Structure Determination of a Yeast Ribosomal Protein L30 and Pre-mRNA Binding Site Complex by NMR Spectroscopy

1:

By

Hongyuan Mao

M. A.

Temple University, 1994

SUBMITTED TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOCHEMISTRY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SEPTEMBER, 1998

@ MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 1998 ALL RIGHTS RESERVED

1

Signature	of Author	Department of Chemistry July 25, 1998
Certified	by	James R. Williamson
		Professor of Chemistry Thesis Supervisor
	\sim \land	· 🔨
Accepted	by//	
	MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEP 3.0 1998 LIBRARIES	Dietmar Seyferth tal Committee on Graduate Students

This doctoral thesis has been examined by a committee of the Department of Chemistry as follows:

Professor	JoAnne	Stubbe	••		
			١		Chair
			7		
Professor	James	R. Williamson	······································		· • • •
					Thesis Supervisor
			-	و	
Professor	Bruce	Tidor			·
		į			

•

Structure Determination of the Yeast Ribosomal Protein L30 and Pre-mRNA Binding Site Complex by NMR Spectroscopy

By

Hongyuan Mao

Submitted to the Department of Chemistry on August 20th, 1998 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

ABSTRACT

The yeast (Saccharomyces cerevisiae) ribosomal protein L30 and its auto-regulatory pre-mRNA binding site provide one of the best examples the critical role of protein-RNA interactions in regulation of RNA processing and control of gene translation. A model system for this interaction, which includes the ribosomal L30 protein and the phylogenetically conserved RNA segment for auto-regulation, was studied using nuclear magnetic resonance (NMR) spectroscopy. The L30 protein recognizes and binds tightly to the stem-internal loop-stem RNA, the recognition elements of which lie mostly on the conserved two-plus-five asymmetric purine-rich internal loop. NMR characterizations were carried out on both the free and bound forms of the protein and the RNA. Detailed analyses of the protein revealed that the main architecture, a fourstranded β -sheet sandwiched between four α -helices, is present both in the free and in the bound form. There are however, substantial local perturbations that accompany RNA binding, the largest of which have been mapped onto the loops connecting Strand A and Helix 2, Strand B and Helix 3, Helix 4 and Strand D. In contrast to the protein, the internal loop of the RNA undergoes significant changes upon complex formation, and the most distinct observation was the formation of the G11.G56 reverse Hoogsteen mismatch pair. Structure modeling using simulated annealing in restrained molecular dynamics was carried out in X-PLOR. Detailed analyses of the complex structure reveal that the protein recognizes the RNA mostly along one side of the internal loop with five purines. The interactions are divided further into two sections. One region consists of mostly aromatic stacking and hydrophobic contacts from Leu25, Phe85 and Val87 of the protein to G56 of the RNA. The other region consists of mostly specific contacts, which include recognition of A57 by Asn 48, and G58 by Arg 52. The L30 protein-RNA complex structure thus determined using NMR spectroscopy not only provides a detailed insight for understanding the structure-function relationship regarding the yeast auto-regulation, it also further demonstrates the important role of the protein-RNA interaction in controlling RNA processing and gene translation.

Title: Professor of Chemistry

Acknowledgments

As I was growing up, my Dad, an old-fashioned organic chemist, used to tease me of not being able to picture the three-dimensional structures of his organic compounds. I would never have thought of becoming a structural chemist until seven years ago, when I met Dr. Allen Bedford, at the time a graduate student at Temple University. His fascination with hemoglobin, a well-studied small protein, could always stir up some serious debates about salt bridges, hydrogen bonding, and hydrophobic interactions, *etc.*, and I wished that I had known more about the structures and functions of macromolecules. It wasn't a tough choice then, when I came to MIT and joined Dr. James R. Williamson's Laboratory in order to fulfill my curiosities. Looking back, I have to say I feel quite fortunate to be involved in his lab, since Jamie's ambition and fascination with science always pushed me for tough challenge throughout my graduate career.

One of the most valuable pieces of advice Jamie has given me is "your colleagues are your best resources.". Over the years, many people have given me an incredible amount of assistance that made this thesis possible, and I am very grateful to them. In the NMR area, Dr. John Battiste is the first mentor who taught me many NMR techniques in the early days, a pleasant collaborator who I worked together with on the Rev-RRE structural determination project, and a very good friend who gave me numerous support over many Tosci coffee trips. The addition of Dr. Kwaku Dayie in Jamie's lab was a turning point for my NMR experience. Many hours spent with Kwaku next to our new 600 Varian console not only facilitated the completion of all the triple resonance experiments on this thesis, I also learned many new NMR concepts, including measuring relaxation & dynamics and writing NMR pulse sequences. I will miss seeing his heavy-duty jacket in the cold Boston winter. Dr. Radha Plachikkat was extremely helpful during my days at TSRI, who not only give me valuable suggestions about the X-PLOR calculations, but also patiently made corrections to my first thesis draft and provided many concise comments. I wish we met each other earlier. Dr. Chris Turner helped in assisting me in various experiments acquired on the Bitter instruments. His introducing of

-4-

WATERGATE-in solvent suppression really made our NMR life easier. Dr. Alex Brodsky and Dr. John Chung also helped me with a portion of the NMR experiments.

In addition to the NMR, many people in Jamie's lab also gave me valuable help and suggestions during experiments and group meetings. Among them, Christopher Cilley, the computer Czar, your careful maintenance of all the SGI really made our data storage and processing very user-friendly. I'm particularly thankful for his suggestion of putting Oxytricha on my desk (no, not the ciliated protozoan). Dr. Robert Batey provided various valuable suggestions in the molecular biology area, in particular, the isotopic labeling of nucleotide. I hope that he can relax the tension between us now. I would like to thank (I think) Dr. Susan White at Bryn Mawr College, who introduced the L30 project to this lab in 1996. And the rest is history!

I would like to especially thank Dr. Jeffrey Orr, who has provided me with enormous love and support over the years. Your patience and carefulness has helped me through many of the writing crises. I am so relieved that we have come through the "danger zone" writing the thesis.

Finally, I would like to dedicate this thesis to my parents. Without their unselfish love, support and encouragement, I could not have possibly made it to the Peking University, let alone come to the United States to pursue the Ph.D. degree in the MIT Chemistry Department.

-5-

Table of Contents

ABSTRACT	3
Acknowledgments	4
CHAPTER 1. Introduction	9
1.1. Protein-RNA Interactions	9
1.1.1. Importance of protein-RNA interactions	9
1.1.2. Typical architectures for RNA binding protein	12
1.1.3. RNA structural elements	13
1.2. The Ribosome as a Rich Source of Protein-RNA Interaction	17
1.2.1. Complexity of the ribosome	17
1.2.2. Regulation of ribosome biosynthesis	18
1.2.3. The yeast ribosomal protein L30 and its autoregulation RNA binding s	ite
	19
1.3. NMR Methods for Protein and RNA Structural Determination	26
1.3.1. General procedures for protein and RNA NMR	27
1.3.2. Isotopic labeling methods for protein and RNA	28
CHAPTER 2. The L30 Protein in the Free Form	32
2.1. The L30 Protein Biochemistry	32
2.1.1. Production of protein L30	32
2.1.2. In vitro RNA binding assay	39
2.1.3Circular dichr	oism
	42
2.2. NMR of L30 Protein in Free Form	45
2.2.1. Optimization of NMR conditions	45
2.2.2. NMR studies and resonance assignment	49
2.2.3. Backbone relaxation studies	70
CHAPTER 3. The L30 RNA in the Free Form	77
3.1. Design of L30 RNA for NMR	77
3.1.1. Structure mapping and design of RNA for NMR	79
3.1.2. Size-exclusion chromatography assay	83
3.2. RNA Synthesis	84
3.2.1. Preparation of "C/"N nucleoside triphosphates (NIPs)	84
3.2.2. Preparation of the RNAs for NMR characterization	85
3.3. NMIR Characterization of the L30N RNA in the Free Form	89
3.3.1. Optimization of the experimental conditions	89
3.3.2. Assignment of exchangeable proton resonances	89
CLIA DTED 4. The L 20 Destain in the Deserved Deserved	90
CHAPTER 4. The L30 Protein in the Bound Form	112
4.1. Complex Formation	.112
4.1.1. KNase activity assay	. 112
4.1.2. 11 tration.	.113
4.2. NMK Characterization of the L30 Protein in the Bound Form	. 114

.

