfortunately, I know I cannot recreate the
moments we lost, but I will try my best to make up for them. Thank you for
being part of my life.

This work is dedicated to my parents for their unwavering support and
enthusiasm for my academic adventures. I know it has been a long journey,
but it is finally over (at least this degree). I would like to thank my dad,
architect Faris Alfaris, for always guiding me through life with his clarity of
view, wisdom and his uncompromising honesty. I would also like to thank
my mom, Dr. Haya Alrawaf, for her infinite prayers and encouragement. You
have taught me that learning is a life-long adventure worth pursuing.
Although you can call me Doctor now, I will forever be a student and I don't
intend ever to stop learning.

Finally, as is clearly obvious in this acknowledgment, this was a shared
experience and therefore I would like to thank everyone who had a part in
this and to everyone who has touched my life. You should know who you
are, and you are all in my thoughts.

Anas Alfaris

 The Multi-Disciplinary Design System 11

Table of Contents

 Emergence Through Conflict:
 The Multi-Disciplinary Design System (MDDS)

 1. Introduction

 1.1. Motivation 17
 1.2. Challenges in Computational Design Systems 18
 1.3. Research Methodology 23
 1.4. Thesis Structure 29

 2. Theoretical Background

 2.1. Design Science 33
 2.1.1 Design as an Object and a Process 34
 2.1.2 Design Process Domains 36
 2.1.3 Design Process Evolution 40
 2.1.4 Design Process Activities 42
 2.2. Systems Theory 43
 2.2.1 System Concepts 43
 2.2.2 System Architecture 47
 2.2.2.1 Form and Function 49
 2.2.2.2 Architecture of Integration and modularity 51
 2.2.2.3 System Structure 54
 2.2.2.4 Behavior 62
 2.2.2.5 Process of Creating Architecture 62

 3. Decomposition

 3.1 What is Decomposition? 65
 3.2 Design Object Decomposition 67
 3.2.1 Component/Physical Decomposition 68
 3.2.2 Design Aspects Decomposition 69
 3.3 Design Process Decomposition 69
 3.3.1. Design Development Decomposition 69
 3.3.1.1. Design Development Models 70
 3.3.1.2. Proposed Design Development Model 75
 3.3.2. Design Activity Decomposition 75
 3.3.2.1. Design Activity Models 76
 3.3.2.2. Proposed Activity Decomposition Model 85
 3.3.3. Hybrid Design Process Models 85
 3.3.4. Decomposition and Design Views 88

 4. Formulation

 4.1 What is Formulation? 91
 4.2 Process Analysis and Structuring 92
 4.3. Iteration and Coupling 97
 4.4 Process and Formulation Modeling 99
 4.4.1. Network Models 100
 4.4.1.1. Data Flow Diagrams 100

Table of Contents

 The Multi-Disciplinary Design System 12

Table of Contents

 4.4.1.2. Functional Flow Block Diagrams 101
 4.4.2. Formulation Modeling Languages 105
 4.4.2.1. Unified Modeling Language 105
 4.4.2.2. System Modeling Language 112

 5. Modeling

 5.1 What is a Model? 117
 5.2.The Mathematical Model 118
 5.2.1 Elements of Mathematical Models 119
 5.2.2 Constructing Mathematical Models 121
 5.2.3 Types of Mathematical Models in Design 124
 5.3. Synthesis Models 127
 5.3.1 What is a Synthesis Model? 127
 5.3.2 The Synthesis Model Structure 128
 5.3.2.1 Algorithms in design 128
 5.3.2.2 Parameters 129
 5.3.2.3 Design Relationships 132
 5.3.2.4 Formal Grammars 135
 5.3.3 Computational Representation of Synthesis Models 149
 5.3.4 Modeling Variation 155
 5.3.4.1 Synthesis Design Vector 155
 5.3.4.2 Solution Space 156
 5.3.4.3 Knowledge and Performance Encoding 160
 5.4 Analysis Models 163
 5.4.1 What is an Analysis Model? 163
 5.4.2 Model classifications based on the nature of model 164
 5.4.2.1 Qualitative and Quantitative Models 165
 5.4.2.2 Continuous and Discrete Models 166
 5.4.2.3 Deterministic and Stochastic Models 166
 5.4.2.4 Static and Dynamic Models 167
 5.4.2.5 Linear and Nonlinear Models 168

 5.4.3. Analysis Algorithms 168
 5.4.3.1 Theoretical Models 170
 5.4.3.1.1 Analytical Models 170
 5.4.3.1.2 Numerical Models 172
 5.4.3.2 Approximation Techniques 183
 5.5 Evaluation Models 192
 5.5.1. What is an Evaluation Model? 192
 5.5.2 Single and Multi Objective Evaluation and Optimization 193
 5.5.3 Multiobjective Methods 195
 5.5.3.1 Decision Making before Search 197
 5.5.3.1.1 Method of Weighted-Objectives 197
 5.5.3.1.2 Utility 199
 5.5.3.2 Search Before decision making 200
 5.5.3.2.1 MOGA 203
 5.6 Optimization Models 205
 5.6.1 What is an Optimization Model? 205
 5.6.2 Mathematical Formulation. 206
 5.6.3 Classification of Optimization Problems 207

 The Multi-Disciplinary Design System 13

Table of Contents

 5.6.3.1 Based on Constraints 208
 5.6.3.2 Based on Design Variables 209
 5.6.3.3 Based on nature of objective function 209
 5.6.4 Classification of Optimization Algorithms 211
 5.6.4.1 Deterministic Algorithms 212
 5.6.4.1.1 Derivative-Free Methods 212
 5.6.4.1.2 Gradient Methods 218
 5.6.4.2 Heuristic Algorithms 223
 5.6.4.2.1 Evolutionary Algorithms 223
 5.6.4.2.2 Simulated Annealing 229
 5.6.4.2.3 Tabu Search 231

 6. Integration

 6.1 What is Integration? 233
 6.2 Interface Design 234
 6.3 Module Integration Modes 237
 6.3.1 Middleware 238
 6.3.1.1 Encapsulation (Wrappers) 241
 6.3.1.2 Web Services 243
 6.3.1.2.1 Extensible Markup Language (XML) 244
 6.3.1.2.2 SOAP 245
 6.3.2 Integrated Computing Environments 246
 6.3.2.1 The One-Software Approach 247
 6.3.2.2 Problem Solving Environments 247

 7. Exploration

 7.1 What is Exploration? 253
 7.2 Pre-Search 254
 7.2.1 Parameter Studies 254
 7.2.2 Design of Experiments 256
 7.2.2.1 Factors, Levels and Responses 257
 7.2.2.2 Treatments 258
 7.2.2.3 Effects 258
 7.2.2.4 Full Factorial 259
 7.2.2.5 Fractional Factorial Design 260
 7.2.3 Latin Hypercubes 261
 7.2.4 Orthogonal Arrays 263
 7.3 Post- Search 264
 7.3.1 Sensitivity Analysis 264

 8. The Multi-Disciplinary Design System (MDDS)

 8.1 What is MDDS? 265
 8.2 MDDS Framework 266
 8.2.1 Decomposition 268
 8.2.2 Formulation 270
 8.2.3 Modeling 274
 8.2.3.1 Synthesis 275
 8.2.3.2 Analysis 277

 The Multi-Disciplinary Design System 14

Table of Contents

 8.2.3.3 Evaluation 277
 8.2.3.4 Optimization 279
 8.2.4 Integration 281
 8.2.5 Exploration 283
 8.3 System Evolution 285
 8.3.1 Complexity 285
 8.3.1.1 Multi-Level 286
 8.3.1.2 Multi-Module 287
 8.3.1.3 Multi-Variable 287
 8.3.1.4 Multi-Resolution 288
 8.3.1.5 Decoupling 289
 8.3.2 Adaptability 290
 8.3.3 Optimality 292
 8.3.4 Time 293
 8.4 System Behavior 295
 8.4.1 Performance Driven Design 295
 8.4.2 Collaborative Multidisciplinary Perspective 297
 8.4.3 Emergence 298
 8.5 MDDS Team and Environment 300
 8.5.1 MDDS Team 300
 8.5.2 MDDS Environment 303

 9. Experiments
 9.1. Experiment1 | Level 1 305
 9.1.1 Concept 305
 9.1.2 Decomposition 306
 9.1.2.1 Component Decomposition 306
 9.1.2.2 Aspect Decomposition 306
 9.1.2.3. Development Decomposition 307
 9.1.2.4. Activity Decomposition 307
 9.1.3 Formulation 308
 9.1.4 Modeling 310
 9.1.4.1 Synthesis Modules 310
 9.1.4.2 Analysis Modules 314
 9.1.4.3 Evaluation Modules 322
 9.1.4.4 Optimization Modules 324
 9.1.5 Integration & Exploration 327
 9.2 Experiment 1 | Level 2 330
 9.2.1 Design Concept 330
 9.2.2 Decomposition 332
 9.2.2.1 Component Decomposition 332
 9.2.2.2 Aspect Decomposition 332
 9.2.2.3 Development Decomposition 333
 9.2.2.4 Activity Decomposition 333
 9.2.3 Formulation 334
 9.2.4 Modeling 336
 9.2.4.1 Synthesis 336
 9.2.4.2 Analysis 339
 9.2.4.3 Evaluation 342
 9.2.4.4 Optimization 344
 9.2.5 Integration 344

 The Multi-Disciplinary Design System 15

Table of Contents

 9.2.6 Exploration 346
 9.2.6.1 Experiment 1 346
 9.2.6.2 Experiment 2 350
 9.2.6.3 Experiment 3 353
 9.3 Experiment 2 | Level 1 357
 9.3.1 Design Concept 357
 9.3.2 Decomposition 357
 9.3.2.1 Component Decomposition 357
 9.3.2.2 Aspect Decomposition 358
 9.2.2.3 Development Decomposition 358
 9.3.2.4 Activity Decomposition 359
 9.3.3 Formulation 360
 9.3.4 Modeling 362
 9.3.4.1 Synthesis 362
 9.3.4.2 Analysis 364
 9.3.4.3 Evaluation 368
 9.3.4.4 Optimization 369

 10. Conclusion

 10.1 Thesis Summary 383
 10.1.1 Decomposition 383
 10.1.2 Formulation 383
 10.1.3 Modeling 384
 10.1.4 Integration 388
 10.1.5 Exploration 389
 10.2 Thesis Contributions 389
 10.2.1 A Computational Design System Model 390
 10.2.2 A Multidisciplinary Design System Model 391
 10.2.3 An Evolutionary Design System Model 391
 10.2.4 An Adaptable Design System Model 393
 10.2.5 A Generative Performance-Driven Design System Model 394
 10.2.6 A Design System Model with Emergent Behaviors 394
 10.2.7 A Model that Reduces Design Iteration Time 395
 10.2.8 A Model that Redefines the Design team and Studio 396
 10.2.9 A Design System for Integral and Modular Architectures 396
 10.2.10 A New Approach to Building Civic Architecture 397
 10.3. Limitations and Difficulties 397
 10.3.1 Synthesis Complexity 397
 10.3.2 Analysis Representation 397
 10.3.3 Multi-Level Optimality 398
 10.3.4 Evaluation Visualization 398
 10.3.5 Algorithmic Exploration 398
 10.3.6 Setup Time 399

 Figures List 401

 Tables List 412

 Bibliography

413

 The Multi-Disciplinary Design System 16

Table of Contents

Introduction

The Multi-Disciplinary Design System 17

 1.1. Motivation

 A design process is highly dependent on the available tools, and at
the same time, the design processes and tools have a strong impact
on the designed artifact. Both computer users and non-users share
the belief that computers have had, and will continue to have, a
significant and deep influence on design; whether that influence is
desirable or not is debatable.

We know that computers can be used in a diligent manner that
enables humans to surpass their physical limitations. Computational
design systems have already been developed for the purposes of
automation and design assistance. These systems free the designer
from various concerns about effort, labor or complexity.

Descartes and Kant discuss issues relevant to the potential of
machines to exceed human limitations. Descartes introduces a
significant and intriguing position. Descartes’ question “how can a
designer build a device which outperforms the designer’s
specifications?” (Cariani, 1991). Kant on the other hand inquired,
“How can work full of design build itself up without a design and
without a builder?” (Jaki, 1981).

Clearly the ability of a computational design system in releasing the
designer from various concerns owes basically to the power of the
human mind, which can invent devices that can exceed its own
limitations. However, can such actions be considered intelligent
behavior?

The dilemma of intelligent behavior in design systems is that such
intelligence is often not understood enough in the first place. Such a
dilemma might be resolved by either augmenting our understanding
or by producing systems that do not only automate design processes
but as Descartes stated go beyond the specifications given to them
(Cariani, 1991). The latter is the approach pursued in this thesis.

1. Introduction

Introduction

The Multi-Disciplinary Design System 18

 1.2 Challenges in Computational Design Systems

 Design involves solving what Herbert Simon terms an ill-structured
problem (Simon, 1973). An ill-structured problem is one that cannot
be solved by a linear chain of reasoning derived from the problem
statement. Furthermore, it might not have a unique solution but a
multiplicity of solutions. These design problem characteristics imply
the need for many assumptions within the design process that can
only be verified after a solution is reached. Given the numerous
inputs that feed into design, it is not surprising that design presents
a technical challenge even for relatively well understood products
(Eppinger and Gebala, 1991). The problem is further complicated in
multi-disciplinary design by the need to satisfy each discipline’s
performance criteria. This makes computational design systems a
difficult area of study, where creating effective systems requires the
development of new ways to represent designs and evaluate their
different disciplines’ performance criteria collectively.

 Recent possibilities facilitated by advancements in computational
power and new developments in computer-based modeling and
analysis methods, such as finite element analysis (FEA),
computational fluid dynamics (CFD), visualization, process simulation
and others, have enabled the simulation of design performance in
virtual environments. This provided designers and engineers with
information that can assist in some decision making (Paydarfar,
2001). However, these design models are usually discipline specific
and hence lack the ability to supply sufficient understanding of the
possible tradeoffs between different disciplines. Therefore the
design insight gained through these tools and technologies remains
limited and their potential to enhance and inform the design process
has not been fully realized.

 Design is a complex activity requiring knowledge spanning many
different domains. Even the most rudimentary design activities
demand scientific knowledge, engineering skills and artistic
creativity. Many real-world design problems cannot be modeled by
one single model. Systems like aircrafts, automobiles or skyscrapers
consist of continually and mutually interacting subsystems. The
behavior of such complex systems and products is controlled by a
variety of physical phenomena that are analyzed by different
disciplines and that interact at the same time. Therefore, they
require using groups of complementary tools and models that
integrated together can describe the whole process (Yilmaz and
Oren, 2004; Zeigler et al., 2000). However, there are often
integration-related difficulties in multidisciplinary computational
design, especially regarding information gathering, flow and

Introduction

The Multi-Disciplinary Design System 19

translation.

 Given that computer-aided design tools produce more data than
conventional methods, a large amount of information will
accumulate during the design process. Furthermore, the complexity
with which this information flows contributes significantly to the
difficulty of computational design systems. Examples of such
complexities include information circuits, in which the information
flow within a design activity is circular. These information circuits are
a consequence of design iteration in which decisions are revised due
to incomplete or imperfect available information. It is thus important
to reduce the time and effort that computational design systems
require to integrate and coordinate information in order to complete
design iteration (Eppinger and Gebala, 1991).

 In addition, transferring the design and analysis results from one
discipline to another group is not as straightforward as it may seem.
Sometimes it is required to convert the results of one group or
model into a form that others can use. This can take the form of
simply translating the syntax of one program output into another
program input but it also can get more complex, such as the
interpolation from a finite element structures grid to an aerodynamic
analysis mesh.

 With the integration and automation of many discipline models, data
management issues such as data architecture, data configuration
control, data deletion, data translation, data quality, and data access,
will present a challenge to the whole integration process. A lack of
robust integration of design discipline models adds a programmatic
cost that often reduces the sum of each model’s individual benefits.
Therefore, the effective management and exchange of information
among different disciplines is necessary in order to realize expected
cost, time and quality benefits. Achieving this requires better
software technologies as well as more active planning,
communication and synchronicity. This is particularly difficult for
non-colocated models, tools and teams.

 Currently many designers spend most of their time trying to manage
design information rather than performing actual design activities.
The amount of time spent in generating and evaluating alternatives
using computational design models and tools forces many designers
to use these methods for validating a selected alternative rather
than exploring and quantitatively analyzing multiple alternatives and
speculative scenarios. This leaves a wide range of the design space
unexplored. This unexplored space often comprises better
performing solutions than others ever previously considered (Shea

Introduction

The Multi-Disciplinary Design System 20

et al., 2005).

 As mentioned earlier, design of complex systems and artifacts
depends on diverse design and engineering domains; these design
problems usually comprise conflicting objectives. This constitutes
another design challenge. To overcome this there is a need to
support the rapid generation and evaluation of design alternatives to
provide satisfactory design space search.

 In regards to the challenges mentioned above, some progress has
been made in both the processes involved with multidisciplinary
design as well as the development of promising technologies that
support the design process.

 In 1985 Dr. Siu Tong, a graduate from MIT working at General Electric
Corporate Research and Development Center, and his team
deployed a generic engineering design management and
optimization tool called the “software robot”. The purpose of this
software shell was the automation and integration of simulation
models to provide optimal designs with special focus on the design
and analysis of aircraft engines. This was later developed into
“Engineous” which automates the process of running simulation-
based design systems (Tong, 2001; Hedberg, 2005). The main
concept behind this tool was performing manual iterations which are
typically undertaken by engineers in the design process.

 This and many similar efforts were developed in the aerospace
industry for multidisciplinary design analysis (MDA) in which
mathematical analysis models and tools and their integration and
automation were utilized leading to an enhanced understanding of
the design performance.

 Using centralized databases and associated management systems
contributed to resolving complex interconnections among multiple
models that exchange large amounts of data. Furthermore, more
vigorous component management tools are applied to smaller
interacting computation-intensive components and applications.
These are driven by the recent “component ware” focus in the
software industry, in which systems offer generic tools to manage
interacting software components.

 Based on the success in MDA, many attempts were made by the
aerospace industry to link MDA with advanced optimization
techniques and algorithms. This was driven by the need for strict
integration between vehicle components in order to meet tough
performance requirements. This necessity of integration in the
context of tight performance coupling between system components

Introduction

The Multi-Disciplinary Design System 21

posed a real challenge for traditional design paradigms. The
aerospace industry addressed these challenges by developing
automated multidisciplinary design optimization (MDO) (Bowcutt et
al., 2004).

 MDO provides many powerful techniques for exploring very large
design spaces and obtaining optimal solutions in large trade-space
situations (McManus et al. 2004). MDO methods are especially useful
in preliminary design activities which comprise multidisciplinary
interactions and aim at achieving a design through rational trade-offs
that satisfy constraints and at the same time maximize some
objectives (Kroo, 1997a).

 Figure 1.1:

Aircraft Design
Optimization

Framework Using
MDO. Adopted from
Martins, J. MDO Lab,

University of Toronto

 MDO in essence is a formalization of the design process that
promotes careful and explicit problem formulation. This often
creates a barrier to MDO application, but in general it can decrease
the probability of costly redesign later on in product development.
Figure 1.1.

Introduction

The Multi-Disciplinary Design System 22

MDO has been applied in many design problems. Examples of such
applications were demonstrated in commercial transport aircraft
research and design at Boeing and McDonnell-Douglas (Liebeck et
al., 1996). This work resulted in the McDonnell-Douglas Blended
Wing Body Concept (BWB), which constituted a non-traditional
solution to the large subsonic transport problem. The BWB is an
unstable tailless aircraft that has its passengers inside the center
wing section and exploits boundary layer ingestion for improved fuel
economy. In this design, many disciplines were tightly tied together,
such as aerodynamics, structures, propulsion, stability, and control.
This made the multidisciplinary analysis and design approach much
more significant. Figure 1.2.

Figure 1.2:

MDO Framework for
Blended Wing Body

Concept
(de Weck and

Willcox, 2005).

 The processes and technologies mentioned above have clearly
advanced our understanding of computational design. They have
attempted to address problems involving multi-disciplines as well as
the use of several analysis models. They have also developed
promising technologies that handle issues of integration, the
management of several conflicting objectives as well as proposing
methods for searching vast design spaces. However a few
shortcomings still remain.

 The design synthesis capabilities of such systems remain rudimentary
even with the use of sophisticated CAD software. Although
parametric models are powerful tools, capable of generating vast
design spaces. Most of MDO application in literature demonstrates

Introduction

The Multi-Disciplinary Design System 23

simple dimensional parametric synthesis models. Within such
examples the designer fixes topological variations of artifacts or
elements, and the optimization merely varies dimensionality. Clearly
better methods should be used for generating more varied design
spaces. This will presumably enable multidisciplinary design teams
to formally explore the performance of many more design
alternatives, which should lead consequently to more novel designs
and enhanced performance.

 Another shortfall of current methods and technologies such as MDO
is that they are restricted in their ability to evaluate the nature of
evolving design requirements and how they might change during
development and operation. Most work on MDO does not take into
consideration the evolution of design complexity. Instead it deals
with the problem of minimizing or maximizing a specified function
with respect to a specified set of design parameters.

 Design descriptions change as projects progress. Synthesis and
analysis methods as well as constraints have to evolve consequently.
A design cannot be described at the level required for manufacturing
at the launch of the project. Due to this evolution, the complexity of
both the design description of an artifact and the corresponding
design models increase as design progresses.

 Furthermore, the design technologies discussed focus on
quantitative analysis and on optimization and searching for optimum
solutions. However, these technologies do not take into account
qualitative attributes of the design. An optimum solution
quantitatively might not necessarily be the best solution. Better
exploration of the design space might reveal solutions with better
qualitative merits.

 1.3 Research Methodology

 In response to the challenges mentioned so far, the thesis will aim at
developing a framework that employs computational design
techniques that can improve the design and development of
multidisciplinary complex systems and artifacts. To help develop a
foundation and a theoretical discourse an investigation of theory,
both of design science and methods and of systems theory, will be
necessary. Later the framework for developing a multidisciplinary
computational design system will be proposed. Along the way,
knowledge from different domains will be sought to support the
presented approach.

 Many view design as a mysterious activity that does not lend itself to
scientific examination, but that is not the case. Publications on

Introduction

The Multi-Disciplinary Design System 24

design methods date back to Roman times, particularly by Vitruvius
(Gero, 1990). Design research continued and led to design thinking in
the 19th century that articulated design as a process (Britt, 2000). In
the 1960s major design research programs were also established.
Further efforts led to information-processing models which were
based on AI principles. These principles provided a momentum for
renewed research into design in its various aspects (Simon, 1973;
Coyne et al., 1990).

 Designing is an activity that occurs with the prospect that the
designed artifact will operate in both the natural and social worlds.
Both these worlds introduce constraints on the variables and their
associated values. As a result, design in this context can be viewed as
a goal-oriented, constrained, decision making activity (Gero, 1990).
Design can also be seen as an evolutionary process that evolves over
time. Such a process can assist in handling design complexity by
breaking the design into stages that move from the simple and
abstract to the more complex and concrete.

 Recently systems theory also provided a significant view on the
process of system design, architecture and structure. It provides a
framework for the description of several groups and objects that act
in concert to produce some result. It investigates the principles
common to all complex entities and the models which can be used to
describe them. Both the computational software tools used for the
purpose of design and the complex designed artifacts produced are
considered systems. It follows that in order to better understand
them, we need to understand systems and systems architecture.

 As the title suggests, this thesis attempts to develop a Multi-
Disciplinary Design System (MDDS) framework that would enhance
the design of complex systems and artifacts through an efficient
process. The framework that will be presented supports the design
of multidisciplinary complex systems and artifacts within a variety of
domains.

 This framework would embrace and integrate diverse areas of
research such as design science, systems theory, process modeling
techniques, generative synthesis algorithms, multidisciplinary
analysis, optimization theory, data management and integration, and
design space exploration techniques. In addition the MDDS
framework supports the exploitation of a group of emerging design
computing technologies and software products to accomplish
design and performance benefits.

 The MDDS framework is a generic framework that suggests a group
of systematic methodologies that eventually lead to a fully realized

Introduction

The Multi-Disciplinary Design System 25

and integrated design system. Within this system, complexities of
the design should be handled and the uncertainty of its evolution can
be managed. In addition, vast design spaces can be searched while
solutions are intelligently modified, their performance evaluated,
and their results aggregated into a compatible set of design
decisions.

 There are many stages however to generating the MDDS. These
stages involve decomposition, formulation, modeling, integration,
and exploration. These stages are not carried out in a sequential
manner, but rather there is a continuous need to move back and
forth to previous and subsequent stages. Figure 1.3.

 After a design team identifies a design concept at a certain level
which can best perform the design requirements, a top down
decomposition of the concept is implemented by each discipline
involved in the design. Complexity of a design can be managed or
solved through partitioning it into smaller elements and observing
each independently. There are different decomposition strategies
that can be applied to the design artifact as well as to the design
process.

 Design process modeling then follows through formulation,
providing an improved understanding of the process properties.
Formulation enables the visualization of data and control flow.
Different design processes and architectures can be compared and
evaluated. MDDS architecture is broken down into hierarchical levels
each of which comprises a group of cycles and modules at different
degrees of abstraction. An iterative cycle between decomposition
and formulation is required to reach an acceptable system
architecture.

 Mathematical models for each of the elementary modules are then
developed. Each module represents a design activity that is
formalized into computational models. These include synthesis,
analysis evaluation and optimization modules which are later
connected together in order to automate the process of design
search.

 One of the main challenges presented earlier is adequate design
generation, also known traditionally as synthesis. Through several
attempts to shorten design cycles and getting more robust solutions,
design synthesis processes have been formalized. In the computer
age, formal design methodologies, together with algorithmic
descriptions, could be used to obtain automatic design synthesis
while handling problems that might not be open to solution by the

Introduction

The Multi-Disciplinary Design System 26

unaided human mind.

 Therefore, within the proposed framework the design concept will
be decomposed into a set of synthesis models by extracting design
intentions and formulating a collection of design variables,
parameters, rules and algorithms. This mode of representation and
formalism can be used within a computational environment to breed
new design configurations.

 Analysis models and simulations are then used to predict the
behavior and performance of a specific design. An analysis model
infers from a design solution characteristics that are relevant to a
particular discipline. A design problem usually combines different
disciplines, with each discipline developing one or more analysis
models. MDDS depends on validated analysis algorithms to verify the
robustness of the process.

 In order to enhance the level of automation in the process,
optimization can be introduced. In case a specific design does not
meet the original design requirements, it is modified and evaluated
again in a search process for the best design possible, thus
reformulating the design configuration.

 Optimization models are design space search mechanisms.
Searching the design space entails finding the best solution(s) within
a domain of feasible solutions. An optimization model seeks to
minimize or maximize an objective function by varying the values of
design variables within an allowed domain. The choice of an
appropriate search algorithm depends on several factors including
the design synthesis model, the nature of the analysis models, the
number of design variables, the existence of constraints, and the
linearity of either the design variables or constraints.

 In single objective optimization, the search direction can be well
defined and a single solution, if it exists, could be found. However, in
the real-world, decision-making problems are usually too complex
and ill-defined, and have several possibly contradicting objectives.
This implies that there is no single optimal solution but rather a
whole set of possible solutions of equivalent quality (Abraham et al.,
2005). Therefore, there is a need for evaluation models that can help
in making decisions in the presence of trade-offs between conflicting
objectives. As computational optimization processes evolve by
generating and evaluating multiple design variations, they result in a
group or ‘point cloud’ of optimized designs from the selection of
good designs can take place based on design performance or other
design viewpoints (Shea and Luebkeman, 2005).

Introduction

The Multi-Disciplinary Design System 27

 Figure 1.3:

Proposed Framework
for the

Multidisciplinary
Design System

(MDDS)

 Through a bottom up approach all the mathematical models that
were developed as software components and modules are
connected into a data flow network that includes clusters and
subsystems. Software integration tools are used to satisfy the
requirements of the MDDS process through efficiently automating
the exchange of module information. The end result of a typical
MDDS process is an integrated system model.

 MDDS also supports the exploration techniques of the design space
to help the lateral thinking among designers and to better describe
and understand the complex relations between design variations
and performance trade-offs. The MDDS can be continuously adjusted
through several process iterations in order to investigate the
influence of different parameter modifications. This aids designers
by enhancing multidisciplinary negotiations which hopefully lead to
better design quality.

Introduction

The Multi-Disciplinary Design System 28

 While MDO techniques work on turning down the tradespace
complexities into optimal solutions, the eventual goal of MDDS is to
comprehend the tradespace itself, involving as much complexity as
can be used by decision makers. This represents an alternate
approach to MDO, which at the same time does not recognize
qualitative design aspects.

 The resulting MDDS is described by an evolutionary model moving
from simple and generic ideas into further complex and detailed
ones throughout the process. The system model is a dynamic and
complex whole, interacting as a holistic structured functional unit.
The system emergent properties are not detectable through the
properties and behaviors of its modules, and can only be enucleated
through a holistic approach. The solution found by this system is
expected to be superior to the design found by solving and
optimizing each discipline sequentially, since it can exploit the
interactions between the disciplines.

 The MDDS approach introduces a scenario where the idea that
performance drives design is clearly identified. Performance based
design, as a promising design paradigm, provides the basis by which
design is guided through performance. The hope is that by
incorporating the MDDS designers can gain a marketing edge
through enhanced design quality and performance and improved
collaboration among multidisciplinary design teams that would lead
to reduced design time and cost.

 In today’s increasingly competitive market, design solutions that
merely meet minimum project requirements are no longer
guaranteed to prevail. Solutions must be cost-effective and
generated through efficient multidisciplinary processes (Carty, 2002).
An effective evaluation of these solutions involves therefore the
integration of multiple disciplines. MDDS allows for identifying
counter-intuitive solutions and functions of multiple design
disciplines. Resultant integrated system models in MDDS are
specifically tailored to problems in hand.

 The concepts introduced in this thesis offer definitions that can be
further enhanced. The computer products and experiments will act
as system prototypes that can be used as starting points and
developed further for more robust systems.

 The prototypes that will be presented will focus on the early stages
of design development. These include stages of conceptual and
preliminary design. I will explore these stages as they are typically
where most innovations and technological breakthroughs take
place. At the same time, they are also where expensive, threatening

Introduction

The Multi-Disciplinary Design System 29

and hard to fix mistakes can occur. Major design solution approaches
and design decisions are determined at the end of these stages.
These decisions usually determine around 80% of the ultimate
program cost and schedule (INCOSE 2002). This occurs due to the
fact that the early design stages are where multidisciplinary trades
matter the most. It is also where designers realize the significance of
interdisciplinary relations and interactions, and where MDDS is highly
expected to offer the most unambiguous short-term benefits.

 Although the MDDS framework is domain-independent, prototypes
will be developed for exploratory building design. I hope this will
demonstrate the potential of such a computational design system
and will provide a proof of concept for the framework presented in
this thesis.

 1.4 Thesis Structure

 In his famous 1956 paper, the cognitive psychologist George A. Miller
showed many coincidences between the channel capacity of human
cognitive and perceptual tasks. The effective channel capacity is
normally equivalent to a number between 5 and 9 equally-weighted
error-less choices, which represents 2.80735 bits of information on
average. Miller, not drawing any strong conclusions, hypothesized
that the recurring sevens might represent something deep or just be
a Pythagorean coincidence (Miller, 1956).

 Following Miller’s hypothesis, and given my own limited capacity, I
have decided to loosely partition the thesis into eight chapters (not
counting the introduction and conclusion), the contents of which
intersect necessarily (figure 1.4). The chapter descriptions follow.

 1. Theoretical Background. This will provide a literature review of
design science theories of interest as well as a background on the
emergence of system thinking and system theory and its influence
on the design process.

2. Decomposition. This represents the first step of the MDDS
framework and proposes approaches for partitioning design artifacts
as well as design processes.

3. Formulation. This section will present some of the methods used
for process modeling in different disciplines with an emphasis on
methods used in both system and software engineering. The MDDS
architecture formulation will be discussed later in the MDDS
framework.

4. Modeling. Here the concept of mathematical modeling for design

Introduction

The Multi-Disciplinary Design System 30

will be presented. Each model’s input, output, structure and
algorithms will be introduced. These models will include synthesis,
analysis, evaluation and optimization.

5. Integration. This chapter will address issues of integrating
different distributed models and components for building the MDDS.
Several software technologies will be discussed and presented.

6. Exploration. After the MDDS has been built we can start
experimenting and exploring the design space. This chapter will
present some methods that can be used to better understand the
design space and the solutions generated.

7. The MDDS Framework. This chapter will present a framework for
building the MDDS. All the five stages will be incorporated in this
framework. The system behavior and evolution will also be
discussed. In addition, implications of the MDDS on the design team
and the computational design environment will be presented.

8. Experiments. This chapter will showcase the prototypes
developed using the MDDS. It is intended to give a sample of
successful applications of the described technologies.

 The following chapters will attempt to address and answer some of
the following questions:

What is design science?
What are systems and systems theory?
How can we decompose the design artifact and the design process?
How will we formulate the design system architecture?
How will we model the different design activities?
How will we integrate the different models into a coherent system?
How will we use the system to assist in exploring the design space?

Furthermore, the MDDS is expected to pose new challenges such as:

What is the expected behavior of the MDDS?
How will it evolve with the evolution of the design?
Will it require new design tools and environments?
How will it affect the structure of the design team?

Introduction

The Multi-Disciplinary Design System 31

Figure 1.4:

A simplified network
that includes some

of the topics that
compose the MDDS

discussed in this
thesis.

Introduction

The Multi-Disciplinary Design System 32

 The Multi-Disciplinary Design System 33

 Theoretical Background

 2.1 Design Science

 It was argued by Simon (1973) that a science of design could exist
someday where design can be discussed in terms of well-established
theories and practices. Simon claimed that design should move
through multiple stages from its then current pre-science stage in
order to become a mature science. He described that mature stage
as acquiring a state of discipline where a consistent body of scientific
research and practice exists and encompasses law, theory,
application, and instrumentation (Kuhn, 1970).

Dixon (1987) argued that in engineering design particularly, both
education and practice are led mostly by expert empiricism and
intuition and specialized experience without sufficient scientific
foundation. He stated that design in this case is very different from
disciplines such as physics, chemistry, or biology where theories can
be tested by controlled experiments. He argued that design was
more complex than other fields because it involved not only people
and organizations, but also the natural physical world and the in-
progress design, which refers to the to-be-manufactured-sold-and-
used physical artifact of a system. This complexity also lies in design
being a process, where processes are not the typical subjects of
theoretical formulations.

Hongo (1985) defines a design science or a scientific study of design
activities as a collection of logically connected knowledge such as
design methodology and design technique. A detailed definition
implies that design theory is a system of methodical rules that
identify the procedures possibly expected to conduct a planned
route towards achieving a desired goal. He classifies types of rules
according to methods of thinking, such as intuitive or discursive, and
according to goals and applications, such as methods for solution
search, evaluation, and calculation.

Coyne et al. (1990) provide another definition of science and design.
As opposed to science, which formulates knowledge through
deriving relationships between observed phenomena, design can be
described as an action that starts with intentions and uses available

2. Theoretical Background

 The Multi-Disciplinary Design System 34

 Theoretical Background

knowledge to reach a specific entity whose properties should meet
those original intentions. The role of design is defined as that which
utilizes that knowledge to transform a formless description into a
specific description of form. This description, known as the design
solution, is generated pragmatically according to the capacity of
knowledge available to the designer. It is a compromise, rather than
an ideal or correct solution, that meets to some extent the original
intentions.

 2.1.1 Design as an Object and a Process

 All artifacts in the surrounding environment are the result of
designing. Design can imply many meanings. The word “Design” can
be both a noun and a verb (figure 2.1).

As a noun it can refer to an artifact or object that is a system usually
defined by its geometric configuration, the materials used, and the
task it performs (Papalambros and Wilde, 2000). According to
Bahrami and Dagli (1994), design involves the development of plans
or schemes of action. Their definition implies that design can be that
developed plan or scheme, whether it is just embedded in the mind
of the designer or externalized as a drawing or model.

As a verb, design can refer to the actual decision-making activities or
processes involved in generating that artifact (Eggert, 2004). These
processes determine an object’s form according to the required
functions. Simon (1973) viewed design as a problem-solving process,
a natural human activity that involves searching through a state
space. The states in this space represent the design solution.

 Figure 2.1:

Design can be
considered both as

an object and a
process.

 Coyne et al. (1990) define design as a purposeful activity that

involves conscious efforts to reach a state of affairs in which specific
characteristics are apparent. In this regard, design is initiated by
recognizing the basic problem requirements. Being discontent with
the existing state of affairs, the designer then becomes conscious
that some sort of action should occur to correct the problem.

Louis Kahn, the famous architect, described design as a process
where the inspirational forms of thinking and feeling generate form

 The Multi-Disciplinary Design System 35

 Theoretical Background

realization (Bahrami and Dagli, 1994). To Kahn, thinking was
considered a tool by which he would articulate feeling, his ideal
mode of functioning, into expressive shape. He believed that the
design process was understood intuitively by the creative mind as a
single unified and consistent whole, as he used to synthesize
elements from many sources into this whole rather than focusing on
details of specific problems. He would pay more attention and dive
into the core of the matter rather than going into finer-grain
problems that were not really required at this point (Tyng, 1984). The
question then becomes how a design evolves from fuzzy mental
images and abstract generic concepts into a crisp design.

Design as a process is generally described as a systematic approach
where the design process, as part of generating a product, is
partitioned into general working levels. This allows for a transparent
design approach that is both rational and independent of any
particular field or industry. In this general approach, the problem is
first analyzed, understood and decomposed into sub-problems. Sub-
solutions are then generated and integrated to produce an overall
solution (Cross, 1989).

There are several methods, intellectual frameworks, and tools that
help support this process, including traditional engineering design
(Pahl and Beitz, 1991), axiomatic design (Suh, 1990), and product
design and development (Ulrich and Eppinger, 2000).

According to Papalambros and Wilde (2000) design is a complex
human process that cannot be easily or completely described or
understood. Therefore in the following chapters, will use models to
help us define and understand the design process. Models are
different from theories. According to Dixon (1987), a model does not
establish a theory, but rather the theory is established when model
behavior can be robustly explained through testing. Models then do
not explain certain phenomena or predict specific behaviors, and so
in a sense they are less ambitious than theories. They are however
content with the provided explanations and predictions of
phenomena, and can explain and sometimes replicate specific
aspects of design behavior (Coyne et al., 1990).

In building useful models, the mathematical relationships between
components are mostly required. It is easier for a designer to
describe how a specific product is designed than to translate his
behavior into a mathematical model unless a certain framework is
developed for that purpose. The process of building computational
models of design involves concepts from many disciplines such as
artificial intelligence and problem solving, such as space search
techniques, expert systems and neural networks, logic and fuzzy

 The Multi-Disciplinary Design System 36

 Theoretical Background

logic, object-oriented methodology database, and language theory
(Bahrami and Dagli, 1994). By implementing some of these concepts,
our proposed design system can be better defined, studied and
understood.

 Figure 2.2:

The proposed design
system should

imitate the design
process to produce

the artifact.

 As stated In the introduction, this thesis is concerned with creating a
computational design system that attempts to imitate the design
process to create the designed artifact (figure 2.2). Therefore, the
primary focus will be on the notion of design as a process rather than
design as artifact.

There is a relationship between the design artifact, which represents
the designed system, and the design process, which is represented
within the design system. We need to introduce a framework to map
between both the design process and object. Since the system
should lend itself well to computation, we need to build a
computational model that that can assist in the design process.

 2.1.2 Design Process Domains

 How does design as a process map between the stakeholders’ needs
and the physical embodiment of those needs in an artifact? To
understand this relation I will discuss briefly the Axiomatic design
theory.

The early ideas of axiomatic design, developed by Suh and his
colleagues at MIT, were first published in 1978 (Suh et al 1978), but
the framework was initiated with the publication of the first

 The Multi-Disciplinary Design System 37

 Theoretical Background

Axiomatic Design book by (Suh 1990).

The main motivation for establishing axiomatic design was primarily
educational. It aimed at providing a scientific basis for the field of
design in general (Suh 1990) to make the process of teaching and
learning design more systematic and generalizable, based on the
belief that designers should learn good decision making built on a
scientific basis, and that there are core axioms that govern the
design process.

Design has been described by Suh (1990) as the process of creating
product solutions that satisfy customer attributes through mapping
functional requirements in the functional domain into design
parameters in the physical domain. According to Suh (1990), design
thus is an interaction between what is to be achieved and how to
achieve it in four domains: customer, functional, physical and process
(figure 2.3). The success of the product in this sense especially in the
marketplace is determined by the degree to which the functional
requirements are met in the solution according to the decisions that
the designer made. In the design process, functional requirements
are considered negotiable aspects.

 Figure 2.3:

Four design domains
in the axiomatic

design (Suh 1990)

 The elements pertaining to each domain, mentioned earlier, are the
customer attributes (CAs), functional requirements (FRs), design
parameters (DPs), and process variables (PVs). The domain on the
left relative to that on the right indicates what the problems are, or
the objectives that are to be achieved. The domain on the right
denotes the solutions, or ways to achieve those objectives. So in this
case, CAs are to be satisfied by corresponding FRs that are the
results of mapping CAs from the customer to the functional domain
(Mullens et al., 2005). The general goal in any design problem is to
choose DPs that determine FRs which consequently maximize
satisfaction of the CAs that are subject to relevant design constraints
(Cunningham, 1998).

Several axioms were originally proposed (Suh et al. 1978), but later

 The Multi-Disciplinary Design System 38

 Theoretical Background

some were viewed as redundant and were eventually integrated or
completely removed. Suh (1990) identified two of these axioms as
fundamental, through examining common elements in good designs
related to products, processes, and systems. These axioms were
believed to provide designers with a tool that structures their
thought processes in early design stages.

The first axiom, known as the Independence Axiom, states that the
independence of FRs must be maintained, implying that design
decisions should be made without breaking the independence of
each FR from the other requirements. The FRs therefore must be
independent to each other and they should be reduced in number in
order to be just sufficient to characterize the design (Suh 1990;
Cunningham, 1998; Mullens et al., 2005). The strength of this axiom
comes from the fact that it encourages designers to look for
solutions that satisfy FRs independently, and so the issue of
managing interactions is resolved.

 Figure 2.4:

Zigzagging process
between functional

and physical
domains.

 The second design axiom, known as the Information Axiom, dictates
minimizing the information content related to the task of fulfilling
FRs in the design (Suh 1990; Cunningham, 1998; Mullens et al., 2005).
The design chosen from the pool of alternatives satisfying the first
axiom and at the same time comprising minimum information
content is thus considered the best design. Information content is
defined by axiomatic design as the log inverse of the probability of
success to satisfy the FRs based on both axioms (Suh 1990).

Two governing rules in general should be maintained according to
axiomatic design during this process in order to achieve good design.
The first one implies following the two design axioms discussed
earlier, while the second implies performing the zigzagging principle
during decomposition (Mullens et al., 2005).

The zigzagging principle, illustrated in figure 2.4, guides the
decomposition process from a high level to low detailed levels, thus
guiding designers to zigzag between domains when they design. In
the mapping between functional and physical domains, lower level
FRs should be derived from the higher level FR while taking into

 The Multi-Disciplinary Design System 39

 Theoretical Background

account the corresponding DP of the higher level FR. This means that
designers should decide the corresponding higher level DPs that
satisfy the FRs before the higher level FRs are decomposed into
further sub-requirements (Cunningham, 1998).

In figure 2.5, mapping at any level takes place as the functions are
assigned to discrete physical elements, shown by the arrows going
from left to right, implying that the architecture is dictated. The
physical solution is then utilized to guide decomposition in the
functional domain. This is denoted by the arrows that go back to the
functional domain horizontally and vertically only in the functional
domain.

 Figure 2.5:

Functional domain
and physical domain

hierarchies.

 Design is thus a process of mapping between domains which
develops a hierarchy from the system level to the detailed
component level. The term mapping here refers to the process of
translating customer needs into technical specifications, or
functions. These functions are then translated into physical design
characteristics or attributes, and then finally into process attributes
which generate the requirements for production (Cunningham,
1998).

Designers usually map many functions to one high level element of
the product, rather than decomposing functions and mapping them
to the associated physical elements.

The way by which the functional hierarchy maps to the physical
domain can be more complex than initially intended by designers.
This creates supplementary interfaces between physical elements
whose influence on function is almost impossible to predict.

It should be noted however that the mappings between the
customer and functional domains and physical and process domains
are loosely structured and defined, as opposed to the mapping
between functional and physical domains.

 The Multi-Disciplinary Design System 40

 Theoretical Background

 2.1.3 Design Process Evolution

 The design processes is an evolutionary process which occurs
between the time when a problem is assigned to the designer and
the time the design is passed on to the manufacturer (Dasgupta,
1989). During this period the design evolves and changes its form
(figure 2.8).

 Figure 2.6:

Short conception
design phase with

unequal distribution
of improved quality

and integrated
disciplines for
optimization.

 However, throughout this progression of design evolution, there is
an inherent relationship that is the core of all design development
processes: the inverse relationship between design knowledge and
freedom.

 Figure 2.7:

Life cycle-cost
committed versus

incurred by life-cycle
phase.

 As the design evolves, design freedom rapidly decays while
knowledge about the design object continuously increases. As the
process moves forward, designers gain knowledge but lose freedom
to act on that knowledge, as illustrated in figure 2.6. This has a key
effect on the control of life cycle costs which are determined by the
design concept and are very difficult to change significantly past this
stage, as illustrated in figure 2.7.

 The Multi-Disciplinary Design System 41

 Theoretical Background

Figure 2.8:

An example of a
building skin
component.

Knowledge about the
design is increased as

the design evolves
over time.

 Duvvuru et al. (1989) provided a classification of the design process
comprised of four categories: creative design, innovative design,
redesign, and routine design. In the creative design category, there is
no a priori plan for the problem solution. In this case, design is
considered as an abstract decomposition of the problem into levels
that represent choices for the problem components. The main focus
in this category is the transformation from the subconscious to the
conscious.

In the innovative design category, the decomposition of the problem
is known, but the alternatives for each of its subparts do not exist
and must be synthesized. Design can be an authentic or unique
combination of existing components. Duvvuru et al. argue that
creativity plays a role to a certain extent in this category. In the
redesign category, an existing design is altered in order to meet the
required changes in the initial functional requirements.

In the last category of routine design, there is an a priori plan of the
solution. The subparts and alternatives are known ahead as a result
possibly of either a creative or innovative process. This type of

 The Multi-Disciplinary Design System 42

 Theoretical Background

process deals with finding for each of the subparts the suitable
alternatives that satisfy the given constraints. Duvvuru et al. (1989)
show that the design process is more fuzzy, spontaneous and
imaginative at the creative end of the spectrum, while it is more
precise, crisp, predetermined, systematic, and mathematical at the
other end which represents routine design (figure 2.9).

 Figure 2.9:

At the creative end of
the spectrum, design

is very fuzzy. As it
moves to routine

design, it gets
precise, crisp, and

predetermined
(Bahrami and Dagli,

1994).

 2.1.4 Design Process Activities

 Human problem solving including design is done using an iterative
process (Simon, 1973; Asimow, 1962; Cross, 1989; Steadman, 1979).
Designs typically evolve through a cycle that involves a synthesis
activity and an analysis activity which is also known as the generate
and test cycle (Rowe, 1987).

There is a fundamental difference, however, between synthesis and
analysis design activities. To apply analysis, we are first provided with
well-structured information about the object under study, and then
we are asked to predict its behavior. This information is usually
related to the form of an object such as shape, configuration, size,
material composition, or even manufacturing processes. Through
studying basic sciences and mathematics, object behavior can be
modeled as a function of some input data. Predicted behavior in this
context is generally the solution to an analysis problem (Eggert,
2004).

In the design synthesis activity, information pertaining to the desired
function is provided, and the resulting solution to the design
problem is concerned with form. In this case, there are many
possible design solutions that can satisfy the desired function, and
therefore design synthesis problems can have more than one
solution, as they are more open-ended. There is no one structured
procedure that can guarantee that unique solution. This happens due
to the fundamental difference between analysis and design synthesis

 The Multi-Disciplinary Design System 43

 Theoretical Background

processes. Information about the object of design is ill-structured.

Research in design methods suggests that designers first generate
(or synthesize) a design proposal in response to the client’s brief
statement of requirements. After a proposal is generated, it is then
checked or analyzed. If the design does not fulfill the requirements, a
new design has to be synthesized (Cross, 1989). This happens
through a loop of refinement, which can be very complicated and can
turn out to be the most time-consuming part of the design process.
This continuous iteration and evolutionary process can lead to a
closed loop of decision-making, where refinements in one part of the
design result in modifications or problems in other parts (Cross,
1989).

Minsky suggests the need for an additional mechanism which he
terms the progress principle (Minsky, 1988). This is an optimization
activity that guides the search and refinement rather than blindly
generating all possible solutions. From this combined cycle, design
could be considered an optimization process, as stated by Simon
(Simon, 1973).

 2.2 System Theory

 2.2.1 System Concepts

 Papalambros and Wilde (2000) define a system as a collection of
entities that perform a specified set of tasks. For example, an
automobile is a system that transports passengers. Schmidt and
Taylor (1970) define a system as a collection of entities, such as
people or machines, which act and interact together toward the
accomplishment of some logical end.

Purposeful action is a key feature of any system. Sage and Armstrong
(2000) define a system as a group of components that work together
for a specified purpose. This implies that any system has to perform
specific tasks that achieve its purposes. Systems are sometimes
categorized in this context according to their ultimate purposes,
which could be service-oriented (such as an airport), product-
oriented (such as an automobile assembly plant), or process-oriented
(such as an oil refinery).

A system is shown to be very perspective-dependent, where
different components of the system could be grouped according to
different perspectives to build up different notions of systems (Sage
and Armstrong, 2000). In the engineering of the system, it is thus
important to carefully define the nature of the system, its exact

 The Multi-Disciplinary Design System 44

 Theoretical Background

scope of components as well as the interfaces to it.

Law and Kelton show that, in practice, the objectives of a particular
study determine what is meant by a system. The collection of entities
that constitute a system for a specific study may be only a subset of
the overall system for another. Law and Kelton thus define what is
called the state of the system, which is that group of variables that
describes a system relative to the objectives of a study at a particular
time (Law and Kelton, 1999).

A system in general has a group of basic characteristics. Any system
should satisfy certain functions and consist of objects that are the
physical or abstract parts, elements or variables within the system. It
also consists of attributes which define the properties of the system
and its objects, and internal relationships among its objects. In
addition, any system exists in an environment, such that a system
consists of a group of entities that affect one another within an
environment and build up a larger pattern that is different from any
of those initial entities.

In general a system includes the following features: wholeness and
interdependence (the whole is more than the sum of all parts),
correlations, causality, inputs/outputs, chain of influence, hierarchy,
self-regulation and control, interchange with the environment, the
need for balance/homeostasis, change and adaptability, and
equifinality. (Littlejohn 1998).

A useful approach to understand systems is system analysis. System
analysis was developed independently of systems theory. While
systems theory models changes in a network of coupled variables,
system analysis applies systems principles for the purpose of helping
decision makers with several problems pertaining to systems. These
include identifying, reformulating, controlling, and optimizing a
system. Systems analysis takes into consideration diverse objectives,
constraints, risks, costs, benefits and resources, and works to
identify possible courses of action.

A system usually operates under causality, where the system tasks
are performed due to some kind of stimulus or input (Papalambros
and Wilde, 2000). This implies that these inputs have a significant
effect on the system behavior. What actually constitutes an input or
output relies primarily on the viewpoint from which the system is
examined. Each systems viewpoint in general is based on a specific
level of knowledge of the components of the system and its internal
structure, the complexity of the system performance in relation to
the environment, in addition to other engineering and management

 The Multi-Disciplinary Design System 45

 Theoretical Background

issues. A system is analyzed at a specific level of complexity that
corresponds to the interests of the individuals studying it.

Usually designers perceive given problems subjectively in issues
related to purpose formulation, and the conceptualization of linked
system components that operate in constrained environments. It is
thus significant to identify a system that is relevant and responsive to
the problem being addressed. This can be achieved through several
concepts, such as system-environment boundary, black box
approach, component integration, and system state.

A system boundary around any subsystem is the entity that cuts
across the links with the system environment and determines the
input/output characterization. Figure 2.10 shows an example of a
building system boundary.

Boundaries are crucial to defining architecture as they identify the
deliverables and responsibilities of the different design teams, and at
the same time they define what exactly is fixed or constrained at the
boundaries. Anything that crosses that boundary must be facilitated
by an interface.

 Figure2.10:

The boundary around
an office building

system determines
its relation with the

environment

 The black box behavioral approach, represented schematically in
figure 2.11, is used when little or nothing is known about the
composition of a specific system or its internal connections. The
system is analyzed in terms of the black box system response to any
given input, where the system device is considered as an all-
embracing impenetrable black box (Meredith et al., 1985).

In many cases, it may be more suitable and convenient to consider a
system as a black box system although there may be partial
knowledge about it. This is due to the fact that in many design
situations, the relevant and required information is more related to

 The Multi-Disciplinary Design System 46

 Theoretical Background

system performance as a whole in terms of the relationships
between system inputs and outputs, rather than the complex
interrelationships among internal system components and their own
individual behavior.

 Figure2.11:

The black box
approach identifies

system performance
in terms of inputs and

outputs.

 Once a clear and explicit relationship exists between a group of
elements belonging to known input variables and another belonging
to required solution output variables, a systems problem can be
solved. The behavior of the black box system is depicted and
analyzed in terms of the changing values over time of both groups.
There is no need then for the knowledge of the internal structure of
the system components once the functional performance criteria for
the input-output behavior have been established.

In most design and engineering problems, the required solution is
achieved through the construction of a group of physically linked
components (that can be considered black boxes) that are
connected in a specific configuration. The system components in this
case consist of specifically designed and built-in functions and have
known attributes. The configuration that integrates the components
together, which denotes the component integration approach,
determines the intrinsic structure and behavior potential of the
whole system (Meredith et al., 1985). An important feature of this
approach is how interrelated problem and solution components
interact with each other. Aspects of a given problem are sometimes
a function of how these components interact (Sage and Armstrong,
2000). This approach is also applicable to design situations that deal
with work processes and planned sequential actions, and not only
physically connected components.

In the component integration approach, the whole is not simply an
aggregation of individual components. From a systems point of view,
it is important to distinguish between different components or
subsystems due to the complexity of the system. This is usually done
by organizing the different components into groups based on
function or another principle, such as organizing systems into
hierarchies.

Given that the behavior of a complex system changes frequently

 The Multi-Disciplinary Design System 47

 Theoretical Background

over time, systems engineers usually use the concept of the state of
a system for analysis and modeling purposes. State is a collection of
variables that can be considered a snapshot of a particular system at
an instant of time (Sage and Armstrong, 2000). The main interest of
the state theory approach is the description of the state of the
system and the detection of changes in the system state according
to new inputs. The effort lies in describing the internal responses of
the system in terms of a minimal consistent set of system indicators.

The state vector provides a simple approach to understanding
system behavior, as it denotes a set of reference variables that give a
descriptive measure of the system state at any given instant in time
(Meredith et al., 1985). Each reference variable is known as the state
variable of the system. The systems view of the state of an airport,
for example, can include variables such as the number of planes
waiting to land or takeoff, or the number of available parking spaces.
The system behavior then depends primarily on the changing values
of each of these variables, whether they are captured continuously
or at discrete times along the life of the system. The nature of a state
variable and the number of entries in the required state vector are
closely coupled with the purpose being modeled and the complexity
of the system being formulated. Choosing a set in particular out of
many variables enables the development of a system description.
Choosing a different set may allow a totally different system
description. For example, if the concern in the state of the airport is
enhancing passenger convenience, this would probably require
modeling parking spaces. If the concern however is enhancing air
traffic safety, car parking spaces would not be relevant, and
therefore would not be modeled (Sage and Armstrong, 2000).

 2.2.2 System Architecture

 Every system has an architecture, which in essence strongly affects
its behavior (Crawley et al., 2004). Architecture is significant in a
variety of disciplines and in many technical fields. The typical
connotation describes civil architecture of buildings, but the term
also extends to include physical products, engineering systems, and
infrastructures, in addition to informational artifacts such as
software and computer networks.

“Architecture” in Webster’s Online Dictionary is a “formation or
construction resulting from or as if from a conscious act,” or “a
unifying or coherent form or structure”.

Crawley (2003) describes a
generic architecture as “the conceptualization, description, and
design of a system, its components, their interfaces and relationships

 The Multi-Disciplinary Design System 48

 Theoretical Background

with internal and external entities, as they evolve over time”.

There are multiple definitions for “architecture” which are largely
dependent on the context in hand (Hastings, 2004). Different
disciplines look at architecture from different perspectives. Such
disciplines include product development, mechanical systems,
engineering systems and others. From a product development
viewpoint, for example, architecture is described by Ulrich and
Eppinger (2000) to be an “arrangement of the functional elements
into physical blocks”. In the engineering systems field, system
architecture is defined by the ESD Architecture Committee at MIT as
“an abstract description of the entities of a system and the
relationships between those entities” (Crawley et al., 2004).

They
also state that architecture, which embraces meanings such as an
“arrangement of entities and relationships between them” or as
“relationship between form and function”, represents the physical
embodiment that the designer finds in order to perform the required
functions of the design problem.

These definitions share many things in common. The basic common
characteristics of architecture include the description of the system
elements, the functional character of these elements, and the
structure of the interrelationships among them. Every discipline,
however, differs in terms of the specifics of what those parts are and
how accurately they are connected together. Another characteristic
involves the development of system concepts, which comprise
internal form and function, while taking into consideration at the
same time the holistic view and thinking out of the box (Crawley,
2003).

Defining an architecture for a system serves many goals, such as
abstraction, reducing the impact of continuous changes, and
facilitating communication (Zachman, 1987). An architecture
abstracts complex systems through describing simple models. This
abstraction enables the definition and control of interfaces and the
integration of system components. An architecture also enables
reducing the impact of changes to fewer steps especially in redesign
processes. It focuses on parts that require major change. As an
architecture offers multiple abstract views on the system, it provides
a means of communication during the design or re-design process,
where useful discussion occurs to represent the perception of each
communicating party of the problem in hand.

Perry and Wolf (1992) draw an analogy between system architecture
and the architecture of buildings. They describe how architecture
provides multiple views, abstractions, architectural styles, and how

 The Multi-Disciplinary Design System 49

 Theoretical Background

engineering principles and materials significantly affect the
architecture of a building. A building architect’s interaction with a
client versus a contractor for example, the architect provides
different views of the building in which there is a focus on some
specific aspect. He provides elevations and floor plans in addition to
scale models for the client in order to give him a good impression of
the building. The contractor however is provided with the same floor
plans in addition to structural views that provide detailed
information about diverse design considerations.

Architectures can arise within a variety of mechanisms (Crawley et
al., 2004). These include the deliberate design of a system from
scratch, the evolution of a design from previous designs with strong
legacy constraints, obeying regulations, standards, and protocols,
the expansion of smaller systems with their own architectures, or the
exploration of form and behavior requirements through dialogue
between architects and users.

 2.2.2.1 Form and Function

 Form

 The determination of form to satisfy and execute a required function
represents the essence of design. Eggert (2004) defines form as
what the product looks like, what materials it is made of, and how it
is made. He identifies the basic characteristics of the form of a
product to be shape, size, configuration, material, and the
manufacturing processes used to make the product.

Form, according to Crawley (2003), refers to the physical or
informational embodiment that exists or has the potential to exist.
Form represents the thing that is eventually implemented and
operated in a solution specific domain. Implementation here can
include manufacturing, building, writing, composing, etc. Operation
can refer to running, repairing, updating, etc.

Form can be represented as the sum of elements and structure,
where elements are segments of the whole of the form, and
structure denotes the formal relationships among the elements.

 Function

 Form is intimately related to function. The quotation by the famous
architect Louis Sullivan, “Form ever follows function”, supports this
idea that the form of an object is highly dependent upon the function

 The Multi-Disciplinary Design System 50

 Theoretical Background

it performs. Similarly function is associated with form and emerges
as form is assembled, as well as when different sub-functions are
aggregated together yielding what the whole system eventually
“does” (Crawley, 2003).

According to Eggert (2004), the function of a product is what it is
expected to perform. Crawley (2003) defines function as a product
or system attribute, conceived by the architect, that denotes the
activities, operations and transformations that cause, create or
contribute to performance and meet the required goals. Ideally,
function is expressed in a language that is solution neutral.

There are three fundamental entities, or functional building blocks,
that compose the media on which systems operate and function
(Kossiakoff and Sweet, 2002). These are information, material and
energy. Information refers to knowledge content and
communication. Material refers to the substance of physical objects,
while energy boosts the operation of the active system components.
The physical embodiment of individual functional elements is thus
usually configured through the construction of material, the control
of external information, and the power of a source of energy,
regardless of the primary function and classification. Information can
be further subdivided into two classes. The first class involves signal
elements that sense and communicate information, such as radio
signals. The second class involves data elements that interpret,
analyze, organize and manipulate information, such as computer
programs. This results in a total of four functional blocks. System
functions usually perform a purposeful alteration in some of the
characteristics of these building blocks. Therefore these blocks are
considered fundamental for identifying and categorizing the main
system functional units.

As our main concern is man-made architectures in complex systems,
it is important to understand that these systems have specific
primary functions, in addition to other properties known as ilities
(Crawley et al., 2004) which include adaptability, durability,
maintainability, flexibility, etc. Primary functions denote the
immediate value of a product or system, such as flying for airplanes,
delivering products for companies, and so on. Ilities have life-cycle
value that describes properties of “performing things well”.

Designing complex systems that accomplish all primary functions
and all ilities is inherently a complex task. There are often
compromises that have to be made when it comes to conflicts
between desirable short-term properties and life-cycle properties.
The system architecture strongly affects how ilities are achieved,

 The Multi-Disciplinary Design System 51

 Theoretical Background

how they internally interact with each other, and how they interact
with primary functions. These systems will require additional
resources, leading most probably to increased system complexity,
which can cast doubt on the benefits of these typical architectural
decisions. Their results may only be fully known in the future. De
Neufville et al. (2004) discuss some methods for assessing such
uncertainties and relevant precautions.

Another significant factor that can increase complexity is that
architectures may evolve over time, especially in prolonged systems
such as infrastructures. Systems vary in their response over time.
Some systems serve their intended function successfully throughout
the whole long life cycle. Other systems perform outstandingly with
time concerning the original function and handle more functions that
were not perceived in the initial design. Others do not fulfill the
original function and quickly run out of service, thus being unusable
for other functions.

System architects should develop systems that can adapt and grow
within the initial rules and structural arrangements in order to reduce
the unfavorable severe constraints that are inherited from the
original conditions.

 2.2.2.2 Architectures of Integrality and Modularity

 Mapping function to physical elements (Form) within hierarchical
structures is significant in design theory as discussed earlier. Ulrich
and Eppinger (2000) define two categories of functional mapping
related to product architecture, which refers to the scheme by which
functions are mapped to physical elements and the internal
interactions between those elements are defined. These categories
are modular architectures and integral architectures.

The basic characteristic of modular architectures is the relatively
strong and direct one-to-one mapping of functional elements to
physical elements. Since the role that interfaces play for each
function among the different physical elements is well defined,
modular products become more appealing. Moreover, individual
physical components can be designed relatively independently by
functionally decoupling them. Downstream integration throughout
the design process thus becomes less complex.

Integral architecture, however, involves a complex mapping of
functions to physical elements. There is no direct mapping and the
interfaces of physical elements acquire complex relations to
functions (Ulrich,1995). The consequent effects of element

 The Multi-Disciplinary Design System 52

 Theoretical Background

interactions on functions are hard to recognize, or incidental (Ulrich
and Eppinger, 2000). Functions in inherently integral products are
delivered in a coupled fashion, meaning that modifications in a part,
feature, or sub-element of a product affect the global system
performance in many functions. The term “inherently integral” is
used here to refer to products that have many functions shared by
many of the same physical elements.

As illustrated in figure 2.12, the lateral lines that run among physical
elements denote the distributed nature of functions among a variety
of elements. This is not the case in modular design where there is a
close match between the functional and physical hierarchies.

 Figure 2.12:

In modular
architecture there is a
close match between

the functional and
physical hierarchies.

In Integral
architecture

functions are
distributed among a
variety of elements.

 Some design theory literature considers modular architecture ideal
and considers a design to be inferior if designers could not achieve
modular design. However, what occurs in reality implies that designs
with integral characteristics can represent a higher degree of success
and goal accomplishment by their designers (Ulrich and Seering,
1990; Whitney, 1996) (figure 2.14). In a real design problem, designers
are faced with many goals to achieve. These goals often conflict with
each other and cannot all be attained equally well (figure 2.13).
Resolving those conflicts to a reasonable degree should be
acknowledged rather than blaming designers for failing to achieve a

 The Multi-Disciplinary Design System 53

 Theoretical Background

Figure 2.13:

An Example of two
Building Skins with
one representing a

modular architecture
and the other

representing an
Integrated

architecture.

Project Credit of
Integrated

Architecture Skin:
Anas Alfaris,

Alexandros Tsamis.

modular design.

It is important to consider the relevance and use of both modular
and integral architectures when it comes to the field of research in
product development. Integral architectures can be deployed in the
case of simple products (Ulrich and Ellison, 1999) and even in
complex inherently integral products which do not conform to ideal
models or where modularity is not desirable. Even when considering
engineering issues, integral architectures are still relevant. Modular
architectures are needed, however, and become more relevant in
situations where strategic issues are included, such as outsourcing
and new architecture development.

Therefore, in short, the modular scheme can be viewed as one which
exhibits strategic goals such as additions, adaptation, flexible
processes, and diversity of production (Ulrich, 1995), due to direct
mapping. The integral scheme, however, accommodates better
overall performance at the expense of strategies (Ulrich and Seering,
1990 ; Whitney, 1996).

Modular Architecture Integrated Architecture

 The Multi-Disciplinary Design System 54

 Theoretical Background

 Figure 2.14:

Modular Architecture
in physical product

design is not always
superior to
integrated

architecture as is
illustrated in this nail

clipper example
(Ulrich, 1995).

 2.2.2.3 System Structure

 Structure describes the relationships among system objects
(Crawley, 2003). It can describe connections that take place both in
form and in function while operating. Connections that are
descriptions of form include concepts of spatial location, proximity,
topology, or assembly process. Connections that are descriptions of
function include flow of information, energy, and material. Products
and systems are separated from other supporting systems and
operands by a boundary.

In the next two sections, two main types of structural models will be
introduced. First a discussion of hierarchies will be presented
followed by a discussion of networks. Hierarchies represent partially
ordered sets with more constrained relations while networks
represent a more general and encompassing term, as they denote
sets of entities with interconnections.

 Hierarchies

 Hierarchy theory is an emerging part of the work of researchers in
different disciplines, such as the economist Herbert Simon, chemist,
Ilya Prigogine, and psychologist, Jean Piaget (Allen, 1998). It
descends from general systems theory, and it focuses on
organization levels and scale issues. Hierarchy theory builds on
simple principles to organize the behavior and structure of complex
systems with multiple levels, as illustrated in figure 2.15.

Simon (1973) provides various examples of hierarchy. He mentions
organizations, but at the same time points out that hierarchy does
not necessarily imply top-down relations of authority. Simon basically
sees that problems can be solved more easily when they are
decomposed into sub-problems whose solutions can be combined
into a solution to the problem as a whole.

 The Multi-Disciplinary Design System 55

 Theoretical Background

 Figure 2.15:

The structure of
complex systems can

have multiple
hierarchical levels.

 Kossiakoff and Sweet (2002) suggest that a complex system builds
on hierarchical structures consisting of interacting sub-systems,
which are further composed of simpler functional entities, and so on
down to primitive elements, referred to as parts or components.
According to Kossiakoff and Sweet, any system can be, in practice,
applicable to various levels of aggregation of complex interacting
elements. Every system can therefore be a sub-system that belongs
to some kind of higher-level system, and every sub-system can be
regarded by itself and its components as a system.

Simon viewed hierarchy as a general principle of not just complex
structures, but of complexity in general, where he considers it the
main form of architecture of complex systems (Simon, 1973). He
argued that hierarchy emerges almost inevitably through a wide
variety of evolutionary processes simply because hierarchical
structures are stable (Agre, 2003).

Simon, while reflecting on general systems theory, points out that
inferring the characteristics of one whole is a complex process given
the properties of the components of that whole and their interaction
laws to begin with. He concludes that “an in-principle reductionist
may be at the same time a pragmatic holist”, thus declaring the fact
that the whole is pragmatically more than just the sum of its parts.

In this view, sub-systems may be regarded as quite complex on their
own. They perform similarly to and acquire properties of a system.
The fundamental difference is that the capability of performing a
meaningful function requires the presence and functionality of other
companion sub-systems for the general system to work.

Simon (1973) describes complex problems in terms of hierarchical

 The Multi-Disciplinary Design System 56

 Theoretical Background

structures that consist of “nearly decomposable systems”. In this
concept of near-decomposability, the upper levels in hierarchy
emerge due to the fact that their corresponding parts are not
completely separate. The basic structure of this near-decomposable
nature implies that the strongest interactions occur within groups
while weaker (but not negligible) interactions occur among groups.
In these interactions, the short-run behavior of each sub-system is
almost independent from that of other sub-systems. The behavior of
any sub-system in the long run, however, depends on the behavior of
others only in the aggregate sense and not as individual components.
Simon (1973) describes a variety of systems ranging from business
organizations to biological systems that exhibit the property of being
“nearly decomposable”.

One of the basic features of nearly decomposable systems is that
what connects any element at a hierarchic level with the relevant
elements at the next lower level is actually the relation of a system
(as a whole) and its elements (components or parts). Therefore, the
systematic effect should take place from a level to its next higher
level. This indicates that elements at different levels have different
characteristics. When a level is traversed, qualitative change must
occur.

Two main factors control how a system is perceived in view of
hierarchical structure: constraints and possibilities. Constraints come
from upper levels, while limits of possibility come from lower levels.
To perceive a system hierarchically, one must pay attention to what
is allowed by upper level constraints as a response to higher system
purposes. This is due to the fact that the lowest level entities
become constrained, losing degrees of freedom, and are held against
the upper level constraint to give constant behavior. At the same
time, the mechanisms that define the limits of physical possibility for
the parts of the system to work as a whole have to be considered.
Unless there is a distinction between these two factors, the concept
of hierarchy becomes confused (Allen, 1998).

Hierarchies can generally be classified into nested and non-nested
hierarchies. Nested hierarchies typically involve upper levels that
consist of and are made of lower levels, e.g. an army is a nested
hierarchy which consists of a number of soldiers who make up that
army. On the other hand, the containment requirement is not that
strict in non-nested hierarchies, e.g. a military command is a non-
nested hierarchy with regard to army soldiers, as a general does not
consist of his soldiers (Allen, 1998).

Mathematically speaking, hierarchy is a partially ordered set (Allen,

 The Multi-Disciplinary Design System 57

 Theoretical Background

1998). In simple terms, hierarchy implies a group of parts inside a
whole, containing upper levels that are above lower levels, and
sustaining a relationship which is asymmetric between both levels.
These hierarchical levels are occupied by entities which distinguish
the identity of each level. An entity can reside on any number of
levels, depending on the relationship between the hierarchical levels.

Hierarchies are typically associated with an ordering, that is a ≤
relationship (Magee et al., 2006). This partial ordering can be
represented through depth of layer or numbered levels for each

single node in the hierarchical structure. A ≤ ordering contains
internal cycles. Nodes can have direct edges to their “brother” or
“parent” nodes. Strict orders (a < relationship) however have no
internal cycles.

Based on the topology and the relation between entities and levels,
hierarchies can be classified into three basic types: tree structured
hierarchies, which are sometimes known simply as hierarchies;
layered hierarchical structures; and mixed or hybrid trees and layers
(Magee et al., 2006).

Trees can represent small, medium and large structures in both
human organizations and engineering systems. Tree structures are
associated with top-down design. They are hierarchies that represent
a reductionistic approach to decomposing problems into smaller sub-
problems. Poor decompositions are likely though due to the
generality of this approach. Tree structures are characterized by
having exactly one parent in the immediate preceding level. The only
exception is the root node.

 Figure 2.16:

A tree with 8 nodes
and 7 edges or links,

5 paths from root
node to bottom or
leaf nodes, 3 levels

(Magee et al, 2006).

 Pure trees are not considered relatively flexible. It becomes difficult
to make internal changes or get around a non-functional node or
edge while maintaining the same pure structure. An important
aspect related to tree structures is that they lend themselves easily
to competitive environments (Magee et al., 2006). Specific

 The Multi-Disciplinary Design System 58

 Theoretical Background

subsystems may be assigned to individuals whose performance is
judged in relation to others residing at the same hierarchical level.
Figure 2.16 illustrates an example of a tree structure.

 Figure 2.17:

Non-standard trees:
an impure relatively

complex tree with
non-standard

interconnections
(Magee et al, 2006).

 Layered structures usually have multiple parents rather than just one
parent in the immediate preceding level. They can also change
parents readily. Layered systems therefore can attain high
complexity, as there are many potential interconnections both
between and within layers. For example, a layered structure with
multiple layers and no horizontal interconnections can connect to all
nodes in the layer immediately above or below it (Magee et al.,
2006).

 Figure 2.18:

Layered hierarchies
with horizontal

interconnections
(Magee et al, 2006).

 Horizontal interconnections are typical of layered structures and not
tree structures. They usually support teamwork and cooperation.
Such interconnections add to the complexity of the nodes and
consequently the overall system. Layer skipping is not allowed in
pure layered structures. This does not usually constitute a problem,
as the system is context aware. Hierarchies do not undergo cycles
except within single layers. This is considered a modeling limitation,
however, one cycle could be introduced to allow for feedback
(Magee et al., 2006). Figures 2.18 and 2.19 illustrate examples of
layered structures. Mixed or hybrid tree and layered structures are
used in human organizations in addition to some technical systems.

 The Multi-Disciplinary Design System 59

 Theoretical Background

 Figure 2.19:

Three layers, a root
node, 10 nodes, with

horizontal
interconnections

(Magee et al, 2006).

 Networks

 A network represents a set of items with connections between
them. The items are known in network terminology as vertices or
nodes, while connections are known as links. Items can be assigned
names, sizes and levels of significance, while connections can be
assigned lengths and capacities.

The basic intrinsic characteristic of networks is their ability to
represent systems, where the systems consist of items and their
inter-relationships and connections (Magee et al., 2006). Items can
be physical, such as locations or individuals, or abstract such as
processes and tasks. Similarly, connections can be physical, like roads
between different locations, or abstract, such as information flows
between processes and tasks. Looking at networks as a whole,
network representations themselves can be specific, in that they
identify the different items and the different connections, or
abstract, where they convey very little about the items or
connections.

There are numerous types of systems that take the form of
networks. Examples of such systems include the Internet, social
networks between individuals, organizational networks,
transportation networks, and many other types of networks.

