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Abstract

This thesis is a collection of three essays on dynamic sales mechanisms. The first chapter ana-
lyzes the Name Your Own Price (NYOP) mechanism adopted by Priceline.com. Priceline.com,
a website helping travelers obtain discount rates for travel-related items, gained prominence
for its Name Your Own Price system. Under Name Your Own Price, a traveler names his
price for airline tickets, hotel rooms, or car rentals. Priceline then checks if there is any seller
willing to accept the offer. If no one accepts, the buyer has to wait for a certain period of
time (the lockout period) before rebidding. This paper builds a one-to-many dynamic model
without commitment to examine the buyer's and the sellers' equilibrium strategies. I show that
without a lockout period, in equilibrium, the sellers with different costs are either almost fully
discriminated or pooled in intervals except the one with the lowest possible cost. In the latter
case, the buyer does not raise the bids much until the very end, so the price pattern is con-
vexly increasing, consistent with the empirical finding, and most transactions occur just before
the day of the trip, which illustrates the deadline effect that is observed in many negotiation
processes. The lockout period restriction, which limits the buyer's bidding chances and seems
to hurt the buyer, thus moves the transactions forward and can actually benefit a buyer in some
circumstances.

The second chapter studies a one-to-many negotiation process in which a seller with an
indivisible object negotiates with two asymmetric buyers to determine who gets the object and
at what price. The seller repeatedly submits take-it-or-leave-it offers to the two buyers until
one of them accepts. Unlike a Dutch auction, the seller has the discretion to offer two different
prices to the two buyers. I show that when committing to some price paths is possible, the
optimal outcome for the seller stated by Myerson (1981) is achievable. When commitment is
impossible, the optimal outcome is no longer attainable. Instead, there exists an equilibrium in
which the seller's equilibrium payoff is the same as that in a second-price auction, which implies
that the seller's payoff might be lower than in a Dutch auction. The result thus illustrates the
value of a simple institution like a Dutch auction, which seems to restrict a player's freedom
but actually benefits the player by providing a commitment tool. The analysis also sheds light
on the procurement literature.

The third chapter provides a rationale for why a seller may package goods in bundles that
are too large for a consumer to consume all by himself. I show that selling in bulk packages is
an alternative way for the seller to discriminate buyers when resale cannot be excluded among
buyers. When bulk packages are offered, buyers who value the product more usually have



stronger incentive to buy the package, and buyers who value the product less tend to buy
from resale. Moreover, the seller can make more profit by selling bulk packages than by selling
single-unit packages when the buyers' values of the product are more negatively correlated.

Thesis Supervisor: Bengt Holmstrom
Title: Paul A. Samuelson Professor of Economics

Thesis Supervisor: Glenn Ellison
Title: Gregory K. Palm (1970) Professor of Economics
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Chapter 1

Name Your Own Price at

Priceline.com: Strategic Bidding

and Lockout Periods

1.1 Introduction

Priceline.com, known for its Name Your Own Price (NYOP) system, is a website devoted to

helping travelers obtain discount rates for travel-related items such as airline tickets and hotel

stays. The NYOP mechanism works as follows. First, a customer enters a bid that specifies the

general characteristics of what she wants to buy (travel dates, location, hotel rating, etc.) and

the price that she is willing to pay. Next, Priceline.com either communicates the customer's bid

to participating sellers or accesses their private database to determine whether Priceline.com

can satisfy the customer's specified terms and the bid price. If a seller accepts the bid, the offer

cannot be cancelled. If no seller accepts the bid, the customer can rebid either by changing the

desired specifications or by waiting for a minimum period of time, the lockout period, before

submitting a new, higher price offer. For a hotel, the lockout period is 24 hours, for rental cars

it is three days and for an airline ticket seven days. Priceline says in its seller's guideline that

the rule is designed to protect the sellers. Our analysis suggests that the lockout period may

often benefit the buyer, because it allows the buyer to commit to fewer rounds of bidding (the



bidding must end before the date of travel, of course.)

To represent the Priceline.com auction, we use a dynamic model in which a single buyer

suggests prices to N potential sellers for a finite number of rounds. The number of rounds T

determines the length of the lockout period. By letting T go to infinity, we can also consider

the case of no lockout period. For simplicity, we assume that the buyer's valuation is known.

The sellers' costs are privately known and independently drawn from a common distribution.

We first show that without a lockout period and no discounting, there are two kinds of

equilibrium bidding paths. As T goes to infinity, either sellers are almost fully discriminated

over time or they get pooled into a finite number of cost intervals with bids clustering at the

lowest price which is accepted by the seller with the minimum cost. In the latter case, the

price pattern is convexly increasing as the buyer keeps her bids close to the price accepted by

the minimum-cost seller until the very end. The pattern of bidding will be convex and most of

trades (if any) will be realized at the end. This is consistent with empirical evidence and similar

to the deadline effect observed in many bargaining processes (see for instance Hart (1989) and

Spier (1992) on strikes and pretrial negotiation.)

The buyer's bidding strategy influences the rate at which she learns about the sellers' val-

uations. Ideally, the buyer would like to commit to a strategy that optimally reveals this

information. If she could do that, she would gradually raise the price to price discriminate

among the sellers and stop at the optimal reserve price, much like a Dutch auction, but in

reverse. But when commitment is impossible, as we assume, the buyer cannot help but respond

to the information revealed by rejections. As a consequence, she may want to bid so that her

initial bids reveal little information and only at the end will they be more informative. The

last minute rush will lead to pooling and inefficient outcomes, because many sellers will accept

simultaneously and the winner will be determined by lottery.

The other equilibrium where sellers are discriminated through a gradually increasing bid

sequence is, on the other hand, fully efficient, since the maximum bid equals the highest seller

cost and the sellers are almost fully discriminated.

We also show that without a lockout period, the expected payoff of a customer is weakly

higher than that in a first-price sealed-bid reverse auction (where service providers submit their

bids to a customer) without a reserve price, but lower than that in a first-price sealed-bid reverse



auction with the optimal reserve price. Moreover, when the expected payoff is strictly higher

than that in a first-price reverse auction without a reserve price, the equilibrium bidding path

is convexly increasing.

The lockout period, by reducing the number of bidding rounds, affects the process of in-

formation revelation. It makes the buyer bid more aggressively early on, because she does not

need to be as concerned about the detrimental effects of learning more about the sellers' in-

formation while still having many bidding opportunities. This can be especially valuable if the

buyer moderately discounts the future, that is, she wants to learn early about bookings. Thus,

the lockout period can be advantageous to the buyer, because it permits the buyer to commit

to fewer rounds of bidding. However, the welfare effects are ambiguous in general. The finding

that the lockout period can be valuable is in line with McAdams and Schwarz (2007)'s view

that an intermediary can create value by offering a credible commitment device.

Our analysis also provides insights into the unexplained bidding paths found by Spann and

Tellis (2006). They analyze buyers' bidding patterns under NYOP without the lockout period

restriction and find that 36% of the patterns are concavely increasing, while 23% are convexly

increasing. They argue that the concave patterns can be explained by the positive bidding cost,

but the convex ones suggest irrational consumer behavior on the Internet. Our paper shows

that a convex pattern where a buyer raises bids more aggressively at the end can occur in a

fully rational environment.

The environment studied here is similar to a durable goods monopoly, but with the roles of

buyer and seller reversed. In a durable goods monopoly, the seller makes bids. Here the buyer

does it. To avoid confusion, call the side that determines the price the principal and the other

side the agents. There are two differences between our setting and a durable goods monopoly.

First, there is a deadline in our environment, which results in very different equilibrium paths

than those of the Coase conjecture.1 Secondly, there is competition among the agents. With

competition, an agent may accept the current price even though the future price path looks

attractive, because there is the risk that another agent will accept. Therefore, our model works

'In Stokey's discrete-time model, she also considers the case when there is a deadline and shows that the
Coase conjecture still holds when the length of the period shrinks. The conclusion is different from ours because
in Stocky's model, the deadline is not just the last day to trade, it is also the last day on which a buyer can
enjoy the good and derive utility from it. That is, a buyer derives less utility if he gets the good on a day closer
to the deadline. In our model, a buyer derives the same utility no matter when he gets the good.



even when there is no discounting.

The paper is organized as follows. Section 2 describes the model. Section 3 presents an ex-

ample that motivates our research. Section 4 constructs an equilibrium. Section 5 characterizes

the equilibrium bidding behavior. Section 6 analyzes a model with waiting cost to see under

what conditions the lockout period rule benefits customers and Section 7 concludes.

1.2 The Model

There are N > 2 sellers and 1 buyer in the market. The buyer has one unit of demand for the

good provided by the sellers. The buyer's reservation value for the good is v, which is known

by everyone. Seller i privately knows his cost 0i to provide the good. Each 0i is independently

and identically distributed on [c, Z], where c > 0 and Z < v, according to a distribution function

F. F admits a continuous density f and has full support. And x + f(x) strictly increases in

x. A buyer's payoff is v - b, where b is his payment to the seller, if he gets the object, and 0

otherwise. All the players are risk neutral. The setting is common knowledge to everyone in

the market.

There is one platform allowing the buyer to submit his bid price to sellers. The buyer is

allowed to adjust his bids for T times. In round t, the buyer announces the bid price, and

sellers decide whether to accept or not. If n sellers accept the bid, each of them gets the chance

to provide the good with probability 1, and the game stops. If no seller accepts and t < T,

the process proceeds to the next round, and the buyer submits a new price. If t = T, then the

market closes and no further transaction can happen.

1.2.1 Equilibrium concept

The equilibrium concept used in this paper is the perfect Bayesian equilibrium. An equilibrium

consists of the buyer's strategy and belief, and the sellers' strategies and beliefs. Only symmetric

pure strategy equilibria are considered. Let pt be the price that the buyer offers the sellers in

round t. Denote by ht = (p1,p2, ,Pt) the history of the prices submitted by the buyer in the

first t rounds.

Let bt (ht- 1 ) be the price that the buyer would submit in round t given the price history



ht-1 and the fact that no seller accepts in the first t - 1 rounds. The buyer's strategy is a set

of functions {bt (ht-1)}T=1. A seller's strategy can be summarized by functions {Xt (ht)}l. In

round t, given ht, a seller accepts the buyer's offer if and only if his cost is less than or equal to

xt (ht). The buyer's and the sellers' beliefs are summarized by a set of functions {yt (ht-1)} =1,

which specifies the greatest lower bound of a seller's cost believed by the buyer and the other

sellers given history ht-1 and the fact that no seller accepts in the first t - 1 rounds. Denote by

u° (b,x I ht-1, yt (ht-1)) the buyer's expected utility given history ht- 1 and belief yt (ht-1), and

u' (b, x-i, i I ht, Bi, Yt (ht- 1 )) seller i's expected utility, where x- i is the other sellers' strategy,2

and xi is seller i's strategy, given ht, the realization 0' of seller i's cost, and belief yt (ht-1).

Definition 1 A symmetric equilibrium is a (b, y, x) that satisfies

(a) yt+l (ht) = max { xt (ht) ,xt-1 (ht-1), - - - , (h)} ,Vt, ht, and

(b) u? (b, I ht_1, yt (ht-1)) > u (b', x I ht- 1, yt (ht- 1)) and

U (b, x, a I ht, 0i, yt (ht-1_l)) ! u' (b, x, z' I ht, i, yt (ht-_l)) , Vb', x', t, ht, ht-_l.

Condition (a) implies that players' belief about the greatest lower bound of seller i's cost at

time t is the same as the maximum of seller i's costs with which seller i would have accepted a

price occurring on the history price path. Condition (b) means that players cannot do better

by deviating from the equilibrium strategy.

1.3 An Example

Before proceeding to constructing an equilibrium for the general model, we show calculations

for finding the equilibrium path by using the example where N = 2, v = 1, and F is a uniform

distribution on [0, 1], and highlight some interesting points.

In addition to NYOP, a reverse auction is another mechanism commonly used by a buyer

to determine allocation. Thus, we are interested in comparing the performances of the two

mechanisms. In this example, the reverse auction is analogous to a standard auction with one

seller and two buyers whose values are uniformly distributed on [0, 1]. In the standard auction,

2z- is a tuple consisting of the other sellers' strategies. But when the other sellers use the same strategies,
x- ' can be a single function without confusion.



a buyer with value v bids ! in equilibrium. Therefore, in the reverse auction, a seller with cost

x analogously submits ask price 1 + Ix. The buyer buys from the seller with the lowest ask

price and gets expected payoff 1. On the other hand, if the buyer is allowed to set a reserve

price to commit that he buys the object only if the price is lower than the reserve price, then

by setting the reserve price at , the buyer gets 5, the same as the expected payoff realized in

Myerson's optimal mechanism.

T=1: Now suppose the buyer and the sellers trade under an NYOP mechanism where T = 1.

The buyer has one chance to submit his bid b. Seeing the bid, a seller whose cost is below

b accepts the offer. Therefore, the buyer maximizes the expected payoff (1 - b) 1 - (1 - b)2

by choosing b = 1 - -I and gets expected payoff 2 . From the example, we see that for the

buyer, NYOP outperforms a reverse auction without a reserve price even when there is only

one chance to bid.

T=2: Next consider the case where T = 2. Suppose that in round 1, the bid price is bl

and no one buys. In round 2, the buyer believes that both sellers' costs are above xl(bl), and

each seller also believes the other one's cost is above x1 (bl). The updated belief about the

distribution of a seller's cost is U[xi (bl), 1]. Since it is the last round, both sellers will accept

if the bid is higher than their costs. Thus x 2 (bl, b2 ) = b2 . Given the belief, the buyer will bid

at b2 (b) = 1 - (b) to maximize his expected revenue.

In round 1, suppose the buyer has submitted a bid at bl. A seller with cost x decides

whether to accept the bid in this round or wait until the next one with the belief that the other

seller would accept if his cost is below or equal to xl(bi). If the seller accepts in this round,

with probability xl the other accepts too, and each of them gets to sell with probability I;

and with probability 1 - xl, the seller gets to sell for sure, so the seller's expected payoff is

(b, - x) [xi(bi) + (1 - xl(b))]. If the seller waits, with probability 1 - x 1 , the game moves

to the next round. In round 2, the buyer is expected to submit b2 (bl). With probability

b2(bl)-x(bl) the other seller accepts too and each of them gets to sell with probability 2;

and with probability 1b 2 b) the seller gets to sell for sure, so the seller's expected payoff is1-xl (bi) I



(b2 (bi) - b2(bl)-(b) + (b1-b2(b) . The seller accepts b1 in round 1 if
(b1bl 2 1-x(bi) 1-zx(bi

(bi - x) [zx1(bi)+(1- x(bi))] > max 0, (b2 (bl) - X) [b2 (bi) - x(bi)] + [1 - b2 (bi)]

Note that if a seller with x accepts in round 1, then a seller with x' < x would also ac-

cept. In equilibrium, a seller with x < xl(bl) decides to accept, so we can get xl(bl) = 1-
-3bl+ /b1+12(1-b) by solving (bl-xi) [ xl + (1 - xi)] = (b2 (bi)-xi) [I [b2 (bi) - x] + [1 - b2(b)]] .

2

With belief xl(bi), the buyer chooses bl to maximize his total expected revenue in the two

rounds

max [1- b] [1- (1- xl(b))2] + [1 - b2 (b)] [(1 - xl (bi)) 2 - (1 - b2 (bl))2]

{bl,xl(bl),b2 (bl),x 2(bl,b 2)} form a symmetric equilibrium. In equilibrium bl = 0.4214,

b2 = 0.5212, xl = 0.1709, x2 = 0.5212, and the buyer's payoff is 0.40024.

Numerical results:

In the following table, we show the equilibrium paths of xt and bt and the expected buyer's

payoffs when T = 1, 2, 3, 4, and 5. We assume that the game begins at time 0 and ends at

time 1. If the buyer's bid in the tth round is accepted, the transaction occurs at (t1). Column



E (T) lists the expected transaction time conditional on that transaction occurs.

Buyer's Payoff E (7) XT-4 XT-3 XT-2 XT-1 XT

(bT-4) (bT-3) (bT-2) (bT-1) (bT)

T = 1 0.38490 0 0.4225

(0.4225)

T = 2 0.40024 0.2972 0.1709 0.5212

(0.4214) (0.5212)

T = 3 0.40111 0.4563 0.0597 0.2165 0.5475

(0.4099) (0.4538) (0.5475)

T = 4 0.40115 0.5826 0.0154 0.0597 0.2165 0.5475

(0.4007) (0.4127) (0.4538) (0.5475)

T = 5 0.40115 0.6626 0.0070 0.0154 0.0597 0.2165 0.5475

(0.3990) (0.4021) (0.4127) (0.4538) (0.5475)

There are several points worth noticing:

1. The buyer's payoff increases in T, the number of rounds,3 but the increment becomes

smaller and smaller. Therefore, the profit of having one more bidding chance shrinks as

T increases. (proved in Proposition 4)

2. The cost cutoff in round T - t, xT-t, converges when T goes to infinity. (proved in

Proposition 5)

3. The last-round bid increases in T, but the increment also shrinks as T increases. Observe

that given T, the bidding path bt is increasing. But with larger T, the increasing rate is

small in the first few rounds and big jumps occur in the last few rounds. (characterized

in Theorem 2)

4. The payoff for all T is lower than the payoff in a reverse auction with the optimal reserve

price; and when T is large enough (in this example, when T > 1), the payoff is higher

than the payoff in a reverse auction with no reserve price. (proved in Theorem 3)

3 Note that the numbers in the table are not accurate enough to show small differences.



5. In equilibrium the buyer does not get the object only if both sellers' costs are above XT.

Therefore, we know the probability that the buyer gets the object increases in T, but the

increment shrinks as T increases. From the table, we see that when T increases from 3 to

4, and to 5, neither the buyer's payoff nor the probability that the buyer gets the object

increases much. However, the expected transaction time is much later. This fact suggests

that if the buyer has waiting cost and prefers earlier transactions, having fewer rounds

might be good for him. The analysis in Section 1.6 confirms the conjecture.

1.4 Construction of the Equilibrium

In this section, we construct an equilibrium by solving a series of programs backward and prove

the existence of the equilibrium.

To construct the equilibrium, we need to introduce more notations. For convenience, define

F(x) = 1 - F(x).

Note that F (x) strictly decreases in x. Suppose only sellers with costs between xt-1 and xt are

willing to provide the good. Let

P (Xt-1, Xt) = F(xt-1)N - F(xt)N, if t-1 < Xt

0 O, if xt-1 > xt

be the probability that the demand is fulfilled. Let

H (xt-1, xt) -- n=O n±1 n!(N-n-l)!

S1, if Xtl1 > Xt

NF(xt-1 )N , if x t

1, if xt-1 > xt

be the conditional probability that a seller gets to provide the good if he accepts the buyer's



offer conditional on that the other sellers' costs are above x t - 1 . Define

G (xt-1, xt) H (xt-1, xt) NF (xt- 1)N.

bt (t-1) , xt (bt, xt- 1) , it (bt, xt-1) , and

rium strategies, beliefs, and the buyer's

t. If t = T, let

VT (XT_1)

Vt (t-1) defined below are used to characterize equilib-

payoff for the continuation games starting from round

max (v - bT) P (XT-1, XT)
{bT,xT}

s.t. bT = XT,

and

arg max (v - bT) P (xT-1, XT)
{bT,XT}

s.t. bT = XT.

(P1.1)

The constraint bT = XT of the program comes from that in the last round, a seller accepts

the last-round bid bT as long as his cost is below bT, so the cutoff XT equals bT. Knowing

this and given the belief that all the sellers have cost higher than XT-1, the buyer chooses bT

to maximize his payoff--the objective function. Note that there might be multiple solutions

to program P1.1. If there is more than one solution, only those that ensure the existence of

equilibrium can be candidates for bT (XT-1) and XT (xT-1) (see the proof of Proposition 1 for

more details).

4 Conditional on that the other sellers' costs are above xt-1, if a seller accepts the buyer's offer, with probability

(N-1)! (F(xt- 1) - F(xt))n (F(xt))N - n - /F (t-1_)N, there are n other sellers accepting, and each of them

gets to sell the good with probability .

CbT (XT_1) ,T (XT-1)) E



If t < T, let

Vt (xt-1) = max (v - bt) P (xt-1, xt) + Vt+1 (xt) (P1.2)
{bt,xt}

s.t.(bt - xt)G (xt-1, Xt) = Ct+1 (xt)

where Ct+l (xt) = (bt+l (xt) - xt)G (xt, -t+1 (xt)),

where bt+1 (xt) , -t+1 (xt) are defined as below;

and let

(Ct (t-1) ), t (xt-1)) Earg max (v - bt) P (xt-1, xt) + Vt+1 (xt) (P1.3)
{bt,xt}

s.t.(bt - xt)G (xt-1, xt) = Ct+1 (xt) .

Note that to solve the round-t program, we must solve all the programs for later rounds first,

so function Ct+1 (x) is determined before solving the program. The right-hand side of the

constraint, Ct+1 (xt), is the expected payoff of a seller with cost xt if he waits and accepts in

the next period. The left-hand side is the expected payoff of a seller with cost xt if he accepts

in period t. Given bt, sellers with costs lower than xt prefer to accept in period t, and sellers

with costs higher than xt prefer to accept in period t + 1. So for each bt, we find the sellers'

equilibrium strategy xt from the constraint. Given the sellers' strategy and the belief that

all sellers' costs are above xt-1, the buyer chooses bt to maximize his payoff-the objective

function. The following proposition proves that programs P1.1 and P1.3 have a solution

Proposition 1 There exists a set of solutions {bt (xt-1) ,Yt (xt-1) t that solves program P1.1

and P1.3 for all t.