4.2.1. Optimization of the NMR sample condition	114
4.2.2. The sequential backbone assignments of the protein	115
4.2.3. Assignments of the side chain resonances	131
4.2.4. Amide exchange measurements	133
4.2.5. Torsion angle measurements	138
4.2.6. Backbone relaxation studies	146
Chapter 5. The L30N RNA in the Bound Form	149
5.1. NMR Characterization of the Bound Form L30N RNA	149
5.1.1. Use of mutants to assist the assignment of the RNA	149
5.1.2. Assignment of the exchangeable protons	150
5.1.3. Assignment of nonexchangeable resonances	156
5.1.4. Torsion angles	165
5.2. Unusual Features in the RNA NMR Spectrum	168
5.2.1. Unusual sugar carbon chemical shifts	172
5.2.2. Unusual intra- and inter-molecular NOEs	172
Chapter 6 Molecular Modeling	180
6.1. NMR-derived Structural Restraints	181
6.1.1. Theory	181
6.1.2. Protein restraints	184
6.1.3. RNA restraints	186
6.1.4. Complex restraints	188
6.2. Molecular Modeling	188
6.2.1. Theory	188
6.2.2. Generating protein structures	193
6.2.3. Generating RNA structures	197
6.2.4. Docking of complex	198
6.3. Structure Statistics	201
6.3.1. Overall statistics	201
6.3.2. Protein statistics	205
6.3.3. RNA statistics	206
CHAPTER 7 Structure of the L30 Complex	214
7.1 Structure Description of the L30 Complex	214
7.1.1 Protein structure	214
71.2. RNA structure	226
7.1.3. Specific intermolecular contacts	239
7.2. Structural Similarity of L30 with Other Proteins	249
7.3. Biological Implications:	251
7.3.1. Correlation with biochemistry data:	251
7.3.2. Relationship to splicing	254
7.3.3. Relation to the yeast ribosome	255
7.4. Future Research	255
7.4.1. Protein mutants	255
7.4.2. Crystallization of L30 protein-RNA complex with U1 snRNP fragme	ent 256
Appendix A. Data Processing in NMRPipe	258

Table of Contents

Appendix B.	Modeling Protocol	264
Appendix C.	Restraints	288
References:		342

•

CHAPTER 1. Introduction

1.1. Protein-RNA Interactions

1.1.1. Importance of protein-RNA interactions

The central dogma in Biology indicates that genetic information is passed from DNA to RNA through transcription and from RNA to protein through translation (Crick, 1958). Specific protein-RNA interactions participate in many of these processing events and play crucial roles in gene regulation through transcription, RNA processing, transport and translation. Our understanding of how sequence and structure unite to form determinants required for protein-RNA recognition has dramatically increased recently through many areas of investigation, including molecular biology, biochemistry, macromolecular crystallography and high resolution nuclear magnetic resonance spectroscopy (NMR). Protein-RNA interactions are essential in many processes, including the areas discussed below that have been subjected to extensively studied in recent years.

1.1.1.1. Transcription control

There are several well-established examples that show transcription is either positively or negatively regulated by protein-RNA interactions. The human immune-deficiency virus (HIV) regulatory protein Tat binds to the trans-activation region (TAR) in the 5'-long terminal repeat (LTR) of a growing viral messenger RNA and promotes RNA polymerase transcription efficiency (Berkhout *et al.*, 1989). The binding of the bacteriophage N protein to a small RNA element in nascent RNA transcript and subsequent interaction with other cellular proteins produce a termination resistant complex (Konrad, 1970). The biosynthesis of tryptophan (trp) in *Bacillus subtilis* is controlled by an attenuation mechanism, whereby the attenuation protein (TRAP) binds to the 5'-upstream translation region (UTR) of mRNA, and allows the

downstream transcript to form a hairpin structure that leads to transcription termination in responds to the high level of tryptophan (Witherell *et al.*, 1991).

1.1.1.2. RNA processing

Most RNAs synthesized in eukaryotic cells undergo extensive processing (i.e. capping, splicing, polyadenylation and post-transcriptional modification) before they reach the cytoplasm for protein synthesis. While these premessenger RNAs (pre-mRNAs) are nascent and remain attached to their DNA templates, they quickly become associated with certain RNA binding proteins. This ubiquitous protein-bound state is referred to as heterogeneous nuclear ribonucleoprotein (hnRNP). It is in this form that pre-mRNAs undergo splicing and other processing reactions that convert them into mature mRNA molecules. The best known example is the spliceosome composed of a number of small nuclear RNAs (snRNAs) and many small nuclear ribonucleoproteins (snRNPs) that are involved in diverse aspects of nuclear RNA processing, including specific intron recognition and removal from messenger RNA precursors (pre-mRNAs).

1.1.1.3. RNA transport

All mRNAs synthesized in the nucleolus are exported through nuclear-pore complexes into the cytoplasm for protein synthesis. While it is unclear whether most RNAs are exported through their association with hnRNP proteins, there is substantial evidence to indicate that the Rev protein of HIV can interact with the Rev responsive element (RRE) RNA to inhibit splicing and facilitate the partially spliced and/or unspliced viral mRNA export (Felber *et al.*, 1989).

1.1.1.4. Ribosome assembly

About 85 percent of cellular RNAs are found in ribosomes, and the absolute amount is greatly increased in cells engaged in large-scale protein synthesis. There are extensive sequence specific protein-RNA contacts that govern the hierarchical process of its assembly. Precise

incorporation of more than 50 proteins into its rRNA framework is absolutely required for the ribosome to function in protein synthesis.

1.1.1.5. Protein synthesis

In the cytoplasm, protein-RNA interactions play a central role in protein synthesis. The fidelity of translation depends on specific aminoacylation of fifty different transfer RNAs (tRNAs) by different aminoacyl-tRNA synthetases (aaRS). The actual decoding of the genetic information including initiation, elongation and termination is performed by the ribosome, which itself is a large protein-RNA complex. Other protein-RNA interactions also participate in regulation of protein synthesis. For instance, most prokaryote ribosomal proteins use a translational feedback inhibition mechanism, whereby excess ribosomal protein binds to the 5' region of its polycistronic mRNA and inhibits its production. Another example is the MS2 bacteriophage coat protein, which not only performs sequence-specific RNA encapsidation but also represses the translation of replicase by binding a hairpin structure in the Shine-Dalgarno sequence of the viral replicase mRNA. This process plays an important role as a biological switch from the replication phase to the assembly phase of the phage life cycle.

The above protein-RNA complexes are present in cells in very low quantities, however, obtaining large quantities of many RNA-binding proteins and cognate RNAs, which are necessary for many structural studies, has been made possible through molecular cloning and overexpression of these molecules in bacteria. Furthermore, large quantities of RNA can be made through *in vitro* T7 RNA polymerase enzymatic synthesis, directed by templates derived from plasmids purified from bacteria or oligos through chemical synthesis. These technical advances have made it possible to prepare homogenous samples in a reasonable time period thereby facilitating the structural studies using X-rays crystallography and nuclear magnetic resonance (NMR) spectroscopy.