In mathematical literature networks are mostly known as “graphs”
and are considered one of the basic concepts in discrete
mathematics. Euler's graph in the 18th century is probably the first
true proof in graph theory which later developed into a substantial
body of knowledge in the twentieth century (Newman, 2003).

According to graph theory, a graph is a pair of sets V and E, where
each element of the set E is a two-member set whose members are

 The Multi-Disciplinary Design System 60

 Theoretical Background

elements of V. The set V consists of vertices known as nodes. The set
E consists of edges known as arcs, links or bonds. Edges are drawn as
lines connecting two vertices at their endpoints. Graphs are mostly
preferred to be perceived graphically. The following is an example of
a graph:

V = {a, b, c}, E = {{a, b}, {a, c}}

The significant issue however in graph theory and networks is the
pattern of connections and not the geometry (Hayes, 2000). These
patterns include connectivity, resource exchange, and locality of
action (National Research Council, 2006). Networks have well-
defined connectivity, or connection topology, where each node has a
finite number of defined dynamic connections to other nodes (figure
2.20). These connections between nodes exist only if there are one
or more classes of resources, which are important and meaningful to
the networked system that can be exchanged among them. This
exchange of resources only occurs and is effective in local
interactions, represented in node-to-node interactions.

 Figure 2.20:

Networks with the
same topology

 Network theory and graph theory have been used extensively to
measure networks, discover connections, and determine how the
flow of information, energy, and material between entities occurs
(Sterman 2000). The current literature assumes often both identical
nodes and links. Many authors (Watts and Strogatz 1998; Strogatz
2001) have studied graph properties to predict the resulting behavior
if certain nodes are removed, or if control of the network’s paths is
decentralized.

There are many types of networks, some more complex than just a
set of vertices simply connected by edges (figure 2.21). Edges point in
only one direction, and are thus called directed edges. Graphs that
consist of directed edges are known as directed graphs or digraphs
(Newman, 2003), such as graphs representing email messages.
Digraphs can be either cyclic or acyclic, that is they can contain
closed loops of edges or not. Edges that connect more than two
vertices together are known as hyperedges. Graphs that consist of
such edges are called hypergraphs. Graphs that contain multiple
edges connecting the same pair of vertices are known as multigraphs
(Hayes, 2000).

 The Multi-Disciplinary Design System 61

 Theoretical Background

 Figure 2.21:

There are many types
of networks which

depend on the type
of edges connecting

vertices
 (Hayes, 2000).

 Graphs can be metric graphs, where links have real lengths and node
positions obey triangle inequality, or non-metric, which consists of
just a logical layout. Edges can carry weights to denote strength or
weakness of a specific relation. All vertices need not be connected by
edges. Disconnected vertices or components can still constitute
elements in a single graph. There may be more than one type of
vertex or more than one type of edge in a given network. Vertices
and edges may represent different types of associated attributes.

 Figure 2.22:

Taxonomy of
networks

(Magee et al, 2006).

 Graphs can also have other properties and types, such as changing

over time, where vertices or edges appear or disappear occasionally,
or their values are modified. There is still much to explore about the
different possibilities and types of networks. Figure 2.22 shows
different types of networks.

 The Multi-Disciplinary Design System 62

 Theoretical Background

 2.2.2.4 Behavior

 The term “behavior”, according to Eggert (2004) describes how a
product actually performs. The aim of system design in general, and
of architectural design in particular, is to achieve the desired
behaviors that are outputs of functions plus ilities while predicting
and limiting undesired behaviors.

Large complex systems have behaviors that are usually not
attributed to their individual sub-components. Some of the behaviors
are considered to be deliberate and intentionally developed through
methodical design activity. These behaviors can be desirable or
undesirable.

Other behaviors are mostly unanticipated and therefore known as
emergent behaviors (Crawley et al., 2004). Emergent behaviors are
very similar to what Ulrich and Eppinger (2000) identified as
“incidental interactions”. They exist when the system or its
interactions with the surrounding context are not fully
comprehended. They can exist due to other unpredictable factors,
such as future system changes or the difficulty of modeling every
single system state.

Emergent properties can be desirable or undesirable when thought
of in retrospect. For example, automobiles were intentionally
designed for personal transport purposes, but in retrospect, there
are many behaviors that emerged later on. Unexpected behaviors
included suburban growth, expansion in shopping malls, and
developing a sense of personal freedom.

 2.2.2.5 Process of Creating Architecture

 Creating architectures is an important process in terms of generating
working systems that fulfill desired requirements in a defined fashion
within certain constraints (Crawley et al., 2004). Architecture is thus
necessary to design and understand the behavior of systems.
Architecture as an “arrangement of entities and interrelationships
among them” determines a variety of ways in which the system
behaves. Thus designers can use architecture to create systems with
the desired behaviors. They can then structure them to facilitate the
process of design and manufacturing. These processes can be
conflicting however in some circumstances.

Although architecture is a necessary aspect in complex engineering
systems, it is still not fully comprehended. There are no algorithmic
procedures for generating architectures to serve desired behaviors,

 The Multi-Disciplinary Design System 63

 Theoretical Background

in terms of selecting elements and linking them together. There are
also no tools that could identify unintended emergent behaviors
through looking at the behaviors of individual elements.

A powerful notion of process integration seems to be embedded in
the definition of architecture, which implies all relationships between
all system elements. The main focus however lies in determining
what constitutes a system in terms of components, parts, and
assemblies, in addition to how these components function and how
they interfere with each other.

Systems have numerous architectures as well as different
architectural hierarchies. This can happen because of the way the
system boundary is defined. It can also happen because the system
encloses a physical architecture in addition to various virtual
architectures that catch significant views of system behavior. Most
of these virtual architectures are consistent with mental models of
different behaviors. Many representations are required to describe
systems and their architectures.

As a system, the design system proposed in this thesis will have an
architecture and will be made up of different parts that perform
different functions. Within the proposed design system, the system
can be viewed as being composed of small design cycles. Complex
processes can be made up of many processes that are themselves
made up of many other processes. The architecture of the system
should relate these processes. It also should be comprised of
modules that have interconnections between them that evolve over
time.

The following chapters will attempt to address and answer the
following questions: How will we decompose the design artifact and
the design process? How will we formulate the design system
architecture? How will we model the different design activities? How
will we integrate the different models into a coherent system? How
will we use the system to assist in exploring the design space?

 The Multi-Disciplinary Design System 64

 Theoretical Background

 The Multi-Disciplinary Design System 65

Decomposition

 3.1. What is Decomposition?
 I use the term “decomposition” to refer to the act of breaking a

large problem into a set of smaller problems or elements, whether it
be a function that must be performed, a physical entity that must be
designed, a design development stage, or a design cycle .

Smith and Brown (1993) point out that decomposition, where a
problem is divided into simpler sub-problems, is the prototypical
means of addressing complexity in design problems.

 Figure 3.1:

Alexander’s
representation of the

design problem as a
network.

 The process of creating (synthesizing) or understanding (analyzing)
the architecture of a system often follows a process of
decomposition. The basic expectations and assumptions underlying
decomposition are that (1) each part by itself is easier to grasp and
understand, and (2) understanding the behavior and interaction of
individual parts can lead to a better understanding of the system
behavior as a whole. Whether we are synthesizing or analyzing a
system, decomposition can provide several useful design views and
perspectives.

3. Decomposition

 The Multi-Disciplinary Design System 66

Decomposition

Considerable literature exists on the subject of decomposition. The
principal research in this literature was initiated with the work of
Alexander (1964) on using networks for representing and
decomposing design problems according to customer needs. Figure
3.1 shows a network representation of a design problem.

In this representation, designs are decomposed (or partitioned) into
minimally coupled groups. Vertices denote functional requirements
while edges denote interactions between them. The interaction
strength between functional requirements is inversely proportional
to edge lengths. Groups of connected functional requirements
represent sub-problems that are relatively independent of other
functional requirements and consequently other sub-problems.
Clustering in this manner allows for a representation of higher
interaction within groups and lower interaction between groups. The
individual clusters containing smaller and relatively independent sub-
problems can then be solved with minimal effect on the rest of the
design.

 The two main system structures discussed in chapter two,
hierarchical and network structures, are used in decomposition. In a
hierarchical decomposition the structure normally transitions from
general at the top to specific at the bottom. It continues into finer
and finer levels of detail until the lower levels become clearly
defined. A network decomposition on the other hand, comprises
sub-problems of analogous hierarchies that are directly linked to
each other. Figure 3.2 shows an example of hierarchical and network
decompositions.

 Figure 3.2:

Hierarchical and
Network

decompositions.

 There are several themes along which a design can be decomposed.
In the previous chapter I discussed how design can be considered as
an object as well as a process. My focus in this chapter will be to
represent themes of decomposition that address these two visions.
As an Object, design can be decomposed into form, function and
discipline aspects. As a process, design can be decomposed into
development stages, as well as design activities. In the rest of this

 The Multi-Disciplinary Design System 67

Decomposition

chapter, and building on research in design science and system
engineering, among other fields, I will show models of
decomposition for each of these themes in some detail, focusing on
the inherent processes that occur within them. The discussed models
will provide a foundation for the MDDS framework that will be
discussed later on.

 Figure 3.3:

Design
decomposition can

consist of object and
process

decompositions.
Object decomposition

includes Component
and Aspect

decompositions,
while Process

decomposition
includes Development

and Activity
decompositions

 3.2. Design Object Decomposition

 Object decomposition refers to hierarchically related modules,
where each module represents a subsystem, presented
schematically as a pyramid whose top is the higher-level system and
base is the lower level subsystem. Subsystems may correspond to
physical components, and in this case the decomposition is called
component decomposition. Subsystems can also correspond to
functions and the engineering disciplines which contribute to the
system design. In this case the decomposition is referred to as aspect
decomposition.

 The Axiomatic approach discussed in the second chapter, which
attempts to map functional requirements to physical components, is
a good design model that describes object decomposition. Object
decomposition typically occurs in a top-level fashion, where the
system’s required functions are broken down into subfunctions. In
parallel the system in its physical form is broken down into
subsystems that can perform the subfunctions. Decomposition
continues similarly until it reaches single parts. Throughout the
process, design and testing of physical components are assigned to

 The Multi-Disciplinary Design System 68

Decomposition

different disciplinary parties. This facilitates the synchronized
development of different parts of the product by these parties.

 It should be noted however that in system synthesis and analysis, it is
not typical that designers persistently follow a top-down
decomposition process to the level of single parts. They can also
iterate between upper and lower system decomposition levels
according to what they can potentially learn within the process
about the implications of some of their architectural decisions.

 3.2.1. Component/Physical Decomposition

 Component decomposition breaks down the problem in relation to
the known physical parts (or components). The hierarchy of this
breakdown is such that a product’s physical elements are organized
usually into physical building blocks called chunks. Chunks consist of
a group of components that execute the functions required for the
product, as illustrated in figure 3.4.

 Figure 3.4:

 Power train
component

decomposition.

 Some physical elements become more defined, usually with design
progress, while others are dictated by the product concept. The
outcome of this kind of decomposition is affected by the themes
selected for component decomposition, which in turn are influenced
by the desired functions that should be performed. Figure 3.5 shows
an example of component decomposition for an office building.

 Figure 3.5:

Office building
component

decomposition.

 The Multi-Disciplinary Design System 69

Decomposition

 3.2.2. Design Aspects Decomposition

 Aspect decomposition (also known as disciplinary decomposition)
involves breaking down a problem according to its functions, which
in turn can be assigned to a specific discipline that can handle the
different physics of the system.
The act of decomposing in aspect decomposition is oriented towards
the different domains of knowledge involved in the design problem
formulation rather than the physical components. Synthesis and
analysis of systems are implemented according to specialties by
decomposing the root node which is populated by a high-level
function that in turn fulfills lower level technical functions and
requirements.

 Figure 3.6:

Office building aspect
decomposition.

 Aspect decomposition usually divides the design system into well-
defined categories. For example, automobile design is often divided
into a power train team, an interior team, or a ride quality team, etc.

 Figure 3.6 shows an example of aspect decomposition in an office
building. Several functional-aspects affect the system and are the
subject of evaluation (e.g. lighting, air distribution, heat transfer,
structural analysis, etc).

Aspect decomposition, however, may fail to account for disciplinary
coupling, despite the fact that data exchange may be involved.

 In practice, both component and aspect decomposition (or
partitioning) are typically used interchangeably. This is often done in
an ad hoc manner and is not systematically generated in order to
reduce coupling or partition elimination.

 3.3. Design Process Decomposition

 3.3.1. Design Development Decomposition

 By design development, I refer to the complex process which
involves the evolution of new designs of systems, artifacts, projects
and products over time. This process starts from the moment a need
for new designs is recognized and a feasible technical approach is

 The Multi-Disciplinary Design System 70

Decomposition

identified, and continues through developing and introducing the
product as a well-formed design.

 The need to break down this process originates from many factors
debated among a variety of sources. Kossiakoff and Sweet (2002)
refer to the large commitments of resources required increasingly
throughout design progress. They also refer to inevitable risks which
must be identified and resolved as early as possible. Therefore, by
decomposing the design development process, the design evolution
follows a step-by-step approach. In this approach, the success of
each step is demonstrated, and the basis for the next one validated,
before decisions are made to proceed to the next phase.

 3.3.1.1. Design Development Models

 Design researchers have proposed several models to represent
design development decomposition. According to Eggert (2004), a
design evolves through phases from the identification of customer
needs to the realization of a detailed design.

Kossiakoff and Sweet (2002) define the development stages as the
concept development stage, the preliminary development stage, and
the detailed development stage. In this definition, a design concept
that is perceived to best satisfy a valid need is initially formulated and
defined. Through a process of continuous development, the concept
is finally translated into a validated physical system design meeting
the operational, cost, and schedule requirements.

 Pahl and Beitz (Pahl and Beitz, 1996) proposed four phases that
differ slightly from those proposed by Kossiakoff and Sweet (2002).
For the first phase, they introduce task clarification, which deals with
design constraints and gathering information about the
requirements that need to be embodied in the design solution. They
define the concept design phase as that where function structures
are established and solution principles are developed to identify
concept variants. The embodiment design phase then involves form
determination and developing a product in accordance with
technical and economic considerations. Finally, the detailed design
phase is concerned with laying out materials, surface properties,
dimensions, form and arrangement. This phase also involves re-
checking economic and technical feasibility, and generating all
drawings and other production and specifications documents.

 Some systematic approaches to the development process were
distilled into specific guidelines. VDI 2221 (VDI, 1985) is a guideline
which has attempted to encapsulate the available methodologies
into a working framework. Similar to Pahl and Beitz, VDI 2221

 The Multi-Disciplinary Design System 71

Decomposition

suggests four main phases for design development: task clarification,
conceptual design, embodiment design and detailed design. Other
engineering design researchers extended the embodiment design
phase. Dixon and Poli (1995) split it into two phases: configuration
and parametric design. Dieter (2000) included product architecture
as an additional phase before configuration design.

 By looking at the RIBA handbook (1965), a large “plan of work”
shows 12 strategies in the design development process. These
strategies, described as logical courses of action, include inception,
feasibility, outline proposals, scheme design, detail design,
production information, bills of quantities, tender action, project
planning, operations on site, completion, and feedback. Another
simplified version which uses “usual terminology” reduces these into
briefing, sketch plans, working drawings, and site operations.

 Figure 3.7:

Design development
can be decomposed
into several stages.

 Although all development phases define a sequence of self-
contained processes, there should be a reasonable “overlap” and
transition at the boundaries of each phase when it comes to real
practice. At every step, a decision has to be made as to whether
“iterative cycles” of these steps should be carried out in order to
proceed to the next activity within the process. (Black, 1990).

 Based on the development models discussed above, I will assume
that design development is decomposed into conceptual,
preliminary, and detailed design, followed by a phase of
manufacturing and production (figure 3.7). In the following sections I
will discuss these main development stages in more detail.

 The Multi-Disciplinary Design System 72

Decomposition

 Concept Development

 The concept development stage involves the necessary analysis and
planning to understand the needs or requirements for a certain
product and the ultimate system foreseen to fulfill those
requirements. Several approaches have been discussed to identify
the detailed nature of this stage (Sydenham, 2003; Kossiakoff and
Sweet, 2002; Eggert, 2004).

The general approach in this stage involves customer or client
requirements. These requirements are translated into functions that
should be satisfied by the system or artifact. These functions are
then synthesized by a team of design specialists into one or more
design concepts. Several design alternatives or scenarios are
generated in order to select the best alternative for further
development. Lower level functional requirements are then assigned
to specific system components (Ref07).

 Kossiakoff and Sweet (2002) expand this approach to embrace three
main subdivisions: the analysis phase, the concept exploration phase,
and the concept definition phase. In the analysis phase, the basic
needs and requirements for a new product are defined in a
continuous search for a “practical approach” that can possibly satisfy
those requirements. The concept exploration phase tends to
formulate and validate specific performance requirements for a set
of potential proposed concepts. This phase focuses on how these
performance measures address the original requirements and sets a
valid goal for a new product. This is done for all potential concepts
before exerting major effort on individual development. The concept
definition phase looks at key characteristics of the alternative
concepts and selects the most beneficial in terms of performance,
estimated cost, development and operational life. After defining the
functional characteristics of the preferred concept, major resources
are committed to carry this concept forward to subsequent phases
of preliminary and detailed development.

 Eggert (2004) focuses on problem formulation as the key activity in
the concept development phase. In this approach, greater attention
is dedicated to understanding the problem, exploring the stated
needs of the customer, clarifying the expected system performance
and determining required disciplines. During concept design, the
performance of alternative concepts or working principles is
evaluated using simple calculations or physics relations in order to
choose the best candidate by means of a set of evaluation criteria.

 This process of design concept synthesis is considered the most
creative part in the evolution of a design. This is where the designer

 The Multi-Disciplinary Design System 73

Decomposition

creates a new concept by use of an impulsive synthesis of intuition
and previous knowledge, depending on special skills and experience.

Designers usually view the initial concept design activity as intuitive
rather than scientific. There is thus very little communication
between designers at this point, which makes it difficult to extract
from them any organized information.

 In order to arrive at a satisfactory concept, an iterative process is
sometimes required. This includes identifying the overall design
objectives, defining a concept, gathering data for assigning model
parameters and design vectors if possible, and gathering information
on the system structure and operating procedures (Lawson, 2005). It
is never enough to have one single person or document to perform
these operations.

 Sydenham (2003) describes some of the methods that are used to
set a basis of comparison for alternative concepts so that their
distinguished features may be scrutinized. Some of these include
mind-maps, rough CAD models, systems dynamics, scenario building,
and other motivational modeling methods. Sydenham (2003) states
that development along the concept design phase is best performed
with top-down thinking initiated by the customer requirements, but
also informed by some bottom-up knowledge to maintain practical
possibility.

 Preliminary/Embodiment Development

 Although it appears to be easy for design practitioners to define task
clarification, concept design or detailed design, the definition and
location of the preliminary design, also known as embodiment
design, in the overall process structure is not clearly defined (Pugh
and Morley, 1989).

 The significance of the embodiment phase arises from its being able
to bridge between conceptual and detailed activities. The crude
nature of concept design models does not allow for a comprehensive
evaluation in terms of cost, time and performance practicality. The
main contribution of the embodiment phase is the ability to assess
the feasibility of a candidate design from both an integration and
implementation point of view (Sydenham, 2003). In this context, a
better and more realistic understanding about the realization of
candidate solutions and their practical limitations should be
achieved. The end result of this understanding should be a definitive
output, providing a selected candidate that seems outstandingly
promising.

 The Multi-Disciplinary Design System 74

Decomposition

 According to Black (1990), solution concepts are translated within
the embodiment stage into geometrically precise “layouts” that are
representational models of the product configuration. This
configuration contains all the necessary information in terms of
geometry, material, position and topology for its subsystems and
components. This allows for the development of a technical system
that satisfies the requirements of functionality, constructability, cost
and other factors (Hubka et al., 1988).

 Eggert (2004) offers a broader definition of embodiment design,
which refers to configuration design as well as parametric design.
The configuration design phase is where the alternative layouts and
configurations are generated, analyzed and evaluated against
technical and economic criteria in order to select a best candidate.
Parametric design, however, involves defining values for controllable
parameters and design variables for the configuration, shape, size
and material of the design. Using formulas, experiments and
computer programs, the performance of these designs is analyzed,
and the analysis results are checked to ensure acceptable
performance and constraint satisfaction. Otherwise, new
alternatives are generated with new design variables for another
reiteration of analysis and evaluation, and so on.

 Detailed Development

 The main bulk of the process of engineering the system to satisfy the
functions and requirements specified earlier in the concept and
embodiment phases lies in the detailed design development stage. In
this phase, specialist area engineering designers acquire maximum
knowledge about the object of design while developing the actual
nuts and bolts decisions that allow its physical formation (Sydenham,
2003).

 This increased knowledge is expressed in the form of highly
elaborated packages of manufacturing specifications and assembly
procedures. These include detail and assembly drawings, bills of
materials, manufacturing process recommendations, and prototype
performance test results (Eggert, 2004). In addition, product
specifications are also key constituents of this phase, such as height,
width, depth, weight and expected performance. All these forms of
design output prescribe the physical features of the assembled parts
that generate the required system when fabricated.

 Here, design freedom is at its minimum, where it becomes extremely
expensive and time-consuming to correct any errors or to modify any
features in the design (Sydenham, 2003). The output of this stage is
usually irreversible. The project is transformed from the paper or

 The Multi-Disciplinary Design System 75

Decomposition

computer model phase to a “cut metal” commitment. There is no
time to lose on modifications if some features are wrong, and the
output is otherwise sent to scrap.

 The detailed development design phase is where all issues of
reliability, constructability and maintainability, hinted to in earlier
phases, are of highest priority. This phase manages the engineering
change process to maintain configuration and interface control. It
also manages the integration and testing of the product components
to function within the system. At the individual component level, this
phase also guarantees the reliable implementation of all functionality
and compatibility requirements.

 The detailed development design phase involves the realization of an
integrated complex system as a whole consisting of engineered
components, as well as the evaluation and testing of the system
operation in a real environment.

 3.3.1.2. Proposed Design Development Model

 The design development model proposed in this thesis is concerned
with setting certain requirements, deliverables, targets and
milestones for each stage in the design evolution and development.

The design development model can be decomposed into the three
design stages mentioned earlier, or it can be divided into many more.
For example, the three main development stages proposed can each
be decomposed into several other sub-stages.

It should be noted, however, that the design development
decomposition is a description not of the process but of the required
products of that process. It tells us not how the design team works
but, what must be produced in each stage. Further, it also details the
services provided by the design team and therefore can be used to
determine agreed stages of work which could attract staged
payments. So the plan of work may also be seen as part of a business
transaction; it tells clients what they will get, and describes what the
design team must do. It does not necessarily tell us how it is done
(Lawson, 2005). This will be discussed in the following section.

 3.3.2. Design Activity Decomposition

 In this section, I propose a model of design activity decomposition. In
order to do so, I will first discuss the definition of design activities
and their evolution through tracing and reviewing previous models
of design activities.

 The Multi-Disciplinary Design System 76

Decomposition

 3.3.2.1. Design Activity Models

 Several models and attempts were made during the late 1950s and
the 1960s to describe the creative problem-solving process in design
by means of a structured series of phases that define dominant
activities, such as synthesis, analysis, evaluation, and so on (Rowe,
1987). Some of these models prescribe what they perceive as a better
or more suitable pattern of activities and are called prescriptive
models of design. Others tend to simply describe the sequences of
activities that typically occur in the design process and are thus called
descriptive models. (Cross, 1989).

 The primary concern of prescriptive models of design is encouraging
designers to adopt a specific design methodology while working.
This is usually in the form of algorithmic or systematic procedures to
follow.

 On the other hand, the descriptive models of the design process
simply describe the conventional “heuristic” process of design. In
this approach, the primary focus is on the synthesis process in order
to come up with a solution early on, thus reflecting the solution-
focused nature of design thinking. This preliminary solution is then
followed by analysis against design goals and constraints, and then
consequently evaluation, refinement and optimization. The analysis
processes usually point out basic problems in the preliminary
solution, and so it has to be replaced with another solution, which is
synthesized and the loop goes on. The endpoint of this process is the
communication of a new design.

 RIBA’s model

 The RIBA Architectural Practice and Management Handbook (1965)
suggests a prescriptive model in which the design process is divided
into four phases: assimilation, general study, development, and
communication, (shown in figure 3.8). The assimilation phase deals
with the accumulation and ordering of information related to the
design problem. The general study phase investigates the nature of
the problem, while exploring means of possible solutions. The
development phase involves developing and refining one or more of
the candidate solutions outlined during the previous phase. The final
phase communicates one or more candidate solutions to people
inside or outside the design team.

 The Multi-Disciplinary Design System 77

Decomposition

 Figure 3.8:

RIBA’s four phase
model which includes:

assimilation, general
study, development,
and communication.

 Although it may seem from the logically sequential nature of the
diagram that these phases progress smoothly in the same manner, a
closer reading reveals quite a different scenario. In reality, there is a
continuous interaction back and forth between most of these
phases. A designer can rarely know what information to collect in the
assimilation phase unless some investigation of the nature of the
problem is done in the general study phase (Lawson, 2005).

 Moreover, development and refinement does not ideally progress
into one solution. Sometimes more detailed refinement requires that
the designer go back to better understand the problem and gather
other relevant or unconsidered information in the first place.
Another common scenario could even take the designer from the
final phase back to square one, where presenting a fully
implemented design solution to a client forces the client to go back
and describe the problem again more clearly.

 Analyzing this type of design map could reveal innumerable similar
scenarios. The bottom line, however, is that the designer has to
collect information, investigate the problem, develop a solution and
implement it for communication purposes. These activities need not
be done in that specific order. There can be unpredictable loops
among these activities, but this model does not specify the nature or
frequency of these loops.

 Archer’s model

 Archer (Archer, 1984) developed a prescriptive model which focuses
on interactions with the world outside the design process, such as
client requirements and inputs, the designer experience and training,
and other sources of information. The output in this model is the
communication of a particular solution. These inputs and outputs to
and from the design process are shown as external to the design
process in the flow diagram in figure 3.9, which also exhibits many
feedback loops.

 The Multi-Disciplinary Design System 78

Decomposition

 Figure 3.9:

Archer’s model
includes six types of

design activity:
programming, data
collection, analysis,

synthesis,
development and

communication.

 Archer identified six types of design activity within this model:
programming, data collection, analysis, synthesis, development and
communication. Programming involves the establishment of
fundamental issues and proposes a main course of action. Through
data collection, classification and storage is achieved. Analysis is then
performed to identify sub-problems, prepare design performance
specifications and reappraise proposed programs and estimates. The
synthesis process proceeds to prepare outline design proposals,
which are developed into prototype designs and prepared for
validation studies. Finally, the design communication process follows
through preparing manufacturing documentation.

For Archer design was a sequence of identifiable activities that occur
in a logical and predictable order and are defined by the type of task
involved. Although the activities are identifiable, the phasing is less
discretely defined than in the RIBA Model owing to the strong
feedback loops and relationships between activities. Archer
suggested three interconnected domains within this process:
external representation, process of activities, and the problem
solver. He therefore demonstrated a distinction between explicit
behavior and the cognitive realm, where the emphasis always
remains on the explicit behavior apparent in the sequence of
activities.

Archer reduced these activities by dividing the design process into
three broad phases: analytical, creative and executive phases, (as
shown in figure 3.10). The analytical phase requires objective
observation and inductive reasoning, while the creative phase, the
heart of the process, requires involvement, subjective judgment, and
deductive reasoning. After making most of the important decisions,
the design process evolves into an execution phase, which involves

 The Multi-Disciplinary Design System 79

Decomposition

the objective and descriptive production of working drawings,
schedules, etc. The design process is described in this context to be a
“creative sandwich”, where the creative act lies always in the middle
between layers, thick or thin, of objective and systematic analysis.
This model therefore suggests a basic structure of synthesis-analysis-
evaluation-refinement.

 Figure 3.10:

Archer’s reduced
model with three

broad phases:
analytical, creative

and executive phases.

 Eggert Design Model

 Eggert’s (2004) model, as shown in figure 3.11, describes four basic
phases: formulating, generating, analyzing and evaluating. The
formulation phase includes all activities and decision-making
processes implemented in order to understand design problems and
plan their solutions. In this phase, information is gathered regarding
customer needs and required performance. Constraints are also set
to determine economic, technical, legal and safety considerations. In
this phase, detailed engineering design specifications are developed
to guide decisions downstream.

The generating phase describes the activities and decision-making
processes used to create candidate designs to be scrutinized later in
the analysis and evaluation phases. The methods used to generate
such candidates at the concept design level can include creative
methods, such as brainstorming and Synectics. The generation
process then progresses into more developed stages, with more
defined layouts, configurations, shapes, sizes, materials, or
manufacturing processes.

 The Multi-Disciplinary Design System 80

Decomposition

 Figure 3.11:

Eggert’s design model
includes four basic

phases: formulating,
generating, analyzing,

and evaluating.

 The analyzing phase is concerned with predicting the behavior of a
design candidate. This is accomplished by preparing engineering
models using knowledge from the basic sciences and computational
skills from mathematics to predict the performance of each
candidate design. This phase determines if the design should
continue into developing phases or if a reiteration is required. This
reiteration implies that new values for the design form are selected,
and then the redesigned candidate is consequently reanalyzed. This
is illustrated by the solid reiteration loop in figure 3.11. The design
problem may require a complete redefinition of specification or
constraints if no appropriate candidates are satisfactory.

The evaluating phase is concerned with comparing the predicted
performance of each “working” design candidate to determine the
“best” or optimum design alternative. The evaluation criteria, which
exist in the engineering design specifications, include performance
measures such as speed, size, reliability, maintenance intervals,
power, weight, and cost. New candidate designs can be
automatically regenerated using some computerized numerical
techniques in order to enhance overall quality and performance.

 The Multi-Disciplinary Design System 81

Decomposition

 In engineering design problems, the value or weight of some
evaluation criteria may be more significant than others (e.g. strength
vs. cost). This requires embedding decision-making methods that
exhibit compromises of candidate solutions, where some
performance measures can be promoted while the others are
degraded. In this case, these logical methods, as in the analysis
process, will replace numerical equation solving.

 March’s PDI model

 March (1984) suggested a design process that deals with the
solution-focused nature of design thinking. As shown in figure 3.12,
March argued that the two conventionally understood forms of
reasoning - inductive and deductive - only apply logically to the
evaluative and analytical types of activity in design. He considered
synthesis as the type of activity that is most specifically associated
with design, as it does not entail any commonly acknowledged form
of reasoning.

 Figure 3.12:

March’s PDI
production,

deduction, induction
model.

 This model drew on the work of the philosopher Peirce to identify
this missing concept of “abductive reasoning”. Deduction involves
proving that something “must be”; induction implies that something
is “operative”; while abduction suggests the fact that something
“may be”. In this hypothesis, it is clear that synthesis, referred to as
what “may be”, is the act significant for the process of designing,
since it is concerned with generation or production. March thus

 The Multi-Disciplinary Design System 82

Decomposition

coined such a reasoning process as “productive reasoning”. His
model for a rational design process was therefore called the PDI
(production – deduction – induction) model.

In this model, the first phase, productive reasoning, draws on a
preliminary statement of requirements and some presuppositions
about solution types in order to produce or describe a design
proposal. From this proposal and established theory (e.g.
engineering science) it is possible to deduce or predict the
performance of the design. From these predicted performance
characteristics, it is possible to evaluate further suppositions or
possibilities through induction, leading to changes or refinements in
the design proposal.

 The Function Behavior Structure Framework

 The function–behavior–structure (FBS) framework by Gero (1990)
introduces an important formal representation of the design
process. Three main classes of variables describe aspects of a design
object within this framework: function (F), behavior (B) and
structure (S). (F) variables describe what the object is for, or the
teleology of the object. (B) variables describe what the object does,
in the form of the attributes that are derived or expected to be
derived from the object’s (S) variables. (S) variables describe what
the object is, in terms of its components and their relationships.

 The FBS framework thus represents the act of designing by a group
of processes which link function, behavior and structure together, as
illustrated in figure 3.13. These three aspects are viewed in this
framework as different states of the developing design.

 In the general context of designing, a function F (where F is a set) is
transformed into a design description (D) of a particular artifact that
can produce this function. The design description takes the form of
drawings in this case. A preliminary model of this design is denoted
by: F D, where is a transformation. However, no direct
transformation is capable of attaining this result. Structure (S)
represents the elements of the artifact and their relationships.

 Another activity of design is F S. Similarly, no direct
transformation between function and structure exists. This therefore
requires an indirect transformation between function and structure.
Bobrow (Bobrow, 1984) has defined function as the relation
between goals of a human user and system behavior. In the design
process, behavior is regarded in two ways. The behavior of the
structure (Bs), which is a process of analysis that marks out which
behaviors to determine, is directly derivable from structure

 The Multi-Disciplinary Design System 83

Decomposition

according to the relation: S Bs.

 The other view of behavior in the design process is concerned with
transforming function to expected behaviors (Be). The expected
behavior provides the syntax by which the semantics represented by
function can be achieved: F Be.

 The predicted behavior of the structure (Bs) can be compared with
the expected behavior (Be) which is required to determine if the
synthesized structure can produce the functions, according to the
relation: Be Bs, where is a comparison.

 Another model of design is F B, Be S(Bs). Here, the function is
transformed to expected behavior. The expected behavior is then
used to select the design artifact structure based on knowledge of
the behaviors produced by this structure. Finally, through some
drafting tools, structure can be transformed into a design
description, represented by the relation: S D.

 Therefore, within this framework, the designer creates associations
and relationships between these three states through experience.
Function is assigned to behavior, while behavior is derived from the
object structure. As mentioned earlier, there is no direct connection
between function and structure.

Gero highlights eight processes in the FBS framework as shown in
the diagram, arguing that they are fundamental for all designing.
Process 1 (formulation) transforms the design requirements,
expressed in function (F), into the expected behavior to enable that
function (Be). Process 2 (synthesis) transforms the expected
behavior (Be) into a solution structure (S) to exhibit that required
behavior. Process 3 (analysis) extracts the actual behavior (Bs) from
the previously synthesized structure (S). Process 4 (evaluation)
compares (Bs) with (Be) to generate decisions regarding accepting
or rejecting the proposed design solution. Process 5
(documentation) generates the design description (D) for product
manufacturing.

Processes 6, 7 and 8 (reformulation types 1, 2 and 3) are the most
significant types of processes that do not appear in most
conventional design models. They reflect a different and non-static
view of the world of designing in the FBS framework. Reformulation
occurs usually when the behaviors produced by specific structures
alter the range of expected behaviors and consequently the initial
functions. It can also happen due to an evaluation which yields an
unsatisfactory relation between (Bs) and (Be), which at the same
time cannot be made satisfactory by changing the structure. A

 The Multi-Disciplinary Design System 84

Decomposition

change in expected behavior thus occurs in this case. Reformulation
type 1 is the most explored process, however, as it is evident in
examples like case-based reasoning (7) and structure analogy (8).
Some empirical design studies (9) confirm that the reformulation
type 1 is the prevalent type, while the activity of reformulation in
types 2 and 3 diminishes but does not disappear during the design
process.

 Figure 3.13:

The Function–
Behavior–structure

(FBS) Framework
(Gero , 1990)

 The Multi-Disciplinary Design System 85

Decomposition

 3.3.2.2. Proposed Activity Decomposition Model

 Based on the several activity models presented, I will propose a
simple design activity model that will be the basis for the design
activity decomposition within this thesis. This model will be
composed of synthesis, analysis, evaluation and optimization design
activities and will be organized in a cycle.

 Figure 3.14:

Design activity model.
Four phases are

included: Synthesis,
Analysis, Evaluation,

and Optimization.

 The synthesis and analysis design activities are similar to the
activities discussed in this chapter and in the previous chapter. The
optimization activity is based on Minsky’s Progress Principle
mentioned in chapter two. This activity helps guide the design
generation.

This optimization activity is easy to understand if the design has only
one objective since progress then simply implies making that
objective better. But when there are many different or even
conflicting objectives, progress becomes harder to define. An
evaluation activity is needed to handle the decision process in such
design problems and to manage the tradeoffs between the different
objectives. Based on this the design activity cycle will include:
synthesis, analysis, evaluation, and optimization (figure 3.14).

 3.3.3. Hybrid Design Process Models

 For reasons of clarity within this thesis, both development and
activity process decompositions are treated as two distinct views of

 The Multi-Disciplinary Design System 86

Decomposition

the design process. However, there is a strong relationship between
both design processes. Several design models were developed that
attempt to capture that relationship.

 Asimow’s Model

 The work of Asimow, an industrial engineer well-known in the 1950s
and 1960s, illustrates further contribution to the logical structure of
phases of activities within the design process. Asimow (Asimow,
1962) described two structures in the design process: a vertical and a
horizontal structure, (as shown in figure 3.15).

 Figure 3.15:

Asimow’s design
model includes a

vertical and a
horizontal structure.

(Mesarovic, 1964)

 The vertical structure involves a chronological phasing of activities,
starting from the definition of needs, moving through feasibility
study, preliminary design, detailed design, production planning, and
finally production. The overall sequence of activities was viewed by
Asimow to move from abstract considerations at the beginning to
more concrete and solid ones further on. Feedback loops were
integrated between phases for the purpose of tracking information
or any problems through the whole process and responding
accordingly. Asimow represented the horizontal structure as an
iterative decision-making cycle that lies both within and between the
various phases of activity. This cycle begins with analysis, and then
proceeds through synthesis and evaluation to communication
(Rowe, 1987).

 The Multi-Disciplinary Design System 87

Decomposition

 Markus and Maver Model

 Tom Markus (1969) and Tom Maver (1970) produced maps for an
architectural design process, where they argued that a fully
integrated map requires both a “decision sequence” and a “design
process” or “morphology”. They suggest that the decision sequence
consists of the phases of analysis, synthesis, appraisal and decision,
which occur at increasingly detailed levels of the design process.

 Figure 3.16:

The Markus/Maver
model includes a

decision sequence
and a design process.

 It should be noted that some of the terminology and names used to
describe these activities in this model are different in meaning than
in other models mentioned earlier, although analogous in their
terms. Analysis, for example, implies here the exploration of
relationships and patterns of available information, leading to the
defining goals and objectives. In this context, it does not map to the
same definition of analysis in the scope of my research, as it
corresponds to an earlier activity of problem structuring and
ordering and information gathering. Synthesis is described in this
model as the attempt to progress and generate a response or
solution to the problem. Appraisal deals with the critical evaluation
of proposed candidate solutions against the goals specified earlier in
the so-called analysis phase. The appraisal phase in this sense
corresponds to the conventional analysis phase in most of the
models mentioned here.

As in most models described earlier, the Markus/Maver model
accounts for return loops between activities within the process. For

 The Multi-Disciplinary Design System 88

Decomposition

Figure 3.17:

The city car project
demonstrates that a

design can have
several decomposed

views.

example, if the designer finds a specific solution he had proposed
during the synthesis activity not fulfilling the required goals, he
would propose another idea, thus making a return loop in the
decision sequence from appraisal to synthesis again (figure 3.16).

 3.3.4. Decomposition and Design Views

 It should be noted that there is a relationship between all
decomposition views suggested in this chapter. As the design
evolves it can be decomposed into anyone of the four different
views discussed in this chapter as illustrated in figures 3.17 and 3.18.

[Component
Decomposition]

[Development]

 The Multi-Disciplinary Design System 89

Decomposition

Figure 3.18:

In this school project
several

decomposition views
are produced

simultaneously.

Project Credits:
Anas Alfaris,

Kenneth Namkung
Meredith Elbaum

 The Multi-Disciplinary Design System 90

Decomposition

 The Multi-Disciplinary Design System 91

Formulation

 4.1. What is Formulation?

 The Webster online dictionary defines formulation as an act of giving
form or shape to something or of taking form. It can imply
developing something, something that is formed, the way by which a
thing is formed, or an arrangement of a group of people or things in
a prescribed manner or for a specific purpose.

 When synthesizing and analyzing a system, it is hard to identify when
decomposition ends and when formulation starts or vice versa. In
fact much of the literature on design does not distinguish between
both processes. In the context of the MDDS framework, if
decomposition is the stage where the designed artifact or system
and the processes used to design it are broken down into several
components, then the formulation stage is where those components
are put together to create the MDDS architecture (figure 4.1).

 Figure 4.1:

Decomposition
breaks a system into

components whereas
formulation puts

them together.

 We must distinguish, however, between the physical embodiment,
which emphasizes the physical artifact, and the informational and
design processes, which are oriented towards the design activities. In
this chapter, we will look at both while focusing on the design
process in which formulation can be viewed as the process of
designing and modeling the design process.

 This design process modeling is based on the fact that design
processes comprise a number of smaller design activities. The design

4. Formulation

 The Multi-Disciplinary Design System 92

Formulation

process can be modeled by tracing design information exchanged
between different design activities.

 In addition, at different design phases, there is a need to represent
different levels of description of an object or to vary its depth of
decomposition. When setting a building within a site for instance, the
whole building may be viewed as one single element. Information
about details such as the building stories, rooms and spaces becomes
irrelevant. A general representation is thus needed to enable shifting
between one view and the other in a way that sustains component
encapsulation (Rosenman and Simoff, 2001).

 Within the MDDS framework, formulation defines the system
architecture, describes different degrees of abstraction, and
demonstrates how various design activities are going to be
connected together through compatible interfaces. An iterative loop
should link decomposition and formulation to achieve a reasonable
architecture for this process.

 Formulation in the context of the MDDS framework would typically
take place before mathematical modeling and software
programming to avoid major reprogramming later on. It basically
promotes the interaction among the system architects, design
specialists and other project members, as well as allowing the
visualization of control flow and data.

 However, with the large number of constituents and increasing
complexity of the architecture of individual design activities, the
need arises to agree on and adopt a generic formulation modeling
language, notation, ontology or meta-model to describe and plan the
sequence of applications and interactions, and provide a common
basis for all the disciplines and parties involved in the process.

 Different tools, notations and methods are needed for the process of
creating system structures and architectures. Some notations include
software structural analysis and design, while others deal with
system engineering build block diagrams or developing data flow
diagrams; other kinds of notation involve modeling languages such
as UML and SysML. These notations and many others will be
discussed briefly in this chapter.

 4.2 Process Analysis and Structuring

 In the process of designing the MDDS design process, it is necessary
to structure the information and different components extracted
from the design concept in the decomposition phase.

 The Multi-Disciplinary Design System 93

Formulation

To learn more about how such structuring is accomplished, this
section will discuss process analysis and structuring techniques in
general, focusing on the design structure matrix (DSM) as a method
for complex system structuring.

 One of the early attempts to define structural formulation
techniques was carried out by Chermayeff and Alexander
(Chermayeff and Alexander, 1963) who pointed out that there are
structural patterns pertinent to each problem. They suggested that
“good design” relies primarily on the ability of the designer to act
according to these structural patterns. In order to highlight these
patterns, they proposed a method in the early 1960s that implements
hierarchical structuring. This method, developed in Alexander’s Notes
on the Synthesis of Form (Alexander, 1964), enumerates and
organizes elementary problem statements.

 The structure highlighted by Chermayeff and Alexander identifies
links between the given problem issues (figure 4.2). The links are
defined through designer common sense and experience. The links
affect each other through different patterns. The significance in this
structure lies in those patterns and not the links as such. The issue of
patterns was later developed in Alexander’s book A Pattern Language
(Alexander et al., 1977).

 Figure 4.2:

There are structural
patterns pertinent to

each problem
(Chermayeff and

Alexander, 1963).

 Links between sub-problems are defined in terms of “clusters” or
groups of related issues that share many connections, as it is difficult
to consider each and every link due to their large number. This
grouping becomes significant in the structuring process and is

 The Multi-Disciplinary Design System 94

Formulation

difficult to achieve. It requires grouping issues that are strongly
related together, while considering that elements in different groups
need to be significantly independent of one another (figure 4.3).

 Figure 4.3:

Issues that share
many connections are

grouped together
(Chermayeff and

Alexander, 1963).

 Matrix theory has been used in multiple disciplines, such as sciences,
mathematics and engineering, to represent systems pertaining to
equations, constraints and state variables. It has also been used in
design theory within the context of design structure matrices (DSM).
DSM, also known as N² diagrams, originated from the work of Donald
Steward (Steward, 1981), who highlighted the use of matrix-based
techniques for analyzing the design structure of systems. DSM is
typically used in systems engineering to display component
interactions (Grady, 1994).

 Figure 4.4:

An activity-based
DSM for the

development of a
soda bottle

(McCord 1993).

 Design structure matrices are representations of complex systems
that capture system transactions in a simple format and represent
the relationships between system components, activities or teams in
a highly visual and analytical format. They are thus useful for
modeling systems, networks and processes. They are particularly
useful for defining activity clusters and tracking interfaces, as they

 The Multi-Disciplinary Design System 95

Formulation

capture a snapshot of the flow of information. Figure 4.4 illustrates
an activity-based DSM for the development of a soda-bottle.

In order to simplify the system interface and enhance the system
architecture effectively while preserving the functional conditions,
the structure and conventions of the DSM matrix have to be
comprehended. A DSM contains identical row and column labels
representing the same set of architectural elements. The matrix
reveals the interaction of activities. Reading across rows defines the
other activities on which a specific activity relies for information; in
other words it identifies sources of input. Reading down columns,
however, defines which other activities are provided with
information from that specific activity; in other words, it identifies
output sinks.

 For each pair of elements or activities in the matrix, there are two
squares above and below the diagonal. The cells above the diagonal
are selected to represent interfaces that have their source on the left
side of a diagonal square to the top of a lower diagonal square. The
cells below the diagonal are selected to represent interfaces that
have their source on the right side of a diagonal square to the
bottom of a higher diagonal square (Grady, 1994). Off-diagonal dark
squares denote the transfer of information or activity dependencies.

 Table 4.1:

A taxonomy of types
of system element

interactions (Pimmler
and Eppinger, 1994).

Spatial Associations of physical space and alignment; needs for
adjacency of orientation between two elements.

Energy Needs for energy transfer/exchange between two elements
(e.g. power supply).

Information Needs for data or signal exchange between two elements.

Material Needs for material exchange between two elements.

 The order of elements or activities can also be reshuffled with
respect to the organization of the design elements. This is done as a
means of reducing cross-element interfaces while also preserving
functional allocation. This can be performed by relocating a row and
its corresponding column in the matrix within a different subsystem
based on the off-diagonal interface count. This will render the
configuration unchanged, as the interfaces will automatically adapt
to the new configuration. There are many analysis and reorganization
tools and algorithms available that automate this procedure (Gebala
and Eppinger, 1991).

 The Multi-Disciplinary Design System 96

Formulation

The types of interactions that occur in DSM vary from one project to
the next. Pimmler and Eppinger (1994) suggest a taxonomy for the
types of system element interactions based on four main types of
interactions: spatial, energy, information, and material, (as shown in
table 4.1). These are similar to the type of functions discussed earlier
in chapter two.

 Table 4.2:

Scale used to
represent different

interactions (Pimmler
and Eppinger, 1994).

 Detrimental Undesired Indifferent Desired Required
Spatial -2 -1 0 +1 +2
Energy -2 -1 0 +1 +2

Information -2 -1 0 +1 +2
Material -2 -1 0 +1 +2

 Daily Weekly Monthly None
Frequency of

Interaction

 They also provide a quantification scheme for these interactions,
where the square marks are replaced by numbers or colors. Table 4.2
illustrates different schemes to represent interactions. This provides
a more comprehensive view of the overall system, as the
relationships and interfaces between elements are investigated in
more depth (figure 4.5).

 Figure 4.5:

Application of a
quantification

scheme in a DSM
(Pimmler and

Eppinger, 1994).

 The Multi-Disciplinary Design System 97

Formulation

 Browning (1998) identifies four different types of DSM, their
similarities, differences and applications (figure 4.6). These types are
the component-based DSM, team-based DSM, activity-based DSM,
and the parameter-based DSM. Activity-based DSM will be
highlighted, as it pertains to the focus of this thesis, the informational
and activity-based world rather than the physical world.

 Figure 4.6:

Four different types
of DSM

(Browning,1998)

 1- Component-Based or Architecture DSM: This DSM is useful for the

modeling process of component relationships and enabling different
decomposition strategies.

2- Team-Based or Organization DSM: This DSM is useful for the design
of organizational structures that consider the information flow in
design teams.

3- Activity-Based or Schedule DSM: This DSM illustrates in a highly
visual format the modeling of design process iterations, input/output
activity relationships, information flow structure, and project
schedules in multi-activity systems based on activity information
dependencies, sequences and arrangements. This capability is not
provided by most conventional PERT/CPM techniques (Browning,
1998). Experience, historical data and the knowledge of design work
to the most practical lowest level are all key players when it comes to
building such a DSM model and prescribing activity sequence and
project schedule. Designers can effectively control schedule risks by
understanding which activities rely on and generate which types of
information (Browning, 1998).

4- Parameter-Based or Low Level Schedule DSM: This DSM uses
physical design parameter relationships for the purpose of planning
design decisions and activities.

 4.3 Iteration and coupling

 The process of structuring the components of the MDDS design has
an effect on the complexity of information flow within the MDDS and
the time it takes to complete a design iteration.

 The Multi-Disciplinary Design System 98

Formulation

 Iteration is part of any design process. Its significance has been and
can be defined as the repetition of activities to improve an evolving
design (Eppinger et al., 1997). Smith and Eppinger (1996) explain that
iterations occur for two reasons: the design fails to meet established
criteria or new information is obtained since a prior iteration.

 There are two types of iterations: intentional iterations and
unintentional iterations. Iterations are intentional if the design is
meant to progress to a specific desirable solution. Iterations are
unintentional if new information that comes late in the process
affects the design outcomes or results. This can result from fluid
requirements, design goals and mistakes, or out of sequence
activities (Browning, 1998).

 In order to reduce the cycle variation and time of design
development, unintentional iterations have to be minimized. This
entails making sure that the sequencing of activities is enhanced,
such that the correct information is available at the right place when
it is time to perform the activity. It also means that the requirements
are strongly defined as early as possible, the relevant constraints are
provided and the mistakes are reduced to the minimum.

 In addition to the tremendous magnitude of information involved in
each iteration, the interdependency and coupling between design
activities contributes significantly to the information flow complexity.

 Figure 4.7:

Activity information
flow and their

equivalents
(Eppinger, 1991).

 Eppinger (1991) identifies three types of dependencies: serial

(dependent), parallel (independent), and coupled (interdependent).
Figure 4.7 illustrates directed graphs of three possible ways in which
two design activities A and B can be related together.

 An activity is said to be dependent or performed in series if task A just
requires the output of B (or vice versa). The two activities are said to
be independent or performed in parallel if activities A and B can be
done with no interaction between designers. The two activities are
said to be interdependent or coupled if A requires information from B
and at the same time B requires knowledge of the results of activity

 The Multi-Disciplinary Design System 99

Formulation

A. Organizing and coordinating dependent or independent activities
is much less challenging and time consuming than interdependent
activities. This is due to the typical iterations of information transfer
and design time required in the process (Suh et al., 1978).

 Figure 4.8 illustrates two activity information flows and their
corresponding DSM equivalents (Browning, 1998). Through this
translation, system formulation models can be converted into
activity-based DSM equivalents.

 Figure 4.8:

Activity information
flows and their

corresponding DSM
equivalents

(Browning, 1998).

 As shown in the previous figure, if the activities are inserted in the

sequence in which they are to be performed, introducing a sub-
diagonal mark in the activity-based DSM denotes information
feedforward, while introducing a super-diagonal mark denotes
information feedback. This indicates a counter-clockwise information
flow. By resequencing the activities, that is by reshuffling the rows
and columns of the DSM, a prescriptive DSM is revealed which
reduces feedback in the process to the minimum. This minimization
of feedback then gets the maximum possible interfaces below the
diagonal of the DSM. The remaining feedback super-diagonal
interfaces, apart from constraints, will be due to interdependent
activities (Browning, 1998).

 4.4 Process and Formulation Modeling

 Designing the design process introduces technical challenges even
for relatively well-structured problems. These challenges are the
result of the large number of inputs that feed into the design activity,
the huge magnitude of information that is created and transferred at
various levels and stages, and the complexity of information flow
within the process. The main goal of system formulation modeling is
to capture the complexity of design processes and to work towards
their improvement.

 The Multi-Disciplinary Design System 100

Formulation

 These challenges demand types of information representations that
can aid the understanding of the design process and the structure of
information flow. Formulation models and notations depend
primarily on the idea that the design process as such has a similar
underlying structure in spite of the fact that designs exist in different
projects. A lot of effort has been made to introduce such
representations and notations, starting from the early 1920’s
following the development of process charting theory (Graham,
2004). Other efforts involve process engineering and reengineering
methodologies for supporting the analysis and documentation of
design and organizational processes (Scholz-Reiter and Stickel, 1996).

 In the following sections, we look at formulation models that
implement certain notations. These notations are implemented in
two different disciplines, namely system engineering notations that
represent the physical artifacts, and software engineering notations
that represent information activities.

 4.4.1 Network Models

 Network models use a variety of techniques to model design
activities as networks of discrete-event activities or tasks with design
information flowing in between. Some features can be added or
deduced from theses network models such as cost, process time,
sequence of data flow and transfer, etc. They are usually appropriate
for the purpose of planning activities or tasks that are serial or
parallel. Network models are influenced primarily by graph theory.

 Next we will discuss data flow diagrams, functional flow block
diagrams, and their variations.

 4.4.1.1 Data Flow Diagrams

 A Data Flow Diagram (DFD) is based on Directed Graphs. It stems
from the software engineering discipline. A DFD is a graphical
notation of the decomposition of a system. It basically highlights
data flow between the different functions of a system (DeMarco,
1979). In such a process, a DFD identifies data transformations from
input to output (Ward and Mellor, 1985).

 DFDs focus on data flow rather than control. Therefore there are no
control constructs that explicitly indicate the sequence of the
processes. A DFD usually defines the content of each and every
activity and the processes flowing in and out, but does not define the
sequence in which these activities occur. Identifying time-ordering
requires another technique.

 The Multi-Disciplinary Design System 101

Formulation

 There are various notations for drawing DFDs, but they usually
consist of four main symbols: a process or activity, dataflow, a
terminator, and a data store. Each node in the diagram represents a
function or activity. Data triggers a process or activity, which in turn
produces data. A link between two processes represents data flow
between them. A terminator is a data source or sink located at the
system boundary. A data store is similar but located within the
system. The choice of process node location however is arbitrary in
DFDs. This becomes crucial when there are a large number of nodes
that could bring disorder to the model (figure 4.9).

 Figure 4.9:

Data Flow Diagram
(DFD).

 4.4.1.2 Functional Flow Block Diagrams

 Function Flow Block Diagrams (FFBDs) were the first network model
to be favored by system engineers and continue to be widely used
today (Blanchard and Fabrycky, 1990). FFBDs define the
decomposition of a specific system, and at the same time provide the
logical and sequential relationship between processes, thus the time
sequence of functional events can be illustrated.

 Each function, represented by a block, occurs following the
preceding function. Some functions may be performed in parallel or
alternate paths may be taken. The diagram outlines the control of
flow between processes and the order in which they are enabled and
performed. The order can be specified from the set of available
control constructs. Proper sequencing of activities and design
relationships are established including critical design interfaces.

 The Multi-Disciplinary Design System 102

Formulation

 Figure 4.10:

Function Flow Block
Diagrams (FFBDs).

 Decomposition can be applied to define lower-level functions and
sequencing relationships. This allows for vertical traceability through
the levels and creates a hierarchical structure, which is a key step in
developing the system architecture from which designs may be
synthesized.

 The basic FFBD diagram components consist of functional blocks,
flow connectors, numbering, referencing, gates, and go and no-go
paths. Functional blocks represent the system processes. They are
connected by lines indicating functional flow. Arrows indicate the
direction of this flow, which is usually from left to right. Numbers are
used within the blocks to indicate the sequence of processes starting
from the origin. As FFBDs are developed in a series of levels, a
numbering scheme is used for each level. This traces functional flow
between different levels. FFBDs can also contain references to other
functional diagrams. Control constructs are used to direct the
direction of flow. They are represented by gates of two main types:
AND/OR. “AND” gates specify the need for parallel functions to
satisfy requirements of all connected paths before proceeding. “OR”
gates have the capability of providing passage if one of the
connecting paths requirements is satisfied. Figure 4.10 shows the
flow down structure of a set of FFBDs.

FFBDs provide an overall understanding of the system operation.
They also point out locations where modification in procedure can
possibly simplify this operation. What FFBDs do not provide however

 The Multi-Disciplinary Design System 103

Formulation

is information about the type of data flowing across functions.
Therefore it is a more function oriented rather than solution oriented
approach (Long, 2002), where there is no specific answer to how a
function is performed.

 Figure 4.11:

Characteristics of the
model element

design review
(Andersson et al.,

1998).

 Over the years a number of variations and developments were made
on FFBDs. These include Enhanced FFBDs, which provide additional
representation of data as inputs and outputs to functions (Oliver,
1994). Further process characteristics were later added by
Andersson et al. (1998), where design information flows were used
to connect two main model elements: design tasks and design
reviews.

Process characteristics, such as task cost per unit time (figures 4.11 &
4.12) and execution time, were introduced to design tasks. These can
be adaptive to the advance of the design progress. The task
characteristics were even made to vary with the number of iterations
involved. For example, the first iteration in a design process, with
considerable amount of CAD modeling, would require models to be
created. In subsequent iterations, only modifications need to be
made. This would result in more flexible and accurate model, and at
the same time a less time-intensive process with step reduction in
task time. Such tasks, where execution time changes with every
design iteration, are modeled as “learning-by-doing” tasks with an
associated learning curve function (Andersson et al., 1998).

 The Multi-Disciplinary Design System 104

Formulation

 Figure 4.12:

Characteristics of the
model element

design review
(Andersson et al.,

1998).

 The design review model element illustrates the probability of
advancing to subsequent design tasks (figure 4.13). Without this
element the process would retreat back to earlier tasks (Andersson
et al., 1998). The evaluation of this model element is done using a
random function. Another relationship is established in design
review model elements, where the characteristics of the design
review are a function of the number of iterations. The relationship
between number of iterations and design review probability can also
be represented by a “learning-by-doing” function. The method is
particularly useful for comparing design processes based on the
global variables of process costs and lead time.

 Figure 4.13:

Design development
process

(Andersson et al.,
1998).

 In the field of software engineering IDEF0 was developed in order to
represent data flow information. In software engineering models in
general, functions are executed if there is both a data trigger and an
enabling by control. A function is said to be triggered if the stimulus
data becomes available to the function. A function is said to be
enabled if the preceding function in the control flow specification is
completely executed.

 The Multi-Disciplinary Design System 105

Formulation

 Figure 4.14:

Sample Enhanced
FFBD

(Long, 2002).

 4.4.2 Formulation Modeling Languages

 4.4.2.1 Unified Modeling Language

 UML (or Unified Modeling Language) is a general-purpose,
standardized visual specification modeling language. It uses
graphical diagrammatic representation to create an abstract model
of a system, enabling software developers to model computer
applications. This model is referred to as a UML model. It is mostly
used to model structure, behavior, and architecture, even business
process and data structure. It has introduced a revolution in the
flexibility of reading and circulating system structure and design
plans.

 The release of UML open standard by the Object Management Group
(OMG) in 1997 involved the joint efforts of modeling languages of
three main system development methods: Grady Booch's Booch ‘93
method, James Rumbaugh's Object Modeling Technique (OMT)-2
method, and Ivar Jacobson's Object Oriented Software Engineering
(OOSE) method. Together with methods from information systems
and engineering practices, OMG formed a new modeling language.
Concepts from many object-oriented methods were also integrated
with UML aiming at object-oriented support.

 One of the main reasons UML is used as a standard modeling
language is that it is a language, as opposed to a methodology, so it
easily fits into any way of doing business without much modification.
As it is not a methodology, it does not require any formal work

 The Multi-Disciplinary Design System 106

Formulation

products. It provides, however, many diagram types that help in the
understanding of an application under development when used
within a given methodology.

 In addition, UML is programming-language independent and
platform-independent. Its tools are used at length in J2EE and .NET
shops. It has thus enabled software developers to focus more on
design and architecture due to this stable and common design
language. Due to the broad and rich coverage emphasized in the
real-time systems domain, UML is used in many engineering
problems, such as single process, single user applications as well as
concurrent, distributed systems.

 UML models are different from the represented set of diagrams of a
system. A diagram is a partial graphical representation of the model.
The model at the same time contains written use cases which act as
documentation that drives the model elements and diagrams.

 There are three main processes involved in UML models: visualizing,
constructing, and documenting. Visualizing involves using diagrams
for communicating the model as an idea into an expression in the
form of diagrams. Constructing uses these visual illustrations in a
prescriptive manner to build the system. Documenting involves using
models and diagrams to capture knowledge of the requirements and
system throughout the process.

 UML Views

 UML defines thirteen types of diagrams which represent three
different views of a system model. Six diagram types represent static
application structure; three represent general types of behavior; and
four represent different aspects of interaction. In the following
sections I will demonstrate some of these views and diagrams.

 Static structural view

 This view emphasizes the static structure of a system, meaning what
must exist in the modeled system. This is done by using objects,
attributes, operations, and relationships. Structure diagrams include
the following diagrams: class diagrams, object diagrams, component
diagrams, composite structure diagrams, package diagrams, and
deployment diagrams.

 A class diagram visually represents the classes, or entities, of an
application and the relationships between them. It depicts the
overall static structures of the system. The notation of a class in a

 The Multi-Disciplinary Design System 107

Formulation

class diagram is a rectangle with three horizontal sections (figure
4.15). The upper section represents the class name, the middle
section consists of the class attributes, and the lower section
represents the class operations and methods.

 Figure 4.15:

Sample class object in
a class diagram

(Pender , 2002).

 In general, a class diagram contains the following types of elements:

a class representing a general concept an association representing a
relationship between classes, an attribute representing the
knowledge of objects in the class, and an operation, representing
what objects in the class can perform as operations. Association
relationships are represented as solid lines if both classes are aware
of each other and lines with open arrowheads if the association is
known by only one of the classes. Inheritance relationships, on the
other hand, are drawn as lines with arrowheads pointing to the
super class.

 Figure 4.16:

A complete class
diagram

(Pender , 2002).

 A component diagram (figure 4.16) shows the implementation of a
system. It provides a physical view of the system, depicting the
dependencies that the software has on other software components
in the system. In general, component diagrams consist of major
system components and their relationships. Component diagrams
have the following types of elements: a component representing a
part of the system that exists while the system is executing; and a
dependency relationship, which represents that the client
component consumes or depends on the supplier component.
Similar to object-oriented methods, component-based diagrams are
based on principles of abstraction, encapsulation, generalization,
and polymorphism. The main difference however lies in focusing on
components rather than objects.

 The Multi-Disciplinary Design System 108

Formulation

 Figure 4.17:

A component
diagram shows

interdependencies of
various software
components the

system comprises
(Pender , 2002).

 A deployment diagram (figure 4.17) illustrates the implementation
environment of a system. In this sense, both component and
deployment diagrams are specific types of what is known as
implementation diagrams. The deployment diagram describes the
physical deployment of a system in the hardware environment. It
illustrates where different components of the system run physically
and how they communicate together, in addition to modeling the
physical runtime of the system.

 The notation system in a deployment diagram is analogous to that
used in a component diagram. The concept of a node is added
however. A node here represents either a physical or a virtual
machine node. A component that resides on a node is nested inside
the node. Deployment diagrams have the following types of
elements: a node representing a resource that is available during
execution time; and a communication association, which represents
a communication path between the nodes.

Behavior view

This view focuses on the dynamic behavior within a system, including
changes to the internal states of objects. It also stresses on the
collaborative activities and decisions among objects, describing what
must happen in the modeled system. Behavior diagrams are primarily
flowcharts and DFDs that are used to acquire the general flow of the
code. They include the following diagrams: use case diagrams,
activity diagrams, and state machine diagrams.

A use case diagram (figure 4.19) basically works on communicating
high-level functions of the system scope. In doing this, it captures
the functional requirements of a system, thus helping development
teams visualize those requirements. Use case diagrams are thus
widely used by software engineers. The diagram is useful in the
process of describing those functional requirements during the
analysis, design, implementation and documentation stages.

 The Multi-Disciplinary Design System 109

Formulation

 Figure 4.18:

Deployment diagram
(Pender , 2002).

 The use case diagram clearly shows the relationship of actors, who
represent human beings interacting with the system, to basic
processes, in addition to the relationships among different use cases.
It therefore does not provide all the functions required in interface
management or in defining scenarios, as it relies basically on
demonstrating human initiated functionality. Typically, a use case
diagram shows groups of use cases. This is done by either showing
the complete set of use cases for the whole system, or by showing a
functionally related group of use cases

 Figure 4.19:

Sample use-case
diagram.

 An activity diagram depicts the procedural flow of control between
two or more class objects while processing an activity. An activity
diagram can model both high-level business processes at the
business unit level and low-level internal class actions. An activity is

 The Multi-Disciplinary Design System 110

Formulation

essentially modeled by drawing a rectangle with rounded edges. This
rectangle encloses the activity name. The notation system is similar
to the state diagram. Activities can either be linked to other activities
through transition lines, or to decision points. These points then link
to the various activities controlled by the state of the decision point.
At the point of termination of the modeling process, an activity is
connected to a termination point. Activities can optionally be
grouped into “swimlanes” (figure 4.20). These are used to denote
the object that in reality performs the activity.

State diagrams, which are also known as statechart diagrams, show
the lifecycle of a system component. State diagrams model the
different states or conditions which a class can exist in. More
importantly, they model the process of class transitioning from one
state to another. Usually every class possesses a state, but should
not necessarily have a state diagram. Along system activity, only
those classes that have three or more potential states are considered
interesting to model.

 Figure 4.20:

Activity diagram with
3 swimlanes

(Pender,2002).

 State diagrams have the following types of elements: a state which
represents the condition of a component; an event describing the
occurrence of message receipt; a transition; an initial state; and a
final state. As a component is created, it enters an initial state. The

 The Multi-Disciplinary Design System 111

Formulation

transition starting from the initial state is labeled with the event that
creates the component. As the component enters its final state, it is
destroyed. The transition to the final state is labeled with the event
that destroys the component (figure 4.21).

 Figure 4.21:

Statechart diagram
showing the various

states that classes
pass through in a

functioning system
(Pender, 2002)

 Interactions View

 The Interaction diagram is a subset of behavior diagrams. It focuses
however on the flow of data and control among the objects in the
modeled system. Interaction diagrams include the following
diagrams: sequence diagrams, communication diagrams, timing
diagrams, and interaction overview diagrams.

 Sequence diagrams (figure 4.22) are primarily interested in the time
and ordering factor. Widely used among software engineers,
sequence diagrams show how different physical components
interact over time. Interaction in this context refers to the exchange
of messages or calls. Calls among objects as well as different calls to
different objects can be depicted, all visualized according to time
sequence. The content of sequence diagrams is concerned with
specifying the data flow between a subset of system components.
They can illustrate a detailed flow for a specific use case or a
segment of a particular use case.

A sequence diagram has two basic dimensions: the vertical
dimension, which shows the time sequence of messages; and the
horizontal dimension, which shows the objects involved in the
interaction, specifically the instances to which the messages are
sent. Unlike FFBDs, EFFBDs and behavior diagrams, however,
sequence diagrams cannot characterize control in terms of
constructs. Specification of control in the sequence diagram notation
is incomplete and consequently cannot be implemented.

 The Multi-Disciplinary Design System 112

Formulation

 Figure 4.22:

A sample sequence
diagram

(Pender,2002).

 In general, there is no restriction as to the appearance of all UML
components on any types of UML diagrams. In terms of notation,
usually the presence of a comment or note is allowed in a UML
diagram, so that intent, usage, or constraints can be expressed and
explained clearly. This is traced back to the conventional notation
system used in engineering drawings.

 4.4.2.2 Systems Modeling Language (SysML)

 OMG SysML™ is a general-purpose graphical modeling language
characterized by having computer-sensible semantics (OMG, 2007a).
The main purpose of this language is the identification, analysis,
design, and verification of complex systems. In a way, SysML adapts
UML™, which is primarily used for modeling software-intensive
systems, for the purpose of systems engineering applications. Similar
to the UML approach in unifying modeling languages in the software
industry, SysML reuses a subset of UML 2 to unify the wide range of
modeling languages, tools and techniques currently in use by
systems engineers.

 The history of SysML goes back to 2001 when the International
Council on Systems Engineering’s (INCOSE) Model Driven Systems
Design workgroup decided to customize UML for systems
engineering applications. Two main bodies, the INCOSE and the

 The Multi-Disciplinary Design System 113

Formulation

Object Management Group (OMG) (which maintains UML
specification), collaborated as a result and jointly developed with the
assistance of other groups the specifications for the SysML in March
2003 (OMG, 2007a).

 SysML uses UML 2.0 and its extensions as its basic foundation.
Therefore both systems engineers using SysML and software
engineers who model using UML 2 can collaborate effortlessly on
models of software-intensive systems. This enhanced
communication among participants in the systems development
process advances interoperability among modeling tools. It is most
likely that SysML will be customized to model domain-specific
applications, such as automotive, aerospace, communications, and
information systems.

 Figure 4.23 illustrates the SysML diagram taxonomy, representing
the concrete notation for the diagrams, together with the
corresponding specification of the UML extensions. Compared to
UML, SysML is a smaller language, both in diagram types and total
constructs, as it reduces many of UML's software-centric constructs.
This makes it an easier language to learn and apply, and much more
flexible and expressive.

SysML, like UML, supports allocation tables, a tabular format that is
dynamically derived from allocation relationships. While UML
provides only limited support for tabular notations, SysML is
characterized by flexible allocation tables that support requirement,
functional and structural allocation. SysML constructs for model
management extend UML capabilities and support models, views,
and viewpoints.

 Figure 4.23:

SysML diagram
taxonomy

(OMG,2007b)

 The Multi-Disciplinary Design System 114

Formulation

 SysML implements a total of nine diagram types, seven of which
belong to the original thirteen UML 2.0 diagrams. It adds two other
diagram types: requirements, used for requirements management;
and parametric diagrams, used for performance and quantitative
analysis.

 A requirement specifies a condition that should be met. A
requirement may specify a function that a system must execute or a
performance specification a system must achieve. The requirements
diagram can depict the requirements in graphical, tabular, or tree
structure format. Other diagrams can also have requirements appear
on them to show their relationship to other modeling elements.
Modeling constructs are supplied in SysML to represent text-based
requirements and their relation to other modeling elements. The
requirements modeling constructs were developed to bridge
between traditional requirements management tools and the other
SysML models (OMG, 2007b).

 Parametrics primarily supports engineering analysis of critical system
parameters, well known as a crucial aspect of systems engineering.
This analysis includes the evaluation of performance, reliability, and
physical characteristics (OMG, 2007b). Parametrics addresses the
gap in previous modeling languages such as UML, IDEF, and behavior
diagrams. It also provides a mechanism that deals with problems in
non-standardized engineering analysis models. Previous non-
standardized engineering analysis models lack the integration and
synchronization with system architectural models, which specify the
behavioral and structural aspects of a system, due to the complexity
and diversity of engineering analysis models. Parametrics integrates
engineering analysis models with system requirements and design
models for behavior and structure. It is also represents constraints in
order to capture other types of knowledge beyond engineering
analysis.

 With these augmentations, SysML can model many systems,
including hardware, software, information, processes, personnel,
and facilities. Principal terminology in SysML parametrics includes
the following terms:

• Constraints are similar to equations. This is useful in most
engineering problems. A constraint block defines this
equation in a way that makes it reusable. A constraint
property is a specific instance of usage of a generic constraint
block (for example, supporting engineering analysis of a
particular design).

• Parameters represent variables of an equation or a

 The Multi-Disciplinary Design System 115

Formulation

constraint.
• Value properties represent any measurable attributes of a

system architectural model or its components that are
subject to analysis (e.g. mass). Through binding, the generic
equations are linked to the value properties that specify the
system and its components. Thus, the value properties are
said to be bound to the parameters of a constraint.

 The Multi-Disciplinary Design System 116

Formulation

 The Multi-Disciplinary Design System 117

Modeling

 5.1 What is a Model?

 In general, a model is an imitation or approximate representation of
a system or of complex functions (Papalambros and Wilde, 2000). It
is a simplified or abstract view of the complex reality using a physical,
mathematical, or logical representation of the system of entities,
phenomena, or processes. It may focus on specific views, thus
facilitating the understanding and analysis of complex problems
through decomposition.

 Modeling, as an efficient communication tool, illustrates how
systems and processes work and induces creative thinking about
their enhancement. It is used by artists, architects, engineers,
designers, planners, operations researchers, economists, managers,
scientists, and others to study, plan, design, or control systems and
artifacts. The basic concept that these uses build upon is the fact
that model behavior represents to a great extent that of the system
or artifact in an abstract and simple manner.

 Modeling usually reduces cost, risk, and flow time of certain tasks.
Most often modeling remains the sole method to perform tests and
experiments as it is sometimes unfeasible, costly or disruptive to use
the actual system or artifact for these purposes (Averill, 2006). The
system or artifact that is to be modeled might not even exist in
reality but we may want to propose multiple configurations and
study different alternatives to find out how it should be initially
designed. It is therefore important to construct a model and study it
as a substitute for the actual system (Averill, 2006).

 Models represent a simplification because they extract only the
highly significant aspects of the real artifact for efficiency, reliability,
and ease of analysis purposes. Models can replace a specific
phenomenon in an unknown field with representation in another
field with which the user is more familiar. Phenomena can thus be
made simple, many relevant attributes can be extracted, and effects
can be scaled in space and time to acquire tailored levels of detail
while maintaining the modeling experimentation convenience. The

5. Modeling

 The Multi-Disciplinary Design System 118

Modeling

question always remains as to whether the model reflects accurately
the system or artifact for the purposes of the decisions that are to be
made.

 Models usually fall into one of two categories, physical or symbolic
models (Jacoby and Kowalik, 1980). A model is considered a physical
or material model if the system representation is a tangible and
material representation (Papalambros and Wilde, 2000), comprising
model elements made of materials and hardware. These models
typically include smaller scale versions of real objects, such as a ship
model, and are basically intended for experimentation, study and
display (Maki and Thompson, 2006).

 A model is considered to be a symbolic or formal model if the system
representation is theoretical or symbolic, and conducted by tools
developed primarily for abstraction purposes, such as drawings,
logic, mathematics or verbalization (Papalambros and Wilde, 2000).
A building blueprint is considered a pictorial symbolic model. Words
connected with logical statements form complex verbal symbolic
models. Computer languages are an extension of these ideas as well
(Papalambros and Wilde, 2000). Here we are concerned with
symbolic models and specifically mathematical models. These are
models that can be implemented in a computer environment.

