Quarkonia Physics in Heavy-Ion collisions with the ATLAS Detector

Laurent Rosselet

ECT-heavy flavor workshop, September 8th 2006

The ATLAS detector

Central Pb-Pb collisions (b=0-1 fm)

Simulation: HIJING+GEANT3
 dN_{ch}/dη|_{max}~ 3200 in central Pb-Pb
 c.f. 1200 from RHIC extrapolation

• Large bulk of low p_T particles is stopped in the first layer of the EM calorimeter (60% of energy)

µ-spectrometer occupancy in Pb-Pb < high-L p-p</p>

Track reconstruction

- 2000 reconstructed tracks from HIJING (b=0) events with $p_T > 1$ GeV and $|\eta| < 2.5$
- Fake rate at high p_T can be reduced by matching with calorimeter data
- **TRT not considered for this study.** Expected to be partially (fully) usable in central (peripheral) Pb collisions => electron identification

Heavy ion physics program

- Global variable measurement
 dN/dη dE_T/dη elliptic flow
 azimuthal distributions
- Jet measurement and jet quenching
- Quarkonia suppression
 J/Ψ Υ
- p-A physics
- Ultra-Peripheral Collisions (UPC)

Idea: take full advantage of the large calorimeter and μ -spectrometer

Direct information from QGP

Heavy quarkonia suppression

Original idea: color screening prevents various ψ , Υ , χ states to be formed when T \rightarrow T_{trans} to QGP (color screening length < size of resonance)

Modification of the potential can be studied by a systematic measurement of heavy quarkonia states characterized by different binding energies and dissociation temperatures

~thermometer for the plasma

state	J/ψ	χς	ψ	Y(1s)	χþ	Y(2s)	χь'	Y(3s)
Mass [GeV}	3.096	3.415	3.686	9.46	9.859	10.023	10.232	10.355
 B.E. [GeV]	0.64	0.2	0.05	1.1	0.67	0.54	0.31	0.2
 T _d /T _c	1.10	0.74	0.15	2.31	1. 1 3	0.93	0.83	0.74

In fact: complex interplay between suppression and regeneration

Upsilon reconstruction

Study the $\Upsilon \rightarrow \mu^+ \mu^-$ in a full simulation (GEANT3+reconstruction) • μ -spectrometer occupancy in Pb-Pb < high-L p-p

Upsilon family	Υ(1s)	Υ(2s)	Υ(3s)
Mass (GeV)	9.460	10.023	10.355
Binding energies (GeV)	1.1	0.54	0.2
Dissociation at the temperature	~2.3T _{trans}	~0.9T _{trans}	~0.7T _{trans}

=>Important to separate $\Upsilon(1s)$ and $\Upsilon(2s)$

• $\mu^+ \mu^-$ mass resolution is 460 MeV at Υ peak in the μ -spectrometer => uses combined info from ID and μ -spectrometer

How to measure µ?

•Global method (A): use tracks fully traversing the μ -spectrometer, which allows momentum measurement in the standalone μ -spectrometer, and associate them with ID tracks through a global fit.

Tagging method (B): select ID tracks whose extrapolation coincide with a track segment in the μ-spectrometer.

>Advantage of A over B: better p measurement (true for Z⁰,~not for J/ ψ , Υ), better purity.

Advantage of B over A: lower p threshold
 larger acceptance (3 GeV instead of 4).

Selection of di-µ pairs with two methods:

"Global Fit" = both μ 's are reconstructed with A

"Global+Tag" = at least one μ from method A, the other one from A or B.

Reduced toroidal field

Additional way to increase the heavy quarkonia acceptance is to reduce the toroidal field of the μ -spectrometer

- Improves the low p_T-μ acceptance
- Makes easier a low p_T-µ trigger
- **Cost:** worse resolution & backgr.

End up with 4 studies:radius (cm)"Global Fit" and "Global+Tag"⇔statistics vs puritywith full field (4 Tm) or half field ("B/2 mode") ⇔statistics vs resolution

The best compromise between these different scenarios will mainly depend on the real charged multiplicity

 $\Delta\eta$, $\Delta\Phi$ =difference between ID and µ-spectrometer tracks after back-extrapolation to the vertex for the best χ^2 association.

 $\Upsilon \rightarrow \mu^+ \mu^-$ using combined info from ID and μ -spectro (global fit method)

 $\Delta\eta$, $\Delta\Phi$ =difference between ID and μ -spectrometer tracks after back-extrapolation to the vertex for the best χ^2 association.

Acceptance/efficiency for the Y

Full p_T coverage even if the p_T of the muons > 4 GeV

A compromise has to be found between acceptance and resolution to clearly separate Υ states with maximum statistics (e.g. $|\eta| < 2$)

$\Upsilon \rightarrow \mu^+ \mu^-$ reconstruction

No improvement with the B/2 mode: acceptance/resolution ~ cte ...

The Transition Radiation Tracker has not been considered for this study. If N_{ch} allows its use, the mass resolution is improved by 25%

$J/\psi \rightarrow \mu^{+}\mu^{-}$

Acceptance/efficiency for the J/ψ :

The full p_T range of the J/ ψ is not accessible for $p_T^{\mu} > 3$ GeV, but is accessible for $p_T^{\mu} > 1.5$ GeV. Acceptance is forward and backward.