1.1.2. Typical architectures for RNA binding protein

High-resolution structures of various RNA binding proteins have revealed unexpected sequences yet show structural relationships among these proteins. Although the specificity of a protein for a particular RNA depends on the specific function, functional roles are made possible by presenting the functional groups in properly folded protein structures. Comparative structural analysis of proteins from the protein synthesis (i.e. the aminoacyl-tRNA synthetases, ribosomal proteins and elongation factors), spliceosomal, RNA viral and other RNA-binding systems have categorization of binding domains into a few discrete motif. Among them, the β -sheet is a common structural element in many cases, while pure α -helical proteins are much less frequently observed. In particular, most RNA binding-domain belongs to an α/β family of proteins. These homologous structures contain α/β motif consisting of a three-stranded anti-parallel β -sheet and an α helix. This motif is found in the most commonly observed RNA-binding domains, which include the ribonucleoprotein (RNP) domain, the double stranded RNA binding domain (dsRBD), the K homology (KH) domain and the S1 domain. For example, the RNP domain has been found in over 200 proteins involved in RNA processing, transport and metabolism (Mattaj, 1993; Nagai *et al.*, 1995). It consists of a four-stranded antiparallel β sheet flanked on one face by two α helices. The RNP1 and RNP2 motifs are located in the two middle β strands and play a crucial role in RNA binding. The dsRBDs have an α - β - β - β - α topology and fold into a threestranded anti-parallel β sheet packed on one side by two α helices. Both loop 2 and loop 4 are conserved in this family and are implicated in RNA binding. The K homology (KH) domain (Nagai, 1996) found in the heterogeneous nuclear RNP (hnRNP) K has also been identified in a number of proteins associating with RNA. A NMR study on the structure of the KH domain of human vigilin, a protein thought to be involved in tRNA transport, has shown that it contains a three stranded anti-parallel β -sheet and three helices. The fourth RNA-binding motif known as the S1 domain (Bycroft et al., 1997) was first identified in E. coli ribosomal protein S1 and is also present in RNase E, RNase II, NusA and some other RNA-associated proteins. The S1 domain consists of a five-stranded anti-parallel β -sheet forming a β -barrel. It appears that many RNA-binding proteins use β -sheets as binding surface for hairpins or single-stranded RNAs. Aromatic side chains on the β -sheets provide a platform for the RNA bases. The anticodonbinding domains of GlnRS, U1 snRNP protein A and the coat protein of the phage MS2 exemplify this structural arrangement. U1A, in one of them, it is well established that the aromatic residues participate in stacking interactions with RNA bases (Liljas & al-Karadaghi, 1997). In all these cases the RNA is unraveled after a conformational change induced by the protein such that the bases are splayed out to maximize specific and other interactions with the protein. The new conformations are stabilized by inter- and intramolecular hydrogen bonding. In addition, loop regions of the protein play important roles in specific recognition of RNA bases.

1.1.3. RNA structural elements

Proteins can recognize and interact with several feature of RNA structures. The overall shape and fold of an RNA molecule, or a segment of specific nucleotide sequence elements are all important in interacting with protein. While double stranded helical regions are commonly observed in RNA structure, regular A-form helices less frequently serve as recognition elements in a protein-RNA complex. Compare to the B-form DNA, which has a wide and shallow major groove facilitating sequence specific protein recognition, the A-form RNA duplex contains a deep and narrow major groove that is largely inaccessible (Seeman *et al.*, 1976). Hence, RNA almost never exists as a long uninterrupted double helix. However, if the major groove of RNA is sufficiently distorted such that the major groove is widened, it can accommodate protein recognition elements, as exemplified by the Rev-RRE complex (Battiste *et al.*, 1996). In general, protein helices interact preferentially with the minor groove of RNA, in contrast to the case for DNA-binding proteins, while protein loops and β -strand elements have been observed to interact with the major groove of RNA.

Despite of its limited functional group diversity, base pairs in RNA expand the standard palette from the canonical Watson-Crick base pairs to noncanonical two hydrogen bond pairs (*i.e.* Hoogsteen, homopurine, homopyrimidine, and wobble base pairs, *et al.*). They further extend to include one-hydrogen bond base pairs, water-mediated base pairs, protonated base

- 13 -

pairs, as well as base-2'OH and base-phosphate hydrogen bonding interactions. These nonstandard base pairs are quite common and often phylogenetically conserved, and provide RNA recognition sites at both major and minor grooves. Furthermore, the array of RNA secondary structures is also increased from standard double helices to include elements such as hairpin, asymmetric internal bulge, two stacked helices, three-way junction and four-way junction (Figure 1.1.1). These secondary structural elements not only serve as building blocks for RNA tertiary structure formation; they also widely act as sites for protein recognition. Bulges or internal loops inserted into a helix render a widened major groove, thus facilitating tertiary contact and protein recognition. While limited amounts of structures of RNAs in complex with protein are currently available, the functional elements of these RNA structures have been studied extensively. RNA motifs that have already been observed in multiple RNA structures include: A platforms (Cate & Doudna, 1996), base zippers (Correll *et al.*, 1997), interstrand purine stacking (Pley *et al.*, 1994), reversed sugars (Szewczak *et al.*, 1993) and U turns, including GNRA tetraloops (Heus & Pardi, 1991b), UUCG tetraloops (Varani *et al.*, 1991) and pseudoknots (Kolk *et al.*, 1998).

1.1.3.1. RNA hairpins

RNA hairpins are a common feature in RNA, particular in rRNA. Approximately 70% of the 16S rRNA folds into 31 different stem loops (Varani, 1995). A hairpin loop is formed when a single strand flips back on itself to form a double-stranded region leaving the bases at the turn unpaired. Exceptionally stable hairpins with compact shapes and specific hydrogen bonding patterns usually serve as nucleation sites and tertiary contacts for RNA folding (*e.g.*, GNRA, UUCG, and CUUG tetraloops; Varani, 1995; Cate & Doudna, 1996). Many hairpin loops that can undergo conformational changes upon binding play very important roles in protein recognition and gene regulation. The seven-member anti-codon loop of tRNA^{Phe} is recognized by the phenylalanyl-tRNA synthetase during aminoacylation (Saenger, 1984). The HIV-1 transactivating region (TAR) RNA is a bulge-stem-loop hairpin that activates transcription upon Tat binding (Frankel, 1992). The hairpins are also one of the control elements for autoregulation. T4 DNA polymerase can block its synthesis by binding to a hairpin upstream of the Shine-

Figure 1.1.1: Typical secondary structural elements in RNA: 1) helix, 2) hairpin, 3) internal loop, including 3a) wobble base pair with bulge loop and 3b) bent helix, 4) pseudoknot, 5) three-way junction, and 6) four-way junction.

Dalgarno sequence of mRNA. Perhaps the most well known case is the iron responsive element (IRE), where a stem-hairpin loop structure interacts with different proteins to increase ferritin synthesis and decrease transferrin receptor synthesis as the iron concentration increases. Hairpin RNAs are also important in all steps of translation, but primarily in controlling the termination. For examples, in prokaryotes, a termination signal is comprised of an RNA hairpin followed by six to eight uridines, whereas in lambda bacteriophages (λ , P22 and ϕ 21), a small hairpin (box B) in *nut* site RNA is important for anti-termination regulation (Greenblatt *et al.*, 1993).