 5.2 The Mathematical Model

 A mathematical model is a formal model that comprises symbols,
assumptions about the symbols, the relations among the symbols,
and connections between the actual model and these symbols and
relations (Maki and Thompson, 2006). Within a design problem it
consists of a set of quantitative and logical statements that
represent relevant features of a specific artifact or system in terms
of mathematical concepts, symbols and language including variables,
parameters, and relationships such as equations and inequalities
(Jacoby and Kowalik, 1980; Maki and Thompson, 2006).

 A mathematical model becomes a computational model as soon as
its associated equations are coded into a computer program where it
can be studied numerically and graphically (Maki and Thompson,
2006). Simulation, as one of the applications that involves intense
computation, deals primarily with the process of designing a model
of a system and conducting experiments on that model. The
relationships in the model are manipulated to observe how the
model reacts, and how the system would eventually react
accordingly if the mathematical model were valid (Averill, 2006). This
allows for testing hypotheses at a much lower cost than actually

 The Multi-Disciplinary Design System 119

Modeling

performing that activity in reality.

 If we assume the output of the system is y, the input is x, and f is a
mathematical function that calculates a value of y for each value of x.
Then the following equation is a mathematical model of the system:

y=f(x)

 This representation is merely symbolic. The actual function can be a
system of algebraic or differential equations or a computer-based
subroutine. In order to provide a mathematical model of a design, it
has to be fully defined through assigning values to every single
involved quantity. These values have to satisfy the mathematical
relations that represent the performance of a specific task
(Papalambros and Wilde, 2000).

 Figure 5.1:

Block diagram
representation of a

mathematical model.

 We also can represent this mathematical model of the system using a

block diagram representation (figure 5.1). If a set of relations
representing the physical system mechanism were enclosed in a
block or box that could be only approached through input and
output terminals, that box is known as a closed box (Jacoby and
Kowalik, 1980). It is impossible to tell apart from other boxes that
can generate the same outputs from the same inputs. By adding
input or input terminals, these boxes can be made more “open”,
that is to say they can be made distinct from each other. The only
difference then between an open and a closed box is a quantitative
and not a qualitative difference, as the number of added terminals
affects the closed and open nature of that box.

 5.2.1 Elements of mathematical models

 Mathematical models generally consist of a model interior, a
boundary, and a group of boundary and initial conditions that
represent aspects of the artifact environment relevant to the
modeling experiments.

 The Multi-Disciplinary Design System 120

Modeling

 The boundary and the set of boundary and initial conditions
represent aspects of the system and artifact environment that relate
to the modeling experiments. The model interior on the other hand
is mostly structured and comprises interconnected components that
represent parts of the artifact or system. Overall, the model interior
includes variables, parameters, constants, mathematical relations,
and algorithms.

 Variables represent different system states by assuming different
values that are possible within an acceptable range. The solution we
usually seek for the model experiment consists of the values of the
variables satisfying the modeling expressions. The choice of variable
types depends on the system we are dealing with.

 Parameters represent fixed quantities that are assigned one
particular value in a particular model experiment but may
nevertheless be changed from one experiment to another. They are
assigned and fixed by the model application and not the underlying
phenomenon.

 It is important to distinguish especially in the modeling stage
between variables and parameters. Variables that are fixed in a
particular modeling experiment are considered parameters.
Selecting which quantities will be assigned or categorized as
variables or parameters is a subjective decision. It is basically
determined by selections in hierarchical level, boundary isolation,
and intended use of the model (Papalambros and Wilde, 2000).

 Constants are quantities that are fixed and assigned by the specific
phenomenon and not by the model statement. They are usually
natural or design requirement quantities that cannot be affected or
changed by the designer.

 Mathematical relations, such as equations or inequalities, merge the
variables, parameters and constants together. The most difficult part
of modeling is the issue of stating these relations which aim to
describe the system function within the conditions and constraints
set by its environment (Papalambros and Wilde, 2000).

 Algorithms are broadly defined as step-by-step procedure for solving
a problem or achieving some end (Daffa', 1977). The words algorism
and algorithm stem from Algoritmi, the Latinization of the name of
Al-Khwarizmi, a Muslim mathematician born around 780. The name
was later modified from the Arabic name to Medieval Latin
algorismus, then to Old French & Medieval Latin, then to the Middle

 The Multi-Disciplinary Design System 121

Modeling

English word algorisme, which was later altered to algorithm.

 Algorithms may be expressed differently according to the medium
where they are tackled. Algorithms can be computed by either
humans or machines, so they are not machine-dependent. An
algorithm can take the form of numbers, verbs, actions and drawings
in the case of humans, while it takes the form of numbers in
computers.

 Finding an algorithm that can solve a given problem effectively has
long been difficult for mathematicians and eventually led to the
theory of computability by Turing in 1936 (Kalay, 2004). This difficulty
proved not only a matter of which problems lend themselves to
mechanical or computational solutions, but also of finding the most
effective algorithm to solve these problems. The algorithm must
accomplish its designated task within a sensible time frame and
using reasonable computing resources.

 Some problems are appropriate for either iterative or recursive
implementations. The process of iteration in general can describe the
repetition of any process within a computer program. It can also
describe a particular form of repetition with a variable state.
Repetitive constructs are employed in these iterative algorithms,
such as loops and often some additional data structures such as
stacks, in order to solve the given problems.

 Recursive algorithms, a method common to functional
programming, describe those algorithms that call or refer to
themselves continuously and repeatedly until a specific condition is
met. The strength in using recursion lies in the ability to define an
infinite set of objects by a finite statement and an infinite number of
computations by a finite recursive program even if it does not overtly
contain any repetitions (Wirth, 1976).

 In computers, algorithms are usually executed in three ways: serial,
parallel or distributed. Serial computing is where algorithms are
computed by a processor only one at time sequentially. In parallel
computing, algorithms are computed simultaneously by more
processes, thus requiring the algorithm structure to enable such
computing. The third type of algorithms, distributed algorithms, can
use several computers connected through networks.

 5.2.2 Constructing Mathematical Models

 This section is concerned with the scope of the modeling process
which generally relies on the project objectives, performance

 The Multi-Disciplinary Design System 122

Modeling

measures, availability of data, credibility concerns, computer
constraints, time and money constraints, and the time frame for the
study and the required resources. The scope of the model is also
highly dependent on and driven by design intent which is the group
of objectives that a certain system or artifact expresses or helps
realize. This is categorized into two main classes: quantifiable design
intents and qualitative design intents. Quantifiable design intents can
be identified, expressed and managed easily as their performances
can be measured numerically, whereas qualitative design intents
cannot. It follows that defining the scope is extremely reliant on the
model developer and designer.

 Many experts are required for successful model construction. It is
important to be able to identify those aspects of the design problem
that are relevant to answering questions about the artifact or system
behavior in a real world situation. Usually this is done by individuals
who are knowledgeable and familiar with the origin of the design
problem and the involved discipline. These individuals and model
developers are the ones who initiate the first steps in model building.
They do this by closely studying the system and its conditions in
detail and recognizing analogies to other conditions before moving
on to basic assumptions about the problem under study. The intent
is to define the boundaries of the models, which is an important
challenge in model construction. It involves primarily selecting the
elements to include, the features and attributes to consider, and the
level of detail.

 Selecting the level of detail of a model is not an easy task; it is rather
an art. The ultimate limit of the model detail tends to mimic exactly
the artifact or even become the artifact itself. This limit can be
achieved in very few design situations (Jacoby and Kowalik, 1980).
One good practice is to start with a relatively simple bounded scope
that comprises the most basic elements of the system and then add
more layers of detail or new elements according to the accumulated
understanding developed along the process. This way models start
as rough estimates of reality and then progressively reach the
complexity of the studied system or artifact.

 The intent underlying the mathematical model is usually guided by
the intent that it represents and the purpose it serves. This is mainly
a challenge as it is an economic decision which is based on model
developer experience with no magical recipe. There is often no need
to model each and every aspect of the system in order to make
effective decisions, as this could result in high model execution time,
or conceal valuable system or artifact factors. Level of detail is not
usually analogous to higher-fidelity models, as some models are

 The Multi-Disciplinary Design System 123

Modeling

better broken to certain combinations to guarantee execution speed
and a degree of specificity. The aim is to make the design problem as
simple and accurate as could be through a process of simplifications
and approximations. This is done by eliminating information that is
not necessary and simplifying the necessary information as much as
possible, and thus not all the detail of the real world has to be taken
into account and fewer objects and processes can be dealt with
(Maki and Thompson, 2006).

 Another key step is identifying the operative processes at work with
the goal of expressing them symbolically. This process often
demands high levels of creativity where all the quantities and
processes are represented through mathematical operations and
symbols. At the same time, it determines the validity of results, as
the unsuitable mapping between the real and mathematical worlds
could lead to results that are not that useful. It is therefore
important to observe that the mathematical operations are error-
free. This is done by observing that there has been no significant
omission in the step from the real world to the mathematical model
and that the mathematical model reflects all the necessary aspects
of the real model. Ideally everything observed should be accounted
for in the mathematical conclusions, and all the predictions would
thus be verified by experiment. This does not typically occur,
however, especially if it is the first attempt. The usual situation is that
some of these conclusions agree with the experiment outcomes and
some do not. Every step in the process has to be scrutinized again in
this case (Maki and Thompson, 2006).

 Usually the whole process operates iteratively through continuous
refinements until an acceptable model is generated. The outcome is
not necessarily a unique mathematical model, but it is shown that
some of the several generated models can be distinctly better than
the others. It may also occur that a number of models turn out to be
useful for the same situation, where each model contributes to one
but not all aspects of the problem under study. There is therefore
not necessarily a “best” model. Choosing the model to use relies
basically on the exact questions of the study (Maki and Thompson,
2006).

 A model is generally judged by its performance in the tasks it was
originally intended for, whether the model was designed to explain,
predict or facilitate decision-making. In the case of explanation, the
model is judged by its ability to offer a suitable description of the
observed phenomena. In the case of prediction, it is judged through
the degree of precision of the predictions it was based on. In the
case of decision-making, it is judged by the efficiency and precision

 The Multi-Disciplinary Design System 124

Modeling

of decisions it was based on, in comparison to decisions that are
based on other criteria (Maki and Thompson, 2006).

 Once the model and a mathematical structure are defined
programming and computer software can be used in order to
simulate the situation under study. Graphical and numerical output
can be generated through simulation over different sets of
conditions or relations of interest. That output is then evaluated, and
the results are utilized to conclude about the situation under study
or make a specific decision. The primary concern of this evaluation,
however, is how representative the output is.

 5.2.3 Types of Mathematical Models in Design

 Coyne et al. 1990 have written that “In modeling design we do not
attempt to say what design is or how human designers do what they
do, but rather provide models by which we can explain and perhaps
even replicate certain aspect of design behavior.”

 To model a design mathematically we must be able to define it fully.
Designers and engineers regularly utilize mathematical models to
perform typical design activities. These activities include generating
one or more physical configurations, known as synthesis. They also
include studying the performance and behavior of these
configurations through engineering and science which is known as
analysis. Designers and engineers then have to make design
decisions about the results, which is known as evaluation. Finally
they have to devise mechanisms for searching for the best
alternative(s), which is known as optimization (Papalambros and
Wilde, 2000). With a powerful tool like modeling, complex systems
can be synthesized, analyzed, evaluated and optimized.
Mathematical models are especially well-suited for design due to
their flexibility and ease of modification (Jacoby and Kowalik, 1980).

 Synthesis Models

 Configuration synthesis, a unique and open-ended attribute of the
design process, is well known to be the most significant and
innovative part in design evolution. The synthesis process comprises
decisions involving the overall arrangement of parts, how they can
be assembled together, in addition to geometrical forms, kinds of
motion, force transmission, etc (Papalambros and Wilde, 2000). It
also enables the fulfillment of requirements by generating physical
and informational structures, including machines, software, and
organizations (Suh, 1990).

 The Multi-Disciplinary Design System 125

Modeling

 Although this process has historically been one that required human
ingenuity and skill, many researchers have attempted to structurally
formalize it, aiming at achieving shorter design cycles and more
robust solutions. With the introduction of computers, formal design
methodologies and structured algorithmic descriptions, automatic
design synthesis can be accomplished computationally. This
computational approach has the advantage of managing and
tackling problems that are not open to solution by humans.

 Analysis Models

 Analysis models are developed according to principles of engineering
science (Papalambros and Wilde, 2000). These models, which
incorporate different analysis results, are constructed with the
purpose of predicting the overall performance of the design. In the
analysis process, engineers usually construct a descriptive
mathematical model. This model constitutes a hypothesis and
estimate of how the artifact could possibly work, or how
unpredicted events could affect that system or artifact.

 Evaluation Models

 Evaluation models aid the process of selecting good designs that
constitute a compromise of several different requirements. This
means that a design can be altered to create different alternatives
with the ultimate goal being to choose the most desirable
alternative. A decision has to be made once there is more than one
alternative to choose from.

 The model helps provide a clear explanation, prediction and a
foundation for objective decision-making. The rational selection of
an alternative requires a criterion which helps evaluate all
alternatives and rank them according to best fit. The criterion used in
such models is known as the objective of the model (Papalambros
and Wilde, 2000). It is not unique, however, and its selection will be
affected by a variety of factors. These include the design application,
timing, point of view, the designers’ own judgment, and the position
of the individual in the hierarchy of the organization (Papalambros
and Wilde, 2000).

 Optimization Models

 This type of mathematical model enables moving from one
configuration to the other in the ongoing search for better solutions,
but more importantly it is established with the aim of control and
guidance.

 The Multi-Disciplinary Design System 126

Modeling

 Optimization techniques are often used to determine potential
design configurations by optimizing them according to the functional
objectives and requirements developed in evaluation models. The
solution to the problem is generally developed through solving the
mathematical model which consists of an objective function that is
to be optimized, and a group of constraints that act as resource
limitations (Bahrami and Dagli, 1994). Optimization usually offers
crucial solutions in situations where design problems can be
formulated according to the objective and functional requirements.
In this optimization process, simulation can be used in computing
variables of the design vector. If not appropriate, variables of the
design can be altered and the process is then repeated.

 The Multi-Disciplinary Design System 127

Modeling

 5.3 Synthesis Models

 5.3.1 What is a Synthesis Model?

 Historically synthesis has been a human effort that usually required
skill and creativity. Through several attempts to shorten design
cycles and achieve more robust solutions, design synthesis processes
have been formalized. In the computer age, formal design
methodologies, together with algorithmic descriptions, could be
used to obtain automatic design synthesis computationally and
handle problems that that may exceed human capabilities.

According to specific user needs and technical limitations, analysis
and synthesis models and algorithms have evolved fully
independently of each other although they are very closely related.
Both fields are crucial to the design of complex systems, as design
solutions are only identified through synthesis mechanisms, while
there is no scientific basis for any of those solutions without analysis.

Synthesis models gain strength from being able to generate
solutions that may be unpredictable or surprising, even to the
designers themselves. These unpredictable solutions may be either
beneficial or not. The interesting notion, however, is that synthesis
models exhibit inherently a theoretical interest as they challenge the
basic principles of the designer-machine relation. This can lead to
results that are mostly outstanding and better than intended.

Synthesis models are primarily based on the fundamental concept of
computation, where input information is operated on by functions in
a computer which follows some algorithms to generate some sort of
output. These models rely on analyzing specific design processes and
programming them into computers. By developing shape
manipulation algorithms, designers can use computers to generate
many shape configurations. Designers use these systems to explore
formal design concepts, describe the generated forms via computer
algorithms, and ultimately use the algorithms as design tools for
developing product forms.

In general, generative synthesis algorithms present a powerful
formalism that can generate solutions within the design space
defined by the system design language. By using these generative
synthesis algorithms, computers become powerful design assistants
and go beyond their traditional roles in design such as drafting,
visualization or analysis. By embedding various performance
requirements from the different design disciplines in the synthesis
algorithm, many multidisciplinary alternatives can be created, thus

 The Multi-Disciplinary Design System 128

Modeling

minimizing the search space and leading to feasible solutions.

 5.3.2 The Synthesis Model Structure

 Synthesis models are constructed via a number of components and
modules that represent operations and algorithmic procedures. They
also require a type of representation, specifically for the geometric
attributes of the artifact. The input to the synthesis model is a design
vector. Both the design vector and the structure of the synthesis
model affect the nature of the solution space. Within the MDDS
framework the synthesis model is expected to output a solution and
certain attributes that then become the input to the analysis models
(figure 5.2).

 figure 5.2 :

Expected input and
output of the

synthesis model

 5.3.2.1 Algorithms in design

 An algorithmic approach to design is a systematic encapsulation of
design thinking to express the design process. A design algorithm is
an articulation of either a strategic plan for solving a tractable
problem, or a stochastic search towards possible solutions to an
intractable problem (Terzidis, 2006). Describing design processes
through procedures is a rationalization process. These descriptions
require clearly defined objectives and design languages (Yessios,
1975).

Design can be expressed via different representations, and so are
synthesis algorithms. Some algorithms are better expressed as
numbers while others are better presented graphically.

As discussed previously, design is implemented in an iterative
process. A specific type of iteration is known as recursion. Recursion
is a form of repetition of a local condition where iteration is a more
general repetition.

Recursion algorithms are typically known as those that “call”
themselves until a stopping condition is found. Repetition should not

 The Multi-Disciplinary Design System 129

Modeling

be viewed as the reappearance of elements or attributes, but rather
the re-implementation of algorithms. A famous example of a
recursive algorithm is the Koch curve (Mandelbrot, 1983) (Figure 5.3).

 Figure 5.3:

Koch curve is a
recursive synthesis

algorithm

 As stated earlier, designing via algorithms is a rationalization process
which forces designers to structure their thinking around causal
relationships and the sequence of tasks. This process can be used to
devise new designs as well as express existing ones (figure 5.4).

Structures of algorithm vary based on the design problem at hand.
The most important fact is that the problem must be describable.
Mapping methodologies of problem components, from mere
information to algorithmic procedures within the synthesis model, is
a design skill.

Using Synthesis algorithms, concepts and processes that are seen as
inconceivable, unpredictable, or simply impossible by a human
designer can be explored algorithmically by computers. However, to
achieve their intended goals, synthesis algorithms must be time
efficient, deployed within a tractable scope, and implemented to
achieve clearly described design intent.

 5.3.2.2 Parameters

 In mathematics, parameters represent constants in equations that
vary in other equations of the same general form. For example, in the
equation of a curve or surface, parameters can be varied to
represent a family of curves or surfaces. In geometry, parametric
equations define shapes (curve, surface, etc.) without assigning
direct connections between the coordinates of its points, but rather
by expressing these coordinates in relation to one or more
independent parameters (figures 5.5).

 The Multi-Disciplinary Design System 130

Modeling

 Figure 5.4:

An example of a
synthesis algorithm

that generates
variations of

components that
create a structure.

Variation

System 1

Hosting Skin

System 2

Product

 The Multi-Disciplinary Design System 131

Modeling

System 1

System 2

ProductParameters

Figure 5.5:

A space truss is
generated using a set

of parameters

 The Multi-Disciplinary Design System 132

Modeling

 The computer science implementation of parametric equations
requires those parameters to hold values before performing a
computation. For example, describing a shape with equations is not
enough to generate a graphical representation of it.

Describing relationships in terms of parameters is referred to as
Parameterization. Since parameters are expressed in numerical
values, anything that can be represented by numbers can be
parameterized. Parameters can be variable or be fixed. Parameters
can be driving numerical values, or a set of algorithms, or geometric
elements. They can also be dependent or independent. Dependent
parameters are those explicitly defined in terms of other elements.
Independent parameters are those that require direct input.

Parameters can act as an interface between input methods and the
internal model components. In a synthesis model, parameters may
represent value ranges, Boolean conditions, strings, or even
algorithms. In this sense, any design component can be
parameterized.

Parameters offer control over equations, artifacts properties, or
even calculations. This provides the designer of the synthesis model
with the ability to manipulate the embedded algorithms and
generate a variety of solutions.

 5.3.2.3 Design Relationships

 We established that synthesis models are structures of operations
and algorithms that drive the generation of artifact designs. These
designs should facilitate, perform or express a set of clearly defined
design intents. These models can be controlled via parameters that
expose the model’s internal components allowing for control over
models behaviors. However, parameters do not provide control
constructs within an algorithm. Relationships are ways to control the
behavior of the synthesis model. Relationships include: associations,
constraints and rules.

 Associations

 Earlier we introduced the concept of independent and dependent
parameters. Designers can set relationships within a model to
generate internal feedback loops. Communication among synthesis
model components is possible through associations. Associations
enforce relationships between components such that one drivers the
other. For example, a relationship that expresses the value of X =
Y+1, is a relationship that associates the value of X to be always

 The Multi-Disciplinary Design System 133

Modeling

higher than that of Y by one.

Associations can generally be viewed as two types: bi-directional and
mono-directional. Bi-directional relationships allow information to
flow in both directions. Mono-directional relationships enforce
Parent-Children hierarchies that propagate information only in a top
down fashion.

 Constraints

 Designers and engineers deal with constraints in every design.
Constraints are conditions that must remain satisfied for a synthesis
model solution to be feasible, thus they can be used to ensure a
specific model behavior. Constraints are mainly numerical. For
example: the value of X cannot exceed 5, or the angle between line-A
and line-B must remain within 45 degrees.

 Rules

 The concept of using rules within design is not new. Vitruvius’s (c. 28
BC) Ten Books on Architecture are known to be the first document
account of design rules. Vitruvius’s work came in the form of recipes
to describe roman architectural, engineering and city planning
designs. His work had a great influence on Renaissance architects
and revived fascination with Roman culture and classicism in
subsequent periods. Andrea Palladio’s (1570) work also took the
form of recipes that described various buildings’ parts such as
columns, vaults, domes, spatial layout, etc. In his Four Books on
Architecture, Palladio provides explicit instructions on how to
construct a “proper” Ionic column: “To form the capital, the foot of
the column must be divided into eighteen parts, and nineteen of
these [same] parts is the height and width of the abaco, half thereof
is the height of the capital with the volutae, which is, therefore, nine
parts and a half; one part and a half must be given to the abaco with
cimacio, the other eight remain for the volutae, which is thus made.”
(Kalay, 2004).

Nowadays designers from many fields such as architecture,
engineering, computer science and artificial intelligence are
developing methods and techniques to rationalize synthesis
processes in design. But, just as designers previously approached
solving synthesis problems, many of these methods rely on heuristics
to build the design rules. Building these rules involves knowledge
engineering where designers encode a series of facts, preferences,
conditions or circumstances within the design rules (Kalay, 2004)

 The Multi-Disciplinary Design System 134

Modeling

Figure 5.6:

A building skin
generated from a set
of synthesis rules and

an algorithm that
generates a Voronoi

diagram

 The Multi-Disciplinary Design System 135

Modeling

 Building design rules defines a mode of operation. Designers
rationally analyze and critically unpack relationships and
dependencies within a design problem to be able to describe it via a
set of clearly defined rules. As the same time, rules offer an
opportunity to inspect the logic embedded within a synthesis model.

Rules can facilitate some control on the synthesis model and can help
regulate the design progress. In addition, while the synthesis model
attempts to fulfill the design rules, interesting design solutions may
emerge (figure 5.6).

Within a computational synthesis model, the typical form for
embedding knowledge is constructing an IF-THEN condition-action
model. The IF portion describes the condition in which the THEN part
can be triggered. The THEN part includes the action description,
which in the case of our model is the design synthesis algorithm.
However, conditional statements are not limited to IF-THEN but also
include other forms: DO-UNTILL, or WHILE-LOOP, or FOR EACH-
NEXT, etc.

Generally, within a computer program, the rule application is
performed by a control mechanism known as inference engine. This
engine deals with reasoning about current conditions by deductive or
abductive methods. In deductive reasoning (also known as
“forward” reasoning) the inference engine searches for a rule whose
premise (IF part) provides facts. These facts are then added to the
system overall repository of facts. In abductive reasoning (also
known as “backward” reasoning), the inference engine chooses a
specific result and attempts to “prove” it as a conclusion that can be
derived from other known facts. In other words, inference engine
looks for the THEN-part, and adds that to the overall system facts
(Kalay, 2004). An example of a forward chaining reasoning is a
production system.

 5.3.2.4 Formal Grammars

 In the previous section relationships and rules were discussed as part
of the synthesis model. This section will introduce well established
formalisms that are intended to capture design intent and relations.
These are known as formal grammars and include: L-systems, Graph
Grammars, Cellular Automata and Shape Grammars among others.

The term formal grammar originated from Chomsky’s work on
linguistics in 1956 (Chomsky, 2002). A formal grammar is a set of
instructions for sequencing a set of symbols to form valid words. The
set of all words generated by a grammar formulates a language.

 The Multi-Disciplinary Design System 136

Modeling

Building vocabulary is similar to mathematical modeling for it entails
describing sequences of symbols and operations. The study of formal
grammar properties in mathematics is called formal language theory.

Formal grammars, do not only provide instructions to synthesize
(generate) strings (concatenations of symbols) in a language, but
also determine if a given string belongs to a language through
analyzing its internal structure. In computer science, such a process is
called parsing.

Grammars demonstrate a robust structure for processing
information as they can pack logic of a whole language, and generate
its entire set of solutions.

A synthesis grammar language is typically expressed as G = {V, R, S}.
The grammar G is a model that includes: a set of vocabulary V, a set
of rules R and a set of initial states S.

The set of vocabulary V is expressed via a certain representation. The
notion of symbol manipulation in formal grammars indicates that
they deal with clearly defined vocabulary which is not limited to
alphabets. In general terms, a symbol in a vocabulary is a
representation of an element.

The rules set R includes conditional constructs (IF-THEN, DO UNTILL,
etc) that fire replacement algorithms. Formal grammars sequences
(instructions) manipulate symbols by a process of replacement and
therefore can be treated within a computer program as production
systems. Replacement rules are typically expressed in the form of
X Y, which means IF X is found, THEN it should be replaced by Y.
Replacement rules can be sequenced in many fashions such as
stochastic, procedural approaching a certain state, or recursive
where a rule keeps invoking itself until a certain condition is achieved
(Mitchell, 1990).

Synthesis grammars also require an input which is a set of initial
states S. The initial states set includes the left side of design rules.
Initial states define the nuclei that can be used to initiate a solution
and resemble the left side of design rules.

Building a synthesis grammar is very similar to devising design
processes and rules. Designers tend to formalize and sometimes
standardize ways of dealing with design issues. This comes in the
form of sequencing a set of actions, and defining characteristics of
the final outcome (language). Thus, design grammars enable the
designers to critically evaluate design problems, unpack relationships

 The Multi-Disciplinary Design System 137

Modeling

and consequently build a clearer understanding of methodologies for
solving them. Some of the other advantages are externalizing
standards, or design criteria to ensure a certain level of quality
control over the generated solution; and the ability to generate
options that the designers can compare and select from.

Formalisms that will be discussed in this section include:
Lindenmayer Systems, which originally was developed to model
plants (Prusinkiewicz and Lindenmayer 1991) but has been used in
many other fields for design purposes including robotic design
(Hornby and Pollack, 2001); Graph grammars, which have been used
in many industrial design domains(Alber, 2002); Cellular Automata,
which have also been used in a variety of domains including building
design and city planning (Batty, 2005); and Shape grammars, which
were used in the generation of buildings (Stiny and Mitchell, 1978;
Downing and Fleming, 198), and Product Design (Agarwal and Cagan,
1998).

 A) L-Systems

 Based on Thue’s concept of rewrite systems, Aristid Lindenmayer
introduced L-systems in 1968 as a method to describe and simulate
growth of multi-cellular organisms, typically plants. L-systems
perform two main tasks: representing (packaging) information in
symbols and interpreting those symbols as growth patterns. The
elements (symbols) that exist in an L-system are called axioms. The
initial string is a composite of axioms (need not include all axioms). L-
systems operate by replacing symbols with one another based on
replacement rules. Rules rewrite input strings sequentially. Each step
of rules execution represents a generation. Expressing generations
(outcome) in an L-system is analogical to providing instructions of
how a solution unfolds as opposed to providing blueprints that
describe every element in the final solution (Hemberg, 2001).

Strings generated by L-systems can be interpreted as topological
maps for they describe connectivity relationships between
generations across a production. Mapping the symbols replacement
process as connections linking nodes portrays a typical tree
structure. If the mapping was interpreted geometrically, one can
view a tree like structure. However, L-systems should not only be
defined as generators of tree-like geometric objects. Symbols in L-
systems are typically maps of instructions where one triggers the
other.

The most widely used implementation of L-systems as instructions
calculator is that of Turtle Graphics by Prusinkiewicz. In a Turtle

 The Multi-Disciplinary Design System 138

Modeling

Graphics system, an object (turtle) moves forward, backward, left or
right by interpreting generations of strings (symbols) that were
created by implementing a number of replacement rules.
Furthermore, L-systems are implemented in parallel as opposed to
sequential (Hemberg, 2001). The nature of rule implementation in an
L-system makes it hard to hand-make the system produce a specific
result. A typical rule representation in an L-system is shown below.

The following rules replace “a” with “ab”, and “b” with “ba”.

a a b

b b a

if started with the symbol a, produces the following strings,

a

ab

ab ba

ab ba ba ab

The implementation of the current rules set applies to all symbols
across a generation. Thus, the rules are applied in parallel and not
sequentially (figure 5.7).

Rules application in an L-system can be guided by parameters that
determine which one to execute. This type is known as Parametric L-
systems. It differs from basic L-systems in that the production rules
have parameters that can hold algebraic expressions. In a Parametric
L-system, rules consist of three components: the predecessor, the
condition and the successor. For example, a production with
predecessor A(𝑛𝑛₀,𝑛𝑛₁), condition n1 > 5

and successor 𝐵𝐵(𝑛𝑛₁ + 1)𝑐𝑐𝑐𝑐(𝑛𝑛1 + 0.5,𝑛𝑛₀− 2) is written as:

𝐴𝐴(𝑛𝑛₀,𝑛𝑛₁):𝑛𝑛₁ > 5 → 𝐵𝐵(𝑛𝑛₁ + 1)𝑐𝑐𝑐𝑐(𝑛𝑛1 + 0.5,𝑛𝑛₀− 2)

 A production matches a module in a parametric word iff the letter in
the module and the letter in the production predecessor are the
same, the number of actual parameters in the module is equal to the
number of formal parameters in the production predecessor, and the
condition evaluates to true if the actual parameter values are
substituted for the formal parameters in the production (Hornby and
Pollack, 2001).

 The Multi-Disciplinary Design System 139

Modeling

Figure 5.7:

A building skin
structure and

materiality generated
using a set of L-System

rules

 The Multi-Disciplinary Design System 140

Modeling

 For example , the PL system,

 𝑎𝑎(𝑛𝑛) ∶ (𝑛𝑛 > 1) → 𝑎𝑎(𝑛𝑛 − 1)𝑏𝑏(𝑛𝑛)
 𝑎𝑎(𝑛𝑛) ∶ (𝑛𝑛 ≤ 1) → 𝑎𝑎(0)
 𝑏𝑏(𝑛𝑛) ∶ (𝑛𝑛 > 2) → 𝑏𝑏 �𝑛𝑛

2
�𝑎𝑎(𝑛𝑛 − 1)

 𝑏𝑏(𝑛𝑛) ∶ (𝑛𝑛 ≤ 2) → 𝑏𝑏(0)

When started with (4) , produces the following sequence of strings,

𝑎𝑎(0)

𝑎𝑎(3) 𝑏𝑏(4)

𝑎𝑎(2)𝑏𝑏(3)𝑏𝑏(2)𝑎𝑎(3)

𝑎𝑎(1)𝑏𝑏(2)𝑏𝑏(1.5)𝑎𝑎(2)𝑏𝑏(0)𝑏𝑏(1.5)𝑎𝑎(2)

𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(1)𝑏𝑏(2)𝑏𝑏(0)𝑎𝑎(1)𝑏𝑏(2)𝑏𝑏(1.5)𝑎𝑎(2)

𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(1) 𝑏𝑏(2)

𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0)𝑏𝑏(0)𝑏𝑏(0)𝑎𝑎(0) 𝑏𝑏(0)

 B) Graph Grammars

 Graphs are well suited for representing technical design objects for
they deal with symbols. They are commonly used in modeling
knowledge in many engineering applications. They are used to create
network graphs, petri nets, part-occurrence trees and class-diagrams
in software engineering etc (Alber, 2002).

A a graph G(N,E) consists of a set of nodes N and a set of relations
𝐸𝐸 ⊆ 𝑁𝑁 × 𝑁𝑁 called edges, whereby the graph nodes as well as the
edges have a label assigned to each. Nodes can include information
such as attributes or constraints. Constraints define, or rather filter,
the set of relationships between nodes by providing information on
what can be considered as valid relationships (Alber, 2002).

The notion of nodes attributes and constraints leads to the concept
of ports, which are highly used in engineering modeling (Heisserman
et al., 2000). A port acts as an interface between nodes providing
connectors and rules for valid relationships. Figure 5.8 shows a graph
formalism. In this illustration ports are symbolized by the smaller
circles which in case a port is unused, reside inside a node or in case it
contributes to a relation is aligned to the respective edge.

 The Multi-Disciplinary Design System 141

Modeling

Graph grammars are similar to other types of synthesis grammars in
that they are composed of an initial vocabulary V, and a set of rules
R, and initial states S. The vocabulary consists of labeled and
attributed nodes. The initial state𝑠𝑠𝑖𝑖 is any structured combination of
the vocabulary elements. A specific axiom or initial state together
with an ordered set of rules out of define a production system and
corresponds to one specific graph which can be constructed
following this program. Table 5.1 gives an overview of the analogies
between formal languages and graph languages.

 Figure 5.8:

The graph formalism
(Alber, 2002)

Table 5.1:

Analogies between
formal and graph

languages
(Alber, 2002)

 During the execution of a production system the initial graph 𝑠𝑠𝑖𝑖 is
modified by the graph rules thereby evolving in several stages and
forming the graph evolution sequence �𝐺𝐺𝑖𝑖0,𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖2, … . . ,𝐺𝐺𝑖𝑖𝑛𝑛�
with𝐺𝐺𝑖𝑖0 = 𝑠𝑠𝑖𝑖 .

Graph grammars deal with attributes and constraints dictating what
links may be valid. They also deal with modifying, editing, removing
elements from the graph structure when inserting new nodes.

 Formal language Graph language
vocabulary Symbols 𝑉𝑉 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … . } Graph nodes 𝑉𝑉 = 𝑁𝑁
rules Substitution rules 𝑅𝑅 =

{𝑎𝑎 → 𝑎𝑎𝑏𝑏, 𝑏𝑏 → 𝑏𝑏𝑐𝑐𝑏𝑏 , … . . }
Graph rule 𝑅𝑅

Initial states start symbol sets 𝑆𝑆 =
 {𝑎𝑎, 𝑎𝑎𝑏𝑏𝑎𝑎, 𝑏𝑏𝑎𝑎, … . }

Start graphs 𝑆𝑆

Production
system

1 start symbol set + ordered list
of substitution rules

1 start graph + ordered list of
graph rules

sentence Structurized symbol set
𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎𝑐𝑐𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎

graph

language Entirety of producible sets Entirety of producible graphs

 T The syntax for a graph modification rule can be represented by an
arrangement of graph elements (nodes and edges) in a 2D plane
divided into 4 quadrants Q1...Q4 as illustrated in figure 5.9. The two
leftmost quadrants Q1 and Q2 contain the conditional part of the

 The Multi-Disciplinary Design System 142

Modeling

graph rule Graph 𝐺𝐺𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 . At execution a rule a search is performed to
check if there exists any subgraph isomorphism between 𝐺𝐺𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 and
the actual graph 𝐺𝐺𝑘𝑘 . If an isomorphic subgraph is identified, the
generative part of the rule is executed. The modification of the graph
is described by the elements contained in Q1, Q3, and Q4, thus, giving
the Elements in Q1 a role in the conditional as well as in the
generative part of the rule (Alber, 2002).

 Figure 5.9:

Graph Rules
(Alber, 2002)

 Nodes in Q1 mark deletions and will be removed from
𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐 ℎ together with all edges leading to these nodes. The graph
nodes contained in Q2 and Q4 play the role of a context in order to
specify the embedding of nodes which will be cut out of or pasted
into 𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐 ℎ . Hereby the contents of Q2 and Q4 are identical in their
nodes but not necessarily in their edges. In this way Q4 can be used
to furthermore define a rearrangement in the connection topology
of 𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚𝑐𝑐 ℎ by removing or adding edges between the identified nodes
(figures 5.10 and 5.11) (Alber, 2002).

 The Multi-Disciplinary Design System 143

Modeling

 Figure 5.10:

Graph generation by
a production system

(Alber, 2002)

Figure 5.11:

Expansion of a
grammatically

defined sentence and
the corresponding

object
(Alber, 2002)

 The Multi-Disciplinary Design System 144

Modeling

 C) Cellular Automata

 A cellular automaton (plural: cellular automata) is a collection of cells
organized in orthogonal grids, each with a finite set of states (usually
denoted as colors). This collection of cells evolves over discrete time
steps based on the notion of neighborhoods.

A cell changes its state based on its current state and its neighboring
cells states following rules. A solution in CA is generated once every
cell in the collection runs the embedded rules. CA are sequential,
meaning the behavior (state change) in each cell depends on how its
neighbors behave. Unlike L-systems were rules are applied in parallel.
The first documented account of cellular automata was noted by von
Neumann. Neumann was trying to build a model of reproduction
where a system rebuilds itself continuously based on embedded
rules. Each part in the system has the same set of embedded rules
like every other component, thus system administration is local to
each. One of the famous examples on Cellular Automata is the game
of life, designed by John Conway. Cellular automata proved
applicable to many engineering, mathematics and biology domains
(Wolfram, 2002).

The simplest type of cellular automata is linear, known as elementary
CA. Each cell in elementary cellular automata has two states, black or
white. To calculate the number of possible neighborhoods of three
cells, we raise the number of states to the number of cells in a
neighborhood, so 2 ^ 3 = 8 types of neighborhoods. To calculate the
number of possible combinations of 8 neighborhoods with two
states, we raise the number of states to the number of
neighborhoods, 2 ^8 = 256 possible combinations of neighborhoods
of 3 cells each and 2 states per cell. The total number of possible
neighborhoods is known as possible CA rules.

 Figure 5.12:

Rule 30 cellular
automaton

 Rules in elementary CA are represented as arrays of back (1) and
white (0) unites. They are labeled by calculating the locations of
black cells on a binary scale of 128 64 32 16 8 4 2 1. In these location,
any black cells. So the representation for a rule 30 is as follows

 The Multi-Disciplinary Design System 145

Modeling

Figure 5.13:

Rule application of a

CA

00011110 (0*128) + (0 * 64) + (0*32) + (16*1) + (8*1) + (4*1) + (2*1) +
(0*1) = 0+0+0+16+8+4+2+0 = 30.

Figure 5.12 shows the result of rule 30.

Cellular automata are known to demonstrate four types of behavior:
fixed point, periodic, chaotic and random. These types are defined
based on the pattern of occurrence of certain behaviors over a
defined time period. Most of Cellular automata behavior is known to
be periodic, and random. Chaotic behavior, which is viewed as a sign
of performing universal calculation, is very limited. This bounds the
implementation of CA within a design context to being very limited.
Another reason to the limited implementation of CA in design is that
it is very hard to predict the outcome of a CA because the system
evolves sequentially based on how neighborhoods interact.
However, the very same nature of CA behavior makes them
reasonable to model and simulate complex systems that result from
an aggregate of local simple interactions at the cells level. Below is a
diagram showing how CA rules are typically applied.

 D) Shape Grammars

 Invented by Stiny and Gips in 1972 (Stiny and Gips, 1972), Shape

Grammars laid the foundations for major research into algorithmic
design approaches in the context of design analysis and design
synthesis. The use of Shape grammars for design analysis focused on
assessing the amount of embedded knowledge in a given design
languages; thus the ability to produce variations that belong to the
same family of design languages. Shape Grammars have been used
mostly in the design of civil architectural. Some of the most famous
grammars used for the analysis of architectural design languages are
the Palladian Grammar (Stiny and Mitchell, 1978), Wright’s Prairie
Houses (Koning and Eizenberg, 1981), Buffalo bungalows (Downing
and Flemming, 1981) to name a few (figure 5.14).

 The Multi-Disciplinary Design System 146

Modeling

 Shape grammars are a geometrical construct that express

production algorithms and rules through basic geometric elements,
points and lines. Shape grammar rules can be interpreted as
replacement rules for they consist of a left side (initial shape), an
arrow noting an operation, and a right side (the result). Shape
grammar operations include can be summarized addition,
subtraction, intersection, and transformations. Transformations
include: translation, reflection, rotation and scale.

In shape grammars, shapes are more of topological structures than
geometric representations (Cagan, 2001). Topological elements do
not intersect. They may exist in spaces of similar of higher
dimensionality. The following table describes the algebra of shapes
as Uij, where i represents the dimension of the topological element,
and j represents the space that accommodates it. For example the
symbol U12 means it is a segment element that exists in a plane
space.

U00 U01 U02 U03
 U11 U12 U13
 U22 U23
 U33

Like L-systems, Shape grammars can be also parameterized. A
Parametric shape grammar is composed of the following tuple: (S, L,
T, G, I). S is the expression of a Shape Grammar rule in the form (A
B) which typically means: if shape A is found, it is to be replaced by
shape B. L is the set of labels. Labels are notations added to the
Shape Grammar rules. They are typically represented as dots (can be
also colored). They are part of the rules, not the shapes being
calculated. T is the set of geometric transformations that build into
the Shape grammar rules. G is a set of functions that assign values to
rules parameters (attributes) such as height, width, rotation angles,
etc. I is the set of initial shapes which Shape Grammar rules use as to
start the calculation. Initial shapes are the left side of a Shape
grammar rule (Kalay, 2004).

Shape grammar rules that combine various representations are
known as parallel grammars such as combining description and
shape rules in a grammar. While shape rules are applied to the
evolving design geometric shapes, the corresponding description
rules are applied to the evolving description. Thus, as the generation
of the design evolves, the description of the design is constructed.

Representing design aspects via different combinations of shape

 The Multi-Disciplinary Design System 147

Modeling

grammars facilitates the manipulation of complex design problems,
by breaking them into smaller ones.

 Figure 5.14:

Prairie-style house
shape grammar

(Koning and
Eizenberg, 1981)

 A key feature in Shape Grammars is that they are built on the
promise of mimicking the process of thinking a designer goes
through based on the notion of recognition. For example, a designer
may envision, or recognize a certain shape in a complex assembly of
lines even though the shape is not explicitly defined (figure 5.15).

 Figure 5.15:

In this composition a
designer might pick

the upper square, the
lower one, or the one

generated by their
intersection

 Recognition in Shape Grammars is based on the notion that shapes
are non-atomic. They can be decomposed and recomposed freely at
the discretion of the designer. Decomposition of elements in Shape
Grammars is based on the notions of Embedding and Maximal
Elements. Any element is considered a maximal element that
includes all elements of similar topology but in smaller size. For
example, a line includes all of the embedded smaller lines that can be
“seen” inside of it. Thus, if a rule applies to an initial shape, line, it
may affect the whole line, or any part of it. This notion of recognition
in shape grammars make them virtually unlimited. As long as the
system is able to recognize an initial shape that a rule requires, the
system will keep running.

 The Multi-Disciplinary Design System 148

Modeling

Figure 5.16:

A set of Shape

Grammar rules can
generate many
variations of a

component

This allows for emergence of new shapes given that designers can
pick any shape, edit any rule, and operate in any order. Emergence
within this context is the ability to recognize shapes throughout a
computation that were not explicitly defined (Duarte, 2001).

 The Multi-Disciplinary Design System 149

Modeling

 However shape grammars do not lend themselves well to
computational implementation due to the complications associated
with representing shapes numerically as well as the lack of current
computational algorithms to recognize emergent shapes.

Nevertheless, Shape Grammars serve as an excellent design
development environment as they help formally express design
intent through shapes, pushing designer to think in algorithmic, clear
terms. This helps casting the design process in a hierarchical fashion
where stages and design priorities are expressed and formalized
(figure 5.16).

 Interpretation

 The main difference between the above mentioned formalisms is the
need for interpretation. Driven by the design problem,
interpretations of manipulated units vary. For example, one might
use a CA algorithm to drive the states of units in a neighborhood of
cells; then interpret those states as land use (Batty, 2005). In regards
to defining the geometry of artifacts, all formalisms mentioned need
a mechanism of interpretation between the actual formalism and its
interpreted geometry, except for shape grammars. The nature of the
shape grammar formalism lends itself well to geometry as it
describes design elements as shapes. However Shape grammars can
use interpreters for aspects of design synthesis that are not captured
by geometry.

 5.3.3 Computational Representation of Synthesis Models

 Synthesis design models capture the artifacts form attributes. These
could include material properties or shape characteristics. The latter
will be the focus of this section, and thus, the representation of
interest will be mainly geometric.

Representation is a structure of symbols that expresses the
environment or design intent through a set of mapping rules (Kalay,
1989). Representations serve as interfaces that define how we
interact with and study artifacts properties.

The representation of artifacts in synthesis models requires setting
up clear definitions of their composing elements, and the operations
that can help implement them. Modeling artifacts is typically partial
and so are the representations expressing them.

Geometric representation of artifacts in a computer environment can
be constructed in the form of wireframes, surface or solid

 The Multi-Disciplinary Design System 150

Modeling

representations. Wireframe representations can be thought of as a
set of curves that describe space discontinuities. Surface
representations are built off of wireframes. They describe two
dimensional spaces. Wireframe and surface representations are
ambiguous. They do not provide information on what is inside or
outside, what is filled or empty. Solid models offer a better depiction
of physical artifacts for they are un-ambiguous. They provide
information on closure (or water-tightness), boundaries, inside and
outside, and well-formedness allowing for automated manipulation
and testing (Kalay, 1989). In the rest of this section, geometric
representation will be explored through solids.

In the 1950s, numerically controlled machines were introduced at
MIT. Because those machines were mainly used in domains like
aerospace engineering and automotive design, interest in sculpting
and smooth modeling arose. In this period, came the works of
Bezier, Coons, Gordon and others in the early 1960s which provided
methods to describe surfaces mathematically. In parallel, research
into parametric wireframe drafting was also being developed at MIT
and the first drafting software that emerged was Sutherland’s
sketchpad in 1963.

Later in the 1970s, there was a desire to represent artifacts as solids
due to the limitations inherent in wireframe and surface
representations. In this period, two camps were formulated: the first
under Ian Braid in the University of Cambridge who worked on
representing solids with bounding surfaces, and the second under
Requicha and Voelcher at the University of Rochester who worked
on representing solids as Boolean combinations of primitives. Their
method was later known as Constructive Solid Geometry (CSG).
Later, in 1975, came the work of Baumgart on winged-edge structure
as a method to build boundary representations for solids (Shah and
Mäntylä, 1995). Following Baumgart’s structure was the work of
Eastman on split-edge structure at Carnegie Mellon in 1977.

A solid representation is an abstract notion of a symbol that is 1)
rigid: has invariant configuration or shape, which is independent of
location and orientation; 2) homogeneous in three dimensions: has
an interior, connected boundaries with no isolated or "dangling"
portions; 3) finite: occupies a finite portion of space; 4) closed:
remains a closed water-tight artifact under transformations
(translations and/or rotations) or operations that add or remove
material (welding, machining); 5) describe-able: has a finite set of
faces and edges; 6) boundary-determinable: has an inside and
outside (Requicha, 1980).

 The Multi-Disciplinary Design System 151

Modeling

Solids are typically built by representation schemes. “a
representation scheme is defined formally as a relation s: m r. We
denote the domain of s by d, and the range or image of d under s by
v. Any representation in the range v is said to be valid since it is both
syntactically and semantically correct (i.e., it belongs to r and has
corresponding elements in the domain d)” (Requicha, 1980).

Schemes for representing solids rely on two components: data
abstraction and hierarchy of elements (Kalay, 1989). The first
component, data abstraction, describes geometrical and topological
notions, such as space, surface, line, point, and shell, face, edge, and
vertex respectively. Data should be mathematically modeled for
three reasons: (1) mathematical models can be studied
independently of computational considerations; (2) such important
concepts such as representational validity and ambiguity can be
defined mathematically; and (3) a rich body of mathematical
knowledge can be applied to the study of geometric modeling
(Requicha, 1980). The second component, hierarchy, describes
techniques for structuring data. Hierarchies define the relationships
between the composing elements of solids (abstract data), leading
to defining topologies of solids. Hierarchies describe these
relationships in a bottom-up fashion. A number of schemes for
building solid representations follow:

• Spatial Occupancy Enumeration (SOE) of voxels: space is
subdivided into regular cells, and the target artifact is specified by
the set of cells it occupies. Models described this way lend
themselves to finite difference analysis. This is usually done after a
model is made, as part of automated pre-processing for analysis
software.

• Cellular Decomposition (CD): similar to "spatial occupancy", but
the cells are neither regular, nor "prefabricated". Models described
this way lend themselves to finite element analyses (FEA). This is
usually done after a model is made, as part of automated pre-
processing for analysis software.

• Sweeping: an area feature is "swept out" by moving a primitive
along a path to form a solid feature. These volumes either add to the
artifact "extrusion" or remove material "cutter path". Also known as
'sketch based modeling'. Sweeping is analogous to various
manufacturing techniques such as extrusion, milling, lathe and
others.

• Boundary Representation (B-rep): a solid artifact is represented by
boundary surfaces. Surfaces definition is based on edges, also

 The Multi-Disciplinary Design System 152

Modeling

knowing as 'surfacing'. Thus, B-reps are verbose. Each object comes
with it explicitly defining surfaces.

• Constructive Solid Geometry (CSG): simple artifacts (primitives) are
combined using Boolean operations (union, difference, intersection)
and linear transformations (Kalay, 1989).

Schemes for building solid representation may be also combined into
Hybrid representations. Examples on Hybrid representations include:
1) CSG/B-rep hybrid, which is used as the basis for the input language
of some geometric molding software; and 2) CSG/Sweep hybrid,
which useful for the verification of programs for numerically
controlled machine tools (Requicha, 1980).

Operations used in manipulating solid representations typically with
construction and transformation of shapes. Construction methods
describe shapes using Boolean operations (Union, subtraction and
intersection); axial sweeps (extrusions) and rotational (revolves);
Lofts; among other operations (Kalay, 1989).

Transformations are operations that change one instance into
another, while preserving its properties. Geometric properties are
those that remain invariant under isometric transformations.
Transformations are of two types: proper and improper. Proper
transformations are translation, scale and rotation. They do not
change the artifacts’ properties or relationships among the artifact’s
topological elements (vertexes, edges and faces). Proper
transformations preserve angles and scales relationships, but not
necessarily distances. For example, scaling an object isometrically
changes its size, but not the angles among its faces or the length
ratios among its edges. Improper transformations are those that
change relationships among artifacts topological levels such as
reflection (Mitchell, 1986).
The accuracy of solid representation facilitates automated
generation of documentations, and detection of interferences,
embedding of artifact information, among other things.

Although solid modeling was a pivotal development in the
manufacturing field due to its accurate representation, it fell short in
providing ways to regenerate artifacts’ representations based on
parametric variation. Later, an enhanced type of modeling systems,
where designers can access geometry parameters and reorder the
stack of operations, was introduced.

Within a Parametric CAD modeling system, parameters act as place
holders for numeric values that drive the geometric and topological

 The Multi-Disciplinary Design System 153

Modeling

structures of an artifact. They offer the ability to regenerate (vs.
redraw) new representations of artifacts. Regeneration (or updating
parameters) can be viewed at three levels. The first deals with
parametric entry. At this level, designers create artifacts by entering
a number of parameters through a user interface. The second level
deals with parametric editing where users can edit any created
artifact at anytime and regenerate new representations by either
changing the stack of operations or editing parameters values. The
third level offers parametric updating. At this level, users selectively
update, edit and link parameters to one another allowing for robust
control of parts and assemblies (Sacks et al., 2004). Controlling
artifacts attributes via parameters triggers chains of update cycles
that reevaluate dependencies while satisfying topological and
geometric relationships.

 Parametric CAD systems typically offer two types of parametric
objects: typed and type-less. Typed objects are usually solids. They
resort in libraries of ready-made parameterized geometries that
require specific contexts to trigger them. Typless parametric objects
typically include: primitive solids such as cubes, spheres, cylinders,
cones and torai; and surfaces and wiresframes such as NURBS (Non-
Uniform Rational Bezier Splines) and NURBS surfaces. Unlike
primitive solids, NURBS describe topology with various geometric
representations via degrees of curvatures and orders of polynomials
describing them. What makes NURBS curves and surfaces interesting
is the ability to easily control their shape by interactively
manipulating the control points, weights and knots, and hence the
ability to reshape objects as if they were made of an elastic material
(figure 5.17).

Parametric modelers evolved to include relationships such as:
constraints (of various types); associations (defining a parameter in
terms of other parameters or measures), and rules that allowed for
additional control over the created parts and assemblies.

Associations express relationships between different geometric
entities. As discussed previously, associations can be Bi-directional
relationships allow information to flow in both directions. Mono-
directional relationships enforce Parent-Children hierarchies.
Associations can also be expressed as equations defining a
parameter in terms of other parameters or measures. For example,
one may define the height of a wall-A as h = area of slab *0.5, or h=
the height of wall-B *1.2.

 The Multi-Disciplinary Design System 154

Modeling

 Figure 5.17:

various NURBS can
be constructed by

the same number of
control points with

various degrees

 Constraints are expressions that define how artifacts’ behaves within
a defined context (Sacks et al., 2004). Current parametric systems
offer three main types of constraints: geometric, engineering, and
time. Geometric constraints dictate how two entities relate to one
another in space. These include relationships pertaining to location
and orientation such as parallelism, perpendicularity, coincidence,
offset, rotations, etc. They also include measurements such as
distances, lengths, angles, etc. Engineering constraints deal with
materials properties, and machining processes. Time constraints are
typically applied at assembly levels to control how different parts
interact with one another through time (Anderl and Mendgen, 1996).
Time constraints aid in: the development of procurement and
construction schedules; and the analysis of buildings’ behaviors over
time. Artifacts can be over constrained, constrained, under-
constrained, and un-constrained. Constrained artifacts are those
which a designer have full control over their behavior. Parametric
modeling systems rely on constraint solvers to offer valid solutions.
The number of possible behaviors (solutions) an artifact exhibits is a
reflection of the set of imposed constraints and the performance of
constraints solvers.

Some parametric CAD modeling systems (such as CATIA) offer
additional form of control via rules. Integration of rules offers
contextual control leading to embedding knowledge in parametric
models. Rules are usually expressed in the form of “if… then”.

 The Multi-Disciplinary Design System 155

Modeling

Embedding knowledgebase modules in parametric models can
regulate the development of design solutions where each group of
domain experts contributes to the design process. Embedding
constraints and rules allows for building robust assemblies leading
robust design automation processes.

 5.3.4 Modeling Variation

 In the previous sections the internal parts of the synthesis model
were discussed. These models include various types of
representations, rules and algorithms, and parameters which are
fixed, associated or varied. In this section we will discuss the input to
the synthesis model, namely the design vector. A design vector is the
set of model variables that provide means to control the generation
of solutions. The number and type of variables included in the design
vector affects the generated solution space. The solution space is
also affected by the knowledge embedded within the synthesis
model it’s self.

 5.3.4.1 Synthesis Design Vector

 Modeling system requires expertise in defining the scope and
boundaries of the design intent. Designers never operate on a closed
set of requirements, thus design intent may very well vary. In this
context, model developers face many challenges such as: Which
parts of the system should vary and which ones should be fixed?
What are the valid ranges of the different variables? And so on.

The set of variables that are allowed to vary at every design iteration
is known as the design vector (DV). Variables in the design vector can
represent any component or property in the model. They may
include a range of numerical values, a design rules, or even an initial
state. The design vector can include a set of elements from the
synthesis model that are allowed to vary, and not necessarily all the
elements.

The values of the variables in a design vector at a point in time define
a configuration. The design solution generated by a certain design
vector configuration is an instant and represents a point in the
solution space.

Extreme care should be taken while building design vectors to
account for problems of generating unfeasible solutions that can
occur due to several reasons such as defects in the structure of the
synthesis model or the manner in which the design vector maps to
the synthesis model.

 The Multi-Disciplinary Design System 156

Modeling

There can be more than one way to represent the relationship
between the design vector and the synthesis models. One way is to
consider a one to one mapping between a variable in the design
vector and a property in the synthesis model. For example the
variable x in the design vector can map to a parameter in the
synthesis model that represents a component’s length. If x is varied
the length will also vary. This one to one representation is intuitive
and easy to implement. However there are several issues with this
implementation including scalability and knowledge of the
components relationships (Bentley and Kumar 1999). With small
numbers of variables there are no major limitations but when scaling
up and increasing the number of variables the implementation
becomes more tedious and might produce undesirable combinations
of the variables that generate unfeasible solutions. This is an aspect
that cannot be controlled with a one to one mapping.

Another implementation of design vectors considers a one-to-many
mapping. This type of implementation advocates defining a limited
number of design variables that can control a larger set of properties
within the synthesis model. This mode of implementation relies on
wiring using rules a group of internal component properties within
the synthesis model that can be controlled by single design variable
in the design vector. An example of such an implementation is by
imbedding an initial state in the design vector and using a formal
grammar in the synthesis model. With every iteration when the initial
state is changed, the grammar triggers a chain of reactions internally
within the model producing a different solution.

Furthermore, with such an implementation more control over the
design solution can be achieved due to packaging of several
preferred property combinations and relationships in the synthesis
model and hence producing more feasible solutions.

 The relationship between design vectors and synthesis models
demonstrates a rich area for investigation in almost every design
problem. The question of which implementation to follow is highly
dependent on the domain of application, level of control desired,
design intent, and the designer skill.

 5.3.4. 2 Solution Space

 A solution space may vary in size or nature depending on the
synthesis model that defines it and the amount of variations allowed
by the design vector that controls it. Due to their vast size, solution
spaces are best explored through automated execution of

 The Multi-Disciplinary Design System 157

Modeling

computational synthesis models.

Human immediate interpretation or understanding may not
comprehend the size of possible solution spaces, or envision the
types of solutions possible to be found.

To better explain the notions of solution spaces, consider the
following example. An LCD screen offers a fixed number of pixels.
Each pixel can carry a fixed number of colors. In today’s available
technology, LCD monitors can hold colors of 16 bits, meaning that
each pixel may have 65,536 possible values (216 = 65,536 colors). In a
monitor 1280 x 800 resolution, we can get the following number of
display solutions 65536 1024000. . Such a number of possible solutions
seem hard to comprehend. Let’s consider colors of 1 bit, black or
white, and a smaller screen resolution of 640 X 480. The number of
possible color combinations is 2307200. This is still a huge number.

The generation of the complete solution space by enumeration is
possible only if the design vector is small. For its term, enumeration
entails highly intensive number crunching. This is achieved through
systematic combinatorial solving of the synthesis model (Kalay,
2004). A graphic representation of all solutions is a tree where
branches demonstrate variations within a certain configuration
(figure 5.18)

Depending on the design vector, the number of enumerated
solutions may possibly be larger than what any computer can
calculate. In such situations, designer should consider investing in
searching and developing specific areas within a solution space.

Feasible solution space

While solution spaces are defined by synthesis models and design
vectors, they may offer solutions that do not satisfy certain
expectations. This leads to the notion of feasible spaces. The
feasibility of solution spaces can be controlled via rules and
constraints. Constraints provide means to filter or rather disqualify
unsatisfactory behaviors or solutions generated (discovered) by the
system. A feasible solution space is one that not only satisfies the
synthesis design rules, but also abides by the imposed constraints.
An accepted solution is known as a feasible design.

Typically, the larger the solution space is, the higher the possibility of
finding valid and possibly novel, designs. However, a smaller solution
spaces provides faster navigation and search for qualified solution
candidates.

 The Multi-Disciplinary Design System 158

Modeling

Figure 5.18:

An enumeration tree
for an ingress-egress

system

Project credits:
Anas Alfaris,

 Nii Armar
 and Martin McBrien

 The Multi-Disciplinary Design System 159

Modeling

 The Multi-Disciplinary Design System 160

Modeling

 The problem with a solution space is that it can include a large
number of unwanted design solutions. This can be controlled by
embedding knowledge and performance evaluation as will be
discussed next.

 5.3.4.3 Knowledge and Performance Encoding

 In the previous sections, rules were mentioned as a construct that
allows for embedding functional knowledge in synthesis models. This
knowledge is typically used for the assessment of an evolving design
solution. This built in assessment of a synthesized design solution
serves as a guide for the generation of solutions.

It is important to note that the analysis of a candidate solution could
be a time consuming processes (as will be discussed later in analysis
models). This is not only a problem of analysis models, but also of
synthesis models, which are responsible for generating the low
performing solutions in the first place. Avoiding such problems helps
built more robust and resource efficient systems. This depends on
the designer’s experience in building synthesis models.

Knowledge can be embedded in the form of information about the
required context within which an artifact will function, or about its
internal structure, or its limitations, etc. Such information can be
encoded within synthesis models using rules and algorithms to help
avoid generating unsatisfactory results.

Mitchell introduced the idea of function modeling in 1991 in a
function grammar (Mitchell, 1991). These serve as definitions of
possible combinations of functions that a grammar (model) can
generate or handle. Fenves and Baker (1987) presented a function
grammar for the conceptual design of structures, using architectural
and structural critics to guide the design configuration. Similarly,
Rinderle (1991) presented an attribute grammar. It included strings
describing parametric and behavioral properties of the used symbols.
Finger and Rinderle (1989) introduced a grammar for the form and
function configurations of mechanical systems, they called bone
graph grammar. All of these grammars form an expression, of a
function (Cagan, 2001).

Embedding basic understanding of functions in the synthesis model
can help minimize the size of the solution space. In the first case,
where designs are still at an intermediate stage, integration of
functions requires more sophisticated mappings and designing of
rules.

 The Multi-Disciplinary Design System 161

Modeling

However not all functions can be embedded due to their nature such
as functions that can cannot be assessed incrementally but can only
be assessed after the full solution is generated. In such cases the
assessment will be left to the analysis model.

Defining the scope of synthesis models depends on the experience
and skills of the model designer. Defining the scope of the model is
typically driven by design intent. Design intent can be expressed
through functional requirements, which intern can be encoded in the
model. These will help guide the generation process of feasible
solutions.

 Restrictive vs. unrestrictive systems

 Synthesis models can be restrictive (knowledge-intensive) or
unrestrictive. While embedding knowledge can guide the synthesis
of feasible spaces, they may lead to omitting other unexpected, or
rather novel solutions (Cagan, 2001).

Consider figure 5.19 in which the big ellipse shows a design space,
and the smaller ellipse-like shapes show solution spaces defined by
two synthesis models A and B. Synthesis model A is restricted to
produce a solution space that fully falls within the space of feasible
solutions. While synthesis model B produces a larger solution space
that can have many more interesting solutions, but the space is not
fully confined to the feasible design space and therefore might
produce unfeasible solutions.

 Figure 5.19:

Various synthesis
models can

generated different
solution spaces

 The ability of an unrestrictive synthesis model to span large design
spaces can help locate interesting and novel solutions that are also
feasible but are not part of the original feasible space, although this
might require extensive search (figure 5.20).

 The Multi-Disciplinary Design System 162

Modeling

 Figure 5.20:

An unrestrictive
model may be able to
span several feasible

solution spaces

Deciding between a restricting synthesis model and an unrestrictive
one is not an easy task. On one hand, restricting synthesis models
ensures generating a valid set of feasible solutions that can be better
searched and therefore cuts time of generating unsatisfactory ones.
On the other hand, building unrestrictive systems may lead to
generating unexpected novel solutions that still satisfy the
requirements. However because they are less constrained,
unrestrictive systems can generate many unsatisfactory solutions.

 The Multi-Disciplinary Design System 163

Modeling

 5.4 Analysis Models

 5.4.1. What is an Analysis Model?

 Analysis is defined by Alexander (1964) as the measure of how well a
proposed or given design solution fits the goals it is intended to
meet. An analysis model in this sense infers certain behaviors from a
design solution that are relevant to that specific model or discipline.
The model operates on design solution data through laws of physics
and geometry to produce the desired rating. It also depends on
specialized disciplinary knowledge such as heuristics, formulae, or
simulations to determine how this data is transformed into behavior
and performance characteristics.

The key issue in the predictive nature of these models is that their
behavior is assumed to be analogous to that of the artifact, and thus
they are used to study that behavior. This assumed similarity should
be based on sufficient understanding of both the artifact and the
model that represents it.

In an analysis model the inputs denote the specific attributes under
which the behavior of that artifact is examined, while the output
defines that behavior (figure 5.21). Those attributes are represented
in terms of geometry, parameter values, boundaries, and initial
conditions. This thesis will apply mathematical models to predict the
behavior of a synthesized system or artifact. These will comprise
many types of models, including analytical, numerical, surrogate
models and others.

 Figure 5.21:

Expected input and
output of the analysis

model.

 Variables, parameters, equations, inequalities, and algorithms in
abstract mathematical form are used to represent these models
(Jacoby and Kowalik, 1980). The interior of the model is mostly
structured and comprises a group of interconnected components
that represent an aspect of the artifact or system. The complexity of
these interconnections always leads to enormous amounts of
computation and information manipulation, requiring the use of
computers to handle the models. Selecting the appropriate solution

 The Multi-Disciplinary Design System 164

Modeling

scheme strongly affects the modeling purpose. There are many
challenges and difficulties associated with using computers in
analysis models.

Sometimes the lack of sufficient theoretical understanding of the
artifact makes it hard to define the mathematical relationships
representing that artifact. Assuming that these relationships are
even defined, assembling them together may not necessarily build
up a problem that is solvable. At the same time, enough data may
not always be available for a solution if the problem is presumed to
be solvable. There may still be errors that result from the intertwined
approximations and computations involved in the modeling process.
Other challenges include computational cost and difficulty of
validation.

Models can even have overlaps with each model containing a variety
of abstract structures. An analysis model will usually be coupled to
only some aspects of the phenomenon that is in question. Two
models related to the same phenomenon can differ to a great
extent. This can result from differences in initial model requirements,
conceptual differences or ongoing decisions made along the
modeling process.

When it comes to selecting a modeling method or deciding on which
type of model to construct, there is a wide range of methods that
can be employed to model different aspects of the artifact or
system. As mentioned earlier, these methods rely primarily on the
purpose of the model. This entails determining the required type,
level and fidelity of information, in addition to the amount of detail
or level of abstraction or granularity of the model. In general,
mathematical analysis models can be classified according to the type
of model data, parameters and mathematical expressions, or the
degree of model refinement and fidelity. In the remainder of this
section we discuss the different types of models in terms of these
classifications.

 5.4.2. Model classifications based on the nature of model

 Analysis models can generally be classified into the following basic
categories: qualitative or quantitative, continuous or discrete,
deterministic or stochastic, static or dynamic, linear or nonlinear, or
any combination of these categories (Figure 5.22). Here we discuss
these categories and highlight the main characteristics of the models
accordingly.

 The Multi-Disciplinary Design System 165

Modeling

 Figure 5.22:

Analysis models vary
based on their

mathematical nature.

 5.4.2.1 Qualitative and Quantitative Models

 Analysis factors can be classified into two distinct types: qualitative,
or quantitative. Qualitative analysis is subjective while quantitative
analysis is objective. Knowing the difference between these two
types is crucial in understanding the techniques for evaluating
performance and behavior characteristics.

The qualitative analysis approach involves mostly more words than
numbers. Some qualitative methods for this type of analysis include
brainstorming, professional experience, questionnaires, interviews
and surveys. Qualitative analysis is not physics based but instead is
based primarily on subjective opinions, perception and judgment.
The difficulty with this type of analysis is that its results cannot be
generalized or extended to broader application with the same
degree of certainty. Data used for this analysis is not only hard to
collect and measure but also creates differences of opinion when
interpreted and yields performance assessments that could be
conflicting over time.

The quantitative approach on the other hand is mostly physics based,
where precise features are identified and enumerated, and models
are built to predict artifact or system behavior. Results and findings,
if analysis was carried out correctly, are reliable and can provide
direct comparisons between different design solutions. The data in
this approach is much easier to collect, implement and process using
computers. Most of the models used in this thesis are quantitative
models.

 The Multi-Disciplinary Design System 166

Modeling

Although the quantitative approach introduces an easy way by which
stakeholders examine and understand design solutions, and can
present a quick fix when performance data is required for
investment justification purposes, there are some precautions that
should be taken into account when dealing with this approach.
Results can often lead to simplistic judgments while disregarding the
bigger and more complex picture. At the same time, the evaluation
process, described here as being reliable, can be distorted if we only
pay attention to what is easily measurable and ignore factors that
are not.

 5.4.2.2 Continuous and Discrete Models

 Variables in general are either continuous or discrete. Real numbers
for example represent continuous variables. Between any two values
of a given continuous variable there always exist an infinite number
of other possible values consisting of intervals. These continuous
variables can be represented by functions. Variables within these
functions are continuous themselves. On the other hand, there are
variables that are clearly distinct from each other, and are called
discrete variables where the set of possible values consist of only
isolated points. Examples of these variables include integers.

If all the data, parameters and relationships associated with a
mathematical analysis model are continuous, this model is said to be
continuous. It is otherwise said to be discrete (Jacoby and Kowalik,
1980). Discrete models are, however, not always used to model
discrete systems, and vice versa (Averill, 2006). Deciding when to use
discrete or continuous models for any given systems relies basically
on the specific objectives of the study.

Models are not necessarily continuous at all times; they can be
continuous only at certain time instants. If the interactions between
the variables of these models occur at discrete times only or are
separated by intervals where no interaction happens, these models
become discontinuous, such as the case with models that involve
stochastic effects.

 5.4.2.3 Deterministic and Stochastic Models

 Mathematical models are deterministic if elements within them are
so specified and do not contain any probabilistic or random
components to the extent that their behavior, performance or
operation can be uniquely determined. As soon as model
relationships and input quantities are specified, the output of these
models becomes determined with no uncertainties involved (Averill,

 The Multi-Disciplinary Design System 167

Modeling

2006; Maki and Thompson, 2006). Therefore they perform in the
same manner for a given set of initial conditions.

Models are said to be stochastic if they involve uncertainties or
stochastic data or elements, or if the parameter values are
determined in terms of probability distributions and random input
components rather than unique values. Stochastic simulation
models, also known as Monte Carlo simulations, employ random
number generators for modeling random events. The output result
of these models is a probabilistic or random model behavior,
performance or operation, therefore they must be seen as
approximations or estimates of the actual model characteristics
(Jacoby and Kowalik, 1980; Averill, 2006).

A stochastic model thus makes predictions about the probabilities of
events and expected values of numerical outcomes (Maki and
Thompson, 2006). These predictions intrinsically involve uncertainty
regardless of how much is known about a specific situation. This is
not the case with deterministic models where predictions are made
in specified terms and involve no uncertainties. The reality is,
however, that the mathematical description of many models in the
real world, and especially in social sciences, involves uncertainty and
chance to a great extent.

Selecting and deciding on the type of model to be used, whether
deterministic or stochastic, involves a number of factors, but is
mainly left to the model developer. Sometimes both deterministic
and stochastic models are used for the same situation, augmented
by a validity check through comparing predictions from types of
models. Deterministic models are regularly used as first
approximations in cases where stochastic models seem more
suitable for the situation under examination but prove too complex.
Generally however, the pros and cons of each type of model vary
from one situation to another, and the predictions of each type are
not necessarily better or worse than the other for all situations (Maki
and Thompson, 2006).

 5.4.2.4 Static and Dynamic Models

 Mathematical models are considered dynamic or unsteady if their
behavior is variable with time. Time here thus exists in the model as
an independent variable. Dynamic simulations typically model the
changes that take place in a system in response to variable input
signals. Differential equations are thus used to represent unsteady-
state models.

 The Multi-Disciplinary Design System 168

Modeling

Static or steady-state models, however, are characterized by
constant behavior that is not variable with time. They represent a
system at a specific instant in time, and are therefore used to
represent systems in which time plays no significant role (Averill,
2006). Steady-state models use equations that define the different
relationships between the modeled system elements. In doing so,
they tend to identify a state of equilibrium for the system. These
models are sometimes employed to simulate physical systems to
provide a simpler modeling case before any dynamic simulation is
done.

There are other cases where an unsteady prototype behavior is
represented by a sequence of steady-state modeling experiments.
This yields models known as quasi-steady-state models (Jacoby and
Kowalik, 1980).

In some cases, unsteady models can be used for studying the
behavior of a steady-state prototype or artifact. The reason for this is
mostly computational. A frequently used strategy for solving steady-
state modeling problems employs solutions of unsteady-state
problems in an attempt to approach the desired steady state. This
occurs through a process known as recursive modeling (Jacoby and
Kowalik, 1980), where an unsteady or quasi-steady-state model is
said to be recursive if its state at a specific time instant or interval is
dependent on its state at an earlier time instant or interval. Recursive
modeling is thus typically related to time as the model state at a
certain time is not defined without defining it at an earlier time.

 5.4.2.5 Linear and Nonlinear Models

 Typically in any mathematical model, variables are acted upon by a
number of operators that include algebraic operators, functions,
differential operators, etc. A mathematical model is said to be linear
if all these operators introduce linearity. It is considered nonlinear
otherwise. This nonlinearity is mostly related to chaos and
irreversibility. Generally, but with a few exceptions, it is more difficult
to study nonlinear systems and models in comparison to linear
models.

 5.4.3. Analysis Algorithms

 High-fidelity simulations are generally considered better predictors
of performance than low fidelity simulations, as they better resemble
the artifact if administered correctly. However, the amount of fidelity
necessary to guarantee good prediction is unknown. Also, there are
some disadvantages to high-fidelity simulations that may render

 The Multi-Disciplinary Design System 169

Modeling

them less useful, such as trading off speed for accuracy. These types
of simulations are not as quick and easy to construct as low-fidelity
models.

Low-fidelity prototypes are generally used to quickly demonstrate
general artifact performance and abstract conceptual approaches in
early design stages without providing much detail or requiring much
investment in development. They are mostly used if some required
data for the analysis model are not available, if the model cannot be
easily quantified, or if a high-fidelity analysis is beyond the scope and
accuracy level of the design description. Low-fidelity models also
require a facilitator who knows and understands the domain in detail
in order to illustrate or test the model.

Based on the degree of fidelity, analysis models can be classified into
empirical models, theoretical models, and reduced-order (or
approximation) models.

Empirical models, which are typically low-fidelity models, are derived
from observation and approximate data fitting rather than physics
and first principles.

Theoretical models, on the other hand, are more physics-based and
are derived using first-principle equations. They include both
analytical and numerical models. Analytical models are mostly low-
fidelity models whereas numerical models tend to be high-fidelity
(high order) models that include models like Finite Element Analysis
(FEA) and Computational Fluid Dynamics (CFD).

Reduced-order or approximation models are surrogate models that
provide simplified abstractions and calculations. They include
response surface models, neural networks and Kriging models. These
models approximate the behavior of a design solution as closely as
possible while maintaining low-fidelity, which is computationally
cheaper.