Proof. The details of the proof are in Appendix A. Here is the sketch. First, by Berge's

maximum theorem, VT (xT-1) is continuous, and the solution set of XT for program P1.1 is

upper hemi-contiuous. Therefore, we are able to pick XT (XT-1) from the solution set such

that CT (xT-1) is lower semi-continuous. Next, substituting the constraint into the objective

function in round T - 1 in program P1.3, the objective function is graph-continuous defined

in Leininger (1984), and by Leininger's generalized maximum theorem, VT-1 is upper semi-



continuous, and the solution set of XT-1 exists and is upper hemi-continuous. Applying the

same procedure backward, we guarantee the existence of a solution to each round-t program.

The following assumption is for defining 5 t (bt, xt-1) and it (bt, t-1). We make the assump-

tion to ensure the existence of pure strategy equilibrium. 5 Without the assumption, we are still

able to construct an equilibrium in which mixed strategies are applied off the equilibrium path.

Therefore, Assumption 1 is not necessary for an equilibrium to exist.

Assumption 1 Given xt-1, assume that there exists b such that if bt E [b,- ], there exists xt

such that (bt - xt)G (xt-1, Xt) = Ct+1 (xt), and if bt < b, (bt - xt)G (t-1, Xt) < Ct+1 (xt) for

all xt E [t-l,j.

Let

S if bT > ifbT>

xT (bT, T-1) = bT if XT-1 bT _ "z and iT (bT, XT-1) = i(P1.4)
bT if bT I

XT-1 if bT < XT-1

5Assumption 1 implies that when the price is not too low, i.e. bt E [~, ], there exists xt such that

(bt - x) G (xt- 1, xt) > (bt+l (xt) - x) G (xt, t+l (Xt)) for x < xt and

(bt -x) G (xt-1,xt) < (t+l (Xt) - x) G (xt, t+1 (Xt)) for x > xt.

So a seller with cost lower than xt accepts in round t, and a seller with cost higher than xt accepts in later
rounds. Without the assumption, since Ct+l (xt) might have a jump at some c E [ c,], there might exist b such
that

{x|(b-x)G(xt-1,x)<Ct+1(x)} ,
{x (b-x)G(xti,x) > Ct+1(x)} 4 , and

{x (b- x)G(xt- 1,x) = Ct+1 (x)} = .

In this case, there does not exist xt such that

(b - x) G(xt-1 , xt) > t+l (xt) - x)G(xt,- t+1 (Xt)) for x < xt and

(b - x) G (xt-, xt) < t+1l (xt) - x) G (xt,t+1 (xt)) for x > xt,

so we are not able to find a cost cutoff in round t given that the buyer submits b. One way to solve the problem
is to let the buyer play mixed strategies in round t + 1.



For t < T, let

St (bt, xt-1) = if b- Z (P1.5)
xt-1 if bt < b (defined in Assumption 1)

otherwise,

Xt (bt, xt-1) E {xt I (bt - xt)G (xt-, xt) = Ct+l (xt). (1.1)

and

fE if bt > "

"it (bt, xt-1) = ) if bt , (P1.6)
bt - Ct+x(xt-1) if bt < b

otherwise,

it (bt, xt-1) E {Xt I (bt - xt)G (xt-1, xt) = Ct+1 (xt)} •

xt (bt, xt-1) is for determining a player's belief about the greatest lower bound of a seller's cost,

so xt (bt, xt-1) > xt-1; and Et (bt, xt-1) is for determining a seller's strategy. The difference

between Tt (xt-1) and ~it (bt, xt-1) (or it (bt, xt-1)) is that Yt (xt-1) is determined at the same

time when the buyer determines bt, and 5 t (bt, xt-1) (or it (bt, xt-1)) is determined after the

buyer submits bt. When deriving 5it (bt, xt-1) and it (bt, xt-1), we have to take care of the cases

when the buyer submits off-equilibrium bids. If an off-equilibrium bid bt is too high, all the

sellers accept and St = it = E. If bt is too low, sellers with values higher than xt-1 do not

accept, so the belief about the greatest lower bound of the sellers' costs after all the sellers reject

bt is still xt-1, i.e. xt = xt-1. However, a seller with cost lower than bt - Ct+(t) < t-1t = XKG(xt-,Xt- Xt-1

gets higher payoff if he accepts in round t, so xt = bt - Ct+(xt-i)

Lastly,

xo = c.

Theorem 1 Assume Assumption 1. Let bt be as defined in (P1.1) and (P1.3), and Et be as



defined in (P1.4), (P1.5), and (1.3). The following (b, y, x) is an equilibrium of the game.

bt (ht-1) = bt ( t-1 (Pt-1 ,t-2 (Pt-2," "' (pl1, 0) ... )) ,

xt(ht) = xt(pt,xt_l(pt-1,"'.2 (pl,xo)...)),

yt+l (ht) = xt (pt, xt-l(pt-1, -"'xl(pl, x0) ... ))

Proof. See Appendix A. m

Corollary 1 The equilibrium path {(bl, - - - , bT) ,(x, - - - , XT)} can be found by solving the re-

cursive program

S(c) = max (v - bl) P (c, x1 ) + V2 () (P1.7)
{bi,xi}

s.t.(bl - xl)G (c, xi) = C2 (xl).

The value of the program is the buyer's payoff in equilibrium.

The program shows that the equilibrium path {(bl, ... , bT) ,( 1, ( ,XT)} maximizes the

buyer's payoff but is subject to two constraints. The first one is the sellers' IC constraint,

which exists in every mechanism and is shown in the constraint part of the program. The

second constraint comes from the recursive form of the program. In each round, the buyer

makes his bidding decision based on his current information and is not able to commit to a

bidding path at the beginning. The second constraint keeps the buyer from achieving the

outcome derived from the optimal mechanism stated by Myerson (1981).

1.5 Equilibrium Bidding Behavior

With T chances to submit prices, the buyer is able to segment the sellers in up to T groups

according to their costs. However, the buyer cannot commit to a bidding path in advance,

and in each round, he will choose a price that maximizes his expected payoff based on his

belief. Thus, the buyer would suffer from the inability to commit and get lower payoff than

when commitment is possible. In this section, we focus on the case when there is no lockout

period restriction so that the buyer can submit as many bids as he wants. We first show that



when committing to a bidding path is impossible, the optimal outcome for the buyer stated by

Myerson (1981) is not attainable if the optimal auction design involves setting a reserve price.

Next, we characterize the equilibrium bidding behavior and show that there are two possible

types of equilibrium bidding paths. One incurs constant trades over time, and the other leads

to late transactions.

1.5.1 Commitment and optimality

In this section, we consider the situation when the buyer can commit to a bidding path in

advance as a benchmark case. We show that with commitment, the buyer can achieve the

optimal outcome realized in Myerson's optimal mechanism.

Note that in our setting, a first-price or second-price reverse auction works as follows -

sellers submit their asks and the buyer chooses to buy an object from the seller with the

lowest ask price. The buyer can announce a reserve price before the auction starts so that

the buyer buys the object only if there is at least one ask price below the reserve price. A

first-price or second-price reverse auction with a reserve price r such that r + = v is an

optimal mechanism prescribed by Myerson (1981). Under NYOP, it is the buyer who submits

bids. When there are a large number of bidding chances, if the buyer commits to raise bids

gradually and stop at r, then to the sellers, the game, like a reverse Dutch auction with a reserve

price, is almost strategically equivalent to a first-price reverse auction with reserve price r, and

the optimal outcome for the buyer can be approximately achieved. The following proposition

elucidates this point.

Proposition 2 Let 7r (T) be the buyer's maximum payoff when there are T rounds and com-

mitment to a path is possible. Let rx* be the buyer's payoff in Myerson's optimal mechanism.

Given any e > 0, there exists T' such that for all T > T', 7r* - 7r (T) < e.

Proof. See Appendix B. The proof shows that by committing to a path (bl, b2, ... , bT)

such that in round t, sellers with cost below xt = c+t - (where r is the optimal reserve price)

accept, the buyer's payoff can be arbitrarily close to 7r* when T goes to infinity. *

However, when commitment is not possible, even though the buyer is allowed to adjust the

price as many times as he wants, the maximum payoff resulting from the optimal mechanism



is not approximately achievable. By corollary 1 and (P1.1), we know that on the equilibrium

path, the last-round bT and XT can be found by solving

XT = bT = arg max (v- b) [F (T1)N- F(b)N].

A necessary condition for bT is

F (XT_1)N = F (bT)N + (v - bT) NF (bT)N - f (bT). (1.2)

Suppose the optimal auction involves setting a reserve price r < E. If the optimal auction

can be approximately implemented when T goes to infinity, then it must be that limT_,_, bT =

limT,, XT = r and limT,,-o XT-1 = r. But by equation (1.2), if limT,. bT = r, limT,, XT-1 <

r, so the optimal auction cannot be approximately implemented.

Proposition 3 When commitment to a path is impossible, the buyer's payoff under NYOP

is bounded away from the payoff in Myerson's optimal auction if the optimal auction involves

setting a reserve price.

1.5.2 Possible forms for the equilibrium paths when no lockout period re-

striction is imposed

In this section, we characterize the pattern of the equilibrium bidding path when T - co (i.e.

when there is no lockout period restriction). The question is how the buyer designs a bidding

path to discriminate sellers. When commitment is possible, it is optimal for the buyer to induce

sellers to reveal information about their costs gradually in every round. But when commitment

is impossible, acquiring new information will change the buyer's pricing strategy later on, and

it is not clear whether doing so is beneficial for the buyer. In Theorem 2, we characterize the

equilibrium paths. Although the equilibrium paths would be different in different environments,

we show that the paths can be neatly classified into two types: either the sellers with different

costs are almost fully discriminated so the sellers' private information is revealed gradually over

time, or they are pooled in intervals and most information about the sellers' costs is revealed

just before the deadline.



Before characterizing the equilibrium paths, we first analyze how the buyer's payoff changes

when the number of rounds increases.

Proposition 4 The buyer's payoff increases with T, and the payoff converges when T - c00.

Proof. When the number of rounds increases from M to M + 1, the buyer can submit

price c in the first round and then in the remaining rounds, do the same thing as when there

are M rounds. Following this strategy, the buyer's payoff is the same as when T = M, and he

might be able to do better by using other strategies. Therefore, the buyer's payoff is weakly

increasing with T. Moreover, the buyer's payoff is bounded by the payoff in Myerson's optimal

mechanism, so the payoff converges when T -- oo. m

Therefore, when the buyer does not have time preference, having more rounds is weakly

better for him. We need the following condition for subsequent discussion.

Condition 1 Assume that F is such that -T (xt-1) defined in (P1.1) and (P1.3) is continuous

on [c,Z] for all t and T.

It can be proved that if the distribution F is uniform on [c, E], Condition 1 holds.6 Condi-

tion 1 ensures that the objective functions and constraints of the programs in Section 1.4 are

continuous, so the generalized envelope theorem by Milgrom and Segal (2002) can be applied.

For convenience, we denote xt and bt on the equilibrium path when there are T rounds

by x T and bT . The following proposition shows a convergence property of xT_t when T goes to

infinity.

Proposition 5 Assume Condition 1. limT, xT_t exists for all t {0, 1, .. }.

Proof. Note that given any t and T, t (.) = j' (.) (defined in program P1.3 on page

19). When we increase the number of rounds from T to T + 1, x T + 1 > x T + 1 = x T . By Lemma

in Appendix B, xT+1 > x T implies T+ > XT_ for all t. Hence, xT_t increases in T.

Furthermore, x-t_ has an upper bound T, so we conclude that limT,, zT_ exists. m

6If

-CT+, (xt,6) [F (xt- 1) - F (xt)] + Vt 4 (xt,6)

is concave in xt for any t and T, then Condition 1 holds.



Proposition 5 shows that xT-t converges as T - oo with t held fixed. Intuitively, there

are two different ways in which this could happen. One is that trade could be taking place

gradually so that xT-t " T for T large enough. Another is that the pattern of sales could look

like the one we saw in the example in Section 1.3 where most trade occurred at the end. The

main result of this section shows formally that there are two different possibilities like this. To

state the result, we need a preliminary definition:

Let XT = {x}T =1. The following defines a cluster point of the cutoff set XT when T -+ oo00.

Definition 2 z E [c, -] is a cluster point if for any e > 0, there exists y such that (i) 0 <

ly - z < E, and (ii) for any 6 > 0, there exists T' such that for all T > T', there exists x E XT

such that ly - xl < 6.

Let B be the set of cluster points, and [c, T] \ B be the complement of B.

Theorem 2 Assume Condition 1.

1. The cluster point set B is either the whole interval [c, T] or a single point {c}, i.e. B = [c, ]

or {c}.

2. The cluster point set B is a single point {c} if and only if the last period cutoff x T is

bounded away from T when T - oo, i.e. B = {c} if and only if limT-, x < .

3. If B = [c, T], the buyer's payoff is approximately the same as that in a first-price auction

without a reserve price.

Proof. The details of the proof are in Appendix B. Here is the sketch. Lemma 3 shows that

if the number of rounds left in a continuation game starting with belief xt-1 goes to infinity,

then the difference between xt and xt-1 goes to 0. So, if a E [c, Z] is a cluster point, any point

x < a must be a cluster point too. However, Lemma 6 shows that it cannot be the case that

a E (c, Z), [c, a] belongs to the cluster point set B, and (a, T] belongs to the complement of B

because it violates the necessary condition under which the buyer chooses the optimal strategy

for himself in every round. Therefore, the cluster point set is either [c, T] or {c}. The third

statement comes from the revenue equivalence principle. m



The first statement of the theorem implies that there are only two possible equilibrium

paths: one with the cluster point set B equal to the whole interval [c, ] and one with the

cluster point set equal to a single point {c}. If the cluster point set is [c, -], then it is implied

that the sellers are almost fully discriminated in equilibrium, and information about sellers'

costs is revealed gradually over time. To discriminate the sellers, the buyer will increase the

bids gradually and stop at T, and transactions occur constantly along the path. If the cluster

point set is {c}, then most cutoff points xt cluster at c, and only a few cutoff points spread

around other places. In this case, sellers with costs within the same cutoff interval accept the

same price, so they are not fully discriminated. In addition, most information about sellers'

costs is revealed just before the deadline. Since the prices in the first many rounds are accepted

by sellers with costs around c, and the prices in the last few rounds are accepted by sellers with

costs in higher intervals, by the revenue equivalence principle, we can derive the price path and

show that the prices in the first many rounds are roughly the same, and there are big jumps

in prices in the last few rounds. Therefore, if the cluster point set is c, the equilibrium bidding

path is convex. Moreover, since the bids in the first many rounds are only accepted by sellers

with costs around c, transaction is more likely to occur in the last few rounds.

The second statement of the theorem says that the occurrence that {c} is the only cluster

point occurs if and only if limT-m T is strictly lower than T. In other words, late transaction

and information revelation coincide with the possibility that the buyer's demand is not fulfilled.

The result could explain the puzzle proposed by Spann and Tellis. Spann and Tellis (2006)

employ the data of a NYOP retailer in Germany that sells airline tickets for various airlines

and allows multiple bidding to analyze buyers' bidding patterns. They argue that with positive

bidding cost, the pattern should be concavely increasing because at the beginning, consumers

try to increase the probability of successful bidding by bidding higher, but when the bids are

closer to their reservation value, the increasing rate slows down; and with zero bidding cost, the

pattern should reflect linearly increasing bids. However, the result shows that only 36% of the

data fit the first pattern and 5% fit the second pattern. 23% of the data fit the pattern which is

convexly increasing, so they conclude that consumer behavior on the internet is not so rational.

Nevertheless, a convexly increasing pattern corresponds to the case B = {c} in Theorem 2.



Thus, a convex path can actually occur in a fully rational environment.' In addition to the

convex bidding path, the case B = {c} also implies that most transactions occur near the end.

This is related to the deadline effect that has been observed in many negotiation processes such

as bargaining during strikes and pretrial negotiation. Our model thus provides insight into this

phenomenon.

1.5.3 Factors that affect the type of the equilibrium path

What would happen on the equilibrium path depends on the distribution of sellers' cost F, the

buyer's value v, and the number of sellers N. Under NYOP, the buyer is allowed to set up a price

path so that limT,,o bT = limT,, XT < Z, which functions as a reserve price. But since there is

no commitment, to sustain limToo b T < Z, the buyer must have limT,. xT > limT,, xT_, >

limT _ x 2 > ... > limToo xT (by Lemma 2 in Appendix B), and this requirement incurs

some costs. First, the buyer has to charge the same price for sellers between xt and xt-1, and

hence sellers receive more information rent than when fully discriminated. Furthermore, sellers

in [xt, xt-1) get to sell the good with the same probability. Hence, the allocation is not efficient

under NYOP. If the benefit dominates the loss of having limT_,- bT < Z, the equilibrium path

will lead to limT,oo b T < E.

Figure 1-1 shows the path of xt when a seller's cost is uniformly distributed on [0, 1] and

T = 20, N = 2. When v = 1, v = 1.2, and v = 1.4, the optimal reserve prices are 0.5, 0.6, and

0.7 respectively. So when v = 1, the buyer is more inclined to have x20 much lower than Z = 1,

and in equilibrium, a seller with cost higher than 0.1 would not sell the good until the last two

periods, which implies transactions are much more likely to occur in the last two periods. On

the other hand, when v = 1.4, the loss of having x20 much lower than Z = 1 dominates the

benefit, so in equilibrium, the buyer raises bids gradually to a price close to 1, and transactions

occur constantly in every period.

One thing that deserves mention is that when the benefit of having a reserve price is large

enough, in order to attain limT-o bT < Z, the buyer has to restrict himself from getting too

much information about sellers' costs. Supposing he raises bids early so that sellers with higher

7After the buyer's waiting cost is incorporated in the next section, all the three patterns can occur in our
model with different parameters.
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Figure 1-1: Path of xt

cost also accept, once the bid is rejected, he believes that sellers' costs are above a higher

threshold and will raise bids further in the next rounds. In the end, limT,,. bT = T. Therefore,

he has to keep the bids low most of the time and his belief about sellers' costs does not change

much until the last few rounds; and since he only has a few chances left, he cannot raise bids

to Z, so limT,, bT < Z. The following proposition provides some means to check whether

limT,, bT < - or limT-,, bT = c.

Proposition 6 If limT-. xT = , there does not exist a finite number M such that the buyer's

expected payoff when there are M rounds is higher than that in a first-price reverse auction

without a reserve price.

Proof. If the buyer's payoff when T = M is higher than that in a first-price reverse auction

without a reserve price, by Proposition 4, the buyer's payoff when T -- oo is weakly higher

than when T = M. Hence, by the third statement of Theorem 2, limT,, bTT = c would not

happen. m

For example, when N = 2, F (x) = x on [0, 1] and v = 1, the expected payoff of the buyer

is 1 in a first-price reverse auction. But if the buyer is allowed to submit the price once, and3



he chooses b = 0.4225, then the expected payoff is 0.3849. Thus, we know that xT is bounded

away from Z when T --+ 0o.

1.5.4 Payoff comparison among different mechanisms

The proposition and the theorem give insights into why Priceline.com has to limit bidding

chances within a period of time. Suppose travelers realize their demand for a hotel room M

days in advance. If allowed to submit bids many times a day, under some circumstances,

travelers would not submit serious bids until the last day, and so successful transactions only

occur on the day just before the trip. This would somewhat inconvenience the hotels and

travelers. If only one bid is allowed a day, then transactions will occur much earlier, but the

negative impact on travelers' payoff is infinitesimal. This intuition is formalized and analyzed

in the next section.

Based on the analysis above, we can also characterize the buyer's payoff with different

equilibrium paths and obtain an upper bound and a lower bound for the buyer's expected

payoff under NYOP.

Theorem 3 When T -4 o, if on the equilibrium path, limT---* bO = limT--o xT < , the

buyer's expected payoff is strictly greater than that in a reverse auction without a reserve price.

Thus, when T - o, the buyer's expected payoff is between the payoff in a reverse auction

without a reserve price and the payoff in a reverse auction with the optimal reserve price.

Proof. Note that when T - coo, a path that almost fully discriminates sellers and satisfies

sellers' IC constraint is a feasible solution candidate to program P1.7 (it is the stationary

solution to program P1.7 when T = oo, see Appendix B, Proposition 9) and it brings the buyer

almost the same expected payoff as in a reverse auction with no reserve price. Therefore, if

the solution to program P1.7 is the path with limT--oo bT = limT_,, XT < Z, it must yield a

higher value for the program than in a reverse auction with no reserve price. This proves the

first statement. The second statement follows from Theorem 2, Proposition 3, and the first

statement. E

We can consider the mechanism used in Hotwire.com as a first-price reverse auction without

a reserve price. Hotels submit their prices to Hotwire.com, and Hotwire.com picks the lowest



one and announces it on the website. Customers see the price and decide whether to buy or

not. Therefore, we should expect that customers get higher expected savings under NYOP.

1.6 Model with Buyer's Waiting Cost

At Priceline, when a bid is rejected, a customer has to wait for a period of time to submit

another bid, but some other NYOP websites in Europe allow customers to rebid immediately

once their bids are rejected. In this section, we examine the conditions under which having the

lockout period restriction benefits customers.