1.1.3.2. Internal loops and bulges

Internal loops and bulges are sequence interruptions in a double-strand helix where standard Watson-Crick base pairs cannot form. As a result, there is a potential for accessibility of the otherwise deep and narrow RNA major groove for protein recognition. Many important biological functions of RNA are associated with internal loops and bulges. Secondary structures based on Watson-Crick base pairing often give people the false impression that these internal loops are merely floppy regions flanked by helical stems. However, structural studies have shown that the loop regions are often highly structured through formation of mismatches. G-A mismatches are commonly found in rRNAs, usually in the thermodynamically stable imino hydrogen-bonded conformation and sheared conformation forms (Gautheret *et al.*, 1994). An imino hydrogen-bonded G-A pair and a *trans*-conformation G-G mismatch in RRE internal loop open up the major groove that accommodate an α -helical Rev peptide (Battiste *et al.*, 1996).

1.1.3.3. Pseudoknots

Pseudoknots are a popular class of RNA structure, defined as a set of base pairings that cross an existing secondary structure helix. Pseudoknots offer a number of sites for interaction with protein, with the most intriguing function in translational frameshifting demonstrated in mouse mammary tumor virus (MMTV) (Chamorro *et al.*, 1992) and infectious bronchitis virus (IBV) (Brierley *et al.*, 1991). The pseudoknot structure of turnip yellow mosaic virus (TYMV) (Kolk *et al.*, 1998) shows the intimate interaction of two loops to the helical region while

spanning across major and minor groove of the RNA. The structure resulting from this interaction between the minor groove and single-stranded RNA at helical junctions displays internal mobility, which may be a general feature of RNA pseudoknots that regulate their interaction with proteins or other RNA molecules.

1.2. The Ribosome as a Rich Source of Protein-RNA Interaction

1.2.1. Complexity of the ribosome

All ribosomes consist of small and large subunits. Each subunit is a complex between one or more large ribosomal RNA (rRNA) molecules and a number of relatively small, predominately basic proteins. Prokaryotic ribosomes (*e.g. E. coli*) consist of 30S and 50S subunits, comprised of a 16S rRNA and 21 proteins, and 5S and 23S rRNAs and 32 proteins, respectively (Wittmann, 1982). Eukaryotic (*e.g.* yeast) ribosomes are larger and are made of 40S and 60S subunits, which comprise an 18S rRNA and about 32 proteins, and 5S, 5.8S and 28S rRNAs and about 46 proteins, respectively (Kozak, 1983).

The ribosome is a large RNA-protein complex where the process of protein synthesis takes place, including initiation, elongation and termination. A detailed knowledge of the ribosome structure will be required before its function and mechanisms can be fully understood. The organization and low resolution structure of the prokaryotic ribosome and its subunits have been studied using *in vitro* assembly, electron microscopy, neutron scattering and diffraction, and chemical probing (Lake, 1985; Moore, 1992). Crystallography and NMR methods have provided tremendous insight into the detailed features of several ribosomal proteins and fragments of rRNA. There are more than a dozen partial or full structures out of more than 50 proteins from prokaryotic ribosomes available: S1, S5, S6, S7, S8, S15, L1, L6, L9, S17, L14, L22, L30, the L7/L12 C-terminal domain, L11 C-terminal RNA recognition domain (see reviews in (Liljas & al-Karadaghi, 1997; Arnez & Cavrelli, 1997)). A number of common structural

features are seen in these ribosomal proteins. The most frequently occurring motifs are based on anti-parallel β -sheets. One recurring motif is the split β - α - β , or RNA recognition motif (RRM), first found in the RNA binding domain of the protein U1A and in many other proteins, including ribosomal proteins S6, L1, L6, L7/L12, L9, L22 and L30. Another type of fold, based on an antiparallel β -barrel, is found in S17 and as the repeated domain in the largest ribosomal protein S1. Purely helical proteins seem to be in a clear minority, with S15 alone known to belong to this class. The three-dimensional structures reveal that the distribution of positive charge (due to lysine and arginine residues) over the surface of the proteins is far from even, rather conserved patches of positive surface potential are observed.

1.2.2. Regulation of ribosome biosynthesis

The biosynthesis of ribosomes requires the coordination of a large number of steps which must be carefully orchestrated. These include transcription of ribosomal RNAs (rRNA) and messenger RNAs (mRNA) encoding ribosomal proteins, translation of these mRNAs into more than 50 ribosomal proteins in cytoplasm, translocation of proteins into nucleolus, assembly of ribosomal proteins with rRNAs in the nucleolus, and export of the completed ribosomal subunit to the cytoplasm. In E. coli, the ribosomal protein genes are clustered in large operons, and the transcription of most ribosomal protein genes is constitutive by the sole species of RNA polymerase. The regulation of synthesis of ribosomal proteins commonly occurs at the level of translation whereby excess ribosomal protein binds to its polycistronic mRNA to inhibit translation of its several encoded proteins (Nomura et al., 1984; Jinks-Robertson & Nomura, 1987). In contrast, eukaryotic cells (e.g. yeast) have three classes of RNA polymerases: RNA polymerase I makes a 35S precursor ribosomal RNA; polymerase II makes mostly mRNA; and polymerase III makes transfer RNA (tRNA), 5S rRNA and a few other small RNA molecules (Watson et al., 1987). In yeast, regulation of ribosome synthesis occurs at different steps. First, since all mRNAs are monocistronic and are scattered throughout the genome, the promoter of all the ribosomal protein genes have coevolved to provide roughly equimolar amounts of mRNA (Kim & Warner, 1983). Furthermore, many of the ribosomal protein genes in yeast cells contain a single intron that is uncommon for other yeast proteins. The production of the ribosomal proteins can be auto-regulated at both premessenger RNA (pre-mRNA) splicing and mRNA translation levels (Warner, 1989), this ultimately controlling the balanced production of the ribosome.

1.2.3. The yeast ribosomal protein L30 and its autoregulation RNA binding site

The yeast *Saccharomyces cerevisiae* (*S. cerevisiae*) ribosomal protein L30¹ (formerly know as L32) and its autoregulation RNA binding site is one of the best examples that demonstrates the critical role of protein-RNA interactions in regulation of RNA processing and control of gene translation. Despite the fact that the functional role of L30 protein in the yeast 60S ribosomal subunit is unclear at the moment, its autoregulation that influences splicing of premRNA, translation of its mRNA, and the processing of rRNAs have been best characterized through many *in vivo* studies.

1.2.3.1. The L30 protein

The L30 protein in S. *cerevisiae* is a small (104 amino acids) but essential protein in the 60S ribosomal subunit (Daveba & Warner, 1987). Homologs have been found in organisms from eukaryo and archaea but not prokarya, of which the protein sequence alignment is shown in Figure 1.2.1 using BLAST program (Altschul & Lipman, 1990). Less information is available for the exact rRNA binding site of the L30, because of the more complex eukaryotic ribosome components and assembly pathway. Nevertheless, L30 appears to interact with at least three distinct RNA molecules to influence different elements of RNA processing and function. It autoregulates the splicing of L30 pre-mRNA, translation of its mRNA, and influences the processing of the 35S pre-rRNA for 60S ribosomal subunits. Among these functions, the feedback inhibition of pre-mRNA splicing is the most-studied and best understood system, which

¹ The yeast ribosomal protein L30 was originally called L32, however, it has be renamed by the new nomenclature for the yeast ribosomal proteins introduced by several laboratory (Mager *et al.*, 1997).

has been identified as the association of a stem-loop-stem RNA with the L30 protein, and interference with formation of a complete spliceosome. The RNA has been mapped out through phylogenetic comparisons between two yeast species, namely *S. cerevisiae* and *Kluveromyces lactis* (*K. lactis*), and extensive mutational analysis (Eng & Warner, 1991), encompassing the 5'end of the exon, the first AUG codon, and the 5' end of the intron (Figure 1.2.2). A similar RNA structure with only a single nucleotide variation can also form within the spliced mRNA, thus providing the transnational regulation (Li *et al.*, 1996). It is very likely that the L30 protein interacts with these RNAs by similar mechanisms, but how it binds to the RNA is still unclear. Furthermore, the most important functional role of the L30 protein is located within the ribosome. Although the exact binding site is not yet known, it is likely that the binding is similar to the mechanism used with the auto-regulation site. This has precedence form other ribosomal proteins (Nomura *et al.*, 1980).