Although complexity typically enhances the fit of a model, it
sometimes makes the model difficult to understand and operate on,
in addition to introducing some computational problems such as
numerical instability. Engineers thus often make and accept some
approximations and reduce the model size appropriately in order to
obtain a more robust and simple model.

The Occam’s Razor principle is specifically applicable to modeling.
Among models that have almost similar predictive accuracy, the
simplest one is the most desirable. During the model selection

 The Multi-Disciplinary Design System 170

Modeling

process, the designer must choose the best compromise between
the demand for simplification and the necessity to clearly identify,
describe and rate the targeted physical mechanism. A trade-off must
be made between fidelity and analysis time and between simplicity
and the accuracy of the model.

In the following sections, our review of analysis algorithms will focus
on theoretical models and surrogate models rather than empirical
models.

 5.4.3.1 Theoretical Models

 As mentioned earlier, theoretical models comprise both analytical
and numerical models. Techniques in these models tend to explore
the behavior of a model. In most cases, however, finding the model
in the first place is the most difficult, interesting, and important
question (Gershenfeld, 1998).

 5.4.3.1.1 Analytical Models

Figure 5.23:

Simple analytical
models are used to
assess the behavior

of a building skin.

 Analytical models are typically employed when the model and the
relationships making it up are simple enough such that mathematical
methods (e.g. algebra, calculus, or probability theory) can work with
these relationships and quantities to obtain precise and explicit
information regarding questions of interest (Averill, 2006). This
information is known as an analytical solution or a closed-form
solution that can be simply arrived at with merely paper and pencil
(Gershenfeld, 1998). This analytical solution allows for the prediction
of system behavior through a set of initial conditions and parameters
(figures 5.23 and 5.24).

Analytical modeling is mostly done with analytic functions (Saff &
Snider, 1993), and therefore the functions encountered are always
assumed to be expanded in a power series. Analytical models are still
considered very significant due to their power. It is almost always
possible to deduce everything that needs to be known about a
system using these models. This comes however at the expense of
limited applicability, as many systems in the world are too complex
to be described in this manner (Gershenfeld, 1998).

 The Multi-Disciplinary Design System 171

Modeling

 The Multi-Disciplinary Design System 172

Modeling

Figure 5.24:

Simple analytical
models are used to
assess the behavior

of a building skin.

Project Credits:
Anas Alfaris

Alexandros Tsamis

 Using such simplified low-fidelity analysis models has many benefits.
First, these models generate a quick and rough estimate of the
artifact’s performance. Second, it does not require detailed
information or information that is not currently available at this early
stage of design, as opposed to a high-fidelity model. Most
importantly, however, these low-fidelity analysis models introduce
less computational burden (Huebner et al., 2001). This type of model
should be treated cautiously since using simplifying assumptions that
ignore problems or difficulties could sometimes leads to erroneous
results or inaccuracies.

 5.4.3.1.2 Numerical Models

 Although I stated above that analytical models are not
computationally intensive, analytical solutions can occasionally be
complex and call for immense computing resources. Obtaining a
numerical solution for a situation where an analytical formula exists
in theory, could be a very difficult task, such as the example of
inverting a large nonsparse matrix (Averill, 2006).

Also, in many cases the closed form solution implied by analytical
modeling is not usable for modeling experiments (Jacoby and
Kowalik, 1980). If for example the model consists of a series that
comprises many terms that need to be computed for solution
accuracy purposes, the process of reformulating the problem as a
numerical problem might be more economical. This reformulation

 The Multi-Disciplinary Design System 173

Modeling

takes the form of a sequence of consecutive approximations to the
solution that are computed in an iterative manner. In these
iterations, each approximation is “better” than its predecessor.

However, it is always preferred to study a mathematical model
analytically rather than numerically if an analytical solution exists and
is computationally efficient. Analytical models still remain an
important factor in some approximation techniques using
computers. This extends to include numerical methods, where these
methods can use bits and pieces of analytical solutions to render the
numerical steps more effective. They also employ symbolic methods
that can extend quantitative abilities and introduce important
qualitative implications, such as in enhancing the methods to
perform higher-order approximation theory (Gershenfeld, 1998).

Many real-world systems are too complex for analytical modeling or
evaluation. It is clear then that not many differential equations can
really be solved with precisely the same effort analytically. As we
move farther from linearity, it becomes obvious that special
techniques are required and enormous effort must be made to be
able to write down a closed form or analytical solution (Gershenfeld,
1998). In the computer environment, differential equation models
are typically reformulated and expressed in terms of difference
equation approximations. Therefore the issue is reduced
computationally to solving problems in the form of a set of algebraic
equations (Jacoby and Kowalik, 1980).

Models should thus be studied by means of simulations. This is done
by numerically evaluating the model inputs to observe their effect on
the output performance measures (figure 5.25). In this evaluation, an
abundance of data is collected to provide estimates of the required
real model characteristics (Averill, 2006). The main goals of modern
numerical analysis are the design and analysis of techniques that aim
at obtaining approximate solutions to complex problems rather than
getting exact answers, while at the same time preserving reasonable
bounds on errors, since it is impossible to get exact answers in
practice.

 According to Jacoby and Kowalik (1980), numerical solution methods
for modeling problems basically have three main goals. These include
computational efficiency, precision and error control, and solution
convergence, where it is possible at some point to end the
computation. They also add a few more points that could also be
taken into account, such as the ability to solve altered or extended
formulations, the availability of software that can successfully
implement a specific method, and the conceptual clearness and ease
of use of solution methods.

 The Multi-Disciplinary Design System 174

Modeling

Figure 5.25:

A high-fidelity
analysis model for

day-lighting is used to
assess the lighting
quality in different

spaces.

 The Multi-Disciplinary Design System 175

Modeling

 Several efficiency measures have been developed for numerical
methods. These include the counts of arithmetic operations required
to solve problems and the order of solution convergence in the case
of iterative processes. One of the most practical measures of
efficiency, however, is the total computer resource required for
solving the given problem, including time and storage space (Jacoby
and Kowalik, 1980).

It is often hard to relate the latter measure to more theoretical
properties of the model formulation and solution method. There are
thus a group of mathematical techniques that help reduce the total
computer resource needed for a solution. These include the
decomposition of large-scale problems into smaller components in a
semi-independent manner, using linearization if possible, data
compression, and the process of reducing problems with unknown
degrees of difficulty into well-known problems with which the model
user is familiar and has relevant experience.

Accuracy of the numerical solution is another issue, which largely
relies on the quality of data, the degree of model approximation, and
the numerical properties of the solution method. Any one of these
factors can nullify the solution results by itself. Recent developments
in numerical analysis have made it easier for model users to
comprehend many of the issues regarding error analysis and the
conditioning of numerical problems and algorithms. These
developments have enabled the understanding of the conditions
under which any analysis mathematical model can be successful and
useful.

The numerical results of the model should be interpretable and
validated in the system space or else this information will remain
uninterpretable in the analysis model space and would thus become
unfamiliar to the model user. The mathematical modeling problem
itself must be solvable in order to conduct the experiments correctly.
This implies two conditions, existence and stability, meaning that the
solution to the problem must exist theoretically and at the same time
must always rely on the given side conditions. Any discontinuity must
be accounted for appropriately.

Another condition for the success of the analysis model is
uniqueness, where it should be understood beforehand whether the
mathematical modeling problem allows for more than one solution
or not. Whether or not the problem is well-conditioned is another
important factor. This implies knowing whether small
approximations in problem data result in small approximations in the
final solution or not.

 The Multi-Disciplinary Design System 176

Modeling

Finally, the feasibility of a computational process for numerical
approximation is another important condition, where the model user
must be allowed to keep the approximation error under control
(Jacoby and Kowalik, 1980). Studying errors constitutes a very
significant part of numerical analysis.

Errors can be introduced in the solution of the problem in a variety of
ways. Round-off errors exist because it is impossible to represent all
real numbers precisely on finite-state machines such as digital
computers. Truncation errors exist after an iterative method is
terminated and the approximate solution turns out to be different
from the exact solution. Discretization errors also occur in the same
manner, when the solution of the discrete problem does not match
the solution of the continuous problem. As a general rule, an error
generally propagates through the calculation once it is generated. If
this propagation does not grow and accumulate in the input data and
intermediate calculations causing a meaningless output, the
algorithm is said to be numerically stable. This stability occurs only if
the problem is well-conditioned, implying that the solution only
changes by a small amount when the problem data is changed by a
small amount. A well-conditioned problem does not necessarily
guarantee the numerical stability of the algorithm, but an ill-
conditioned problem definitely leads to error accumulation and
consequently instability.

There have been several methods and algorithms developed for
numerical models. These could be direct or iterative methods.
Iterative methods are generally more common in numerical analysis
than direct methods.

In direct methods, the solution to a given problem is computed in a
finite number of steps. The accurate answer can be provided through
these methods if they are performed in infinite precision arithmetic.
Finite precision is used in practice, and the end result represents an
approximation of the true solution assuming stability. Examples of
these methods include Gaussian elimination, the QR factorization
method for solving systems of linear equations, as well as Cholesky
and LU factorization (Trefethen and Bau, 1997).

Iterative methods are usually needed for large problems in
computational matrix algebra. Unlike direct methods, iterative
methods are not expected to be complete in a specific number of
steps. They start from an initial guess to construct consecutive
approximations that converge to the exact solution only in the limit.
To determine when an accurate solution is found, a convergence
criterion is specified. In general, even if iterative methods use infinite

 The Multi-Disciplinary Design System 177

Modeling

precision arithmetic, the solution would not be reached within a
finite number of steps. Some examples include Newton’s method,
the bisection method, and Jacobi iteration (Trefethen and Bau,
1997).

Some methods, although direct in principle, are used as if they were
not, such as GMRES and the conjugate gradient method. In these
methods, the required number of steps to obtain an exact solution is
large to the extent that approximations are accepted similar to the
case of iterative methods.

Many methods have been developed for solving systems of linear
equations. Standard direct methods that use matrix decomposition
include Gaussian elimination, LU decomposition, Cholesky
decomposition for symmetric and positive-definite matrix, and QR
decomposition for non-square matrices. For large systems, iterative
methods are preferred, such as the Jacobi method, Gauss–Seidel
method, the successive over-relaxation and conjugate gradient
method (Trefethen and Bau, 1997). Root-finding algorithms and
linearization are both techniques that are used for solving nonlinear
equations. Newton’s method is also used but when the function is
differentiable and the derivative is known.

There are many other methods that are used to solve partial
differential equations. Discretization is an approach that describes
the process in which a continuous problem is substituted by a
discrete problem whose solution is known to approximate that of
the continuous problem. These methods face a major challenge that
requires generating an equation that approximates the equation to
be studied while being numerically stable. One of the methods used
in this regard is the Finite Element Method, which is a good choice
for solving partial differential equations. We describe this method in
the following section, followed by a brief overview of computational
fluid dynamics as another prominent numerical analysis method.

 The Finite Element Method (FEM)

 It is becoming more and more important in engineering situations to
provide approximate numerical solutions to problems instead of
closed-form or analytical solutions. These solutions rarely exist, for
example, in cases where the geometry or any other feature of the
problem is irregular or arbitrary (figure 5.27).

One of the common approximate numerical analysis methods is the
finite difference scheme. The finite difference model of a problem
provides a pointwise approximation to the governing equations. As

 The Multi-Disciplinary Design System 178

Modeling

more points are used, the model is improved, as it employs
difference equations for an array of grid points. Although finite
difference techniques can solve fairly difficult problems, they are
harder to use with irregular geometry or unusual specification of
boundary conditions.

Another approximate numerical analysis method is the Finite
Element Method (FEM). As opposed to visualizing the solution
region as an array of grid points, FEM visualizes it in terms of
numerous small and interconnected sub-regions or elements, and so
provides a piecewise approximation to the governing equations
(Huebner et al., 2001). Figure 5.26 shows how a finite difference
model and a finite element model can be used to represent a
complex geometrical shape. Using the finite difference techniques, a
uniform mesh would cover the whole solution region, but the
boundaries would have to be approximated through horizontal and
vertical lines analogous to stair steps. The FEM would however
provide a better approximation to the region using triangles as the
simplest 2D elements in addition to straight lines of different
inclinations that also give better approximation to the curved
boundary shape. The main purpose here is to show that the FEM is
better suited than the finite different method for problems that
comprise complex geometries and not necessarily for all types of
problems.

 Figure 5.26:

 (a) Finite difference
and (b) finite element

discretizations of a
turbine blade profile

(Huebner et al.,
2001).

 FEM first evolved in civil and aeronautical engineering where there
was a need to solve complex problems related to elasticity and
structural analysis. It was later extended and applied to continuum
mechanics and a wide range of engineering problems (Huebner et
al., 2001).

 The Multi-Disciplinary Design System 179

Modeling

The FEM represents a numerical technique for finding approximate
solutions of partial differential equations in addition to integral
equations. This is done by either eliminating the differential equation
completely or turning it into an approximating system of ordinary
differential equations that are then integrated numerically by
standard techniques, such as Euler's method or Runge-Kutta.

Briefly, the way by which FEM works involves primarily the concept
of meshing. This is done after model geometry is developed in a CAD
program, and the problem is identified through defining material
properties and boundary conditions. Meshing the model basically
deals with defining a finite number of elements to represent the
geometric structure or solution region (Huebner et al., 2001). These
elements can represent very complex shapes since they can be
assembled in various ways. Although more elements imply higher
accuracy, they also entail more computational time for reaching a
solution. A sense of balance thus must be maintained between the
required time to solve a problem and the acceptable level of error
that can result from high complexity.

This finite element discretization transforms the problem from a
problem of infinite unknowns into one of a finite number of
unknowns. After dividing the solution region into elements, the
unknown field variables are described in terms of assumed
approximating functions within each element known as interpolation
functions.

The points at which these functions are defined in terms of the field
variable values are known as nodes or nodal points. There are
boundary nodes on the element boundaries where adjacent
elements are connected in addition to some interior nodes. The
behavior of the field variable is entirely defined by its nodal values
and also by the interpolation functions for the elements. As the
nodal values here become the unknowns themselves, as soon as they
are found, the interpolation functions define the field variable during
the process of putting the elements together.

This shows that the chosen interpolation functions greatly affect the
nature of the solution and the degree of approximation, which does
not rely solely on the size and number of elements. These functions
are not selected arbitrarily, as some compatibility conditions need to
be fulfilled. They are rather chosen mostly so that the field variable
or its derivatives are continuous across adjoining boundaries of
elements. This is then applied to the formulation of different element
types.

 The Multi-Disciplinary Design System 180

Modeling

 Figure 5.27:

Finite Element
Analysis of different
components in this
vehicle egress and

digress system.

Project credits:
Anas Alfaris,

 Nii Armar
 and Martin McBrien

 Computational Fluid Dynamics (CFD)

 Computational fluid dynamics (CFD) was initiated in the early 1970’s
as a branch of fluid mechanics that roots from physics, numerical
mathematics and computer sciences, and uses numerical methods
and algorithms to solve, analyze and simulate problems related to
fluid flows (Blazek, 2001). CFD methodologies today are regularly
used in aircraft, car, ship, and building design (figure 5.28).

One of the first applications of CFD was the simulation of transonic
flows based on solving the non-linear potential equation. In the early
1980’s, the solution to the first 2D and later 3D Euler equations
became possible. It was then also possible to compute inviscid flows
in aircraft configurations owing to the increasing speed of
supercomputers and many numerical acceleration techniques such
as multigrid (Blazek, 2001).

There was a shift of focus in the mid 1980’s to the more important
and demanding simulation of viscous flows which was governed by

 The Multi-Disciplinary Design System 181

Modeling

Figure 5.28:

CFD Model for a
building site to study

the airflow around
the building.

Project Credits:
Anas Alfaris,

Kenneth Namkung
Meredith Elbaum

the Navier-Stokes equations. In addition, a number of turbulence
models were developed. (Blazek, 2001).

The rising demand on the complexity and fidelity of flow simulations
led to further development and greater sophistication of grid
generation methods. These methods evolved from simple structured
meshes using algebraic methods or partial differential equations in
the decomposition of grids into topologically simpler blocks, known
as the multi-block approach. Subsequent research focused, however,
on developing unstructured grid generators due to the slow nature
of the structured multiblock grid in dealing with complicated
geometry. These unstructured generators or “flow solvers” yielded
considerably reduced setup times with minor user intervention in
addition to introducing solution based grid adaptation (Blazek, 2001).

Before any numerical solution method can be implemented, the way
by which the method affects the stability and convergence behavior
of the CFD code must be determined or at least approximated.
Blazek (2001) refers to the Von Neumann stability analysis as
providing a good assessment of the properties of a numerical
scheme in this context.

 The Multi-Disciplinary Design System 182

Modeling

 Since CFD methods are primarily concerned with solving equations of
motion of fluids and the interaction of fluids with solid bodies, the
governing equations are Navier-Stokes equations that describe the
motion of viscous fluids and Euler equations that describe the
motion of inviscid fluids (Blazek, 2001). Through a series of
simplifications, these equations can yield linearized potential
equations. By first removing certain terms that describe viscosity,
Navier-Stokes equations can be simplified to generate Euler
equations. By removing terms that describe vorticity, full potential
equations can be produced.

In CFD, the geometry or physical bounds of the problem are defined
during preprocessing. One of the challenges is generating structured
or unstructured body-fitted grids around complex geometries which
would then be used to discretize the governing equations in space.
In this process, the volume that the fluid occupies is divided into
discrete cells. These cells constitute a mesh which is either regular or
irregular in form. The quality of the grid greatly affects the precision
of the flow solution (Blazek, 2001). In terms of computational cost
and memory storage, the regularity or irregularity of the formed
meshes is highly significant.

A discretization error is introduced for each discretization of the
governing equations. The discretization scheme thus has to satisfy
multiple consistency requirements to guarantee that the solution of
the discretized equations closely approximates that of the original
equations.

Following discretization, physical modeling is then defined, including
for instance equations of motions, enthalpy, and radiation. This is
followed by defining boundary conditions, where the fluid behavior
and properties at the problem boundaries are identified in order to
account for the specific features of a particular problem and find a
unique solution for the governing equations. There are two types of
boundary conditions: physical and numerical (Blazek, 2001). Initial
conditions are also identified in case of transient problems.

As the simulation process begins, equations are solved iteratively as
a steady-state or transient. Suitable algorithms are applied to solve
the equations of motion, both the Euler equations for inviscid and
the Navier-Stokes equations for viscous flow. Most often other
equations are solved in parallel to the Navier-Stokes equations.
These can include equations describing mass transfer, chemical
reactions, heat transfer, etc.

In this process of solving the equations, either one of two
approaches can be used. The steady-state governing equations can

 The Multi-Disciplinary Design System 183

Modeling

be solved directly, or the unsteady governing equations can be
integrated with respect to time. The latter approach is also known as
time-stepping schemes (Blazek, 2001). Time-stepping can be divided
into two classes, one that comprises explicit time-stepping schemes,
while the other class comprises implicit time-stepping schemes. After
solving the equations, the final process in CFD is the analysis and
visualization of the resulting solution.

 5.4.3.2 Approximation Techniques

 As mentioned earlier, most engineering design problems require
experiments or simulations in order to evaluate design objectives
and constraint functions as a function of design variables. As single
simulations are time consuming, routine tasks such as design
optimization, design space exploration, sensitivity analysis and what-
if analysis become impossible to achieve as they require numerous
simulation evaluations.

Since there is no novel architecture that is expected to address these
issues and offer a direct solution to this problem, it is crucial to
recognize the importance of developing approximate analyses that
are quicker, simpler and more efficient in runtime (Kroo, 1997a).
Approximation concepts are primarily used to create surrogate
behavior models that replace expensive computer analysis and
simulation programs for the purpose of quick analysis predictions. A
wide variety of techniques has been developed for generating
surrogate models, ranging from classical forms of curve fitting to
more recent concepts of neural networks and Kriging (Papalambros
and Wilde, 2000).

Surrogate models extract simpler analysis models from sophisticated
ones by applying various data-handling techniques. The actual
internal simulation code of the sophisticated model and how it works
is not assumed to be known or even comprehended. Using the
sophisticated model as a source of “computational experiments”,
analogous to physical experiments, provide a collection of data
points (Papalambros and Wilde, 2000). Building on these data points,
a surrogate model can be derived with new simpler functions that
represent the system functions in an explicit manner with reasonable
accuracy.

These surrogate models, which now contain the simpler functions,
then replace the sophisticated model in any succeeding uses. This
dramatically minimizes computational load in large and complex
design models that comprise multiple analysis models. The
sophisticated model can be used after the final design is attained in

 The Multi-Disciplinary Design System 184

Modeling

order to obtain more accurate estimates (Papalambros and Wilde,
2000).

Using these simpler models facilitates the computational use of
various design exploration techniques, including optimization and
expensive probabilistic analysis/optimization methods in particular,
in large-scale complex design problems (Koch et al., 2002).

Not only do these surrogate models increase efficiency, but they also
get rid of the computational noise in simulation programs comprising
outputs that fluctuate frequently upon gradual changes in input
parameters (Phoenix Integration, 2004), such as that in large-scale
problems, eigen frequency problems, impact problems, and
nonlinear problems (Sakata et al., 2003). As this noise typically has an
unfavorable effect on optimization by generating many local optima,
approximation models can thus smooth the response functions and
increasingly enhance convergence.

 Classical curve fitting techniques

 The basic concept behind curve-fitting techniques involves collecting
data from experiments or other empirical sources to derive
functional relationships between dependent and independent
variables. This data, which is typically a function representation in
tabular or graphical form, is converted into more convenient and
useful equation or algebraic form (Papalambros and Wilde, 2000).
Through understanding the relationships between these variables,
models could be developed for prediction of behavior (Koch et al.,
2002). In general, this approach is beneficial for further analysis or
for computational purposes.

One of the useful approximation tools in this context is the Taylor-
series approximation, which is based on modeling functions as
truncated Taylor series with typically only first-order terms included.
Unknown functions are therefore modeled as first-degree
polynomials where the constant term is defined by the function
value at the baseline design. The coefficients in the polynomial are
gradients of the function that are usually defined using the finite
difference method (Koch et al., 2002).

The Taylor series representation is, however, different from a
general polynomial. The basic distinction is that the Taylor series uses
localized derivative information (figure 5.29) while polynomial fitting
uses information from different points (figure 5.30). If the derivatives
are calculated numerically with finite differences, these differences
begin to disappear. This is typical of all numerical schemes that

 The Multi-Disciplinary Design System 185

Modeling

involve derivatives. It is worth noting that functional forms, other
than polynomials, may be used for curve fitting (Papalambros and
Wilde, 2000).

 Figure 5.29:

Taylor series uses
localized derivative

information at point
X0.

 There can be conditions where the polynomial with the least total
deviation from the data points simply does not pass through any of
the points. The best-fit polynomial has to be defined then through
some sort of formal procedure.

One way to do this is calculating absolute values for the deviations
from the data points and locating the polynomial that minimizes the
sum of those values.

Another way, known as the least-squares fit method (Papalambros
and Wilde, 2000), finds the polynomial that minimizes the sum of the
squares of the deviations. This method can be implemented to not
only polynomials, but also to any function chosen for data
representation.

 Figure 5.30:

Polynomial fitting
uses information

from different points
for each curve.

 There are some difficulties to working with least-squares fit
methods, however. Basically employing this method does not
necessarily imply that the curve fitting is good. If the data was
scattered for instance, the method could produce a correct answer,

 The Multi-Disciplinary Design System 186

Modeling

but one that is meaningless.

Another faulty result can be generated especially if the degree of the
fitting curve is too low, where the method could produce the best
possible “bad” solution.

Overfitting can also take place, where a function form seems too
“wiggly” between data points and has to be followed closely
(Papalambros and Wilde, 2000).

Another problem arises from ill-conditioning. This results from
increasing the polynomial degree to achieve fidelity which produces
a different order of magnitude between low and high-degree terms.

 Response Surface Models

 Response surface models (RSM), which are mostly low order
polynomial models, constitute one of the most common types of
approximating methods (Myers and Montgomery 1995).

The number of data points required to fit a RSM is directly related to
the number of terms in the model. For any n number of terms, there
exists a minimum number of n+1 points, where the additional point is
used for estimating the mean or constant term (Koch et al., 2002).

RSM usually requires assuming the order of the approximated base
function as the approximation process is conducted via the least
square method for the unknown coefficients of the function (Sakata
et al., 2003; Kaymaz, 2005). The designer must thus assess the
schematic shape of the objective function over the whole solution
region.

As this demands a clear perception of the qualitative tendency of the
whole design space, it is often difficult to do. So in the case of noisy
known objective functions for instance, it is quite adequate to
provide a subjectively assumed base function.

One of the other difficulties in RSM that Shi et al. describes is the
complexity of applying them based on experimental programming to
design problems with a large number of design variables. Yet
another difficulty with the response surface optimization methods is
their limited range of application (Balabanov and Venter, 2004).

Therefore, simple approximate models, such as response surfaces,
can be seen as appropriate only in a constrained region of the design
space (Kroo, 1997b).

 The Multi-Disciplinary Design System 187

Modeling

 Neural Network

 As mentioned earlier, least-square models usually determine
coefficient values within an algebraic expression. But prior to
defining those values, the desired form of this expression must be
clearly identified. Artificial neural networks (also known as neural
networks or neural nets [NN] for short) address this issue through an
automated approach for data fitting.

Neural networks represent mathematical or computational models
that are based primarily on biological neural networks. They are
analogous to the biological neural networks in the sense that
functions within the network are conducted simultaneously and
collectively by the units without a sharply defined task assignment
for each unit.

The core of neural networks is quite similar to that of nonlinear-least
squares (Papalambros and Wilde, 2000). They look for a set of
coefficients within an algebraic function that reduces the sum of
approximation errors of the function evaluation to the minimum at
the sample points when compared with data in order to increase the
precision of the approximated value at a given sample point (Sakata
et al., 2003).

Although neural networks cannot be described as adaptive as such,
they can modify their structure according to the flow of external or
internal information through the network during the learning phase.
Neurons in neural networks behave similarly to power terms in least-
square fits, where they constitute the building blocks of the network.
Each neuron has a weight w and bias b that define how the neuron
behaves for a given input. It then combines the weighted inputs
linearly, adds a bias, and produces an output. The output is between
0 and 1 based on a weighted sum of the inputs. If the sum is greater
than a certain bias (b), the output is considered to be “on” if greater
than ½ and “off” if less than 1/2 (Papalambros and Wilde, 2000).

Figure 5.31 shows how inputs to some neurons are considered as
outputs from others in complex functions, all connected together to
form a neural net. In this net, each neuron has an output that relies
only on its own inputs, and so one equation exists for each single
neuron. As illustrated in the figure, there is a middle layer of neurons
that generates the intermediate values. This layer is known as the
hidden layer. The net here can thus be described as a neural net with
a single hidden layer consisting of five nodes (Papalambros and
Wilde, 2000).

 The Multi-Disciplinary Design System 188

Modeling

The weights and biases mentioned earlier define the response y out
for a given stimuli x in a similar fashion to the role of coefficients in
nonlinear least squares, and therefore should be determined for a
specific dataset early on in a process known as training the neural
net (Papalambros and Wilde, 2000).

Due to their extremely nonlinear nature however, weights and biases
are not unique, implying that any two neural nets with totally
different weights and biases can model a specific dataset equally
well.

 Figure 5.31:

A diagram for a single
neuron on the left

and a neural net on
the right

(Papalambros and
Wilde, 2000).

 It was reported by Carpenter et al. that neural net approximation
provides more flexibility to enable fitting than RSM (Balabanov and
Venter, 2004). In figure 5.32, a comparison is done between the
responses of a neural net and four hidden nodes to least-squares
polynomials of different orders (Papalambros and Wilde, 2000).

 Figure 5.32:

A neural net and
three other

polynomials
modeling the same
data (Papalambros

and Wilde, 2000).

 The Multi-Disciplinary Design System 189

Modeling

 Neural networks present a fast and effective method for modeling
nonlinear data, and in particular when no algebraic form is readily
available. However, they introduce some practical difficulties. Some
of these are related to the computational cost accompanying the
learning process. Others have to do with requiring a skilled and
experienced operator in using neural networks.

 Kriging Method

 The Kriging method, named after D. G. Krige who first developed it
(Papalambros and Wilde, 2000), can also be generally thought of as a
mathematical “curve fit” through a set of data generated by the
analysis code (Phoenix Integration, 2004). It is a method of spatial
prediction or estimation based on minimizing the mean error of the
weighting sum of the sampling values (Sakata et a., 2003).

In order to generate the surrogate model for this method, which
interpolates Kriging models, the analysis model is executed in a
series of runs and the results of each run are stored. The input
variable values for this series of runs are selected to estimate the
design space in an efficient manner.

Spatial estimation using the Kriging method involves a number of
steps like determining a semivariogram model, estimating
parameters for a semivariogram and calculating the weighting
coefficients for a spatial predictor. A semivariogram is a variance
function in a probabilistic field that expresses data dispersion.

While the Kriging method reduces estimation errors via the variance
of estimated values, it demands the assumption of the kind of
semivariogram model for the purpose of generating an estimated
surface. There are many types of semivariograms including linear
models, exponential models, Gaussian-type semivariogram models
and others (Sakata et al., 2003). An estimated surface using the
Gaussian-type semivariogram model for example should be
appropriate for optimizing as it is smooth and continuous.

In general, the Kriging method is preferred over response surface
models that are based on experimental programming methods, as
well as neural network approximation methods that encounter high
computational learning cost (figure 5.33).

 The Multi-Disciplinary Design System 190

Modeling

 Figure 5.33:

A kriging model for a
two dimensional

function. Two top
plots are the actual

function and the two
lower plots are the

kringing model
(Papalambros and

Wilde, 2000).

 Variable complexity approximation (Multi-fidelity Analysis)

 Variable complexity approximation models or multiple-fidelity
analysis models combine high and low-fidelity analyses to reduce
computational cost (Koch et al., 2002). They are generated by means
of two analysis tools that model the same physical phenomenon
using different degrees of fidelity; one is a high-fidelity and more
precise cost simulation code, and the other is a less precise
simulation code which is computationally cheaper (figure 5.34).

The fundamental idea of these models is using multiplicative or
additive correction factors. These correction factors are applied to
outputs of lower fidelity efficient codes and used to predict function
values that would be obtained if higher fidelity complex codes were
used. The factors are acquired by collecting data points using both
codes (Koch et al., 2002).

 The Multi-Disciplinary Design System 191

Modeling

For instance, a response surface can be generated from a small
number of high-fidelity analyses. Low-fidelity analyses are then
conducted for the same points and a response surface for low-
fidelity analyses is thus created. By using the correction factor for the
response surfaces or the analysis results, the low-fidelity analysis
results can be transformed into high-fidelity analysis results
(Balabanov et al., 2004).

An important drawback of this method, however, is that the results
of high and low-fidelity analyses have to be correlated from time to
time during optimization. This correlation can be complicated in
situations involving a large number of design variables and
responses, especially when each response uses its own correction
factor. This would introduce the limitation more clearly in the
number of design variables and responses employed.

 Figure 5.34:

Within an
optimization both

high-fidelity and low-
fidelity models can be

utilized.

 The Multi-Disciplinary Design System 192

Modeling

 5.5 Evaluation Models

 5.5.1 What is an Evaluation Model?

 Evaluation models are in essence decision-making tools. An
evaluation model provides a quantitative assessment of the effects
of design decisions on the system being considered. An evaluation
model provides an objective evaluation as opposed to a subjective
evaluation of system behavior.

In single objective design problems, the optimization and search
direction can be well defined and a single solution, if it exists, could
be found. However, as the design develops, more than one objective
function will often be identified. These objectives may be competing
and therefore trade-offs must be made. This implies that there is no
single optimal solution but rather a whole set of possible solutions of
equivalent quality (Abraham et al., 2005).

Once there is more than one option, a choice must be made. Rational
choice requires a criterion to evaluate the different alternatives and
rank them based on a figure of merit describing the quality of a
design solution (Papalambros and Wilde, 2000). This should be an
objective criterion which will help in the selection of the best solution
from the generated alternatives. This criterion for evaluating
alternatives is not unique but is rather influenced by many design
factors, such as application, timing, the designer’s point of view,
among other factors. In addition a criterion may change over time as
more information is gathered about the design. The formulation of
the objective function is vital to the outcome of the design space
search.

Addressing multiple objective problems may require techniques that
differ from standard single objective optimization methods. Having
several objectives leads to a vector objective rather than a scalar one.
There are several methods that have been developed to formulate
and solve such multi-objective problems.

This objective is articulated based on the decision-maker’s
preferences either before or after the search. When the preference
is expressed beforehand, the designer decides how to aggregate
different conflicting objectives into a single objective function before
the actual search is performed (Horn, 1997). A commonly adopted
approach is scalarization. This consists of combining several
objectives into one scalar cost function. There are different
scalarization methods, such as the weighted-sum approach and the
utility function method among others.

 The Multi-Disciplinary Design System 193

Modeling

When using a single-objective search, the result of the optimization is
a single design point (Gries, 2004). If the weights are changed, the
full search needs to be repeated. Furthermore, depending on the
shape of the objective function that aggregates several objectives,
certain regions of the design space might be inaccessible.

When a search is performed before making a decision, the search is
performed with multiple objectives at the same time. The solution
space becomes partially ordered with a set of optimal trade-offs
between the conflicting objectives. This set is called the Pareto
optimal set. The actual choice of one of the solutions depends on
further constraints or objective functions that apply combinations of
the objectives used for the search (Gries, 2004).

 Figure 5.35:

Expected input and
output of the analysis

model.

 In the context of the MDDS, Evaluation models help make decisions
about the multiobjevte nature of the design problem. If preference is
expressed before search then the evaluation model aggregates the
behavior of the different analysis models into one single objective
that the optimization model can then use to search the design space
(figure 5.35). If decision making is delayed after search, then the
evaluation model becomes part of the optimization model.

A brief review of multiobjective methods will follow. This review is
not intended to be comprehensive, but will focus on the most
popular multiobjective methods.

 5.5.2 Single and Multi Objective Evaluation and Optimization

 When the optimization task is composed of only one objective, the
design problem is called a mono- or single-objective problem. The
main goal of a single-objective optimization is to find the “best”
solution, which implies the minimization or maximization of an
objective function that consists of a design vector that includes
design variables and is subject to both equality and inequality

 The Multi-Disciplinary Design System 194

Modeling

constraints. In single objective optimization, the search space is often
well defined.

Many design problems need to achieve several objectives such as:
maximize performance, minimize deviations from desired levels, and
minimize cost. Design problems may also have several multiple
conflicting objectives. As soon as there are several -possibly
contradicting- objectives to be optimized simultaneously, a single
optimal solution no longer exists.

Using a single-objective optimization to solve a problem with several
objectives entails grouping all different objectives into one single
objective function (Savic, 2002). However, although some design
problems may be reduced to a single objective, very often it is
difficult to define all the features of the design problem in terms of a
single objective. Also a single-objective optimization usually cannot
provide a set of alternative solutions that show different objectives
against each other. Different objectives may show tight relations to
other objectives but optimizing with a single objective may reveal
severe trade-offs with respect to the other objectives (Gries, 2004).

Therefore, defining multiple objectives often gives a better idea of
the design space and the possible trade-offs between conflicting
objectives. The interaction among different objectives gives rise to a
set of compromised solutions of equivalent quality, mostly known as
the trade-off, non-dominated, non-inferior or Pareto-optimal
solutions (Savic, 2002). Mathematically, the multi-objective
optimization problem can be stated in its general form as:

 min J (x, p)
 s. t. g(x, p) ≤ 0
 h(x, p) = 0

X i.LB ≤ Xi ≤ Xi,UB (i = 1, … , n)
x ∈ S

Where
𝐽𝐽 = [𝐽𝐽1(𝑥𝑥) . . . 𝐽𝐽𝑧𝑧(𝑥𝑥)]𝑇𝑇
𝑥𝑥 = [𝑥𝑥1 … 𝑥𝑥𝑖𝑖 … 𝑥𝑥𝑛𝑛]𝑇𝑇

 𝑔𝑔 = [𝑔𝑔1(𝑥𝑥) … 𝑔𝑔𝑚𝑚1 (𝑥𝑥)]𝑇𝑇
 ℎ = [ℎ1(𝑥𝑥) … ℎ𝑚𝑚2 (𝑥𝑥)]𝑇𝑇

 Here, J is a column vector of z objectives, whereby 𝐽𝐽𝑖𝑖 ∈ ℝ. The

individual objectives are dependent on the design vector x of n
design variables. In order for a particular design x to be feasible, both
a vector of inequality constraints g, and equality constraints h, have
to be satisfied. The problem is to minimize (or maximize)

 The Multi-Disciplinary Design System 195

Modeling

simultaneously all elements of the objective vector (de Weck, 2004).

Although the mathematical formulation of the optimization problem
looks quite similar to single-objective optimization, they are
considerably different. In multi-objective optimization, in addition to
the design space in which each combination of design variables is
available, a second space with the attainable objective function
values exists, where a mapping process occurs for a design
represented by the design vector x in the feasible design space S to
the attainable objective space J (figure 5.36).

 Figure 5.36:

Illustration of design
space and objective

space.

 Multiobjective methodologies provide more realistic models of a
problem because many objectives are considered and the emphasis
on multiobjective thinking helps avoid potentially sub-optimal point
designs (Cohon, 1978). Most design problems are characterized by a
large and often infinite number of alternatives. A wider range of
these alternatives is usually identified when multi-objective
methodologies are implemented. (Cohon, 1978).

Although multiobjective optimization has been in use for some time
now and its application in design problems has been continuously
increasing, relatively few techniques have been developed compared
to the large number of techniques available for single-objective
optimization (Abraham et al., 2005).

 5.5.3 Multiobjective Methods

 Multiobjective optimization methods can be broadly classified into
two categories: Decision making before search methods which are
also known as Scalarization approaches, and Search before decision
making methods which are also known as Pareto approaches. While
different names are used for these categories, the fundamental
differences are always the same (de Weck, 2004).

 The Multi-Disciplinary Design System 196

Modeling

Table 5.2:

Different
Scalarization and
Pareto Methods

(de Weck, 2004).

In the first category of methods the designer decides how to
aggregate different objectives into a single objective function before
the actual search is performed (Gries, 2004). This requires the
formation of a single objective function that contains contributions
from the sub-objectives in vector J. The formation of the aggregate
objective function requires that the preferences or weights between
objectives are assigned before the results of the optimization
process are known. In this way, well-established single optimization
methods can be applied (de Weck, 2004).

Scalaraization Methods
(apriori preference expression)

Pareto Methods
(a-posteriori preference expression)

• Weighted Sum Approach
• Multiattribute Utility Analysis (MAUA) – Utility

Theory.
• Compromise Programming (Non-linear

combinations).
• Physical Programming, Goal Programming.
• Lexicographic Approaches.
• Acceptability Functions, Fuzzy Logic.

• Exploration and Pareto Filtering.
• Multiobjective Genetic Algorithms (MOGA).
• Weighted Sum Approach (with weight

scanning).
• Adaptive Weighted Sum method (AWS).
• Normal Boundary Intersection (NBI).
• Multiobjective Simulated Annealing (MOSA).

 In the second category, the search for optimal solutions is performed
with multiple objectives kept separate during the search. These
Pareto methods typically use the concept of dominance to
differentiate between inferior and non-inferior solutions. The result
of the search is a set of Pareto-optimal solutions. Additional criteria
or preferences can be applied after the search to find an optimal
solution for a given problem. In this manner an unbiased search can
be performed. In addition, a single search can serve several problem-
specific decisions without the need to repeat the search (Gries,
2004).

Therefore, the selection of a single- or a multi-objective search
algorithm influences not only the point of time when design
objectives are defined, but also influences the whole exploration
process (Gries, 2004). However the end goal of all these methods
remains the same: to provide designers and decision makers with a
set of alternatives to choose from (de Weck, 2004). Table 5.5.1
provides an overview of Multi-Objective Optimization Methods.

 The Multi-Disciplinary Design System 197

Modeling

 5.5.3.1 Decision Making before Search

 In the decision making before search approach, multi-objectives are
formulated into a scalar substitute problem that has a scalar
objective and can be solved with the usual single objective
optimization methods. This method is called scalarization and is
based on the assumptions that the designer preferences are known
and assigned before searching the design space for design solutions.

The scalar objective has the form f(x, p), where p is a vector of
preference parameters that can be tuned to the designer’s subjective
preferences. The z objectives can be aggregated to express a utility,
U, a dimensionless scalar quantity expressing the quality of a
particular design.

max {U(J1, J2, … , Jz)}
 s. t. Ji = fi(x, p) 1 ≤ i ≤ z

 x ∈ S, U ∈ R+

Several scalarization methods have been developed (Table 5.5.1). The
focus in the following will be on two of these methods namely the
weighted-sum approach and the utility function approach.

 5.5.3.1.1 Method of Weighted-Objectives

 One of the most common and easiest to understand scalarization
techniques is the weighted sum approach which is also known as the
method of weighted-objectives. The scalar substitute objective is
obtained by assigning subjective weights to each objective and
summing up all objectives multiplied by their corresponding weight
(Papalambros and Wilde, 2000).

The decision maker weights the different criteria according to their
relative importance in determining the quality of a solution. This
numerical treatment facilitates comparison among criteria that are
not related (Kockler et al., 1990). Weighting should follow a logical
breakdown.

This approach is characterized by one composite or utility function U
declared by aggregating multiple objective functions with individual
weighting factors λj.

 max U �J(x, p)�

 where U = �λj

z

j=1

𝐽𝐽𝑗𝑗
𝑠𝑠𝑠𝑠𝑗𝑗

 with λ = [𝜆𝜆1 𝜆𝜆2 … 𝜆𝜆𝑧𝑧]T

 The Multi-Disciplinary Design System 198

Modeling

 and 𝜆𝜆 ∈ Rz | λi > 0,� 𝜆𝜆𝑖𝑖

z

i=1

= 1

 and x ∈ S

Formulated in this manner the objective U always forms a strictly
convex combination of objectives. The individual objectives are
typically normalized, and since the optima of the problem does not
change if all weights are multiplied by a constant value, weights are
chosen such that they add to unity and are themselves positive
scalars (de Weck, 2004).

It is apparent that the preference of an objective can be changed by
modifying the corresponding weighting factor which leads to
another solution point. In the case of two equally scaled objectives:

U = 𝜆𝜆 𝐽𝐽1 + (1 − 𝜆𝜆)𝐽𝐽2

The ratio of the weights defines the constant slope of the line.
Varying λ gradually in small incrementing steps exposes a set of
optimal solutions as the weight is gradually shifted from one
objective to another. This sequential variation of some weighting
factors can be used to find as much trade-off solutions as possible.

 Figure 5.37:

Sequential variation
of weighting factors

can be used to find
trade-off solutions.

 This approach can be utilized to find the Pareto-front by obtaining
different points on the curve with different combinations of
weighting factors (figure 5.37). Although this approach can work for
convex Pareto-fronts, it does not work for non-convex cases since
not all points on the Pareto-front can be determined. It is apparent
from figure 5.38 that many points in the non-convex case will never

 The Multi-Disciplinary Design System 199

Modeling

be reached with any combination of the weights and the resulting
optima are unevenly distributed.

 5.5.3.1.2 Utility

 Another scalarization approach is the utility functions approach
which is based on the general formulations of utility theory. Utility
functions may be developed using engineering judgment or a more
quantitative approach. The range of the utility function covers a
range of acceptable alternatives. Most scalarization approaches can
be represented via the utility function approach (de Weck, 2004).

A mathematical construction of a utility function allows non-linear
combinations of objectives via intermediate utility functions, which
are then combined into an overall utility function that will serve as a
single objective. The method assigns costs to each objective,
converting everything to minimum cost (Papalambros and Wilde,
2000). The method normalizes the utility functions. This provides for
a mediating capability by translating diverse criteria into a common
scale (Kockler et al., 1990).

 Figure 5.38:

Different utility
functions

classifications
(Cook 1997, Messac

2000).

 Utility functions have been classified by various researchers into their
most prevalent shapes (Cook 1997, Messac 2000). For example a
larger-is-better or smaller-is-better relationship is represented by a
monotonically increasing or decreasing relationship between the
objective Ji and its corresponding utility Ui, whereas a nominal-is-
better or in range-is-better type of utility can be represented by a
convex or concave functions (figure 5.38).

Although utility functions are effective and commonly used they are
hard to implement and require extensive interviews to determine

 The Multi-Disciplinary Design System 200

Modeling

appropriate utility functions and weights. However, once the utility
functions have been constructed, optimization can be performed in
search of the design with maximal utility (de Weck, 2004).

 Scalarization Methods Discussion

 In the previously discussed scalarization methods, multiple objectives
are aggregated into one objective using some knowledge of the
design problem being solved. Using scalarization methods and the
optimization of a single-objective may only provide a single Pareto-
optimal solution point for a convex Pareto-front. However, designers
usually need different alternatives and need to carry out trade-offs
between different objectives. Therefore, in order to increase the
number of points on the Pareto-front, the same problem can be
solved several times with variable weight settings. However, this
process may not work effectively for a non-convex Pareto- front.

Furthermore scalarization methods may include some subjective
information and therefore may be misleading in regards to the
character of the optimum design solution (Papalambros and Wilde,
2000). In addition, solutions obtained using scalarization methods
mainly depend on the method settings such as the underlying
weight-vector for the weighted sum approach or the manner in
which the utility interviews were conducted.

Another weakness of these methods is that they require knowledge
of the optima prior to starting the optimization, but design
preferences are rarely known precisely a priori. Shifts in preference
values can occur once the set of feasible designs becomes known.
Therefore trade-offs become more evident with time.

Nonetheless, scalarization methods are useful in gaining fast single
solutions especially if a single-objective optimization method is the
only available method (Keskin, 2007).

 5.5.3.2 Search Before decision making

 One of the first scientists to introduce the concept of trade-offs
between objectives was F.Y Edgeworth in 1881. Edgeworth was a
Professor of economics and defined an optimum for multicriteria
economic decision-making (Edgeworth 1881). He did so for the multi-
utility problem within the context of two hypothetical consumer
criteria, P and π: “It is required to find a point (x,y,) such that in
whatever direction we take an infinitely small step, P and π do not
increase together but that, while one increases, the other decreases.”

 The Multi-Disciplinary Design System 201

Modeling

Vilfredo Pareto (1848-1923), a contemporary of Edgeworth who was
working in Florence as a civil engineer, was one of the first to analyze
economic problems with mathematical tools. His concept, named the
Pareto Optimum, found broad acceptance (Pareto 1906): “The
optimum allocation of the resources of a society is not attained so long
as it is possible to make at least one individual better off in his own
estimation while keeping others as well off as before in their own
estimation.” Since then, multi-objective optimization has penetrated
design and engineering and has developed at a rapidly increasing
pace (de Weck, 2004).

A solution may be better, worse or indifferent to other solutions,
neither dominating nor dominated with respect to the objective
values (Abraham et al., 2005). In a multi-objective optimization
problem there exists a set of solutions which are superior to the rest
of the solutions in the search space when all objectives are
considered but inferior to other solutions in the space in at least one
objective. These are optimal solutions that are not dominated by any
other solution in the search space (figure 5.39). Such optimal
solutions are called Pareto optimal, and the entire set of such optimal
trade-offs solutions is called the Pareto optimal set, where the rest of
the solutions are called dominated solutions (Abraham et al., 2005).

 Figure 5.39:

Points A,B,C and D
are optimal solutions

that are not
dominated by any

other solution in the
search space.

 All elements in the Pareto optimal set define reasonable solutions
and are subject to further decision factors in order to choose a design
for a given problem (Gries, 2004). As evident, in a real world situation
a decision-making (trade-off) process is required to obtain the
optimal solution (Abraham et al., 2005).

 The Multi-Disciplinary Design System 202

Modeling

Although there are several methods to approach a multiobjective
optimization problem, most work is concentrated on the
approximation of the Pareto set (Abraham et al., 2005).

Pareto methods attempt to find a set of efficient solutions, 𝑥𝑥∗𝑗𝑗 , such
that the objective vectors corresponding to those solutions are non-
dominated in the objective space.

To explain the Pareto criterion for dominance we will assume,
without loss of generality, two feasible objective vectors 𝐽𝐽1 and 𝐽𝐽2.
For all objectives, respectively, 𝐽𝐽1 dominants 𝐽𝐽2 if and only if:

 𝐽𝐽𝑖𝑖1 ≥ 𝐽𝐽𝑖𝑖2 ∀ 𝑖𝑖
And 𝐽𝐽𝑖𝑖1 ≥ 𝐽𝐽𝑖𝑖2 for at least one 𝑖𝑖

This means a dominant solution is at least better in one objective
while being at least the same in all other objectives. For strong
(strict) dominance requires 𝐽𝐽1 to be better in all objectives than 𝐽𝐽2 .

Based on the notion of dominance, the simplest approach address
the multi object decision is a combination of design space
exploration and dominance (Pareto) filtering.

The advantage of multi-objective optimization compared to single
objective optimization is to provide different solutions to the design
problem that the designer can choose from. To pick one solution
over another might require problem knowledge and additional
decision criteria which are not necessarily formulated in the design
task. Therefore, it may be useful to have a wide range of non-
dominated solutions from which one or more solutions can be
chosen.

Two goals can be pursued simultaneously in multi-objective
optimization (Deb 2001). The first goal is to find a diverse set of
solutions. However, this set won’t be comprehensive due to the n-
dimensionality of the design vector x.

The Second goal is to find a set of solutions as close as possible to the
Pareto-optimal front. Given that the points only satisfy non-
dominance, the solutions obtained are only approximations of the
Pareto Front.

An optimum to the problem is found if they satisfy the multi-
objective version of the Karush-Kuhn-Tucker (KKT) optimality
conditions (de Weck, 2004):

 The Multi-Disciplinary Design System 203

Modeling

If 𝑥𝑥∗ is non-inferior (=Pareto optimal) it satisfies the following KKT
conditions:

a) 𝑥𝑥∗ is feasible, i.e. 𝑥𝑥∗ ∈ 𝑆𝑆 and 𝑆𝑆 = ∅
b) All objective functions 𝐽𝐽𝑖𝑖 and constraints 𝑔𝑔𝑗𝑗 are differentiable
c) At 𝑥𝑥∗ the constraints are satisfied 𝑔𝑔𝑖𝑖(𝑥𝑥∗) ≤ 0 ∀ 𝑗𝑗 = 1,2, … ,𝑚𝑚

and 𝜆𝜆𝑗𝑗𝑔𝑔𝑗𝑗 (𝑥𝑥∗) = 0 whereby 𝜆𝜆𝑗𝑗 ≥ 0 ∀ 𝑗𝑗 = 1, … ,𝑚𝑚
d) There exist 𝜇𝜇𝑖𝑖 ≥ 0 ∀ 𝑖𝑖 = 1, … ,𝑛𝑛 with strict inequality

holding for at least one 𝑖𝑖 such that the condition
∑ 𝜇𝜇𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∇𝐽𝐽𝑖𝑖(𝑥𝑥∗) + ∑ 𝜆𝜆𝑗𝑗𝑚𝑚

𝑗𝑗=1 ∇𝑔𝑔𝑗𝑗 (𝑥𝑥
∗) = 0 is true.

The condition described in (d) expresses the fact that the gradients
of the objectives and gradients of the constraints are in equilibrium
with each other at a Pareto-optimal point. Note, that among
multipliers, the preferences μi are the corollary to the weights (λi),
while the λ j’s are the Lagrange multipliers.

 5.5.3.2.1 MOGA

 Several stochastic optimization techniques such as simulated
annealing; tabu search, ant colony optimization etc. could be used to
generate the Pareto set. However, due to the manner that these
algorithms work, the solutions generated tend to be stuck at good
approximations and do not guarantee the identification of optimal
trade-offs (Abraham et al., 2005)

In recent years there has been a rising interest in evolutionary
multiobjective optimization algorithms which combine both
evolutionary computation and multicriteria decision making. One of
the strongest appeals of such algorithms is that they require very
little knowledge about the design problem being solved, and are easy
to implement, robust and could be implemented in a parallel
environment (Abraham et al., 2005)

Several evolutionary algorithms have been proposed and successfully
applied to various design problems. The Multi-Objective Genetic
Algorithm (MOGA) proposed by Fonseca and Fleming (1993) has
particularly gained increased acceptance among the Pareto
approaches in recent years.

MOGA’s evolve populations of designs gradually so that they
approximate a Pareto frontier as closely as possible (de Weck, 2004).
The approach consists of a scheme in which the rank of a certain
individual corresponds to the number of individuals in the current
population by which it is dominated. All non-dominated individuals
are assigned rank 1, while dominated ones are penalized according to

 The Multi-Disciplinary Design System 204

Modeling

the population density of the corresponding region of the trade-off
surface (Coello, 2001). Fitness assignment is performed in the
following way (Fonseca and Fleming, 1993):

1. Sort population according to rank.

2. Assign fitness to individuals by interpolating from the best (rank 1)
to the worst (rank n < M) in the way proposed by Goldberg (1989)
(the so-called Pareto ranking assignment process), according to
some function, usually linear, but not necessarily.

3. Average the fitnesses of individuals with the same rank, so that all
of them will be sampled at the same rate. This procedure keeps the
global population fitness constant while maintaining appropriate
selective pressure, as defined by the function used.

Since the use of a blocked fitness assignment scheme as the one
indicated before is likely to produce a large selection pressure that
might produce premature convergence (Goldberg, 1989), the use of
a niche-formation method proposed to distribute the population
over the Pareto-optimal region (Deb and Goldberg, 1989). Sharing is
performed on the objective function values. MOGA also uses mating
restrictions.

While MOGA is an effective method and doesn’t require apriori
assignments of weights, there are a few challenges (de Weck, 2004).
The main challenges are the large computational expense as well as a
tendency for niching (clumping of solutions in objective space) which
results in underrepresented regions of the Pareto front (de Weck,
2004). There is a need to minimize the distance of the generated
solutions to the Pareto set and to maximize the diversity of the
developed Pareto set. A good Pareto set may be obtained by
appropriate guiding of the search process through careful design of
reproduction operators and fitness assignment strategies. To obtain
diversification special care has to be taken in the selection process.
Special care is also to be taken care to prevent non-dominated
solutions from being lost (Abraham et al., 2005). All of these issues
(and others) are subjects of ongoing research in the multiobjective
optimization community.

 The Multi-Disciplinary Design System 205

Modeling

 5.6 Optimization Models

 5.6.1 What is an Optimization Model?

 Optimization was first coined with the development of the gradient
steepest descent algorithm by Guass. It served as the first building
block of the science of optimization. Later, in the 1940s, George
Dantzig invented the term linear programming which gave way to
the development of the remaining well-known optimization schemes
(Elster, 1993). Throughout the 1970s and 1980s, the field of Artificial
Intelligence (AI) introduced the heuristic approach to solving
optimization problems. Today, optimization plays an important role
in most of the major fields, which include engineering and design,
operations research and economics.

Conventional design procedures are for finding a suitable design
which satisfies the functional objective(s) and requirements of the
problem. In general, there will be more than one acceptable design
or design alternative. The purpose of optimization is to evaluate and
choose the fittest of the available acceptable designs based on the
functional objective(s) and the design requirements and restrictions.

Optimization can be explicated as improving or fine-tuning a design
or system in terms of one or more performance criteria

(Papalambros, 2000). It formalizes what humans have always done
intelligently. Optimization can be used in refining any design or
system that includes some form of an analysis component, and is
therefore subjected to the same limitations of the design. Generally,
an optimization problem consists the following (Papalambros and
Wilde, 2000):

• A set of variables that describe the design alternatives.
• An objective function(s), expressed by the design variables,

to minimize or maximize.
• A set of constraints, expressed in terms of the design

variables, to be satisfied by any suitable design.
• A set of values for the design variables, which satisfies all the

constraints.

Certain design features are determined in the synthesis model, and
the behavior corresponding to each design is determined in the
analysis model. The evaluation model attempts to handle the multi-
objective criteria of the design problem. Optimizing models are then
used to determine optimal designs.

The input to an optimizing model is an objective function. This could

 The Multi-Disciplinary Design System 206

Modeling

be the output of an evaluation model. The output of an optimization
model is a new design vector that in turn is the input to the synthesis
model (figure 5.40).

 Figure 5.40:

Expected input and
output of the

optimization model.

 The rising demand for industry to lower production costs has

encouraged professionals to seek precise and accurate means for
decision-making, leading them to utilize new optimization schemes.
Optimization methods today have reached a high degree of
sophistication, contributing to their use in a wide range of industries.
With the rapid advancement of computer technology, the size and
the complexity of the problems being solved using optimization
techniques are also increasing.

In this section, optimization will be discussed in general. I will start by
explaining how optimization problems are mathematically
formulated and classified. Next, the main optimization algorithms will
be discussed.

 5.6.2 Mathematical Formulation

 Mathematically, optimization is the minimization or maximization of
a function subject to constraints on its variables (Nocedal and Wright,
2000). The objective function is sometimes called a “cost” function,
since minimum cost is often taken to characterize the “best” design.
In general, the criterion (objective function) for selection of the
optimal design is a function of the design variables of the model.

The following notations are used to represent a model (Papalambros
and Wilde, 2000):

• x is the vector of variables, also called unknowns or
parameters.

• f is the objective function, a (scalar) function of x that is

 The Multi-Disciplinary Design System 207

Modeling

maximized or minimized.
• cj are constraint functions, which are scalar functions of x that

define certain equations and inequalities that the unknown
vector x must satisfy.

 Figure 5.41:

An optimization
problem has an

objective function
and can have several
constraints to insure

feasibility.

 Using this notation, the optimization problem can be written as
follows:

minx∈Rn 𝑓𝑓(𝑥𝑥) subject to

𝑐𝑐𝑗𝑗 (𝑥𝑥) ≥ 0, 𝑖𝑖 ∈ 𝐼𝐼
𝑐𝑐𝑗𝑗 (𝑥𝑥) = 0, 𝑖𝑖 ∈ 𝐸𝐸

Here E and I are sets of indices for equality and inequality constraints,
respectively.

The variables are expected to be interrelated by physical laws, like
the conservation of mass or energy, Kirchhoff’s voltage and current
laws, or other system equalities that must be satisfied (Antoniou et
al., 2007). Similarly a collection of constraints may be imposed on the
variables to ensure physical reliability, compatibility, or even to
simplify the modeling of the problem (Nocedal and Wright,
2000)(figure 5.41).

 5.6.3 Classification of Optimization Problems

 The classification of an optimization problem depends on more than
one factor. It can be the objective function, constraints, design
variables etc. This will be discussed further in the following.

 The Multi-Disciplinary Design System 208

Modeling

 5.6.3.1 Based on Constraints

 Depending on the ranges allowable for the design variables,
optimization problems can be classified as unconstrained and
constrained optimization problems.

 Unconstrained optimization

 In some problems there might be no need to have constraints on the
variables, or it might be safe to ignore them as they do not have an
effect on the solution and do not interfere with algorithms.
Unconstrained problems can also arise from reformulations of
constrained optimization problems, in which the constraints are
replaced by penalization terms added to the objective function, that
have the effect of restricting constraint violations (Nocedal and
Wright, 2000).

Mathematically an unconstrained problem is represented as:

Find 𝐗𝐗 = �
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛
� which minimizes 𝑓𝑓(𝐗𝐗)

 Constrained optimization

 These kinds of problems come up from models in which constraints
play an essential role i.e. they are necessary, for example in imposing
budgetary constraints in an economic problem or shape constraints
in a design problem (Nocedal and Wright, 2000).

Mathematically a constrained problem can be stated as follows:

Find 𝐗𝐗 = �
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛
� which minimizes 𝑓𝑓(𝐗𝐗)

Subject to the constraints

𝑔𝑔𝑗𝑗 (𝑋𝑋) ≥ 0, 𝑗𝑗 = 1,2, … … ,𝑚𝑚
𝑙𝑙𝑗𝑗 (𝑋𝑋) = 0, 𝑗𝑗 = 1,2, … … ,𝑝𝑝

Where X is an n-dimensional vector called the design vector, f(X) is
the objective function, and the constraints are, gj (X) for inequality,
and lj (X) for equality (Rao, 1996).

 The Multi-Disciplinary Design System 209

Modeling

 5.6.3.2 Based on Design Variables

 Depending on the values allowable for the design variables,
optimization problems can be classified as integer (Discrete) and real-
valued (Continuous) programming problems.

Models with continuous variables are in general easier to solve with
techniques based on differential calculus. However, models with
discrete variables are combinatorial in nature and an optimal solution
is difficult to identify without sometimes complete enumeration of all
possible combinations which is not always practical (Papalambros,
2000).

 Discrete Variables

 If some or all of the design variables x1, x2, . . . , xn are restricted to
take on only integer or discrete values, then the problem is called an
integer programming problem. The behavior of the objective function
and constraints may change as we move from one possible point to
another, even if the two points are “close” by some measure
(Nocedal and Wright, 2000).

 Continuous Variables

 Similarly, if all the design variables can take any real value, the
optimization problem is called a real-valued or continuous
programming problem. These problems are in general easier to solve
because of the smoothness of the function, which makes it feasible
to use the objective function and constraint information at a
particular point x, to realize the function’s behavior at all points close
to x. (Nocedal and Wright, 2000)

 5.6.3.3 Based on nature of objective function

 If the modeling relationships and the objective function are linear,
the optimization problem is linear. This type of problem is usually
referred to as a linear programming problem. If either the modeling
relationships and/or the objective function are nonlinear the
optimization problem is nonlinear, or a nonlinear programming
problem.

Frequently very large-scale nonlinear or linear programming
problems are decomposed into a set of interconnected (and in some
sense) simpler problems (Papalambros, 2000).

 The Multi-Disciplinary Design System 210

Modeling

 Linear programming

 When the objective function and all its constraints, are linear in terms
of x, the problem is called a linear programming problem. These types
of problems are perhaps the most widely formulated and solved of
all optimization problems, mainly in management, financial, and
economic applications. (Nocedal and Wright, 2000)

The mathematical representation of a linear programming problem in
standard form:

Find 𝐗𝐗 = �
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛
�

This minimizes

𝑓𝑓(𝑿𝑿) = ∑𝑖𝑖=1

𝑛𝑛 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖

Subject to the constraints

∑𝑖𝑖=1
𝑛𝑛 𝑎𝑎𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖 = 𝑏𝑏𝑖𝑖 , 𝑗𝑗 = 1,2, … … ,𝑚𝑚

𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … … ,𝑛𝑛

Where ci, bj, and aij are known constants, and xi are the decision
variables. (Rao, 1996)

 Nonlinear programming

 Problems, in which at least some of the constraints or the objectives
are nonlinear functions, are called Nonlinear programming problems.
They tend to occur naturally in the physical sciences and engineering,
and are becoming more widely used in management and economic
sciences as well (Nocedal and Wright, 2000).

A nonlinear programming problem with a quadratic objective
function and linear constraints is considered a Quadratic
Programming Problem. Mathematically it is formulated as follows:

𝐹𝐹(𝑋𝑋) = 𝑐𝑐 + ∑𝑖𝑖=1
𝑛𝑛 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖 + ∑𝑖𝑖=1

𝑛𝑛 ∑𝑗𝑗=1
𝑛𝑛 𝑄𝑄𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

Subject to

∑𝑖𝑖=1
𝑛𝑛 𝑎𝑎𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖 = 𝑏𝑏𝑖𝑖 , 𝑗𝑗 = 1,2, … … ,𝑚𝑚

 𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … … ,𝑛𝑛

Where, c, qi, Qij, aij, and bj are constants (Rao, 1996).

 The Multi-Disciplinary Design System 211

Modeling

 5.6.4 Classification of Optimization Algorithms

 Figure 5.42:

A simple taxonomy of
optimization

algorithms discussed
in the thesis.

 Optimization Algorithms can be classified into either Deterministic or
Stochastic (Heuristic) methods. Deterministic methods can be
classified into Derivative-Free methods and Gradient Based methods.
Stochastic (Heuristic) methods include several algorithms such as
Evolutionary Algorithms, Simulated Annealing and Tabu Search
(figure 5.42). In the following sections emphasis will be given to some
better known optimization algorithms.

 The Multi-Disciplinary Design System 212

Modeling

 5.6.4.1 Deterministic Algorithms

 5.6.4.1. 1 Derivative-Free Methods

 Simplex Method

 Linear programming and the Simplex method have been the most
widely used amongst optimization tools since the 1950s
(Luenberger, 2003). Linear programs have linear objective functions
and constraints that include both equalities and inequalities. The
standard form of linear programs is:

min 𝑐𝑐𝑇𝑇𝑥𝑥,
𝑠𝑠𝑠𝑠𝑏𝑏𝑗𝑗𝑠𝑠𝑐𝑐𝑠𝑠 𝑠𝑠𝑡𝑡 𝐴𝐴𝑥𝑥 = 𝑏𝑏, 𝑥𝑥 ≥ 0,

Where c and x are vectors in Rn, b is a vector in Rm, and A is an m × n
matrix.

In geometric terms, the feasible set defined by the linear constraints
is a polytope, an n-dimensional convex, defined by the intersections
of a number of half-spaces in n-dimensional Euclidean space
(Luenberger, 2003).

The vertices of this polytope are the points that do not lie on a
straight line between two other points in the set (Nocedal and
Wright, 2000). Algebraically, the vertices are exactly the basic
feasible points defined above (figure 5.43). The contours of the
objective function are planar and the set of optimal points can be a
single vertex, an edge or face, or an entire feasible set (Luenberger,
2003).

 Figure 5.43:

 Linear program in
two dimensions with

solution at x*=cTx

 The Multi-Disciplinary Design System 213

Modeling

 Simplex Method Algorithm

The idea of the simplex method is to proceed from one basic feasible
solution of a problem in standard form to another, in a manner that
continually decreases or increases the value of the objective function
until an optimum is reached (Luenberger, 2003). The changing of a
non-basic variable value and adjusting the values of the basic
variables, while maintaining feasibility, corresponds to moving along
an edge of the convex set (Dantzig, 1998).

Therefore, interior points can be ignored while focusing only on the
edges, because the simplex algorithm attempts to find a single
optimal point. Hence, the simplex algorithm begins at a vertex and
moves along the edges of the polytope until it reaches the vertex of
the optimum solution. The Simplex Method provides an efficient
method for moving among basic solutions to an optimal solution
(Luenberger, 2003).

To apply the simplex algorithm, the linear programming problem has
to be transformed into the augmented form. The optimization
problem is formulated in matrix form as follows:

Maximize Z in:

�1 −𝑐𝑐𝑇𝑇 0
0 𝐴𝐴 𝐼𝐼

� �
𝑍𝑍
𝑋𝑋
𝑋𝑋𝑆𝑆
� = �0𝑏𝑏�

𝑋𝑋, 𝑋𝑋𝑆𝑆 ≥ 0

where Z are the variables to be maximized, x are the variables from
the standard form, xs are slack variables from the augmented form,
c contains the optimization coefficients, A and b describe the
constraints.

This form helps defining the initial basic feasible solution. All
variables from the standard form are nonbasic variables that have a
zero value, whereas the new variables introduced in the augmented
form are basic variables that have a nonzero value.

The algorithm starts at some vertex of the polytope and at every
iteration selects an adjacent vertex that does not decrease the value
of the objective function. If no such vertex exists then a solution to
the problem is found. However often an adjacent vertex is not
unique and a pivot rule must be applied to establish the next vertex
to select.

 The Multi-Disciplinary Design System 214

Modeling

 Revised Simplex method Algorithm

 Rather than spend time updating tableaus and dictionaries at the
end of each iteration, the Revised Simplex Method does most of its
calculation at the beginning of each iteration which results in less
calculation at the end.

However in computer implementation, the physical limitations of the
computer can become an issue since round-off errors are a common
problem in matrix manipulations particularly since matrices
generated from the Revised Simplex Method are not usually well-
conditioned. Therefore, the task of implementing the Revised
Simplex Method is more than just coding and programming the
algorithm but is also an exercise in numerical stability.

 Duality Theory

 For every linear programming problem, also known as a primal
problem, there is a corresponding dual linear programming problem
that provides an upper bound on the optimal value of the primal
problem (Luenberger, 2003).

If the primal problem is formulated in matrix form as follows

Maximize 𝑐𝑐𝑇𝑇𝑥𝑥
subject to 𝐴𝐴𝑥𝑥 ≤ 𝑏𝑏, 𝑥𝑥 ≥ 0

Then the corresponding dual problem is formulated in matrix form
as follows:

Minimize 𝑏𝑏𝑇𝑇𝑦𝑦
subject to 𝐴𝐴𝑇𝑇𝑦𝑦 ≥ 𝑐𝑐, 𝑦𝑦 ≥ 0

where y is used instead of x as variable vector.

Both problems are constructed from the same underlying cost and
constraint coefficients but in a manner that if one of these problems
is minimized then the other is maximized, and if the optimal values
of the corresponding objective functions exist, then they are equal
(Luenberger, 2003).

The variables of the dual problem can be interpreted as prices
associated with the constraints of the original (primal) problem.
Through this association it is possible to give an economically
meaningful characterization to the dual. Furthermore, the variables
of the dual problem are also related to the calculation of the relative
cost coefficients in the simplex method. The consideration of the
linear programming problem from both the primal and dual

 The Multi-Disciplinary Design System 215

Modeling

viewpoints usually provides insight and significant computational
advantage (Luenberger, 2003).

There are two important duality theorems that should also be
discussed: the weak duality theorem and the strong duality theorem.
The weak duality theorem states that the value of the objective
function of the dual is always greater than or equal to the value of
the objective function of the primal. On the other hand, the strong
duality theorem states that if the primal has an optimal solution x*,
then the dual also has an optimal solution y*, such that cTx* = bTy*.

 Integer Programming

 When formulating a Linear Programming problem, if certain
variables need to be integer values then we are faced by a more
difficult type of problem called integer programs (IP's).

Integer programs occur frequently because many decisions are
essentially discrete. A pure integer programming problem is one
where all variables in the integer programming problem are integers.
A mixed integer programming problem is one where only some
variables are restricted to being integers. A binary integer
programming problem is one where the integer variables are
restricted to be 0 or 1.

There are two well-known algorithms for solving integer
programming problems, namely the Branch and Bound algorithm
and the cutting plane algorithm. The Branch and Bound algorithm is
based on dividing the problem into a number of smaller problems.
The cutting plane algorithm, on the other hand, is based on adding
constraints to force integrality.

Both methods involve solving a series of linear programs by first
solving a relaxed version of the problem, and then adding
constraints until an integer solution is found. Given the integer
program:

Minimize (or maximize) ci
 subject to Ai = b
i ≥ 0 and integr

It’s associated linear relaxation:

Minimize (or maximize) ci
subject to Ai = b

i ≥ 0

 The Multi-Disciplinary Design System 216

Modeling

The linear relaxation problem is formed by dropping the integrality
constrains and therefore is less constrained than integer
programming.

Solving a linear relaxation problem provides some information about
the problem and sets a bound on the optimal value. However, it
must be noted that rounding the solution of linear relaxation is not
expected to produce the optimal solution of an integer program and
that other techniques have to be implemented.

 Branch and Bound

 The Branch and Bound method was first introduced by Land and
Doig in the early 1960's. The algorithm solves an integer
programming problem by enumerating feasible solutions such that
the optimal integer solution is found. However, unlike a complete
enumeration, this method does not consider each possible
enumeration because that is likely to be too large. This is an
important factor that enables the tree search to work and find
solutions that would be very hard if complete enumeration was
used.

A branch-and-bound method requires two procedures. The first is a
branching procedure that given a set of candidates returns two or
more smaller sets. This procedure is a recursive procedure that
defines a tree structure whose nodes are the subsets of the original
set. The second procedure is a bounding procedure that computes
upper and lower bounds of the given a subset.

The way the algorithm works is by first solving the relaxed version of
the problem. If the solution is not an integer, then the branching
procedure is implemented splitting the problem into two sub-
problems. If while solving any of the sub-problems an integer
solution is found, the nodes of the enumeration tree that are
descendents of the current node are pruned since no better solution
will be found by branching into even more sub-problems (Wolsey
and Nemhauser, 1999). The method is repeated until there are no
active sub-problems.

 The Cutting Plane Algorithm

 An alternative to the branch and bound method is the cutting planes
method which can also be used to solve integer programs.

The cutting plane algorithm works by first finding the solution to the
relaxed version of the problem (Papadimitriou and Steiglitz, 1998).

 The Multi-Disciplinary Design System 217

Modeling

The fundamental idea behind cutting planes is to add constraints to a
linear program until the optimal basic feasible solution takes on
integer values.

Care however should be taken while adding the constraints in a
manner that does not change the actual problem. A cut, which is a
special constraint that is relative to a current fractional solution, is
added such that every feasible integer solution has to be feasible for
the cut, but that the current fractional solution is not feasible for the
cut. If the solution found has non-integer elements, then new cuts
are imposed that eliminate the previously found solution, but do not
eliminate any feasible integer solutions, until a solution with all
integer elements is found (Papadimitriou and Steiglitz, 1998).

One of the known methods used to generate cutting planes is called
the Gomory cuts which can generate cuts from any linear
programming tableau. This method’s strength is in its ability to solve
any integer programming problem. However its weakness is its
slowness. Another approach to generating cutting planes depends
on understanding the structure of the optimization problem to
generate efficient cuts. Although this could provide powerful
methods, it is problem specific.

In general, the cutting plane algorithms suffer from two main
disadvantages. First, difficulties caused by round-off errors. And
second, the large number of constraints generated. These two
disadvantages are enough to render the cutting plane algorithm
unfeasible. Nevertheless this method, combined with the branch and
bound method could be a robust method in special types of
problems.

 In summary, the Integer programming is an NP-hard problem and is
likely to remain so for the foreseeable future. In this section two
algorithms for solving integer programming problems were
discussed briefly namely the branch and bound algorithm and the
cutting planes algorithm. Both algorithms are based on repetitively
solving relaxed versions of the original problem and modifying it
until an integer solution is found.

For both algorithms there is no guarantee on the time needed to
reach a solution. In a worst case scenario, it is possible that we could
build the entire enumeration tree using branch and bound. Based on
the structure of the problem, the cutting plane algorithm may
require many iterations and numerous cuts before arriving at an
integer solution.

 The Multi-Disciplinary Design System 218

Modeling

 5.6.4.1. 2 Gradient Methods

 Gradient methods depend on gradient information. Originally they
were developed for unconstrained optimization problems. Variations
of these methods were also developed to handle constrained
optimization problems. The following sections will discuss both
approaches.

 Unconstrained Gradient Methods

 Gradient methods are generally grouped into two categories, first-
order and second-order methods. First-order methods are based on
the linear approximation of the Taylor series, and therefore only
require gradient information. Second-order methods, on the other
hand, are based on the quadratic approximation of the Taylor series
and require both the gradient and the hessian (Antoniou et al.,
2007).

There are several gradient methods that range in their
sophistication. In this section, some of the more basic methods will
be presented namely: the steepest-descent method and the Newton
method.

 Steepest Descent

 The steepest-descent method is a first-order method since it is based
on the linear approximation of the Taylor series. The steepest-
descent method is also considered the simplest of the gradient
methods.