1.6.1 The model and an example

We modify the model in Section 1.2 to fit the real environment better. In reality, buyers would

like to pin down their travel plans as early as possible, so late transactions actually incur

some waiting costs. Therefore, we incorporate buyers' waiting cost and show that setting an

appropriate lockout period rule may benefit the buyer. However, we assume that sellers have

no preference for early or late transactions.

The model is modified as follows. The buyer realizes his demand for the good at time 0 and

tries to fulfill the demand in time period [0, M]. After time M, the buyer no longer needs the

good. If the buyer gets the good at price B at time t, his utility is 6P (v - B), where 6 E (0, 1).

The platform sets a lockout period rule which regulates how frequently the buyer can submit a

bid. If the lockout period is s, the buyer can submit bids for [MJ times, that is, T = [M .

After incorporating waiting cost, let us revisit the example in Section 1.3 and confirm our

conjecture about how the lockout period improves the buyer's payoff. The following table is for



the case when 6 = 0.9.

Buyer's Payoff XT-4 XT-3 XT-2 XT-1 XT

(bT-4) (bT-3) (bT-2) (bT-1) (bT)

T = 1 0.3849 0.4225

(0.4225)

T = 2 0.3897 0.2066 0.5418

(0.4405) (0.5418)

T = 3 0.3844 0.1204 0.2885 0.5891

(0.4422) (0.5006) (0.5891)

T = 4 0.3802 0.0959 0.1840 0.3356 0.6163

(0.4479) (0.4855) (0.5343) (0.6163)

T = 5 0.3773 0.0579 0.1086 0.1875 0.3356 0.6163

(0.4391) (0.4617) (0.4885) (0.5348) (0.6163)

Compared to the result when 6 = 1, we see that a buyer with waiting cost trades more eagerly.

However, he would still like to have x5 much lower than T to serve as a reserve price, so he

has to suppress his intention to induce early transaction and cannot raise bids too fast. With

the conflict, the table shows that allowing two bidding chances yields the highest payoff for the

buyer. Having more rounds causes delay, which is costly to the buyer. The example illustrates

that the lockout period rule which puts restriction on the buyer's bidding chances might actually

help the buyer.

1.6.2 Equilibrium bidding path with no lockout period and 6 < 1

When 6 = 1, we show in Section 1.5.2 that when there is no lockout period, there are two

possible equilibrium paths - either sellers are almost fully discriminated over time or they get

pooled into some cost intervals. In the latter case, the price pattern is convexly increasing,

and most of trades will be realized at the end. In this section, we show that with 6 < 1,

there is one more possible path along which sellers with costs below some level are almost fully

discriminated and sellers with costs above the level are pooled in intervals.



First, let

bT (x_1, 6) 2 (xT_1, 6)) arg max (v - bT) P (XT-1, XT)S{bT,XT}

s.t. bT = XT,

and

T (xt1,6 ) ,~T (xtl,6)) Earg max (v - bt) P(xt-1,xt) + /Vt+l (xt, 6)' ){btxt}

s.t.(bt - xt)G (xt-1, xt) = Ct+l (xt, 6).

for t < T. We need Condition 2 and Condition 3 for subsequent discussion.

(P1.8)

(P1.9)

Condition 2 Assume that F is such that TT (xt1, 6) is continuous in xt-1 on [c, ] for all t

and T.

Condition 3 Assume that F is such that for any T, k, and x E [c, ], T_-k (x, 6) converges to

XT_k (x, 1) when T goes to infinity.

Note that T-k (., 1) is independent of T. If the distribution F is uniform on [c, ], it can

be proved that Condition 2 and Condition 3 hold.8

Proposition 7 Assume Conditions 2 and 3. Given 6, limT,, XTk exists for all k E {0, 1, -} .

Proof. See Appendix B m

The following theorem is a companion of Theorem 2, which characterizes the equilibrium

path given 6 E (0, 1] when there is no lockout period. The cluster point set B is defined on

page 26.

sGiven 6, if

O(Xt-I, Xt) (V - Xt)[F (_t_) - F (Zx)]
-CtT+1 (xt, 6) [F (xt-1) - F (xt)] + T VT (xt, 6)

is concave in xt for any t and T, then Condition 2 holds. If

(Xt_1, Xt) (V- xt) F t (_1)N -F (Xt)]
-C/T+l (xt,6) [F (xt-1) - F (xt)] + vtT1 (xt,6)

is concave in xt for any t and T, then Condition 3 holds.
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Figure 1-2: Path of xt with different values of 5

Theorem 4 Assume Conditions 2 and 3. Given 6 E (0, 1],

1. The cluster point set B is [c, a], where a E [c, E].

2. The cluster point set is not the whole interval [c, -] if and only if the last period cutoff x T

is bounded away from - when T -- oo, i.e. a < Z if and only if limT-,,oo x < -.

Proof. See Appendix B. m

Figure 1-2 illustrates the points made in Theorem 4. It shows the paths of xt for different

values of 6 when v = 1, T = 50, N = 2, and a seller's cost is uniformly distributed on [0, 1].

The paths with 6 = 1, 0.95, and 0.8 are consistent with the case of a < Z, and the path with

6 = 0.3 is consistent with the case of a = Z. When 6 = 0.3, the differences between adjacent

xt's in the first few rounds are relatively large. However, they shrink as the number of rounds

increases, as shown in Figure 1-3. Figure 1-3 depicts the paths of xt in the first 30 rounds given

6 = 0.3 with T = 50, 100, and 150. When T --4 o, the differences between adjacent xt's go to

0. When 6 = 1, 0.95, and 0.8, the differences between adjacent xt's in the last three rounds are



Figure 1-3: Path of xt in the first 30 rounds with different numbers of total rounds, 6 = 0.3.

large. However, they do not shrink when the number of rounds increases, as shown in Figure

1-4. Figure 1-4 depicts the paths of xt given 6 = 0.95 with T = 50, 100, and 150.

Theorem 2 is a special case of Theorem 4. When 6 = 1, a = c or Z; and when 6 E (0, 1),

a can be anything in [c, E], and Figure 1-2 shows that a decreases in 6. The difference comes

from the fact that with 6 < 1, after several rounds, some waiting cost has been sunk and the

remaining time left before the deadline is shorter. It is as if the buyer now has a higher discount

factor, so the buyer's bidding behavior changes accordingly. We can see from Figure 1-2 that

with lower 6, the path is more concave at the beginning since the buyer is more eager to get

the good. As time passes by and less time is left, the path turns convex.

1.6.3 Optimal lockout period

In this section, we use some numerical examples to study the pros and cons of the lockout

period rule and characterize the circumstances under which setting an appropriate lockout

period increases the buyer's payoff.

With a discount factor 6 lower than 1, the example in Section 1.6.1 shows that the buyer's

payoff does not monotonically increase with the number of rounds, which contrasts to the result
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Figure 1-4: Path of xt with different numbers of total rounds, 6 = 0.95.

in Proposition 4.

Proposition 8 With 6 E (0, 1), the buyer's payoff might not monotonically increase with the

number of rounds T.

The following discusses how a lockout period rule affects the buyer's payoff given different

values of 6. We focus on the settings in which Myerson's optimal mechanism involves setting

a reserve price. If setting a reserve price is unnecessary, having more rounds always benefits

the buyer because it helps the buyer discriminate the sellers better and be able to close the

transaction earlier.

With high discount factor When the discount factor is high but lower than 1, if there is

no lockout period, in equilibrium, the path of xt is convex (see Figure 1-2), the last-round price

is lower than Z, and most transactions occur late. If there is a lockout period, the buyer has

fewer bidding chances and will bid seriously from the beginning, so transactions occur earlier.

However, the buyer also loses chances to discriminate sellers with cost around c.



With low discount factor When the discount factor is low, if there is no lockout period,

the buyer raises the bid aggressively, and the bidding path is concave. With a lockout period,

the buyer cannot raise the bid all the way up to -, so there is a reserve-price-like effect. But

the lockout period limits the buyer's bidding chances so that the buyer cannot discriminate the

sellers well, and it also prevents the buyer from bidding aggressively and getting the good early.

We consider the example where N = 2, v = 1.2, and a seller's cost is uniformly distributed

on [0, 1]. The following table summarizes the number of rounds T* that maximizes the buyer's

payoff and the corresponding buyer's payoff 7r (T*), given different values of 6.

6 limT- XT T* 7r (T*)

1.00 0.668 oo00 0.5559

0.95 0.774 2 0.5461

0.90 1 2 0.5399

0.85 1 oo 0.5333

The result shows that setting a lockout period so that the buyer has two bidding chances

maximizes the buyer's payoff when 5 = 0.95 and 0.9. With 6 = 0.95, when there is no lockout

period, limT,, XT < 1, so the equilibrium path of xt is mostly convex, and transaction is

very likely to occur late. By setting a lockout period, the buyer benefits from having early

transactions but suffers from not being able to discriminate sellers with costs around c. With

6 = 0.9, when there is no lockout period, limT,,. XT = 1, so the equilibrium path of xt is

concave, and transactions occur early. By setting a lockout period, the buyer benefits from

having a last-round price lower than -, which functions like a reserve price, but suffers from

not being able to close transaction early and discriminate sellers finely. In these two cases, the

benefit of having a lockout period dominates the loss. However, with 6 very close to 1 and 6

lower than 0.85, the loss dominates the benefit, so setting a lockout period hurts the buyer.

In addition, setting a lockout period can be valuable for the buyer when having a reserve

price benefits the buyer a lot. Consider another example where v = 1 and the other parameters

are the same as before. The optimal reserve price is 0.5. In this case, if 6 is lower than 0.62,

limT-o XT = 1, so the buyer's payoff when there is no lockout period is at most 1, the payoff

in a reverse auction with no reserve price. On the other hand, the buyer's payoff when only



one bidding chance is allowed is 0.3849 for all 6. Therefore, setting a lockout period benefits

the buyer if J < 0.62 (it also benefits the buyer for higher values of 6.)

From the discussion above, we see that NYOP websites with different designs of rebidding

rules are preferred by different kinds of customers. Priceline's lockout period rule seems to hurt

customers by restricting their rebidding opportunities, but in fact, a customer with waiting cost

might find it beneficial.

1.7 Conclusion

This paper analyzes the Name Your Own Price (NYOP) mechanism adopted by Priceline.com.

We characterize the buyer's and the sellers' equilibrium strategies and show that Priceline.com's

lockout period restriction, a design to protect sellers that seems to hurt customers, can actually

benefit a customer with moderate discount factor.

We show that when there is no lockout period and no waiting cost, the equilibrium paths can

be categorized into two classes. In the first class, the cluster point set of the sellers' cost cutoffs

in all rounds is the whole cost interval [c, T], which implies that sellers with different costs are

almost fully discriminated and information about sellers' cost is revealed gradually over time.

In this case, the buyer raises bids constantly, the ending price is the highest possible cost Z,

and the buyer's payoff is approximately the same as the payoff in a reverse auction without a

reserve price. In the second class, the cluster point set is a single point {c}, which implies that

sellers with different costs are pooled in intervals except the one with the lowest possible cost,

and information about the sellers' cost is barely revealed in the first many rounds. In this case,

the buyer does not raise the bid much until the very end, the ending price is lower than Z, and

the buyer's payoff is greater than the payoff in a reverse auction without a reserve price. In

the second type of equilibrium paths, most transactions occur just before the deadline. The

delay of transactions incurs waiting cost if the buyer has time preference. Therefore, setting a

lockout period might actually benefit a buyer by moving transactions forward.

This paper also indicates some interesting extensions for future research. Based on our

analysis, one might be curious about whether Priceline can do better by adopting other mea-

sures, such as restricting the number of bidding chances instead of the frequency of bidding.



Moreover, one can extend the model to consider the case when there are multiple buyers with

private information about their own valuations, which better characterizes the situation of high

travel season.

1.8 Appendix A

Proof of Proposition 1. There exists a set of solutions {bt (xt-1) , t (xt-1)} t that solves

program P1.1 and P1.3 for all t. In the last period, recall that

VT (T-1) = max (v - xT) P (xT, XT),
XTE[XT-1,'C

XT(XT-1) e XT(xT-1) = arg max (v-- xT) P (T-1, XT),
XTE[XT-1,I

and CT(XT-1) = (T(xT-1) - XT-1)G (T-1,T (xT-1)).

By Berge's maximum theorem, we know VT (XT-1) is continuous and XT (XT-1) is upper hemi-

continuous. In period t, t < T, let

t (xt-1, Xt) = (v - Xt) [F (xt_)N - F (xt)N]

-Ct+1 (xt) [F (xt-1) - F (xt)] + Vt+l (xt),

a (Xt-1) = [xt-1,].

Then

Vt (xt-1)

Yt (Xt-1) E Xt (Xt-1)

S max qt (t-1,xt)
XtEa(t-1i)

= arg max Ot (xt-1, xt).
Xt a(xt 1)

We show that by picking a proper xt (xt-1) from Xt (xt-1), t < T, each round-t program has a

solution.

First observe that for upper hemi-continuous correspondence XT, we are able to find nT

closed intervals [ak, ak+1] , k = 1, .. , nT, such that Uk [ak, ak+1] = [c, -], and nT continuous



functions IXT,k : [ak, ak+] --+ [ak, ] such that -T,k (x) E XT (x) , Vx E [ak, ak+l]. Let

(YT,k (XT-1) - XT-1)G (xT-1,T,k (XT-1)), if XT-1 E (ak, ak+1)

CT (XT-1) = min (T,k(T-1) - XT-1)G (ZT1, YT,k (T-1)), if x-1 =ak+l,k < nr

S(XT,k+1 (XT-1)- XT-1)G (XT-1, T,k+1 (XT-1))

S(TT,k (XT-1), if XT-1 E (ak, ak+1)

arg minXE {I,k(XT-1),TT,k+ (XT-1)}(x - XT-1)G (XT-_1, X) , if XT-1 = ak+l, k < nT

bT (XT-1) = XT(XT-1).

CT is lower semi-continuous and VT is continuous, so OT-1 is upper semi-continuous. Note

that T-i is graph-continuous with respect to a, which is defined in Leininger (1984). So by

Leininger's generalized maximum theorem, VT-1 is upper semi-continuous, and XT-1 is upper

hemi-continuous.

Similarly, since XT-1 is upper hemi-continuous, we are able to find nT-_1 closed intervals

[a, ak+1] , k = 1,-- , nT-1, such that Uk [a, ak+1] = [c,T], and nT-1 continuous functions

XT-1 ,k: [a ' + - [a'k,] such that iT-1,k (x) E XT-1 (x), Vx E [a', a'+]. Let

CT-1 (XT-2) =

S (IT - l,k (T-2) - XT-2)G (xT-2,T-1,k (T-2)) + CT (XT-1), if XT-2 E (a, a+l)

m (7T-1,k (XT-2) - XT-2)G (xT-2, -T-1,k (XT-2)) + CT (XT-1), i

S(T-1,k+1 (XT-2)- XT-2)G (XT-2, T-1,k+1 (XT-2)) + CT (XT-1) J

XT-1 (XT-2)=

XT-1,k (XT-2), if XT-2 E (a k, a+)

arg minx T-1,k(XT-2),T-1,k+(T2)(X - T-2)G (XT-2, X) + CT (x) , if XT-2 = a+ 1

CT (,T-1 (xT-2))

DT-1 (XT-2) -IT-1 (XT-2) ( (
G (XT-2, T-1 (XT-2))

CT-1 is lower semi-continuous and VT-1 is upper semi-continuous, so OT-2 is upper semi-

continuous. Check that OT-2 is graph-continuous with respect to a. Applying the same proce-

dure, we conclude that there exists a set of solutions {bt (xt-1),7t (xt-1)}t that solves program



P1.1 and P1.3 for all t. m

Proof of Theorem 1. First we show that u' (b, x, I ht, , Yt (ht-1)) > u (b, x, x' ht, 8i, yt (ht-1))

If t = T, XT (hT) = PT. Seller i with cost 0i < PT gets positive expected payoff if accepting

and 0 if not, so he should accept. Seller i with cost 0i > PT gets negative expected payoff if

accepting and 0 if not, so he would not accept. Therefore, he should follow x. For t < T, let

xt-1 = t-1 (ht- 1 ). In the continuation game, the price path (bt+l, bt+2 , ... , bT) and the belief

path (yt+l, Yt+2," YT) = (Xt, xt+1 , . x , T-1) can be found by solving the recursive program

max (v - bt) P (xt-1, xt) + Vt+l1 (xt)
Xt

s.t.if (bt - xt-1) < Ct+ (xt-1) , xt = xt-1,

otherwise, (bt - xt)G (xt-l, Xt) = Ct+l (xt).

Seller i's deviation does not affect (bt+, .. , bT) and (yt+l, , YT). Suppose seller i's cost

0' is in (x,_l, x],s > t, so he should buy in round s. If he accepts in round s' : s,

ui (b, X, X' -ht, ', yt (ht-1)) = (bs, - 0i) Xs)F(t 1 . If he sticks to x (accepts in round s),

t (b, x, x | h,, Oy,t (ht-1)) = (bs - , ) -y . If s' > s, we know that

(bs - xs)G (xs-, xs) = (bs+l - x)G (xs, xs+l)

(bs,-I - xs,-1)G (xs'- 2 , s'- 1) = (b, - xs,- 1)G (xs,_ 1, x,)

Since G (x,_l, xs,) < NF (xs,_)N - 1 < G (Xz'-2, Xs 1) ,for any x < xs>z, (bs, 1 -x)G (zs-2, Xs'-) >

(bs, - x)G (xs,_l, x,). Applying the same argument, since 0' < xs < ... < x 8, , 1,(bs -

Oi)G (xs- 1, x) > (bs+i - 02)G (xs, xs+1 ) > ... > (bs, - Oi)G (x,,- 1 , xs,) . On the other hand, if

t < s' < s, applying similar arguments, since 0i > x-, 1 > ... > xs,, (b, - Oi)G (xs-l, x8 ) >

(bs-1 - 0,)G (xs_ 2 , Xs-1) > ... > (i - b,)G (xsr, xs,) . Therefore, (bs - Qi) G (x1 ,x) >
NF(xt-)N

1

(bs, - 0i) (xtl)N_1
NF(xt-1)

Next, we show that ut (b, x ht- 1, yt (ht- 1 )) > ut (b',x I ht- 1 , yt (ht- 1 )). For any t and

any ht- 1 , given x, the buyer's optimal strategy must generate the path that maximizes his



conditional utility

max (V - Pt) P (xt-1 (ht) , xt ((ht-,Pt))) + Vt+l (xt ((ht-,Pt))) (P1.10)
Pt F (xt-1 (ht-))N

That is, the strategy b is consistent with the solution (pt, "" ,PT) derived from (P1.10) in

the sense that bt (ht-1) = Pt, bt+l (ht-l,pt) = pt+, - -- . Under our construction of xt (ht),

the solution to (P1.10) is the same as (bt, - - - , bT) derived from (P1.2). Hence the strategy b

constructed from (P1.2) is consistent with (pt, " ,PT) and is optimal. m

1.9 Appendix B

Proof of Proposition 2. Let r be the optimal reserve price. Submitting a path (bl, b2 , .-- , bT)

so that in round t, sellers with cost below xt = c + t'-2 accept, is a feasible choice. We show

that the buyer's payoff with the path can be arbitrarily close to 7r* when T goes to infinity.

Given the path, in the last round, sellers with cost below r accept, so bT = XT = r. In

round t, t < T, a seller with cost xt feels indifferent between accepting now or accepting in the

next round, so the following constraint holds:

(bt - xt)G (xt-1, xt) = (bt+l - xt)G (xt, xt+l)

@(bt - xt) (F(xt)N- 1 + F(xt)N-2F(xt-1) + + F(xt-1)N-1)

= (bt+l - xt) (F(xt+i)N- 1 + F(xt+l)N- 2 F(xt) + - -- + F(t)N-1)

If 6 - xt+l - xt and A - bt+l - bt are small, an approximation of the equation is

(bt - xt) NF(xt)N-1 + (N -1) NF(xt)N2 (xt)

(bt + A - xt) (NF(xt)N-1 - (N - 1) NF(t)N2f (t)

A (bt - xt) (N - 1) F(xt)N-2f (Xt) (N - 1) f (xt) (bt - xt)

6 F(xt)N - 1 F (xt)



In a reverse Dutch auction with reserve price r, a seller with cost x accepts at price

b(x) F ()N1
F(z)N1

+ () y (N-F (x) N - 1 J 1) F (y)N-2 f (y)dy,

which is also the price submitted by a seller with cost x in a first-price reverse auction with

reserve price r.

= (N - 1)f(x) xF (x) N - 1 + f F (y)N-1 dy

F (x)N

(N - 1) f (x) (b(x) - x)

F (x)

Since b (xT) = bT = r and b' (x) = , b (xt) - bt = O (62) - T (6) = O(6), where T (6) = -.

The optimal payoff is r* = fbc (v - b (x)) dF (x)N. By the Riemann-Stieltjes integral, for all

E > 0, there exists 6' > 0 such that for all 5 < 6',

T(6)

E (V
t=1

- F (xti)N)
E

--7r* < -
2

Since b (xt) - bt = 0 (6) and ETj) (F (xt)N - F (xt_)N) = 1, there exists 6" > 0 such that

for all 6 < 6",

bt) - (v - b(xt))] (F (xt)N

Therefore, for any 6 < min 6{', 6"}, i.e. for any T > rin-,"}'

- bt) (F (xt)N - F (t1)N) < C.