1.2.3.2. The L30 protein pre-mRNA binding site

Extensive *in vitro* and *in vivo* biochemical analyses have provided valuable information on the secondary structure content of the pre-mRNA substrate of the L30 protein. Studies including mutational analysis, chemical and enzymatic probing, and modification interference experiments support the notion that a purine-rich asymmetric internal loop between two helical stems is important for protein recognition (White & Li, 1995) (Figure 1.2.3, panel **a**). Further experiments utilizing SELEX (Systematic Evolution of Ligands by EXponential enrichment) show that a two-plus-five (two residues on one side, five on the other) internal loop motif with conserved 5'-GA-3' dinucleotides on both sides of the internal loop is critical for protein binding. Six out of the seven nucleotide positions show a preference for purines (Li & White, 1997) (Figure 1.2.3, panel **b**).

1.2.3.3. Biochemistry of the pre-mRNA binding site

While *in vitro* mutagenesis studies and phylogenetic comparisons have suggested the existence of two helical regions in the pre-mRNA binding site, *in vitro* chemical and enzymatic

			34
MAPV	KSQESINQKL	ALVIKSGKYT	LGYKSTVKSL
MAPA	KNQENINQKL	ALVVKSGKYS	LGYKSTVKSL
MASVVTKKSK	KSGDTINAKL	ALTMKSGKYV	LGYKSTLKTL
––MVAAKKTK	KSLESINSRL	QLVMKSGKYV	LGYKQTLKMI
MVAAKKTK	KSLESINSRL	QLVMKSGKYV	LGYKQTLKMI
MAKKVK	SKVDTINTKI	QLVMKSGKYV	LGTQQSLKTL
MAKKTK	SKVNTINAKL	QLVMKSGKYV	LG TQQALTTL
	MAPV MAPA MASVVTKKSK MVAAKKTK MVAAKKTK MAKKVK	MAPV KSQESINQKL MAPA KNQENINQKL MASVVTKKSK KSGDTINAKL MVAAKKTK KSLESINSRL MVAAKKTK SKLESINSRL MAKKVK SKVDTINTKI MAKKTK SKVNTINAKL	MAPV KSQESINQKL ALVIKSGKYT MAPA KNQENINQKL ALVVKSGKYS MASVVTKKSK KSGDTINAKL ALTMKSGKYV MVAAKKTK KSLESINSRL QLVMKSGKYV MAKKVK SKVDTINTKI QLVMKSGKYV MAKKTK SKVNTINAKL QLVMKSGKYV

```
yeast RQGKSKLIII AANTPVLRKS ELEYYAMLSK TKVYYFQGGN
klula RQGKAKLIII AANTPVLRKS ELEYYAMLSK TKVYYFQGGN
schpo RSGKAKLILI AGNCPPLRKS ELEYYAMLSK ANVHHYAGTN
chick RQGKAKLVIL ANNCPALRKS EIEYYAMLAK TGVHHYSGNN
human RQGKAKLVIL ANNCPALRKS EIEYYAMLAK TGVHHYSGNN
trybb RQGKSKLVVI SANCPPIRKA EIEYYCTLSK TPIHHYSGNN
leima RQGKSKLVVI ANNCPPIRRA EVEYYCTLSK TPIHHYSGNN
```

```
yeastNELGTAVGKLFRVGVVSILEAGDSDILTTLA------105klulaNELGTAVGKLFRVGVVTILDAGDSDILTALA------schpoIDLGTACGKLFRVGVLAITDAGDSDILDA-------chickIELGTACGKYYRVCTLAIIDPGDSDIIRSMPEQTSEKhumanIELGTACGKYYRVCTLAIIDPGDSDIIRSMPEQTGEKtrybbLDLGTACGRHFRACVLSITDVGDSDITSA-------leimaLDLGTACGKPFRTCVLSVTNVGDSDIAT--------
```

Figure 1.2.1: Sequence alignments of 60S ribosomal protein L30 from various species, including a, Saccharomyces cerevisiae; b, Kluyveromyces lactis; c, Schizosaccharomyces pombe; d, chicken; e, human; f, Trypanosoma brucei brucei; h, Leishmania major. The numbers refer to the S. cerevisiae sequence. Conserved residues are highlighted in red, relatively conserved hydrophobic, charge residues are highlighted in blue and green, respectively. Alignments were performed using the program BLAST (Altschul et al., 1990) for protein sequences in the NCBI database.

Figure 1.2.2: Proposed RNA secondary structures involved in autoregulation of synthesis by yeast ribosomal protein L30 (Li *et al.*, 1996): **a**, pre-mRNA binding site for regulation of splicing; **b**, mRNA binding site for feedback regulation of translation. Note that the U63 in **a** is replaced by C293 in **b**, and the unpaired bases at the 3' ends are different. Currently, the rRNA binding site in the 60S subunit of the ribosome is unclear.

Figure 1.2.3: Schematic representations of results from biochemical studies of L30 protein pre-mRNA binding site. Panel **a** shows minimal RNA fragment used in biochemical analyses. Circles (open or dashed) and arrows represent the respective chemical modifications of bases and phosphates that are important for L30 protein binding (Li *et al.*, 1995). Open circles represent nucleotides protected from cleavage upon protein binding. Lower case letters represent non-native nucleotides. Panel **b** shows secondary structure scheme of RNA aptamer summarizing the results of an *in vitro* SELEX analysis of L30 RNA (Li *et al.*, 1997). The numbering of nucleotides in the internal loop region follows the natural L30 transcript as in MiniL32 RNA. N represents any nucleotide, while bases in bold characters represent either the absolutely conserved (larger font), or most frequently observed (smaller font) nucleotides.

probing confirmed the existence of two helical stems, and further identified the internal loop region as the important binding site. These in vitro studies were carried out mostly on model systems, including MiniL32 RNA (a small binding element), and other similar constructs (White & Li, 1995). In the absence of protein, G10, G11, A12, A55, A59, and U60 in the purine rich region are all intrahelical and probably paired, but N-7 position of A57 is reactive to diethylpyrocarbonate (DEPC), and the N-7 position of G56 reacts strongly with the nickel macrocycle [(2,12-dimethyl-3,7,11,17-tetraazabicylo[11.3.1]heptadecal(17),2,11,13,15pentaenato)nickel hexafluorophosphate] (also called NiCR), indicate a possible bulge region. In the presence of protein, G11, A12, G13, A55, G56, G58 and A59 are protected from chemical modification. Carboxethylation of the N7 positions of A12, A55 and A59 in the loop region abolishes protein binding while modification of the N7 positions of G15, A49, A51 in the helical region and A57 in the loop region has no effect on protein binding. Modification of the N7 position of A57 does not interfere with protein binding, but is protected from DEPC attack upon protein binding. RNAs with deletion of either A57 or G56 failed to bind MBP-L30², a fusion construct used for studying the L32 protein (White et al., 1995). Modification of the phosphate backbone with ethylnitrosourea (ENU) shows that backbone positions 10 to 12 and 55 to 58 of the internal loop are important for protein binding. Footprinting with Fe(II)-EDTA, which generates hydroxyl radicals and attacks the ribose ring, shows that nucleotides 11 to 13 and 55 to 59 are protected from hydroxyl-radical attack by binding of the fusion protein. Filter binding experiments established that the binding stoichiometry is one RNA per fusion protein molecule. (Li et al., 1995).