To find a local minimum of a function f using steepest descent, we
need to choose the direction d where f decreases most rapidly.
Assuming that a function f(xi) is continuous in the neighborhood of
point xi. We take steps proportional to the opposite (negative) of the
gradient ∇𝑓𝑓 (𝑋𝑋𝑖𝑖) of the function at the current point xi. Generally d
does not point in the direction of x* (local optimum) and therefore
an iterative procedure must be used for the solution.

The search starts at an arbitrary point 𝑋𝑋0 for a local minimum of f,
and considers the sequence 𝑋𝑋0 ,𝑋𝑋1,𝑋𝑋2, . . . formally, the iterative
procedure is

𝑋𝑋𝑘𝑘 + 1 = 𝑋𝑋𝑘𝑘 − 𝜆𝜆𝑘𝑘 𝛻𝛻 𝑓𝑓(𝑋𝑋𝑘𝑘)

k = 1, 2, . . . n

 The Multi-Disciplinary Design System 219

Modeling

With any luck the sequence (𝑋𝑋𝑘𝑘) converges to the desired local
minimum as we move down the gradient until we are close enough
to the solution.

 Figure 5.44:

In the steepest
descent the

trajectory to the
solution follows a

zigzag pattern

 Note that the value of the step size 𝜆𝜆𝑘𝑘 is allowed to change at every
iteration. Obviously, we want to move to the point where the
function f takes on a minimum value, which is where the directional
derivative is zero. The choice of 𝜆𝜆𝑘𝑘 is made such that the successive
directions are orthogonal. The next step is taken in the direction of
the negative gradient at this new point. This implies a minimization
problem along a line, where the line equation is given by 𝑋𝑋𝑘𝑘 + 1 =
𝑋𝑋𝑘𝑘 − 𝜆𝜆𝑘𝑘 ∇ 𝑓𝑓(𝑋𝑋𝑘𝑘) for different 𝜆𝜆𝑘𝑘 values. This is solved by a line
search for a minimum point along a line.

The iteration is repeated until the local minimum has been
determined within a chosen accuracy ε. The trajectory to the solution
follows a zigzag pattern (figure 5.44).

The Steepest Descent method is a simple, easy to apply, and fast
method. It is also fairly stable. However the method has a few
disadvantages. It generally has slow convergence and it is also highly
dependent on a good starting point.

 Newton Method

 Unlike the steepest-descent method which is a first-order method
based on the linear approximation of the Taylor series, the Newton
method is a second-order method developed by using the quadratic
approximation of the Taylor series of a given function f(x). The

 The Multi-Disciplinary Design System 220

Modeling

information of the second derivative is used to locate the minimum
of the function f(x). This is repeated in each iteration till the
minimum is reached.

Any quadratic function has a Hessian which is constant for any point
x. The quadratic function for x in an appropriate neighborhood of
the current point 𝑋𝑋𝑘𝑘 is given by a truncated Taylor series:

𝑓𝑓(𝑥𝑥) ≈ 𝑓𝑓(𝑋𝑋𝑘𝑘) + (𝑋𝑋 − 𝑋𝑋𝑘𝑘)𝑇𝑇 .𝑔𝑔𝑘𝑘 +
1
2

(𝑋𝑋 − 𝑋𝑋𝑘𝑘)𝑇𝑇 .𝐻𝐻𝑘𝑘 . (𝑋𝑋 − 𝑋𝑋𝑘𝑘)

Where both the gradient 𝑔𝑔𝑘𝑘 and the Hessian matrix 𝐻𝐻𝑘𝑘 are evaluated
at 𝑋𝑋𝑘𝑘 . If we take the derivative of this we get:

𝛻𝛻𝑓𝑓(𝑋𝑋) = 𝑔𝑔𝑘𝑘 +
1
2
𝐻𝐻𝑘𝑘 . (𝑋𝑋 − 𝑋𝑋𝑘𝑘) +

1
2
𝐻𝐻𝐾𝐾𝑇𝑇 . (𝑋𝑋 − 𝑋𝑋𝑘𝑘)

If the function 𝑋𝑋𝑘𝑘 is twice continuously differentiable at every point
then the Hessian matrix is symmetric. Therefore we get

𝛻𝛻𝑓𝑓(𝑋𝑋) = 𝑔𝑔𝑘𝑘 +𝐻𝐻𝑘𝑘 . (𝑋𝑋 − 𝑋𝑋𝑘𝑘)

If x* is the minimum of f(x) then the gradient is zero:

(𝑋𝑋∗ − 𝑋𝑋𝑘𝑘) + 𝑔𝑔𝑘𝑘 = 0

x* is considered the next current point, resulting in the iterative
formula:

Xk+1 = Xk − Hk
−1. gk

k=0, 1 , . . . ,

Where −𝐻𝐻𝑘𝑘−1.𝑔𝑔𝑘𝑘 is the Newton direction.

If the function has a minimum, and the second order sufficiency
conditions for a minimum hold, then H is positive definite and,
therefore, nonsingular at any point x.

If f(x) is a n-dimensional quadratic function, then the Newton
method will converge in only one step from any starting point. If not,
the Newton method will iterate incorporating a line search to
calculate changes in x.

Based on the number of iterations the convergence may seem fast.
However, each iteration includes the calculation of the second
derivative and handling of the Hessian which can be very time-

 The Multi-Disciplinary Design System 221

Modeling

consuming, especially for large systems. Another drawback of the
Newton method is that it may not converge from any starting point.

Nevertheless, the Newton method is still considered a popular
optimization technique for unconstrained nonlinear problems due to
its fast quadratic convergence.

 Constrained Gradient Methods

 The gradient based algorithms described earlier are generally
developed for unconstrained optimization problems. However, there
are a certain class of algorithms that use the unconstrained
optimization techniques to solve constrained problems. In the
following I will discuss some methods that belong to that class.

 Penalty-Methods

 Penalty methods generally replace a constraint optimization
problem by a sequence of unconstrained problems. The
corresponding minimization problems are formed using a
mathematical function that adds a penalty term to the objective
function. The penalty function will increase the objective (for a
minimization problem) depending on the value of the violated
constraints but would remain constant otherwise.

Two major classes of Penalty methods exist depending on the
formulation of the penalty function. The first class are known as
Exterior Penalty Methods and use a sequence of infeasible points
while adding a penalty for infeasibility. Feasibility is obtained only at
the optimum. On the other hand, the second class of penalty
methods adds a barrier to ensure that a feasible solution never
becomes infeasible. These are referred to as Interior Penalty Methods
or barrier function methods.

It is important to ensure that the penalty does not dominate the
objective function during initial iterations of exterior point method.
There are many methods to choose the penalty parameter sequence
but the simplest is to keep it constant during all iterations.

Interior penalty methods have the advantage that if convergence is
not achieved, a feasible solution is still maintained. Exterior penalty
methods on the other hand have the advantage that they are less
likely to be stuck in a local minimum. They are also more robust
because in practice it is not always possible to have a feasible
starting point. However, Exterior penalty functions typically require
more function evaluations.

 The Multi-Disciplinary Design System 222

Modeling

In general, these methods are sufficient for special purposes and
provide easy techniques to consider constraints in an optimization
problem using unconstrained optimization algorithms.

 Sequential Quadratic Programming

 Sequential Quadratic Programming (SQP) is one of the most popular
and robust methods for solving nonlinearly constrained optimization
problems. Like many other optimization methods, SQP is not a single
unique algorithm, but rather a theoretical method from which
several particular algorithms have evolved (Boggs and Tolle, 1995).

The basic method of SQP is analogous to Newton's method for
unconstrained optimization in which an iterative approach is
implemented to solving a series of subproblems that hopefully yield
a step toward the problem solution.

The SQP models a nonlinear program at a given approximate
solution 𝑋𝑋𝑘𝑘 using a quadratic programming subproblem that
substitutes the objective function with the quadratic approximation
and replaces the constraint functions by linear approximations.

𝑞𝑞𝑘𝑘(𝑑𝑑) = 𝛻𝛻𝑓𝑓(𝑋𝑋𝑘𝑘)𝑇𝑇𝑑𝑑 +
1
2
𝑑𝑑𝑇𝑇𝛻𝛻𝑥𝑥𝑥𝑥2 ℒ(𝑥𝑥𝑘𝑘1𝜆𝜆𝑘𝑘)𝑑𝑑

This defines a search direction dk as a solution to the quadratic
programming subproblem. The solution to this subproblem is then
used to construct a better approximation 𝑋𝑋𝑘𝑘+1. This process is
iterated to create a sequence of approximations that hopefully will
converge to a solution 𝑋𝑋∗ (Boggs and Tolle, 1995). If the starting
point x0 is close to 𝑋𝑋∗ and the Lagrange multiplier estimates {𝜆𝜆𝑘𝑘} are
close to 𝜆𝜆∗ , then the sequence generated converges to 𝑋𝑋∗ at a
second-order rate.

If the problem is unconstrained, then only the objective function is
approximated, and the local model is quadratic, thus the SQP
functions like the Newton's method. If the problem only includes
equality constraints, then the method is similar to applying the
Newton's method to the first-order optimality conditions or the
Karush-Kuhn-Tucker conditions.

In SQP, the determination of the search direction based on solving
quadratic subproblems requires considerably more computational
effort than simple search methods. Based on the similarity with the
Newton method it would be expected that the SQP method would
share characteristics such as rapid convergence when the iterates

 The Multi-Disciplinary Design System 223

Modeling

are close to the solution, the need for controlling the behavior when
the iterates are far from a solution. However, the presence of
constraints makes both the analysis and implementation of SQP
methods considerably more complex (Boggs and Tolle, 1995).

It is worth noting that the SQP is not a feasible-point method and
therefore neither the initial point nor any of the subsequent iterates
need be feasible. This is an important feature in SQP since finding a
feasible point with the existence nonlinear constraints may be nearly
as hard as solving nonlinear program itself (Boggs and Tolle, 1995).

 5.6.4.2 Heuristic Algorithms

 Heuristic algorithms are a class of algorithms that are able to find an
acceptable solution(s) to an optimization problem, but for which
there is no formal mathematical proof of its correctness. This class
of optimization algorithms has proved to be practical in many
scenarios. In the following sections I will discuss a few of the better
known algorithms of this class.

 5.6.4.2.1 Evolutionary Algorithms

 Evolutionary search algorithms are inspired by and based upon
evolution in nature. They permit us to exploit the remarkable
properties of natural evolution. These algorithms typically use an
analogy with natural evolution to search by evolving solutions to
problems. Instead of working with one solution at a time in the
search space, these algorithms consider a large collection or
population of solutions at once (Bentley, 1999).

There are four main types of evolutionary algorithms in use today,
three of which were independently developed more than forty years
ago, with the fourth being developed in the last couple of decades.
These algorithms are:

Genetic algorithms
Genetic algorithms (GA) were developed by John Holland (University
of Michigan in Ann Arbor) in the early 1960s, and made famous by
David Goldberg (1989). Holland's original intention was to
understand the principles of adaptive systems (Dumitrescu, 2000).

Evolutionary programming
Evolutionary programming (EP) was devised by Lawrence J. Fogel
(1962) and developed further by his son David Fogel (1992), as an
attempt to simulate intelligent behavior by means of finite-state
machines (Dumitrescu, 2000; Corne and Bentley, 2002).

 The Multi-Disciplinary Design System 224

Modeling

Evolution strategies
Evolution strategies (ES) (1965) originate in the work of Bienert,
Rechenberg, and Schwefel concerning a method to optimize
parameters for aerotechnology devices. Today this method is
strongly promoted by Thomas Back (1996) (Dumitrescu, 2000; Corne
and Bentley, 2002).

Genetic programming
Genetic Programming (GP) is a more recent and very popular
development of John Koza (1989). The aim of genetic programming
is to develop, in an automated way, computer programs for solving
specific problems. Genetic programming is therefore a domain-
independent approach to automatic programming (Dumitrescu,
2000)

The field of evolutionary computation has grown up around these
techniques. Evolution-based algorithms have been found to be some
of the most flexible, efficient, and robust of all search and
optimization algorithms known to computer science (Goldberg,
1989). In the following section I will focus on discussing genetic
algorithms.

 Figure 5.45:

The difference
between a local
minimum and a

global minimum

 Genetic algorithms

 Genetic algorithms are a particular class of evolutionary algorithms.
They provide optimization and search techniques adequate for
searching noisy solution spaces. GAs are categorized as global search
heuristics because they search a population of solutions instead of a

 The Multi-Disciplinary Design System 225

Modeling

single solution which limits the probability of getting trapped in a
local minimum (figure 5.45).

GAs search by randomly sampling the solution space, and then use
genetic operators to direct a hill-climbing process based on fitness
(objective) function values (Goldberg 1989). GAs require a genetic
representation of the solution as well as a fitness function to
evaluate it.

GAs are implemented as abstract representations called
chromosomes or genotypes of the candidate solutions, also called
individuals or phenotypes. These genotypes are usually represented
as binary strings, but other encodings are also possible.

A GA works by producing a group of solutions called a population.
Each new population created is called a generation. GAs use genetic
operators inspired by evolutionary biology such as selection,
mutation and crossover.

Constraints are implemented through the use of penalty functions. If
a solution does not meet constrains in the system, then a penalty is
added to the fitness of the design solution according to the degree
of violation.

The GA starts by producing a population of randomly generated
individuals. This is carried out in successive generations. In each
generation, the fitness of each individual in the population is
assessed. Based on their fitness, a number of individuals are selected
from the current population and modified using genetic operators to
produce a new population with higher average fitness than the
previous population. This new population is then used in the next
iteration of the algorithm and the cycle continues till a termination
criterion is reached.

 Genetic Representation

 The GA’s representation is done at two levels, namely at the
genotype level and the phenotype level. The genotype is the implicit
representation of an individual design solution. The standard
representation of the genotype is a sequence of coded instructions
stored in an array of bits called a chromosome. The chromosome
encodes the parameters of interest that are related to that individual.
A chromosome is formed of alleles that represent the coding bits. All
the genetic operations including crossover and mutation happen at
the genotype level.

 The Multi-Disciplinary Design System 226

Modeling

The standard genetic representation has a fixed size which facilitates
simple crossover operations because parts of the genotype are easily
aligned. Representations that utilize a variable length can also be
used although crossover implementation becomes more difficult.

The phenotype, on the other hand, is the interpretation of genotype
at the physical level. It is the external perceptible representation of
the genotype. The behaviors of a design solution can be observed at
this level. Therefore, the analysis task is performed to design
solutions at this level.

 Fitness function

 A fitness function of any particular individual corresponds to the
value of the objective function that measures the quality of a
chromosome. It is then ranked against all the other chromosomes.
The probability of selecting a specific solution for reproduction is
proportional to the fitness of that solution.

 Population Size

 The GA produces a group of solutions called a population. The initial
population is generated randomly and should cover the entire search
space. Solutions may also be seeded in regions where good solutions
maybe found.

The population size depends on the nature of the problem. A very
small population would not contain enough diversity in the initial
genetic pool to ensure that good solutions are found by the
algorithm (Goldberg, 1989). Therefore, the initial population must be
large enough to provide a diverse genetic pool that contains
substantial information in the search space that would eventually
lead to better convergence. However, a large population needs many
generations to converge which would cause time penalties. Hence, a
moderate-sized population may be a sensible compromise between
finding good solutions and speed.

 Genetic operators

 Once we have the genetic representation, the fitness function and
the population size defined, the GA can proceed by initializing a
random population. Genetic operators control and improve the
evolution of successive generations. The three basic genetic
operators are selection, crossover and mutation.

 The Multi-Disciplinary Design System 227

Modeling

 -Selection

 In each successive generation, a number of solutions from the
current population are selected to breed a new generation. These
solutions are selected on the basis of their fitness.

There are several selection methods. Some methods evaluate the
fitness of each solution and then select the best solutions. Other
methods only evaluate a sample of the population to minimize time
expenditure.

In general, most methods are stochastic and allow a small proportion
of less fit solutions to be selected. This facilitates the diversification
of the population which then can help in preventing premature
convergence.

Common selection methods include biased roulette wheel selection
and tournament selection methods.

In the biased roulette wheel selection method, each current
individual in the population has a roulette wheel slot sized in
proportion to its fitness (Goldberg, 1989). This fitness is used to
define a probability of selection to each individual. If fx is the fitness
of individual x in the population, Then its probability of being
selected is:

P(x) =
𝑓𝑓(x)

∑ 𝑓𝑓n
j=1 (j)

where n is the number of individuals in the population.

Using this method, individuals with a higher fitness have a higher
probability of being selected to the next generation. However,
individuals with poor fitness also have a chance of being selected,
albeit a smaller chance.

The tournament selection method chooses a random group of
individuals from the population to run a tournament among. The
winner is selected based on fitness. If the tournament group size is
large, individuals with a poor fitness have a smaller chance of being
selected.

Other strategies that can be implemented in conjunction with
selection include elitism. Employing elitism in the GA implies passing
the best solution from one generation to the next with the goal of
preserving good genetic information contained in that solution.

 The Multi-Disciplinary Design System 228

Modeling

 - Crossover

 Crossover is a genetic operator used to vary the encoding of
chromosomes from one generation to the next. That is achieved by
swapping parts of two randomly chosen chromosomes to create a
new individual but not new genetic information. It is similar to
biological crossover on which genetic algorithms are based.

Elite solutions do not go through crossover, but rather an exact copy
of them is carried to the next generation. Many crossover operators
exist, but the most common are the one-point crossover, two-point
crossover and uniform crossover.

In a single crossover point, the algorithm identifies a crossover point
on the chromosomes of the two parents selected for reproduction.
The information left on either chromosomes is swapped between the
two parents creating new offspring.

The two-point crossover is similar, but two crossover points are
selected on the parent chromosomes. The rest of the information
between the two points is swapped between the parents creating
new offspring.

In the uniform crossover, bits in chromosomes of two parents are
swapped with an equal probability of typically 0.5 to create new
offspring.

 - Mutation

 Mutation in GAs is similar to biological mutation and is used to
maintain genetic diversity from one generation to the next. The
mutation operator involves a probability that a random allele in a
chromosome will be changed from its original state to identify new
points in the search space. Mutation is therefore an operator that
acts locally.

A general method for applying the mutation operator is to generate
a random variable for each allele in a chromosome. This variable will
help determine whether or not a particular allele will be mutated.
This mutation will introduce new genetic information that was not
contained in the initial population.

The main reason for implementing mutation in GAs is to assist the
algorithm in avoiding local optima by preventing it from generating
populations of similar chromosomes that affect the evolution and
result in premature convergence.

 The Multi-Disciplinary Design System 229

Modeling

 Termination

 The GA will continue generating populations until a termination
condition has been reached. This could be due to reaching the
maximum number of generations, or a solution or set of solutions
have been found with satisfactory fitness levels, or the highest
fitness levels reached a plateau and successive iterations are not
producing better results.

 5.6.4.2.2 Simulated Annealing

 Simulated annealing (SA) is another general heuristic technique for
solving optimization problems. It incorporates randomization
techniques and is often used for discrete search space.

SA may be more efficient than exhaustive enumeration for certain
problems, especially if the intent is to identify an acceptable solution
rather than the optimum solution.

The method was first introduced in 1983 by S. Kirkpatrick et al.
(1983). Simulated annealing is based on the analogy between
annealing in metallurgy and solving optimization problems.
Annealing in metallurgy is a technique that involves both a heating
and controlled cooling processes of a metal solid to reduce its
crystals defects and increase their size.

Initially the metal solid is heated up and melted, causing the particles
to move from their initial state of minimum internal energy into
states of higher energy and rearrange themselves in the liquid phase.

This is followed by a slow lowering of the temperature which gives
them a chance of finding configurations with lower internal energy. If
the cooling is too fast and the solid does not reach thermal
equilibrium for each temperature value, then defects get frozen into
the solid producing metastable amorphous structures instead of the
low-energy crystalline lattice structure (van Laarhoven, 1987).

By analogy, each point i of the search space corresponds to a state of
some physical system, and the function E(i) to be minimized
corresponds to the internal energy of the system in that state. The
aim is to move the system from an arbitrary initial state to a state
with the minimum possible energy.

The SA algorithm functions like a sequence of Metropolis algorithms
that are executed at decreasing values of the control parameter.
Each step of the SA algorithm substitutes the current state by a

 The Multi-Disciplinary Design System 230

Modeling

random neighbor state that is chosen based on a probability that
depends on the difference between the corresponding function
values and on a control parameter temperature T.

 Algorithm

 - The basic iteration

 At each iteration, given a current state i, the algorithm generates a
possible transition from that state to a neighbor j. For each state i, a
neighborhood N(i) consists of all the states that can be reached from
i.

If that neighbor has a lower cost, the current solution may be
replaced by it. A probability decides between moving the system to
the new state j or remaining at state i. The probabilities are selected
so that the system eventually moves to a state of lower energy. This
step is iterated until an acceptable state (solution) is reached or the
algorithm is terminated due to the exhaustion of computational
resources or time restrictions.

 - Acceptance probability

 The acceptance probability P indicates the probability of accepting
the candidate state j. The function P(e,e',T) depends on the energies
of the two states, e = E(i) and e' = E(j), as well as the temperature T
which is a time-varying control parameter.

The new state j is accepted with a probability of 1 when e' < e which
implies a move downhill. If e' > e the new state j can still be accepted,
although that implies that the method moves to a worse state with
higher energy. This is an important feature that prevents the method
from being locked in a local minimum.

As the difference (e' − e) increases the probability of accepting a
move decreases which makes large uphill moves less likely. As the
control parameter T goes to zero, and if e’ < e, then the probability P
goes to a positive value or to zero if e' > e. Therefore for small T
values the method will prefer moves that go downhill to lower
energy values. This process continues at each value of the control
parameter T until equilibrium is reached.

 - The cooling schedule

 Initially T is set to a high value and is gradually decreased (cooled) at
each iteration according to an annealing schedule. There are two

 The Multi-Disciplinary Design System 231

Modeling

kinds of cooling schedules: static and dynamic (Aarts et al., 1997). In
the static cooling schedule, the parameters remain unchanged
through the implementation of the algorithm. On the other hand, the
parameters in the dynamic cooling schedule are changed adaptively
during the implementation of the algorithm.

It has been demonstrated theoretically that for any given finite
problem, the probability that the simulated annealing algorithm
terminates with the global optimal solution approaches 1 as the
annealing schedule is extended (Granville et al., 1994).

In practice the algorithm can be terminated when a state is obtained
whose objective function value is no worse than any of its neighbors
(van Laarhoven, 1987) or if the value of the objective function
remains unchanged for a number of consecutive trials.

 5.6.4.2.3 Tabu Search

 Tabu search is a heuristic algorithm that searches local
neighborhoods for the best possible path to progress (Hertz et aI.,
1997). It was initially introduced by Fred Glover (Glover, 1989).

Tabu search utilizes a neighborhood search approach to iteratively
move from a solution i to a solution j in the neighborhood N(i), until
some termination criterion has been satisfied.

Unlike hill-climbing methods, which can easily be trapped in local
minima, Tabu search continues exploration picking the best available
move at each step even if it is a non-improving one. This presents the
risk of visiting once more a solution that has already been evaluated
which could generate cycles within the search process. Therefore,
when a solution has been identified it is marked as tabu (taboo) so
that the algorithm does not visit that solution again.

The tabu search algorithm adjusts the neighborhood structure of
each solution as the search advances to explore the unexplored
regions in the search space. The new neighborhood solutions
allowed in N(i) are determined by the use of memory structures.

Tabu search makes use of a form of short-term memory to maintain
information on the journey through the final solutions visited. This
information is stored in a list of size T called a tabu list and
determines the solutions admitted to N(i). It includes solutions that
have been visited in the recent past and excludes solutions already in
the tabu list. Therefore, the structure of the neighborhood N(i) will
thus depend on the journey followed to reach i.

 The Multi-Disciplinary Design System 232

Modeling

Due to large memory use, it may be unfeasible to store lists of
solutions, hence Tabu Search uses a list of moves instead and often
stores only a portion of the attributes required to describe a move or
the solution to which it is applied (Glover, 1989). This portion of the
attributes may potentially be shared by other moves or solutions.
This might prohibit not yet visited solutions that have certain
attributes. Some excellent solutions might now be avoided. To solve
this problem aspiration criteria are implemented. An example of an
aspiration criterion is to keep solutions that are better than the
current best solution. This way, aspiration criteria can include
otherwise-excluded solutions.

In addition to short-term memory, tabu Search also uses
intermediate and long-term memory structures. Intermediate
memory is used to carry out temporary intensification of the search
around a certain area of the solution space that contains a good
solution. This is done by storing and comparing attributes from
current best solutions. Common attributes are considered when
searching for new solutions. Long-term memory is implemented to
provide a diversification process of the search. The diversification
process guides the search to regions in contrast to ones examined by
penalizing attributes that are found to be common in previous
executions of the search process (Glover, 1989). This provides the
ability to learn from previous steps and solutions in the search
journey.

One apparent feature in tabu Search is that it functions as a greedy
algorithm. According to Glover (1989) this is based on two
considerations: firstly, that many optimization problems can be
solved optimally by making the best move at each step; secondly,
that local optimality does not represent an obstacle for Tabu Search
because of its procedural organization and its use of short-term
memory.

 The Multi-Disciplinary Design System 233

Integration

 6.1 What is Integration?

 The term “integration”, similar to the term “system”, although
widely used, has a lot of connotations which may carry some
ambiguity for the listener or reader. The Webster online dictionary
defines integration as the “act of combining parts into an integral
whole”. The key notion of integration is the assembly and
combination of individual parts and design components into a
“system” that collectively satisfies all the functional and operational
requirements which would not be achieved by its subsets alone
(Grady, 1994).

Decomposition and formulation usually lie at the front end of the
MDDS development process, while integration lies at the tail end.
The design modeling process lies in the middle, where the synthesis,
analysis, evaluation and optimization activities occur. Integration is
the materialization of the formulation and modeling processes. If the
formulation stage is where an architecture plan is devised, then
integration is where the final stages of that plan are executed.
Integration within the MDDS context deals with connecting the
different modules into one coherent software.

Like formulation, integration can occur at different levels, especially
in the development of the system. Achieving a system in final
product form, as highlighted by Eppinger (1997), requires integration
at various levels, such as the integration of components into sub-
systems, sub-systems into systems, and systems into products.
Integration works mainly on unifying product components and
process components into one whole. The success of integration and
subsequent evaluation lies, however, in the correctness, precision
and coordination of engineering activities at each level.

System integration efforts by design teams are usually complex and
rely heavily on technical expertise and advanced planning and
preparation in the formulation stage. These design teams usually
work on an evolving, complex problem, through its sub-systems and
components, on two basic levels: within and across teams. The cross-

6. Integration

 The Multi-Disciplinary Design System 234

Integration

functional team approach, a common practice of concurrent
engineering (Eppinger, 1997), involves the simultaneous efforts of
addressing design and production. Here the interest in sub-systems
and components of complex systems exists at the intersection of
multiple teams, disciplines and technologies, in order to satisfy
solutions for complex problems. This necessity originates from basic
principles of system engineering, human psychology, and human
existence (Grady, 1994). Although human limitations seem to drive
integration, the issue of combining the work of multiple teams from
varying functional disciplines is not a simple one, as it also entails
working in several process steps over time on a variety of product
system components.

In this chapter, we are interested in integrating components to
produce a software product or system that can generate design
solutions of physical artifacts. Our system will include subsystems
that must interface with other subsystems in order to exchange
information. The components of each subsystem must interact in the
same fashion. Our focus here will be on the integration of design
systems from the informational perspective, rather than the physical
perspective. Since the design system is computational, we will focus
on the integration of information and computational systems.

 6.2 Interface Design

 An interface is defined as the place where communication of
information or activities is facilitated between the different
components and modules of a specific system (Grady, 1994).

Baldwin and Clark (2000) define an interface as a pre-established
way to resolve potential conflicts between interacting parts of a
design. It is like a treaty between two or more subelements. To
minimize conflict, the terms of these treaties—the detailed interface
specifications—need to be set in advance and known to the affected
parties. Thus interfaces are part of a common information set that
those working on the design need to assimilate. Interfaces are visible
information.

In general, interfaces are completed between components through
interface media, such as electrical or radio signals, physical contact,
flow of fluids, etc. Interface media are usually provided by the
system environment or a component of the system architecture. The
interface however is represented in the functionality facilitated by
the media rather than the media itself.

An interface can represent both distinct worlds discussed earlier, the

 The Multi-Disciplinary Design System 235

Integration

physical and the informational. Physical interfaces are usually
associated with the physical form of the component fitting or
matching, such as the mounting bolts in a column beam connection.
Function can also be represented through the flow of forces, such as
the load bearing function flowing from beams to columns.

In the software world, a similar matching or compatibility must occur
between input and output data of the system modules. Compatibility
here refers to the correct and meaningful way by which two
activities interact semantically (Gao et al., 2003).

It is known that the system functionality of large complex problems
is decomposed into smaller system elements and smaller problems.
These problems have interfaces between them that must have
compatible representations on both terminals (figure 6.1). Hence,
every module defines the specifications and requirements for its
subordinate modules. At the same time, these subordinate modules
are precisely constructed and specified according to these
requirements.

 Figure 6.1:

Interfaces between
different modules

have to be
compatible.

 The major complexity occurs, however, when different disciplines or
team specialists are responsible for the integration at these opposite
terminals of the interface. The greatest effort in this cross product
integration lies in trying to manage the matching process between
interface terminals and checking data compatibility at both ends
(figure 6.2).

 The Multi-Disciplinary Design System 236

Integration

 Figure 6.2:

Matching interfaces
between modules

with many variables
can be a difficult task.

 In order to arrive at an optimized system architecture and interface,

the need arises to accurately and clearly define the location of
interface planes in the system, the responsibility of disciplines and
specialists, and the congruent understanding of concept
requirements and specifications by both media and specialists. This
process is often referred to as interface analysis (Grady, 1994).

The methods proposed previously in formulation can be used to
define system interfaces through a combination of schematic block
diagrams, integration models, DSM/N2 diagrams and interface
dictionaries. Changes may occur in the system architecture during
this process due to allocation of system functionality.

However, the principal technique for resolving complexity of
interface compatibility, whether in a physical or information system,
lies in minimizing the number of interfaces. In general, this can be
achieved by maximizing the capability of system component
interaction while minimizing the need for the system to interact. At
the same time, components of the system architecture can be
aggregated in order to reduce the need for cross-organizational and
cross-discipline interfaces.

 The Multi-Disciplinary Design System 237

Integration

 6.3 Module Integration Modes

 Software system integration involves the combination of individually
tested software components into an integrated whole. This occurs
when the components are combined into subsystems or when
subsystems are combined into products (Software Engineering
Institute, 2008). The field of application integration comes in many
forms, whether it describes the integration between components of
a single software system or the integration between different
systems.

Several technologies have been developed to address integration.
One of these technologies is component-based software engineering
(CBSE) which emerged as a branch of software engineering which
involves the decomposition of systems into functional components
that have well-defined interfaces used for component integration.
In CBSE, components are basically objects that are written to a
specification and adhere to it. They are of a higher level of
abstraction than objects; they do not share state and communicate
by means of data exchange.

When software is considered as a component, it describes a system
element that offers a predefined service or event, and is able to
communicate with other components. Messerschmitt and Szyperski
(2003) describe some fundamental characteristics for a software
component. In their definition, a software component is a unit of
independent deployment and versioning that is non context-specific,
encapsulated, of multiple use, and composable with other
components.

The essence of integration lies primarily in careful management of
component interfaces. According to component interfaces, this
involves the assumptions that the programmers of each component
can safely make about the other component. Integration is assumed
to progress smoothly between components if these interfaces are
well-defined and carefully documented (Parnas, 1972).

Software components usually take the form of objects or groups of
objects, in the object-oriented programming context, that hold on to
an interface language of some sort. This requires that all the
information and assumptions about the component behavior, its
consumed resources, its response in reaction to errors, and the
mechanism of connection and interaction with other components
are all well-defined, taken into consideration and evaluated in
planning and budgeting phases.

 The Multi-Disciplinary Design System 238

Integration

Reusability is a significant characteristic of a high-quality software
component when it comes to accessing or sharing components
across execution contexts or network links. The component should
be designed and executed in a way that enables its reuse in many
different programs.

In the 1960s scientific subroutine libraries were constructed and
were reusable in a wide range of engineering and scientific
applications. However, these libraries had a limited domain of
application although they reused well-defined algorithms effectively.
Modern reusable components work on encapsulating both the data
structures and the algorithms that are applied to them
In order for a software component to be effectively reusable, there
has to be a lot of effort exerted in writing the component. It needs
to be fully documented and constructed while considering that it will
actually be exposed to unpredicted uses.

It should be noted that the literature uses both terms, components
and modules, usually to describe the same thing. The main difference
between them is usually in the reuse scope of each. Because a
software module is developed for a specific project it tends to have a
narrow reuse scope. A modern software component, on the other
hand, provides multiple-level granularities for reuse on a large scope
(Gao et al., 2003). In this thesis I will be using both terms
interchangeably. The mathematical models described in the previous
chapter can represent such a module or component.

There are different approaches to achieve integration between
system components. These include having all the applications totally
integrated in one software, or using middleware, such as distributed
technologies, or applying technologies, such as wrapping which has
been widely used in many problem-solving environments. Another
approach involves using web services to provide for the data
integration between different components.

 6.3.1 Middleware

 Middleware is essentially a piece of computer software that
connects software components or applications for the purpose of
data exchange. Middleware became popular as a solution to the
problem of linking newer applications to older legacy systems. It also
permits distributed processing, where multiple processes and
applications that run on one or several machines are connected to
create a larger application and interact together across a network
(Software Engineering Institute, 2008). Middleware is defined by
Object Web as “the software layer that lies between the operating

 The Multi-Disciplinary Design System 239

Integration

system and applications on each side of a distributed computing
system in a network” (Object web open source Middleware, 2008).

Middleware allows users to share distributed resources such as
applications, data, computers, and networks. It supports effective
collaboration and communication tools. Middleware is also vital for
Internet computing, and high-performance parallel computing. It
also provides working architectures and approaches that can be
extended to the larger set of Internet and network users (Sun and
Blatecky, 2004).

Middleware provides a functional set of application programming
interfaces and uses a particular class of software products that act as
intermediaries between user interfaces on one hand and data
generators and repositories on the other. In general, it comprises a
library of functions and allows multiple applications to communicate
to those functions from the common library instead of regenerating
them for each application.

Middleware allows applications to be independent from network
services. It also makes applications reliable and always available
when compared to the operating system and network services. At
the same time, it makes the applications locate transparently across
the network. This facilitates the interaction mechanism with other
services or applications and provides consistency, security, privacy,
and capabilities (Sun and Blatecky, 2004). Middleware technology
supports the shift to interoperability and coherent distributed
architectures and includes web servers, transaction monitors, and
messaging-and-queuing software.

In general, middleware is used for distributed computing, distributed
technologies and distributed application frameworks that have been
used to build complex services. Types of middleware typically include
middleware between applications and database servers, such as
SQL-oriented Data Access, and application servers which are pieces
of software that run multiple software components and facilitate the
running of other applications. Combining application servers and
software components is usually known as distributed computing.

Examples of distributed technologies include Enterprise JavaBeans
from Sun Microsystems, the Java specific EJB (Enterprise Java
Beans), distributed computing software components, such as .NET
Remoting from Microsoft, Web Services, XML-RPC, the predecessor
of SOAP, CORBA and the CORBA Component Model from the Object
Management Group, and CORBA (Common Object Request Broker
Architecture) which is both platform and language independent.

 The Multi-Disciplinary Design System 240

Integration

CORBA has specifically been successful as a distributed component
framework in many areas including telecommunications, finance, e-
commerce, and healthcare. That is why it is worth discussing here.

CORBA is an open standard for distributed object computing defined
by the Object Management Group (OMG), a not-for-profit
consortium. Software components written in multiple computer
languages and running on multiple computers and operating
systems can use the vendor-independent architecture and
infrastructure of CORBA to call on each other’s services and work
together over networks. As an object bus, it allows clients to invoke
methods on remote objects at the server independent of their
location and the language they are originally written in.

The CORBA specification specifies an object request broker (ORB) by
which the application interacts with other objects. ORB mediates the
interaction between client and server on both the client and server
sides, where the communication typically takes place via the Internet
Inter-ORB Protocol (IIOP). CORBA objects in this case can either be
collocated with the client or distributed on a remote server without
having any effect on their implementation or use. ORBs take care of
the details of this process.

The Interface Definition Language (IDL) defines the capabilities of
CORBA objects, that is its operations or methods. These operations
can take in input parameters and return values corresponding to
some CORBA data-types and can also raise exceptions. CORBA uses
the IDL to specify the interfaces that its objects will introduce to the
outside world. It then specifies a mapping scheme from IDL to a
specific implementation language such as C++ or Java. (Software
Engineering Institute, 2008).

Some programming languages, e.g. Java, allow users to define a
compilable specification separate from the body, where keeping a
continuously integrated system using full specifications was found to
be time and cost efficient for integration purposes. Although these
languages are especially useful in catching integration bugs early on,
they do not allow the specification of the full semantic interfaces of
components (Software Engineering Institute, 2008). IDLs, on the
other hand, describe an interface that facilitates communication
between software components that do not essentially share a
language. They offer a language-neutral bridge between two
different systems, whether these systems use different operating
systems or computer languages, which is typical in remote
procedure call software.

 The Multi-Disciplinary Design System 241

Integration

Although the IDL interface definition is independent of any
programming language, it has mappings through OMG standards to
all popular languages like C, C++, Java, COBOL, Smalltalk, Ada, Lisp,
Python, and IDLscript. This capacity to enable interoperability and
separate interface from implementation is facilitated by OMG IDL
and constitutes the essence of CORBA.

While the interface to each object is defined very explicitly, its
implementation, running code and data are hidden from the rest of
the system, or in other words encapsulated behind a boundary that
clients may not cross. Clients thus access objects only through their
advertised interface. They can only call the operations that the
object exposes through its IDL interface. In addition, they can only
address the input and output parameters that are included in those
call specifications (Object Management Group, 2008).

Not only does CORBA provide users with a language and a platform-
neutral remote procedure call specification, but also it defines
services that are commonly required such as transactions and
security, events, time, as well as some other domain-specific
interface models. Moreover it is designed to be operating system-
independent, so it can run on many platforms such as Win32, UNIX
and real-time embedded systems.

 6.3.1.1 Encapsulation (Wrappers)

 Software encapsulation is based on the technology of wrapping.
Thomas Dietrich of IBM first introduced the concept of the
“wrapper” at the 00PSLA Conference in 1988 as the solution for
existing legacy software in a new object oriented architecture
(Dietrich, 1989).

One of the key properties of wrappers is that they are generic.
Phoenix Integration (2007) defines a wrapper as a set of instructions
that describe inputs, output, and how to execute an analysis.
According to the property of generality, wrappers for a specific
component should work generically for any component of the same
type (e.g. A wrapper for Excel should work for any Excel document).
At the same time, wrappers should provide functionality such that
data can be input into that component, and any data type could be
extracted.

According to Mowbray and Zahari’s (1994), an object wrapper
provides access to a legacy system through what is called an
encapsulation layer. This encapsulation exposes only the properties
and operations desired by the software architect. Mowbray and

 The Multi-Disciplinary Design System 242

Integration

Zahari describe seven basic techniques for wrapper implementation:
remote procedure calls, file transfers, sockets or docking, application
program interfaces, script procedures, macros and common headers.
These techniques can be implemented individually or with each other
to build connections between a service requester and a service
provider (Mowbray and Zahari, 1994).

Ian Graham defines a wrapper as a software controller layer that
allows object-oriented programs to access conventional programs as
if they were objects (Sneed, 2000). According to Graham’s Semantic
Object Modeling Architecture (SOMA), the implementation of
wrapping existing software components is significant, but it is not
that easy. The wrapper software has to adapt incoming requests to
wrapped software interfaces in a dynamic fashion due to data type
incompatibility.

According to Seacord (2001) wrapping is a technique for integrating
components whose interfaces cannot be controlled. These
components include ones that are mined or acquired by means of a
third party. It involves writing software that works as a mediator
between the expected interface and the interface that the used
component comes with. In pure wrapping, there is no alteration in
the component; instead a new thin layer of software is introduced
between the original component and its clients (Software
Engineering Institute, 2008). This layer provides the new interface by
translating to and from the original component.

One of the advantages of wrapping is the concept of reusing existing
assets with little or no internal modification. Wrapping inhibits the
ripple effect that occurs when any modification takes place, thus
preventing the influences on other associated software that happen
due to documentation and test case changes. Instead, wrapping a
kind of an "as-is" reuse of many of the component associated assets,
such as its test cases and internal design documentation (Phoenix
Integration, 2007).

Wrapping is also seen as a substitute strategy to reengineering and
redevelopment in the context of encapsulating existing legacy
software for reuse in new distributed architectures (Sneed, 2000), as
it is lower in cost and has lower risks than conventional
reengineering. Application wrappers encapsulate batch processes or
online transactions. Legacy components are considered by new
client applications as objects. These objects are invoked to perform
specific tasks such as producing reports. Function wrappers provide
interfaces to call individual functions within wrapped programs.
There is only limited access however, as only specific parts can be

 The Multi-Disciplinary Design System 243

Integration

called and not the whole program.

Wrapping legacy software is usually done in three basic steps: first,
the wrapper should be constructed; next, the target programs
should be adapted; finally, testing should occur to validate the
interaction between the wrapper and the target programs. In
general, a wrapper uses message-passing mechanisms to connect to
its clients. As input, it receives incoming requests. It then reformats
them, loads the wrapped object and calls upon it using the
reformatted arguments. Concerning output, the wrapper obtains the
results from the wrapped object, reformats and sends them back
accordingly to the original requester.

The way a wrapper works is described as follows. Being a shell
between middle software and user software, the wrapper first
receives messages from the client application. It translates these
messages into an internal format and then calls upon the target
software. It also converts the target software outputs to an external
format. Finally, it sends the outputs back to the client application.

There are still no automatic wrapper generators for legacy codes
that can operate at different degrees of granularity, or that can wrap
the entire code or code sub-routines automatically. Some progress
has been made though towards achieving this goal.
The lack of these types of wrappers primarily owes to the fact that
current tools, such as Fortran and Java translators, cannot manage
the specialized data types appropriately and are insufficient for
translating large application codes (Li et al. 2004).

 6.3.1.2 Web Services

 Web services represent an emerging distributed middleware
technology. They employ a simple XML-based protocol to enable
data exchange between applications across the Web. Services here
are described in terms of the accepted and created messages. Users
of these services do not need to have any knowledge of the object
model, programming language or other details of the
implementation. The only thing they need to do is to be capable of
sending and receiving messages.

SOAP (simple object access protocol) lies at the core of web services.
SOAP is an XML based communication protocol for interacting with
Web services. Specifications or interfaces of the services can be
described using WSDL (web services description language). WSDL is
an XML-based general framework that describes network services as
groups of communication endpoints that can exchange messages. It

 The Multi-Disciplinary Design System 244

Integration

identifies the location of a service, what operations are supported, as
well as the format of the messages that are to be exchanged
according to the way the service is called upon.

 6.3.1.2.1 EXtensible Markup Language (XML)

 EXtensible Markup Language (XML) is a task and schema
specification and a set of rules that provide standard ways to define
processes and information and design text formats for information
structuring (Harrison et al., 2004). XML is a standards-based protocol
that can be used as a means of communication between software
components. Many integration opportunities can be realized,
whether the integration occurs between components of a single
software system or between systems. XML can simply be considered
as a mark-up language for annotating text documents. It specifies
how tags, which are denoted by angle brackets, are used to organize
written information.

XML provides an improvement over binary or textual information, as
it describes a hierarchical relationship between all data elements.
Parsers in XML can be written using standards like DOM or SAX in
modern languages such as C++ and Java (Harrison et al., 2004). Since
XML is platform-independent, the integration of external
applications becomes less dependent on the software platform in
which the applications are executed. This integration can be done
using an XML derivative, such as SOAP or any standard industry-
based XML extensions. An integrated solution can be realized
through the connectivity that can be implemented using messaging
queuing technologies, such as those available through IBM,
Microsoft and other vendors.

Potential for component reusability has been greatly improved with
the growing number of developed XML-based standards. The
numerous published XML formats for encoded data allow for the
development of cross-system code. The components that process
format-specific XML can be reused once generated to process any
given data type.

As XML reduces data manipulation and delivery time, most database
vendors use it to provide interfaces to their engines. At the same
time, most database servers support data access using XML. XML
also works well as a data formatting method for passing data across
the Internet. This is extremely beneficial for users developing
components in existing systems. The process of adding web
interfaces to application components can be simplified according to
the number of available XML integration packages.

 The Multi-Disciplinary Design System 245

Integration

A wide range of data specific formats is available to allow
interoperability, and several tools and applications currently
implement import/export options to accept and write out XML. In
order to facilitate automated access to complex services, some
companies, led by Microsoft and IBM and being handled recently by
the XML Protocol Activity group under W3C, have standardized on
SOAP as a lightweight protocol that is based on XML to exchange
messages over the Web. It is worth noting that XML on its own is not
considered middleware, but SOAP, as a middleware specification,
makes use of it.

 6.3.1.2.2 SOAP

 As mentioned earlier, SOAP is an emerging distributed middleware
technology. It employs a lightweight and simple XML-based protocol
to enable applications to support the exchange of structured and
typed information across the Web based on a shared, decentralized,
and open web infrastructure.
SOAP applications can be written in a variety of programming
languages including Java, C++, C, Perl, and C#. These languages are
used together with a multitude of Internet protocols and formats
such as HTTP, SMTP, and MIME. Together they can support many
applications, ranging from messaging systems to RPC (remote
procedure calls). Any SOAP architecture consists of three basic parts:
an envelope that describes the contents of a message and how to
process it; a set of encoding rules to express instances of application-
defined datatypes; and a convention to represent remote procedure
calls and responses (Schmidt, 2001).

SOAP is therefore similar to CORBA's IIOP as it is a protocol whose
purpose is to convey messages between applications (Schmidt,
2001). However, one of the main distinctions between CORBA and
web service technologies like SOAP is that CORBA provides real
object-oriented component architecture. Web services on the other
hand are message based and not object-based. Also, there is a tight
coupling between clients and servers in CORBA. They must both
share the same interface, with a stub on the client-side and the
corresponding skeleton on the server-side. Intermediation is not
required in the direct interaction between client and server, except
from the ORB which runs at both ends.

Everything is decoupled, however, in web services. The client sends
and receives a message, while the response does not give immediate
access to the next step. Web services are thus evolving into a role
characterized by the integration of middleware rather than

 The Multi-Disciplinary Design System 246

Integration

competing with existing middleware technologies. It involves more
middleware integration than middleware replacement. It is
important to identify what this integration looks like, since
middleware, in its own right, is seen as an integration technology.
This has to do with the issue of application choreography but at a
business process level (Schmidt, 2001).

In web services, integration seems to be moving toward a level of
granularity more coarse-grained than typical CORBA-based
integration and toward more loosely coupled systems. This loose
coupling is achieved by minimizing interface dependencies and
paying more attention to the exchange of XML-defined data, and so
objects are considered more document-oriented than method-
oriented (Schmidt, 2001).

Although CORBA sends information across networks, as opposed to
the mere description of data in the case of XML on which most web
services depend, this information exchange and system integration
takes place within controlled environments (e.g. within intranets
owned by a single company). Web services however are promising
for integration both on the level of intranet and across the Internet
(Schmidt, 2001).

This does not imply however that all other middleware technologies,
including CORBA, are going to disappear. CORBA has already been
shown capable of solving many distributed computing and
integration problems. It has been able to provide solutions to
problems that were insolvable otherwise through its high
performance, dependability, scalability, and great flexibility. Other
middleware technologies still have their places also, including .NET,
J2EE, and EAI. (Schmidt, 2001). Further research is required to extend
these potentials in the context of engineering design.

 6.3.2 Integrated Computing Environments

 Many key players participate in the design of any product. One of the
important factors leading to success in product design is involving all
these players early on in the product life cycle (Eppinger, 1995).

Each of the players may have computer models in their own tools of
preference or in multiple software applications, including
applications for math analysis, CAD systems, databases,
spreadsheets and others. While all the built models represent a
single product, there is no connectivity between the tools, thus
requiring integration between them for facilitating data transfer.
Based on the module integration modes discussed in the

 The Multi-Disciplinary Design System 247

Integration

previous section and other modes of integration, a variety of
approaches and system architectures have been carried out to
provide the required connectivity between the different design
tools. We illustrate some below.

 6.3.2.1 The One-Software Approach

 This approach solves the connectivity between models by designing
the functionality of many tools and embedding them into a single
giant software or as extensions to it. Solving the connectivity and
integration is thus less of a problem for the design team, since the
software vendor solved these problems and provided the team with
a set of tools within one package. Examples include CAD systems like
CATIA, Unigraphics, and SolidWorks that integrate the functionality
of spreadsheets finite element analysis, and computational fluid
dynamics in one tool.

There are some considerable disadvantages, however, to this
approach. The low level of comfort associated with being forced to
use only one tool may cause engineers to be less productive. All the
investment in the tools that would no longer be used is also lost. In
terms of the integrated packages themselves, adding a lot of
functionality to any piece of software does not necessarily enhance
it. On the contrary, it could most probably make it less stable and
less user friendly.

 6.3.2.2 Problem Solving Environments

 A Problem Solving Environment (PSE), as defined by Gallopoulos et
al. (1994), is a complete, integrated computing environment for
composing, compiling, and running applications in a specific area.
This computer software aims at solving one class of problems
through an easy to use interface (GUI) that is oriented primarily
towards specialists in fields other than computer science.

PSEs were first introduced in the 1990s. For some years they were
available for some specific domains. It was only in recent years that
multi-disciplinary PSEs (M-PSEs) became widespread. Examples of M-
PSEs include different kinds of Process Integration and Design
Optimization (PIDO) Software. PSEs also exist as extensions to
scientific programs like Matlab, Maple, and Mathematics (Li et al.
2004).

The main focus in PSEs lies in the ability to remotely use existing
software in addition to reusing existing software libraries such as
mathematical and visualization routines. Grid Computing is one of

 The Multi-Disciplinary Design System 248

Integration

the most significant fields in which PSEs are specifically used, where
scientists and engineers at remote sites can interact through PSEs
using standard software interfaces. Through this interaction,
especially using distributed object technologies, such as CORBA and
Java, the productivity of scientists and engineers is greatly
enhanced.

Current work in PSEs has generally focused on building application
specific PSEs. In general, a PSE must contain application
development tools that allow end users to construct new
applications or integrate libraries from other current applications in a
way that makes it easier for users to extend within their domain. It
must also contain development tools that facilitate the application
implementation on a set of resources. Components (modules) can
exist in different languages, locations, or platforms. They can be
either created from scratch or wrapped from legacy codes.

A component is a self-contained program which has an interface that
defines how it can be called upon by means of another component in
addition to identifying the returned results upon operation
completion. An interface in this context thus defines the different
datatypes and return types associated with the component in
addition to an execution model that describes all the libraries that
should be taken into consideration to enable execution of the
component (Li et al. 2004).

Through component interfaces, users can search for components
that are appropriate for a specific application. The system
components can be configured on instantiation, registered with
event listeners and shared between repositories. Components are
then connected together into data flow graphs and sent to a
resource manager, where the application is executed on a
workstation cluster or a combination of workstations and high
performance machines.

Components can access a variety of available services according to
the involved execution environment, such as an event service, a
naming service, or a security service. Event services enable the
coordination of activities between modules. Naming services
facilitate the location of other modules. Security services verify
module access, making sure that access to a specific module is only
made from an authenticated module owner.

An important implementation technology for PSE infrastructure is
component-based development, which allows wrapping existing
scientific codes as components instead of rewriting them (Li et al.

 The Multi-Disciplinary Design System 249

Integration

2004).

The PSE infrastructure must support two types of users: application
scientists or engineers who use PSEs to solve a specific problem, and
programmers and software vendors who help accomplish the
objectives of those scientists by developing components. PSE
infrastructure should also allow the integration of third party
products and application specific libraries.

PSEs should also support visual applications and web-based task
submission. They must benefit from industry standards such as
middleware (e.g. CORBA) and document tagging (XML). PSEs must
include both resource management tools and application
construction tools in an integrated fashion in order to run and
schedule the constructed applications in an efficient manner. The
tools required to build the required applications should be mostly
domain independent. Most PSEs, however, do not actually provide
an intuitive way to construct scientific applications through plugging
software components together.

According to Li et al. (2004) some parts of the PSE should be
considered domain independent and may be used for constructing
applications in different domains, such as the Visual Programming
Composition Environment (VPCE). Other parts are domain specific,
where rules support particular types of components (Shields et al.,
2004). The VPCE is a component repository that serves as a user
interface for a PSE. The user can select a set of in-house components
and combine them using a graphical composition area in the
interface. The VPCE uses Java and CORBA to provide tools that allow
building scientific applications from components. These tools ease
the process of configuring components, integrating legacy codes
into components and the process of designing and building new
components.

There are current PSE projects that use component models, but
most of them do not provide wrapping of existing scientific codes.
They focus instead on creating data flow environments or on
enabling users to write their own modules.

The advantage of the PSE approach is that it connects the tools that
engineers are comfortable with in a generic way such that these
connections can be managed by any Windows user (Wallace et al,
2000). It should allow engineers to continue using their preferred
tools while easing the process of communication between those
tools. On the software side, the only thing required from the new
software is to facilitate the connectivity of legacy software.

 The Multi-Disciplinary Design System 250

Integration

Process Integration and Design Optimization (PIDO) Software

 Process Integration and Design Optimization (PIDO) is an emerging
line of software products. It aims at enabling users to integrate
processes that use multiple digital design and analysis tools
(Software Engineering Institute, 2008). These products allow the
“wrapping” of software tools and legacy codes, in addition to
publishing them on a computing network.

Through the graphical environment enabled by PIDO tools, users can
generate an integrated MDA model by choosing published
components and graphically linking their inputs and outputs.
Through this approach, all disciplines can keep ownership of their
codes. They can easily maintain and upgrade their codes as well as
serving them from desired computing platforms. Engineers
therefore do not have to learn new software. Examples include
ModelCenter, AnalysisServer, DOME & Oculus Technologies, ISight,
and Esteco. Since I will be using ModelCenter heavily in the thesis I
will discuss it briefly in the following section.

 ModelCenter

 Phoenix Integration (2007) define ModelCenter as a tool that helps
engineers design and analyze systems through automating multiple
common computing tasks. The goal of using the software is to
increase the efficiency of the design process by automating and
simplifying these computing tasks. It saves engineering time and
makes the design process less error prone. Multiple programs are
connected together to form systems engineering models. Trade
studies are performed on the models, and the results from multiple
studies can be archived into a single project.

The first step in the process of using ModelCenter is wrapping a
program on the Analysis Server. This program can be either an in-
house code that uses input and output files, a commercial finite
element program, or a Microsoft Excel spreadsheet. The Analysis
Server is Java-based and runs on many platforms, allowing any
analysis program to be wrapped and run on its own platform without
further modification. The wrapped program produced by the
Analysis Server is known as a component in ModelCenter, where the
different components are accessible from other networked
computers. A Model is thus a set of integrated components. Other
ways to create components include the Script Component and
Common Components.

ModelCenter graphically builds a model after the wrapping process is

 The Multi-Disciplinary Design System 251

Integration

complete. The model construction process involves selecting
components in the Server Browser followed by dragging and
dropping them into the Analysis View which provides a system-level
model view. Instant relationships can be defined between the
wrapped modules as soon as they are placed in the “work bench”
environment. Attributes from a CAD module, for example, can be
linked through ModelCenter’s link editor to the corresponding
parameters in a Matlab module or cells in an Excel spreadsheet
module. Components are displayed as icons, while links are displayed
as lines between the components (figure 6.3). Users can create, edit,
and view links using the Link Editor. Viewing and editing model
values can be done using the Component Tree which displays the
model and all of its components and variables in a hierarchical
fashion. Variables are displayed differently according to the variable
types and states (Phoenix Integration 2007).

 Figure 6.3:

In ModelCenter,
components are

displayed as icons
while links are

displayed as lines
between the
components.

 Once alterations and iterations are carried out on one module, they
are instantly propagated to other modules; this is an attribute that is
promising for optimization. ModelCenter uses sophisticated
algorithms to track different changes and impacts of variables.
ModelCenter then uses a scheduler to decide which components to
run and in what exact sequence (Phoenix Integration 2007).

 The Multi-Disciplinary Design System 252

Integration

 The Multi-Disciplinary Design System 253

Exploration

 7.1. What is Exploration?

 Changes in the design variables of one part of the system are rapidly
spread throughout the system. This leads to the need for
investigating “what if” scenarios. These scenarios can be
implemented through exploration experiments and techniques.

Exploration experiments and techniques are not intended to validate
the system as a whole as much as they validate some of the design
decisions made within the MDDS, such as what variables to include in
the design vector or the structure of the objective function.

These techniques are important for comprehending the effects of
design variables, the shape of a design space, the decisions that
should be made while choosing alternatives and the associated
consequences. This allows for simultaneous consideration of many
dimensions of the problem as well as the management of the design
process.

 Figure 7.1:

Exploration should
be carried out before
and after Search and

Optimization

7. Exploration

 The Multi-Disciplinary Design System 254

Exploration

 A key difficulty in the optimization process is usually the large
number of design parameters involved. Many algorithms cannot
handle problems of more than 100 variables, and in particular if there
is no good and feasible point known to begin with. Such limitations
have led to a growing interest in applying design space exploration
techniques to limit the size of the design vectors involved.

Furthermore, solutions found may be sensitive to perturbations of
the design variables or constraints which might render those
solutions as less adequate or even infeasible. Sensitivity experiments
should be carried out to investigate the effects of changes in input
data on the output results (figure 7.1).

 7.2. Pre-Search

 Working with design problems with a large number of design
variables (parameters) is a difficult task for any optimization
algorithm, especially if a good feasible starting point does not exist.

Several pre-optimization exploration processes can, however, be
applied to develop an overview of the design space or a region of
that space around a specific design point.

Initial points must be analyzed so that an initial design point for
optimization can be chosen. In addition, a screening procedure can
be implemented to identify critical parameters. These include
parameters that have the largest effect on the objective and
constraint functions. These parameters define a subset of the
original design vector which, if reduced enough, can make
optimization more successful (Koch et al., 2002).

In this section pre-optimization exploration processes will be
presented. These will include parametric studies and One-Factor-At-
A-Time (OFAT) analysis, Design of Experiments (DOE), as well as
Latin Hypercubes and Orthogonal Array sampling.

 7.2.1. Parameter Studies

 Many design studies still rely on sequential parametric studies in
which one or two (sometimes three) design variables are changed to
examine the effect on the design.

Parametric studies involve analyzing one variable at a time to study
the effects of assumptions about particular data. Carpet plots can be
used to show the effect of these variables on each of the system
constraints or objectives. Carpet plot studies analyze two

 The Multi-Disciplinary Design System 255

Exploration

independent variables by varying the two items over ranges and
evaluating the resultant behavior of another parameter.

The number of parameters n in this type of study is limited by the
dimensionality that can be perceived graphically and by the 3n
growth rate in a number of cases that must be examined using this
type of grid searching technique. Still, parametric studies provide
visibility into the effects of the parameters that are studied and can
yield insight into problems that is not available through more
complex multi-dimensional optimization results (Kroo, 1997a).

After specifying each level (value) of each factor (variable), a
parametric study can be performed by changing one factor at a time
while keeping all other factors at a base level (table 7.1). Each factor
is considered at every level and the best result for each factor is
selected. The best design is then chosen by extrapolating each
factor’s behavior.

 Table 7.1:

In a parametric study
one factor is changed

at a time while
keeping all other

factors at a base level

Expt
No.

Factor
A B C D

1 A1 B1 C1 D1
2 A2 B1 C1 D1
3 A3 B1 C1 D1
4 A1 B2 C1 D1
5 A1 B3 C1 D1
6 A1 B1 C2 D1
7 A1 B1 C3 D1
8 A1 B1 C1 D2
9 A1 B1 C1 D3

 Using a parametric study, the chances of evaluating the “best
design” as part of the study are very low, since interactions between
factors are not considered. When the need for a more methodical
approach to parameter tuning is acknowledged, designers may
attempt a One-Factor-At-A-Time (OFAT) analysis.

Similar to a regular parametric study, OFAT involves tuning a single
factor when all others are fixed. However, if the output is improved
then the new level is kept for that factor and then moving to the
following factor and repeating this process with each factor one at a
time (Ridge, 2007).

With OFAT the “best design” is expected to be a member of the

1 + 𝑛𝑛(𝐼𝐼 − 1) =
1 + 4(3 − 1) = 9 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

4 factors, 3 levels each:

 The Multi-Disciplinary Design System 256

Exploration

matrix experiment. Unlike with a regular parametric study, with
OFAT some interactions between parameters are captured, although
the result depends on the order of the factors (de Weck and Willcox,
2005).

 7.2.2. Design of Experiments

 Design of experiments (DOE) is a statistical technique proposed by
Sir R. A. Fisher in England in the early 1920s. Fisher’s main objective
was to establish the optimum water, rain, sunshine, fertilizer, and
soil conditions needed to generate the finest crop. Fisher was able to
identify all combinations (treatments) of the factors included in
experimental study using DOE techniques. These combinations were
created using a matrix which allowed each factor an identical
number of test conditions. By introducing the DOE technique, Fisher
devised the first method to analyze the effect of more than one
factor at a time (Roy, 2001).

 Figure 7.2:

Multiple
combinations of

factors and levels are
used to analyze the

design space

 The National Institute of Standards and Technology defines Design
Of Experiments (DOE) as:

. . . a systematic, rigorous approach to engineering problem-solving
that applies principles and techniques at the data collection stage so as
to ensure the generation of valid, defensible, and supportable
engineering conclusions. In addition, all of this is carried out under the
constraint of a minimal expenditure of engineering runs, time, and
money (NIST, 2006).

DOE is a collection of statistical techniques that provide a systematic
and efficient way to sample and analyze the design space through
the analysis of multiple factors (figure 7.2). The systematic approach
is drawn from the methodologies and experiment designs used by
DOE. By creating a matrix of runs and using a range of algorithms,
the effects on numerous responses can be recognized. The DOE
principles of data gathering ensure that only adequate data is
collected, improving the efficiency and cost of the experiment
(Ridge, 2007).

Some of the capabilities of DOE discussed by (Ridge, 2007) include:

 The Multi-Disciplinary Design System 257

Exploration

Quantify multiple variables simultaneously: the effects of multiple
factors on one or more responses can be studied and examined. This
can help identify appropriate factor ranges as well as identify
achievable responses and objectives.

Identify variable interactions: the combined effect of factors on a
response can be identified.

Identify high impact variables: key drivers among potential factors
and their relative importance can be ranked.

Predictive capability within design space: performance of solutions at
new points in the design space may be predicted.

These capabilities make DOE an essential approach for any research
dealing with large and expensive experiments.

DOE techniques help with the study of many factors simultaneously
in an economic fashion. Factor levels are varied so as to maximize
the information extracted from the resulting simulations. By
studying the effects of individual factors on the results, the best
factor combination can be determined (Roy, 2001).

DOE can be used in support of traditional optimization procedures
(Koch et al., 2002). DOE techniques and similar strategies are often
used before setting up a formal optimization problem (de Weck and
Willcox, 2005). Using information obtained from a well-defined DOE
study can help optimization models to seek out the best design
among many alternatives.

 7.2.2.1. Factors, Levels and Responses

 A factor is an independent variable chosen from the design vector.
The various values at which the factor can be set are known as its
levels.

Factors can be divided into either primary or secondary factors.
Primary factors, also known as design factors, are those factors that
are studied because their effects on the responses are of interest.
Secondary factors, also known as held-constant factors, are those
factors that are held at a constant value throughout all experiments
because they are not of interest in the current study (Ridge, 2007).

The response variable is the output of a certain experiment and
represents a measure of the variables of interest.

 The Multi-Disciplinary Design System 258

Exploration

 7.2.2.2. Treatments

 A treatment is a particular combination of factor levels. The specific
treatments will depend on the experiment design and on the factor’s
variation range. There are various possible experiment designs. The
design will depend on several aspects including the research
question, stage of research and the resources available (Ridge,
2007).

Experiments can be represented in a matrix. Within this experiments
matrix each row corresponds to one experiment and each column
corresponds to one factor (table 7.2). Each experiment corresponds
to a different treatment of factor levels that provides an observation
(de Weck and Willcox, 2005).

 Table 7.2:

Experiments can be
represented in a

matrix where each
row corresponds to
one experiment and

each column
corresponds to one

factor

Expt No. Factor A Factor B Observation

1 A1 B1 ή1

2 A1 B2 ή2

3 A2 B1 ή3

4 A2 B2 ή4

 7.2.2.3. Effects

 Once the experiments have been completed, the results can be used
to calculate effects. An effect of a factor is the change in the
response due to a change in one or more factors as the level of the
factor is changed. There are two types of effects: main and
interaction effects.

The main effect of a factor is an averaged individual measure of the
effects of factors. It is a measure of the change in the response
variable to changes in the level of the factor averaged across all
levels of all the other factors.

An Interaction effect is the effect that occurs when the effect of a
factor depends on the level of another factor and the combined
change in both factors produces an effect greater than or less than
that of the sum of their expected effects. These are also called
higher-order effects that depend on the number of effects involved.

 The Multi-Disciplinary Design System 259

Exploration

For example a second-order effect is due to two factors, a third-
order to three and so on (Ridge, 2007).

Two other important concepts relating to effects are confounding
and aliasing. It is essential to stress the difference between
confounding and aliasing. Confounding occurs when it is impossible
to separate the effects of two or more effects due to bad
experimental planning and implementation, particularly to poor
control of factors. Aliasing, on the other hand, is an inability to
distinguish several effects due to the nature of the experiment
design rather than poor execution (Ridge, 2007).

Several DOE techniques exist. A comprehensive review of many
techniques and their use in engineering design is provided by
Simpson et al. (1997). In this Chapter two methods will be presented,
the full factorial design method and the fractional factorial design
method.

 7.2.2.4. Full Factorial

 The term "factorial" may not have been used before 1935, when
Fisher used it in his book The Design of Experiments (Fisher, 1975). A
full factorial design consists of a crossing of all levels of all factors. It
measures the response of every possible treatment combinations of
factors and factor levels.

As with any statistical experiment, the experimental runs in a
factorial experiment need to be randomized to lower the influence
of bias on the experimental results.

Full factorial design provides greater efficiency in the use of available
experimental resources and the knowledge learned in comparison to
the same number of experimental runs in a less structured context
such as OFAT (Czitrom, 1999).

Because the factor levels are all crossed with one another, a full
factorial design provides information on the effects of each factor on
the response variable which can be analyzed for every main effect
and every interaction effect.

Furthermore, the results of a full factorial design are more inclusive
over a wider range of conditions due to the combining of factor
levels in one experiment.

If a simple factorial experiment contains two levels for each of two
factors then it is a 22 factorial experiment, because it considers two

 The Multi-Disciplinary Design System 260

Exploration

levels (the base) for each of two factors (the power), producing 22= 4
factorial points. The effects of three factors with two levels each can
be evaluated in eight experimental treatments that represent the
corners of a cube.

levels #factors

Full factorial design is an extremely powerful but expensive method.
As the number of factors grows, the number of treatments also
rapidly, grows and at some point it overwhelms the experimental
resources and becomes infeasible due to high cost. For example, a
full factorial design experiment with 10 factors at two levels each will
require an expensive 210 = 1024 treatments.

The full factorial experiment is the ideal design for many design
problems, but the size of design spaces limits its applicability. A more
efficient design is required if the number of treatments in a full
factorial design is too high to be logistically feasible. In this case, a
fractional factorial design may be used, in which some of the
possible treatments are omitted.

 7.2.2.5. Fractional Factorial Design

 As mentioned previously, due to the combinatorial explosion and the
increase in expense of factorial designs with the increase in the
design factors we cannot usually perform a full factorial experiment
Instead a subset (fraction) of the possible treatments is carefully
considered in a manner that can balance experimental cost with
design space coverage.

The subset is selected to utilize the sparsity-of-effects principle. This
states that a system or process is likely to be most influenced by
some main effects and low-order interactions and less influenced by
higher-order interactions (Ridge, 2007).

Fractional designs are expressed using the notation ln − k, where l is
the number of levels of each factor studied, n is the number of
factors studied, and k describes the size of the fraction of the full
factorial used where 1/(lk) represents the fraction of the full factorial
design.

For example, for an experiment with five factors and two levels for
each factor and choosing k to be two, the fractional factorial design
is 25 − 2 which is 1/4 of a full factorial design. So this experiment
requires only eight runs rather than the 32 runs that would be
required for the full factorial experiment.

 The Multi-Disciplinary Design System 261

Exploration

The fractional factorial design can assist in providing information
about the most important features of the problem studied while
using a fraction of the effort and resources of a full factorial design.

However, there is a price to pay for the fractional factorial’s
reduction in number of experimental treatments. Some effects will
be aliased and therefore indistinguishable from one another. If an
alias group seems statistically significant more treatments can be
added to separate these aliased effects. This sequential
experimentation represents one of the advantages of the fractional
factorial.

Depending on the number of factors, and accordingly the design
space size, a range of fractional factorials can be implemented from
a full factorial. Initially, it may be useful to look at a large number of
factors superficially rather than a small number of factors in detail
(de Weck and Willcox, 2005).

The methodology to generate fractional factorial designs for more
than two levels is very hard and could even be infeasible. Other
methods, such as response surface methodology (discussed
previously in the analysis section), are more efficient in determining
the relationships between the response and factors at multiple
levels.

 Table 7.3:

In Fractional designs
levels are

specified for
each factor and

outputs are
evaluated at

every
combination of

values.

Expt
No.

Factor
A B

1 A1 B1
2 A1 B2
3 A1 B3
4 A2 B1
5 A2 B2
6 A2 B3
7 A3 B1
8 A3 B2
9 A3 B3

 7.2.3. Latin Hypercubes

 The Latin hypercube is a generalization of a Latin square with a larger
number of dimensions. A Latin square is a square grid containing
sample positions with only one sample in each row and each column.

Latin hypercube sampling was developed in the statistics community
and was first described by McKay et al. (1979). It gained interest in

𝐼𝐼𝑛𝑛 = 34 = 81 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
4 factors, 3 levels each:

𝐼𝐼𝑛𝑛 = 32 = 9 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2 factors, 3 levels each:

 The Multi-Disciplinary Design System 262

Exploration

engineering design in 1989 after Sacks et al. (1989) computer
experiments.

The statistical method of Latin hypercube sampling was developed
to generate a distribution of reasonable collections of parameter
values from a multidimensional distribution.

A Latin hypercube is a matrix of M rows and N columns where M is
the number of levels being examined and N is the number of the
factors. Each of the N columns contains the levels 1, 2, 3..., M,
randomly permuted. The randomly permuted M levels of N columns
are matched to form the M Latin hypercube. When sampling a
function of N factors, the range of each factor is divided into M
equally probable intervals. M sample points are then placed to satisfy
the Latin hypercube requirements. This forces the number of
divisions, M, to be equal for each factor. Each level of a factor is used
only once (de Weck and Willcox, 2005).

Latin hypercube sampling offers flexible sample sizes while ensuring
stratified sampling. This sampling scheme does not require more
samples for more dimensions (variables); this independence is one of
the main advantages of this sampling scheme. Another advantage is
that random samples can be taken one at a time, remembering
which samples were taken so far (figure 7.3).

 Figure 7.3:

An example of a Latin
hypercube sampling

 The maximum number of combinations for a Latin hypercube of M
levels and N factors (i.e., dimensions) can be computed with the
following formula:

 The Multi-Disciplinary Design System 263

Exploration

�(𝑀𝑀− 𝑛𝑛)𝑁𝑁−1
𝑁𝑁

𝑛𝑛=0

Latin hypercube sampling is particularly well suited for computer
experiments, since design points are spread throughout the design
space, and more levels are generally taken for each factor than with
the other designs (Koch et al., 2002). The approach, however, can
produce poor coverage and the results are not repeatable (de Weck
and Willcox, 2005).

 7.2.4. Orthogonal Arrays

 Orthogonal array sampling requires that the entire sample space be
sampled evenly. Orthogonal arrays specify levels for each factor.
Arrays are used to choose a subset of the full factorial experiment
that maintains orthogonality between factors.

 Table 7.4:

In the balancing
property, for any pair

of columns, all
combinations of

factor levels occur an
equal number of

times.

L9 (34)

Expt
No.

Factor
A B C D

1 A1 B1 C1 D1
2 A1 B2 C2 D2
3 A1 B3 C3 D3
4 A2 B1 C2 D3
5 A2 B2 C3 D1
6 A2 B3 C1 D2
7 A3 B1 C3 D2
8 A3 B2 C1 D3
9 A3 B3 C2 D1

 Although orthogonal array sampling does not capture all
interactions, it is still considered an efficient sampling and the
experiment is balanced. For any pair of columns, all combinations of
factor levels occur and they occur an equal number of times. This is
the balancing property (Table 7.4). In general, the balancing property
is sufficient for orthogonality (de Weck and Willcox, 2005).

Although more efficient than Latin hypercube sampling, the
orthogonal array sampling approach is more difficult to execute
since all random samples must be generated at the same time.

3 levels
4 factors 9 expts

 The Multi-Disciplinary Design System 264

Exploration

 7.3. Post-Search

 7.3.1. Sensitivity Analysis

 Exploration techniques used after search and optimization are
mainly sensitivity analysis processes. The importance of sensitivity
analysis stems from the fact that all the mathematical models used in
the MDDS are approximations to the actual artifact and system (De
Neufville, 1990). Some data in the mathematical model are inherently
uncertain.

Input is generally affected by many sources of uncertainty including
errors in data, lack of information and limited understanding of the
design problem. This uncertainty affects our trust in the output of
our models. Therefore the examination of the effect of input data on
the output results is important.

Sensitivity analysis is primarily concerned with how the specific
response of a chosen solution changes due to the modification of
design problem formulation. Sensitivity analysis tries to identify what
source of uncertainty has a greater effect on the final solutions.

The problem formulation of sensitivity analysis is similar to DOE
discussed earlier. In DOE we investigate the effect of some
'treatment' on the performance. In sensitivity analysis, on the other
hand, we study the effect of varying the inputs of a mathematical
model on the solution.

Sensitivity analysis is key to understanding which design variables,
constraints and parameters are important drivers for the optimum
solutions. Using sensitivity analysis techniques we can verify the
effects of changing the design variables, parameters and constraints
on the “optimal” solutions selected. There are several sensitivity
analysis techniques such as simple derivates, sampling and screening,
Monte Carlo filtering, and variance based approaches among others
(Helton et al., 2006).

 The Multi-Disciplinary Design System 265

MDDS

 8.1 What is the MDDS ?

 In the previous chapters I discussed different concepts that
represent the stages needed to construct what I call the Multi-
Disciplinary Design System (MDDS). In this chapter I will attempt to
tie these concepts together into a coherent framework.