The buyer can do weakly better by choosing a better path, so 7r* - 7r (T (6)) < E. m

Lemma 1 Assume Condition 1. T (xt-1) (defined in program P1.3) increases in xt-1.

Proof. It is easy to check that T (XT-1) defined in program P1.1 increases in XT1. With

b' (x)
xF (x)N-2

_F W(N1)

T(S)

t=1

- F (xt-1)N
E
2'

T(b)

* Z(v
t=1

b (xt)) (F (xt) N



t < T, (xt-1) is derived from program P1.3. Let

p (xt, xt-1) - (v - bt (xt; xt-1)) [F(xt-1) - F(xt)N] + VtTI (xt),

CT (xt)
where bt (xt; xt-1) = F(x) 1 +F(xt)N-2F(xt-1) + F(x 1 t.

F(Xt)N- 1 + F(xt)N- 2 F(xi) + + F(xt-)N, 1

Op (xt, xt-1) N- N- dCT1 (xt)x( (=) [F (xt-1) - F (xt)] [(F (xt_ )N-1I + ..
F (x ) - 1 + F (x) dx

8xt dxt

+f (Xt) (±t+1 (xt) - t) [NF (xt)N- - (F(+t+l (Xt))N + . + F(xt)N1)

and

a2 W (Xt, Xt-1) N-1 tT+1 )2p(x, x_1) = 1 [NF (xt-1)N + d xt)]
xtdoxt-1 -C - dxt

For any xt, xt-1 and x'1  [t, x), if N-1 +... + N- dCT( 0,

t1 E [Xt-Xt if (x 1) ++ F(xt) dxt < ,

) > 0 and ) > 0. If (F 1)N 1 + ... + F (xt)N-1 + d (t) > 0

a2W(t,xt-1) > 0, SO Q- (xt, xt-1) > 0 implies a (xt,Xt_l) > 0. Therefore, p (xt, xt-) sat-
Oxtaxt-I axt axt

isfies single crossing property of marginal returns. By Milgrom-Shannon theorem, T (xt-1)

increases in xt-1. m

We use Lemmas 2, 3, and 4 to prove Lemma 5 and Lemma 6, and use Lemmas 5, 6, and 4 to

prove Theorem 2. We sometimes add superscript T to Vt (x) and Ct (x) (defined in (P1.2)) for

clarification. Note that for two sets (t, T) and (t', T'), if T - t = T' - t', then VtT (x) = Vt' (x)

and CfT (x) = CT ' (x). So, we let ck (x) = CTk ().

Proof of Theorem 2. By Lemma 6, if B {c}, there does not exist a E (c, i) such

that (a, T] C [c, T] \ B. Then by Lemma 5, B = [c, E]. So the first statement is proved. The

third statement follows from the revenue equivalence principle. For the second statement, if

limT-,, xT < E, it must be that B = {c}. On the other hand, if B = {c}, there exists t < 00

such that E - limT-oo xf_t > 0. By Lemma 4, limT-oo 4 < .

Lemma 2 Assume Condition 1. Given k > 0, there exists 6 k (E, x) > 0 such that for any t

and T where T - t = k, if T = x -e, E > 0, then x 1 < - Sk 6, xT). k (E, x) does not

depend on T.



Proof. Given any t, T such that where T - t = k and given belief xt-1, the continuation

equilibrium x* and b* are derived from

Vt (xt-1) = max (v - bt) [F(xt-1)N - F(xt)N] + VtT+1 (xt)
{bt,zt}

s.t.(bt - xt)(F(xt) - 1 + F(xt)N- 2F(xt-1) + - - - + F(xt-1)N-1) = cTt+1 (xt)

(P1.11)

(1.2)

From (1.2),

dbt

dxt

Ct +1 (Xt)

F(xt)N- 1 + F(xt)N 2 F(xt-1) + ... + F(xt-I)N 1

Ct74 (xt)

F(xt)N - 1 + F(xt)N- 2F(xt- 1 ) + -... + F(xt-1)N- 1

(bt - xt) [(N - 1) F(xt)N- 2 + (N - 2) F(xt)g-3F(xt-1) +... + F(xt-1)N- 2] f (Xt)

F(xt)N-1 + F(xt)N-2F(xt-1) + -... + F(t- 1) N - 1

The solution { , b } must satisfy the first order condition

0 = dt) [F(xtl)N - F(x )N]
dxt t I

0 - [F (xt-1) - F (xt] [- (F

+ (v - bt (x4)) (NF (xf)N-l f (4)

N-1 +---+F((N1) -i X(*N)]
t )- Ctt+, (X

-Ct 1 (4x) f (x) + N (v - x) F (x)N1 f (4) + VtT (x).

Note that

VtT 1 (xt)

where bt+l (xt+l; xt)

Let {xt+1 (xt) , b*l (xt)} be the solution to program (1.4). By (1.2), C-T •(4+) = (b•, -Ct+2 (xt+i) =bt+i

X t+)(F(x '+)NL- + F( )N F(x) + F(xt)N- 1). By the envelope theorem,

VtTv1 (xt) = -NF (xt)N - f (xt) (v -- Xt)* + f (xt) C +2T (+4).

+ Vt, (4x)

(1.3)

max (v - bt+l (xt+1; xt)) [F(xt)N - F(xt+l)N] +
{bt+l,xt+l}

CtT+2 (Xt+1)

F(xt+) N - 1 + F(xt+)N-2F(xt) + ... F(t) N - 1F(t+.

(1.5)

Vt+ ( xt+0 .)



Plugging into (1.3), we get

0 = [F (xt-1) - F (x[)] [-Ct+l (X ) - F (xtI)N1 +...-- + F (x 1)]

- [C t, (x) - C+2 (x+1)] f (4x) - NF (x)N - 1 f (x*) [x - xt]

=- [F (xt-1) - F (x)] [(F (xt-1) + + F (x) N -  + (X1)

+ f (x') (x+ - x) [NF (X)N - 1 - (F(x*;+)N- + - - - + F(x)N-)] . (1.6)

If x" = t+ - E,/,4= t±1 -E,

(x* - 4) [NF (x/)N1 - (F( 1 )+lN-1 +... + F(x )N-1)] is strictly positive, and so by (1.6),

[F (xt-1) - F (x)] [(F (Xt)N + + F (x1)N - ) + c/k (x)] is strictly positive. Condition

1 implies that ck (x) is continuous on [c, ], and c' (x) exists almost everywhere and is bounded.

Therefore, by (1.6), if x* 1 - x > 0, x* - xt-1 > 0. Moreover, the difference between xt-1 and

x t only depends on xt, E (e = x4t+ - x4), and k. n

Lemma 3 Assume Condition 1. In a continuation game starting from round t (t < T- 1) with

the belief that the greatest lower bound of a seller's cost is xt-1, when the number of rounds left

in the continuation game goes to infinity, xt - xt-1 on the continuation equilibrium path but

Xt = Xt-1.

Proof. In the continuation game, the equilibrium path {x,}t< <T and {b,}t<-<T are de-

rived from program P1.11. As T - t -- oo, the value of the program converges, so the additional

payoff a buyer can get by adding one more round goes to 0. In the following proof, we show

that given any T - t, when one more round is added to the continuation game, the additional

payoff the buyer can get is strictly positive if xt > xt-1 + E, E > 0. However, the buyer's payoff

is bounded by the payoff in Myerson's optimal mechanism, so when T - t - oo00, xt -> xt-1.

Let {x, b*}t<r<T be the equilibrium path when there are T - t rounds left, which can be

derived from program P1.11. If we add a constraint xt = xt-1 to P1.11 and let {z', b/}t<Tr<T

be the solution to the program, then the buyer's payoff and {x', b }t+l<_<T would be the same

as those in the continuation game with T - t - 1 rounds. The value of the program is

Vt (xt-1) = (v - b') [F(t-l)N - F(x')N] + Vt+l (xI) , where 't = xt-1.



Without the constraint, x' can be increased by s, and Vt (xt-1) increases approximately by

[(v - b') NF (x)N f (x' ) + Vt 1 (x)] E

= [(v - b') NF (x,)N - 1 f (x,) - NF (x')N1 (v - X,+l) f (x,)

+(bt+ - xt+1 )(F(x±+)N - + F(x+)N-2F(xt) + --- + F(xt) )f (x)]e

= (Xt+ - X) [NF (x) N - 1 - (F(xz+ 1 )N - 1 + F(x' +) N- 2F(x') + + F(x)N-1)] f (x) e.

The second equation comes from (b' - ) NF ()N = (b+ - x') (F (x)N + + F (x+1)N1).

Therefore, if x:+ 1 > x'+E, the value is positive and increasing the number of rounds from T-t-1

to T - t strictly increases the buyer's payoff. *

Lemma 4 Given any T and t < oo, if xT_t < -, then x T < -E and x T - xT_ 1 > 0.

Proof. When t = 1, by (1.1), x T < Z and x T - T_l > 0. When t = 2, if x T_ = Z, then

x = and the buyer pays for the good at a price higher than or equal to (, which cannot

happen in equilibrium. Therefore, xT_1 < c, and we can apply the result we get in the case

when t = 1.

Applying the same argument to the case where t = 3, 4, -.. -, we can conclude that, for any

t, ifx _t < Z, then x T < and x T - T _ >0.

Recall that B is the set of cluster points, and [c, T] \ B is the complement of B.

Lemma 5 Assume Condition 1. If a E B, [c, a] C B.

Proof. By Lemma 3, c E B. If not the whole interval [c, a] belongs to B, there must

exist [b,c] C [fc,a] such that (b,c) C [c, ] \ B and b,c E B. Since (b, c) C [c, ] \ B, there

exist functions t (T) and t' (T), t (T) < t' (T), such that Xt(T) } and {X (T) } converge,

T T T T Tb < limT_+, XtT) < limT-o, (T) < c, and no other sequences {x, xIT C E {XT}t(T)<t<t'(T),

converge. However, since a E B, i.e. limT,- T - t (T) = oo, Lemma 3 implies X(T)+1 is

arbitrarily close to xT when T is large. Therefore, limT- x - limT- xT = 0, a

contradiction. m

Lemma 6 Assume Condition 1. If there exists a E (c,-) such that (a, ] C [c,Z] \ B, then

[c,] \ B = (c, ].



Proof. By Lemma 5, we only need to show that it cannot be the case that (a, T] C [c, -] \ B

and [c, a] C B. Suppose [, a) C B. First, we show that when T -+ oo, there exists x E XT,

x > a, that is arbitrarily close to a. Since (a, T] c [c, T] \ B, there exists t < oo such that

- limT _+ xT_t > 0. By Lemma 4, limT,, x T < T and limT_,. X - limT_ xfT_ > 0. By

Lemma 2, limTzXT_s+1 - limToo xT_s > 0, for all s < oo. Since (a, T] c [c, T] \ B, it must

be the case that limt--, limT_ xT_t = a, which also implies a E B.

Since [c, a] C B and limt,, - limT- x7Tt = a, we can rewrite the necessary condition (1.6)

for the optimality problem as

0 = [F (x - dx-) - F (x)] [-F (x - dx-) N - 1  
... F (x) N - 1 - C' ()] (1.7)

-f (x) d [F (x + dx±)N + ... + F (x)N- - NF (x)

where C (x) = limk--oo k (x), x E [c, a], and dx- and dx + are two positive numbers which can

be arbitrarily small. For x E [c, a), dx- E 0 (dz + ) but dx- o (dx+), and an approximation

of equation (1.7) is

> 0 f (x) dx- -NF (x) N - - (N - 1) NF (X)N-2 f (x) dx - C'(x)S2F (x)N-2 f (x) dx- - 01(x)]

-f (x) dx [NF (x)N - - (N -21) N F (x)N-2 f (x) dx - NF (x) N -

Since dx- and dx+ are arbitrarily small, the equation implies C' (x) = -NF (x) N - 1 for x E

[c,a).

However, limx-a+ C'(x) : -NF (x)N- 1 . If limx-a+ C' (x) = -NF (x) N - 1, in order to

satisfy equation (1.7), there exists E > 0 such that for x E (a, a + E), dx- E 0 (dx+) but

dx- 0 o (dx+). 9 So (a, a + e) C B, a contradiction. Since C' (x) is not continuous at a, and

dx- and dx + can be arbitrarily small, the necessary condition (1.7) does not hold around a.

Therefore, a path that [c, a] C B and (a, T] C [c, T] \ B cannot occur in equilibrium. Note that

there must be at least one cluster point in [c, T]. Since only c can be in B, [c, T] \ B = (c, T]. m

9 Suppose dx- o (dx+). Since dx- is derived from equation (1.7), dx- E o (dx + ) implies dx- O ((dx+)2)

and C' (x) = -NF (x)N - 1 (N )N F (x)
N -

2 f (x) $ -NF (x)
N -

1



Proposition 9 A path that fully discriminates sellers is a stationary solution to program P1.7

when T = oo.

Proof. If the buyer fully discriminates sellers, we can rewrite the necessary condition (1.6)

for a stationary solution as

= [F(x- dx) - F (x)] [-F(x - dx)N- 1  ... F (x)N - C'()]

-f (x)dx [F (x + dx)N 1 + + F (x) N - 1 - NF (x) N - 1

= O= f (x) dx [NF ()N - (N -21) NF (x)N-2 f (x)dx-C' (x)]

-f (x) dx [NF ()N - 1 - (N -1) N F (x)N - 2 f (x) dx - NF () N -

where dx is a positive number which can be arbitrarily small. Note that N can be considered

as the information rent given to a seller with cost x. In our setting, in an incentive compatible

mechanism that fully discriminates sellers with different costs, the information rent R (x) has the

property that R' (x) = -F (x)N-l, so x) = -F (x)N - . Therefore, the necessary condition

holds. Given xt-1, supposing xt+l - xt is arbitrarily small, one can check that the objective

function of (P1.11) is concave in xt. Therefore, a path that fully discriminates sellers is a

stationary solution. m

Proof of Proposition 7. Since Tk (T-k-1, 6) is continuous in XT-k-1 and

limT-,oo -Tk (XT-k-1, 6) = TTk (XT-k-1, 1), given any x,

limT,Too~ k ( T-k-1 (.- -t (x, 6)...,) = T)-k ( -Tl (---k-t (x, 1) -') , 1) for

t E {0, 1, -. }. Since the sequence {limT-+-o XT-k (T-k-1 -k- (x, )... ),

limT-oo : k-1 ... _kt (x, 6)...) ,.. , limT-o xTk-t (x, 6)} decreases and is bounded be-

low by c, there exists a limit of the sequence

T T{limT_- o Tk T-k- 1 (.--Tkt (x, 6)... ),5),limT__+ ZTkl (-.. xT~k-t (X, 5)... ),.. , limT-o xT_k-t (x, 6)} when t -+ oo. Let X be the supremum of the cluster point set B

given 6. Then limT, xk = limt k -k-1 -k- x t ( 1) 1).

Proof of Theorem 4. The model in Section 1.2 is a special case when 6 = 1. Given

6 < 1, since limT,,o W = 1, Lemmas 3 and 4 hold, so Lemma 5 holds for 6 < 1. However,



Lemma 6 might not hold with 6 < 1. By Lemma 5, the first statement of Proposition 4 is

proved. For the second statement, if limT-,, x T < T, it must be that a < T. On the other hand,

if a < T, there exists t < oo such that C - limT,, xT_t > 0. By Lemma 4, limT,, xf < .
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Chapter 2

One-to-Many Negotiation Between a

Seller and Asymmetric Buyers

2.1 Introduction

The Dutch auction is considered strategically equivalent to the first-price sealed-bid auction.

In a Dutch auction, the auctioneer, who is usually the seller, plays a passive role and non-

strategically lowers the price until the object is sold. However, if the seller is allowed to submit

different prices to different buyers at the same time, will the seller be able to attain a higher

profit than when such discretion is not permitted?

In this paper, we consider a two-buyer auction where the buyers are ex ante asymmetric:

the buyers' private values of the object are drawn independently from different distributions.

When buyers are asymmetric, the seller's payoffs in a first-price and a second-price auction are

not optimal. An optimal auction stated by Myerson (1981) requires the seller to treat buyers

asymmetrically,1 that is, the seller might not sell the object to the buyer with the highest

value. Therefore, one may imagine that if the seller does not have to submit the same price

to the buyers as in a Dutch auction, the seller might be able to do better. We show that if

the seller is allowed to submit different prices to different buyers, when commitment to some

'In a second-price auction, buyers bid their true value, so it is always the case that the buyer with the

highest value gets the good, and hence it is obviously not optimal. In a first-price auction, a buyer whose value

distribution is first-order stochastically dominated will bid more aggressively, but still, the result is not optimal
for the seller.



price paths is possible, Myerson's optimal outcome for the seller is achievable; however, when

commitment is impossible, the optimal outcome is no longer attainable, but instead, there exists

an equilibrium such that the seller's equilibrium payoff is the same as that in a second-price

auction. As the auction literature (Vickrey (1961) and Maskin and Riley (2000)) shows, with

asymmetric bidders, the seller's payoff in a first-price auction (or a Dutch auction) might be

greater than that in a second-price auction. Therefore, when allowed to submit different prices,

the seller's payoff might be lower than the payoff when he must submit the same price. The

result thus suggests that the benefit brought by the discretion to determine the price paths

might be outweighed by the loss caused by not being able to commit.

A example of the trading process we consider is the Name-Your-Own-Price (NYOP) auctions

conducted at Priceline.com. An NYOP auction is a procurement auction (also called reverse

auction) where the roles of a buyer and a seller are reversed from an ordinary auction. In an

NYOP auction, when a customer tries to get a travel-related item such as an air ticket or a hotel

room, he can submit different prices to different groups of sellers. For instance, when bidding

for a hotel room, a buyer can specify the area to stay and the rating of hotels, and submit

different bids to hotels with different characteristics. The customer adjusts his bids over time

until one of the sellers accepts. The analysis in this paper helps us get a better understanding

of the buyer's payoff and bidding behavior under the NYOP mechanism.

This paper is also related to the procurement literature that compares the performances

of two different trading institutions-auctions versus negotiations. Manelli and Vincent (1995)

model negotiations as sequential offers and find that under certain conditions, negotiations

outperform auctions from the buyer's perspective. The sequential-offer process they consider

for negotiation is such that the order of sellers that the buyer gets to negotiate and the prices

offered are determined in advance, and the buyer only gets at most one chance to negotiate

with each seller. In this paper, we generalize the negotiation process, considering the case when

the number of chances to negotiate is not limited. We show that if the seller can commit to

certain price paths in advance, the optimal outcome stated by Myerson (1981) can always be

achieved, so negotiations always perform better. We further consider the case when the price

paths are determined as the process goes along, which is closer to the real-world negotiation

process. In this case, whether negotiations or auctions do better depends on the environment



and is not conclusive.

This paper builds a bridge between the auction and the bargaining literature. The model

differs from a Dutch auction environment by allowing the auctioneer to set different prices for

different buyers, and differs from a bargaining setting by considering a one-to-many negotiation

process in which a individual party chooses his partner from a group of candidates. 2

The paper is organized as follows. Section 2 presents an example illustrating the main points

of this paper. Section 3 describes the model. Section 4 characterizes the optimal outcome that

the seller can achieve when commitment is possible. Section 5 characterizes the equilibrium

without commitment, and Section 6 concludes the paper.

2.2 An Example

In this section, we use a simple example to illustrate some of the main points of this paper.

Consider the case when a seller tries to sell a single object to two buyers. The buyers have private

values for the object. Buyer 1's value is drawn from the set {0, 3} with respective probabilities

{ , -}; buyer 2's value is drawn from the set {1, 3.5, 6} with respective probabilities {, 1, }.
The seller maximizes the expected amount of money he collects from the buyers. A buyer's

payoff if he gets the object is the difference between his value and the payment. The seller

makes offers to the two buyers until one of them accepts. If the two buyers accept at the same

time, each of them gets the object with probability . For simplicity, we assume that the prices

offered must be integers. We consider three different sales mechanisms: (i) the seller offers the

same price sequence {5, 4, 3, 2, 1} to the two buyers, (ii) the seller determines two price paths

in advance and makes offers according to the paths, and (iii) the seller makes offers without

making commitment in advance.

2.2.1 Offer price sequence {5,4, 3, 2, 1}

In this case, the mechanism works like a Dutch auction. The seller lowers the price gradually

until a buyer accepts. Given the price path, the following table summarizes the prices accepted

2 The existing one-to-many negotiation literature considers the case where the individual party has to work

with every member in the other party instead of choosing one partner from all of them.



by different types of buyers: buyer 2 with value 6 accepts $3,3 buyer 1 with value 3 accepts $2,

and buyer 2 with value 1 and 3.5 accepts $1. The seller's expected payoff is 2.

Price pairs offered to buyers

t=l t=2 t=3 t=4 t=5

Buyer 1 5 4 3 2 1

Buyer 2 5 4 3 2 1

accepted by B2 with 6 B1 with 3 B2 with 1, 3.5

Note that buyer 1 is stronger than buyer 2 in the sense that the distribution function of buyer

1's value, F1, stochastically dominates the distribution function of buyer 2's value, F2. That is,

F1 (x) < F2 (x). We can observe from the table that buyer 1 with value 3 accepts at a higher

price than buyer 2 with value 3.5. This is analogous to the well-known fact that in a first-price

auction (which is strategically equivalent to a Dutch auction), the weaker bidder bids more

aggressively than the strong bidder.