Strong correlation p_T – rapidity:

Minimum p of the μ is 3-4 GeV to be measured in the μ -spectrometer $\Leftrightarrow p_T=3-4$ GeV at y=0. A Lorentz-boost is needed for a p_T of 1.5 GeV

$J/\psi \rightarrow \mu^+\mu^-$ reconstruction

|η| <2.5, p_T^μ >1.5 GeV

Resolution is 15% worse, but acceptance is 2-3 times better with B/2. Significance is also much better.

Equivalent acceptance but better S/B and significance for the "global fit, B/2" compared to the global+tag method. Trigger is easier with global fit.

Trigger/DAQ

For Pb-Pb collisions the interaction rate is 8 kHz, a factor of 10 smaller than LVL 1 bandwidth (75 kHz).

The event size for a central collision is ~ 5 Mbytes. Similar bandwidth to storage as pp implies ~ 50 Hz data recording.

$\Upsilon \rightarrow e^+e^-, J/\psi \rightarrow e^+e^-$

The Transition Radiation Tracker can be used fully if N_{ch} is low enough partially in central Pb+Pb

as a tracker:

simplest strategy for central Pb+Pb: keep the 2 first time steps (out of 13) of the drift tubes

=> occupancy of 30% as in pp

=> 4 to 6 additional hits for track reconstruction

=> improves mass resolution, reduces fake tracks

• as a transition radiation detector:

defines a road where to look for transition radiation to identify electrons

=> the ATLAS e⁺e⁻ trigger with p_T > 2 GeV could be used to get Υ and J/ ψ → e⁺e⁻

Scenario under evaluation

TRT as a tracker

Better strategy to optimize the usage of drift time measurements from the TRT: **select "in-time" hits for each track candidate.**

Needs a dedicated track finding code to maximize the number of "in-time" hits and refine the trajectory.

Estimation valid for central Pb+Pb, much better otherwise

Performances of the TRT

Fraction of survival π vs electron efficiency:

A rejection factor of 20-100 against π can be achieved for an electron efficiency of 50% if $dN_{ch}/d\eta|_{max}$ =3200-1600

But the rejection is 100-1600 against $\pi \pi$ for an e pair efficiency of 50%

Heavy flavors: b-tagged jets

Motivation: radiative energy loss is different for heavy/light quarks. 1st attempt based on impact parameter cuts Rejection factors against light quarks vs b-tagging efficiency:

To evaluate b - tagging performance:

- pp→WH→lvbb and lvuu on top of HIJING background events.
- A displaced vertex in the Inner Detector has been searched for.

Rejection factor against u- jets ~ 50 for b-tagging efficiency of 40% in central Pb-Pb collisions

Should be improved when combined with $\boldsymbol{\mu}$ tagging

Open heavy flavors

B and D meson decays appear at secondary vertices, determined by lifetime and Lorentz boost.

Impact parameter resolution for reconstructed tracks from central Pb+Pb collisions:

=> semi-leptonic B, D decays and B-chain channel can be identified by displaced vertices via μμ, possibly μe and ee

under study

Summary

Except for TRT, detector performances are not significantly deteriorated in central Pb-Pb compared to pp collisions.

Heavy quarkonia physics (suppression in dense matter) well accessible, capability to measure and separate Υ and Υ',

to measure the J/ ψ using a specially developed μ tagging method, and to reduce background from π and K to an acceptable level .

>4 different scenarios, including μ -tagging and reduced toroidal field, are under study.

Final choice will depend on the measured charged multiplicity.

> A study of the capability of observing Υ , J/ $\psi \rightarrow e^+e^-$ and heavy flavor production is under way.

Extra slides:

ATLAS Calorimeters

Muon Spectrometer

Tagging method using track segments not fully traversing the μ -spectro:

 $\Delta\eta$, $\Delta\Phi$ =difference between isolated μ -segments and ID tracks after extrapolation to the μ - spectrometer for the best spatial association.

Tagging method using track segments not fully traversing the μ -spectro:

 $\Delta\eta$, $\Delta\Phi$ =difference between isolated μ -segments and ID tracks after extrapolation to the μ - spectrometer for the best spatial association.

$\Upsilon \rightarrow \mu^+ \mu^-$ reconstruction

global fit	р	_⊤ ^μ >3 Ge\	/	B/2 p _T ^μ >3 GeV			
global+tag	η <1	η <2	η <2.5	η <1	η <2	η <2.5	
Acceptance +efficiency	2.6% 4.7%	8.1% 12.5%	12.0% 17.5%	2.6% 4.9%	<mark>8.9%</mark> 13.8%	13.4% 19.3%	
Resolution	123 MeV	145 MeV	159 MeV	126 MeV	162 MeV	176 MeV	
S/B	0.4 0.3	0.3 0.2	0.3 0.2	0.55 0.3	0.3 0.2	0.3 0.2	
S/√ S+B	31 37	45 46	<mark>55</mark> 55	34 37	48 50	60 60	
Rate/month		10000 15000			10800 16800		

S/B and significance are equivalent or slightly better with B/2

Resolution is 10% worse, acceptance 10% better, but no difference for $|\eta| < 1$

The B/2 mode is not attractive for the $\Upsilon.$