The MDDS represents a design process rather than a specific design
tool. The core of this process involves creating integrated
computational systems. There are five steps to generating an MDDS:
decomposition, formulation, modeling, integration, and exploration.
These steps are not carried out in a sequential manner, but rather in
a continuous back and forth between the different steps as the
design progresses and evolves (figure 8.1).

As discussed earlier, design can be seen as both an object and a
process. This has strong implications for how we decompose an
artifact in the attempt to build the MDDS, since we have to
decompose both the artifact object as well as the design process
that was used to produce it. In formulation, many tools have been
suggested for the task of structuring and formulating the
information produced from the decomposition stage into a coherent
MDDS architecture. Methods for activity modeling that include
synthesis, analysis, evaluation and optimization were discussed in the
modeling chapter. Later in the integration chapter different
integration software technologies were suggested to connect the
different activity modules. Finally, in the exploration chapter
different tools and techniques were discussed for the task of design
space exploration.

In this chapter I will expand on these ideas and will propose a
framework that demonstrates the processes and relationships
involved in building the MDDS. I will then discuss how this system will
evolve as the design of the artifact evolves. Concepts for handling
complexity will be discussed including multi-variable, multi-module,
multi-levels, and multi-resolution processes.

After discussing the MDDS evolution, I will then discuss the expected

8. MDDS

 The Multi-Disciplinary Design System 266

MDDS

behavior of the system. This will include the system’s emergent
qualities and its multidisciplinary and performance-driven behaviors.
Finally, I will discuss the affects of using such a system on structuring
the design team and the implications for developing new design
tools and environments.

 8.2 MDDS Framework

 The design team must identify the design concept that can best
perform the design requirements. Specialists from many fields work
with the system architect to ensure that the solution considers all
specialty requirements that the system architect may not have been
fully aware of. If there is more than one concept involved, the
alternative concepts are usually swapped among each other in order
to come up with a preferable solution.

 Figure 8.1:

MDDS Framework
includes five phases:

decomposition,
formulation,

modeling,
integration, and

exploration

 The Multi-Disciplinary Design System 267

MDDS

 As stated earlier, the MDDS is applied after a design concept has
been developed. As mentioned earlier, Duvvuru et al. (1989) divided
the design process into four basic categories: creative design,
innovative design, redesign, and routine design. I believe the MDDS
can be used for routine design, redesign, and even innovative design.
However, creative design, which involves the initiation to create the
main design concept, has to be carried out by the human design
team (figure 8.2). This is typically the most difficult stage of the
whole design process, but as the design space narrows down
incrementally downstream, later stages become more defined and
more suitable for the MDDS implementation.

 Figure 8.2:

MDDS application in
relation to Duvvuru

design categories

 While developing the concept, the design team can define and
suggest the design vector variables and even the main objective
function to be used in the MDDS, although there will be a need to
further refine them in later stages. The resulting design is then
integrated in the MDDS and is used as a point-of-departure reference
to provide a rough estimate for the design of the artifact or system in
order to start the MDDS building process.

The first stage in building the MDDS is Decomposition. Here the
artifact or system design concept is broken down into, on one hand,
the different components and aspects that make up its physical
object, and, on the other, the developmental levels and design
activities that can be used to construct the design process. A
comprehensive list of disciplines and information required from each
discipline for design and development should be established. The
design team should also define the initial design vector variables, in
addition to establishing preliminary objective functions if they have
not been established yet. In this stage, the starting point for the
process of problem formulation and modeling is setup.

 The Multi-Disciplinary Design System 268

MDDS

Then, the Formulation stage defines how various modules will be
interconnected. In order to arrive at a reasonable system
architecture, there must be an iterative cycle or loop between
decomposition and formulation. The input and output parameters
should also be explored for each of the involved activity modules.
The formulation of this system architecture can lead to important
enhancements concerning design turnaround times in addition to
significant minimization of unnecessary additional performed tasks
(Atherton, 2002).

MDDS offers a framework where the modeling of complex design
problems can be achieved by aggregating sub-problems. The design
system is typically modeled in terms of modules which are
interacting objects that represent individually specific design
activities. The Modeling stage is where these mathematical models
are developed. These modules can contain engineering models in
addition to data or software applications. Furthermore, both the
design vector variables and the objective function are better defined
in this stage but can still be modified further according to
investigations made in the design exploration stage.

In the Integration stage, the modules are integrated such that the
necessary design information is passed between them. With modules
being able to represent various parts of the problem simultaneously,
the integrated MDDS is realized as a computational design tool
capable of producing design solutions.

Exploration is the fifth and final stage of the MDDS framework and
occurs after the MDDS is fully developed and verified. Automated
multivariable parametric studies and trade studies can be conducted
to evaluate the design vector and the design objectives.
Furthermore, the sensitivity of the solutions to the design
constraints can be studied. Design vector parameters and the
objective function are varied in this stage in order to explore the
design space.

 8.2.1 Decomposition

 One of the basic assumptions of the proposed framework involves
the fundamental idea of decomposition. This decomposition process
takes place at the front end of the MDDS construction development.
Initially, through a top down approach the design concept will be
decomposed iteratively by each discipline involved in the design. The
decomposition is carried from a high-level diagram ending in
manageable smaller sub-problems. These sub-problems facilitate, in
addition to the problem solution, a better understanding of the

 The Multi-Disciplinary Design System 269

MDDS

design problem domain.

Decomposition strategies have been discussed earlier in the
decomposition chapter. Two modes of decomposition were
presented, namely the object and process decompositions. Both
modes are essential for building the MDDS (figure 8.3).

Process decomposition is composed of both development and
activity decompositions and represents the main elements needed
later in the formulation stage. Development decomposition informs
the formulation stage about the proposed hierarchy and multilevel
structure of the MDDS. Activity decomposition on the other hand is
essential in identifying the design activity modules within every level.

 Figure 8.3:

Object
decomposition

includes both
component and

aspect
decompositions

while process
decomposition

includes both
development and

activity
decompositions

 The Multi-Disciplinary Design System 270

MDDS

 Furthermore, object decomposition is needed in the modeling stage.
As discussed earlier object decomposition includes component and
aspect decompositions. Component decomposition divides the
system or artifact according to the physical system elements.
Component decomposition is essential to the synthesis modeling.
Aspect decomposition, on the other hand, treats the problem
according to the system physics and therefore is critical for the
analysis models.

 8.2.2 Formulation

 In this stage the architecture of the MDDS is created. To represent
the MDDS we use different levels of aggregation of complex
interacting elements. Similar to decomposition, while formulating
the MDDS we have to make choices on the level of abstraction
needed. High abstractions do not usually require domain knowledge,
and are therefore used to summarize, generalize, and compare. Low
abstractions require domain knowledge, and thus provide valid
details where differences are explicable. In our context formulation
is primarily based on the idea that MDDS encompass a number of
levels and design activities.

A system that comprises design activities with high complexity
cannot be easily or efficiently managed as a monolithic entity, and so
it has to be broken down into development levels. Therefore, the
MDDS is broken into hierarchical levels in order to manage design
complexities, where each lower level becomes more detailed and
refined as the design progresses (figure 8.4).

 Figure 8.4:

MDDS is broken into
hierarchical levels

 MDDS is made of modules, where each module represents a design
activity. Similar activity modules can be interconnected to create
assemblies. MDDS comprises a group of modules and cycles which
represent a system at different levels of abstraction and also possibly
at multiple development stages. The system architecture identifies
which modules will be part of the system and provides descriptions

 The Multi-Disciplinary Design System 271

MDDS

of their roles. The MDDS as a whole can be seen as a set of
interrelated modules that collectively can produce design solutions
(figure8.5).

 Figure 8.5:

MDDS comprises a
group of modules

 Iteration is a basic concept in all design processes. Researchers have
discussed different approaches for managing these iterations (Smith
and Eppinger, 1997). I refer to iterations within the context of MDDS
as design cycles, were each cycle includes all four design activities
mentioned earlier, namely synthesis, analysis, evaluation, and
optimization. Through a bottom-up approach, the design activity
modules are connected into a design cycle that represents a data
flow network. Each design cycle resides in a design level within the
MDDS (figure 8.6).

 Figure 8.6:

Each design cycle
resides in a design

level within the
MDDS

 Given the descriptions above, it is clear that the MDDS includes both
hierarchical and non-hierarchical structures. Within its hierarchical
structure, it is possible to define discrete tree-like interaction

 The Multi-Disciplinary Design System 272

MDDS

 patterns which offer well-guided navigation within the process. This
hierarchical layout enables multilevel problem formulation. The
MDDS levels are of such a structure. These hierarchies can also be
layered hierarchies where horizontal relations could be established
within a single design level and between two or more design cycles.

The non-hierarchical structures define relations between the
different elements within an MDDS level. These elements include
modules, assemblies and design cycles. A data flow network is
created between the different elements with links that represent the
interactions between them. These links allow the flow of
information between the different modules.

 Figure 8.7:

A design cycle can
include sub-cycles

 The MDDS also evolves and grows over time, either vertically by
adding more levels or horizontally by adding more modules and
cycles (figure 8.8). This will be discussed further in the Evolution
section of this chapter.

 The Multi-Disciplinary Design System 273

MDDS

 Figure 8.8:

The MDDS evolves
and grows over time,

either vertically by
adding more levels or

horizontally by
adding more modules

and cycles

 The MDDS architectures developed in this stage should be fed back
to the decomposition process in order to fine-tune the lower levels
of functional analysis according to the evolving higher-level
solutions. This is a process which should be done with careful pacing.

The tools and notations discussed in the formulation chapter can be
useful in formulating the order of activities and interactions in the
MDDS. The DSM for example, could be used to refine the interaction
between modules and minimize iterations as well as determining

 The Multi-Disciplinary Design System 274

MDDS

crucial activities that influence process lead-time and cost.
Formulation notations that include network notations, such as Data
Flow Diagrams or IDEF0, or even formulation modeling languages,
such as UML and SysML, can be of great use in designing the MDDS
architecture and defining its hierarchical levels, cycles, assemblies
and module interactions.

In summary, formulation works on promoting the interaction among
the system architects, design specialists and other design team
members. It occurs prior to modeling and programming in order to
avoid major reprogramming later on. Formulation also enables the
visualization of data and control flow. This is very useful for the
system architect, as it affords him a lot of time and effort in
examining the MDDS model.

 8.2.3 Modeling

 As discussed earlier in the modeling chapter, models are abstract
descriptions of the real world that provide approximate
representations of more complex functions of physical systems
(Papalambros, 2000). Many design problems require using a group of
complementary models, instead of one single model, which together
aim at modeling and describing the whole design problem. The
modeling process that encompasses many issues in large problems
requires specialized knowledge in many disciplines (Pahng et al.,
1997). No single designer can excel in all these disciplines, hence
there is a need for different people who have the suitable principal
competencies to model and solve different aspects of the design
problem (Eppinger, et al. 1994).

Within the MDDS we are concerned with mathematical models.
These are models that can be implemented in a computer
environment. We aim at building a mathematical model for each
activity module. These include the synthesis, analysis, evaluation, and
optimization activities (figure 8.9). Modules for data storage and
constrains can also be included. These are modules that store the
parameters and constants and the design system constraints. Extra
modules for data flow control could also be implemented.

Each module has a boundary that cuts across its links to the
environment defining that module’s input and output. Each module
acts like a black box transforming data from one form to another.
The behavior of each module contributes not only to the design
aspect and discipline it is modeled after, but to the design system as
a whole.

 The Multi-Disciplinary Design System 275

MDDS

 Figure 8.9:

A design cycle that
regenerates a design

concept should
include synthesis,

analysis, evaluation,
and optimization

activities

 Domain knowledge of each discipline involved in the design informs
the synthesis modules to create meaningful designs and
representations. The outcome of the synthesis modules is analyzed
by the different discipline analysis modules to predict the properties
of a particular solution. The evaluation modules then handle the
multi-objective nature of the design. The optimization modules
search the design space and automate the synthesis, analysis and
evaluation in search of new solutions. The process continues until
the optimization has converged and a family of acceptable solutions
is found.

Modeling can take place through one of two basic approaches:
programming the model in a programming language such as C or
C++; or constructing it in simulation software such as CAD, FEA, or
CFD. Using programming languages provides better program control
and a low purchase cost. Simulation software however minimizes
programming time and thus lowers project cost. After constructing
the model, it is validated to make sure the original assumptions were
acceptable.

The scope of the model is primarily based on the fidelity degree
needed at a certain MDDS level. This is an essential issue in modeling
activities and will be discussed further in the MDDS Evolution
section.

 8.2.3.1 Synthesis

 The synthesis mathematical model defines the system configurations
to be modeled. These models are influenced by the component
decomposition completed in earlier stages. The design concept is
decomposed into a set of synthesis models by extracting design

 The Multi-Disciplinary Design System 276

MDDS

intentions and formulating a collection of design parameters, rules or
algorithms. This collection provides for a representation of the
design language which in turn defines a design space. This mode of
representation provides for a formalism that can be used within a
computational environment to breed new designs.

The design vector or variables within it are the input to this type of
module. As discussed previously in the modeling chapter, the
number and type of variables included in the design vector depends
on the algorithms and structure of the synthesis model. Synthesis
modules can offer precise feedback for the MDDS on the influence of
parameter variations within the design vector on geometric data.

Synthesis modules output data to analysis modules. This data
includes design attributes such as dimensions, areas, volumes,
locations, vectors, and mass properties. The need for integrating
synthesis and analysis modules affects to a great extent the
modeling requirements for both design activities.

Synthesis models should provide for a generative mechanism. This
could be done through the different techniques discussed in the
modeling chapter, such as parametric and algorithmic models.
Parametric models provide for a description of the artifact through
parameters and relationships that allow for variation. Algorithmic
models provide a description of the artifact through a set of rules
and algorithms. Some good examples of algorithmic models are
formal Grammars. These include grammars like Shape Grammars,
Graph Grammars, Lindenmayer Systems, and Cellular Automata.

The representation of generative synthesis models should encode
design knowledge. The relationship between form and performance
should be embedded within the representation formalism. This
provides restrictions on permitted designs and ensures that the rules
discard designs that do not comply with constraints. However, since
synthesis models do not include performance feedback loops, it is
difficult for such models to direct the generation and navigation of
the design space of multi-performance design problems.

Furthermore, the geometry resulting from the synthesis process
must be robust enough to cope with the intense variations that take
place in later trade studies. After all these modules come into place,
the utility of each module is evaluated by conducting various
verification cases and design studies (Atherton, 2002).

 The Multi-Disciplinary Design System 277

MDDS

 8.2.3.2 Analysis

 An analysis model infers from a design solution characteristics that
are relevant to a particular discipline. A design problem usually
combines different disciplines with each discipline developing one or
more analysis models.

The outcome produced by a synthesis module is the input to the
analysis module. These may range from simple parameters and data
such as areas or volumes, to full CAD models for use in numerical
analysis like FEM and CFD. The outputs of the analysis module are
performance and behavior measures that will eventually be used
within an evaluation module to assess the effectiveness of a system
configuration.

In the modeling chapter several analysis models were discussed.
These models range in their amount of required information input
and their degree of accuracy output. Analytical models are mainly
low-order (low-fidelity) models that are fairly fast but with low
accuracy. On the other hand, numerical models like finite element
analysis (FEA) and computational fluid dynamics (CFD) are high-order
(high-fidelity) models which have higher accuracy but result in long
durations which has a compound effect when such a model is run
several times in a design exploration and multidisciplinary
optimization process. Many low-processing approximation concepts
have been utilized to generate surrogate behavior models to replace
expensive and detailed analysis and simulation software when
testing numerous scenarios with various input parameters (Koch et
al., 2002; Bletzinger and Lähr, 2006).

In choosing a model the designer must select the best compromise
between the demand for simplification and the necessity to clearly
identify, describe and rate the targeted physical mechanism. A trade-
off will have to be made between fidelity and analysis time.

 8.2.3.3 Evaluation

 The need for the evaluation of results arises while observing systems
in multidisciplinary contexts. Evaluation modules are in essence
decision-making tools. The input to an evaluation module is the
output of several analysis modules. Evaluation therefore refers to
the overall result of a design analysis, which encompasses multiple
analysis computations.

The output of the evaluation module depends on the strategy used
in the evaluation and whether the evaluation is done before or after
optimization. An evaluation is usually performed by means of an

 The Multi-Disciplinary Design System 278

MDDS

objective function which consists of a figure of merit describing the
quality of a design solution. The formulation of the objective function
is vital to the outcome of the design space search. A solution is
expressed in an n-dimensional design space. “n” relies directly on the
number of design objectives. Results from the evaluation module
usually yield a dimensionless quantity known as the quality for each
solution.

In order to make a decision about rationally choosing one of the
alternatives, a criterion is required which assesses all alternatives and
ranks them in a certain way. The criterion, which is called the
objective of the model, cannot be unique, as its choice is usually
affected by several factors. These factors include the design
application, timing, point of view, and designer judgment and may
change with time. (Papalambros and Wilde, 2000).

In single objective optimization, the search direction can be well
defined and a single solution, if it exists, could be found. However, in
the real world, design problems are usually too complex and ill-
defined and have several possibly contradicting objectives. This
implies that there is no single optimal solution but rather a whole set
of possible solutions of equivalent quality. In this set, each objective
is optimized with the understanding that if any further optimization
is attempted, the other objectives could be affected as a
consequence. Therefore, decisions need to be taken in the presence
of trade-offs between conflicting objectives.

Addressing multiple objective problems may require techniques that
are different from standard single objective optimization methods.
This evaluation of multiple objectives is articulated based on the
decision-maker’s preferences either before or after the search.

When the preference is expressed beforehand, the designer decides
how to aggregate different conflicting objectives into a single
objective function before the actual search is performed. A
commonly adopted approach is scalarization which consists of
combining several objectives into one scalar cost function. There are
different scalarization methods, such as the weighted-sum approach
and the utility function method among others.

When search is performed before decision-making, the search is
performed with multiple objectives at the same time. The solution
space becomes partially ordered with a set of optimal trade-offs
between the conflicting objectives. This set is called the Pareto
optimal set.

 The Multi-Disciplinary Design System 279

MDDS

 8.2.3.4 Optimization

 The final step in the design cycle involves optimizing the design to
investigate the performance benefit increase. Many configurations
can basically meet similar design goals. Thus an optimization problem
can be put forward in order to search for an optimum configuration.
Each configuration has its individual group of design variables and
functions. This implies that a design can be changed to provide
various alternatives (Papalambros and Wilde, 2000).

The goal of optimization studies in this context involves studying
how a design performs and how this performance can be influenced
in order to choose the most desirable alternative or alternatives
(Bletzinger and Lähr, 2006).

Optimization modules are design space search machines. Searching
the design space entails finding the best solution(s) within a domain
of feasible solutions. The choice of an appropriate search algorithm
depends on several factors, including the design synthesis model, the
nature of the analysis models, the number of design variables, the
existence of constraints, and the linearity of either the design
variables or constraints.

The input to the optimization module is an objective function that
depends on a number of continuous or discrete values. The
optimization module seeks to minimize or maximize an objective
function by varying the values of those variables within an allowed
domain. The outputs of the optimization module are new values for
the design vector variables.

As discussed earlier optimization algorithms could be divided into
discrete numerical optimization techniques or heuristic algorithms.
Some numerical optimization techniques that handle constraints
include the simplex method, sequential quadratic programming, and
the exterior and interior penalty methods among others. Discrete
numerical optimization techniques that handle unconstrained
problems are generally gradient-based algorithms. These include
Newton's method, steepest descent, and conjugate gradient among
others. Within the interconnected and highly nonlinear nature of
multidisciplinary design problems, it cannot be supposed that a given
solution is globally optimal merely because it may be locally optimal
(Atherton, 2002). Conventional gradient-based methods may not be
suitable for this purpose, since they locate the optimum solution
according to the point in the function space at which they started.
On the other hand, heuristic algorithms are generally non-gradient
methods, like evolutionary algorithms, simulated annealing, and tabu

 The Multi-Disciplinary Design System 280

MDDS

search, can escape local optima. However, no existing optimization
technique is guaranteed to find the global optimum of a nonlinear,
non-convex problem.

Gradient-based methods find local optima with high reliability but
might not escape a local optimum. Heuristic algorithms might find a
good solution, but its optimality cannot be guaranteed since they
often tend to find a different design each time they are run. In
addition, they do not converge to a solution in the same effective
manner as gradient-based methods do.

Furthermore, no single optimization technique is applicable in
general to all types of engineering design problems. Studies in the
field of nonlinear constrained problems, which are common in
complex engineering design problems, have demonstrated that no
single optimization technique performs best for the majority of
design problems.

For a given design problem, a combination of techniques often
performs better than single techniques. Using the two dissimilar
methods in a complementary way creates a ‘hybrid’ optimization
strategy that can address the problem efficiently. This strategy
would ideally promote relative strengths of both methods and
restrain their weaknesses in order to provide maximum analytical
benefits. A heuristic technique, for example, can be applied to a
problem with a high degree of nonlinearity and multiple predicted
local optima to globally identify within the design space regions
where best solutions may lie. Starting from the solution or solutions
obtained in this exploratory search, a numerical technique can then
be applied to search locally for the best solution in this specified
region of interest, or also to fine-tune it. The most effective way
however to solve a given problem will always be dependent on the
specifics and details of that unique problem (Koch et al., 2002).

There still remain some issues when novice users apply optimization
techniques in complex design problems. These include choice of the
starting point, the number of system analyses required for
optimization, uncertainties in problem formulation and design
parameters, and their effects on the optimization (Koch et al., 2002).
Other questions and challenges relative to optimization exist at both
the system and discipline level. How to handle the problem of
multilevel optimization, how the optimum solution is established,
what it is sensitive to, how robust is it, and how to determine if it is
really the optimum solution will be discussed in the MDDS evolution
section.

 The Multi-Disciplinary Design System 281

MDDS

 8.2.4 Integration

 Integration takes place at the tail end of the MDDS development.
Integration mainly aims at facilitating the coupling of activity
modules and simulation programs regardless of discipline,
programming language or format (Koch et al., 2002).

As discussed earlier the idea of a single super software is not really
compelling practically when it comes to building simulation tools to
cover a wide range of disciplines. This software cannot simply be
tailored to address in detail any single domain within its range of
applicability. If only one set of tools exists, one analysis process, or
one design philosophy, then there would be very little space for
genuine creativity and innovation.

The benefits of smaller interacting components and modules and the
component-assembly approach in the software industry have been
recognized in many applications and have resulted in recent focus on
component-ware (Kroo, 1997). Software modules enable their design
specialists to exchange and discuss design information, alterations in
design tasks and design decisions with other specialists.

Selected modules that were modeled and created by design
specialists are then assembled and integrated in the MDDS (figure
8.10). Interfaces describe the group of services that a module can
provide (Pahng et al., 1997). They demonstrate detailed descriptions
of how different modules interact together. This includes how the
modules fit together, connect, and communicate. If these interfaces
are compatible, modules can consequently interact with each other.
The interface analysis process is useful as it aids in refining the
architecture along the lines of minimized cross-organizational
interfaces (Grady, 1994).

The integration between the different modules can be carried out
using one of the integration technologies discussed earlier in the
integration chapter, such as middleware, web services or a
combination of both. The system architect decides on the data that
will be shared from one module or tool to the next so as to assemble
an efficient MDDS. This data should pass between modules in an
automatic fashion as soon as it is all linked together. The design
teams can then focus on the design problem independently.

Managing dataflow from one module to the next, which has always
been extremely time-consuming in the past, would be overcome by
providing execution scheduling functionality and easing module
communication. Design information that a certain module desires to
receive represents module interests. These interests could trigger

 The Multi-Disciplinary Design System 282

MDDS

Figure 8.10:

The different design
activity modules are

integrated in the
MDDS

the action of receiving the well-suited design information as soon as
it is generated by any other module. Implementing automation
within the MDDS would surely minimize the time required to run
design iterations.

 The Multi-Disciplinary Design System 283

MDDS

 Furthermore, the MDDS should be built on the idea that all system
variables should be accessible and monitored from a central location
or framework, but the modules that distribute these variables should
be free to run on any platform independent of the controlling
framework (Atherton, 2002). As a whole, the organization of design
teams is considered as a distributed design environment where both
design specialists and software modules of different design teams
are geographically dispersed.

There are certain risks that the MDDS may not actually work as
formerly planned. Testing the system involves running the
simulations and reviewing the model validity. With increased
experience, system architects can predict more of these risky and
negative interactions until the integration task becomes much easier.

 8.2.5 Exploration

 After building and integrating the MDDS, it would be useful to carry
out a few experiments that could help explore the design space.
Exploration experiments and techniques are not intended as a
validation of the system as a whole as much as they are a validation
of some of the design decisions made within the MDDS, such as what
variables to include in the design vector, the systems constraints or
the structure of the objective function.

A key difficulty in the optimization process is the large number of
design parameters involved. Many algorithms cannot handle
problems of more than 100 variables, and in particular if there is no
good, feasible point known to begin with. Furthermore, optimization
studies typically need multiple computer iterations which may be
expensive or time consuming, especially in the case of large, complex
systems. These limitations have led to a growing interest in design
space exploration techniques (Koch et al., 2002).

Design space exploration can delve into “what-if” scenarios and
assess trade-off situations. This makes it an essential tool for
analyzing the effects of design variables and the shape of design
spaces, providing a better understanding of the decisions that are
made in design selection and the corresponding consequences.

Exploration techniques such as DOE can be used to provide an
overview of the design space or a local region of the design space
around an initial design. DOE concepts define a systematic and
efficient means by which a design space is analyzed, basic design
variable screening is provided, design variable effect is evaluated,
and important design variable interactions are identified (Koch et al.,
2002). The parameters that have the largest effect on the objective

 The Multi-Disciplinary Design System 284

MDDS

and constraint functions identify a subset of the original design
variables set. Optimization can become more feasible if this set is
reduced in number. A new and feasible or enhanced initial point for
optimization can sometimes be chosen using the initial points
analyzed from the DOE study. Approximations of the original analysis
or simulation programs can be generated using the full set of DOE
points.

Sensitivity analyses can also be utilized to identify what model
factors have key influence on performance measures. This implies
consequently modeling those factors carefully. Sensitivity analysis is
primarily concerned with how the specific response of a system
changes due to the modification of some other specific input
parameters (Bletzinger and Lähr, 2006). This includes exploring the
design space for the solution sensitivity with respect to input
parameters at specified design points. The degree of dependence of
the result, for example, from the input parameters or possible
extrema regarding those parameters can be assessed. Sensitivity
relies in its computation method on the partial derivation of the
quality regarding the input parameter (Bletzinger and Lähr, 2006).

Traditionally, conducting a multidisciplinary trade study is
characterized by being a time consuming process which is largely
dominated by the reformatting, transforming, and translating of data
between design disciplines and analysis modules (Atherton, 2002).
However, the MDDS approach can offer the design team the
flexibility in addressing dissimilar and large trade-spaces by allowing
the quick interchange of individual modules, leading to the easy
testing of the effect of these modules on the design solutions.

 The Multi-Disciplinary Design System 285

MDDS

 8.3 System Evolution

 8.3.1 Complexity

 One of the basic issues in engineering and designing systems is the
issue of complexity. There are several definitions of complex
systems. A complex system is defined by Crawley et al. (2004) as a
system that comprises components and interconnections,
interactions, or interdependencies, all of which are hard to describe,
understand, predict, manage, design, or change.

In design, managing complexity represents a huge challenge. Nature
however, offers the most compelling examples in relation to
complex system design, since they are the outcome of an
evolutionary design process that encompasses ever-changing
complexity.

Similarly, the nature of the MDDS process is one that involves
evolution. This notion of an evolving system yields an MDDS that is
continuously dependent on and responsive to the uncertainties of
design progress.

The MDDS design development decomposition recognizes the
evolution and the hierarchies inherent in the design process. The
MDDS design should be viewed as an incrementally changing process
that grows from the top to bottom as a combination of multiple
quasi-interdependent levels. Therefore, the MDDS resulting system
model can be described as an evolutionary model.

Designers move from simple and generic designs into more complex
and detailed ones throughout the design process. Early on in the
process, the exact structure of design objects is not clearly defined
(Rosenman and Simoff, 2001). With project progress, the design
description must evolve and change, as well as the constraints and
synthesis and analysis models. Practically, the level of description of
a specific design should be directly proportional to the amount of
information available at a specific project stage. A design could not
be described at the fabrication level when the project is still at an
early stage, as too much information impedes the project’s progress.

That is primarily why design development is divided into conceptual,
preliminary, and detailed design (Kroo, 1997a). Design description
complexity and mathematical model sophistication increase as more
detail is added, moving from simple representations to more detailed
descriptions.

Although the design development process appears to be sequential

 The Multi-Disciplinary Design System 286

MDDS

with steps following each other, the reality is that certain knowledge
can be gained or some circumstances can change as the process
moves forward, thus questioning decisions early on in the process.
The selection of properties or design vectors may change based on
specific knowledge acquired along the analytical model development
(McManus et al. 2004). Most MDO efforts do not take the evolution
of design complexity in consideration. They are only limited to the
problem of minimizing a specified function according to an assigned
group of design parameters (Kroo, 1997a).

The MDDS can be described as encompassing a dynamic architecture
and structure which is affected by several factors. These include the
number of modules and cycles needed at a particular design level
and phase. Additional factors also include the number and type of
variables in a specific design vector, as well as the required degree of
fidelity. Therefore, in addition to being multi-disciplinary, the MDDS
can be characterized as comprising multi-levels, multi-modules, multi-
variables and multi-resolutions. These characteristics are described
below (figure 8.11).

 8.3.1.1 Multi-Level

 Hierarchical levels can be identified in the system definition. Each
system is decomposed into subsystems. These can be further
decomposed with the different subsystems being linked together.
The analysis of each system occurs at a specific level of complexity
that is compatible with the interests of the individual who studies the
system.

Both the artifact design and the design process can be viewed in
terms of hierarchical decompositions, where they are decomposed
into multi-levels. Therefore, MDDS should also be considered as a
multi-level hierarchical system.

Effective planning is required, however, where there is an evolution
from one level of maturity to the other. Hence, at each level of the
MDDS, design problem decomposition and formulation should take
uncertainty of lower levels into consideration.

Solution coordination is an important factor in achieving a solution to
the full design problem through multiple solutions for the
decomposed multi-levels. Through the formulation of design
problems at different levels of the decomposed problem and the
transfer of information across these levels, the MDDS goals can be
reached.

 The Multi-Disciplinary Design System 287

MDDS

 8.3.1.2 Multi-Module

 Modules are distinct abstractions that have simple interfaces. The
abstraction hides the complexity of the modules, while the interface
indicates how that module interacts with the larger system (Baldwin
and Clark, 2000).

This notion of abstraction is very much related to the concept of
information hiding, which was first introduced by David Parnas in
software engineering (Parnas, 1972), and is applicable to any
complex system. Parnas argued that if the details of a specific block
of code were deliberately hidden from other blocks, alterations to
the block could take place without changing the rest of the system.
Designers should then divide the design parameters into two main
categories: visible information and hidden information. This will
indicate which parameters interact outside their module, in addition
to how potential interactions will be managed across modules.

Therefore, an MDDS, at a certain level, will comprise several
modules. These modules are combined in assemblies and cycles.
There could be several assemblies in one cycle as well as several
cycles within one level.

Given the multi-module and multi-level characteristics of the MDDS,
the state of the system should be observed both horizontally and
vertically.

 8.3.1.3 Multi-Variable

 The design vector and its set of variables evolve and change between
the different levels of the MDDS. In this evolution, some variables
might continue to evolve by continuing to vary in subsequent levels;
others might be locked and thus removed from the design vector,
while other new variables might be added to the design vector. The
number of variables within the design vector is known as the number
of degrees of freedom.

As discussed earlier, specific degrees of freedom should be enabled
within a design cycle for the purpose of experimentation. However,
redesign of the design vector(s) is required in successive levels. This
redesign process must be strongly built on the experience acquired
from working on different MDDS architectures.

These observations are significant for a suitable MDDS cycle
definition which will constitute the core for building its different
mathematical models. Depending on the number of cycles per level,
the MDDS can be represented as a single design vector for a single

 The Multi-Disciplinary Design System 288

MDDS

cycle on a level or as a group of design vectors in different cycles that
should be synchronized and managed at a global system level. This
becomes critical to modeling decisions as the system increases in
size.

 8.3.1.4 Multi-Resolution

 In early conceptual design stages, MDDS can be used to synthesize
many alternatives, and pertinent analysis can be conducted. In later
phases, however, more detail is required to perform elaborate
synthesis and analysis. These are conducted using higher-fidelity
modeling and tools. A simple system such as one that incorporates
beam representations of structures can be easily modeled. But,
when it is substituted by a plate or finite element model, the number
of design degrees of freedom and system dimensionality increase
remarkably. With this evolution, higher-fidelity analysis is often
required (McManus et al. 2004).

For the evolving MDDS, modules with different resolutions and
granularity levels are needed. By altering modules or exchanging
existing disciplinary synthesis and analysis modules for more suitable
fidelity levels, existing MDDS level models can be evolved to lower
successive levels.

Furthermore, the nature of the design problem itself can change
with design progress. In emergent situations, initial design vectors,
parameters and models may become irrelevant. In order to move
forward with identifying solutions and exploring design spaces,
relevant models have to be identified and instantiated. This involves
dealing with more and more complex design parameters and results,
which increase computation time, making the enhancement of the
fidelity of disciplinary analyses a difficult task (McManus et al. 2004).

Multi-resolution can be implemented in two directions: vertically and
horizontally. As discussed above, vertical multi-resolution takes place
between the different levels of the MDDS. On the other hand,
horizontal multi-resolution can occur within one design cycle. For
example, two modules could model the same aspect with one
module running at a higher-fidelity level, and therefore taking a
longer time to run, while the lower-fidelity module runs faster but
does not provide accurate answers. In this case, the system architect
could use the faster low fidelity module within the optimization, and
at different intervals of the optimization verify its results using the
higher fidelity module (Similar concepts were discussed earlier in the
modeling chapter).

However, these multi-resolution representations will have various

 The Multi-Disciplinary Design System 289

MDDS

modeling needs that can intensify the design challenge. The primary
concern of multi-resolution modeling is resolving representational
discrepancies that evolve among modules (Davis and Bigelow, 2002).
Having different modules working at different levels or within design
cycles implies the need to preserve consistency at each abstraction
level. Reynolds et al. (1997) discuss the challenges in this process.
Design strategies that take these potential discrepancies into
consideration are necessary for designing these cross-resolution
models.

 8.3.1.5 Decoupling

 Decoupling within the MDDS takes place when the interactions
between parts of the system disappear. This happens when the
various interconnected disciplines, aspects and analyses are
decomposed into subgroups which do not require the output of
another group as their input. The system structure is thus simplified
and can benefit from parallelism.

 Horizontally: Modules and Cycles

 Modularity, as mentioned earlier, is a specific design structure where
parameters and tasks are interdependent within modules and
independent across them. Modules in a larger system work together
as units but are structurally independent of one another. This implies
that a module’s internal structural elements are strongly linked
among themselves but weakly linked, with gradations of modularity
to elements in other modules (Baldwin and Clark, 2000). This notion
of independence and interdependence of modules must be
identified for any design. The system architecture must allow for
both the independence of structure and the integration of function.

Coupling or dependency within this context is defined as the degree
to which each module relies on each one of the other modules in a
given system (Kroo, 1997a). Low coupling, or "loose" or "weak",
denotes a relationship where one module interacts with another one
through a stable interface without any concern about the internal
implementation of the other module. Thus a change in one module
does not require a change in the implementation of the other one.

High coupling, or “tight” or “strong”, occurs if one module changes
or relies on the internal implementation of another module, such as
accessing local data from it, and so the dependent module will
change according to manipulations in the way the other module
produces data. This is also known as content coupling (Kroo, 1997a).

The term decoupling is thus used in a single design cycle to identify

 The Multi-Disciplinary Design System 290

MDDS

the segregation of modules that should not be dependent on each
other. Doing so usually minimizes the degree and risk of failure in any
one part of a system if another part is altered.

 Vertically: Levels

 Figure 8.11:

MDDS captures
design evolution

 Here we describe the decoupling that happens between successive
levels within an MDDS as the system evolves. As the design of an
artifact progresses, physical parts and components and their
associated functions and aspects that are weakly related and have
very little influence on other components and aspects can be
synthesized and analyzed individually.

A design cycle within a specific level that is intended to generate
certain component configurations can therefore evolve in
subsequent lower levels of the MDDS into two or more decoupled
design cycles. Furthermore, new cycles and new modules may be
created as new levels surface in the MDDS. Therefore, the MDDS
architecture is expected to be integrated in higher design levels and
modular in the lower levels.

 8.3.2 Adaptability

 Holland (1992) thoroughly discusses in his book Adaptation in Natural
and Artificial Systems the concept of adaptation or the adaptive
process, which involves progressively changing a certain structure.
He states that a set of structural modifiers or operators is generated
through carefully observing successive structural modifications.
Consequently, the observed modification sequences are generated
through the repeated action of these operators.

These operators represent actions in complex adaptive systems that
modify existing structures into new structures in well-defined ways.

 The Multi-Disciplinary Design System 291

MDDS

Operators in this sense are similar to verbs in a language or functions
in mathematics. They identify a group of paths by which the system
can change, evolve and become more complex using their powers of
conversion (Baldwin and Clark, 2000). Holland highlights the fact
that a system that involves the combination of operators that act on
structures at every stage is a system that experiences adaptation.

Within the MDDS, modularity is a concept that demonstrates
adaptation. Modularity has been be very useful in many domains
involved in complex system design.

Within the MDDS many design cycle, options can be generated using
the modular mix-and-match flexibility leading to a final design cycle
that suits its current needs. In this dynamic process, and as new
modules are tested and incorporated into larger design cycles, the
MDDS as a whole will start to change and evolve.

There are several features and actions that can take place among
modules. Four main actions can be done in an MDDS: a module
design can be substituted by another; a new module can be added to
the system; a module can be deleted from the system; and a module
can be reused in another model.

Modules that share common services can be swapped to investigate
diverse solution alternatives in a problem model (Pahng et al., 1997).
This potential of swapping or substitution constitutes the core of
economic competition, which can be only reasonable if two different
modules can serve the same ends, but not equally well (Baldwin and
Clark, 2000). If knowing in advance which module will be better is
not possible, then both modules can be generated and tested
against each other. The essence of substitution in this context lies in
the notion that the better design will win this competition.

In MDDS, a user can select at the beginning a set of modules to meet
his or her needs. In this context, MDDS is said to be configurable. It
can also be reconfigurable according to changing needs, where the
user can augment (or add) modules to the system to give it some
new kind of functionality, or exclude (or subtract) modules that are
no longer needed (Baldwin and Clark, 2000). MDDS is also
considered reconfigurable through the substitutions mentioned
earlier which represent the upgrading of existing modules. Modules
can also be potentially reusable in other problems.

Reusing well-structured and generic modules significantly minimizes
the time required to build models for new design problems. After the
construction of building blocks within the design process, these
blocks can be saved to a library to facilitate its reuse and sharing

 The Multi-Disciplinary Design System 292

MDDS

among other projects. They can also be reused as templates for
generating similar activity modules (Koch et al., 2002).

By supporting interchangeability, modularity enables designers to
control how changes in processes or requirements affect the
designed product. The flexibility by which they can meet these
changing processes enables them to delay design decisions until
more information becomes available (Gershenson et al., 2003).

In this context, an existing MDDS at a specific level can evolve to a
lower level through changing or replacing existing modules for those
with better-suited fidelity levels. In addition modules can be added or
removed from the design cycles in that level.

 8.3.3 Optimality

 Within the MDDS a set of optimization tuning parameters can be
established for each design cycle and level. These could include
parameters like the maximum number of iterations or convergence
criteria among others. The optimization can be carried out in a multi-
step decomposed optimization plan that integrates various levels of
the MDDS. Using a successive filtering of solutions, certain solutions
are moved from one level to the next to be optimized further. This is
a sequential optimization technique between the different levels
which is not expected to necessarily lead to an optimum solution.

However, the question of optimality within this context is debatable
since it depends on many factors including the initial design concept,
what is included in the design vector, the analysis modules
implemented, the objective functions and constraints applied among
many other factors. Given an initial concept the goal of optimization
within MDDS is to guide the evolution of the design towards
solutions with higher performance and not necessarily to an
optimum solution.

One of the difficulties associated with optimization in MDDS is the
high level of uncertainty involved between the levels since, in many
cases, the lower levels are not yet known. However, after the full
design has evolved and further optimization of the full system is
sought, several multi-level optimization techniques can be
implemented.

Three of these methods have been studied in detail, including:
concurrent subspace optimization (CSSO), collaborative
optimization, (CO) and Analytical target cascading (ATC).

CSSO depends on partitioning the design problem into various

 The Multi-Disciplinary Design System 293

MDDS

subspaces pertaining to the specific disciplines. Each of these
subspaces attempts to minimize a global objective, while at the same
time sharing responsibility for the satisfaction of the system
constraints. This process is managed differently by system level
algorithms according to the implementation.

CO also deals with simultaneous subproblem optimization.
Disciplinary teams, however, are responsible for satisfying local
constraints in the process of attempting to meet the target values
assigned by system coordinators. These shared target values are
tweaked by the system in order to reduce some objectives while
enabling the subspaces to meet those targets. The CO method is
appealing in many domains due to the simplification it offers in
analysis integration and communication. It also allows the domain
specific selection of optimization algorithms. It is particularly
appropriate for analyses already coupled with optimization. There
are still some limitations to existing CO applications including slow
system-level convergence and sensitivity to subspace feasibility
tolerances (Kroo, 1997b). In general, however, this method has great
potential for large problems with low dimensionality interdisciplinary
coupling.

Analytical target cascading (ATC) is another technique developed for
hierarchical multilevel system optimization. This methodology, unlike
the case with MDOs, basically addresses hierarchies that are
decomposed by objects or physical subsystems and not aspects or
disciplines.

ATC methodology is based primarily on the idea that the
performance of a system element can be derived analytically as a
function of its decision variables (Choudharyet al., 2005), and
therefore performance goals can be embodied as design targets,
which can be accomplished through design decisions. Some
performance goals can be defined as global design targets, and
proposed as part of the initial problem definition. The compatible
targets and performance specifications can be derived
computationally as functions of design decisions by using analysis
and simulation models. Concurrent design can thus be achieved by
solving the sub-problems in isolation in more detail (Choudharyet al.,
2005).

 8.3.4 Time

 To gain the maximum benefit from MDDS, design iteration time
should be significantly minimized so that many solutions can be
achieved in the process as a whole. Usually the design team spends
less time executing or specifying information pertaining to design

 The Multi-Disciplinary Design System 294

MDDS

and analysis and instead spends most of the time in managing that
information.

MDDS can have a significant role in minimizing design iteration time
through a set of methodologies and technologies. These include
mathematical modeling, systems approach, integrated design
schemas, automated synthesis, discipline analysis and
multidisciplinary optimization, which all lead to enhanced
performance in both process and product.

This reduction in iteration time enables design teams to explore the
performance of many more alternatives during conceptual design
than what is now possible, thus leading to potential improvement in
initial cost, performance and overall quality results. Many concepts
can be analyzed in parallel and related trade studies can be
conducted to investigate the design space.

This resultant efficiency does not however come without a price,
particularly when it comes to setup time. A lot of initial investment is
required in setup time and process planning. This is compensated for
though throughout the life cycle of the design system. Through
controlling previous design activity processes and modules during
model construction, the scale of this investment can be significantly
reduced.

 The Multi-Disciplinary Design System 295

MDDS

 8.4 System Behavior

 The MDDS should primarily work on maximizing performance.
However, since each discipline involved in the design can have more
than one performance attribute or requirement, a balance should
exist between these performance attributes, although conflicts are
highly expected. These conflicts are not expected only within a single
discipline, but also between different disciplines. The notion of
emergence through conflict is thus clear, as the attempt to resolve
these conflicts usually produces unexpected solutions known as
emergent solutions.

 8.4.1 Performance Driven Design

 A design process that is usually driven by meeting a group of budget,
constraints, and functionality criteria often produces an end-product
that merely satisfies these minimum criteria. The design team has to
work collaboratively in order to accomplish performance that is
better than just average. Establishing performance goals early on in
the design process augments these efforts and makes it easier to
achieve these better results.

Performance based design provides the basis by which design is
guided through performance. This provides an all-inclusive
methodology to artifact design through embracing a set of
performance-based priorities and simulation technologies of analysis.
This widespread scope of performance-based design implies crossing
many worlds, including the financial, cultural and technical. The
MDDS approach introduces a scenario where this idea of
performance driving design is clearly identified.

The analysis in this approach will not rely on the artifact’s original
geometric definition, but the geometry itself will reflect analysis
results. This is due to feedback loops from analysis to synthesis using
optimization. This definitely represents a more efficient approach
than the process where design synthesis takes place first followed by
working exhaustively on what the real artifact is required to be
(Carty and Davies, 2004).

Applying these methods should establish designs with high
performance, but should not disregard or overlook the vast diversity
in design configurations and physical characteristics. Generated
designs with similar performances are likely to have in some cases
remarkable differences in their form and configuration. Therefore,
the performance-based approach has significance and potential
success in not only promoting high performance but also catalyzing
the design process, as it demonstrates that similar performances can

 The Multi-Disciplinary Design System 296

MDDS

Figure 8.12:

A guided missile is
conceived from the
perspective of each

design specialist
individually

be attained through many different ways. Within the MDDS
performance goals and search procedures can be set and applied to
identify which design features are closest in achieving the desired
targets. The actual payoff in this situation arises when this approach
is used repeatedly and automatically.

The dilemma remains in specifying which performance criteria we
should be optimizing for. It is clear that although various disciplines
and design specialists are involved in an artifact design, these
specialists mostly aim at optimizing specific aspects of their own
discipline that they best understand (Sydenham, 2003). Figure 8.12
reflects such an aspect, as it illustrates how a guided missile is
conceived from the perspective of each design specialist individually,
and how each optimizes the system aspect that suits their discipline.

 The Multi-Disciplinary Design System 297

MDDS

 8.4.2 Collaborative Multidisciplinary Perspective

 Designing complex systems is a multidisciplinary process performed
by design specialists who could possibly be geographically dispersed.
These specialists use a variety of design activity modules and
software to achieve a common purpose (Khedro, 1996). Results of
one analysis module in the design process often affect results in
other analysis modules. At the same time, evaluating a design
effectively requires the integration of multiple disciplines (Atherton,
2002).

Design specialists mostly focus on issues that are directly related to
their area of technical expertise and responsibilities although they
understand that artifacts and systems are groups of components
that offer a specific set of capabilities in combination. On the other
hand, systems architects must focus continuously on system design
globally. Their way of attending to design specialty issues is valid as
long as it addresses global performance, developmental risk, cost, or
long term system viability. It is therefore the role of the systems
architect to orient system development in such a way that
guarantees that the appropriate balance is achieved between
attention and resources while reaching optimal system behavior.

Usually in the design process, design specialists first satisfy the
difficult design requirements and constraints while performing
design tasks in order to guarantee correctness of the design. Then
they move on to optimizing the design from their viewpoint through
satisfying other soft constraints and criteria (Khedro, 1996). These
soft constraints can be changed during the design process and do
not represent a fundamental factor for achieving a safe and sound
design. As long as the design solutions satisfy the hard design
constraints regardless of fulfilling all soft constraints, complex
system design problems remain under-constrained problems.

Design specialists tend to make and communicate design decisions
based on the performance of many design tasks, both in a
synchronous and asynchronous fashion. Cases can happen however
where the decisions they make conflict with the hard or soft
constraints of other specialists due to their limited knowledge of
them. In this case, the specialists can relax only their soft constraints
in an attempt to resolve those conflicts and arrive at a shared and
reasonable agreement about the design. The hard constraints
however cannot be relaxed.

Khedro (1996) classifies design conflicts into two main types: critical
and non-critical. Critical design conflicts are an outcome of hard

 The Multi-Disciplinary Design System 298

MDDS

constraint violation. These always have to be resolved, as it is
necessary to satisfy hard constraints to arrive at feasible designs.
Non-critical design conflicts are an outcome of soft constraint
violation, and therefore these constraints have to be relaxed by the
design specialist to reach a reasonable agreement.

Therefore, one of the basic functions of building an MDDS is to
constitute a state of balance among the different disciplines and
design specialists involved in the artifact design. The MDDS therefore
implies significant focus on balance, in an attempt to certify that no
particular attribute can thrive at the expense of an equally important
or even more important attribute, such as performance growing at
the expense of reasonable cost.

Addressing a design problem from a multi-discipline perspective
allows a more genuine understanding of the system level design
trade-space than does a myopic view of individual discipline impacts
on the system (Atherton, 2002).

Several tools that address conflicting criteria were discussed in the
modeling and exploration chapters. However, regardless of the tools
used the outcome cannot be predicted nor expected but is rather
emergent.

 8.4.3 Emergence

 In this section, we examine the concept of emergence which is one
of the main concepts for developing and understanding MDDS.
Views regarding the concept of emergence are influenced by
explorations in the disciplines of evolutionary biology, philosophy of
science, cybernetics, systems theory, and artificial life. This is due to
the ambiguous role of a concept such as emergence. (McCormack
and Dorin, 2001).

Emergence is a broad term comprising hardly related meanings
within different disciplines. This makes it harder to clearly define and
even understand. Every author has offered his or her own
classification of emergence and its various forms, making little room
for agreement between individual authors, as well as between
disciplines. There is continuous debate about defining emergence in
terms of linguistic, epistemic or ontological constructs (McCormack
and Dorin, 2001).

The concept of emergence originated in the nineteenth century
where it was studied in fields of physical, chemical and biological
systems. The common interpretation of emergence, which does not
belong to any special domain, denotes the revelation, appearance, or

 The Multi-Disciplinary Design System 299

MDDS

the action of making visible of an event, object or outcome of any
process. In design, emergence represents novelty, surprise, or
spontaneity as well (McCormack and Dorin, 2001).

An important difference has been pointed out between emergent
properties that can be explained in terms of products of lower level
interactions, and others that cannot. This implies the concept of the
whole being more than the sum of its parts. In addition, emergence is
only recognized after it takes place as it cannot be hypothetically
predicted (McCormack and Dorin, 2001).

After assembling the MDDS, it becomes a dynamic and complex
whole, interacting as a holistic structured functional unit that
searches the design space for satisfactory solutions. The system
emergent properties are not detectable through the properties and
behaviors of its modules, and can only be enucleated through a
holistic approach. The solution found by this system is expected to
be superior to the design found by solving and optimizing each
discipline sequentially, since it can exploit the interactions between
the disciplines. While MDDS is active, emergent or spontaneous
patterns can materialize as different forces compete.

One of the very intriguing issues about emergence in the context of
MDDS is that it establishes an attractive methodology that addresses
Descartes’ Dictum: “how can a designer build a device which
outperforms the designer's specifications?” (Cariani, 1991). This is
due to its strong relation to qualitatively novel structures and
behaviors that are not reducible to those hierarchically below them
(Channon and Damper, 1998). This leads to creating designs that can
that cannot be predicted by an MDDS creators. Therefore the MDDS
can be described as having intelligent behaviors.

 The Multi-Disciplinary Design System 300

MDDS

 8.5 MDDS Team and Environment

 8.5.1 MDDS Team

 The desire to integrate the work of multiple disciplines is rooted in
basic principles of design and engineering, as large complex systems
comprise components that are of interest for several disciplines and
technologies. These systems must satisfy many complex needs that
cannot be reconciled with simple solutions. However, humans are
faced with two basic challenges pertaining to the production of
technology and information. Humans are limited in the information,
knowledge, and technology that they can manage and excel in. At
the same time, the knowledge generated in these processes
surpasses by far human individual limitations (Grady, 1994). Those
who make use of all available knowledge resources can economically
solve more complex problems than others who can only hold smaller
knowledge bases. With the evolution of technology, mankind comes
across innovative and complex challenges, and thus promotes more
complex combinations of the available technology. To meet those
challenges Grady (1994) argues that the general solution to the
dilemma between the human capacity and the available knowledge
resources lies in the specialization solution.

This solution involves the specialization of individuals in limited
disciplines while devising means to bring together the skills and
talents of a team of specialists to constitute a different type of
specialist, namely the system architect. The truth of the matter is
that it would be more efficient and less chaotic if a single human
mind could tackle a design problem rather than multiple people
trying to work together. There is no doubt, however, that a system
created by a well-led team of specialists would have the upper hand
when put into comparison with one created by a single individual
(Grady, 1994). A team, consisting of design specialists and system
architects, therefore would jointly be capable of grasping a larger
body of knowledge and experience.

The importance of design specialists here lies in gaining maximum
advantage from their expanded experiences. The role of design
specialists is to guarantee that their share of the requirements and
constraints in the design process are matched by their performance
of specific design tasks and suitable design decisions (Khedro, 1996).
These tasks include building modules and assemblies that perform
design activities. There is a need, however, during the process, to
identify how a design specialist is affected by the design decisions of
another specialist. In this multidisciplinary environment, specialists
can be knowledgeable of their own discipline, but limited in

 The Multi-Disciplinary Design System 301

MDDS

knowledge about others. They would therefore not know how the
system would respond if some parameters in their modules were
altered (Bletzinger and Lähr, 2006).

The role of system architects is to perform the task of system
architecture design and integration. This involves putting modules
together into cycles, making sure that they function together as a
system, and investigating possible failures if the system does not
functionally operate. System architects should have a broad
spectrum of knowledge, as they will be continually asked to
assemble multiple types of systems. It is of extreme importance to
know how deep that knowledge should be. It cannot obviously be
equivalent to the knowledge of the design specialists in their
detailed disciplines (figure 8.13). It should be wide enough to take
into account several factors, such as risks, technological
performance limits, and interfacing requirements, and sufficient to
enable performing trade-off analyses among design alternatives
(Kossiakoff et al., 2003).

 Figure 8.13:

Knowledge domains
of systems engineer

and design specialist.

 The knowledge of system architects should extend from the highest
level of the system architecture and its environment down to the
lowest level system building blocks and modules. In parallel, the
knowledge of the design specialist should extend conversely from
the lowest level of modules, upward passing through the full
functional level of the module (Kossiakoff et al., 2003). These two

 The Multi-Disciplinary Design System 302

MDDS

knowledge domains intersect and overlap in this manner such that
the system architect and the design specialist define the various
technical problems through effective communication. They also
discuss and negotiate acceptable solutions that take into account the
general capabilities of the artifact and the MDDS design process.

Responsibilities of both system architects and design specialists can
be defined by means of the MDDS hierarchical structure (figure 8.14).
Modules and sub-cycles denote elements that that lie within the
domain of design specialists who can adjust them to a specific
application given a group of specifications.

System architects should be able to manage the complexity of
formulating the system architecture. The number of levels, the
number and type of activity modules and the technical tradeoffs that
will influence system capabilities must all be resolved by the system
architect. Interface conflicts must also be settled to arrive at a
balanced design across the system as a whole. Systems architects
should be ready to learn enough about the behavior of modules or
sub-cycles that are critical to the operation of the MDDS in order to
detect their possible influence on the entire system.

 Figure 8.14:

Responsibilities of
the system architect
and design specialist

intersect.

 The Multi-Disciplinary Design System 303

MDDS

 8.5.2 MDDS Environment

 As discussed previously, component-based software engineering and
the component-assembly approach for design have been evolving
and become increasingly appealing in the software industry. Both
the design workspace and process are affected by this approach.
Instances of modules and components are brought together to
produce the MDDS cycles and levels. As the MDDS is essentially a
program designed as an assembly of linked components, the
environment that can help create the MDDS can be considered a
virtual design studio that implements the component-assembly
approach.

Therefore, this component-assembly approach identifies the role of
the system architect as an assembler who links and puts components
together. Different representations are acquired when assemblies
are dealt with as components or modules. The view of the design
specialist who initially designed the assembly is distinguished from
that of the system architect who treats that assembly as a module.
In this environment, creating an MDDS does not require writing
extensive code to link or create programs. The MDDS environment
should offer tools that manage the interaction of software
components. The environment should also preferably work on
standard computing infrastructures to allow for cross-platform code
integration.

The MDDS design environment should enable generating integrated
models by allowing all design participants to embed collaboratively
their specific software tools or models into modules. Hence, each
module acts as a standalone software component. The services it can
offer and the services that must be offered to it are pointed out
through its public interface.

In this environment, the modular format in which the integration of
models and software applications occurs enables users to select well-
suited models based on the required level of fidelity in addition to
being tailored to address the type of design problem. This allows
designers to focus on the problem as the generated data is linked
and passed automatically between analysis modules.

This environment can provide powerful management tools that can
be applied to computation-intensive design activities. An internal
dataflow management can be assigned for such an environment.

Data flow visualization is also needed in an MDDS developing
environment. This would afford the user a reflective view of the

 The Multi-Disciplinary Design System 304

MDDS

model during the MDDS assembly process. The environment
therefore should be augmented with a user-friendly graphic user
interface (GUI) that encompasses module data linking and post
processing.

The environment should inform the system architect, who acts as the
central dataflow manager, of events that affect the dataflow of any
iteration. The automated data transfer that results will certainly
participate in minimizing the time consumed in evaluating and
evolving designs.

The environment should also implement groups of design
exploration tools for design space exploration. In addition, solution
monitoring, and result visualization and post processing should be
sustained.

Other capabilities that could also be implemented and empowered
by automated tools include generating graphs, conducting
optimization studies, creating reports, or viewing 3D model
representations.

In addition, the environment should be able to store modules
developed by design team members for use in similar design
problems. The module can also be made publicly available to other
design participants. In this manner MDDS environments could
benefit from business models that are more widespread within
subclasses of the technology business sector, such as the direct
business model, which is utilized by many companies including Dell.
This could also benefit from the increasing popularity of the World
Wide Web by publishing models on the Internet (Pahng et al., 1997).
Furthermore, the environment should be capable of running
distributed models (Atherton, 2002).

Within the MDDS environment the synthesis, analysis, evaluation or
optimization modules can be published by experts and organizations
as live services available through service marketplaces over the
Internet.

Such a marketplace can offer a new paradigm for design
development. The competition between different firms will lie not
only in their ability to design new products, but also on developing
mathematical models and embodying and publishing new design
services. In this context, designers and suppliers come closer
together as a result of highly responsive modeling and simulation
systems (Abrahamson et al., 2000).

 The Multi-Disciplinary Design System 305

Experiments

 I will now demonstrate the applicability of the Multi-Disciplinary
Design System through some experiments that I hope will express
the strength of the MDDS in generating interesting design solutions.
Riccardo Merello collaborated with me on all these experiments
while Philipp Geyer collaborated on experiment one level two.

The first experiment will demonstrate the ability of the MDDS in
handling complexity through evolution and decoupling horizontally
and vertically. The second experiment will demonstrate the
adaptability of the MDDS framework.

 9.1 Experiment 1 - Level 1

 9.1.1 Concept

 Figure 9.1:

The formalism of the
design concept

shows five spatial
components with

interrelations
between them

wrapped by a skin

 The design concept of our experiment includes a simple allocation of
discrete but interdependent spatial components within a rectangular
site that is divided into an n x m grid of cells. These spatial
components are wrapped within a skin that defines their interface
with the environment. When a configuration of the spatial
components is reached, a structural frame is generated. The spatial
components are allowed to relocate and deform to satisfy multiple
performance and objective requirements (Figure 9.1).

9. Experiments

 The Multi-Disciplinary Design System 306

Experiments

 9.1.2 Decomposition

 9.1.2.1 Component Decomposition

 The design concept will be decomposed initially into four main
components. These will be the spatial components, the floors, the
skin and the structural framing (figure 9.2). Based on the design
concept it is clear that there is a strong dependency between all
four components and that all four are integrated within the design
process. For example, if a spatial component changes its location,
then the floors are affected and the skin is modified which also
affects the structural frame. This dependency will have to be taken
into account in the aspect decomposition. Furthermore, both the
skin and structure will be further decomposed in the subsequent
level. The synthesis modules will have to generate these different
components.

 Figure 9.2:

Component
Decomposition

 9.1.2.2 Aspect Decomposition

 Based on the dependency between the different components in the
initial developmental level, the aspects of interest in all four
components will have to be identified simultaneously.

 Figure 9.3:

Aspect
Decomposition

 In the case of level one, the aspects will be first decomposed into

spatial planning, environmental and structural aspects. Spatial

 The Multi-Disciplinary Design System 307

Experiments

planning aspects will be further decomposed into adjacency, area,
proportion, and real estate aspects. Environmental aspects will be
decomposed into thermal and lighting aspects. Structural aspects
will not be decomposed further (figure 9.3). These will represent the
main aspects that we will analyze for.

 9.1.2.3. Development Decomposition

 Within development decomposition decisions have to be made on
what will be included in a certain level and what will be left for
subsequent levels. This will identify the expected deliverables of a
certain level.

Within our current experiment, the deliverables of level one will
include a configuration of the spatial components, the floors, the
skin and structural frame (figure 9.4). These configurations will have
to be assessed for adjacency, area, proportion, real estate, thermal
and lighting.

 Figure 9.4:

Development
decomposition

 9.1.2.4. Activity Decomposition

 Based on the design concept and the mapping between components
and aspects we noticed that structural frame only maps to the
structural aspect. For the sake of simplifying the design task, and
although the structural frame is dependent on the other
components in its design process, the design team made a decision
to decouple structure at this level (figure 9.5).

This will generate two design cycles at this level. The first tries to
solve the spatial planning aspects as well as the environmental
aspects. The second should take the output of this cycle and
generate the sizing of the structural system. This experiment will
focus on the first cycle.

This design cycle can be further decomposed into design activity
modules. These design activity modules will include synthesis,

 The Multi-Disciplinary Design System 308

Experiments

analysis, evaluation and optimization modules. Given a design
vector, the synthesis modules will generate the spatial components,
floor, and skin. The analysis modules will analyze for adjacency, area,
proportions, real estate, thermal and lighting behaviors. The
evaluation modules will aggregate the different behaviors of the
different analysis modules into a general performance quantity.
Finally, given the outputs of the evaluation modules, the
optimization modules will search the design space and specify a new
design vector.

 Figure 9.5:

Component and
aspect

decomposition
mapping

 9.1.3 Formulation

 As opposed to the top down decomposition of the design concept
into modules, the process of assembling and formulating the current
MDDS design cycle is a bottom up approach (figure 9.6).

As stated in decomposition, the synthesis modules, given a design
vector, should generate the spatial components, floor and skin. This
will be achieved by an assembly of three synthesis modules: the rule
set module, the data structure module and the inference engine.
These three modules will work together as a unit. This synthesis
assembly receives the decoded design variables from the design
vectors module in the optimization cluster and outputs a design

 The Multi-Disciplinary Design System 309

Experiments

solution (phenotype) that can be analyzed.

Within the analysis cluster, each of the six analysis modules receives
relevant data from the synthesis assembly. Each module should then
provide a measurement of the design performance for a certain
aspect.

 Figure9.6:

The MDDS cycle on
level one

 The evaluation module controls the flow of data by making sure that
those designs that do not comply with the constraints are not sent
to the synthesis assembly to be further developed into a full design
solution (phenotype). In fact, the data flow path between the
synthesis assembly and the analysis cluster represents a bottleneck

 The Multi-Disciplinary Design System 310

Experiments

within the cycle due to its computational burden. Therefore, it has to
be managed efficiently. If the constraints fail there is no need for a
phenotype to either be formulated or analyzed, since doing so would
only waste computational resources. However, if the constraints are
not violated, the performance measurements generated by the
different analysis modules are then aggregated into an objective
function that acts as a figure of merit. The evaluation modules
handle the multi-objective output generated by the different analysis
modules.

Due to fact that we are at an early stage of design, a GA heuristic
algorithm was chosen as the optimization algorithm. The GA in the
optimization assembly will evaluate the fitness of the design
solutions in the population. Several solutions will be chosen based
on their fitness and undergo genetic transformations to form a new
population. The GA runs until satisfactory fitness levels are reached.

 9.1.4 Modeling

 9.1.4.1 Synthesis Modules

 The synthesis assembly will mainly consist of three modules: the data
structure module, the rule set module, and the inference engine
module. In constructing the geometry of a design solution, a
bottom-up approach is taken within the data structure module.
Three main data structures are implemented: cells, spatial
components and skin. The data structure module is organized
hierarchically with feedback loops between the different data
structures.

 A cell represents the elementary unit of the space in which the
spatial components are to be allocated. It is defined by a set of
control and boundary points and construction lines. It has
knowledge about its location and its neighboring cells. It also knows
the status of its occupancy and by which component it is occupied.
In this experiment we implemented eight cells. Each cell contains
four control points with at least two shared with neighboring cells.
There are a total of twenty-two control points.

A spatial component grows in a cell, inheriting all its base geometry.
It has a reference to the component object, which in this case is the
spatial component spline Furthermore, when the skin is generated,
the component knows which skin regions it is associated with. It also
has a set of attributes that include perimeter and area of the spatial
component, length of each segment of the component region, and
the normal angles that define the orientation of each segment.

 The Multi-Disciplinary Design System 311

Experiments

The skin is generated from the geometric configuration of
components. The skin grows sequentially from supports that are
generated from both the components and the cells they occupy. The
data structure includes a reference to the skin’s object, which in this
case is the skin profile spline. It also includes an attribute that
defines the area enclosed by the skin.

In regards to the rule set, our approach draws from shape grammars
pioneered by Stiny and Gips (Stiny and Gips, 1972). Although the
spatial relations and dependencies can be coded directly in the
grammar, the automation of general shape grammars is difficult due
to the recurrent emergence of new shapes in the process. A class of
shape grammars that is applicable to computer implementation is
set grammars (Stiny 1982). Set grammars consider shapes as
symbolic objects and therefore do not require difficult sub-shape
matching procedures. This is the approach used here. The grammar
implemented is based on three fundamental design-rule sets (figure
9.7). These rules draw from knowledge built into the data structures
and are organized hierarchically.

The first set of design rules deals with the allocation of spatial
components. There are six rules in this set. The second set of design
rules deals with the deformation of the spatial components by
altering the coordinates of the control-points that define the spatial
components in both the x and y directions. There are two rules in
this set, one for each coordinate.

The wrapper skin poses considerable difficulty. Since the
components configuration boundary is not a convex hull, the skin
cannot be formulated using known algorithms for that class of
problem. A possible approach to solve the problem would be by
using a local optimization loop. However, this would create an extra
layer of complexity that would be computationally exhaustive. An
alternative approach would be using a set of parametric rules that
can generate the skin directly. This is the approach assumed here.
These rules compose the third rule set.

Each rule in the third rule set is applied locally to each cell and each
component in a counterclockwise fashion generating the skin
supports from which the skin grows. The skin starting and ending
control points are based on the cell-underlying grid. There are
nineteen rules in this set that can capture all the different generated
configurations. Each rule divides the skin into regions. This partition
of the skin is a useful representation for many of the analysis
modules implemented, since it determines each component exposed
regions in an additive piecewise manner. Each component region is
in turn broken down into segments. Depending on the rule applied

 The Multi-Disciplinary Design System 312

Experiments

the number of these segments range from one to four (figure 9.8).

The synthesis grammar rule sets implemented here are fundamental
operators that cannot be decomposed or recomposed. The rule sets
contain all required rules and the aim of the generative mechanism is
to find satisfactory sequences of these rules.

 Figure 9.7:

Three rule sets define
the synthesis

grammar.

 The Multi-Disciplinary Design System 313

Experiments

 Figure 9.8:

The sequence of
application of the

three rule sets.
Starting with the first

cell at time t =0 and
ending with the last

cell at time t =8.

 The design vector that provides the inputs to the synthesis phase is
divided into two types of variables, namely topological and
geometrical. These topological and geometrical variables have
generally been implemented separately in space planning problems.
They are handled within the synthesis phase by the first and second
rule sets respectively. The third rule set builds on the outcome of the
first and second rule sets.

The inference engine scheduler applies the rule sets sequentially in
an orderly manner. The interpreter searches each rule set for the
matching rules of the current state and fires them when appropriate.
The rules of the third rule set are context sensitive and function like
a simple two dimensional cellular automata that analyses each
neighbor’s occupancy and decides which rule to apply. All three
synthesis modules were implemented in the CATIA VBA
environment.

To summarize, the inputs to the synthesis modules are:
a- Location of the spatial components which handles the topological
variables
b- Location of the control points in the system which handles the
geometrical variables

And the outputs are:
a- Area of each spatial component
b- Perimeter of each spatial component
c- Length of each spatial component region
d- Length of each segment composing a region
e- Orientation of each segment composing a region
f- Total area enclosed by skin

 The Multi-Disciplinary Design System 314

Experiments

 9.1.4.2 Analysis Modules

 In the proposed experiment, the design concept will be broken
down into multiple single-disciplinary analysis modules in order to
evaluate how well it performs from the point of view of each
discipline separately. These modules include: an adjacency module,
an area module, a real estate module, a proportion module, a
thermal module and a lighting module (Figure 9.9).

 Figure 9.9:

The analysis phase
includes six analysis

modules.

 Since we are working at the design concept stage, the level of detail
of the overall design constitutes a simplification of reality. Any
rigorous analysis may go beyond the scope and the precision of the
overall design description. Therefore, the models we will use for the
different discipline modules will be based on heuristics or simplified
representations to test the feasibility of design solutions. The
modules are implemented in VB Scripts or Excel and built in VBA
Scripts.

 Adjacency Module

 A functional rationale determines the adjacency requirements that
the spatial components have to comply with. These requirements
are treated and quantified as a set of “bond forces” that tie together

 The Multi-Disciplinary Design System 315

Experiments

all components pair-wise. In the adjacency module, the actual
design–in terms of the location of the spatial components–is
examined and rated against these requirements.

An example of a set of adjacency requirements is given in table 9.1 (a
higher adjacency attraction corresponds to a higher number).

 Table 9.1:

Adjacency
requirements.

 SC
-0

1

SC
-0

2

SC
-0

3

SC
-0

4

SC
-0

5

SC-01 0 2 1 0
SC-02 0 0 1 1
SC-03 2 0 0 0
SC-04 1 1 0 1
SC-05 0 1 0 1

 Given a spatial component A, the module considers its “neighbours”
and checks whether any of those is associated to A in the adjacency
table, and how strong the intensity of the bond is. That figure is then
multiplied by a geometric coefficient that quantifies how “close” the
neighbours are, according to table 9.1.

 As the above figure shows, this filter strongly amplifies the score of
the N-S neighbourhood relationship; E-W adjacency comes second
since it involves the crossing of the circulation spine, being amplified
by a factor two, then at last any diagonal relationships are
considered. Any more distant are not considered. In symbolic terms,
the rating for one component is given by:

 ∑
=

=
N

j
ijijiadja gaJ

1
, ,

where

 aij is the element in the ith row and jth column of the
adjacency matrix (Table 9.1), and

gij represents the geometric coefficient given in figure 9.10,
when component i lies at the centre of the diagram and
component j.

The total output is given by:

 pena

N

i
iadjaadja JJJ += ∑

=1
,

 The Multi-Disciplinary Design System 316

Experiments

Where

Jadja,i are the output from each component and

Jpena is a penalty that applies if the entrance is not on the
West side of the building (were the street is supposed to be).

 Figure 9.10:

Adjacency score
amplifying factors g.

N

S

 1 3 1

W 2 A 2 E

 1 3 1

 Area Module

The area module compares the areas of the spatial components
generated by the synthesis phase with the areas prescribed by the
architectural area program. It favours solutions with a high
compliance with the program and flags solutions that show a worse
compliance.

For each spatial component, the following function is calculated:

ireq

act

act

req
iarea A

A
A
A

J
,

, ,min

=

)1;0(, ∈iareaJ

Where:

Areq is the area of the ith spatial component, as specified by
the program, and

Aact is the value corresponding to the actual design.

The values from all spatial components are then averaged to obtain
an overall value:

 The Multi-Disciplinary Design System 317

Experiments

 ∑
=

=
N

i
iareaarea J

N
J

1
,

1

Jarea lies in the range (0,1); an optimal design corresponds to an
output of 1, whereas lower values flag solutions that show a worse
compliance with the program.

Real estate Module

This module compares the floor plan’s net area to its gross area. It
aims at minimizing the space between the spatial components.
These are areas that are allocated to circulation, but have a lower
real estate value.

The circulation area is calculated as:

 ∑
=

−=
N

i
itotcirc AAA

1
Where

Atot is the total floor area enclosed within the skin boundary,
and

Ai is the area of the ith spatial component.

The scalar:

−=

tot

circ
circ A

A
J 1

is output to the performance module; it ranges in the interval (0;1),
the higher values corresponding to a more favourable design.

 Proportion Module

 The shape of the spatial components is determined by the location
of the control points. A spatial component may have a multitude of
possible shapes due to the location of the control points. This
module aims at promoting more skewed or slanted shapes that
produce aesthetically more appealing layouts, while keeping
elongation and distortions within acceptable limits. This module
filters any regular or fairly irregular shapes and discourages highly
irregular forms.

The proportions module was designed to quantify and rate this
aspect of the design. The ratio:

 The Multi-Disciplinary Design System 318

Experiments

24

p
Ae π=

was elected as the numerical benchmark for proportion. In fact, for
all closed curves, the Isoperimetric Inequality states that 1≤e , the
equality exclusively holding for the circle. Lower values of e
correspond to more slanted or oblong curves. As such, the output
function of the module was built to filter with a higher rating any
regular or fairly irregular shapes and to discourage highly irregular
forms, according to the following law:

α

=

0
, ,1min

e
eJ iprop

where e0 and α are shape parameters that control the width of the
plateau and the slope of the descending branch, respectively. The
average of the above output functions, as there is one per spatial
component, is sent to the performance module:

 ∑
=

=
N

i
ipropprop J

N
J

1
,

1

 Thermal Module

 Assuming that we are building in a cold climate, it is important to
provide a design that minimizes thermal losses and favoured solar
gain. A simple thermal module was devised to measure the energy
balance. A few simple assumptions were adopted, due to the
minimalism of the design model. Yet these simple assumptions
proved capable of capturing the fundamental relationship between
the shape of a building and its environmental performance.

The assumptions that were used in the module include:

○ The heat exchange is duo-dimensional or, equivalently, the
material properties of the cladding materials do not vary along
the floor height.

○ Heat exchange solely takes place in the exposed regions of the
spatial components’ perimeter, as these are possible
fenestration locations. This crude but reasonable assumption
neglects the energy dispersed through the walls, as this is usually
considerably smaller than the heat flow lost through the
windows panels.

 The Multi-Disciplinary Design System 319

Experiments

○ Solar gain depends on the local orientation of the façade, being
maximum on the South side and negligible on the North side. Its
maximum relative intensity–with respect to the conductive and
convective mechanism–is a design parameter, and can be varied
according to the intended location of the house.

According to these assumptions, a simple algorithm computes the
heat exchange balance:

 ()∑
=

=
R

j
jqj kLQ

1
,

where

R is the number of exposed regions,

Lj is the length of the jth exposed region and

kq,j is a parameter that defines the normalized heat loss per unit
length of the region. kq,j depends on the average orientation of the
region and includes both conduction and convection and solar gain.
The relative importance of these two mechanisms is determined by a
parameter and can hence be adapted to the geographical, climatic
and technological conditions. kq varies as shown in Figure 9.11.