2.2.2 Commit to certain price paths determined in advance

Now we allow the seller to determine the price paths in advance, and the prices offered to the

two buyers can be different. Suppose the seller offers the following price sequences:

The last line

Price pairs offered to buyers

t= t=2 t=3 t=4

Buyer 1 2 1 1 0

Buyer 2 4 4 3 3

accepted by B2 with 6 B1 with 3 B2 with 3.5 B1 with 0

shows that at t = 1, buyer 2 with value 6 accepts $4, at t = 2, buyer 1 with value

3 To see why buyer 2 with value 6 accepts at $3, note that if he waits and accepts $2, with probability ,

buyer 1 also accepts, and each of them gets the object with probability 1, so the probability that he gets the

object is 2. Since the buyer's expected payoff if accepting at $2 is : (6 - 2) = 3, the same as his payoff if he

accepts at $3, he is willing to accept at $3. Similarly, buyers with other values will find that accepting at the

price specified in the table is the optimal strategy.



3 accepts $1, at t = 3, buyer 2 with value 3.5 accepts $3, and at t = 4, buyer 1 with value 0

accepts $0. The seller's expected payoff is , greater than the payoff in the first mechanism.

Notice that given the paths, buyer 2 with value 1 never gets the good. Therefore, by

committing to the price paths, the seller loses the chance to sell the object to a buyer with

positive value. Furthermore, in each period, the price offered to buyer 2 is higher than the price

offered to buyer 1. This design raises competition between the buyers, so the seller is able to

extract more surplus from buyer 2.

2.2.3 Make offers without commitment

If the seller makes offers without committing to certain paths in advance, the price paths

characterized in the first two mechanisms cannot be implemented. First consider the paths

implemented in the second mechanism. In the last period t = 4, the seller believes that buyer

1 has value 0 and buyer 2 has value 1. Given the belief, the seller can offer $1 to buyer 2 and

a price higher than 0 to buyer 1, and gets a higher payoff than if he follows the paths in the

second mechanism at t = 4.

Next consider the paths implemented in the first mechanism. After t = 3, if no buyer

accepts, the seller believes that buyer l's value is either 0 or 3, and buyer 2's value is either 1 or

3. Given the belief, the optimal paths for the seller in the continuation game are the following:

With the paths, buyer 2 with value 3.5 accepts $2 at t = 4 and buyer 1 with value 3 accepts $2

at t = 5, and buyer 1 with value 1 accepts $1 at t = 6, so the seller gets a higher payoff than if

he follows the paths in the first mechanism. Given the optimal paths in the continuation game,

in equilibrium, buyer 2 with value 6 would not accept a price higher than 2. If in equilibrium,

the seller believes that buyer 2 with value 6 accepts $3, then in the next period, he follows the

optimal paths and offers the price pair (3, 2). Given the pair (3, 2), buyer 1 will not accept, so

Price pairs offered to buyers

t=4 t=5 t=6

Buyer 1 3 2 2

Buyer 2 2 2 1

accepted by B2 with 3.5 B1 with 3 B2 with 1



buyer 2 with value 6 gets a higher payoff if he rejects price $3 and waits for one more period

to accept $2. The following table characterizes the equilibrium price paths and the types of

buyers accepting in each period. The seller's expected payoff is 158"

2.2.4 Comparison

From the above discussion, we can compare the seller's expected payoffs and the equilibrium

allocations in the three mechanisms.

1. The seller can do better in the second mechanism than in the first mechanism. In both

mechanisms, the price paths are determined in advance, but in the second mechanism,

the seller has the freedom to offer different prices to different buyers, and hence, he can

get a higher payoff. However, the fact that the seller's payoff in the third mechanism

is less than the payoff in the first mechanism shows that if the seller cannot commit to

certain price paths in advance, even with the freedom to offer different prices to different

buyers, the seller might do worse.

2. In the first and the second mechanisms, the final allocation might be inefficient: if buyer

1 and buyer 2 have values 3 and 3.5 respectively, buyer 1 gets the object although his

value is lower than buyer 2's. On the other hand, in the third mechanism where the seller

cannot commit, the seller tends to induce the buyer with the higher value to buy first

in every period. Therefore, the allocation is efficient - the buyer with the higher value

always gets the object.

In the remaining sections, we analyze a model in which buyers' values are drawn from

continuous distribution functions and the seller adjusts prices continuously. We show that the

conclusions made above for the simple example hold in the general model.

Price pairs offered to buyers

t= t=2 t=3

Buyer 1 3 2 2

Buyer 2 2 2 1

accepted by B2 with 3.5, 6 B1 with 3 B2 with 1



2.3 The Model

A seller has one indivisible object for sale and faces two risk-neutral buyers. The value of the

object to the seller is 0, which is publicly known. Buyers have private values for the object,

and the values are independently distributed. Buyer i's value X' is distributed over the interval

[wi, Wi], i > 0, according to distribution function Fi with associated density function fi. For

i = 1,2, (x) x F1-x) strictly increases in x and fi (x) > 0, Vx E [wi , Wi]. The seller

maximizes the expected amount of money he collects from the buyers. Buyer i's utility is

zixi - M, where M is his payment to the seller, and zi = 1 if buyer i gets the object, zi = 0

otherwise. The setting is common knowledge to everyone in the market.

The seller is allowed to conduct a negotiation process. From the beginning, the seller makes

simultaneous offers to the two buyers and adjusts the prices continuously until some buyer

indicates his interest. Without loss of generality, we assume that the prices offered have to

be weakly decreasing. The two simultaneous offers to the two buyers can be different and are

observable by both buyers. Once a buyer accepts, the object is sold to the buyer at the price

offered. There is no discounting. The seller is unable to commit some price paths in advance.

2.4 Optimal Outcome with Commitment

In this section, we consider the case when the seller can commit to some price paths before the

negotiation begins. Recall that when deriving the optimal mechanism, we compare the virtual

valuation of buyers. The virtual valuation of a buyer with value xi is defined as

1 - F (xi)
fi (xi)

which is assumed strictly increasing in our model. The optimal allocation rule characterized by

Myerson (1981) is that the good goes to the buyers whose virtual valuations are the greatest

and positive. Therefore, the seller should design paths such that, in the following negotiation

process, a buyer whose virtual valuation is higher will accept earlier.

Without loss of generality, assume that V)1 (l) > 'b2 (w2), where 'w is the lowest possi-

ble value of buyer i. If $1 ( 1 ) < 0, let x1 = 011(0); otherwise, x1 = w 1 . Let 2(X) =



7P21 (V1 (x 1 )) so that 01 (Xl) = 02 (X2 (xi)), and let l (x) = 21 (x). Furthermore, let

(fX F 2 (x2 (x)) dx

F 2 (i 2 (X1))

and

fE2 1) F1 (i (x)) dz
b2 (x2) = X2 -

F1 (Xl (X2))

Note that both bl (x) and b2 (x) are strictly increasing.

Theorem 5 If the seller commits to a path on which the prices to buyer 1 and buyer 2 have

the relation P2 (Pl) = b2 (22 (b- 1 (pl))) and stop at x1 and x2 ( 1 ) respectively, then there exists

an equilibrium such that buyer 1 with value xl accepts at price bl (xl) and buyer 2 with value

x2 accepts at price b2 (x2). The seller's payoff is the same as that in an optimal mechanism.

Proof. Given that buyer 2 with value x2 > X2 (X1 ) accepts at b2 (x2), we show that accepting

at bl (xl) is the best strategy for buyer 1 with value xl. Suppose buyer 1 has value xl. If the

current price for buyer 1 is pl > bl (xi), accepting now gives buyer 1 payoff

l - p l - bl (xL ') , where x' = bl 1 (pl) > zl.

Accepting later at bl (xl) gives expected payoff

F 2 (22 (X1))
(xl - bl (xl)) •F2 2 (X1))

F2 (2 (i L - b (x)) = ()) - x') F 2 (2 (x)) + f F2 (2 (x)) dx

< F2 ( x2 (x)) dx = F2 (-2 (x1)) (xl - bl (xi)) .

Therefore waiting and accepting later is better for buyer 1. If the current price is bl (xi),

accepting now gives payoff x, - b1 (xi). Accepting later at b1 (x"), x" < xl, gives expected



F2 (2 2 (X1))

F 2 (22 (x')) (x1- b1 (x')) = (x1 - x~) F 2 (x2 (x1)) + X F 2 (2 (x)) dx
-1

< F2 (x2 )) dx 2 2 1)) - bl (Xl)) .

Therefore, accepting now at bl (xi) is better. The same argument applies to buyer 2. Therefore,

that buyer 1 with value xz accepts at price bl (xl) and buyer 2 with value x2 accepts at price

b2 (x2) is an equilibrium.

To see that the seller gets the optimal payoff, notice that buyer i gets the object if and

only if his virtual valuation is positive and at least as high as buyer j, i.e. Oif (xi) Oj (xj),

so the allocation is the same as the optimal allocation rule. In addition, buyer 1 with value w,

and buyer 2 with value 22 (w 1) get zero utility. Thus, by the revenue equivalence principle, the

seller gets the optimal payoff. n

Manelli and Vincent (1995) compare the performance of negotiations and auctions in pro-

curement and conclude that under certain conditions, negotiations are outperformed by auctions

from the buyer's perspective (seller in our model). The sequential-offer process they consider for

negotiation requires that the order of sellers (buyers in our model) the buyer gets to negotiate

and the prices offered are both determined in advance, and the buyer only gets at most one

chance to negotiate with each seller. However, we show that if the number of chances to nego-

tiate is not limited and the price paths are determined in advance, Myerson's optimal outcome

can always be achieved, so negotiations always outperform auctions. Therefore, Manelli and

Vincent's result is contingent on the limited number of chances to negotiate.

2.5 Equilibrium without Commitment

In this section, we consider the case when the seller is not able to commit to any price paths.

First we describe the equilibrium concept. Next we restrict our attention to a particular class

of equilibria and show that without commitment, Myerson's optimal outcome, which can be

attained when commitment is possible, is no longer achievable.



2.5.1 Equilibrium Concept

Let pi (7) be the price submitted by the seller to buyer i at time 7. At time t, t > 0, denote by

ht = (p (T),P2 (T)); 0 < 7 < t} the price history submitted by the seller to the two buyers un-

til time t. Without loss of generality, let the prices offered to the two buyers start at Tl and w2,

that is, pl (0) = wl and P2 (0) = U 2 . Then at time t, given history ht and the fact that no buyer

accepts, the seller determines the price for the next instant. Therefore, the seller's strategy can

be characterized by (di(t;ht), dP(t;h) , which determines the increments ofpl and p2. Because

the prices are weakly decreasing, d(t;ht 0 and dp h)t < 0. Since there is no discounting,

speeding up or slowing down the price paths should not affect the players' payoffs. What really

matters is how the two prices are paired along the path. Therefore, we restrict the seller's

strategy space toS= dp;ht) dt + = - 0, and 0 and de-

note the seller's strategy by p (t; ht) = ( dtt d t ) "

At time t, given the current price (pl, P2) offered by the seller and the price history until t,

ht, buyer i determines whether to accept pi. We use P1 (xl; ht) and P2 (x2; ht) to characterize

buyer l's and buyer 2's strategies: buyer i with value xi accepts the current price pi (t) if and

only if Pi (t) < Pi (xi; ht). Given history ht and an equilibrium in which Pi (xi; ht) is monotone

in xi, the seller's and buyer j's belief about buyer i's value is summarized by function yi (ht)

which specifies the lowest upper bound of buyer i's value believed by the seller and buyer j

given history ht and the fact that no buyer accepts.

Denote by vo (p, P, P2 I ht, y (ht) , y2 (ht)) the seller's expected utility given ht and belief

y, and vi (ft, P1 , P2 I h t , Oi, yj (ht)) buyer i's expected utility, given ht, the realization Oi of buyer

i's value, and belief yj (ht) , j 7 i.

Definition 3 A pure strategy perfect Bayesian equilibrium is a (/-, Y2, 2, P1 , P2 ) that satisfies

(a) yi (ht) = inf{x I Pi(x; h ) > pi () , for any T E [0,t]} ,Vt, ht.

(b) vo (t, P1, P2 I h, yl (ht), Y2 (ht)) > vo (ui, P1, P2 I ht,y (ht) ,Y2 (ht)) and

vi (L, Pi, Pj | ht, Oi, y (ht)) > vt (.P,. Pj I ht, i, yj (ht)) , for i = 1, 2 and Vt, ', Pi ht.

Condition (a) implies that players' belief about the lowest upper bound of buyer i's value at

time t is the same as the infimum of buyer i's values with which buyer i would have accepted a



price occurring on the history price path. Condition (b) implies that players cannot do better

by deviating from the equilibrium strategy.

2.5.2 The class of equilibria considered

We focus on pure strategy perfect Bayesian equilibria with the property that the seller's strategy

depends on history only through his belief about the buyers' values, yl (h t ) and y2 (ht), and

the current prices, pl (t) and P2 (t); and buyer i's strategy depends on history only through his

belief about buyer j's value, yj (ht), if his value xi is less than or equal to limTt yi (h'), the

lowest upper bound of his value believed by other players given that he did not accept any

price before t. Buyer i's strategy if xi > limTt Yi (h'), which implies that he has deviated,

is characterized in Proposition 12. Therefore, when there is no deviation, Pi (xi; h t ) can be

expressed as P (xi, xj) where xj = yj (ht), and p (t; ht) = ( dpl(t;ht)can be expressed

as P (t;pl,p2, xl 2 ) where pi = pi (t) and xi = yi (ht). We restrict our attention to the

o > P,(X,,X) > 8 P9 oi(x,,x)
equilibria in which aP,(x1 ,x,) 0, ,,) 0, and a. a,-,) > 0 is natural

ax 2  ax 2
because given the other conditions the same, a buyer with higher value should be willing to

accept a higher price.

Condition 4 We consider equilibria with the property that ap(X ,) > 0o, a,,X) > 0, and
axo ax

ax2  ax2

2.5.3 Seller's strategy

In this section, we characterize the seller's equilibrium strategies. First consider a continuation

game at time t after the buyers have rejected prices p, (t) and P2 (t). Let the beliefs about the

lowest upper bounds of the buyers' values be xl and x 2 . The first condition in Definition 3

implies that pl (t) > Pi (xl, x2) and p2 (t) 2 P2 (x 1, X2).

Equilibrium strategy when pi (t) > Pi (xl, x 2 ) for some i

In this section, we first characterize the set of price paths that result in the same expected

payoff of the seller in Lemma 7 and Lemma 8. Then by the two lemmas, we conclude the

seller's strategy when pi (t) > P, (X1 , x2) for some i in Proposition 10.



Lemma 7 Given belief (xl, 2), for any price path {(pi (T) ,P2 (T)) I t < - < t'} such that pl (T) >

P 1 (x1 , X2) and p2 (7) > P2 (X1 , x2) for all T E [t, t'], the seller's expected payoff received along

the path is 0.

Proof. Given the belief that buyer 1's and buyer 2's values are below xl and x2 respectively,

any price that is higher than or equal to Pi (Xl, x2) will not be accepted by buyer i with a value

below xi. Therefore, the seller's expected payoff along the path is 0. *

Lemma 8 Given belief (X1 , x2), consider two price paths

1. {(Pi (T) , P2 (T)) I t < 7 < t'} such that for all T E [t, t'], pi (T) = Pi (x, xj) and pj (7) >

P (x, xj) for some x < xi;

2. { (pi () , P2 (')) 1 t < 7 < t"} such that for all T E [t, t"], pi (T) = Pi (x, j) and f5j (T)

Pj (x, xj) for some x < zi,

such that pi (t) = Pi (t) and pi (t') = Pi (t"). The seller's expected payoffs received along the

two price paths are the same.

Proof. Given the belief that the lowest upper bounds of the buyers' values are xl and x2

at t, along the first and the second paths, pi (7) is accepted by buyer i with value x such that

Pi (7) = Pi (x, X Pi (7) is accepted by buyer i with value y such that pi (7) = Pi (y, xj), and

pj (T) and pj (7) are not accepted by buyer j with a value lower than xj. Therefore, the seller

receives no expected payoff from buyer j along the two paths, and the belief about the lowest

upper bound of buyer j's value stays at xj. Given that the belief about the lowest upper bound

of buyer j's value stays at xj on both paths, the prices accepted by buyer i with some value

x are the same on both paths. Since both paths start at pi (t) and end at pi (t'), the expected

payoffs received from buyer i are the same along the two paths. m

Proposition 10 At t, given belief (xi, x 2 ) = (yl (ht) , Y2 (ht)) and the current prices ( (t) , P2 (t)),

if Pi (t) > Pi (xl, 2) and p3 (t) = Pj (X1, 2), the seller's strategy is - = 1 and dt = 0; if

pi (t) > P, (x 1 , x 2 ) for both i = 1,2, then any (d , d 2 ) E S can be the seller's strategy.

Proof. Lemmas 7 and 8 imply that given belief (xi, x 2 ), for any path P starting with prices

(pl,p2) such that pi P1 (xl, X2) and p2 > P 2 (X1, X2), there exists a path starting with prices

P1 (X1, x2) and P2 (x 1 , x2) that yields the same seller's payoff as P, that is, a path starting with



prices pi 2 P1 (xl, X2) and P2 P2 (X1 , X2) is weakly dominated by some path starting with

prices P1 (Xl, x2) and P2 (X1, x2). Therefore, at t, if pi (t) > Pi (xl, x2) and pj (t) = Pj (xl, x2), it

does not hurt the seller to first lower pi to Pi (xl, x2); and if pi (t) > Pi (xI, x 2 ) for both i = 1, 2,

it does not hurt the seller to first lower pi and pj to Pi (xl, X2) and Pj (xl, x2) respectively.

(Note that all the paths that lower pi and pj to Pi (xl, x2) and P (xl, x2) yield the same seller's

payoff, 0.) *

Equilibrium strategy when pi (t) = Pi (X1, x2) for both i

Proposition 10 characterizes the seller's strategy when pi (t) > Pi (xl, X2 ) for some i. In this

section, we consider the case when pi (t) = P1 (xl, x 2 ) and P2 (t) = P2 (x1, x2 ). We show that

without loss of generality, the seller's strategy of choosing d d , is equivalent to choosing
dt dt

dt, d ), where xi is the infimum of buyer i's values with which buyer i would have accepted

a price occurring on the history price path.

If the seller chooses strategy ( dp ) E S, we can derive how the beliefs xl and x2 change

accordingly by solving {dp OP1 dxl + P1 d x2

dt - OXl dt ax2 dt (2.1)
dP2  OP9 dxl + OP d x2
dt - xl dt Ox2 dt

where dt + 2 = -1. Note that since xi is the belief about the lowest upper bound of a

buyer's value, xi can never go up after the belief is updated, so -- < 0 and dx2 < 0. Because

aO,(x,,x) > 0, ag,(XZ') > 0, 2 - < 0, and Ox < 0, given (xl, x2), there exist alx 2, blx2 E

[-1, 0] such that if -l E [axrz , bxl2 and d 1 - dp then -dx < 0 an d  x < 0. 4 Hence,dt X2 2 di d' dt - dt -

when [axx 2 , bx1X 2], choosing ,dpi -) is equivalent to choosing , d ) derived fromdt d' dt i dt 'dt)

(2.1). Moreover, Lemma 8 implies that without loss of generality, for each (XI, x 2 ), we can fo-

cus on a smaller strategy space, I xl2 { ( )E [ d d d X2 dp }

because for any path derived from strategies in S, there exists a path derived from strategies in

SSxix2 1} 1 2 that yields the same seller's expected payoff. Therefore, when pl (t) = Pi (xl, x 2 )

and P2 (t) = P2 (x 1 , 2 ), we can focus on the smaller strategy space Sxix2 and redefine the

seller's strategy as u (t; X1, X2) dxj(t 1,2) dX2(t;1,2) . As we discussed before, since there

aax 2 P  in , and bx1x2 = max 4- ,d + •+

OD
1 1
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is no discounting, what really matters is how the two paths x, (t) and x 2 (t) are paired,

not the exact values of dx1 and dx. Therefore, we let dxl = 1, and the seller determinesdt dt dt

U(X,X 2)- dx2(l;xl,x2) d 2(t;l 2) E [0,00]. Note that for each dx2 (xl;,x 2 ) E [0, 00],UkX1,X2) dxl dt " dxl

there is a corresponding strategy (d,) SP X2. After the transformation, the seller's

strategy dx2(1;xl,x2) also depends on history only through the belief about the buyers' values,dxl

Xl = Yl (ht) and x2 - Y2 (ht).

The seller's strategy profile is {u (X1, x2) I xd2( E [1 i, l], x2 E [w2 , 2] }. mIn

continuation game starting with belief (wl, w2), we can derive the equilibrium path X2,w1w 2 (x)

for x E [w1 , wl] from the strategy profile {u (X 1 , X2)}, and that path maximizes the seller's

expected payoff in the continuation game given the buyers' strategies P1 (Xl, x2) and P2 (x1, x2).

Therefore, for any (wl, w 2 ), the seller's strategy u (xt, x2) along the equilibrium path X2,w w2 (x)

is such that

U (X1 , X2,wiw 2 (xl)) (P2.1)

E arg max wl P (x1, x2) F2 (x 2 ) f (x 1 ) dx

U(X1X2,wlw2
( X(1 ) 

-- 1 +P 2 (X 1, X2 ) F (X1 ) f2 (x 2 ) U

+P 2 (X1, X2,wlw 2 (x1)) [F 2 (w2) - F2  2, 2 (l))]

s.t. X2 (wl) < w2,
dx 2

da = U,dxl

O < U < 00.