There are two potentially G·U base pairs in MiniL32, namely G10·U60 pair and U14·G53 pairs. Comparative species and compensatory mutational data suggest that an A-U pair may substitute for the U14·G53 pair, but not for the G10·U60 pair (Eng & Warner, 1991). Thus, it was initially concluded that G10 and U60 might not form a base pair, but that U14 and G53 form a wobble base pair. While the base pairing conformation of G10 and U60 is not clear, the

² MBP-L30 was originally called MBP-L32, however, it has been renamed by a new nomenclature formally introduced by several laboratories (Mager et al., 1997).

importance as flanking bases of the internal loop for protein binding has been studied through mutagenesis analysis (White & Li, 1995). Studies show that G10·U60 has the highest protein affinity (10nM to MBP-L30 fusion), followed by G·A, C·C, U-A, U·C, and G·G with the other possible pairs binding very weakly. Clearly Watson-Crick pairing at this position does not favor protein binding. Finally, G10 can be replaced by inosine with only a slight reduction of binding.

Further experiments with SELEX (systematic evolution of ligands by exponential enrichment) show that the protein recognizes a motif, a 2 + 5 internal loop. Within the loop, there are no sequence variants found at position 11 and 12; position 55 can be any of the bases except G (A>C>U); position 56 must be a purine (G>>A); C is conserved at position 57; and no changes are found at position 58 and 59 (Li & White, 1997).

While much is known about the secondary structure of the RNA binding site, very limited structural information is available for the L30 protein. The only *in vivo* experiment shows that mutation of Ile43 from the highly conserved hydrophobic domain in the L30 protein leads to growth reduction (Vilardell & Warner, 1997). The mutant does not bind to its transcript, and thus no longer regulates its splicing and translation. Mutation also reduces the processing rate of the 27S pre-rRNA, the product of the second processing event of the 35S pre-rRNA that gives rise to mature 25S rRNA, resulting in an insufficiency of the60S subunit of ribosome.

1.3. NMR Methods for Protein and RNA Structural Determination

Nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful tool for solving macromolecular three-dimensional structure since the 1980s (Wüthrich, 1986; Clore & Gronenborn, 1991). Despite the relatively low upper molecular weight limit of current solution NMR technology, the driving force for the development of NMR as an alternative to X-ray crystallography was three fold. Firstly, many macromolecules do not crystallize, and even when they do there may be difficulties in solving the phase problem. Finding suitable heavy-atom derivatives is particularly difficult for nucleic acids. Moreover, significant and possibly

important functional differences may exist between structures in the crystal form and in solution, where structures solved through crystallography might suffer from the crystal packing artifacts. And finally dynamic processes ranging from the picosecond to second time scales are amenable to study by NMR. Most importantly, NMR relaxation studies can provide detailed information about molecular motions and relate the dynamics to structural recognition and functional aspects of target molecule.

With the technical advances in molecular biology and recently developed isotopiclabeling schemes, large quantities of macromolecules and reagents for *in vitro* enzymatic synthesis can be obtained. Isotopically labeled samples, in combination with powerful magnets and pulse-field gradients enable sophisticated 3D and 4D heteronuclear NMR experiment for rapid and unambiguous determination of three-dimensional structures of large molecules (up to 30,000 Dalton) using NMR spectroscopy.

1.3.1. General procedures for protein and RNA NMR

Currently, NMR structure determination relies mainly on three principle experimental variables to give geometric information. First, the chemical shift of a particular spin is directly related to its conformation and environment. Empirical surveys and theoretical calculations for proteins and peptides show that the deviations of the backbone chemical shifts from random coil values are directly related to the conformation of the peptide (Wishart & Sykes, 1994). Specific resonance assignments alone can provide a rapid and accurate mapping of a protein secondary structure. Second, interproton distances of less than 5 Å can be measured by the nuclear Overhauser effect (NOE), the intensity of which is directly proportional to r^{-6} between two proton spins. Backbone and side chain torsion angles can be calculated from the scalar coupling (*J*-coupling), the value of which is a trigonometric function of the torsion angle of two spins separated by three bonds.

After assignment of chemical shifts, approximate interproton distances and torsion angles are used for calculating an ensemble of three-dimensional structures. A number of computational strategies can be applied to locate the minimum of a target energy function, which require a combination of the satisfaction of experimental restraints without the sacrifice of covalent geometry (*i.e.* bonds, angles, planes, and chirality) and nonbonded contacts. Typical algorithms operate either in n-dimensional distance matrix followed by projection into real space (such as metric matrix distance geometry (Crippen & Havel, 1988)) or directly in real space (dynamic simulated annealing (Nilges, 1988) and restrained molecular dynamics (Nilges *et al.*, 1991)). While the distance geometric method relies on only distance information on given sets of atoms, all the real space methods require initial structures, with random arrays of atoms or structures containing correct covalent information. The quality of final structures consistent with the experimental data can be assessed qualitatively from a best fit superposition of a series of computed conformers and quantitatively by calculating the average atomic root-mean-square distribution (rmsd) of the individual structures about the mean coordinate positions.

In order to access chemical shift information, and obtain accurate experimental restraints derived from NOE and *J*-coupling information, it is essential to have individual resonance identified. In principle, sequential resonance assignments can be obtained from 1D through bond experiments such as TOCSY (TOtal Correlation SpectroscopY), and through space experiments such as NOESY (Nuclear Overhauser Effect SpectroscopY) and ROESY (Rotational Overhauser Effect SpectroscopY). With the correct resonance assignment in hand, one can then proceed to identify long-range NOE interactions between protons belonging to residues far apart in the primary sequence but close together in space, a process that yields crucial information for determining the tertiary fold of the macromolecule.

1.3.2. Isotopic labeling methods for protein and RNA

While the principles for sequence specific assignment are simple, the practice is difficult. For a small protein (less than 50 amino acids) with about 400 or less protons, spectral overlap

- 28 -

and chemical shift degeneracy can preclude unambiguous resonance assignments, let alone quantitatively obtain distance and torsion angle information. Introduction of 2D NMR methods has improved structure determination greatly by spreading out the correlation in two ¹H frequency dimensions. This approach not only results in a tremendous increase in spectral resolution, but also enables ones to detect and interpret effects that would not have been possible in one dimension.

For macromolecules over 10kd, even 2D NMR cannot circumvent the problems associated with linear increases in spectral overlap and exponential decreases in efficiency of magnetization transfer through small ¹H-¹H *J*-coupling. The chemical degeneracy and resonance overlaps in the 2D NMR spectra are so severe that many pieces of critical information associated with tertiary contacting residues cannot be extracted. These effects have led to the development of isotopic labeling of macromolecules, on which acquisition of three- and four-dimensional heteronuclear spectra show improved spectral resolution through bond and through space. In addition, resultant large heteronuclear couplings also circumvent problems associated with larger linewidths in macromolecules. Thus sequence-specific assignments and unambiguous spin identification can be made with a series of triple resonance experiments.

Over the past 10 years, there have been tremendous developments in isotopic labeling scheme for both protein and nucleic acid and improvements of heteronuclear multidimensional NMR techniques. These methods necessitate the use of macromolecules uniformly labeled with ¹⁵N, ¹³C, or both. Labeled protein can be overexpressed in bacterial system, readily achieved by growing the organism in minimal medium supplemented by ¹⁵N-ammonium salt and/or [¹³C₆] glucose as the sole nitrogen and carbon sources, respectively. RNA oligonucleotides can be prepared by enzymatic synthesis from ¹⁵N- and/or ¹³C-labeled NTPs isolated from *E. coli* (Nikonowicz *et al.*, 1992) or *Methylophilus methylotrophus* (Batey *et al.*, 1992) grown on labeled media.