 Figure 9.11:

Variation of kq (and
kL) with orientation.

 The total heat loss Q is then normalized with respect to a

characteristic length of the building, obtained as the square root of
the total floor area:

 Q
A

Q
tot

1
=

 The Multi-Disciplinary Design System 320

Experiments

 The most advantageous design in terms of heat loss would generate
a minimum normalized loss Q = 0 (no heat loss). Higher scores
correspond to solutions with a worse balance. The final module
output Jther is a transform of Q according to a monotonic function:

 ()QJJ therther =

Note that Jther needs to be maximized, and its optimum value
corresponds to 1. Its graph is shown in Figure 9.12.

 Figure 9.12:

 The function Jther(q).

 Lighting Module

 The day lighting performance is assessed by adopting a simple
geometric model. The module measures, for each exposed region in
a spatial component, the fraction of the area that is exposed to
sunlight and multiplies it by a coefficient that depends on
orientation. A number of physical simplifications were also adopted.

 jLjlitjlit kAA ,,mod,, =

For each region, the illuminated fraction Alit,i of the total component
area is the area of the curvilinear figure bounded by the exposed
region, its offset at a distance d toward the centre of the
component. The coefficients kL,i depend on the average orientation
of the region, according to figure 10.

The variation of kL against orientation is given by a sinusoidal law
whose maximum (kL = 1) corresponds to the South and its minimum
(kL = kL,min) to the North:

 []1;min,LL kk ∈ [*]

kL,min is a parameter that can be modified according to the location of

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

 The Multi-Disciplinary Design System 321

Experiments

the building and varies with orientation. The total value is then
calculated:

∑
=

=
R

j
ilitlit AA

1
mod,,mod, [**]

Note that if ke,j = 1 j then Alit,mod would physically represent the total
illuminated area. Otherwise, the ke coefficients act as a filter and
decrease the scores of the regions that do not face South. Alit,mod is
then divided by the total physical floor area to obtain the output Jlite:

tot

lit
lite A

A
J mod,= [***]

It follows from [*], [**] and [***] that 0 [Jlite < 1, unity corresponding
to an optimum performance.

 Constraints Modules

 There are two main constraint modules implemented. The first is a
topological constraint module; and the second is a geometric
constraint module. Both modules act on the design vectors and not
on the design solution generated from the synthesis phase.

In the topological constraints module the spatial components are
tested against the adjacency requirements specified by the designer.
Two components may have a strong bond, a weak bond or no bond
at all. The solution generated by the synthesis assembly may or may
not comply with the requirements, and, in particular, some of the
strong-bond relationships may not be obeyed. The topological
constraints ensure that the number of violated strong-bond
relationships does not exceed a pre-set threshold.

Although the design vector module implemented in the optimization
phase constrains implicitly the coordinates of the control points to lie
in a predefined order within the row or column they belong to, this
condition is not sufficient to keep the deformation of the grid within
acceptable limits. The geometric module handles the deformations
and prevents any excessive distortion of the grid that might create
non-convex spatial components.

In addition to the constraints modules, a constants and data storage
module was also implemented. This module contains all the
constants and parameters used by the different modules such as
location, climate, and area program among others.

 The Multi-Disciplinary Design System 322

Experiments

In order to avoid any excessive distortion of the grid, each control
point must lie within a specific region, delimited by the red lines in
figure 9.13. Each red line is obtained by offsetting the corresponding
gray line by an amount d.

 Figure 9.13:

Graphical
representation of the

geometric
constraints.

 These constraints prevent each quadrilateral region from assuming a
non-convex, hourglass-like shape, resulting in computational
problems and in an unacceptable design. This kind of constraint is
defined by the following equations (in the case of quadrant NE):

() ()22

1
1
1

ENEN
EE

NN

CC

uuvv

d

uv
uv
uv

−+−
>

Where:

uc, vc are the coordinate of the point subject to the
constraint;

uE, uN, and vE, vN are the coordinate of the adjacent points,
respectively to the East and North of point C.

 9.1.4.3 Evaluation Modules

 There are three evaluation modules implemented. The first is a flow
control module that evaluates if the design vector violates the
constraint modules in the analysis cluster. It acts as a switch directing
the data flow to either of the other two evaluation modules. The
other two modules are the feasible design and infeasible design
modules. The flow control module triggers the infeasible design
evaluation module if the constraints are severely violated. If the
constraints are not violated, the flow control module triggers the

 The Multi-Disciplinary Design System 323

Experiments

feasible design evaluation module.

Although the constraints are handled by the optimization modules,
the flow control module is important from a design-process
management point of view. If the design vector is infeasible the flow
control module would bypass the synthesis and analysis modules
saving extensive computational time.

The infeasible design module simply signals the violation to the
optimization modules and ranks the design solution in proportion to
the number of violated constraints.

The feasible design evaluation module on the other hand triggers the
synthesis and analysis modules. All the ratings (Jarea, Jcirc, etc.) of the
disciplinary performances that originate from the analysis modules
converge into the feasible design evaluation module, where they are
aggregated to generate an overall evaluation of the design,
according to the standard scalarization approach.

The final multi-disciplinary performance J is the weighted average of
the normalized output from the various modules:

∑

∑

=

== M

m
m

M

m
mm

w

Xw
J

1

1

where

M = 6 is the total number of analysis modules;

Xm is the normalized output from the mth analysis module,
and wm denotes the corresponding weight. In particular, Xm is
obtained by normalizing the actual output of the mth module
Jm according to:

min,max,

min,

mm

mm
m JJ

JJ
X

−

−
=

By adopting scalarization, it becomes straightforward and
convenient to explore the influence of one or more disciplines on the
overall design by amplifying the corresponding weights wm.

 The Multi-Disciplinary Design System 324

Experiments

 9.1.4.4 Optimization Modules

 The optimization modules consist of two groups of modules. The
first contains the optimization algorithm, and the second is a
converter module which converts the outputs of the optimization
algorithm into data which the synthesis modules can understand.

The design concept clearly entails a multi-performance space-
planning problem. Space-planning problems have been studied by
many researchers (Buffa et al, 1964). They are considered one of the
most interesting and difficult of formal design problems

The NP-Completeness of the space-planning problem makes it
impossible for any process to guarantee finding the optimal solution
within a reasonable time. There are no known algorithms for this
problem. Its difficulty arises from its complex nonlinear nature and
from the combinatorial character of generated solutions (Jo
and Gero, 1998).

During the synthesis phase a large number of possible solutions can
be generated even with a small number of space components. The
number of solutions grows exponentially as the number of space
components increases. During the analysis phase, the multiple
performance and objective requirements involve expensive
computations due to the very large number of solutions to be
analyzed.

 Design Vectors Modules

 The design vector contains the design variables. It guides the design
solutions by informing the synthesis modules, like the DNA of an
organism. These design variables are produced by the optimizing
algorithm, which “learns” from the performance history of the
previous generations and tries to find values for the variable that
increase its collective performance. Two major categories of design
variables have been considered in our experiment and are
implemented in two different modules these are: the topological
variables module and the geometric variables module.

The topological variables module defines the cell location of each
spatial component. Instead of creating constraints that prohibit the
allocation of two different spatial components in the same cell, this
check is performed implicitly within this module. This guarantees
that no two spatial components are placed in the same cell.

The geometric variables module on the other hand guarantees that
the control points in a row or a column remain distributed in an

 The Multi-Disciplinary Design System 325

Experiments

organized manner, in order to minimize singularities while
generating the cells.

 Genetic Algorithm Module

 The optimization algorithm to be implemented has to maximize the
multi-disciplinary performance J formulated in the evaluation
module. Due to the nature of the design space, the search algorithm
implemented should not be limited by restrictions of continuity or
existence of derivatives. Therefore, a heuristic search algorithm was
considered to be suitable for this case. A Genetic Algorithm (GA) was
implemented.

Genetic algorithms are modeled after natural evolution, which is able
to create a large set of creatures that are suited for their
environments. The GA’s representation is done at two levels, namely
the genotype level and the phenotype level.

The genotype is the implicit representation of an individual design
solution. It consists of a sequence of coded instructions analogous to
DNA in natural evolution. In our experiment these instructions are of
two types: topological instructions for allocating spatial
components, and geometric instructions for modifying control points
that affect the cells. All the genetic transformations including
crossover and mutation happen at the genotype level.

On the other hand, the phenotype is the interpretation of genotype
at the physical level. It is the external perceptible representation of
the genotype. The behaviors of a design solution can be observed at
this level. Therefore, the analysis task is performed to design
solutions at this level.

The evolution starts from a population of randomly generated design
solutions, in addition to a few seeded acceptable design solutions to
guide the evolution. (A successive seeding methodology was
implemented; three seeding phases were applied throughout the
evolution). Evolution happens in generations. For each generation,
the fitness of every design solution in the population is evaluated.
Based on the fitness the selection operator shortlists the individuals
that will survive and breed to form the future generations. In our
experiment this fitness is represented by the multi-disciplinary
performance J formulated in the evaluation module.

Constraints are implemented through the use of penalty functions. If
a solution does not comply with the constraints in the system a
penalty is added to the fitness of the design solution according to

 The Multi-Disciplinary Design System 326

Experiments

the degree of violation.

Due to the existence of multi-objectives, the aim is not to produce a
global optimum solution, but rather to direct the evolutionary
process to produce populations of good solutions. These solutions
would be used to study the tradeoffs between the different
objectives.

 Topological Design Vector (DV01)

 For this experiment we have five spatial components and eight
potential cell locations. DV01 has the following form:

 { }5,01...2,011,0101 dvdvdvDV =

Every element is a real numbers in the range [0,1], and corresponds
to a spatial component. An algorithm turns the scalars into actual
locations of the spatial components and stores them in the location
vector LV:

 LV = {lv,i} i = 1-8

lv,i can either be null (if the ith location is empty) or hold the name of
a spatial component. As such, this algorithm decodes the cryptic
information contained in the design vector DV01 (the genome of the
design) into a tangible design configuration (the location vector).

 Geometric Design Vector (DV02)

 DV02 contains all the information that generates the geometry of the
design in terms of the positions of the Control Points. DV02 has the
following form:

 { }58,02...2,021,0202 dvdvdvDV =

All variables dv02,i are in the range [0,1]. The coordinates of the
control points, summarized in the array CP (22 x 2), are computed
from the design variable according to a set of algebraic relationships.

As an example, the following equations determine the x-coordinates
of control points 3, 4 and 5:

CP(3,1) = CP03,Xcoord = dv02_04/sum(dv02_04 + dv02_05 +
dv02_06 + dv02_07)

CP(4,1) = CP04,Xcoord = dv02_04 + dv02_05/sum(dv02_04 +

 The Multi-Disciplinary Design System 327

Experiments

dv02_05 + dv02_06 + dv02_07)

CP(5,1) = CP05,Xcoord = dv02_04 + dv02_05 +
dv02_06/sum(dv02_04 + dv02_05 + dv02_06 + dv02_07)

Similarly, all other control points are defined. It is important to note
that, although the application that transforms DV02 into the array CP
is not injective, it is surjective, therefore the design (phenotype)
associated to a design vector (genotype) is uniquely defined.

 Genetic Algorithm Module

 The GA’s parameters used in the experiment were:

Population Size: 24
Maximum Generations: 600
Selection Scheme: Multiple elitist
Preserved Designs: 8
Operator Probabilities
 Discrete Variable Crossover: 1.0
 Discrete Variable Mutation: 0.15
Constraint Tolerance
 Maximum Constraint Margin: 0.05
 Percent Penalty: 0.5
Number of Top Designs Stored: 12
Random Number Seed: 4335

 9.1.5 Integration & Exploration

 When all the modules discussed earlier have been built and their
validity verified, the data flow model of the design system is
implemented and the modules are integrated. For the integration
ModelCenter from Phoenix Integration was used. As discussed
earlier in the integration chapter, ModelCenter encapsulates the
different programs using wrappers that provide interfaces that
facilitate the integration (figure 9.14). The integration of the different
design modules produces a powerful design system that acts as a
holistic, structured functional unit, capable of searching the design
space for valuable solutions.

The MDDS demonstrated promising results (figure 9.15). It managed
to generate interesting solutions to our multi-performance space-
planning problem. It managed to improve the overall performance of
the design solutions beyond our initial seeded solutions. The design
solutions in the final populations tended to be compact in their
shape. This implies that the design drivers were mostly the adjacency
and real estate modules, which were highly weighted in our objective

 The Multi-Disciplinary Design System 328

Experiments

Figure 9.14:

MDDS Module
Integration

function. As had been expected, both the lighting and thermal
modules were in clear conflict with each other. Since they were both
given identical weights, they tended to balance out each other. The
program and proportion modules did not seem to have an obvious
effect on the design solutions.

Optimization

Evaluation

Synthesis

Analysis

Constraints

 The Multi-Disciplinary Design System 329

Experiments

 Figure 9.15:

The evolution of
solutions. Solutions

in the final runs tend
to be more compact

in their shape.

 The Multi-Disciplinary Design System 330

Experiments

 9.2 Experiment 1 | Level 2

 9.2.1 Design Concept

 This experiment builds on the output of the previous higher level
experiment where the spatial components, floor and building skin
were established. This section attempts to present MDDS evolving
from the first level into a lower level with more detail. At this level
the MDDS will include a new design cycle that will be used to design
a building skin.

The design of a building skin is a complex process that involves many
disciplines and competencies. The skin is a crucial, active part of the
building, because it constitutes its interface with the exterior. It is
meant to block or allow the flow of matter, such as rain, people, and
energy, in the form of light, heat (or cold) and radiation, following a
number of functional criteria. In addition, the skin is the “face” and
the “business card” of a building toward the exterior, and must
therefore comply with aesthetic requirements and formal
equilibrium (or dis-equilibrium).

Therefore, it is evident that the very nature of skin design for
buildings is a multidisciplinary one. The skin must meet numerous
architectural and technical requirements, such as transparency,
sufficient light intake, minimal thermal loss, structural safety, and
limited cost of building materials.

The skin in this experiment will be composed of hexagonal cells
organized in a “beehive” pattern. Each cell can either host a window
or a cladding panel (figure 9.16). It is supported by a two
dimensional, non-planar truss of steel pipes, connecting at the nodes
in welded joints.

The topology of the “beehive” does not change during the design
process, i.e. no new cells can be generated and no cells can
disappear, but distances between nodes can vary, and,
consequently, the areas of the cells are variable, as well as the
lengths of the connecting segments and the amplitude of the
angles. The geometry of the grid is described by the spatial
coordinates of the nodes.

The nodes are allowed to move on the surface of the façade,
generating cells with very different areas and geometry, depending
on the requirements and on the constraints. During the design
process, the nodes move, driven by the “need” for optimum
performance: more light in the interior, less energy loss, increased
structural efficiency, architectural preference, etc. Each cell is also

 The Multi-Disciplinary Design System 331

Experiments

Figure 9.16:

CAD models of the
design concept

characterized by a material variable, which can assume three states:
transparent – corresponding to glass –, semi-transparent (shaded
glass) and opaque (cladding panel).

During the design process, the need for more light in the interior and
for a lower heat loss through the skin forces the cells to turn
transparent or opaque. The goal of the design process is to
determine the spatial form of the façade and the material that each
cell will be made of.

A MDDS was developed, capable of optimizing the design of the skin
on the basis of a lighting analysis of the interior, a thermal analysis of
the cooling loads corresponding to the skin configuration, and a
finite elements analysis of the supporting structure. The system also
considers the architectural need for transparency in the façade due
to view requirements of the occupants, and the cost of cladding
materials.

The system was developed in three phases/experiments, with more
complexity and variation being added to every new experiment.

 The Multi-Disciplinary Design System 332

Experiments

 9.2.2 Decomposition

 9.2.2.1 Component Decomposition

 In this experiment the focus will be on the skin component. Based
on the design concept the skin is comprised of several skin
components. As mentioned earlier in the previous higher-level
experiment, each spatial component has one or more regions that
define its interface with the outside environment. Each region is
represented with a skin component. Each skin component is
composed of two subcomponents. These are an exoskeleton grid
and a number of skin panels (figure 9.17). There is a dependency
between both components. If the exoskeleton changes size, the
panels also change their size. This will have to be taken into account
in the aspect decomposition.

 Figure 9.17:

Component
decomposition

 9.2.2.2 Aspect Decomposition

 Based on the dependency between the subcomponents of the skin
component it will have to be treated as one entity in the aspect
decomposition. Therefore, the skin component will be decomposed
into five aspects. These are architecture (view requirements),
lighting, thermal, structure, and economy (figure 9.18).

 Figure 9.18:

Aspect
decomposition

 The Multi-Disciplinary Design System 333

Experiments

 9.2.2.3 Development Decomposition

 In this second level of the MDDS, the deliverables will be skin
component configuration and structural member sizing. These two
deliverables are decoupled in the proposed design and therefore
can be implemented in parallel. The focus in this experiment will only
be on the skin component (figure 9.19).

 Figure 9.19:

Development
decomposition

 9.2.2.4 Activity Decomposition

 Based on the design concept and the mapping between
components and aspects we notice that both are fully integrated
and coupled (figure 9.20). Therefore, one MDDS cycle will be
implemented. It will be expected to determine the spatial form of
the façade and the material that each cell will be made of on the
basis of a lighting analysis of the interior, a thermal analysis of the
cooling loads corresponding to the skin configuration, and of a finite
elements analysis of the supporting structure. The system also
should consider the architectural need for transparency in the
façade due to view requirements of the occupants, and the cost of
cladding materials (figure 9.21).

 Figure 9.20:

Component and
aspect

decomposition
mapping

 The Multi-Disciplinary Design System 334

Experiments

 Figure 9.21:

Design cycle one and
its design activities

 9.2.3 Formulation

 A N2 Diagram of the design activity modules was developed,
following a disciplinary breakdown (Figure 9.22). The architecture of
the cycle was grouped into four clusters, namely synthesis, analysis,
evaluation and optimization (Figure 9.23).

The synthesis assembly includes geometry and material modules.
The analysis cluster includes the five analysis modules (lighting,
thermal, architecture, structures and economy). The evaluation
assembly includes modules for the assessment of the overall
performance. Finally, the optimization assembly includes the
optimization algorithms. All the assemblies are described in the
following paragraphs.

 The Multi-Disciplinary Design System 335

Experiments

 Figure 9.22:

 Structure of the N²
Diagram

 Figure 9.23:

 The MDDS cycle on
level two

 The Multi-Disciplinary Design System 336

Experiments

 9.2.4 Modeling

 9.2.4.1 Synthesis

 The portion that this study focuses upon is a rectangular surface 5 m
wide and 3 m high of our building skin. This portion of the skin is for
a building located in Boston, MA, U.S.A. – latitude 42° N, and is
oriented towards the South. The Skin represents the interface of a
spatial component 6 m deep. The maximum out/inward deflection of
the skin was kept at 0.5 m.

 Design Vector

 The design vector is composed of two main groups of design
variables: the geometric and the material variables.

The geometry of the façade is completely described by its nodes.
There are 98 or 242 nodes, depending on the experiment, their
positions being defined by three Cartesian coordinates (X, Y, and Z)
in space, and by “deformed” coordinates on the skin (u, v) and in
the perpendicular direction (w).

Due to the constraints on the displacement of the nodes, the
Jacobian of the transformation between the two sets of coordinates
(X, Y) and (u, v) is always nonzero, i.e. the transformation is non-
singular.

Given the computational complexity, only a subset of the nodes was
chosen to describe the geometry of the skin. These points are called
control points (Figure 9.24). The displacement of each point on the
grid is uniquely defined by the position of the control points.

There are 32 Control Points, 16 interior Control Points (four rows and
four columns), plus another 16 on the borders. The geometry is
therefore fully described by 48 design variables (2 coordinates [u, v]
per control point plus 1 coordinate per CP on the border).

The Geometry module, developed in CATIA™ of Dasault Systems, is
responsible for the construction of the skin geometry.

The coordinates of the control points are passed to CATIA, which
then calculates the positions of all nodes via parametric synthesis
model. It also produces the measures of the cells’ areas and all other
geometric, parametrically-defined properties of the façade.

In addition, CATIA parametrically generates all the structural and
non-structural façade components, such as the shading devices, the

 The Multi-Disciplinary Design System 337

Experiments

Figure 9.24:

The distribution of
materials and

control Points on the
Skin

steel pipes, the joints, etc., and renders the design.

The second set of design Variables consists of the cell materials.
Each cell can be made of glass, shaded glass, or opaque cladding.
These materials correspond to three degrees of transparency. The
degree of transparency of a cell determines its permeability to light
and to heat.

The distribution of materials on the skin is therefore described by
100 discrete variables, which can assume 3 states each (Figure 9.24).
As a consequence, the design is controlled by a total of 132 variables.

 Constraints

 There are several types of constraints that were built within the
model.

Firstly, each control point must lie in a specific region, delimited by

=

jimjmjm

immm

immm

m

xxx

xxx
xxx

,,2,1

2,2,22,1

1,1,21,1

...
............

...

...

x

10 .. 1 , ; } 3 , 2 , 1 { = ∈ j i x m

=

jigjgjg

iggg

iggg

g

xxx

xxx
xxx

,,2,1

2,2,22,1

1,1,21,1

...
............

...

...

x

6..1,;}1..0{ 3 =∈ jixg

Material Design Vector

Geometric Design Vector

3 3 3 3 3 3 2 3 3 3
2 2 2 2 2 2 3 3 3 3
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
2 2 1 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

 The Multi-Disciplinary Design System 338

Experiments

red lines in figure 9.25. Each red line is obtained by offsetting the
corresponding gray line by an amount d. These constraints prevent
each quadrilateral region from assuming a non-convex shape, a fact
that would create computational problems and would result in
unaesthetic design.

 Figure 9.25:

Graphical
representation of the

geometric
constraints

 This kind of constraint is defined by the following equations (in the
case of quadrant NE):

() ()22

1
1
1

ENEN
EE

NN

CC

uuvv

d

uv
uv
uv

−+−
>

where:

uc, vc are the coordinates of the point subject to the
constraint
uE,N, and vE,N are the coordinate of the adjacent points that lies

respectively to the East and North of point C

Thus, there are 64 constraints of the first type (geometric
constraints), considering the control points on the borders. Each of
these constraints only applies to the correspondent geometric
design variable.

Secondly, a constraint on the overall illuminance sets Ei70 > 300 lux,
providing a lower bound for the amount of light measured at 70% of
the room depth. Note that this illuminance constraint affects all the
design variables with different sensitivity.

 The Multi-Disciplinary Design System 339

Experiments

 9.2.4.2 Analysis

 A brief description of the analysis modules is provided in the
following paragraphs.

 Lighting Module

 This module calculates the actual illuminance at 70% of the room
depth, using the IESNA method, and based on four reference dates
of the year.

The Coefficient of Utilization is used to implement an approximation
function for better performance (maximum error ±10%):

CUk = (0.362∙RW3 - 5.98∙RW2 + 33.1∙RW + 0.0253) ∙ 0.0107∙RR - 1.49
CUg = (0.26∙RW3 - 4.1∙RW2 + 21∙RW + 1.55) ∙ 0.0093∙w_RR - 1.28

With:

RR =
heightwindow

depthroom
_

_

RW =
heightwindow
widthwindow

_
_

CUk,g Coefficients of Utilization for lighting calculation (sky,
ground)

The illuminance for each single cell is calculated as follows:

Ei70 = (CUk ∙ Exvk + CUg ∙ Exgk) ∙ τ

where:

Ei70 Illuminance indoor at 70% of the room depth [lux]
Exvk, Exgk Illuminance outdoor (vertical, ground) [lux]
τ Light transmittance of the glazing [%]

The overall illuminance (Ei70) is obtained as the sum of all the single
cells results.

 Thermal Module

 This module calculates the energy consumption due to heating and
cooling. It considers thermal transmission as well as radiation.

The energy flows are calculated as follows:

 The Multi-Disciplinary Design System 340

Experiments

QH = ∑ (Ui Ai) ∙ DDH

QC = ∑(Ui Ai) ∙ DDC + SHG ∙ SHGF ∙ Atr

and finally:

Qtot = QH + QC

where:

QH,C kWh/m2y Energy required for heating / cooling
Utr,op W/m2K Coeff. for heat transmission (transp /
opaque)
Atr,op m2 Area (transparent / opaque)
DDH,C d°C Degree days for heating and cooling
SHG W/m2y Solar heat gain per one summer
SHGF % Portion passing through glazing
Qtot kWh/y/m2 Total energy consumption

 Architecture Module

 This module ensures that the density of transparent cells increases
toward the center of the façade, for the occupants to have a view to
the exterior. In addition it also tends to increase the sizes of the cells
toward the center of the façade.

The zone of preference for transparency is defined by a preference
matrix, with as many elements as cells, whose values are higher
where more transparency is needed.

Multiplying this preference matrix by the actual transparency
distribution on the façade, and summing up the terms, provides the
rating for architecture.

∑
=

⋅=
cells

i
iiarch ZmatDVJ

#

1
)(

where:

DV(mat)i is the degree of transparency of cell i (1, 2, or 3), and
Zi is the desired zoning preference for that cell.

A similar rating function is also used to increase cell sizes towards
the center.

 The Multi-Disciplinary Design System 341

Experiments

 Structure Module

 The structural module assesses the physical efficiency of the design.

A static solution is then calculated and, based on the ratio
stress/capacity in the members, an overall rating is returned. The
module calculates the stresses in the members and returns to the
optimizer a rating function, which “grades” the input geometric
pattern from a structural point of view.

In analytical terms, the rating function has the following form:

2

1

max,11 ∑
=

−−=

N

i y

i

f
Rf

σ

where:

σmax,I is the maximum stress (absolute value) in member i [MPa]
N is the number of elements
fy is the yield stress of steel [MPa]

 Economy Module

 The economy module calculates the cost of glass and cladding
materials associated with the design vector. The module considers
first material costs and second costs per piece:

∑∑
==

⋅+⋅=
3

1
,

3

1
,

i
iin

i
iiA ncAcC

where:

cA,i is the cost of material i per unit area
Ai is the area covered with material i
cn,i is the cost of installation of material i per cell
ni is the number of cells with material i

This module provides a simple approximation of the manufacturing
and installation costs.

 The Multi-Disciplinary Design System 342

Experiments

 9.2.4.3 Evaluation

 Two different approaches were implemented within the different
experiments to asses and evaluate the multi objectives within the
objective function. Initially a weighted sum approach was used, and
later a utility functions approach was adopted.

The weighted sum approach was chosen for combining the distinct
quantities. Disparities certainly exist between the magnitudes of
each quantity. However, foreseeing the problem, these quantities
were normalized based on reference values. These reference values
represent the achievable maximum in the optimization considering
only one objective at a time.

The objective function J for the weighted sum approach has the
following form (note that it was used for the first experiment, and
therefore only contains terms related to thermal, architecture and
lighting):

⋅+⋅+⋅=
3

70
3

2
2

1

1
1

3
1

r
Ew

r
Zw

r
QwJ itot

tot

where:

r1, r2, r3 are reference values used to scale down the output of
the computational modules, and

w1, w2, w3 are rating coefficients that “weight” the importance of
each single objective function.

This objective function attempts to reflect some of the trade-offs
between sufficient natural lighting in a room, the energy balance
due to cooling/heating of the façade, and the architectural intent to
have windows in view height.

Later, in the attempt to develop a more rigorous objective function,
a utility approach was adopted. Because of the multi-objective
nature of the skin design, each of the modules will have its own
single objective (total illuminance, energy required for heating and
cooling, etc…). Each single objective Ji is then transformed by a
utility function Ui, that assigns a low score to an undesirable value of
Ji and a high score to a desirable one (0 ≤ Ui ≤ 1).

The utility functions are scaled in such a way that an excellent
performance is rated more than 90%, while an unacceptable
performance has a rating less than 10% (figure 9.26). The latter is

 The Multi-Disciplinary Design System 343

Experiments

Figure 9.26:

Structure of the
utility functions

also considered as a minimum performance determining the
feasibility of a design (Figure 9.26).

 The application of utility functions was believed to be necessary
because for some objectives a “the more the better” or “the less the
better” approach is not applicable. For instance, an illuminance
between 300 and 450 lux for lighting is desirable, but to increase the
illuminance does not improve the usability. In contrast, it causes
problems of glare in areas close to the windows. An overall objective
function U takes into account all the multi-objective particular
utilities Ui. The U function has the following form:

 The Multi-Disciplinary Design System 344

Experiments

∑
=

⋅=
5

1i
ii UwU

Where w1, w2, w3, w4, w5 are weighting coefficients that depend on
the importance of each single objective function.

This overall utility function reflects the trade-off between sufficient
natural lighting in a room, the energy balance due to cooling/heating
of the façade, the intent to have windows in view height, the
requirement for structural safety, and limited cost.

 9.2.4.4 Optimization

 Within the different experiments, two optimization approaches were
used: a gradient based and a heuristic algorithm search. In
Experiment#1, the results of these two different optimization
techniques were assessed and compared. In the rest of the
experiments, only the heuristic methods were implemented.

Gradient Based Optimization

The Gradient based algorithm selected for the optimization was
Sequential Quadratic Programming (SQP). It is a widely used method
in most engineering applications (like non-linear optimization), and it
is considered to be a robust gradient-based algorithm. It is especially
reliable because of its strong theoretical basis. The optimization was
performed using ModelCenter 6.1.1™, from Phoenix Integration
Software.

Heuristic Algorithm Optimization

The Heuristic method used in the experiments was a Genetic
Algorithm (GA). GA’s are heuristic algorithms that utilize
processes analogous to natural selection to search for the best
designs. They were chosen because they are ideally suited for design
problems with discrete design variables. Because they do not require
objective or constraint derivative information, they are able
to effectively search non-linear and noisy design spaces. The
optimization was performed using the Darwin Plug-In of Model
Center 6.1.1™, from Phoenix Integration Software.

 9.2.5 Integration

 Model Center 6.1.1 was used to build the system architecture (figure
9.27), by integrating the modules, following the overall conception
of the four design activities phases (synthesis, analysis, evaluation

 The Multi-Disciplinary Design System 345

Experiments

Figure 9.27:

Integration between
different software

and optimization).

The geometry module was built using CATIA™ of Dasault Systems.
The lighting, thermal, architecture, and economy modules were
developed within Microsoft Excel™ XP. ANSYS™ 10.0, from Ansys,
Inc., was used to construct and execute the structural analysis.

To assess the results of the optimization, a few visualization tools
were developed. For experiment #1, a material visualization tool was
programmed in Excel. To display the evolution of the optimization
results. For experiments #2 and #3 another tool was developed in
order to visualize the geometry of the optimization solutions; the
best solutions generated were also recorded. A common interface
was developed, linking and showing the current design, its geometry
and materials, and the time-history of the objective function, in one
common interface (Figure 9.28).

 The Multi-Disciplinary Design System 346

Experiments

 Figure 9.28:

Interface that plays
back Evolution

History

 9.2.6 Exploration

 9.2.6.1 Experiment 1

 For the first experiment, the material variables were the only part of
the design vector in the synthesis phase that were allowed to vary.
Geometry was constant , i.e. the skin configuration was “frozen”. As
a consequence, the design vector is only populated with material
variables. A grid of 10x10 cells was selected, and the material
variables were considered continuous as opposed to discrete to
allow for the implementation of different optimization algorithms.

Within the Analysis phase only a subset of the analysis modules was
selected for this experiment, namely, the thermal, the architecture,
and the lighting modules. The problem presented in this experiment
was solved using two algorithms: first, by using a gradient search

 The Multi-Disciplinary Design System 347

Experiments

(SQP, Sequential Quadratic Programming), and later, by using a
heuristic technique (Genetic Algorithms).

To asses any scaling concerns, a script was developed to evaluate the
diagonal terms Hii of the Hessian matrix. All Hii terms had the order of
magnitude of unity. This was due to the fact that all the design
variables represent the same physical object, i.e. the degree of
transparency of the cells, and therefore have the same boundaries (0
and 1). It naturally follows that the problem was intrinsically well
scaled with respect to the design variables (in fact, scaling is
necessary when the design variables can assume very different
values). Thus, no scaling of the design variables was necessary.

For this experiment, two types of constraints are present: firstly,
each design variable has a lower and an upper bound, respectively 0
and 1; as a consequence, there are 2 x 100 = 200 constraints of the
first type (transparency constraints, [TC]). Each TC affects only the
correspondent design variable, so there can be no disparity in
sensitivity with respect to different variables.

Secondly, the constraint on the overall illuminance sets Ei70 > 300 lux;
this illuminance constraint [IC] affects all the design variables with
different sensitivity, because not all the cells have the same influence
on the overall illuminance due to their different positions on the
façade and to their surface areas: the higher the location and the
wider the surface, the higher the influence. Nonetheless, the ratio
between the highest and the lowest of the sensitivity coefficients is
not big enough to justify a scaling of the constraint.

With regards to parameter sensitivity, the objective function
increased when the spatial component depth was increased, since
the associated region surface area enlarges. In fact, within the
thermal module the objective is expressed as the required energy
per floor area. The other modules outputs do not demonstrate any
change.

Increasing the height of the spatial component enlarges the skin
area, and therefore results in a decrease of the objective function. In
fact, the thermal objective decreases while lighting is unable to
compensate.

Increasing the light transmissions of the glass increases the lighting
objective. However, since a higher thermal transmission of glass
leads to a higher energy consumption, and therefore lowers the
performance of the thermal objective, the overall objective function
is lowered.

 The Multi-Disciplinary Design System 348

Experiments

 The illuminance was moved from 300 lux to a stricter value of 400
lux, and the optimization was rerun. The calculation with a higher
value of the lighting constraint leads to a reduced performance in
terms of the objective functions, the thermal aspect overriding the
positive effects of the other modules.

For this experiment, the weighted sum approach was adopted to
combine the distinct objectives. The overall objective function
reflects the trade-off between sufficient natural lighting in a room,
the energy balance due to cooling/heating of the façade, and the
intent to have windows in view height. The request for day-lighting
drives especially the cells at the top to be transparent to push light
deeper in the room.

 Figure 9.29:

Experiment#1
Evolution Of Design

Using SQP

E_i = 440 lux Q_tot = 14 kWh/y/m2
Z tot = 1075 J = 0.484

E_i = 300 lux Q_tot = 12 kWh/y/m2
Z tot = 830 J =0.5250

E_i = 300 lux Q_tot 12 = kWh/y/m2
Z tot = 841 J = 0.5267

E_i = 300 lux Q_tot 12 = kWh/y/m2
Z tot = 869 J = 0.5331

R
u

n
 0

R

u
n

 5

R
u

n
 1

2

R
u

n
 2

5

 The Multi-Disciplinary Design System 349

Experiments

 When the gradient search was used (SQP, Sequential Quadratic
Programming), the objective function dramatically increased at the
beginning of the analysis, and then, after finding the main
illuminance constraint, slowly tuned to the potential optimum. As
demonstrated in figure 10, a good improvement is obtained with
respect to the initial point x0 (Figure 9.29). The solution corresponds
to a value of the objective function of Jmax = 0.533.

The cells that lie in the “magnification areas” of the lighting and
architecture functions, i.e. respectively the cells on top and at the
center of the façade (thermal, in fact, is not location-dependent),
were those that massively turned transparent. This matches intuition
since the cells at the center of the façade have a much greater
weight due to the architecture module, and the cells on top of the
façade “weight” more for the lighting module.

The active constraint is the minimum overall illuminance, plus a
number of constraints for the transparency of cells, and precisely
those of the cells that are completely transparent or completely
opaque. (The design variables, at the end of the optimization,
actually assume these limit values.) Given the objective function, the
solution found seemed to match the physical assumptions of the
model.

Later, when running the optimization using the Genetic Algorithms
(GAs), which were terminated after 47 generations, the best
recorded results were collected, and the optimal solution was found
to corresponded to a value of the objective function of Jmax = 0.541.
(figure 9.30). The above result was obtained by fine-tuning the
algorithm parameters, which are listed hereafter:

Population size: 30
Preserved designs : 13
Max No. of generations: 50
Mutation Probability: 0.05
Selection scheme: Multiple Elitism Selection

This result is higher than the previous one found with a gradient-
based search (Sequential Quadratic Programming).

In order to understand the reasons of this difference, we studied the
physical implications of the result. In particular, after a first analysis
of the design vector, it was clear that the number of completely
transparent cells is higher and, given a cell, its degree of
transparency is generally higher. Also, the “transparent zones” were
not just confined to the center and to the upper portion of the
façade, and the illuminance constraint is far from being active, its
final value being 1441 lux.

 The Multi-Disciplinary Design System 350

Experiments

In other terms, starting from the “optimum” found by the means of
a gradient-based algorithm, the GA’s provided evidence that the
objective function could be “pushed” further up by adding more
glass, i.e. by turning more cells transparent. It can be inferred that
the solution found by the SQP algorithm is not the real optimum,
since a better one exists. Alternatively, it was proven that the
gradient-based algorithm found a local optimum.

 9.2.6.2 Experiment 2

 For this experiment, the nodes were allowed to move in the u and v
directions on the skin surface. The materials of the cells were also
allowed to change, but using discrete values for variables. The 10x10
cells grid used for experiment#1 was kept for experiment #2.

As a consequence, the design vector is populated with the
coordinates of the 32 Control Points (2 coords per central CP, 1 coord
per border CP) and of the material variables , for a total of 48 + 100 =
148 variables. Within the Analysis phase, the modules that were
already part of the system architecture of experiment #1 were used –
i.e. the thermal module, the architecture module, and the lighting
module –; in addition, a further economy module was added, to
minimize the cost of cladding materials.

For this experiment the utility function approach was used, in order
to take into account multi-criteria optima.

The problem presented in this experiment was solved using Genetic
Algorithms. The Genetic Algorithms were terminated after the max
number of generation (30) was reached, and the best recorded
results were collected. The optimal solution that was found,
corresponded to a value of the objective function of Jmax = 0.567
(Figure 9.31).

The above result was obtained by fine-tuning the algorithm
parameters, which are listed hereafter:
Population size: 25
Preserved designs : 13
Max No. of generations: 30
Mutation Probability: 0.06
Selection scheme : Multiple Elitism Selection

Note this value of the objective function cannot be compared to
values of the values obtain in experiment #1, due the fact that we
used a different objective function. The optimal solution that was
found, corresponded to a value of the Objective.

 The Multi-Disciplinary Design System 351

Experiments

 Figure 9.30:

Experiment#1,
Evolution of Design

using GA’s

 The Multi-Disciplinary Design System 352

Experiments

 Figure 9.31:

Experiment#2,
Evolution of Design

 The Multi-Disciplinary Design System 353

Experiments

 The solution shows a particular geometrical and material pattern.
The cells correctly enlarge at the center of the skin, and they shrink
as the distance from the center increases. In addition, in the center
of the façade a complete region turned to glass, a consequence of
the architectural module action.

Away from the center, the density of semi-transparent and opaque
material grows higher, a sign that a trade-off was reached between
lighting and architectural requirements on one side, and thermal
requirements on the other.

To compensate a higher density of transparent cells in the center of
the skin, which allow for a more abundant light intake, the cells close
to the border turn opaque to limit the heat loss. This configuration
slowly becomes evident as the number of generations grows. The
central pattern of transparent cells develops from an early embryo,
to fully occupy the whole central region of the skin.

In the distribution of the non-transparent cells, the partition
between the semi-transparent and the opaque ones does not seem
to follow a particular scheme.

It was not possible to understand if a distinguishable pattern might
have been achieved after more generations. In any case, the slow
progression of the overall objective function toward the end of the
process suggests that any further variation in the design vector
cannot generate a substantial change in the objective, from which it
may be inferred that the sensitivity of the objective with respect to
that partition is not very significant. However, it is important to note
that, like for all heuristic techniques, the convergence of the GA’s
cannot be mathematically proven.

 9.2.6.3 Experiment 3

 For this final experiment, the nodes of the skin were allowed to
move in the three directions, u, v, and w. Like the previous
experiments, the materials of the cells were also allowed to change,
using three discrete values for variables.

Note that, due to the intense computational burden of the CAD
systems and the FEA Analysis, instead of the 10x10 cells grid of
experiment#1 and experiment #2, a 6x6 grid was used.

As a consequence, the design vector is populated with the
coordinates of the 12 control points (4 in the middle, plus 8 on the
borders, 2 coords per central CP, 1 coord per border CP) and of the

 The Multi-Disciplinary Design System 354

Experiments

material variables, for a total of 16 + 36 = 52 variables.

Within the analysis phase, the modules that were already part of the
System architecture of Experiment #1 and #2 were used; in addition,
a further structural module was added, to assess the efficiency of the
grid from a structural viewpoint.

 Figure 9.32:

Experiment#3,
Evolution of Design

 The Multi-Disciplinary Design System 355

Experiments

 Much like the previous experiment, the utility function approach was
used to combine the single-discipline objectives, as described earlier.

The problem presented in this experiment was solved using Genetic
Algorithms. The GA’s were terminated after 35 generations, and the
best recorded results were collected.

The optimal solution that was found, corresponded to a value of the
objective function of Jmax = 0.699. (figure 9.32).

The above result was obtained by fine-tuning the algorithm
parameters, which are listed hereafter:

Population size : 40
Preserved designs : 13
Max No. of generations: 40
Mutation Probability : 0.06
Selection scheme : Multiple Elitism Selection

Note this value of the objective function cannot be compared to the
values obtained in the previous experiments due to the fact that a
different design vector was used.

Similarly to the previous experiments, the evolution of the design
along the generations of the GA’s can be mapped by analyzing
previous solutions. Five evenly spaced in “time” solutions were
chosen.

The graphical rendering of the solutions proved to be a helpful tool
to visualize the formation of geometric trends and patterns in
materials distribution (figure 9.34).

 Figure 9.33:

A Pareto front based
on the thermal and
lighting objectives

10% 90%
30% 70%

50% 50%

70% 30%

90% 10%

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

Utility J1

U
til

ity
 J

2

 The Multi-Disciplinary Design System 356

Experiments

 Consistently with the assumptions underlying the form and the
function of the structural module, it can be observed that the design
shows a constant tension toward geometric regularity: after the first
runs, where the skin is characterized by very different cell sizes –
and, as a consequence, by different beam length – the design of the
skin becomes more and more organized in a regular disposition of
cells with more evenly distributed surfaces and more similar shapes.

Nonetheless, it still holds true that the central cells are wider than
the ones located near the borders, to reach a compromise with the
architectural objective.

 Figure 9.34:

A graphical rendering
of a solution

 The Multi-Disciplinary Design System 357

Experiments

 9.3 Experiment 2 | Level 1

 9.3.1 Design Concept

Figure 9.35:

Diagrams explaining
the changes in the

Design Concept

 The design concept of this experiment builds on the concept
developed in Experiment One. It uses the same logic of allocating the
spatial components within the rectangular site but within a 3D grid of
cells, instead of the 2D grid. In addition the wrapper skin for the
spatial components is constructed of straight lines as opposed to the
spline used in experiment One. Within the new 3d grid, the spatial
components are allowed to relocate and deform to satisfy multiple
performance and objective requirements (figure 9.35).

 9.3.2 Decomposition

 9.3.2.1 Component Decomposition

 Similar to experiment one, the design concept will be decomposed
initially into four main components. These will be the spatial
components, the floors, the skin and the structural framing. There is
a strong dependency between all four components in which changes
in one component can affect the rest of the components (figure
9.36).

This dependency will have to be taken into account in the aspect
decomposition. The synthesis modules will have to generate these
different components.

 The Multi-Disciplinary Design System 358

Experiments

 Figure 9.36:

Component
decomposition

 9.3.2.2 Aspect Decomposition

 Based on the dependencies that exist between the different
components in the initial level, the aspects of interest in all four
components have to be identified simultaneously. Like experiment
one, level one aspects will be decomposed into spatial planning,
environmental, and structural aspects.

Similar to Experiment one, the spatial planning will be further
decomposed into several lower aspects that include adjacency, area,
proportion, and real-estate. The environmental aspect will be
decomposed into two lower aspects that include thermal and
lighting aspects. Structure will not be decomposed further (figure
9.37).

 Figure 9.37:

Aspect
decomposition

 9.2.2.3 Development Decomposition

 Within our current experiment, the deliverables of the MDDS level
one will include a configuration of the spatial components, the
floors, the skin and structural frame. These configurations will have
to be assessed for adjacency, area, proportion, real-estate, thermal,
and lighting and structure (figure 9.38).

 The Multi-Disciplinary Design System 359

Experiments

 Figure 9.38:

Development
decomposition

 9.3.2.4 Activity Decomposition

 Figure 9.39 shows the mapping between components and aspects.
This identical to experiment one. However, unlike experiment one, in
this experiment all aspects will be included.

This will produce only one design cycle for level one. This cycle will
attempt to solve the spatial planning aspects, the environmental
aspects as well as the structural aspects.

 Figure 9.39:

Component and
aspect

decomposition
mapping

 The Multi-Disciplinary Design System 360

Experiments

 This cycle will be further decomposed into design activity modules.
These design activity modules will include synthesis, analysis,
evaluation and optimization modules. The Synthesis modules given a
design vector will generate the spatial components, floor, skin and
structural members. The analysis modules will analyze for adjacency,
area, proportions, real-estate, thermal, lighting and structural
behaviors. The evaluation modules will aggregate the different
behaviors of the different analysis modules into a general
performance quantity. Finally, given the outputs of the evaluation
modules, the optimization modules will search the design space and
specify a new design vector (figure9.40).

 Figure 9.40:

Design cycle one and
its design activities

 9.3.3 Formulation

 What is interesting in this experiment is that the same MDDS
architecture for the first cycle in level one which was used in

 The Multi-Disciplinary Design System 361

Experiments

experiment one, is reused in this experiment with minimum
modifications. These modifications are demonstrated in figure 9.41.
Two new synthesis modules were added to the synthesis cluster. In
addition a new structural module was added to the analysis cluster.
This ability to reuse architectures and modules is one of the
strengths of the modular approach used in the MDDS.

As stated in the decomposition section, the synthesis modules given
a design vector should generate the spatial components, floor, skin
and structural members. This will be achieved by an assembly of
three synthesis modules. The first will generate the general
configuration and geometric information needed by most of the
analysis modules. The second module will generate information
relevant to the environmental aspects that were not generated by
the first module. The third module will generate the relevant
structural information that was not included in the first module.
These three modules will be connected together and will function as
a synthesis assembly.

This synthesis assembly will receives the design variables from the
design vector’s module in the optimization cluster and will output a
design solution (phenotype) to be analyzed by the analysis cluster.

Within the analysis cluster, each of the seven analysis modules
receives from the synthesis assembly the relevant information
needed for its analysis. Each module should then provide a
measurement of the design performance for its associated aspect.

In the experiment two modes of evaluation will be implemented. The
first is a scalarization method which will be similar to the evaluation
module implemented in experiment #1. This module will control the
flow of data and if no constraints are violated, the performance and
behavior measurements generated by the different analysis modules
will be aggregated into an objective function that will be sent to
optimization. The other mode of evaluation will be based on a Pareto
filtering approach where the solution will be decided on after search.
However this mode will still use the same control structures that
filter out the solutions with high degrees of constraint violation.
Again, similar to experiment #1, a GA was chosen as the optimization
algorithm.

 The Multi-Disciplinary Design System 362

Experiments

 Figure 9.41:

The MDDS cycle on
level one, showing
extra modules and
connections added

 9.3.4 Modeling

 9.3.4.1 Synthesis

 The synthesis assembly in this experiment will build on the previous
experiment modules, as well as implement extra modules to handle
a more complex three-dimensional geometry.

The current synthesis assembly will consist of one sub-assembly and
two modules. The sub-assembly will be a configuration assembly.
This will be a modification of the synthesis assembly of experiment
one and will generate the new crystallized three-dimensional
geometries. The first of the modules will be a structural synthesis
module which will generate the structural members for the
configuration produced by the configuration assembly. The other

 The Multi-Disciplinary Design System 363

Experiments

module will be a lighting and thermal synthesis module which will
generate the shading patterns for the configuration produced by the
configuration assembly.

Configuration Synthesis Assembly

This synthesis assembly will generate a configuration of spatial
components. This assembly is more complex than the one
developed in experiment one. Unlike the one floor design problem
in experiment #1, this experiment includes two floors. A horizontal
circulation spine is also added. In addition a vertical circulation
component (stairs) is added. Therefore, in addition to the three main
data structures; Cells, Spatial Components, and Skin, a circulation
data structure is added.

Due to the 3D configuration, the shape grammar implemented in this
experiment is more complex than the one used in the first
experiment. The first set of design rules deals with the allocation of
Spatial Components. The second set of design rules deals with the
deformation of the Spatial Components. The third set is a parametric
rule set that generates the skin directly. Each rule in the third rule set
is applied based on the location of the component and the state of
the surrounding cells. Each rule in this set also generates the skin
Regions and each region in turn is broken down into segments. These
regions and segments will be used by several analysis modules.

Structure Synthesis Module

The structure of any configuration will be divided into two structural
systems: a main structural system that supports the main loads of
the building, and an exoskeleton system that supports the skin
cladding. Both systems are generated automatically from a given
spatial component configuration using several rule sets. In addition,
this module identifies components that are not supported by lower
components. Supports are then added to each component in the
cantilever list using context sensitive rules. Given the occupation
state of the surrounding cells the rule set adds a certain type of
support to the main structural system.

This module then outputs to the analysis modules all the information
related to the geometry, type and number of members as well as
information pertaining to the cantilevering spatial components.

Lighting and thermal Synthesis Module

Due to the existence of cantilevers, spatial components in the lower

 The Multi-Disciplinary Design System 364

Experiments

level can be affected by shading. The lighting and thermal synthesis
assembly creates a shading pattern of a given configuration that will
be used later by both the lighting and thermal analysis modules.

The synthesis algorithm that generates the shading pattern is based
on the underlying cell grid. Each internal cell has three internal sides
and one exterior side (N, S, and E or W). While each end cell has two
internal and two external sides. The algorithm tests each cell and its
surrounding cells for occupancy. If a neighboring cell is occupied
then the corresponding side in the cell being tested is disregarded
since that implies that there is no cantilever from that direction.
However, for the sides that are not blocked by any components on
the lower level, another test is applied to determine if there are
cantilevers from that side. A correction penalty is then added if a
cantilever exists. This penalty factor depends on the area and depth
of the cantilevering spatial component.

 Design Vector

 Similar to experiment one, the design vector that provides the inputs
to the synthesis modules is divided into two types of variables,
namely topological and geometrical. However, the size of this design
vector is significantly larger than the one implemented in the first
experiment. All three synthesis modules were implemented in the
CATIA VBA environment.

To summarize, the inputs to the synthesis modules are:
a- Location of the Spatial Components which is represented by the
topological variables
b- Location of the Control Points in the system which is represented
by the geometrical variables.

And the outputs are:
a- Area of each Spatial Component
b- Perimeter of each Spatial Component
c- Length of each Spatial Component Region
d- Length of each Segment composing a Region
e- Orientation of each Segment composing a Region
f- Total Area enclosed by Skin.
g- Structural members attributes (number of member, type, ..etc)
e- Shading patter of a configuration

 9.3.4.2 Analysis

 Like experiment one, the design concept will be broken down into
multiple single-disciplinary analysis modules in order to evaluate how

 The Multi-Disciplinary Design System 365

Experiments

well the design performs from the point of view of each discipline
separately.

Several modules from experiment one will be reused after some
modification to accommodate the changes in the number of spatial
components as well as changes in geometry. These modules include:
an Adjacency module, an Area module, a Real-Estate module, a
Proportion module, a Thermal module, and a Lighting module.
Furthermore, a new module will be added for structural analysis.

Once again this demonstrates the strength and adaptability inherent
in the modular approach used in MDDS.

Since we are working at the conceptual stage, the analysis models
developed for the different discipline modules will be based on
heuristics or simplified representations to test the feasibility of
design solutions. The modules are implemented directly in VB Scripts
or in Excel using VBA Scripts.

For reasons of brevity the focus in this section will be on the
structural module which is the only new module not discussed
previously in experiment one.

 Structural Module

 The Structural Module evaluates the performance of the structure
within the configuration using two criteria: Regularity (/Utility) and
Cost.

The Structural Module receives information from the synthesis
modules such as the coordinates of the CP’s and the location and
type of cantilevering cells among others, and outputs an overall
evaluation of the structural performance, JStru,.

 Regularity

 The algorithm provides an estimate of the structure regularity along
the longitudinal axis of the building configuration.

Regularity is intended to be optimum if all the projections of the
distances between consecutive CP’s along the Y-axis (longitudinal
axis) have the same length. Any deviation from ideality is captured by
the following formula:

∑
=

+ −=
8

1
11, __

i
iiR YCPYCPJ

 The Multi-Disciplinary Design System 366

Experiments

Such calculation, shown for the first columns (JR,1), is performed for
all the three columns of CP’s in the longitudinal direction, and results
are summed to obtain an overall value JRegu. Note that such sum has a
lower bound of zero, corresponding to optimality.

 Cost

 Costing is partitioned in: cost of slab and beams, cost of columns,
cost of bracings and cost of connections.

Cost of slab and beams
A simple, heuristic method of calculating the cost of slab and beams
is based on the geometry of each spatial component. Essentially, the
cost for each bay (spatial component) is assumed to be proportional
to the longer span and to the square of the shorter span (i.e. the
direction in which the slab spans):

 ∑∑ ⋅⋅==
i

ilis
i

iss bbCC ,
2

,, β ,

Where:
β is a fixed coefficient that depends on material properties,
and is then fixed once such design choice is made. As such, a
relative comparison of the performances of several designs
can be performed based solely on the geometry.

 bs,i is the shorter dimension of the spatial component
considered
bl,i is the longer dimension of said component

Cost of columns
The cost of the columns is calculated based on the consideration that
the cost is proportional to the section, which in turn is proportional
to the tributary area and to the loading. As such, columns are
grouped in five categories, according to the usage of the surface
above:

Type I: Lower floor, no cells above
Type II: Lower floor, cells above
Type III: Lower floor, cantilever A above
Type IV: Lower floor, cantilever B above
Type V: Upper floor

Each category has a characteristic value of the cost, which is
multiplied by the area of the surface:

 The Multi-Disciplinary Design System 367

Experiments

 ∑
=

=
5

1k
kkc APC ,

where:
 k is an index that relates to the aforementioned types of
columns

Pk is the cost of the columns of type k per tributary unit area
Ak is the tributary area for type-k columns

Cost of braces
This parameter is kept constant, as the dimensions and section sizes
of the bracing elements are not expected to vary substantially with
the design.

Cost of connections
The cost of connections is held proportional to their number. The
number of connections in a spatial component depends on its
nature. Depending on whether the component is non-cantilevering,
is a type-A cantilever or a type-B cantilever, the number of
connections varies. As such, the total cost of connections results
from the summation:

)(332211 ncncncsCx ++= ,
where:

s is the cost of one connection
c1, c2, c3 are the number of connections per type of
component: non-cantilevering, type-A cantilever and a type-B
cantilever
n1, n2, n3 are the numbers of components of type: non-
cantilevering, type-A cantilever and a type-B cantilever,
respectively

Overall cost
The overall cost is obtained by weighed summation of the above
components, and needs to be minimised:
 xbcst CkCkCkCkJ 4321cos +++=
Where:

k1, k2, k3, k4 are weighing coefficients that include all
proportionality coefficients which were assumed as constant
in the above singular costs

Combination of results
As JRegu and JCost are not comparable dimensionally, weighing
coefficients are used to derive the overall Jstru,0:

 The Multi-Disciplinary Design System 368

Experiments

 tregustru JaJaJ cos210, += ,

where a1 and a2 are determined experimentally and kept constant
along the optimization process.

Note that Jstru,0 which needs to be minimized, is finally filtered
through the utility function F in order to obtain the definitive Jstru,
which needs to be maximized:

)(0,strustru JFJ =

F is monotonic, decreasing, always positive and its range coincides
with (0, 1):

)]exp(exp[0,21 struJF ⋅−−= αα ,

Where α1 and α2, too, are empirical coefficient that are kept constant
throughout the experiment.

 9.3.4.3 Evaluation

 AS stated earlier in the formulation section, two methods of
evaluation are implemented in this experiment. The First is a pre-
search evaluation using a scalarization method and the second is a
post optimization method that will use a Pareto filtering approach.

Both approaches will implement the flow control module that
evaluates if the design vector violates the constraint modules. This
module like in experiment one, acts as a switch directing the data
flow to either of the other two evaluation modules. The other two
modules are the feasible design and infeasible design modules. The
flow control module triggers the infeasible design evaluation module
if the constraints are severely violated. If the constraints are not
violated the feasible design evaluation module is triggered.

If the design vector is infeasible the flow control module would
bypass the synthesis and analysis modules saving extensive
computational time. The infeasible design module simply signals the
violation to the optimization modules and ranks the design solution
in proportion to the number of violated constraints. The feasible
design evaluation module on the other hand triggers the synthesis
and analysis modules.

Within the first approach of evaluation where the scalarization

 The Multi-Disciplinary Design System 369

Experiments

approach was used, The three evaluation modules implemented in
experiment one were reused with little modification.

All the ratings (Jarea, Jcirc, etc.) of the disciplinary performances that
originate from the analysis modules converge into the feasible
design evaluation module, where they are aggregated to generate
an overall evaluation of the design, according to the standard
scalarization approach.

The final multi-disciplinary performance J is the weighted average of
the normalized output from the various modules:

∑

∑

=

== M

m
m

M

m
mm

w

Xw
J

1

1

where
M = 7 is the total number of analysis modules;
Xm is the normalized output from the mth analysis module,
and wm denotes the corresponding weight. In particular, Xm
is obtained by normalizing the actual output of the mth
module Jm according to:

min,max,

min,

mm

mm
m JJ

JJ
X

−

−
=

The second evaluation approach, the Pareto filtering, will be
discussed in the exploration section after optimization.

 9.3.4.4 Optimization

 The optimization modules consist of two modules. The first contains
the optimization algorithm, and the second is a design vector module
which converts the outputs of the GA into data which the synthesis
modules can understand.

Design Vectors Modules

As discussed earlier, two major categories of design variables have
been considered in our experiment and are implemented in two
different modules: the topological variables module and the
geometric variables module.

The topological variables module defines the cell location of each
Spatial Component. This module guarantees that no two Spatial
Components are allocated in the same cell. For this experiment we

 The Multi-Disciplinary Design System 370

Experiments

have eleven spatial components and eighteen potential cell
locations.

The geometric variables module defines the ranges of the control
points locations. In order to avoid any excessive distortion of the
grid, each Control Point is forced to lie within a specific region.

Genetic Algorithm Module

Due to the nature of the design space, a Genetic Algorithm (GA) was
implemented. The GA’s genotype includes instructions for the
synthesis assemblies to create a phenotype. In our experiment these
instructions are of two types: topological instructions for allocating
Spatial Components, and geometric instructions for modifying
Control Points that affect the Cells. All the genetic transformations
including crossover and mutation happen at the genotype level.

Constraints are implemented through the use of penalty functions. If
a solution does not comply with the constraints in the system a
penalty is added to the fitness of the design solution according to
the degree of violation.

Due to the existence of multi-objectives the aim is not to produce a
global optimum solution, but rather to direct the evolutionary
process to produce populations of good solutions. These solutions
would be used to study the tradeoffs between the different
objectives. The GA’s parameters used in the experiment were:

Population Size: 20
Maximum Generations: 500
Selection Scheme: Multiple elitist
Preserved Designs: 10
Operator Probabilities
 Discrete Variable Crossover: 1.0
 Discrete Variable Mutation: 0.15
Constraint Tolerance
 Maximum Constraint Margin: 0.05
 Percent Penalty: 0.5
Number of Top Designs Stored: 12
Random Number Seed: 3132

 The Multi-Disciplinary Design System 371

Experiments

 Figure 9.42:

MDDS Module
Integration

 Integration & Exploration

 When all the modules discussed earlier have been built and their
validity verified, the data flow model of the design system is
implemented and the modules are integrated (figure 9.42). For the
integration of the different modules Model Center from Phoenix
Integration was used.

Optimization runs were started from initial seeded designs. As
stated earlier two modes of evaluation were implemented. In the
first mode a scalarization was attempted. The MDDS demonstrated
interesting results (9.43).

The plotting of the search progression of the GA shows improvement
to the overall performance of the design solutions beyond our initial
seeded solutions. Similar to experiment one, design solutions in the
final populations tended to be more compact in their shape.

 The Multi-Disciplinary Design System 372

Experiments

 Figure 9.43:

The MDDS evolution
of solutions.

 In the second mode of evaluation, a Pareto filtering approach was
implemented. To assess better the trade-offs between the different
objectives we needed to identify the non dominated solutions. This is
because it focuses attention on a smaller set of solutions that are
worth considering. These tradeoffs help select the final design.

 The Multi-Disciplinary Design System 373

Experiments

 Figure 9.44:

Pareto front of
non dominated

solutions

 Despite the fact that this investigation is based on the results of a
standard GA, the resulting feasible solutions were re-plotted in a 3-
dimensional space in order to provide the design team some insight
in the tradeoffs possible. These visualizations are useful because they
show what needs to be given up in one objective to obtain an
improvement in another.

The design team was interested in studying the tradeoffs between
lighting and thermal objectives compared to the overall performance
of the solutions.

Figure 9.44 shows two plots. The first is a 3D plot of solutions. The

 The Multi-Disciplinary Design System 374

Experiments

graph axes represent the thermal and lighting objectives as well as
the total objective which combines the rest of the design objectives.
The second plot demonstrates the non-dominated solutions in the
cloud of feasible solutions. These non-dominated solutions are
obtained by a simple sorting algorithm and can be considered as a
rough estimation of the Pareto-front.

As had been expected, both the lighting and thermal modules were
in clear conflict with each other. Many solutions exist with higher
overall lighting performance but at the cost of thermal performance
and vice versa. Such conflicts and contradicting objectives are typical
for multidisciplinary design problems. The Pareto front of non-
dominated solutions offers the design team a good basis to discuss
trade-offs between objectives.

However, it should be noted that this study is done based on a single-
objective evaluation, and as the plot in figure 9.44 shows, there are
undesired gaps in the non-dominated solution front.

Radial plot was later used to visualize the trade-space (figure 9.45).
However, due to the large number of solutions, as well as objectives,
the plot was not very useful in identifying the best tradeoff between
the different objectives.

The design team was then interested in understanding the possible
tradeoff between all seven objectives. For many dimensions the 3D
plots are no longer useful and an entirely different mechanism must
be used.

The design team decided to use a profile plot. The profile is a
simple representation in which the score of each objective is scaled
vertically along distinct point on the horizontal axis. The performance
of any specific non-dominated solution appears as a zigzag horizontal
line.

 The Multi-Disciplinary Design System 375

Experiments

 Figure 9.45:

Radial Plot to
visualize the trade-

space

 This type of representation was useful initially, but became confusing
as more solutions were displayed simultaneously. This mode of
presentation is therefore effective only when comparing a few
solutions (figure 9.46).

Nevertheless, results from the Pareto filtering proved to be rather
interesting, as understanding the trade-offs between conflicting
objectives added another dimension towards our ability to interpret
results.

After assessing the results of the runs a solution was chosen.
Although this solution performed highly in all seven objectives, it was
not the one with the highest total performance. This is due to
qualitative aspects that were not included initially in the MDDS
formulation but the design team believed were important (figures
9.47, 9.48, 9.49, 9.50, and 9.51)

 The Multi-Disciplinary Design System 376

Experiments

 Figure 9.46:

A profile plot of the
solutions and the

Pareto front. . The
performance of any

specific non-
dominated solution
appears as a zigzag

horizontal line.

 The Multi-Disciplinary Design System 377

Experiments

 Figure 9.47:

Exterior renderings
of chosen solution

 The Multi-Disciplinary Design System 378

Experiments

 Figure 9.48:

Renderings of
structure of chosen

solution

 The Multi-Disciplinary Design System 379

Experiments

 Figure 9.49:

Renderings of the
interior of the

structure of the
chosen solution

 The Multi-Disciplinary Design System 380

Experiments

Figure 9.50:

3D Physical model of
the chosen solution

 The Multi-Disciplinary Design System 381

Experiments

 Figure 9.51:

3D Physical model of
the structure of the

chosen solution

 The Multi-Disciplinary Design System 382

Experiments

 The Multi-Disciplinary Design System 383

Conclusion

 10.1 Thesis Summary

 In this thesis I discussed different concepts that represent the stages
needed to construct what I called the Multi-Disciplinary Design
System (MDDS). There are five phases to generate an MDDS. These
phases involve decomposition, formulation, modeling, integration,
and exploration. These phases are not carried out in a sequential
manner, but rather in a continuous back and forth movement
between the different steps as the design progresses and evolves.

 10.1 .1 Decomposition

 As mentioned earlier decomposition, is the first process that takes
place at the front end of the MDDS construction development. As
discussed earlier, design can be seen as both an object and a process
and therefore two modes of decomposition were presented in the
thesis, namely object and process decompositions. In object
decomposition the artifact or system’s design concept is broken
down into different components and aspects that make up its
physical object. In process decomposition the design concept is
broken down into the developmental levels and design activities that
can be used to reconstruct the design process.

Process decomposition is required in the MDDS formulation stage in
which development decomposition informs the formulation stage
about the proposed hierarchy and multilevel structure of the MDDS
while activity decomposition is essential in identifying the design
activity modules within every level of the MDDS formulation.
Furthermore, object decomposition is needed in the MDDS modeling
stage were component decomposition is essential for the synthesis
mathematical models while aspect decomposition is critical for the
analysis mathematical models.

 10.1 .2 Formulation

 Design process planning follows in the formulation stage which
provides an improved understanding of the process properties.

10. Conclusion

 The Multi-Disciplinary Design System 384

Conclusion

Formulation can be seen as the process of designing the architecture
of the MDDS. The MDDS architecture is broken down into
hierarchical levels, each of which comprises a group of cycles that
include modules at different degrees of abstraction.

The MDDS is broken into hierarchical levels in order to manage the
design complexities, where each lower level becomes more detailed
and refined as the design progresses. Each module within the MDDS
represents a design activity. Similar activity modules can be
interconnected to create assemblies. Each cycle within a level
includes modules that represent all of the four design activities
mentioned earlier, namely synthesis, analysis, evaluation, and
optimization. The MDDS as a whole can be seen as a set of
interrelated modules that collectively can produce design solutions.

MDDS includes both hierarchical and non-hierarchical structures. The
MDDS levels represent a hierarchical structure while relations
between the different modules and cycles within an MDDS level
represent a non-hierarchical structure.

In the formulation chapter, several tools and notations have been
suggested for the task of structuring and formulating the
information produced from the decomposition stage into a coherent
MDDS architecture. The DSM, for example, could be used to refine
the interaction between modules and minimize iterations as well as
determining crucial activities that influence process lead-time and
cost. Formulation notations that include network notations, such as
Data Flow Diagrams, or IDEF0, or even formulation modeling
languages such as UML and SysML, can be of great use in designing
the MDDS architecture and defining its hierarchical levels, cycles,
assemblies and module interactions.

As suggested previously, formulation enables the visualization of
data and control flow. Different design processes and architectures
can be compared and evaluated. It should be noted, however, that in
order to arrive at a reasonable system architecture there must be an
iterative cycle or loop between decomposition and formulation.

 10.1 .3 Modeling

 MDDS offers a framework for modeling design activities that include
synthesis, analysis, evaluation and optimization. These design
activities are built into modules which can contain mathematical
models as well as data or software applications that interact
together in order to automate the process of design search.

 The Multi-Disciplinary Design System 385

Conclusion

Each module has a boundary that cuts across its links to the
environment defining the module’s input and output. Each module
acts like a black box transforming data from one form to another.
The behavior of each module contributes not only to the design
aspect and discipline it is modeled after but to the MDDS as a whole.

Synthesis

The design concept is decomposed into a set of synthesis modules
by extracting design intentions and formulating a collection of
design parameters, rules or algorithms. These modules define the
system components and configurations to be modeled and are
based on the component decomposition completed in the
decomposition stage.

Synthesis modules provide a representation of the artifact design
language which in turn defines the general design space. The design
vector is the input to this type of module. As discussed previously in
the modeling chapter, the number and type of variables included in
the design vector depends on the algorithms and structure of the
synthesis module. Synthesis modules output data to analysis
modules. This data consists of certain artifact’s attributes, such as
dimensions, areas, volumes and mass properties. The need for
integrating synthesis and analysis modules affects to a great extent
modeling requirements for both design activities.

Synthesis models should provide for a generative mechanism. This
could be done through the different techniques discussed in the
modeling chapter such as parametric and algorithmic models.
Parametric models provide for a description of the artifact through
parameters and relationships that allow for variation. Algorithmic
models give a description of the artifact through a set of rules and
algorithms. Generative formal grammars are good examples of
algorithmic models. These include grammars like shape grammars,
graph grammars, Lindenmayer Systems, and cellular automata.

It was also noted in thesis that the representation of generative
synthesis models should encode design knowledge. The relationship
between form and performance should be embedded within the
representation formalism. This provides restrictions on permitted
designs and ensures that the rules discard designs that do not
comply with constraints. However, since synthesis models do not
include performance feedback loops, it is difficult for such models to
direct the generation and navigate the design space of multi-
performance design problems.

 The Multi-Disciplinary Design System 386

Conclusion

Analysis

Analysis models and simulations are used to predict the behavior and
performance of a specific synthesized design. A design problem
usually combines different disciplines, with each discipline
developing one or more analysis models.

The outcomes produced by a synthesis module are the inputs to the
analysis module. These inputs may range from simple parameters
and data, such as areas or volumes, to full CAD models for use by
numerical analysis models like FEM and CFD. The outputs of the
analysis module are performance measures that will eventually be
used within the evaluation modules in assessing the effectiveness of
a system configuration.

Analysis models range in their amount of required information input
and their degree of accuracy output. Three types of analysis models
were discussed in the modeling chapter: analytical, numerical and
surrogate models. Analytical models are mainly low-order (low-
fidelity) models. Numerical models, like FEA and CFD, are considered
high-order (high-fidelity) models which if combined with search and
optimization can result in long durations. Surrogate models, such as
kriging and response surface models, are low-processing
approximation techniques that can be utilized to replace expensive
and detailed numerical models. However, these types of models
have limited design application.

In choosing an analysis model the design team must select the best
compromise between the demand for simplification and the
necessity to clearly identify, describe and rate the targeted physical
mechanism. A trade-off will have to be made between fidelity and
analysis time.

Evaluation

Evaluation models are in essence decision-making tools. The need for
the evaluation of results arises when multi-disciplinary objectives
exist. The inputs and outputs to an evaluation module depend on the
structure of the module, the strategy used in the evaluation and
whether it is done before or after optimization.

When the preference is expressed beforehand, the designer decides
how to aggregate different conflicting objectives into a single
objective function before the search is performed. A commonly
adopted approach is scalarization which consists of combining
several objectives into one scalar cost function. Different

 The Multi-Disciplinary Design System 387

Conclusion

scalarization methods, such as the weighted-sum approach and the
utility function method, were presented in the modeling chapter.

When a search is performed before decision-making, the search is
performed with multiple objectives at the same time. The solution
space becomes partially ordered with a set of optimal trade-offs
between the conflicting objectives called the Pareto optimal set.
Several techniques and algorithms for multi-objective optimization,
such MOGA, were also presented in the modeling chapter.

Optimization

Optimization models are design space search mechanisms.
Searching the design space entails finding the best solution(s) within
a domain of feasible solutions. An optimization model seeks to
minimize or maximize an objective function by varying the values of
the variables in the design vector.

The input to the optimization module is an objective function(s). The
outputs of the optimization module are new values for the design
vector variables. The choice of an appropriate search algorithm
depends on several factors including the design synthesis model, the
nature of the analysis models, the number and type of the design
variables in the design vector, the existence of constraints, and the
linearity of either the objective function or constraints.

As discussed earlier optimization algorithms could be divided into
discrete optimization algorithms or heuristic algorithms. Some
discrete optimization algorithms that handle constraints include the
simplex method, sequential quadratic programming, and the
exterior and interior penalty methods among others. Discrete
optimization algorithms that handle unconstrained problems are
generally gradient-based algorithms. These include Newton's
method, steepest descent and conjugate gradient among others.
Heuristic algorithms on the other hand include optimization
algorithms, such as evolutionary algorithms, simulated annealing and
tabu search.

As mentioned previously, no existing optimization algorithm is
guaranteed to find the global optimum of a nonlinear, non-convex
problem. Gradient-based methods find optima with high reliability
but might not escape a local optimum. Heuristic algorithms might
find a good solution, but its optimality cannot be guaranteed since
they often tend to find a different design each time they are run in
addition to the fact that they do not converge to a solution in the
same effective manner as gradient-based methods do.

 The Multi-Disciplinary Design System 388

Conclusion

The Design Cycle

In the modeling stage both the design vector variables and the
objective function are better defined but can still be modified further
according to investigations made in the design exploration stage,
either before search or after search.

Domain knowledge of each discipline involved in the design informs
the synthesis modules to create meaningful designs and
representations. The outcome of the synthesis modules is analyzed
by the different discipline analysis modules to predict the properties
of a particular solution. The evaluation modules then handle the
multi-objective nature of the design. The optimization modules
search the design space and automate the synthesis, analysis and
evaluation in search of new solutions. The process continues until
the optimization has converged and a family of acceptable solutions
is found.

 10.1 .4 Integration

 Integration takes place at the tail end of the MDDS development.
Design activity modules that were modeled and created by design
specialists are integrated to create an MDDS cycle. Design cycles can
also be integrated within a level and so on. Through a bottom-up
approach, all the design activity modules that were developed are
connected into a data flow network that includes clusters and
subsystems.

Integration tools are used to satisfy the requirements of the MDDS
process through efficiently automating the exchange of module
information. The integration between the different modules can be
carried out using one of the integration technologies discussed
earlier in the integration chapter such as middleware, web services
or a combination of both. As discussed earlier, MDDS also supports
the integration of commercial analysis and simulation programs
through the automation of program execution. Integration mainly
aims at facilitating the integration of design activity modules and
simulation programs regardless of discipline or programming
language.

The end result of a typical MDDS process is an integrated system
model. The MDDS can then be tested to verify that it actually works
as formerly planned. Testing the system involves running the
simulations and reviewing the model validity.

 The Multi-Disciplinary Design System 389

Conclusion

 10.1 .5 Exploration

 After building and integrating the MDDS, it would be useful to carry
out a few experiments that could help explore the design space.
MDDS can be continuously adjusted through several process
iterations in order to investigate the influence of the modification of
different variables in the design vector.

Changes in the design variables of one part of the system are rapidly
spread throughout the system. Design space exploration can delve
into “what-if” scenarios and assess trade-off situations. This makes it
an essential tool for analyzing the effects of design variables and the
shape of design spaces to provide a better understanding of the
decisions that are made in design selection and the corresponding
consequences. This aids designers in the process of determining the
best trade-off among performance and cost, in addition to
enhancing multidisciplinary negotiations, leading to better design
quality.