The first part of the integrand represents the seller's payoff increment from buyer 1 when he

decreases xl by dxl. The good is sold to buyer 1 at price P1 (Xl, x 2 ) if buyer 2's value is below

x2 and buyer 1's value is xl, which occurs with probability F2 (x2) fl (xl) dxl. The second part

represents the payoff increment from buyer 2. When X2,wlw 2 (w1) w2, u (W1, w2) = 00, and

the second line is the seller's payoff from buyer 2 with values between x2 (wl) and w2, who

would accept P2 (w1 , X2,w 1w2 (w)). To apply standard dynamic programming techniques, we

allow the seller to have jumps on X2,wlw 2 (xl) path only at the beginning when he chooses the

initial value x 2 (wl). With the restriction on the seller's strategy, we derive an equilibrium, and

will show that even jumps are allowed along the path, the seller would not deviate.



By considering program (P2.1) for all (w 1 , w2) in [wl,Wl] x [ 2 , 2], we derive the seller's

strategy profile {u (Xl, X2) I 1 E [Wl, T], 2 E W2, 2] }. Note that the principal of optimality

ensures that if x 2 (XI) is the optimal path for a game starting with (wl, w2), then for a continua-

tion game starting with (x, x 2 (x1)) where x' E (w 1 , wi), x 2 (X1) for x1 1< x is also the optimal

path. Therefore, u (xl, X2) derived from (P2.1) with different (wi, w2) must be consistent. By

Lemma 8 and the discussion in this section, we have the following proposition.

Proposition 11 At t, given belief (wi, w2) = (yl (ht) , Y2 (ht)) and the current prices (P1 (t) ,P2 (t)),

if pl (t) = P1 (w1, w2) and P2 (t) = 2 (wl, w2), the seller's strategy is

dp(t;bi,b2 ,wl,w2) dp2 (t;bl,b2 ,wl,w2)) ES such that
dt ' dt J

dp2  dP 2 (x 1 ,x 2 ,wjl 2 (x 1 )) dP(xl,x2,ww 2 (Xl) I

dpl 2 (X1,X2) / PxI 1,X 2)dt X-2 aX2  I 1=W1,X2=W2 2,w2,2 (W < 2

is derived from (P2.1).

Differences between the commitment and non-commitment cases

When commitment is possible, the buyers form their beliefs and strategies after seeing the pre-

committed price paths. The seller's optimal strategy is to choose the path with the induced

buyers' beliefs and strategies that maximizes his payoff. Without commitment, the buyers

form their beliefs and strategies based on the price history. The seller determines the prices

at every instant based on his expectation of how the buyers will react. In short, with commit-

ment, the buyer's strategies are formed corresponding to the pre-committed price paths; and

without commitment, the buyers' strategies are formed corresponding to each realized history.

Therefore, the seller's payoff-maximizing problems are different under the two circumstances.

In addition, buyers' reactions to prices are different in the two situations. Consider the case

when the optimal mechanism requires setting reserve prices rl > w, and r 2 > w 2 for buyers 1

and 2 respectively. If the buyers expect the seller to submit the path derived in Theorem 5 and

stop at ri and r2, then buyer 1 with value ri and buyer 2 with value r2 will accept at prices ri

and r 2 respectively, that is, Pi (rl, r2) = ri and P2 (ri, r 2 ) = r 2 . When there is no commitment,

since P 1 (xl, x2 ) < rl and P2 (XI, X2 ) < r 2 for all xl < rl and x 2 < r 2 , once the seller submits

prices (rl, r2) and no buyer accepts, the seller believes that the buyers' values are below ri and

r 2 respectively and will lower the prices further. Hence, P1 (rl, r 2 ) = rl and P2 (ri, r2) = r2



cannot be sustained in equilibrium. 5 The differences in buyers' reactions to prices prevent the

seller from achieving the optimal outcome even though he maximizes his payoff in response to

the buyers' strategies.

2.5.4 Buyers' strategy

P 1 (x1, x2) and P2 (Xl, x2) characterize the buyers' strategies, and they are the prices that the

seller needs to offer in order to induce buyer 1 and buyer 2 whose values are above xl and x2

respectively to accept. We can represent P1 (xl, x2) and P2 (X1 , 2) in the following forms

C1 (x 1 , x 2)
P1 (X1, X2) = Xl- if x2 > w, (B1)

F2 (X2)

P2 (X 1 , X2) = X2 - if X2 > W 1 *
F1 (xl)

Ci (x1, x 2 ) = Fj (xj) (xi - Pi (x 1 , x2)) can be regarded as the information rent asked by buyer

i with value xi when he believes that if buyer j does not accept the current price, the lowest

upper bound of buyer j's value is x2. Buyer i with value xi accepts a price smaller than or equal

to Pi (x 1, x2), and he gets the good if buyer j's value is below xj. How much a buyer asks for

as information rent depends on his expectation of the prices that the seller will offer later and

his belief about how the other buyer behaves. Therefore, Ci (xl, x2) also characterizes buyer

i's strategy, and must be the best response to the other players' strategies. Given the current

beliefs (wl, w2), if the seller's strategy is to implement a path X2,wiw 2 (xi) in the future, then

to satisfy incentive compatibility so that buyer 1 and buyer 2 will not deviate, we must have

C1 (W1 , w 2 ) = F2 (x 2 ,lww2 (x)) dx, (B2)JW,11/2
C2 (W1, W2) = F( x2,ww2W

-2

in equilibrium, where
-1

X2,wi 2 (X2) - sup { x I X2,ww 2 (x 1 ) < X2} (2.2)

which shows the same path as X2,wjW2 (x 1 ) but represents xl as a function of x 2.

5 In equilibrium, P1 and P 2 satisfy (Bl) and (B2) defined in the next section.



Proposition 12 formalizes the arguments above and characterizes the buyers' strategies.

Proposition 12 After the seller submits pl (t) and p2 (t) at time t, with the belief that the

lowest upper bound of buyer j 's value is xj - yj (ht) provided that buyer j rejects all the prices

on the history path until t, if buyer i's value xi < yi - limrt yi (h'), then the maximum price

he accepts is Pi (xi, x3 ) defined in (Bi) and (B2); if xi > yi, which implies buyer i has deviated,

then the maximum price he accepts is Pi (yi, xj).

Proof. We show that buyer i maximizes his payoff by following the strategy specified in

the proposition. Let pl (T) and p2 (T) be the price paths submitted by the seller. Consider a

continuation game starting at t with belief (yl, y2) = (limTt yl (h') ,limTt Y2 (h')) and prices

(P1 (t), p2 (t)). -

First consider the case when there exist wl yl and w2 Y2 such that pl (t) = P1 (wl, w2)

and p2 (t) = P2 (w 1 , w2). Given the seller's strategy profile characterized in Proposition 11, we

can derive the price paths after t as well as the other two paths x 1 (7) and x2 (7) by solving

pi (T) = P1 (XI (),X2 (7))
. Xi (T) is the seller's and buyer j's beliefs about the greatest

P2 (T) = P 2 (Xl (T), x2( ())

lower bound of buyer i's values with which buyer i would have accepted pi (T). In addition,

(x 1 (7) , 2 (T)), T > t, constitute the graph of x 2,,,w 2 (xl), the solution path to program (P2.1).

Note that if x2,w1w 2 (w1) < w2, then there exists s > t such that x1 (T) = wl, and x2 (T)

decreases from w2 to X2,wiw 2 (W1) for T E [t, s]. Because a~P(x ,X) > 0, to prove the proposition,

it is enough to show that given the price paths (pl (T),P2 (t)) derived from the seller's strategy

profile, at any time t' > t, buyer i with a value higher than or equal to xi (t') should accept

pi (t'), and buyer i with a value lower than xi (t') should reject. At t', buyer 1 with value xl

gets payoff

X- -p (t') - (x - X (t')) + F 2 (X2,w 1w 2 (x)) dx 6

-1

if he accepts now, and gets expected payoff

F 2 (x 2 (t)) (l - pi (t")) - F 2 (x 2 (t")) ((X - 1 (t)) + F 2 (x2,ww 2 (x))dx

F 2 (X 2 (t')) F 2 (x 2 (t')) ].

6X2,wiw2 (X) = X2,x 1 (t')X2(t") (X) for x Z [ 1 , x1 (t').



if he accepts later at t". Because x 2 (t") < X2 (t'), similar to the argument in Theorem 5, buyer

1 with xl x, (t') gets weakly higher payoff by accepting at t' and buyer 1 with xl = xi (t")

gets weakly higher payoff by accepting at t" > t'. The same argument applies to buyer 2.

Therefore, buyer i with a value higher than or equal to xi (t') should accept pi (t'), and buyer i

with a value lower than xi (t') should reject.

Next consider the situation when there does not exist wl 5 yl and w2 < y2 such that

Pl (t) = PI (wl, W2) and P2 (t) = P 2 (W1, W2). This implies either (i) Pi (t) > Pi (yi, yj) for both

i = 1, 2, or (ii) there exists wj < yj such that pi (t) > Pi (yi, wj) and pj (t) = Pj (yi, wj) for

some i = j. Given the seller's strategy in Proposition 11 and buyer j's strategy Pj (xl, x2), in

case (i), buyer i expects that buyer j would not accept before pi falls to P (yi, yj) so buyer i

rejects all the prices pi > Pi (yi, yj); and in case (ii), buyer i expects that buyer j would not

accept before pi falls to Pi (yi, wj) so buyer i rejects all the prices pi > Pi (yi, wj).

Substituting P1 (X1, X2 ) and P2 (x 1 , x 2 ) in the seller's problem (P2.1), we get

max wi [ 1F2 (x2) - Cl1 (, x2)] f (X1)
max d (P2.2)

u(x,2,wl1 2 (X1)) i + [x 2F1 (XI) - C2 (X1 , X2)] f2 (x2) u

+ [X2,wlw 2 (W 1 ) F 1 (w l ) - C2 (w 1 , X2,wiw 2 (W 1 ))] [F 2 (w2) - F 2 (X2,wIw 2 (Wl))]

s.t. X2,w 1W2 (W1) W2,

dx 2

dxl u,

O < u < 00.

2.5.5 An equilibrium

In this subsection, we first characterize the conditions for an equilibrium in Proposition 13.

Then we show that there exists an equilibrium in which the equilibrium allocation and payoffs

of all the players are the same as those in a second-price auction in Theorem 6.

Proposition 13 Suppose there exist X2,ww 2 (X 1), C(w, 1 2 ) , 02 (w1, w2) such that for any

(w1, x2,w 2 (x l, x1 XE [, 2],i the path derived from (P2.2);

1. x2,ww2 (x), x E 1, w1] , iS the path derived from (P2.2),



2. C1 (W 1 , w2) = J F2 (x 2 ,wlw2 (x)) dx;

w 2 x-1

3. C2 (W1, 2) = fJ F1 (2,iw 2)) dX

If the vector-valued function P (Wl, w 2 ) = (P1 (w1 , w2) , P2 (W, w 2)) defined in (Bi) satisfies

Condition 4, then there exists a perfect Bayesian equilibrium as follows:

Let Xwl2 (pl,p2) = (X1,w~2 (p1,P2) ,X 2,w1W 2 (p1,P2)) = p-1 (p,P2) , (p1,P2) E Bw 2, where

BwW2 = {P (y 1, Y2) I 0 < yl < w,O < y2 < w2}.

* The belief about the lowest upper bound of buyer i's value is formed as follows:

At t, let (wl, w2)= ( l i l =
(lim,Tt y1 (h') , lim,t y2 (h')) , if t > 0

- If the prices (pl,p2) offered by the seller is in BL31 2,

(y1 (ht) , Y2 (ht)) = (X 1,wlw2 (pl,p2) , X 2,wlw2 (p1,p2)).

- If p1 P 1 (wl, w 2 ) and (pl,p2) is above Bww 2 , yl (ht) = xl such that P 1 (X1, w 2 ) =

pi, and Y2 (ht) = w2.

- If P2 P2 (w1 , w2) and (P1,P2) is on the right of 1ww 2 , yl (ht) = wl, and Y2 (ht) =

x2 such that P1 (wl, X2) = P2

- If Pi > P1 (wl, w2) and P2 > P2 (wl, w2), (yl (ht), Y2 (ht)) = (l, w2).

* At t, given belief (w1 , w 2 ) = (yl (ht), Y2 (ht)) and the current prices (bl, b2 ) (note that

Pi (W1 , w 2 ) < bi for i = 1, 28), if b1 = P 1 (w 1 , w2) and b2 = P2 (w 1 , w 2), the seller's strat-

egy is

dp1 (t;bl,b2 ,w,W2) dp2 (t;bl,b2 ,wl,w2) ) ES such that

S  dP2 (xl,x2, 1' 2 ()) dPl(Xl,2wl2(x)) 21 =w if x2,ww 2 (W1) =W2x1t / dx(

at a2 IXI2 W1,X2=2 if x2,1W2 (W) < 2

and bj = P (x 1, x2 ), the seller's strategy is P = 1 and = 0; if bi > Pi (x, X2 ) for

both i = 1, 2, then any (d, e d 2) S can be the seller's strategy.

72x2 1, 2 (x) is defined in (2.2).
8When the seller determznes (- , ), the buyers have rejected (bi,b 2 ), so the belief (wl,w2)

(y1 (ht) , Y2 (ht)), and P, (w 1 ,w 2) < b, for i = 1, 2.



* At t, given history ht, if buyer i's value xi < limlt yi (h'), the maximum price he accepts is

Pi (xi, yj (h t )); if xi > lim.,Tt yi (h'), the maximum price he accepts is Pi (lim-Tt yi (h-'), yj (ht)).

Proof. The result comes directly from Propositions 10, 11, and 12. m

Example 1 When the two buyers' values are uniformly distributed on [0, Wl]

spectively, there exists an equilibrium as follows:

In this example, the function that characterizes buyer i's strategy is P, (wi, wj) =

Let wl (t) and w 2 (t) be the beliefs about buyer 1 's and buyer 2s values at time

and the value of wi (t), t > 0, is defined recursively below.

and [0, w2] re-

( w2
wi -' if wj > wi

t. wi (f) w< i

t. wi (0) = ui

* At time t > 0, suppose the current posted prices are (pI,p2) and beliefs are (wl, w2)
2

(wl (t) , w2 (t)) Without loss of generality, suppose wi wj. Note that pi wi - -- and- 2w3

p, > !L9 the seller's strategy is

(dpi (t; pi, pj, wi' wj) dpj (t; bi, bj, wi, wj)
dt ' dt

(,) , ifp, = pj = w= I
W

2

(0, 1) , if Pi w i - 2 and pj > v

(1, 0) , if p = ~i and pi >

* At time t, let (w1, w2) (w 1 ,w 2 ), ift = 0

SAt time t, let (W(limTt w1 () , limTt w 2 ('r)), if t > 0

prices submitted by the seller (without loss of generality, suppose pi

strategies and the values of (wl (t) , w2 (t)) are as follows:

and (Pl, p2) be the

> pj), the buyers'

2p2
-If 2pj w and 2p < w, buyer i accepts pi if his value is above 2pj, and buyer

-2p2p2 2p2
j accepts pj if his value is above 2p w (t) = 2 pj and wj (t) =

2p2
- If 2pj w and - > wj, buyer i does not accept pi, and buyer j accepts pj if and

only if wi - wi- 2w,p, < wj and his value is above wi- w - 2w,p. wi (t) = wi

and wj (t) = min {w, wi - 2 - 2wipj .

9This is because in thzs example, if w3 > w,, P (w,, w 3 ) = we , and P (w, w,) = It must be that

P, (w, w,) < p, and P, (w,, w,) < p, so that the belief is updated consistently (see Proposition 13).
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Figure 2-1: Equilibrium p1 - P2 and Xl - x 2 paths

- If 2pj > wi and < w, buyer j does not accept pj, and buyer i accepts pi
2p,-pi -

if and only if wj - w -2wjpi _ wi and his value is above wj - w? - 2wjpi.

w (t) = w and wi(t) = min{wi, w- w - 2wji.

2p
- If 2p > wi and 2 -p > wj, both buyer i and buyer j do not accept. wi (t) = wi

and wj (t) = wj.

Figure 2-1 shows the equilibrium price path submitted by the seller and the corresponding

Xl - X2 path in Example 1 when w 2 > T1. The seller first keeps pl at T1 and lowers P2 to 2.

Then he keeps P2 at T1 and lowers P to IT1. Finally he lowers both pl and P2 to 0 at the

same speed. The buyers correctly expect the path, so buyer 2 will not accept any price along

the vertical part of the path. When the seller starts lowering pl (the horizontal part), buyer

2 starts accepting P2 = 1T 1 . To be more precise, buyer 2 starts accepting after pi drops to



a = wl - 2 2 Buyer 1 then has to consider whether to accept a higher price now or to accept

a lower price later at the risk of buyer 2 accepting before him. In the equilibrium characterized

in Example 1, buyer 2 accepts p2 at a speed such that buyer 1 is better to wait until pl drops

to -T 1 . When pl reaches 2-1, buyer 2 with a value higher than wi would have accepted.

Therefore, the dash-line part of the pi - P2 path is mapped to the dash-line part of the x1 - X2

path. After that, the seller lowers pl and P2 at the same speed, and buyer i with a value equal

to 2pi accepts pi. The seller can choose other paths. However, given the buyers' reactions and

expectations of the price path after deviation, which is consistent with the seller's strategy in

the continuation game after deviation, the seller cannot do better than following the path in

Example 1.

In this example, the seller's and the buyers' expected payoffs are the same as in a second-

price auction, which is lower than the payoff in a Dutch auction. The lower payoff results

from the seller's lack of commitment power. In equilibrium, the seller lowers the two prices

simultaneously only when Pl = P2 = 1 = 2 . Otherwise, he only lowers one of the prices.

Given the seller's strategy, a buyer does not feel competition from the other buyer as much

as in a Dutch auction, so he is reluctant to accept a higher price. And given the buyers'

strategies, the seller can do no better by deviating. On the other hand, in a Dutch auction,

the two prices are lowered simultaneously. This causes competition between the buyers, so the

buyers are willing to accept higher prices. The example thus shows that the inability to make a

commitment might result in an equilibrium unfavorable to the seller. The advantage of being

able to determine the price paths at will is dominated by the loss caused by not being able to

commit. In the next theorem, we show that existing an equilibrium in which the buyers' and

the seller's expected payoffs are the same as in a second-price auction is generally true, not just

for the uniform distribution case. And in Section 2.5.6, we further prove the uniqueness of the

equilibrium in the uniform distribution case.

wL2, for I 1  x 1 < max{ 1, 2}

Theorem 6 X2,,,ww 2 (Xl)= 1 , for max {w l ,w 2} < x 1  min wl, w2}

w 2 , for min {wl, w 2} < Xl < Wl



-1C1 (wl, w2) = Xl F2 (x2,wlW2 (xi)) dx1, and C2 (W1, w 2 ) = W2 F1 (2,ww 2 (X2)) dx 2
10 are a set

of functions satisfying the conditions in Proposition 13. Therefore, there exists an equilibrium

such that the allocation rule, the buyers', and the seller's expected payoffs are the same as in a

second-price auction.

Proof. To show that X2,wiw 2 (xi) is the path derived from (P2.2), we check the sufficient

condition that value function V (wi, w2) satisfies the HJB equation

Vx1 (xl, X2) = max {G (xi, x2, u) - VX2 1, X2)g (xi, x2, u) O < u < 0 0 } , 11  (2.3)

where

G (x 1 , x 2 , u) = [ 1 F2 (x 2 ) - C1 (X1, X2)] f (X1) + [x2 F 1 (x 1) - C2 (x1 , 2 )] f2 (x 2 ) u,

g(x, X2, ) = u.

Without loss of generality, assume that w >! w 2 . The form of X2,wlw 2 (X1) implies that

u (x1, x2 (X1)) = 1. Therefore, when x2 _ X1l,

V (x1, x 2 ) = xF 2 (x) - F 2 (t) dt f(x)+ F (x) - F (t) dt f 2 (x) dx
1 x 1

+ [xFi (x) - Fi (x) dx [F2 (x2) -F 2 (1)]

Then the left-hand side of equation (2.3) is [xlF2 (2) - f_: F2 (x) d] fl (x), and so is the

right-hand side. Similarly, equation 2.3 holds when xl > x 2.

One can check that P (wl, w2) = (P1 (wl, w2) , P2 (wl, w2 )) defined in (BI) satisfies Condi-

tion 4. Thus, there exists an equilibrium by Proposition 13. The allocation rule is that the

buyer with the higher value gets the good, and a buyer whose value is smaller than or equal to

max {wl, w 2 } gets zero payoff. Therefore, by the revenue equivalence principle, all the players'

payoffs are the same as in the second-price auction. m

1 0 1fw2 < WI, 21 (X2) = W 1 forX 2 < 1 If 2 > W1, x 1 (X2) = W1 for x 2 > W1.

"1 The HJB equation here is different from the version generally used. This is because the index xz here is
going down instead of going up as the commonly-used index t is.