The design and implementation of higher dimensionality NMR experiments can be carried out by the appropriate combination of 2D NMR experiments (Figure 1.3.1.) (Clore &

Figure 1.3.1: Schematic illustration of the progression and relation between 2D and 3D ¹⁵N-edited NOESY-HSQC spectra. The circles represent NOEs from different protons. While assignment of these NOEs could be ambiguous in the 2D spectrum (top) because of overlap and/or degeneracy, they can be spread into a third dimension (middle) according to the attached heteronucleus, thus allowing unambiguous identification and sequential connection through different 2D slices (bottom).

Gronenborn, 1991). These experiments exploit a series of large one-bond heteronuclear couplings for magnetization transfer through bonds, and together with the fact that ¹H nuclei are always detected, this renders these experiments very sensitive. Experiments can be devised with 3D NMR for sequential assignment that are based solely on through-bond connectivities via heteronuclear couplings (*i.e.* they do not rely on the NOE). This ability becomes increasingly important for the study of larger macromolecules. In application for protein, 3D heteronuclear triple resonance correlation experiments make use of one-bond ¹³C'(i-1)-¹⁵N(i), ¹⁵N(i)-¹³C_a(i) and ¹³C_a(i)-¹³C'(i) couplings, as well as two-bond ¹³C_a(i-1)-¹⁵N(i) couplings, thus allow multiple independent pathways for linking the resonance of one residues with those of its adjacent neighbor. With RNA, similar triple resonance experiments have also been adapted that involve ¹³C and ¹⁵N for sugar-base correlation, base exchangeable-nonexchangeable proton correlation and, ¹³C and ³¹P for sequential backbone connectivity.

In summary, the yeast ribosomal protein L30 and its pre-mRNA binding site present an ideal system for studying the structure and function of a protein-nucleic acids interaction using NMR spectroscopy. The target RNA has been studied extensively through biochemistry analysis, indicating purine-rich potential non-canonical local structure(s) is (are) important for the L30 protein recognition. While less information, both biochemical and structural, is available about the protein, structure analysis using NMR spectroscopy could potentially reveal the functional aspects of the recognition, which will serve as a guideline for future biochemistry studies. Since the size of the L30 protein-RNA complex is amenable to NMR analysis, in combination of isotopic labeling technology and pulse field gradient electronics, it has been possible to obtain a high-resolution structure of this L30 complex using NMR spectroscopy. The structural elucidation of this L30 protein-RNA complex will contribute to our limited knowledge of protein-RNA interactions, in particular, how sequence and structure unite form determinants for RNA-protein recognition. Furthermore, the structural information from the L30 protein is an important piece to implement in the elucidation of the complete organization and structure of an eukaryotic ribosome.

CHAPTER 2. The L30 Protein in the Free Form

The complex of the yeast ribosomal protein L30 and its pre-mRNA binding site is a unique case for studying the structure using NMR spectroscopy. While the size of the L30 protein-RNA complex is amendable for NMR studies (*i.e.* less than 30,000 Dalton), a prudent first step to look at the individual components alone. This approach is particularly useful in NMR based analysis, since smaller size of an individual component usually translates to narrower linewidth and less chemical shift degeneracy (*i.e.* a simpler problem). By doing so, one can gains important information that might be applicable to the solution of final complex structure. In addition, comparison of the free species with the bound form shows conformational changes (if any), which may give insight into the mechanism of binding.

2.1. The L30 Protein Biochemistry

A pre-requisite of NMR experiment is to have a highly concentrated, typically millimolar, sample. For proteins, it is in general challenging to work with such high concentration, since the proteins become less well behaved. In many cases this results in precipitation, partially unfolded or aggregated states. Thus prior to conducting NMR studies of the L30 protein, it is essential to develop a L30 protein purification procedure to obtain soluble, biologically active protein.

2.1.1. Production of protein L30

To prepare millimolar NMR sample of yeast ribosomal protein L30, it is essential to acquire milligrams of protein. In early studies, L30 protein was over-expressed in *E. coli* BL21 (DE3) transfected with a pET-11a vector carrying the L30 gene under the control of a T7 polymerase promoter and an ampicillin resistance gene marker (constructed by J. Warner laboratory). However, overproduction of the protein directly in *E. coli* using the above vector

II. The L30 Protein in the Free Form

results in extensive protein aggregation. Although milligrams of protein (facilitating millimolar NMR samples) could be purified to homogeneity under urea denaturing conditions using SP cationic exchange liquid chromatography (LC) and C18 high performance liquid chromatography (HPLC), the subsequent refolding step remains problematic. Several different refolding approaches were tested in order to bring the protein back into solution from the denatured form, but none of them were successful. Gel shift analyses showed only a small fraction (less than 1%) of proteins exhibited RNA binding activity, consistent with a predominantly misfolded form (data not shown). Preliminary circular dichroism (CD) and NMR data also suggested that the refolded L30 protein adopts a random coil conformation with no significant secondary structure after attempts at refolding (data not shown).

Hence, an alternative approach to obtain NMR quantities of soluble protein was sought. Since it was clear from protein binding studies that fusion of L30 with a maltose-binding protein (MBP) stabilizes it during expression (Vilardell & Warner, 1994), and that L30 protein retains its activity after cleavage from maltose-binding protein (Li *et al.*, 1995), it might be possible to obtain large quantities of native L30 protein from the MBP-L30 fusion. However, it was not clear whether the L30 protein would maintain activity after being separated from the stabilizing MBP protein (which was not done in the previous studies (Li *et al.*, 1995)), and whether it alone would be soluble at millimolar concentration. These uncertainties were explored, and a new purification procedure to produce near millimolar concentrations of active L30 protein for NMR structural studies was established.

2.1.1.1. Cell growth

<u>Unlabeled protein:</u> *E. Coli* strain JM109 was chosen to host plasmid pMalc-L30 (Vilardell & Warner, 1994) (provided by Dr. Susan White from Bryn Mawr College) for over-expression of MBP-L30 fusion protein. Unlabeled protein was prepared from cells grown in LB media (15 g yeast tryptone, 5 g yeast extract, 5 g NaCl) (Sambrook *et al.*, 1989). Briefly, a single *E. coli* colony was inoculated into 5 ml LB media containing 100 mg/L ampicillin for overnight growth at 37°C. Cells from one ml of this culture were pelleted, resuspended in fresh LB media, and

II. The L30 Protein in the Free Form

transferred to a two liter Fernbach flask containing one-liter LB media and 100 mg/L ampicillin. The culture was grown in an incubator-shaker at 37°C and 250 rpm. When the cell density reached 10⁸ cells/ml (OD₆₀₀ \geq 0.6), the culture was shifted to 25°C for protein expression, with the addition of 0.5 mM isopropyl- β -D-thiogalactopyranoside (IPTG). In the mean time, an additional 100 mg of ampicillin was also supplemented into the culture. This was necessary for two reasons: β -lactamase is secreted into the media and metabolizes ampicillin, and higher cell density may result in the loss of ampicillin-resistance plasmid from the cells. After four hours of induction, the cells were harvested by centrifugation at 6000 g for 10 minutes, and the pellets were stored at -80°C. Typically, one liter of LB media yields about 6 grams of wet packed cells.