Exploration experiments and techniques are not intended as a
validation of the system as a whole as much as they are a validation
of some of the design decisions made within the MDDS, such as
what variables to include in the design vector or the structure of the
objective function. As mentioned previously in the exploration
chapter, exploration can be carried out before search or after it.

Exploration techniques used before search include methods, such as
DOE, that can be used to provide an overview of the design space or
a local region of the design space. These techniques can be used to
screen factors, thus helping minimize the problem size before the
optimization process takes place. In addition, a new and feasible or
enhanced initial point for optimization can sometimes be chosen
using the initial points analyzed from the DOE study.

Exploration techniques used after search and optimization are
mainly sensitivity analysis processes. Sensitivity analysis is primarily
concerned with how the specific response of a chosen solution
changes due to the modification of design problem formulation.
Sensitivity analysis tries to identify what source of uncertainty
affects the final solutions more. The importance of sensitivity
analysis comes from the fact that all the mathematical models used
in the MDDS are approximations to the actual artifact and system.

 10.2 Thesis Contributions

 Some of the concepts put forth here are not new, but the

 The Multi-Disciplinary Design System 390

Conclusion

contribution of this thesis stems from synthesizing these concepts
into a coherent whole. In the following I will discuss some of these
concepts in further detail.

 10.2.1 A Computational Design System Model

 The main idea proposed in this thesis is a framework for developing
computational multi-disciplinary design systems (MDDS) that would
enhance the design of complex systems and artifacts through an
efficient process. This proposed MDDS framework is a generic
framework that proposes a group of systematic methodologies that
eventually lead to a fully realized and integrated design system.

As stated previously, the MDDS embraces diverse areas of research
that include design science, systems theory, artificial intelligence,
design synthesis and generative algorithms, mathematical modeling
and design oriented disciplinary analyses, optimization theory, data
management and model integration, and experimental design
among many others.

The hope is that this computational design system can assist the
design team in going beyond their limitations in searching huge
design spaces. By implementing the framework, vast design spaces
can be searched while solutions are intelligently modified, their
performance evaluated, and their results aggregated into a
compatible set of design decisions.

Within this framework, complexities of the design can be handled
and the uncertainty of its evolution can be managed. Furthermore,
MDDS techniques provide a better understanding of not only the
designed artifact properties, but also of the priorities of the design
system expectations and objectives.

As demonstrated throughout this thesis, the way in which the
resulting design system is generated and the capabilities it brings are
totally different from the tools used in traditional design approaches.
The MDDS is therefore more of a design process than a specific
design tool or group of design tools.

In addition, the framework presented supports the design of
complex systems within a variety of domains. The hope is that by
incorporating the MDDS designers can gain a market edge through
enhanced design quality and performance and improved
collaboration among multi-disciplinary design teams that would lead
to reduced design time and cost.

 The Multi-Disciplinary Design System 391

Conclusion

 10.2.2 A Multidisciplinary Design System Model

 In the traditional design approach, many actors participate in
different phases, each with diverse competencies and seeking
solutions to a particular aspect of the design problem. In this
sequential approach, due to the well-defined boundaries between
disciplines, different competencies work on the design at different
times, each one modifying the product of the previous one to
achieve its objective.

Thus, the final solution is not always the optimal solution or the one
that requires the least time to figure out. In fact, the overlapping of
many decision-makers who act separately, and often times have
conflicting goals, generates recurrent changes and unnecessary
feedback loops in the design process. If all the requirements and
partial objectives had been taken into account at an earlier stage, a
more suitable and economic solution would have been found.

Using MDDS, the design solution is not envisioned a priori, and a very
wide exploration of potential solutions is encouraged. Each solution
is rated on the basis of multi-objective criteria operating
simultaneously.

It is easy to understand the advantages of performance-driven,
concurrent design with respect to the traditional sequential
approach that, due to the complexity of the design problem,
envisions a very limited number of potential solutions, assesses their
efficiency and checks for feasibility. The “optimality” of the solution,
in that case, relies heavily on the experience of the designers and of
the project coordinators, and often lacks the benefits provided by
the MDDS integrated approach.

 10.2.3 An Evolutionary Design System Model

 Design can be seen as an evolutionary process. One of the main
attributes of the MDDS framework is that it takes into account this
evolutionary nature of design. As discussed earlier, design
descriptions change as projects progress. A design cannot be
described at the detailed level required for manufacturing at the
earliest stages of design. The level of description of a specific design
is directly proportional to the amount of information available at a
specific project stage. With project design progress and evolution,
the complexity of both the design description and the corresponding
design models increase as design progresses.

Therefore, the resulting MDDS model is described by an evolutionary

 The Multi-Disciplinary Design System 392

Conclusion

model moving from simple and generic ideas into more complex and
detailed ones throughout the process. This notion of an evolving
system yields an MDDS that is continuously dependent on, and
responsive to, the uncertainties of the design progress. MDDS
captures the design evolution through an evolving system
architecture. New levels, new cycles as well as new modules are
added as the design progresses. MDDS is thus characterized by
comprising a multi-level, multi-module, multi-variable and multi-
resolution architecture.

Multi-level

Since both the physical artifact and the design process can be viewed
in terms of hierarchical decompositions where they are decomposed
into multi-levels, the MDDS architecture should also be considered
multi-level. The MDDS process should be viewed as an incrementally
changing process that grows from the top to bottom as a
combination of multiple quasi-interdependent levels. Each level in
the MDDS can be decomposed into design-cycles that can be further
decomposed into different linked modules.

Multi-module

As discussed earlier, many design problems require using a group of
complementary models, rather than one single model, which
collectively aim at modeling and describing the whole design
problem. This modeling process requires specialized knowledge in
many disciplines. MDDS facilitates this by its multi-module platform
for utilizing several design activity modules from different disciplines
to simulate design problems.

Multi-variable

As the design evolves the set of variables in the design vector also
evolves and changes between the different levels of the MDDS.
Design variables at a certain level become constants at a lower level.
At the same time new variables are added to the design vector at
lower levels. This multi-variable property changes the degrees of
freedom of the design system from one level to the next.

Multi-resolution

Furthermore, for the evolving MDDS, modules with different
resolutions and granularity levels are needed. By altering modules or
exchanging existing disciplinary synthesis and analysis modules for
more suitable fidelity levels, existing MDDS level modules can be

 The Multi-Disciplinary Design System 393

Conclusion

evolved to lower successive levels. Therefore, MDDS involves a
multitude of model resolutions. In conceptual design, low-fidelity
models are used in the MDDS due to the lack of complete and
sufficient design information. In later phases however, more detail is
required to perform elaborate synthesis and analysis. Hence, these
are conducted using higher-fidelity models.

Decoupling

Although MDDS starts with integrated and coupled design cycles,
these design cycles tend to decouple as the MDDS levels are created
and evolved. Decoupling takes place both horizontally and vertically
when the interactions between modules or levels disappear. This
happens when the various interconnected modules are decomposed
into different cycles which do not require as their input the output of
another cycle. The system structure is thus simplified and can benefit
from parallelism.

 10.2.4 An Adaptable Design System Model

 The MDDS can adapt to changes in the design evolution process due
to the modular nature of the MDDS; many different options can be
generated using its modular mix-and-match flexibility. As mentioned
earlier, a design module can substitute for another, a new module
can be added to the system, a module can be deleted from the
system, and a module can be reused in another MDDS.

An existing MDDS level can be evolved in this context to a lower
level through changing or replacing existing disciplinary analysis
modules within design cycles to more well-suited modules with the
adequate fidelity levels. Previously developed modules in another
MDDS can also be adapted to the current MDDS.

Furthermore, the modular nature of MDDS facilitates conducting
trade studies and affords the design team with greater flexibility in
addressing dissimilar and large trade-spaces. Traditionally,
conducting a multi-disciplinary trade study is characterized as a time
consuming process which is largely dominated by the transforming
and translating of data between design disciplines. The MDDS
approach would allow the quick interchange of individual modules,
leading to easily testing the effect of these modules on the design
solutions in addition to customizing different scenarios to the
specific problem for effective exploration.

 The Multi-Disciplinary Design System 394

Conclusion

 10.2.5 A Generative Performance-Driven Design System Model

 One of the important contributions of the thesis lies in incorporating
generative synthesis models. As discussed earlier, in most of the
work done thus far in other design technologies, such as MDO, the
topology of the artifact is generally fixed by the design team and the
optimization merely varies its dimensionality. As demonstrated in the
experiments, MDDS encourages the use of generative synthesis
models that generate more varied design spaces. This enables
multidisciplinary design teams to formally explore the performance
of many more design alternatives, which should lead consequently
to better designs and enhanced performance.

Furthermore, the MDDS approach introduces a scenario where the
idea that performance drives design is clearly identified. In today’s
increasingly competitive market, design solutions that merely meet
minimum project requirements are no longer guaranteed to prevail.
Solutions must be cost-effective and generated through efficient
multi-disciplinary processes. An effective evaluation of these
solutions therefore involves the integration of multiple disciplines.
MDDS allows for identifying counter-intuitive solutions and functions
of multiple design disciplines.

Although MDDS helps generate high performing solutions, these
performance measures are mostly driven by quantitative aspects of
the design. I believe, however, that qualitative aspects of the design
should also be taken into account. A quantitatively optimum solution
might not necessarily be the best solution. Better exploration of the
design space might reveal solutions with better qualitative merits.
That is why the MDDS framework proposes the generation of
families of quantitatively good solutions that can later be assessed
by the design team for their qualitative aspects.

 10.2.6 A Design System Model with Emergent Behaviors

 The various modules involved in the MDDS try to optimize the design
of the artifact, each within its respective discipline. This clearly
creates conflicts between the different design modules. From this
conflict, unexpected solutions can emerge.

As mentioned earlier, the MDDS functions as a dynamic and complex
whole, interacting as a holistic structured functional unit. The system
emergent properties are not detectable through the properties and
behaviors of its modules, and can only be enucleated through a
holistic approach. The solution found by this system is expected to
be superior to the design found by solving and optimizing each

 The Multi-Disciplinary Design System 395

Conclusion

discipline sequentially, since it can exploit the interactions between
the different disciplines.

This emergent capability in MDDS is an attractive quality that can
address Descartes’ Dictum proposed in the introduction of this
thesis: “how can a designer build a device which outperforms the
designer's specifications?” (Cariani, 1991). By identifying unexpected
solutions, the MDDS can help designers reach beyond their manual
design limitations, and therefore, arguably, can be described as
exhibiting intelligent behaviors.

 10.2.7 A Model that Reduces Design Iteration Time

 As stated in this thesis, MDDS can significantly minimize design
iteration time by implementing several methodologies and
technologies that include integrated design approaches as well as
automated design activities, leading to enhanced efficiency in design
iteration time.

This reduction in time can enable design teams to formally explore
the performance of a variety of design alternatives. This is
considerably more than is currently possible within the same
duration using traditional design approaches. With MDDS more time
can be spent in the interpretation of results and in choosing between
design alternatives as well as reshaping the design space in search of
more promising regions.

 10.2.8 A Model that Redefines the Design team and Studio

 In addition to the design process, both the design team and
workspace are affected by the MDDS approach. The MDDS proposes
that the design team should consist of design specialists and system
architects that can jointly grasp a large body of knowledge and
experience. The role of design specialists is to guarantee that their
share of the requirements and constraints in the design process is
solved. System architects’ role, on the other hand, is to assemble
multiple parts of the design process into a full system.

Responsibilities of both the system architect and design specialist
can be defined by means of the MDDS hierarchical structure.
Modules and sub-cycles denote elements that that lie within the
domain of design specialist who can adjust them to a specific
application given a group of specifications. The systems architect
should be able to manage the complexity of formulating the system
architecture. The number of levels, as well as the number and type of
activity modules to be included in addition to the technical tradeoffs

 The Multi-Disciplinary Design System 396

Conclusion

that influence the system capabilities, must be resolved by the
system architect.

Furthermore, the thesis proposes the need for an MDDS
environment that can generate MDDS models by allowing all design
participants to embed their specific software tools or models into
modules collaboratively and then efficiently integrate these modules
into different cycles and levels to create a full MDDS.

Although some interesting commercial tools to manage some
aspects of this integration currently exist in the market, these tools
still remain limited in the scope of their application.

Given that the MDDS is essentially designed as an assembly of linked
programs and components, the workspace within the MDDS can be
considered a virtual design studio that implements the component-
assembly approach. The MDDS design environment should provide
for an infrastructure of data integration tools and methods that
supports the robust simulation process for product design and
development throughout the design lifecycle. Through this
environment, many benefits can be achieved, such as minimized data
translations, effective data or knowledge configuration control and
architecture, enhanced distributed collaboration by geographically
dispersed product teams, and effective data transfer between
different stages, from conceptual to preliminary to detailed design. It
should also support the integration of commercial and proprietary
analysis and simulation programs through flexible coupling methods
and automation of simulation program execution. It should also
provide for design space exploration using a suite of design space
exploration tools.

The system architect, within such a computational environment,
becomes a master assembler of digital blocks analogous to the
architect within the physical world as the master builder.

 10.2.9 A Design System for Integral and Modular
Architectures

 The MDDS can be considered as a modular system for the creation of
varied architectures. This is because regardless of the intended
design of the artifact’s system architecture, whether modular or
integrated, the MDDS can help enhance the artifact’s performance.
This is due to the fact that, although influencing each other, object
decomposition and process decomposition are handled separately
within the MDDS. Therefore, the artifact’s proposed design object
can have either a modular or an integrated architecture, while the

 The Multi-Disciplinary Design System 397

Conclusion

MDDS as a computational design system can remain modular.

 10.2.10 A New Approach to Building Civic Architecture

 Although the MDDS framework is intended to be domain-
independent, several MDDS prototypes were developed within this
thesis to generate exploratory building designs. I hope these
examples provide a proof of concept for the validity of the
framework presented in this thesis and the potential it has on
influencing the computational design approach.

 10.3. Limitations and Difficulties

 Although the MDDS framework provides a powerful approach to
designing multidisciplinary systems, there are still several difficulties
that need to be investigated and researched further. I will summarize
here a few of these difficulties, which include issues related to
synthesis complexity, analysis representation, multi-level optimality,
evaluation visualization, algorithmic exploration, and setup time.

 10.3.1 Synthesis Complexity

 Most multi-disciplinary optimization problems and applications
involve tens, and even hundreds or thousands, of design variables
and constraints. This denotes a significant difficulty for
computational design both in managing the design variables and in
the ability to search the multi-dimensional design space adequately.

Furthermore, the algorithmic synthesis models discussed in this
thesis, such as formal grammars, represent difficulties for both
analysis and optimization. This is because these systems are in flux
and can change the number of variables that represent a solution as
well as the configuration of the solution. There remains a lot of work
to be done in computational systems for design before workable
methodologies for these types of problems are realized.

 10.3.2 Analysis Representation

 One of the fundamental challenges with applying the proposed
MDDS is the issue of large-scale data management and data
representation.

Extracting and transferring the design information from different
design models can represent varying difficulties. It can take the form
of simply translating the syntax of one program output into another
program input. It can get more complex, such as when a generative

 The Multi-Disciplinary Design System 398

Conclusion

synthesis model produces new topologies and geometries at each
new iteration. This represents considerable modeling difficulty since,
on one hand, the analysis model has to extract new relevant
information from the synthesized solution, and, on the other, the
optimization has to handle a varying size design vector(s).

These challenges are very distinctive from those that have been
addressed by the industry for a long time. More research has to be
carried out since methods for dealing with such issues previously
have been shown to be insufficient for solving this type of problem.

 10.3.3 Multi-Level Optimality

 As stated in the thesis, the MDDS proposes a successive filtering of
solutions, in which certain solutions, with a certain degree of
abstraction, are moved from one level to the next lower level to be
optimized further. This is a sequential optimization technique
between deferent levels which is not expected to necessarily lead to
an optimum solution.

As discussed in the thesis, the question of optimality in a
multidisciplinary environment is debatable especially with the
existence of qualitative aspects. Several design aspects can only be
assessed by the stakeholders and design team when more
knowledge about them becomes available as the design evolves.
One of the difficulties associated with optimization in MDDS is the
uncertainty involved within the design process as a design evolves
from one level to the next. In many cases, the lower levels will not be
known. However, after the full design has evolved and further
optimization of the full system is sought, several multi-level
optimization techniques may be implemented although with a
limited scope due to the complexity of the design vectors involved.

 10.3.4 Evaluation Visualization

 As was demonstrated in the experiments, the visualization
techniques of the objective space and Pareto front were limited to a
few objectives. New visualization techniques need to be developed
to help the design team and stakeholders understand the trade-off
possibilities better.

 10.3.5 Algorithmic Exploration

 Not many exploration techniques were implemented in the design
experiments in this thesis. This is due to type of problem exploration
techniques are designed for. Exploration techniques are generally

 The Multi-Disciplinary Design System 399

Conclusion

designed for a parametric representation and not algorithmic
representation like the ones used in formal grammars.

New techniques that can gauge and explore a design space
generated by an algorithmic representation need to be researched
further. These challenges are very distinctive from those that have
been addressed by designers and engineers for a long time. More
research has to be carried out since methods for dealing with such
issues previously have been shown to be insufficient for solving
existing problems.

 10.3.6 Setup Time

 The MDDS efficiency in searching the design space and producing
several solutions does not come without a price, particularly when it
comes to setup time. A great deal of initial investment is required in
setup time and process planning. The hope is that this investment
can be compensated throughout the design life cycle.

This investment could be reduced if modules are reused between
different design projects. Furthermore, if different modules are
made publicly available, such as on the web, time spent on modeling
can be shortened.

However, this approach may present its own set of drawbacks.
Designers and engineers may be inclined to use certain modules
because of their availability rather than their suitability to the design
problem. Furthermore, modules may be used without fully
understanding their functionality and hence may jeopardize the
validity of the design system.

 The Multi-Disciplinary Design System 400

Conclusion

Figures List

The Multi-Disciplinary Design System 401

 1.1 Aircraft Design Optimization Framework Using MDO.
Adopted from Martins, J. MDO Lab, University of
Toronto.

 1.2 MDO Framework for Blended Wing Body Concept
(de Weck and Willcox, 2005).

 1.3 Proposed Framework for the Multidisciplinary Design
System (MDDS).

 2.1 Design can be considered both as an object and a
process.

 2.2 The proposed design system should imitate the design
process to produce the artifact.

 2.3 Four design domains in the axiomatic design (Suh
1990).

 2.4 Zigzagging process between functional and physical
domains.

 2.5 Functional domain and physical domain hierarchies.

 2.6 Short conception design phase with unequal
distribution of improved quality and integrated
disciplines for optimization.

 2.7 Life cycle-cost committed versus incurred by life-cycle
phase.

 2.8 An example of a building skin component. Knowledge
about the design is increased as the design evolves
over time.

 2.9 At the creative end of the spectrum, design is very
fuzzy. As it moves to routine design, it gets precise,
crisp, and predetermined (Bahrami and Dagli, 1994).

 2.10 The boundary around an office building system
determines its relation with the environment.

Figures List

Figures List

The Multi-Disciplinary Design System 402

 2.11 The black box approach identifies system performance
in terms of inputs and outputs.

 2.12 In modular architecture there is a close match
between the functional and physical hierarchies.
In Integral architecture functions are distributed
among a variety of elements.

 2.13 An Example of two Building Skins with one
representing a modular architecture and the other
representing an Integrated architecture.
Project Credit of Integrated Architecture Skin: Anas
Alfaris, Alexandros Tsamis.

 2.14 Modular Architecture in physical product design is not
always superior to integrated architecture as is
illustrated in this nail clipper example (Ulrich, 1995).

 2.15 The structure of complex systems can have multiple
hierarchical levels.

 2.16 A tree with 8 nodes and 7 edges or links, 5 paths from
root node to bottom or leaf nodes, 3 levels (Magee et
al, 2006).

 2.17 Non-standard trees: an impure relatively complex tree
with non-standard interconnections (Magee et al,
2006).

 2.18 Layered hierarchies with horizontal interconnections
(Magee et al, 2006).

 2.19 Three layers, a root node, 10 nodes, with horizontal
interconnections (Magee et al, 2006).

 2.20 Networks with the same topology.

 2.21 There are many types of networks which depend on
the type of edges connecting vertices (Hayes, 2000).

 2.22 Taxonomy of networks (Magee et al, 2006).

 3.1 Alexander’s representation of the design problem as a
network.

 3.2 Hierarchical and Network decompositions.

 3.3 Design decomposition can consist of object and
process decompositions. Object decomposition
includes Component and Aspect decompositions,
while Process decomposition includes Development

Figures List

The Multi-Disciplinary Design System 403

and Activity decompositions

 3.4 Power train component decomposition.

 3.5 Office building component decomposition.

 3.6 Office building aspect decomposition.

 3.7 Design development can be decomposed into several
stages.

 3.8 RIBA’s four phase model which includes: assimilation,
general study, development, and communication.

 3.9 Archer’s model includes six types of design activity:
programming, data collection, analysis, synthesis,
development and communication.

 3.10 Archer’s reduced model with three broad phases:
analytical, creative and executive phases.

 3.11 Eggert’s design model includes four basic phases:
formulating, generating, analyzing, and evaluating.

 3.12 March’s PDI production, deduction, induction
model.

 3.13 The Function–Behavior–structure (FBS) Framework
Gero (1990).

 3.14 Design activity model. Four phases are included:
Synthesis, Analysis, Evaluation, and Optimization.

 3.15 Asimow’s design model includes a vertical and a
horizontal structure. (Mesarovic, 1964).

 3.16 The Markus/Maver model includes a decision sequence
and a design process.

 3.17 The city car project demonstrates that a design can
have several decomposed views.

 3.18 In this school project several decomposition views are
produced simultaneously.
Project Credits: Anas Alfaris, Kenneth Namkung,
Meredith Elbaum.

 4.1 Decomposition breaks a system into components
whereas formulation puts them together.

 4.2 There are structural patterns pertinent to each

Figures List

The Multi-Disciplinary Design System 404

problem (Chermayeff and Alexander, 1963).

 4.3 Issues that share many connections are grouped
together (Chermayeff and Alexander, 1963).

 4.4 An activity-based DSM for the development of a soda
bottle (McCord 1993).

 4.5 Application of a quantification scheme in a DSM
(Pimmler and Eppinger, 1994).

 4.6 Four different types of DSM (Browning, 1998).

 4.7 Activity information flow and their equivalents
(Eppinger, 1991).

 4.8 Activity information flows and their corresponding
DSM equivalents (Browning, 1998).

 4.9 Data Flow Diagram (DFD).

 4.10 Function Flow Block Diagrams (FFBDs).

 4.11 Characteristics of the model element design review
(Andersson et al., 1998).

 4.12 Characteristics of the model element design review
(Andersson et al., 1998).

 4.13 Design development process (Andersson et al., 1998).

 4.14 Sample Enhanced FFBD (Long, 2002).

 4.15 Sample class object in a class diagram (Pender , 2002).

 4.16 A complete class diagram (Pender , 2002).

 4.17 A component diagram shows interdependencies of
various software components the system comprises
(Pender , 2002).

 4.18 Deployment diagram (Pender , 2002).

 4.19 Sample use-case diagram.

 4.20 Activity diagram with 3 swimlanes (Pender,2002).

 4.21 Statechart diagram showing the various states that
classes pass through in a functioning system (Pender,
2002).

Figures List

The Multi-Disciplinary Design System 405

 4.22 A sample sequence diagram (Pender,2002).

 4.23 SysML diagram taxonomy (OMG,2007b).

 5.1 Block diagram representation of a mathematical
model.

 5.2 Expected input and output of the synthesis model.

 5.3 Koch curve is a recursive synthesis algorithm.

 5.4 An example of a synthesis algorithm that generates
variations of components that create a structure.

 5.5 A space truss is generated using a set of parameters.

 5.6 A building skin generated from a set of synthesis rules
and an algorithm that generates a Voronoi diagram.

 5.7 A building skin structure and materiality generated
using a set of L-System rules.

 5.8 The graph formalism (Alber, 2002).

 5.9 Graph Rules (Alber, 2002).

 5.10 Graph generation by a production system (Alber,
2002).

 5.11 Expansion of a grammatically defined sentence and
the corresponding object (Alber, 2002).

 5.12 Rule 30 cellular automaton.

 5.13 Rule application of a CA.

 5.14 Prairie-style house shape grammar (Koning and
Eizenberg, 1981).

 5.15 In this composition a designer might pick the upper
square, the lower one, or the one generated by their
intersection.

 5.16 A set of Shape Grammar rules can generate many
variations of a component.

 5.17 Various NURBS can be constructed by the same
number of control points with various degrees.

 5.18 An enumeration tree for an ingress-egress system
Project credits: Anas Alfaris, Nii Armar and Martin
McBrien.

Figures List

The Multi-Disciplinary Design System 406

 5.19 Various synthesis models can generated different

solution spaces.

 5.20 An unrestrictive model may be able to span several
feasible solution spaces.

 5.21 Expected input and output of the analysis model.

 5.22 Analysis models vary based on their mathematical
nature.

 5.23 Simple analytical models are used to assess the
behavior of a building skin.

 5.24 Simple analytical models are used to assess the
behavior of a building skin.
Project Credits: Anas Alfaris and Alexandros Tsamis.

 5.25 A high-fidelity analysis model for day-lighting is used to
assess the lighting quality in different spaces.

 5.26 (a) Finite difference and (b) finite element
discretizations of a turbine blade profile (Huebner et
al., 2001).

 5.27 Finite Element Analysis of different components in this
vehicle egress and digress system.
Project credits: Anas Alfaris, Nii Armar and Martin
McBrien.

 5.28 CFD Model for a building site to study the airflow
around the building.
Project Credits: Anas Alfaris, Kenneth Namkung and
Meredith Elbaum.

 5.29 Taylor series uses localized derivative information at
point X0.

 5.30 Polynomial fitting uses information from different
points for each curve.

 5.31 A diagram for a single neuron on the left and a neural
net on the right (Papalambros and Wilde, 2000).

 5.32 A neural net and three other polynomials modeling the
same data (Papalambros and Wilde, 2000).

 5.33 A kriging model for a two dimensional function. Two
top plots are the actual function and the two lower
plots are the kringing model (Papalambros and Wilde,

Figures List

The Multi-Disciplinary Design System 407

2000).

 5.34 Within an optimization both high-fidelity and low-
fidelity models can be utilized.

 5.35 Expected input and output of the analysis model.

 5.36 Illustration of design space and objective space.

 5.37 Sequential variation of weighting factors can be used
to find trade-off solutions.

 5.38 Different utility functions classifications
(Cook 1997, Messac 2000).

 5.39 Points A,B,C and D are optimal solutions that are not
dominated by any other solution in the search space.

 5.40 Expected input and output of the optimization model.

 5.41 An optimization problem has an objective function and
can have several constraints to insure feasibility.

 5.42 A simple taxonomy of optimization algorithms
discussed in the thesis.

 5.43 Linear program in two dimensions with solution at
x*=cTx .

 5.44 In the steepest descent the trajectory to the solution
follows a zigzag pattern.

 5.45 The difference between a local minimum and a global
minimum.

 6.1 Interfaces between different modules have to be
compatible.

 6.2 Matching interfaces between modules with many
variables can be a difficult task.

 6.3 In ModelCenter, components are displayed as icons
while links are displayed as lines between the
components.

 7.1 Exploration should be carried out before and after
Search and Optimization.

 7.2 Multiple combinations of factors and levels are used to
analyze the design space.

Figures List

The Multi-Disciplinary Design System 408

 7.3 An example of a Latin hypercube sampling.

 8.1 MDDS Framework includes five phases:
decomposition, formulation, modeling, integration,
and exploration.

 8.2 MDDS application in relation to Duvvuru design
categories.

 8.3 Object decomposition includes both component and
aspect decompositions while process decomposition
includes both development and activity
decompositions.

 8.4 MDDS is broken into hierarchical levels.

 8.5 MDDS comprises a group of modules.

 8.6 Each design cycle resides in a design level within the
MDDS.

 8.7 A design cycle can include sub-cycles.

 8.8 The MDDS evolves and grows over time, either
vertically by adding more levels or horizontally by
adding more modules and cycles.

 8.9 A design cycle that regenerates a design concept
should include synthesis, analysis, evaluation, and
optimization activities.

 8.10 The different design activity modules are integrated in
the MDDS.

 8.11 MDDS captures design evolution.

 8.12 A guided missile is conceived from the perspective of
each design specialist individually.

 8.13 Knowledge domains of systems engineer and design
specialist.

 8.14 Responsibilities of the system architect and design
specialist intersect.

 9.1 The formalism of the design concept shows five spatial
components with interrelations between them
wrapped by a skin.

 9.2 Component Decomposition.

Figures List

The Multi-Disciplinary Design System 409

 9.3 Aspect Decomposition.

 9.4 Development Decomposition.

 9.5 Component and aspect decomposition mapping.

 9.6 The MDDS cycle on level one.

 9.7 Three rule sets define the synthesis grammar.

 9.8 The sequence of application of the three rule sets.
Starting with the first cell at time t =0 and ending with
the last cell at time t =8.

 9.9 The analysis phase includes six analysis modules.

 9.10 Adjacency score amplifying factors g.

 9.11 Variation of kq (and kL) with orientation.

 9.12 The function Jther(q).

 9.13 Graphical representation of the geometric constraints.
 9.14 MDDS Module Integration.

 9.15 The evolution of solutions. Solutions in the final runs
tend to be more compact in their shape.

 9.16 CAD models of the design concept.

 9.17 Component decomposition.

 9.18 Aspect decomposition.

 9.19 Development decomposition.

 9.20 Component and aspect decomposition mapping.

 9.21 Design cycle one and its design activities.

 9.22 Structure of the N² Diagram.

 9.23 The MDDS cycle on level two.

 9.24 The distribution of materials and control Points on the
Skin.

 9.25 Graphical representation of the geometric constraints.

 9.26 Structure of the utility functions.

Figures List

The Multi-Disciplinary Design System 410

 9.27 Integration between different software.

 9.28 Interface that plays back Evolution History.

 9.29 Experiment#1 Evolution Of Design Using SQP.

 9.30 Experiment#1, Evolution of Design using GA’s.

 9.31 Experiment#2, Evolution of Design.

 9.32 Experiment#3, Evolution of Design.

 9.33 A Pareto front based on the thermal and lighting
objectives.

 9.34 A graphical rendering of a solution.

 9.35 Diagrams explaining the changes in the Design
Concept.

 9.36 Component decomposition.

 9.37 Aspect decomposition.

 9.38 Development decomposition.

 9.39 Component and aspect decomposition mapping.

 9.40 Design cycle one and its design activities.

 9.41 The MDDS cycle on level one, showing extra modules
and connections added.

 9.42 MDDS Module Integration.

 9.43 The MDDS evolution of solutions.

 9.44 Pareto front of non dominated solutions.

 9.45 Radial Plot to visualize the trade-space.

 9.46 A profile plot of the solutions and the Pareto front. The
performance of any specific non-dominated solution
appears as a zigzag horizontal line.

 9.47 Exterior renderings of chosen solution.

 9.48 Renderings of structure of chosen solution.

 9.49 Renderings of the interior of the structure of the
chosen solution.

Figures List

The Multi-Disciplinary Design System 411

 9.50 3D Physical model of the chosen solution.

 9.51 3D Physical model of the structure of the chosen
solution.

Figures List

The Multi-Disciplinary Design System 412

 4.1 A taxonomy of types of system element interactions
(Pimmler and Eppinger, 1994).

 4.2 Scale used to represent different interactions (Pimmler
and Eppinger, 1994).

 5.1 Analogies between formal and graph languages (Alber,
2002).

 5.2 Different Scalarization and Pareto Methods
(de Weck, 2004).

 7.1 In a parametric study one factor is changed at a time
while keeping all other factors at a base level.

 7.2 Experiments can be represented in a matrix where
each row corresponds to one experiment and each
column corresponds to one factor.

 7.3

In Fractional designs levels are specified for each
factor and outputs are evaluated at every combination
of values.

 7.4

In the balancing property, for any pair of columns, all
combinations of factor levels occur an equal number of
times.

 9.1 Adjacency requirements.

Tables List

Bibliography

The Multi-Disciplinary Design System 413

 Aarts, E., Korst, J. and van Laarhooven, P. (1997). “Simulated Annealing”. In:
Aarts, E. and Lenstra, J. K. (Eds.). Local Search in Combinatorial Optimization.
pp. 91-120. Wiley.

 Abraham, A., Jain, L. and Goldberg, R. (Eds.) (2005). Evolutionary Multi-
Objective Optimization: Theoretical Advances and Applications. Springer
Science, New York, New York.

 Abrahamson, S., Wallace, D., Senin, N., and Sferro, P. (2000). “Integrated
Design in a Service Marketplace”, Computer Aided Design, 32(2), pp. 97-107.

 Adler, M. Davis, A. Weihmayer, R. and Worrest, R. (1989). “Conflict-
resolution strategies for non-hierarchical agents”. In: Research Notes in
Artificial Intelligence, Distributed Artificial Intelligence, Morgan Kaufmann,
Palo Alto, CA.

 Agre, P. E. (2003). “Hierarchy and History in Simon's Architecture of
Complexity”. Journal of the Learning Sciences. Lawrence Erlbaum
Associates. 12(3), pp. 413 – 426.

 Alber, R. Rudolph, S. and Krsplin, B. (2002). “On Formal Languages in Design
Generation and Evolution. Proc”. 5th World Congress on Computational
Mechanics (WCCM V), University of Vienna, Vienna, Austria.

 Alexander, C. (1964). Notes on the Synthesis of Form. Harvard University
Press, Cambridge, Massachusetts.

 Alexander, C. Ishikawa, S. and Silverstein M. (1977). A Pattern Language:
Towns, Buildings, Construction. Oxford University Press. New York, New
York.

 Allen, T. F. (1998). “A summary of Principles of Hierarchy Theory”. ISSS
Atlanta Conference.

 Allison JT., Kokkolaros M., Zawislak M. and Papalambros PY. (2005). “On
the use of analytical target cascading and collaborative optimization for
complex system design”. In: Proceedings of the 6th world congress on
structural and multidisciplinary optimization, Rio de Janeiro, Brazil.

 Anderl, R. and Mendgen, R. (1996). “Modelling with constraints: theoretical
foundation and application”. Computer-Aided Design. 28(3). pp. 155-168.

Bibliography

Bibliography

The Multi-Disciplinary Design System 414

 Andersson, J. Pohl, J. and Eppinger, S. (1998). “A Design Process Modeling
Approach Incorporating Nonlinear Elements”. Proceedings of ASME Design
Theory and Methodology Conference. Atlanta.

 Antoniou, A. Lu, W. Murray, W. and Wright, M. (2007). Practical
Optimization. Springer. New York, New York.

 Archer, B. (1984). “Systematic Methods for Designers”. In: Cross, N. (Ed.).
Developments in design methodology. John Wiley & Sons, Chichester, UK.

 Ashby, W. R. (1952). “Can a Mechanical Chess-Player Outplay Its Designer?”
The British Journal for the Philosophy of Science. 3(9). pp. 44-57.

 Asimow, M. (1962) Introduction to design. Prentice-Hall. Englewood Cliffs,
N.J.

 Atherton, C. (2002). “An Approach to Multidisciplinary Design, Analysis &
Optimization for Rapid Conceptual Design”. AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization. AIAA, Atlanta Georgia.

 Averill, L. (2006). Simulation Modeling and Analysis. McGraw-Hill. New York,
New York.

 Bahrami, A. and Dagli, C. (1994). “Design Science”. In: Dagli, C. and Kusiak, A
(Eds.). Intelligent Systems in Design and Manufacturing. ASME Press, New
York.

 Balabanov, V. and Venter, G. (2004). “Multi-Fidelity Optimization with High-
Fidelity Analysis and Low-Fidelity Gradients”. 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. Albany, New York.

 Baldwin, C. and Clark, K. (2000). Design Rules, Vol. 1: The Power of
Modularity. MIT Press. Cambridge, MA.

 Ball, P. (2001). The self-made tapestry: pattern formation in nature, Oxford
University Press.

 Batty, M. (2005). Cities and Complexity: Understanding Cities with Cellular
Automata, Agent-Based Models, and Fractals. Cambridge, MA, MIT Press.

 Bentley, P. (1999). Evolutionary Design by Computers. San Francisco, Morgan
Kaufmann.

 Bentley, P. and Kumar, S. (1999). “Three ways to grow designs: a
comparison of embryogenies of an evolutionary design problem”. In:
Banzhaf, W. Daida, J. Eiben, A. Garzon, M. Honavar, V. Jakiela, M. and Smith,
R. (Eds.). Genetic and Evolutionary Computation Conference, Orlando, FL, p.
35-43.

 Black, I. (1990). “Embodiment design: Facilitating a Simultaneous Approach
to Mechanical CAD”. Computer-Aided Engineering Journal. 7(2), pp. 49-53.

Bibliography

The Multi-Disciplinary Design System 415

 Blanchard, B. and Fabrycky, W. (1990). System Engineering and Analysis.
Prentice Hall, Englewood Cliffs, New Jersey.

 Blazek, J. (2001). Computational Fluid Dynamics: Principles and Applications.
Elsevier. New York, New York.

 Bletzinger, K. and Lähr, A. (2006). “Prediction of interdisciplinary
consequences for decisions in AEC design processes”. ITcon. 11, Special
Issue Process Modelling, Process Management and Collaboration, pp. 529-
545.

 Bletzinger, K-U. and Lähr, A. (2006). “Prediction of Interdisciplinary
Consequences for Decisions in AEC Design Processes”, ITcon, Vol. 11, 529-
545.

 Bobrow, D. (1984). “Qualitative Reasoning about Physical Systems: An
Introduction”. Artificial Intelligence. 24(1-3), pp. 1-5.

 Boggs, P. and Tolle, J. (1995). “Sequential Quadratic Programming”. Acta
Numerica. pp. 199–242.

 Bowcutt, K., Kuruvila, G. and Follett, W. (2004). “Progress Toward

Integrated Vehicle Design of Hypersonic”. 24
th

International Conferences of
the Aeronautical Sciences (ICAS 2004), Yokohama, Japan.

 Britt, D. (2000). Durand Precis of the Lectures on Architecture: With Graphic
Portion of the Lectures on Architecture. Getty Publications, Los Angeles,
California, U.S.A.

 Brown, A. (1998). “Tool support for enterprise scale CBD: determining your
organization’s future competitiveness”. Component Strategies Online. 1(3),
pp.31-45.

 Browning, T. (1998). “Modeling and Analyzing Cost, Schedule, and
Performance in Complex System Product Development”. Ph.D. Dissertation.
Massachusetts Institute of Technology. Cambridge, Massachusetts.

 Buffa, E.S., Armour, G.S. and Vollman, T.E. (1964). Allocating Facilities with
CRAFT, Harvard Business Review 42(2): 136-140.

 Cagan J. (2001). “Engineering Shape Grammars”. In: Antonsson E.K. and
Cagan J. (Eds.). Formal Engineering Design Synthesis. Cambridge, Cambridge
University Press.

 Cariani, P. (1991). “Emergence and Artificial Life”. In: Langton, C. G. and
Taylor, C. and Farmer, J. D. and Rasmussen(Eds.), Artificial Life II, Santa Fe
Institute Studies in the Sciences of Complexity. Vol. X., S. Addison-Wesley.
Redwood City, CA. pp. 775-797.

Bibliography

The Multi-Disciplinary Design System 416

 Carpenter, W. and Barthelemy, J. (1992). “A Comparison of Polynomial
Approximations and Artificial Aeural Nets as Response surfaces”. A
collection of technical papers: the 33rd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference. Dallas, Texas.

 Carty A. and Davies C. (2004). “Fusion of Aircraft Synthesis and Computer
Aided Design”, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, AIAA-2004-4433, Albany, New York, Aug. 30-1.

 Carty, A. (2002). “An Approach to Multidisciplinary Design, Analysis &
Optimization for Rapid Conceptual Design”. AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, AIAA.

 Channon, A. D. and R. I. Damper (1998). “The Evolutionary Emergence of
Socially Intelligent Agents”. In: Edmonds, B. and Dautenhahn, K. (Eds.),
Socially Situated Intelligence: a workshop held at SAB’98, University of
Zurich Technical Report. Zurich. pp. 41–49.

 Channon, A., Damper, R. (1999). “The Evolutionary Emergence of Socially
Intelligent Agents”. In: Proceedings of SAB99 Conference of the Society for
Adaptive Behaviour. MIT Press, Zurich.

 Chermayeff, S. and Alexander, C. (1963). Community and Privacy: Toward a
New Architecture of Humanism. Doubleday Anchor Books. New York, New
York.

 Chomsky, N. (2002). Syntactic Structures. Walter de Gruyter. New York, New
York.

 Choudhary, R., Malkawi, A., and Papalambros, P. Y. (2005). “Analytic Target
Cascading in Simulation-based Building Design”. Automation in
Construction, Vol. 14, No. 4, pp. 551–568.

 Coello, C. (2001). “A short tutorial on evolutionary multi-objective
optimization”. In: Proceedings of 1st International Conference on
Evolutionary Multi-Criterion Optimization. pp. 21–40.

 Cohon, J. (1978). Multi-objective Programming and Planning. Academic Press,
New York, New York.

 Cook, H. (1997). Product Management: Value, Quality, Cost, Price, Profits, and
Organization. Chapman & Hall.

 Corne, D. and Bentley, P. (2002). Creative Evolutionary Systems. San
Francisco, Morgan Kaufmann.

 Coyne, R. D. Rosenman, M. A. Radford, A. D. Balachandran, M. and Gero, J.
S. (1990). Knowledge-Based Design Systems. Reading: Addison-Wesley.

 Crawley, E. (2003). Lecture Notes for ESD.34 System Architecture. MIT,
Cambridge, MA.

Bibliography

The Multi-Disciplinary Design System 417

 Crawley, E. de Weck, O. Eppinger, S. Magee, C. Moses, J. Seeing, W.
Schindall, J. Wallace, D. and Whitney, D. (2004). “The Influence of
Architecture in Engineering Systems”. In: Engineering Systems Monographof
the Engineering Systems Symposium. MIT, Cambridge, MA.

 Cross, N. (1989) Engineering Design Methods. Chichester, John Wiley & Sons
Ltd.

 Cunningham, T. (1998). Chains of Function Delivery: A Role For Product
Architecture In Concept Design. Ph.D. Dissertation. MIT.

 Czitrom, V. (1999). “One-Factor-at-a-Time versus Designed Experiments”.
The American Statistician. 53 (2), pp. 126–131.

 Daffa', A. (1977). The Muslim Contribution to Mathematics. Croom Helm,
London.

 Dantzig, G. (1998). Linear Programming and Extensions. Princeton University
Press. Princeton, New Jersey.

 Dasgupta, S. (1989). “The Structure of Design Processes”. In: Yovits M.C.
(ed.). Advances in Computers.Academic Press. New York. 28, pp. 1-67.

 Davis, K. and Bigelow, H. (2002). Motivated metamodels:Synthesis of cause-
effect reasoning and statistical modeling, The RAND Corporation, Santa
Monica,CA.

 De Neufville, R. (1990). Applied System Analysis. McGraw-Hill College.

 De Neufville, R. de Weck, O. Frey, D. Hastings, D. Larson, R, Simchi-Levi, D.,
Oye, K., Weigel and A. Welsch, R. (2004). “Uncertainty Management for
Engineering Systems Planning and Research”. In: Engineering Systems
Monographof the Engineering Systems Symposium. MIT, Cambridge, MA.

 De Weck, O. (2004). “Multi-Objective Optimization: History and Promise”.
Keynote Paper. The 3rd China-Japan-Korea Joint Symposium on
Optimization of Structural and Mechanical Systems, Kanazawa, Japan.

 De Weck, O. and Willcox, K. (2005). Lecture Notes for 16.888
Multidisciplinary System Design Optimization course notes. MIT, Cambridge,
MA.

 Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms.
Chichester: John Wiley & Sons.

 DeMarco, T. (1979). Structured Analysis and System Specification. Yourdon
Press Computing Series. Eaglewood Cliffs, New Jersey.

 Dieter, G. (2000). Engineering Design-A Material and Processing Approach.
McGraw-Hill, Boston, Massachusetts.

Bibliography

The Multi-Disciplinary Design System 418

 Dietrich, W.C. (1989). “Saving a Legacy with Objects,” In Proceedings of
OOPSLA-90, Addison-Wesley, Reading, MA.

 Dixon, J. and Poli, C. (1995). Engineering Design and Design for
Manufacturing, A Structured Approach. Field Stone Publishers. Conway,
Massachusetts.

 Dixon, J.R. (1987). On Research Methodology towards a scientific theory of
engineering design. AI EDAM. 1 (3), pp. 145-157.

 Downing, F. and Flemming, U. (1981). “The Bungalows of Buffalo”.
Environment and Planning B. 8(3), pp. 269 – 293.

 Duarte, J. (2001). “Customizing Mass Housing: a Discursive Grammar for
Siza's Malagueira houses”. Ph.D dissertation. Massachusetts Institute of
Technology. Cambridge, Massachusetts.

 Dumitrescu, D., Lazzerini, B., Jain, L. and Dumitrescu, A. (2000). Evolutionary
Computation. Boca Raton, FL: CRC Press.

 Duvvuru, S., Stephanopouls, G. Logcher, R., et al. (1989). “Knowledge-based
system applications in engineering design: Research at MIT”. AI Magazine.
10(3), pp. 79-96.

 Eastman C., Teicholz, P., Sacks, R. and Liston K. (2008). BIM Handbook: A
Guide to Building Information Modeling for Owners, Managers, Designers,
Engineers and Contractors. Wiley Publishing. Hoboken, New Jersey.

 Edgeworth, F.Y. (1881). Mathematical Psychics, P. Keagan, London, England.

 Eggert, R.J. (2004). Engineering Design. Prentice Hall, Upper Saddle River,
New Jersey.

 Elster, K. (1993). Modern Mathematical Methods of Optimization. Wiley VCH.
Berlin, Germany.

 Eppinger, S. (1997). “A Planning Method for Integration of Large-Scale
Engineering Systems”. Inte. Conference on Engineering Design ICED-97.
Tampere, Finland, pp. 199–204.

 Eppinger, S. (1991). “Model--based Approaches to Managing Concurrent
Engineering”. Journal of Engineering Design. 2(4),pp. 283-290.

 Eppinger, S. D. and Gebala, D. A. (1991) “Methods for Analyzing Design
Procedures”. ASME Conference on Design Theory and Methodology. Miami,
FL. pp. 227-233.

 Eppinger, S. Nukala, M. and Whitney, D. (1997). “Generalized Models of
Design Iteration Using Signal Flow Graphs”. Research in Engineering Design.
9, pp.112-123.

Bibliography

The Multi-Disciplinary Design System 419

 Fenves, S. and Baker, N. (1987). “Spatial and functional representation
language for structural design”. In:Gero, J. (Ed.). Expert Systems in
Computer-Aided Design. Elsevier Science, North-Holland, pp. 511-529.

 Finger, S. and Rinderle, J. R. (1989). “A Transformational Approach to
Mechanical Design Using a Bond Graph Grammar. Proceedings of the First
ASME Design Theory and Methodology Conference.

 Fonseca C. and Fleming P. (1993) “Genetic Algorithms for Multi-objective
Optimization: Formulation, Discussion and Generalization”. In Stephanie
Forrest, editor, Proceedings of the Fifth International Conference on Genetic
Algorithms. pp 416-423, San Mateo, California. University of Illinois at
Urbana-Champaign, Morgan Kaufman Publishers

 Gallopoulos, E. Houstis, E. and Rice, J. (1994). “Computer as Thinker/Doer:
Problem-Solving Environments for Computational Science”. Computing in
Science and Engineering. 1(2), pp. 11-23.

 Gao, J. Tsao, S. and Wu, Y. (2003). Testing and Quality Assurance for
Component-based Software. Artech House, Norwood, Massachusetts.

 Gero, J. S. (1990). “Design Prototypes: a Knowledge Representation
Schema for Design”. AIMagazine.11 (4): 26-36.

 Gershenfeld, N. (1998). Nature of Mathematical Modeling. Cambridge
University Press. New York, New York.

 Gershenson, J. K., Prasad, G. J. and Zhang, Y. (2003). “Product modularity:
definitions and benefits”. Journal of Engineering Design, 14:3, 295 — 313

 Glover, F. (1990). “Tabu Search - Part 2”. ORSA Journal on Computing. 2(1),
pp. 4-32.

 Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley Publishing Company. Reading, Massachusetts.

 Grady, J. (1994). System Integration. CRC Press. Ann Arbor, Michigan.

 Graham, B. (2004). Detail Process Charting: Speaking the Language of Process.
Wiley. Hoboken, New Jersey.

 Granville, V. Krivanek, M. and Rasson, J. (1994). “Simulated Annealing: A
Proof of Convergence”. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 16 (6), pp. 652-656.

 Gries, M. (2004). “Methods for evaluating and covering the design space
during early design development”. Integration the VLSI Journal.38 (2), pp.
131-183.

Bibliography

The Multi-Disciplinary Design System 420

 Harrison, G. Maynard, D. and Pollak, E. (2004). “Automated Database and
Schema-based Data Interchange for Modeling and Simulation”. Proceedings
of the 2004 Winter Simulation Conference, pp. 191–197.

 Hastings, D. (2004). Lecture Notes for 16.892J / ESD.353J Space System
Architecture and Design. MIT, Cambridge, MA.

 Hayes, B. (2000). “Graph Theory in Practice: Part I”. American Scientist.
88(1), pp. 9–13.

 Hedberg, S.R. (2005). “Evolutionary Computing: the Rise of Electronic
Ereeding”. Intelligent Systems, IEEE. 20(6), pp. 12 – 15

 Heisserman, J. Callahan, S. and Mattikalli, R. (2000). “A design
representation to support automated design generation”. In: Gero J. (ed).
Artificial Intelligence in Design. pp 545-566.

 Helton, J.C., Johnson, J.D. Salaberry, C.J. and Storlie, C.B. (2006). “Survey of
Sampling Based Methods for Uncertainty and Sensitivity Analysis”.
Reliability Engineering and System Safety. 91, pp.1175–1209.

 Hemberg, M. (2001). Genr8 - a design tool for surface generation. Master's
thesis, Chalmers University of Technology, Goteborg, Sweden.

 Hertz, A. Taillard, E. and de Werra, D. (1997). “Tabu Search”. In: Aarts, E. and
Lenstra, J. (Eds.). Local Search in Combinatorial Optimization. John Wiley
&Sons, pp.121-136.

 Holland, J. (1992) Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. The MIT Press. Cambridge, Massachusetts.

 Hongo, K. (1985). “On the significance of the theory of design”. In:
Yoshikawa, H. (Ed.). Design and Synthesis. Elsevier Science Publishers.
Amsterdam.

 Hornby, G. S., and Pollack, J. B. (2001a). “The Advantages of Generative
Grammatical Encodings for Physical Design. Proceedings of the 2002
Congress on Evolutionary Computation.

 Hubka, V., Andreasen, M. and Eder, W. (1988) Practical Studies in Systematic
Design. Butterworths. London.

 Huebner, K. Dewhirst, D. Smith, D. Byrom, T. (2001). The Finite Element
Method for Engineers. Wiley-IEEE. Hoboken, New Jersey.

 INCOSE (2002). Systems Engineering Handbook: A “How To” Guide for All
Engineers, 2nd ed., International Council on Systems Engineering, Seattle,
WA, pp. 19–28.

Bibliography

The Multi-Disciplinary Design System 421

 Jacoby, S. and Kowalik, J. (1980). Mathematical Modeling with Computers.
Prentice-Hall, Englewood Cliffs, New Jersey.

 Jaki S. L. (1981). Immanuel Kant: Universal Natural History and the Theory of
the Heavens. Scottish Academic Press.

 Jo, J. and Gero, J. S. (1998). “Space layout planning using an evolutionary
approach”. Artificial Intelligence in Engineering. 12(3): 149-162

 Kalay, Y. (1989). Modeling Objects and Environments. Wiley Publishing.
Hoboken, New Jersey.

 Kalay, Y. (2004). Architecture's New Media: Principles, Theories, and Methods
of Computer-Aided Design. The MIT Press. Cambridge, Massachusetts.

 Kalyanmoy Deb and David E. Goldberg. (1989). “An Investigation of Niche
and Species Formation in Genetic Function Optimization”. In J. David
Schafer, editor, Proceedings of the Third International Conference on
Genetic Algorithms, pages 42-50, San Mateo, California, June. George
Mason University, Morgan Kaufmann Publishers.

 Kaymaz, I. (2005). “Application of Kriging Method to Structural Reliability
Problems”. Structural Safety. 27 (2), pp.133–151.

 Keskin, A. (2007). Process Integration and Automated Multi-Objective
Optimization Supporting Aerodynamic Compressor Design. Ph.D.
Dissertation. Brandenburg University, Berlin.

 Khedro, T. (1996). “A distributed problem-solving approach to collaborative
facility engineering”. Advances in Engineering Software. 25(2-3), pp. 243-252.

 Kirkpatrick, S. Gelatt, C. and Vecchi, M. (1983). “Optimization by Simulated
Annealing”. Science. New Series 220 (4598), pp. 671-680.

 Koch, P. Evans, J. and Powell, D. (2002). “Interdigitation for effective
design space exploration using iSIGHT”. Structural and Multidisciplinary
Optimization. 23(2), 111–126.

 Kockler, F. Withers, T. Poodiack, J. and Gierman, M. (1990). Systems
engineering management guide. Defense Systems Management College. U.S.
Government Printing Office. Washington, D.C.

 Koning, H. Eizenberg, J. (1981). “The Language of the Prairie: Frank Lloyd
Wright's Prairie houses”. Environment and Planning B. 8(3), pp. 295 – 323.

 Kossiakoff, A. and Sweet, W. (2002). Systems Engineering Principles and
Practice. Wiley-Interscience, Hoboken, New Jersey.

 Kroo, I.M. (1997a). “MDO for large-scale design”. In: Alexandrov, N. M. and
Hussaini M. Y. (Eds.), Multidisciplinary Design Optimization: State of the Art.
SIAM, 1997, pp. 22-44.

Bibliography

The Multi-Disciplinary Design System 422

 Kroo, I.M. (1997b). “Multidisciplinary optimization applications in
preliminary design – Status and Directions”. 38th
AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics and Materials
Conference, Kissimmee, FL.

 Kuhn, T.S. (1970). The Structure of Scientific Revolutions. University of
Chicago Press. Chicago, IL.

 Law, A. and Kelton, W. D. (1999). Simulation Modeling and Analysis. McGraw-
Hill, New York.

 Lawson, B. (2005). How Designers Think: The Design Process Demystified.
Architectural Press-Elsevier. Boston, Massachusetts.

 Li, M. Rana, O. Walker, D. Shields, M. and Huang, Y. (2004). “Component-
based Problem Solving Environments for Computational Science”. In: Lau,
K. (Ed.). Component-based Software Development: Case Studies. World
Scientific. New Jersey.

 Liebeck, R., Page, M. and Rawdon, B. (1996) “Evolution of the
Revolutionary Blended Wing Body Subsonic Transport”. Transportation
Beyond 2000: Technologies Needed for Engineering Design, NASA TP 10184,
pp. 418-459.

 Littlejohn, S.W. (1998). Theories of Human Communication. Wadsworth
Publishing Company. Belmont, California.

 Long, J. (2002). Relationships between Common Graphical Representations in
System Engineering, Vi-Tech Corporation. Vienna, Virginia.

 Luenberger, D. (2003). Linear and Nonlinear Programming. Springer, New
York, New York.

 Magee, C., Moses, J. and Whitney, D. (2006). Lecture Notes for ESD.342
Advanced System Architecture. MIT, Cambridge, MA.

 Maki, D. and Thompson, M.(2006). Mathematical Modeling and Computer
Simulation. Thomson Brooks/Cole. Belmont, California.

 Malone, T. and Crowston, K. (1991). “Towards an interdisciplinary theory of
coordination”. MIT Sloan School Working, Paper 3294-91-MSA.
Massachusetts Institute of Technology, Cambridge, MA.

 Mandelbrot, B. (1983). The Fractal Geometry of Nature. W. H. Freeman. New
York, New York.

 March, L. (1976). “The Logic of Design and the Question of Value”. In:
March, L. (Ed.) The Architecture of Form. Cambridge University Press.
Cambridge.

Bibliography

The Multi-Disciplinary Design System 423

 Markus, T.A. (1969). “The Role of Building Performance Measurement and
Appraisal in Design Method”. In: Broadbent, G and Ward, A. (Eds.). Design
Methods in Architecture. George Wittenborn, New York, New York.

 Maver, T. (1970). Appraisal in the Building Design Process: Emerging Methods
in Environmental Design and Planning. MIT Press. Cambridge, Massachusetts.

 McCord, K. (1993). “Managing the Integration Problem in Concurrent
Engineering”. Master of Science Thesis. Massachusetts Institute of
Technology. Cambridge, Massachusetts.

 McCormack, J. and A. Dorin (2001). “Art, Emergence, and the
Computational Sublime”. Second Iteration: Proceedings of the Second
International Conference on Generative Systems in the Electronic Arts,
Melbourne.

 McKay, M., Bechman R. and Conover, W. (1979). “A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output
from a Computer Code”. Technometrics. 21(2), pp. 239-245.

 McManus, H. Hastings, and D. Warmkessel, J. (2004). Journal of Spacecraft
and Rockets 41(1), pp. 10-19.

 McManus, H., Hastings, D. and Warmkessel, J. (2004). “New Methods for
Rapid Architecture Selection and Conceptual Design”. Journal of Spacecraft
and Rockets, Vol. 41, No.1, Jan.-Feb., pp. 10-19.

 Meredith, D.D., Wong, K.W., Woodhead, R.W. and Wortman, R.H. (1985).
Design and Planning of Engineering Systems. Prentice-Hall, Englewood Cliffs,
New Jersey.

 Messac, A. (2000). “From Dubious Construction of Objective Functions to
the Application of Physical Programming”. AIAA Journal, 38(1), pp. 155-163.

 Messerschmitt, D. and Szyperski, C. (2003). Software Ecosystem –
Understanding An Indispensable Technology and Industry. MIT Press,
Cambridge, Massachusetts.

 Miller, G.A. (1956). “The Magical Number Seven, Plus or Minus Two”. The
Psychological Review. 63(2), pp. 81-97.

 Minsky, M. L. (1988). The Society of Mind. Simon and Schuster. New York,
NY.

 Mitchell, W. (1986). “Formal representations: a foundation for computer-
aided architectural design”. Environment and Planning B. 13, pp.133-162.

 Mitchell, W. (1990). The Logic of Architecture: Design, Computation, and
Cognition. MIT Press. Cambridge, MA.

Bibliography

The Multi-Disciplinary Design System 424

 Mitchell, W. (1991). “Functional Grammars: An Introduction”. In: Goldman,
G. and Zdepski, M. (eds.) Reality,and Virtual Reality (ACADIA 1991).pp. 167-
176. Troy, New York.

 Mowbray, T. and R. Zahavi (1994), The Essential CORBA, Wiley, New York.

 Mullens, M., Arif, M., Armacost, R., Gawlik, T. and Hoekstra, R. (2005).
“Axiomatic Based Decomposition for Conceptual Product Design”.
Production and Operations Management.14 (3), pp. 286–300.

 Myers, R. and Montgomery, D. (1995). Response surface methodology:
process and product optimization using designed experiments. John Wiley &
Sons. New York, New York.

 National Research Council (2006). Network Science, Committee on Network
Science for Future Army Applications. The National Academies Press.
Washington D.C.

 Newman, M. (2003). The Structure and Function of Complex Networks. SIAM
Review45, pp. 167–256.

 NIST. (2006). Engineering Statistics Handbook. SEMATECH.

 Nocedal, J. and Wright, S. (2000). Numerical Optimization. Springer. New
York, New York.

 Object Management Group. (2008). “CORBA Basics”. Retrieved August 15,
2008. Website: http://www.omg.org/gettingstarted/corbafaq.htm

 Object web open source Middleware. (2008). “What is Middleware”.
Retrieved September 5, 2008. Website: http://middleware.objectweb.org/

 Oliver, D. (1994). “Systems Engineering and Object Technology”.
Proceedings of the 4th International Council on Systems Engineering
International Symposium, San Jose, p. 315.

 OMG (2007a) OMG Systems Modeling Language (OMG SysML™) website:
http://www.omgsysml.org/.

 OMG (2007b) OMG Systems Modeling Language (OMG SysML™)
Specification. SysML 1.0 Proposed Available Specification (PAS), OMG
document [ptc/2007-02-03] dated 2007-03-23.

 Pahl, G. and Beitz, W. (1988). Engineering Design. Springer-Verlag. Berlin.

 Pahng, F., Senin, N. and Wallace, D. (1997). “Modeling and evaluation of
product design problems in a distributed design environment”. Proceedings
of the 1997 ASME Design Engineering Technical Conferences, Sacramento,
California, September 14–17, DETC97/DFM-4356, CD-ROM (New York:
ASME).

Bibliography

The Multi-Disciplinary Design System 425

 Papadimitriou, C. and Steiglitz, K. (1998). Combinatorial optimization:
Algorithms and Complexity. Courier Dover Publications. New York, New
York.

 Papalambros, P. (2000). “Extending the Optimization Paradigm in
Engineering Design”. Proceedings of the 3rd International Symposium on
Tools and Methods of Competitive Engineering, Delft, The Netherlands.

 Papalambros, P. and Wilde, D. (2000). Principles of Optimal Design.
Cambridge University Press. New York, New York.

 Pareto, V. (1906). Manuale di Economia Politica, Societa Editrice Libraria,
Milano, Italy. Translated into English by A.S. Schwier, (1971). As Manual of
Political Economy, Macmillan, New York.

 Parnas, D. (1972). “Information Distribution Aspects of Design
Methodology”. Proceedings of the 1971 IFIP Congress. Ljubljana, Yugoslavia,
August 23-28, pp. 339-344. Amsterdam, Netherlands: North-Holland
Publishing Company.

 Parnas, D.L.: “On the Criteria To Be Used in Decomposing Systems Into
Modules”. Communications of the ACM. 15,12. (1972) 1053-1058

 Paydarfar, S. (2001). “An Integration Maturity Model for the Digital
Enterprise”. The Digital Enterprise. pp. 29-44.

 Pender T. A. (2002). UML Weekend Crash Course. Wiley Publishing. Hoboken,
New Jersey.

 Perry, D.E. and Wolf, A.L. (1992). Foundations for the Study of Software
Architecture. ACM SIGSOFT. 17(4), pp. 40-52.

 Phoenix Integration, Inc. (2007). ModelCenter 7.0 Help Documentation.

 Phoenix Integration. (2004). “Design Exploration and Optimization
Solutions”. Technical White Paper.

 Pimmler, T. and Eppinger, S. (1994). “Integration Analysis of Product
Decompositions”. Proceedings of ASME Design Theory and Methodology
Conference. DE- 68, pp. 343-51.

 Prusinkiewics, P. and Lindenmayer, A. (1991) The Algorithmic Beauty of
Plants. Springer-Verlag.

 Pugh, S. and Morley, I. (1989). “Organizing for Design in Relation to
Dynamic/Static Product Concepts”. Proc. Sixth Int. Conf. on Engineering
Design. Harrogate, UK, 1, pp.313-334.

 Rao, S. (1996). Engineering Optimization: Theory and Practice. Wiley-IEEE.
Hoboken, New Jersey.

Bibliography

The Multi-Disciplinary Design System 426

 Requicha, A. (1980). “Representations of Rigid Solids: Theory, Methods and
Systems”. ACM Computing Surveys. 12(4), pp. 437-466.

 Reynolds, F. Natrajan, A., Srinivasan S. (1997). “Consistency maintenance in
multiresolution simulation”. ACM Transactions on Modeling and Simulation,
7(3) pp. 368-392.

 Ridge, E. (2007). Design of Experiments for the Tuning of Optimization
Algorithms, PhD Thesis. The University of York.

 Rinderle, J. (1991). “Grammatical Approaches to Engineering Design, Part II:
Melding Configuration and Parametric Design Using Attribute Grammars”.
Research in Engineering Design. 2, 137-146.

 Rosenman, M. and Simoff, S. (2001). “Some conceptual issues in
component-assembly modeling”. Artificial Intelligence in Engineering. 15(2),
pp. 109-119.

 Rowe, P. G. (1987). Design Thinking. MIT Press. Cambridge, Massachusetts.

 Roy, R. (2001). Design of Experiments Using The Taguchi Approach: 16 Steps
to Product and Process Improvement. Wiley-Interscience. New York

 Royal Institute of British Architects (1965). Architectural Practice and
Management Handbook.

 Sacks, J. Welch, W., Mitchell, T. and Wynn, H. (1989). “Design and Analysis
of Computer Experiment”. Statistical Science. 4, pp. 409-435.

 Sacks, R. Eastman, C. Lee, G. (2004). “Parametric 3D Modeling in Building
Construction with Examples from Precast Concrete”. Automation in
Construction. 13, pp 291– 312.

 Sage, A.P. and Armstrong Jr., J.E. (2000). Introduction to Systems
Engineering. Wiley-Interscience. Malden, Massachusetts.

 Sakalkar, V. and Hajela, P. (2008). “Multilevel Decomposition Based Non-
Deterministic Design Optimization”. 49th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference. Schaumburg, IL.

 Sakata, A. Ashida, F. and Zako, M. (2003). “Structural Optimization Using
Kriging Approximation”. Computer Methods in Applied Mechanics and
Engineering.192 (7–8), pp. 923–939.

 Savic, D. (2002). “Single-objective vs. Multi-Objective optimization for
integrated decision support”. In: Rizzoli A. and Jakeman A. J. (Eds.).
Integrated Assessment and Decision Support . Proceeding of First Biennial
Meeting of the Int. Environmental Modeling and Software Society, 1, 7–12.

Bibliography

The Multi-Disciplinary Design System 427

 Schmidt, D. (2001). “Object Interconnections: CORBA and XML - Part 3:
SOAP and Web Services”. Retrieved August 14,2008. Website:
http://www.ddj.com/cpp/184403802

 Schmidt, J.W. and Taylor, R.E. (1970). Simulation and Analysis of Industrial
Systems. Richard D. Irwin, Homewood, Illinois.

 Scholz-Reiter, B. and Stickel, E. (Eds.). (1996) Business Process Modelling.
Springer-Verlag. Berlin.

 Seacord, R. Comella-Dorda, S. Lewis, G. Place, P. and Plakosh, D.(2001).
Legacy System Modernization Strategies. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

 Senin N, Wallace D, Borland N. (1999). “Object-based design modeling and
optimization with genetic algorithms”. GECCO-99: Proceedings of the
genetic and evolutionary computation conference, 13–17 July, Orlando, FL.

 Shah, J. and MŠntylŠ, M. (1995).Parametric and Feature-Based CAD/CAM:
Concepts, Techniques, and Applications. Wiley Publishing. Hoboken, New
Jersey.

 Shea, K. and Luebkeman, C. (2005). “CDO: Computational Design +
Optimization in Building Practice”. In: The Arup Journal, 3.

 Shea, K., Aish, R., and Gourtovaia, M. (2005). “Towards Integrated
Performance-driven Generative Design Tools”. Automation in Construction.
14(2), pp. 253-264.

 Shi, Q. Hagiwara, I. and Takashima, F. (1999) “The Most Probable Optimal
Design Method for Global Optimization”.In: Proceedings of the 1999 ASME
Design Engineering Technical Conferences. Las Vegas, Nevada, pp. 12–15.

 Shields, M. Rana, O. Walker, D. Li, M. and Golby, D. (2000) “A Java/CORBA
Based Visual Program Composition Environment for PSEs”. Concurr.: Pract.
Exp. 12(8), pp. 687-704.

 Simon, H. A. (1973). The Sciences of the Artificial. MIT Press. Cambridge, MA.

 Simpson, T.W.; Peplinski, J.; Koch, P N.; Allen, J.K. (1997): “On the Use of
Statistics in Design and the Implications for Deterministic Computer
Experiments”. Design Theory& Method – DTM’97 (held in Sacramento, CA),
ASME Paper No. DETC97/DTM-3881

 Smith R., Eppinger S. (1997). “Identifying Controlling Features of
Engineering Design Iteration”. Management Science. 43(3), March, pp. 276-
293.

 Smith, R. Eppinger, S. (1996). “A Predictive Model of Sequential Iteration in
Engineering Design”. Management Science.

Bibliography

The Multi-Disciplinary Design System 428

 Sneed, H. (2000). “Encapsulation of legacy software: A technique for
reusing legacy software components”. Annals of Software Engineering. 9,
pp. 293–313.

 Software Engineering Institute. Carnegie Mellon. (2008). “Software System
Integration”. Retrieved September 2, 2008. Website:
http://www.sei.cmu.edu/productlines/frame_report/softwareSI.htm

 Steadman, P. (1979) The Evolution of Designs. Cambridge University Press.
Cambridge.

 Sterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a
Complex World. McGraw-Hill, Boston.

 Steward, D.V. (1981). “The Design Structure System: A Method for
Managing the Design of Complex Systems, IEEE Trans Eng Management”.
EM-28(3), pp. 71–74.

 Stiny, G. (1982). “Spatial relations and grammars”. Environment and
Planning B 9, 313–314.

 Stiny, G. and Gips, J. (1972). Shape Grammars and the Generative Specification
of Painting and Sculpture. C V Freiman (Ed) Information Processing 7.
Amsterdam, North–Holland, 1460–1465.

 Stiny, G. and Mitchell, W. J. (1978) “The Palladian Grammar”.Environment
and Planning B 5: 5-18.

 Strogatz, S. (2001). “Exploring Complex Networks”. Nature410 (8 March),
pp. 268-276.

 Suh, N. Bell, A. and Gossard, D. (1978) “On an Axiomatic Approach to
Manufacturing and Manufacturing Systems”. ASME Journal of Engineering
for Industry. 100, pp. 127-130.

 Suh, N.P. (1990). The Principles of Design. Oxford University Press. New
York.

 Sun, X. and Blatecky, A. (2004). “Middleware: The Key to Next Generation
Computing”. Preface for the Journal of Parallel and Distributed Computing,
pp. 689–691.

 Sydenham, P. (2003). Systems Approach to Engineering Design. Artech House
Publishers.

 Terzidis, K. (2006). Algorithmic Architecture. Architectural Press, Elsevier.
New York, New York.

 Tong, S. S. (2001). “The Software Robot: A New Paradigm in Computational
Engineering”. Proceedings of the Conference on Computational Engineering
and Science. 6(1), pp.1-4.

Bibliography

The Multi-Disciplinary Design System 429

 Trefethen, L. and Bau, D. (1997). Numerical Linear Algebra. SIAM,
Philadelphia, Pennsylvania.

 Tyng, A. (1984) Beginnings. Wiley. New York.

 Ulrich, K. (1995). “The Role of Product Architecture in the Manufacturing
Firm”. Research Policy. 24(3), pp. 419-440.

 Ulrich, K. and Seering, W.P. (1990). “Function Sharing in Mechanical
Design”. Design Studies. 11(4), pp. 223-234.

 Ulrich, K.T. and Ellison, D. J. (1999) “Holistic Customer Requirements and
the Design-Select Decision”. Management Science. 45(5), pp. 641-658.

 Ulrich, K.T., and Eppinger, S.D. (2000). Product Design and Development.
McGraw-Hill. New York. New York.

 Van Laarhoven, P. and Aarts, E. (1987). Simulated Annealing: Theory and
Applications. D. Reidel Publishing Company.

 VDI 2221 (1985). Systematic Engineering Design of Technical Systems and
Products .VDI Richtlinien, Verein Deutscher Ingenieure.

 Wallace, D. Abrahamson, S. Senin, N. and Sferro, P. (2000). “Integrated
Design in a Service Marketplace”. Computer-aided Design. 32(2), pp.97-107.

 Ward, P. and Mellor, S. (1985). Structured Development for Real Time
Systems. Vols 1-3. Yourdon Press Computing Series. Eaglewood Cliffs, New
Jersey.

 Watts, D. J., and S. Strogatz. (1998). “Collective Dynamics of ‘Small-World’
Networks”. Nature.393 (4 June), pp. 440-442.

 Whitney, D.E. (1996). “Why Mechanical Design Cannot Be Like VLSI Design”.
Research in Engineering Design.8 (3), pp. 125- 138.

 Wirth, N. (1976). Algorithms + Data Structures = Programs. Prentice-Hall.

 Wolfram, S. (2002). A New Kind of Science. Wolfram Media. Champaign,
Illinois.

 Wolsey, L. and Nemhauser, G. (1999). Integer and Combinatorial
Optimization. Wiley-Interscience. Hoboken, New Jersey.

 Yessios, C. (1975). “Formal Languages for Site Planning”. In: Eastman, C.M.
(Ed.). Spatial Synthesis in Computer-Aided Buildings Design. Wiley, New York,
New York.

Bibliography

The Multi-Disciplinary Design System 430

 Yilmaz, L. and Ören, T.I. (2004). “Dynamic Model Updating in Simulation
with Multi-models: A Taxonomy and a Generic Agent-Based Architecture”.
Proceedings of SCSC 2004 - Summer Computer Simulation Conference, San
Jose, CA. pp. 3-8.

 Zachman, J.A. (1987). “A framework for information systems architecture”.
IBM Systems Journal. 26(3), pp. 276-292.

 Zeigler, B. P., Praehofer, H. Kim, G. T. (2000). Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems. Academic Press.

	I. Coverpage
	II. Committee
	III. Abstract
	VI. Acknowledgment
	V. Table of Contents
	1. Introduction
	1.1 Motivation
	1.2 Challenges in Computational Design Systems
	1.3 Research Methodology
	1.4 Thesis Structure

	2. Theoretical Background
	2.1 Design Science
	2.2 System Theory

	3. Decomposition
	3.1 What is Decomposition?
	3.2 Design Object Decomposition
	3.3 Design Process Decomposition

	4. Formulation
	4.1 What is Formulation?
	4.2 Process Analysis and Structuring
	4.3 Iteration and Coupling
	4.4 Process and Formulation Modeling

	5. Modeling
	5.1 What is a Model?
	5.2 The Mathematical Model
	5.3 Synthesis Models
	5.4 Analysis Models
	5.5 Evaluation Models
	5.6 Optimization Models

	6. Integration
	6.1 What is Integration?
	6.2 Interface Design
	6.3 Module Integration Models

	7. Exploration
	7.1 What is Exploration?
	7.2 Pre-Search
	7.3 Post-Search

	8. MDDS
	8.1 What is the MDDS?
	8.2 MDDS Framework
	8.3 System Evolution
	8.4 System Behavior

	9. Experiments
	9.1 Experiment 1 - Level 1
	9.2 Experiment 1 - Level 2
	9.3 Experiment 2 - Level 1

	10. Conclusion
	10.1 Thesis Summary
	10.2 Thesis Contributions
	10.3 Limitations and Difficulties

	Figures List
	Tables List
	Bibliography