A Dutch auction requires the seller to call out a single price for all the buyers even though

they are asymmetric. In the previous section, we show that if different prices for different

buyers are permitted and the seller is able to commit to a price path in advance, then the

seller can achieve the optimal outcome. However, if different prices are allowed but the seller

is not able to commit, there exists an equilibrium in which the seller's payoff is the same

as in a second-price auction. Vickrey (1961) and Maskin and Riley (2000) show that, with

asymmetric bidders, the seller's payoff in a first-price auction (or a Dutch auction) might be

greater than that in a second-price auction; this is always true when the two buyers' values are

both uniformly distributed. Our result together with the conclusion from the literature suggests

that the benefit brought by the discretion to determine the price paths might be outweighed

by the loss caused by not being able to commit.

In reality, an extremely sophisticated institution is difficult to implement, so the mechanisms

adopted are usually simple. At times, people complain that simple mechanisms hinder their

ability and freedom to do what is best for them. However, our result shows that even though

people lose their discretion with a simple institution, that institution still retains its value

because it helps people make commitment. In a Dutch auction, the seller is forced to commit

to a price path and cannot charge different buyers different prices. It seems that the seller might

get a better payoff without the restriction and benefit from having the discretion to design price

paths. However, sometimes the advantage of having the discretion might be sabotaged by not

being able to commit, and the seller's payoff turns out to be lower when he can negotiate with

buyers at will.

2.5.6 Uniqueness of the equilibrium

It might be the concern that there exist multiple equilibria for the negotiation game, so the

comparison between the seller's payoffs in different institutions is not conclusive. In this sub-

section, we show that under some circumstances, there is actually a unique equilibrium, so our

result is robust. We consider the case in Example 1 when the two buyers' values are uniformly

distributed on [0, Ti] and [0, U 2 ] respectively. To see why the number of equilibria is limited,

note that each off-equilibrium history ht is reachable by deviations of the seller. Since the

deviations are made by a player who does not have private information, the beliefs about the



buyers' values cannot be arbitrary and must be consistent with the buyers' strategies at each

ht. In addition, the buyers' expectations of future paths are not arbitrary either. They must

be consistent with the seller's strategy, which is the best response to the buyers' strategies.

The following analysis focuses on the equilibrium in which given any (wl, w2), the seller's

strategy u (X1, X2,w W2 (xl)) (defined in Section 2.5.3 and derived from program (P2.2)) on the

continuation equilibrium path starting with belief (wl, w2) is in (0, 00) for all xl E (0, 71, ~ 2)

for some 51,W1W2 < wl. With the restriction, program (P2.2) becomes

+1(i<w1) [51 F2 (x2 ,w1 2 (71 C 1))-C (1, 2,ww 2 (~1 [F1 (w1 - F1 ()]

+1(x2(Y1)<W2) [x2,wlw 2 (I5) F (Z1 ) - C2 (1i, X2,w w2 (Z1))] [F 2 (w2) - F2 (x2,wlw2 (1))]

s.t. 71 = wl and X2,wiw 2 (wl) < w 2 , or 1 < W 1 and X2,ww 2 (1) = w2,

dx 2

dxl =

0 < u < oo,

where 1(.) is the indicator function. Note that we do not restrict the seller's strategy space.

The seller can still adopt a strategy such that u (xi, x 2 ) = 0 or oo, but he will find that doing

so does not make him better.

In addition, we require C1 (xl, X 2 ) and C2 (X1, X 2 ), the functions that characterize buyers'

information rent, to be smooth, i.e. , i,j = 1, 2, is continuous. If - is not continuous at

(xI, x 2 ), it is implied that the equilibrium strategies and beliefs are quite different in the two

continuation games with beliefs (x1, x2) and (xl, x2 - e), where E is small. Moreover, we require

ac, > 0.
Dx 3 -

Definition 4 An equilibrium is smooth if the seller's equilibrium strategy u (Xl, X2 (Xl)) on

the continuation equilibrium path starting with any belief (wl, w 2 ) is in (0, 00) for all xl E

(0,)1,W1W2 ), where u (X, 2 (xi)) and T1,wW 2 are derived from program (P2.3).. Moreover,

act _ 0
0C, i, j = 1, 2, is continuous and a" > 0.

First, we use Pontryagin's maximum principle to derive necessary conditions for the seller's



equilibrium strategy. Along with the condition implied by the revenue equivalence principle,

we show that there is only one set of strategies and beliefs satisfying all the conditions and the

requirements for a smooth equilibrium. Therefore, the equilibrium derived in Theorem 6 is the

unique smooth equilibrium. The details of the proof can be found in Appendix.

Proposition 14 When the two buyers' values are uniformly distributed on [0,w 1] and [0,7T 2]

respectively, the equilibrium characterized in Example 1 is the unique smooth perfect Bayesian

equilibrium.

Proof. The proposition comes from lemma 16 in Appendix. m

2.6 Conclusion

Our paper studies the case when a seller with an indivisible object negotiates with two asym-

metric buyers to determine who gets the object and at what price. The seller repeatedly submits

take-it-or-leave-it offers to the two buyers until one of them accepts. Unlike a Dutch auction,

the two prices offered to the two buyers do not have to be the same. We show that if the

seller can commit to some price paths, the payoff realized in Myerson's optimal mechanism is

achievable. However, if commitment is not possible, the seller's equilibrium payoff is the same

as that in a second-price auction, which might be lower than the payoff in a Dutch auction.

Therefore, although a simple institution, like a Dutch auction, restricts a player's freedom, it

might actually benefit the player by providing a commitment tool. Our analysis also sheds

light on the procurement literature and gives insights into the performance of atypic auctions

conducted at Priceline.com.

The paper builds a bridge between the auction and the bargaining literature. The model

differs from an auction environment by allowing the auctioneer to set different prices for different

buyers, and differs from a bargaining setting by considering a one-to-many negotiation process

in which one party chooses his partner from a group of people. Although we only consider a

two-buyer case, the analysis and methodology can be applied to a more complex environment,

and the conclusion can be generalized to a n-buyer case.



2.7 Appendix

Consider the seller's optimal control problem in (P2.3). Define the initial value function as

I (, X2 1)=
[XIF 2 (x2 (1)) - C1 ( , 2 (l))] [F1 (wI) - F1 ()] if Yi < w 1 , X2 (1) = w2

[x2 (T1) F1 (l1) - C2 (1, x2 (71))] [F2 (w2) - F2 (x2 (Y1))] if 1 = W1, X2 (71) < W2

Define the Hamiltonian function H as

H (x1, X2 , u, A) = G (x, X2, u) + Ag (x1, x 2 , u),

where G (xl, x2, u) and g (xl, x2, u) are defined in equation (2.3). The following theorem is a

restatement of Pontryagin's maximum principle.

Theorem 7 If a control u (-) with a corresponding state trajectory x (-) is optimal, there exists

an absolutely continuous function A : [0, wi] -+ IR such that the maximum condition

H (X1 , x2 (X1) , u (x1) , A (x)) = max {H (xi, X2 (X1) , u, A (xi)) I0 < u < oo} ,

the adjoint equation

A/ (x) =
OH ( 1 , x 2 (x1) , u (X1), A (x 1 ))

Ox2

and the transversality conditions

A(0) = 0;

if 51,wl W2

if Tl1,lw 2

1 w and 2 (w) < w 2, A (wi)=

< wl and x2 (71) = W2, H (71) +

0I

Ox 2

0I
a = 0.ay,

(2.4)

(2.5)

are satisfied.

For later convenience, let cl (xl, x2) = W2C1 (X 1 , x2) and c2 (x1, x2) = ~i1C2 (XI, x2)

Lemma 9 c1 (Xi, x2) = XlX2 - c 2 (x 1, x2).

Proof. Recall that Ci (wl, w2) can be regarded as information rent to buyer i with value w,

while at some stage of the negotiation game, it is the belief that w1 and w2 are the lowest upper



bounds of the buyers' values. Given wl and w 2 , suppose X2,wlw 2 (xl) : [0, 1,w12] F-- [0, W2],

is the equilibrium path of the continuation game. In equilibrium, incentive compatibility is

satisfied, so the information rent to buyer 1 with value wl must be

C1,wl)2
C1 (Wl, w2) = w20O

F 2 (x2,wlw 2 (x)) dx + F2 (2,wW 2 (1,w12)) [W1 - -1,wlw2

and the information rent to buyer 2 with value w2 must be

C2 (W1, W2) = 1 X2(Y1,w 1 w 2 )

0
Fl (2,W 1 w 2 (x)) dx + F (-1,wlw2) [W2 - X2,wiw 2 (1,wlw2)

Multiply both sides of the two equations by U 2 and U1 respectively, we get

S[1wlw 2

C1 (wi, w2)

C2 (i1, w 2 )

X2,wlw 2 (x) dx + X2,wlw 2 (X1,wlw 2 ) [wl - Zl,W1 2 ] , (2.6)
J"

X2,wl w 2 ( 1,wi1 2) 1,,21 ( (x) dx + T,W1W2 [w2 - X2,wjW2 (1,W 1W2) .2,OW

Note that either 21,WlW2 = W1 or X2,ww 2 (X1,W1w2) = w 2 . Therefore, cl (wl, w 2 ) + c 2 (w 1, w2) =

W1W2. 0

Lemma 10 ci (0, x2) = 0 and ci (xi, 0) = 0.

Proof. By lemma 9, c1 (x, 0) +c2 (X1, 0) = 0. Since ci (.) > 0, cl (x1 , 0) = 0 and c2 (X1 , 0) =

0. 0

Lemma 11 Let x2,wiw 2 (xl) be the equilibrium path of the continuation game starting with

belief wl, w 2. Then

1 (x, X2,ww 2 (X)) C1 (X, X2,ww1 2 (x)) dx2,ww 2 (x) = 0 (2.7)
c- - + dx = 0 (2.7)

Cl(Xl, ,wlw2(x))-j dci "--SOX2 OX2 dx1

for all xl E [0, 1,w1 w21

Proof. By the maximum condition,

OH
u E (, 00) if = [x2 F (xi) - C2 (X, x 2 )] f 2 ( 2 ) + = 0. (2.8)



By the adjoint equation,

xlf2 (x2,wjw2 (x1)) - O2 fl (X1 ) + IF1 (x1 ) -
00 21 f2 (x2,wjw2 (xl))
OX2 I

and A (0) = 0 by the transversality condition, so A (xl) = - fox' [xf 2 (X2,ww 2 (X))

[F 1 (x) - o] f2 (x2,wlW (x)) u (x) dx. Plugging into equation (2.8),

_ac f ()+
axzl f, ()+

[X2,wlw 2 (xl) F 1 (xl) - C2 (X1 , x2) f2 (x2)

- I xf 2 (x2,wiw2 )) 2 1

Multiplying both sides by wlw 2 = fl(x)f2(y)'

[X1X2,wlw2 (X1) - c2 (X 1, X2,ww 2 (x1))] -

f (x) + [Fi (x) -
OC2 f2-52i J J

xl  - cl 1
o [ J +[x x2J

By lemma 9, we get cl (xl, X2,wiw 2 (xl)) - fo X1 - + c d2,wd = for all

[0, l,ww2]

Lemma 12 Letting x2,wlW2 (x1 ) be the equilibrium path of the continuation game starting with

belief wl, w2,

Oci (xi, X2,ww
2 (X1))

Oxl
0+ OC (X, x2,W1w 2 (xl)) = x for all xl e [0,1,w Yw2 .

-X2

Proof. Since equation (2.7) holds for all x, e [0, T1,W1W 2 ], taking derivative with respect to

xl on both sides, we get
_cl Ocl Oci OciOci + -u = x1 - + ju.

x 1  aOx 2  Ox2 Ox 2Therefore, aCj(X1'X2,wjw2 (xX)) + Dci (x1,X2,wlw 2 (xl)) - x 1 . N

Therefore, &Cx(1,22,wl 2(51 x12

Definition 5 Let A = {(xI, x 2 ,wW 2 (xl)) Ix E [0, Z1,1W21,0 < wi wi,0 < w 2 < W2}, and

A is the closure of A.

A contains all the points on the equilibrium paths of all the continuation games. Note that

(x, x) E A, where x E [0, min {l,W2}] by Theorem 6.

A' (xl) = - U},

( 2 (x)) (x) dx = 0.

u (x) dx = 0.

(2.9)



Lemma 13 For all (xl, X2 ) E A, c 1 (X1 , X 2 ) is of the form -+ (x 2 - Xl).

Proof. If (xl, X2) is on the equilibrium path of a continuation game so that it is in A, then

the differential equation (2.9) has to hold. The general solution to the differential equation

is C1 (x 1 , 2 ) =2 + ¢ (x 2 - x1 ). Since cl (X1 , 2 ) is totally differentiable on [0, U 1] x [0,2],

1 (X1, X2 )= + (x2 -x 1 ) for all(x1, 2 ) E. 

Let d= max {x2 - Xl I (X1, x2) E A} and d = min {x2 - x 1 I (xl, X2) E A}.

Lemma 14 0(d)= 0 ifd E [0,7 ].

Proof. Let UL (x2) = min {xl E A} for x2 E [0, w2 ]. UL describes the upper-left boundary

of A and provides information about how ¢ (d) is like when d E [0, d]. Let

B, = {(x 1 , X2) I0 <_ X2 < W2, 0 <_ x1 < UL (x2)} be the set above the upper-left boundary. If

there exists (al, a2) in the interior of Bu, it is implied that in a continuation game with belief

(al, a 2), the continuation equilibrium path is (x, UL - 1 (xi)) , 0 < x 1 < al, which means buyer

1 with value al is paired with buyer 2 with value UL - 1 (al), so cl (al, a2) = cl (al, UL - 1 (al)).

Since we focus on the set of ci such that - >2 0, i,j = 1,2, cl (a, X2 ) = 1 (ai, a2) for all

x2 E [UL - 1 (al), a2], i.e. Cl is independent of x 2 . Besides, c1 (0, x 2) = 0, so c1 (xl, x 2 ) is of the

form 4 (xi).

For any d E [0, ], there exists (xl, x 2 ) such that x2 - X1 = d, (X1, x 2 ) E Bo n A, that is,

(x, X2) is on the upper-left boundary of A. Therefore, c1 (xl, X2) is of the form 0 (xi) as well

as - + k (x 2 - X1 ). Since we require 0X to be continuous, aclX 1,X2)= ' (X2-X) = 0' (d)=

dei(x) 0. Since c1 (0, 0) = 0, 0 (0) = 0. So q (d) = 0 for all d E [0, 7], and 4 (xl) = m

Lemma 15 (d) = - if d [d, 0]

Proof. Let LR (xI) = min {x 2 E A} for xl E [0, i]. LR describes the lower-right

boundary of A and provides information about how 0 (d) is like when d E [, 0]. Let B1 =

{(xl, x 2 ) I 0 < x1 _ w 1, O < x2 < LR (xl)} be the set below the lower-right boundary. If there

exists (a,, a2) in the interior of B1 , it is implied that in a continuation game with belief (a,, a2),

the continuation equilibrium path is (LR - 1 (x 2 ) , 2) ,0 <_ x2 a2 , which means buyer 2

with value a2 is paired with buyer 1 with value LR - 1 (a 2), so c2 (a, a2 ) = c2 (LR - 1 (a2), a2 ).

Since we focus on the set of c, such that - > O,i,j = 1,2, c2(x, a2) = c2(al,a2) for all

xz E [LR- 1 (a 2 ) , al]. Besides, 2 (X1, 0) = 0, so c2 ( 1z, x2) is of the form <p (x 2 ).



For any d E [d, 0], there exists (x 1 , X2 ) such that x 2 - X1 = d, (xl, X2 ) E B 1, and (x 1 , X2) E A.

Therefore, c2 (X1, X2) is of the form p (x2) as well as X1 X2 - (x2 - Xl). Since we require

CL- and -L to be continuous, ac2( - + ' (- ) = d + 1' (d) = 0. Sinceaxl O9X2 09x X2 X1 + (X2 X1) d + d) 0

c2 (0, 0)= 0, 0(0) = 0. So q(d) (x2-x1)2 for all [d, 0], and (x2 )=. -

2
-T, if x1 < X2

Lemma 16 In equilibrium, C1 (Xl, X2) = 2 2 -
1 - 1 2

C2 (X, X2)- , if
02 1,2)2 , andA = {(x 1, x2 ) lxl = x2 ,0 _ xl _ min{wl, w2}}.

W1 2, if Xl > 2
Proof. From lemmas 14, 15 and the discussion in their proofs, we know that if the equilib-

rium is smooth, the only possible cl is that

,{ if x1 < x 2
c1 (X, 2)fx= x

(X2 - 2 ,if 1 > 2

which implies that the seller's strategy leads to the path x2,ww 2 (Xl) = , xi E [0, min {wl, w2}]

w2,x 1E (min W1, w2}, Wl]

given the belief (wl, w2) about the buyers' values at the beginning of a continuation game. m
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Chapter 3

Screening with Resale: A Rationale

for Selling in Bulk Packages

3.1 Introduction

Retail stores, referred to as warehouse stores and warehouse clubs such as Food 4 Less, Super

Saver Foods, Costco, and Sam's Club, sell their goods in bulk packages at discount. The package

is usually too large for a consumer to consume all by himself. A buyer must take the package

all together and try to resell or share the product with his friends. So, what is the rationale

behind the bulk package strategy and how does a seller determine the optimal quantity of goods

in a package?

The literature on nonlinear pricing pioneered by Mussa and Rosen (1978) and Maskin and

Riley (1984) addresses a problem of how a seller discriminates buyers by offering a quantity-price

menu. However, nonlinear pricing works well only when the seller can exclude the possibility

of resale among buyers, which is not easy to achieve in reality. Many papers (e.g. Laffont

and Martimort (1997, 2000), Jeon and Menicucci (2005), Che and Kim (2006)) thus have been

devoted to the mechanism design issue when buyers or agents have costless communication and

can form coalitions easily. Che and Kim (2006) show that collusion among agents actually

imposes no cost in a large class of circumstances, including both uncorrelated and correlated

types of agents. However, the implementation of the mechanism is complex. The final allocation

and payment depend on all the agents' reports, and it is not implementable in reality. In reality,



firms first determine the quantity of goods per package and post the price. Buyers arrive at the

market, see the price, and make their purchase decisions. So under the circumstance of costless

resale and limited contractibility between a seller and buyers, how can a seller discriminate

buyers?

This paper connects this question with the previous question of finding the rationale behind

the bulk package strategy, showing that each of them is the answer to the other. In short, selling

in big packages is a way to help a seller discriminate buyers when resale among buyers cannot

be prohibited and communication between a seller and buyers is limited. To be more specific,

consider the situation when a seller offers big packages to buyers who might have high or low

valuations of the product. A buyer buying the big package can resell some units to the other

buyers. Therefore, a buyer buying the package directly from the seller and a buyer buying the

product from resale may pay different unit prices. We show that in equilibrium, if big packages

are offered, it cannot be the case that only buyers with a low value of the product take the

package. Among those who take the packages, some must have a high value of the product.

We further show that if the buyers do not value the product too differently, buyers with a high

value of the product have stronger incentive to buy the package directly from the seller, and

buyers with a low value tend to wait and buy from resale. Therefore, through the process of

resale, the seller is able to screen the buyers. Moreover, when buyers' valuations are correlated,

the seller can incorporate buyers' information and understanding of the other buyers through

the process of resale.

In our model, we consider the case when there are two buyers with different values of a

product, and each of them demands only one unit of the product. Our packaging problem can

be regarded as a variation of Stigler (1963)'s and Adams and Yellen (1976)'s bundling problems.

As Adams and Yellen point out, their model can be applied to the situation when a bundle

consists of multiple units of the same commodity. In their case, a buyer has different values

for different units of the product he consumes, and the seller chooses the size of the bundle

sold to a buyer. In our model, different buyers have different valuations for the product, and

each of them needs only one unit. The seller chooses the size of the package that can be shared

between buyers. However, our problem is much more complex since the purchase decision and

resale process involve more than one buyer who has private information. Therefore, when a



buyer decides whether to take the package, he has to consider the possibility of selling the extra

unit to the other buyer and make an estimate of the expected revenue from resale. With the

additional concern, we show that selling a two-unit package can dominate selling single-unit

packages, but only when the buyers' valuations are negatively correlated. Hence, the result

suggests that a seller might be able to make more profit by selling in big packages when a

consumer is likely to know someone valuing the product differently from him and share the big

package with the person.

The paper is organized as follows. Section 2 describes the model. Section 3 characterizes

the equilibrium and finds conditions for bulk packages to do better than single-unit packages.

Section 4 concludes.

3.2 The Model

A monopolist has two units of a product and tries to sell them to two buyers. The monopolist

maximizes the total payment he receives from the buyers. Each buyer has a single-unit demand

for the product and has utility function u(x, T; 0) = Ox - T, where 0 is the buyer's reservation

value for the product, x E {0, 1} is the quantity he consumes, and T is his net payment for

the product. 0 equals OH with probability PH and equals OL with probability PL, PH + PL = 1.

There is correlation between the two buyers' reservation values, which can be measured by p.

The probability that both buyers have high value is PHH, the probability that both buyers have

low value is PLL, and the probability that buyer 1 has high (respectively low) value and buyer

2 has low (respectively high) value is PHL (respectively PLH). PHL = PLH. We can represent

PHH, PHL, PLL in the form of

PHH = PHpH( + P),
PH

PH
PLL = PLPL( p),

PL

PHL = PLH PHPL(1- P)

We assume that 1 - < p < 1 so that all the probabilities are well defined.
max(PH,pL)

Assumption 2 1 - < 1 <
max(pH,PL)



The setting above is publicly known. Buyers have private information about their own

reservation value. Denote by Ptlk the probability that a buyer believes that the other buyer has

value Ot conditional on his own value Ok.

PHIH = PH +pLP, PLIH PL(1- P),

PLIL = PL +PHP, PHIL = PH(1- P)

The monopolist first commits to some package size and pricel and announces it to the

buyers. The monopolist can choose to offer a two-unit package or two single-unit packages.

Buyers then decide whether to buy the package or not. There is no resale cost between the

buyers. Without loss of generality, we assume that the package price of a two-unit package has

to be higher than 2 0 L because selling two single-unit packages at price OL can always do weakly

better than selling a two-unit package at a price lower than or equal to 2 0 L.

Assumption 3 If the seller sells a two-unit package, the package price is higher than 2 0 L.

If single-unit packages are offered, resale cannot do a buyer any good since the resale price

cannot be higher than the price set by the monopolist. Therefore, each buyer buys the product

directly from the seller.

If a two-unit package is offered, buyers who decide to buy go to the seller. If no one goes to

the seller, the game ends. If only one buyer goes, he gets the package. If both buyers go, the

seller sells the package to the buyer who arrives first. Both buyers have the same probability

to be the first buyer. The second buyer arrives after the first buyer leaves and knows that the

other buyer has taken the package, but the first buyer does not know whether there will be a

second buyer coming. After taking the package, the first buyer can sell the extra unit to the

other buyer. We assume that the buyer with the package gets the whole bargaining power and

makes a take-it-or-leave-it offer to the other buyer. If the other buyer does not accept, the

product perishes, and no one can consume it anymore. (The first buyer can consume his unit

before resale.)

'If the monopolist cannot commit to a package plan, he might lower the price if he finds no one is taking the
package.



3.3 Results

3.3.1 Offering single-unit packages

First we derive the optimal package price and the seller's revenue if the seller decides to offer

two single-unit packages. If the price is OH, only OH type buyers will buy, so the revenue is

2PHOH . If the price is OL, both buyers will buy, and the revenue is 2 0 L. Therefore, we have the

following proposition.

Proposition 15 Given that the monopolist decides to offer single-unit packages, he sets unit

price at OL if OL - PHOH '> 0 and sets unit price at OH if OL - PHOH < 0.

3.3.2 Offering a two-unit package

The following example helps us get a better understanding of how offering a two-unit package

may benefit the seller.

An example Consider the case where p = -1. It is known that one buyer has value OH,

and the other has OL. By offering single-unit packages, the seller's profit is max{ 2 0L, OH}.

If the seller offers a two-unit package with price OH + OL, both buyers will be willing to buy

the package and resell the extra unit to the other buyer at a price equal to the other buyer's

value. Therefore, offering a two-unit package might be more profitable than offering single-unit

packages.

The packaging problem in the example is similar to the bundling problem in Stigler (1963)

and Adams and Yellen (1976). It thus suggests how selling in big packages might help the seller.

However, when p is not equal to 1 or -1, a buyer is uncertain about the other buyer's value,

so the purchase decision and resale process would involve more complex interactions.

Characterize continuation equilibria If the seller offers a two-unit package, buyers have

to determine whether to buy directly from the seller or wait and buy from resale. In this section,

we characterize the possible continuation equilibria given that the seller has chosen to sell a

two-unit package. We analyze which type of the buyers is more likely to get the package from



the seller. Note that we only characterize the continuation equilibria that will occur on the

equilibrium path and do not include the continuation equilibria off the equilibrium path.

We first discuss whether a OH type or a OL type buyer has more incentive to take the package.

If a OH type buyer gets the package, he can set the resale price at OL and the extra unit is sold

without fail. Therefore, the package is worth at least OH + OL to a OH type buyer. Since the

package is worth less than OL + OH to a OL type buyer, a OH type buyer values the package more

than a OL type buyer. On the other hand, when a OH type buyer expects the resale price to be

OL with positive probability, he finds buying from resale profitable too, while a OL type buyer

never gets a positive profit from resale since the resale price is never lower than OL. Therefore,

a OH type buyer can benefit more than a OL type buyer both from taking the package and from

resale, so it is unclear whether a OH type or a OL type buyer has more incentive to take the

package. Nevertheless, Proposition 16 shows that it cannot occur in equilibrium that only OL

type buyers are willing to take the package.

Lemma 17 In equilibrium, if a OL type buyer gets the package, the resale price is OH

Proof. If a 0 L type buyer gets the package and sells the extra unit at 0 L, the package

price T is at most 2 0 L so that a 0 L type buyer is willing to take the package. Therefore, with

Assumption 3, OL cannot be the resale price in equilibrium. *

Proposition 16 In equilibrium, if the seller provides a two-unit package, it cannot happen that

only OL type buyers go to the seller.

Proof. Suppose that in equilibrium, a 0 L type buyer goes to the seller with probability

UL and waits to buy from resale with probability (1 - uL), and a OH type buyer always buys

from resale. By Lemma 17, the resale price is OH. For the equilibrium to exist, there are two

incentive compatibility constraints that need to be satisfied:

PLILUL PHIL
2 ) L PLILL 8H - T] = 0, (3.1)

2

and

(1 - 2 )[OH + max PLHL 0 H, OL - T] < 0. (3.2)
Cnat((2 t 1 PLIHlL2

Constraints (3.1) and (3.2) are for OL type and OH type buyers respectively. The left-hand side



(a) (b) (c) (d) (e) (f)
Go H H HL HL HL HL

Wait L HL L H HL

Table 3.1:

is a buyer's expected payoff if he decides to go to the seller, and the right-hand side is a buyer's

expected payoff if he waits to buy from resale. If a OL type buyer goes to the seller, he gets the

package with probability (1 - PILL). Given that the resale price is OH, the probability that

the other buyer buys the extra unit is PHIL ,2 so the highest utility he can derive if he gets
2

the package is OL + PIL OH - T. On the other hand, if he does not get the package or if he
2

does not go to the seller, he gets 0 no matter whether the other one takes the package or not.

Constraint (3.1) ensures that a OL type buyer feels indifferent between going to the seller and

waiting to buy from resale. For a OH type buyer, if he goes to the seller, he gets the package

with probability (1 - PLIHUL). After he gets the package, he will set the resale price at OH if

PIH OH > OL and OL if PIH OH < OL. If he does not get the product or if he does not go
2 2

to the seller, he gets 0 because if the package is taken by the other buyer who is of OL type, the

resale price is OH. Constraint (3.2) ensures that a OH type buyer prefers waiting to buy from

resale to going to the seller. However, (3.1) and (3.2) cannot be satisfied at the same time, so

in equilibrium, it cannot happen that only OL type buyers go to the seller. *

The proposition implies that in equilibrium, OH type buyers weakly prefer buying the pack-

age directly from the seller to buying from resale, while OL type buyers might find buying from

resale more favorable. Table 3.1 summarizes all the possible scenarios that occur in equilibrium

in which the seller offers a two-unit package.

Proposition 17 characterizes the condition under which scenarios (e) and (f) will not occur

in equilibrium. So in equilibrium, a OH type buyer is more inclined to take the package than a

OL type buyer.

2 From the buyer's perspective, the probability that the other buyer has value 0
L and goes to the seller is

PLILuL. If the buyer decides to go to the seller, with probability 12PLILUL, the other buyer arrives before him.

Therefore, the ex ante probability that he gets the package is 1 - , and the probability that the other

buyer has value OH conditional on that he gets the package is PHIL .
1PLILL



Lemma 18 If scenarios (b), (e), and (f) occur in equilibrium, i.e. a OH type buyer chooses

not to go to the seller with positive probability, then if a OH type buyer gets the package, the

resale price is OL.

Proof. If scenario (b) occurs in equilibrium and a OH type buyer sets resale price at OH, the

seller's expected revenue is lower than the expected revenue if he sells two single-unit packages

at price OH, because only OH type buyers consume the product, and the probability that a OH

type buyer consume the product is less than 1. So the resale price cannot be OH in equilibrium.

If scenarios (e) and (f) occur in equilibrium, a OL type buyer is willing to take the package.

Since a OH type buyer values the package more than a OL type buyer, his expected payoff must

be larger than 0 if he takes the package. Since a OH type buyer is also willing to wait to buy

from resale in scenarios (e) and (f), he must also get positive expected payoff if buying from

resale, so the resale price must be OL with positive probability. By Lemma 17, the resale price

is OH if a OL type buyer takes the package in equilibrium. Therefore, the resale price if a OH

type buyer gets the package is OL. U

1 1

PProposition 17HH (OH - OL) < 1-PLPILuH 0 H for all U H  (0, 1), only sce-
2 2

narios (a), (b), (c), and (d) can occur in equilibrium.

Proof. Suppose scenarios (e) and (f) occur in equilibrium so that a OL type buyer goes to

the seller with probability UL E (0, 1], and a OH type buyer goes to the seller with probability

uH E (0, 1). By Lemma 17 and Lemma 18, the resale price is 0 L if a OH type gets the package

and OH if a OL type gets the package. For the scenarios to occur in equilibrium, the following

two incentive compatibility constraints must be satisfied:

PLILuL +PHILH PHIL (1 - UH)
(1 - PLILUL+PHILUH)[OL + PHIL - OH - T] > 0, (3.3)

2 1 - PLILULPHILUH
2

and

(1 - PLHL PH )[OH + 0 L - T] + PHIHUH [OH - OL] = PHIHUH [OH - OL]. (3.4)
2 2

For scenario (f), the equality holds in (3.3). Constraints (3.3) and (3.4) are for OL type and

OH type buyers respectively. The left-hand side is a buyer's expected payoff if he goes to the



seller, and the right-hand side is a buyer's expected payoff if he waits to buy from resale. On the

left-hand side of equation (3.4), (1- PLHULPHIHUH ) is the probability that a OH type buyer gets

the package if he goes to the buyer, and pHUH is the probability that the other buyer takes

the package and sells the extra unit at OL. On the right-hand side, PHIHUH is the probability

that the other buyer takes the package and sells the extra unit at OL conditional on that the

buyer does not go to the seller.

For (3.3) and (3.4) to hold at the same time,

PHIHUH (OH -)PLIL

1 PLIHULTPHIHUH 1PLILULPHLUH
2 2

Since

1 1
PH HHUHHH (OH - L) for UL (0, 1] ,

1_ PLIHUL+PHIHUH PL HPH-HUH
2 2

(1 )PPLLL
(H PLL OH for UL E (0, 1] ,1 - PLILUL"PHILUH 1 PLILPHILUH

2 2

and
1 1
lPHIHUH (PLHL
1 -PLI+PH ( O H 

- OL) <  PPHL H,

2 2

p 1-UH PL2 P L- PLIL

PLIHL+PHH uH L) <1 PLILL+PHILu H. So (3.3) and (3.4) cannot hold at the same
1 2 1 2

time, and scenarios (e) and (f) cannot occur in equilibrium. m

Proposition 17 shows that if OL is close to OH, and when PLIL is larger, in equilibrium,

a OH type buyer is more willing to take the package than a OL type buyer. This is because

when OL is closer to OH, a OH type buyer gets less benefit by buying from resale, and when

PLIL is larger, a OL type buyer's expected revenue from selling the extra unit to the other

buyer declines. Therefore, a OH type buyer is more willing to take the package than a OL type

buyer under the two circumstances. Furthermore, one can also check that if PH = PL = 2,
1 1
_PH|HUH < PLIL H for all UH E (0, 1), so we have the following corollary.

PL|H PHIHuH PLL+PHLuH
2 2

Corollary 2 If PH = PL = , only scenarios (a), (b), (c), and (d) can occur in equilibrium.



3.3.3 Conditions when selling a two-unit package is better

In this subsection, we provide sufficient and necessary conditions for a two-unit package to

do better than two single-unit packages. In the following proposition, we show that p < 0 is

a necessary condition for selling a two-unit package to do better than selling two single-unit

packages.

Proposition 18 If selling a two-unit package does better than selling two single-unit packages,

then p < 0 and the seller's revenue decreases in p.

Proof. We consider the six possible scenarios listed in table 3.1. In scenario (a), if a

OH type buyer gets the package and the resale price is OH, the seller's revenue cannot be

greater than 2 PHOH since only OH type buyers get the product and they pay at most OH-

Therefore, for a two-unit package to do better, the resale price is OL. With resale price

L, the package price T is pL(1-p) H + 1 L, and the seller's expected rev-
1- (PH +pLP) 1- (H +pLP)

enue is 2PH [PL (1 - p) OH + OLI, which decreases in p. To get 2 pH [PL (1 - p) OH + OL] greater

than max {2 PH H, 2 eL}, the revenue if the seller sells two single-unit packages, we must have

OH (PH + PLP) < OL < OHPH (1 - P). (PH + PLP) < PH (1 - p) can only happen when p < 0.

Next consider scenario (b) in table 3.1. By Lemma 18, the resale price is OL, so the package

price T is 1-(PH+PLP)UH OH+ 1 eL, where UH is the probability that a OH type buyer
1-(pH +PLP)uH 1-(pH +pLp)uH

goes to the seller in equilibrium, and the seller's expected revenue is 2PHUH [(1 - (PH + PLP) UH) OH + OL],

which decreases in p. To get 2pHUH [(1 - (PH p+ LP) uH) 8H + OL] > max {2 PHOH, 2 0L}, we

must have

PHUH(1 - (PH + pLp) UH) H > (1 -PHUH) OL

and

UH [(1 - (PH + PLP) uH) H + OL] > 0 H,

which together imply

1 > 1 + (pH + pLP) uH - PH.
UH

The right-hand side is minimized when uH = 1 because PH + PLP = PHIH < 1. Assuming

UH = 1, then the right hand side, 1 + PLP, is less than 1 only when p < 0.

Then consider scenario (c) in table 3.1. A OL type buyer feels indifferent between show-



ing willingness and waiting. If he waits, he gets zero payoff, so his expected payoff when

going to the seller is also 0. Therefore, the package price is the sum of 0 L and the ex-

pected revenue from resale. By Lemma 17, the resale price is OH, so the package price T is
PH(

1 P)

[ H(1 p) H + L  and the seller's expected revenue is T 1 - PL (PL + PHP) (1 - UL) 2
PH(1-p)+(PL PHP)UL

2

Note that T and 1 - PL (PL + PHP) (1- L)2] both decreases in p, so the expected revenue

decreases in p. To have T [1 - L (PL + PHP) (1- L)2 > max { 2pHH, 2 0 L}, one necessary

condition is

(1- PL (PL + PH) (1 -UL) 2) (1 -p)

> 1+PL(PL + PHP)(1 UL)2] [2 - PH ( 1 -P) - (PL + PHP)UL]

[2 - PH (1 - p) - (PL + pHp) uL] is minimized when UL = 1, so

[2 - pH (1 - P) - (PL + PHP) UL] > 1, and

(1- PL (PL + PHP) (1- UL) 2 ) (1- p)> [1 +PL (PL +PH) (1- UL)2 (3.5)

Since (PL + PHP) > 0, inequality holds only when p < 0. The same argument can be applied

to scenario (d).

For scenarios (e) and (f), by Lemmas 17 and 18, if a 0 L type buyer gets the package, the

resale price is OH, and if a OH type buyer gets the package, the resale price is OL. This requires

PHIH (1- Y2) L PHIL (1-- ) H

1 PLIHULPHIHUH 1 PLILUL± PHILUH

1 PLIHULPHjHUH - 1 - PLILULPHILUH '
2 2

The inequality holds only if PHIH < PHIL, which implies p < 0. By equation (3.4),

TOH+OL-(OH-OL) 1 (PH + PLP) UH
T = OH -'- L - (O H - 8L) 1

1 - [(PH + PL) UH +PL (1- P) UL'

and the probability that the package is sold is

1 - PH (PH + PLP) (1 - UH) 2 - PL (PL + PHP) (1 - UL) 2 - 2 HPL (1 - ) (1 - H) (1 -UL)].



Both T and the probability decrease in p, so the expected revenue also decreases in p. *

The proposition shows that selling a two-unit package does better than selling two single-

unit packages only when p < 0, and the seller can do better by selling a two-unit package when

p is more negative. To see why this is so, first consider scenarios (a), (b), (e), and (f). In

those scenarios, if a OH type buyer gets the package, the resale price is OL. In scenarios (e)

and (f), a OL type buyer might also take the package, and the resale price is OH. Therefore, a

OH type buyer can get positive surplus by buying from resale if the other buyer is of OH type

and gets the package. The package prices in those scenarios are OH + OL minus some positive

rent R so that a OH type buyer feels indifferent between going to the seller to buy the package

and waiting to buy from resale. When p is more negative, a OH type buyer expects the other

buyer to be of OH type with lower probability, so the resale price is less likely to be OL, the

rent R can be lower, and the package price can be higher. Next consider scenarios (c) and (d).

We know that if a OL type buyer gets the package, the resale price is OH in equilibrium, and

the extra unit is sold only when the other buyer is of OH type. Hence, the package price is at

most OL plus the expected revenue from selling the extra unit. When p is more negative, a OL

type buyer expects the other buyer to be of OH type with higher probability, so the expected

revenue from the extra unit is higher, and the seller can set a higher package price. Therefore,

with more negative p, the seller gets higher revenue by selling a two-unit package.

In the following proposition, we characterize the necessary and sufficient condition for a two-

unit package to do better than two single-unit packages given PH = PL = 1, and OH = OL + 1.

Proposition 19 Given PH = PL = O L = 0, and OH = 0 + 1, selling a two-unit package can

do better than selling two single-unit packages if and only if P< 0 < .

Proof. We first prove the "if' part. Suppose 1 < 0 < . If the seller offers a

two-unit package and sets the package price at 1- ) 1- (1) the unique continuation
1- (+ 1(1+p )

equilibrium is that a OH type buyer always goes to the seller, a OL type buyer always buys

from resale, and a OH type buyer sets resale price at OL. The probability that the package is

taken is (1 - 1 (1 + p)), so the seller's revenue is 0 + (1 - p) (1 + 0), which is greater than

max {20, 0 + 1}, the seller's revenue if he sells two single-unit packages.

Then we prove the "only if' part. By corollary 2, if selling a two-unit package does better



than selling two single-unit packages, only scenarios (a), (b), (c), and (d) can occur. The

seller can set different package prices to induce different continuation equilibria. Among all

the prices, P)+ 1+ and 0 + (1 - p) (1 + 9) give the seller the maximum revenue,the prices, 1-(+p) 1- (1+ )

0 + (1 - p) (1 + 0).3 So if selling a two-unit package does better than selling two single-unit

packages, 0 + (1 - p) (1 + 0) > max {20, 9 + 1}, and this implies < < < .

Proposition 19 shows that a two-unit package can do better if p is close to -1 and if 0 is

in the middle range. As we discussed before, if p is more negative, a OH type buyer gets less

expected surplus by buying from resale, and a OL type buyer gets higher expected revenue from

selling the extra unit to the other buyer. Therefore, the buyers are willing to pay a higher

package price, and the seller's revenue increases. Proposition 19 also shows that a two-unit

package does better if 0 is in the middle range. When a two-unit package is offered, there is

probability that a OL type buyer does not buy the product in equilibrium. If 9 is large, the loss

caused by OL type buyers not buying the product is large, so selling a two-unit package cannot

do better than selling two single-unit packages at price 0. On the other hand, when 0 is small,

a OH type buyer gets large expected surplus by buying from resale, so the seller has to set a

lower package price such that a OH type buyer is willing to take the package. In this case, the

seller can just sell two single-unit packages at price OH = 0 + 1. This will increase the seller's

revenue collected from OH type buyers. Although the seller also loses the chance to sell the

product to OL type buyers, the loss is small because 0 is small. Therefore, a two-unit package

cannot do well when 0 is very large or very small.

The propositions suggest that a seller might be able to make more profit by selling in big

packages when (i) a consumer is likely to know someone valuing the product differently from

him and share a big package together, and (ii) the difference between consumers' valuations of

the product is neither too large nor too small.

-p)With package price + (1 , in the continuation equilibrium, a OH type buyer always goes

to the seller and sets resale price at OL, and a OL type buyer always buys from resale. With package price

(1 - p) + 1 + (1 - p) 0, in the continuation equilibrium, both On type and OL type buyers go to the seller

with probability 1, a OH type buyer sets resale price at OL, and a OL type buyer sets resale price at OH .



3.4 Conclusion

This paper provides a rationale for why a seller may package goods in bundles that are too

large for a consumer to consume all by himself. We show that selling in bulk packages is an

alternative way for the seller to discriminate buyers when resale cannot be excluded among

buyers. When bulk packages are offered, in many circumstances, (for instance, when the buyers

do not value the product too differently, or when a buyer is equally likely to have a high value

or a low value of the product,) buyers with a high value of the product usually have stronger

incentive to buy the package directly from the seller, and buyers with a low value tend to wait

and buy from resale. Therefore, through the process of resale, the seller is able to screen the

buyers. Moreover, when buyers' valuations are correlated, the seller can incorporate buyers'

information and understanding of the other buyers through the process of resale. We thus show

that the seller can make more profit by selling bulk packages when the buyers' values are more

negatively correlated.

The paper takes the first step toward understanding the sales model of warehouse stores and

warehouse clubs such as Food 4 Less, Super Saver Foods, Costco, and Sam's Club. Although

their original intention of selling in bulk packages is to get further reduction in price and to

save marketing and packing costs, we believe that there are other advantages brought through

different venues that wait for us to explore.
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