Isotopically labeled protein: Using the same cell strain, glucose-based minimal media instead of LB media was chosen for cell growth in the preparation of ¹⁵N and/or ¹³C/¹⁵N labeled protein. The complete minimal media was prepared in the following manner. 3.0 g KH₂PO₄, 12.8 g NaH₂PO₄•7H₂O and 0.5 g NaCl were added into one liter distilled water, and autoclaved for 30 minutes. When the solution cooled to room temperature, the following filter-sterilized solutions were added: 2 ml 0.35 g/ml (NH₄)₂SO₄, 20 ml 20% D-Glucose, 1 ml 1 M MgCl₂, 1 ml 1 M MgSO₄, 1 ml 1000× trace metal supplements (750 µg CaCl₂•2H₂O, 30 mg Na₂EDTA, 25 mg FeCl₃•6H₂O, 240 µg CuSO₄•5H₂O, 180 µg MnSO₄•5H₂O, 27 µg ZnSO₄•7H₂O, 270 µg CoCl₂), 1 ml 1000× vitamin mixtures (2 ng biotin, 2 ng folic acid, 5 ng thiamine, 5 ng calcium pantothenate, 0.1 ng vitamin B12, 5 ng nicatinamide, 5 ng riboflavin per ml), and 1 ml 100 mg/ml ampicillin. Uniformly ¹⁵N labeled protein was expressed in minimal media containing 0.70 g/L $({}^{15}NH_4)_2SO_4$ as the sole nitrogen source. Uniformly ${}^{13}C/{}^{15}N$ labeled protein was expressed in minimal media containing a slightly higher concentration of $(^{15}NH_4)_2SO_4(1.0 \text{ g/L})$, and with less ${}^{13}C_6$ -glucose (1.0 g/L) as the sole nitrogen and carbon source, respectively. The cell growth procedure was similar to that of the LB medium, except that the doubling rate in minimal media was twice as slow, and the final yield was lower. Typically, about 3 - 4 grams of ¹⁵N labeled and 2 - 3 grams of ¹³C/¹⁵N labeled cells are obtained from a one liter minimal media growth.

2.1.1.2. Protein purification

MBP-L30 fusion protein purification: About 5 grams of cells were thawed on ice and resuspended in 50 ml buffer containing 20 mM Tris•HCl (pH 7.0), 200 mM NaCl, 1 mM EDTA and 5 mM DTT. After the addition of 50 µl 200 mg/ml PMSF and 10 µl 40 unit/µl DNase, cells were lysed by sonication (20 pulses of 30 s duration with 2.5 min rest in between) with a 550 Sonic Dismembrator (Fisher Scientific). Nucleic acids and proteins that are negatively charged were precipitated with the addition of 750 µl of 10% polyethylene imine (pH 8.0) and moderate stirring on ice for 30 minutes. After centrifugation (10,000 g) to pellet the debris, the supernatant containing the target MBP-L30 fusion protein was loaded onto a 50 ml Carboxyl Methyl cellulose (CM) column (TOYOPEARL). The column was washed with lysis buffer (about 100 ml) until the UV absorbance of the flow through dropped to baseline level. A salt gradient varying from 200 mM to 500 mM NaCl was used to elute the protein. MBP-L30 fusion protein eluted around 300 mM NaCl. Because the CM column selectively purifies protein based on positive charges, it was observed that some RNases purified with the target protein. Therefore, the MBP-L30 protein was further purified on an amylose affinity column (New England Biolabs) to remove any RNase contaminants. The CM column fractions containing MBP-L30 protein were directly loaded onto a 30 ml amylose column, and washed extensively with freshly prepared lysis buffer (20 mM Tris•HCl (pH 7.4), 200 mM NaCl and 1 mM EDTA). The MBP-L30 protein was eluted using a column buffer containing 10 mM maltose. The protein purity was determined on a 10% SDS PAGE gel, and the removal of RNase contamination was monitored through an RNase activity assay (data not shown).

Factor Xa cleavage: The fusion protein was designed such that the MBP is linked to the L30 protein by a Factor Xa site, and hence free L30 can be produced by the cleavage reaction as described hereafter. About 30 mg of MBP-L30 protein was concentrated in a Centriprep-10 device (Amicon Inc.) to a final volume of 6 ml. The cleavage reaction was initiated by the addition of 12 μ l 1 M CaCl₂ and 150 units of 1 mg/ml Factor Xa (NEB) (Nagai & Thogersen, 1984). About 80-90% of full length L30 was cleaved from MBP right after the engineered recognition site (Ile-Glu-Gly-Arg) in 18 to 36 hours at 4°C.

II. The L30 Protein in the Free Form

L30 isolation: The separation of L30 protein from the proteolytic cleavage mixture was achieved through CM column chromatography based on the charge differences of L30, the MBP-L30 fusion and MBP. L30 protein has the greater net positive charge at pH 7.0, and can thus be separated away from MBP and the MBP-L30 fusion using a salt gradient. A 200 ml salt gradient from 200 mM to 1 M NaCl concentration prepared in 10 mM sodium phosphate buffer (pH 7.0) was used to elute L30 from the CM column (Figure 2.1.1). This purification procedure gives an average yield of approximately 5 mg of homogeneous L30, as quantified by either a BioRad protein assay or UV absorbance at 280 nm ($\varepsilon_{280} = 8976 \text{ M}^{-1}\text{cm}^{-1}$). The identity and integrity of the protein was confirmed by electro-spray mass spectrometry. The purified L30 shows a single molecular mass of 11295.1, which is comparable to the calculated mass of 11294.4 at pH 4.0. The activity of L30 protein was verified by an *in vitro* RNA binding assay.

In summary, the protein expression and purification of L30 using fusion with the maltose-binding protein described above, though relatively time consuming, is an efficient and straightforward procedure. Detailed below are a few precautions that need be taken in order to generate a protein sample with both the high quality and purity required for structural studies.

First, the expression of soluble MBP-L30 fusion protein is sensitive to IPTG concentration and the temperature at which the induction of protein expression occurs. Relatively lower IPTG concentration (0.4 to 0.5 mM) and lower temperature (25°C) in this case yield more soluble fusion protein when compared to typical conditions (1 mM and 37°C, respectively). A good expression can be judged from direct observation of the lysate on a SDS-PAGE gel. Concomitant with the SDS-PAGE observation, the appearance of the cell lysate also gives clues to success. A translucent lysate suggests soluble protein, while an opaque lysate is an indication of severe aggregation from protein expression. Caution also must be taken for expression of isotopically labeled protein, because of the slow growth in minimal media and secretion of β -lactamase into the media that can lead to partial plasmid loss in *E coli*. Additions of ampicillin during the protein expression helps to increase the protein yield.

Figure 2.1.1: Protein separation profiles from a CM column purification viewed on 16% SDS PAGE gels: lanes 1 and 16 are molecular mass markers; lanes 2-11 show the CM column flow-through containing the majority of MBP with trace MBP-L30 fusion; lane 14 shows the Factor Xa protease cleavage mixture of MBP-L30; lane 15 shows a mixture of the MBP-L30 and MBP from an amylose column purification; lanes 17-26 show the purified L30 protein after a salt gradient elution.

Second, a good separation of target protein from cellular nucleic acids is a critical step in L30 protein purification. Since L30 protein is an RNA binding protein, some nonspecific interactions with cellular nucleic acids is expected. However, nucleic acids that co-purify will not only interfere with accurate determination of protein concentration (by UV absorbance at 280 nm), but also affect the quality of NMR spectra. Polyethylene imine (PEI) precipitation of nucleic acids after cell lysis turned out to be an important step for the protein purification. PEI is a basic linear polymer of molecular weight 30,000-90,000 that forms precipitates with negatively charged macromolecules under low ionic strength, and it has been widely used for nucleic acid binding protein purifications (Burgess, 1991). During the initial stages of the MBP-L30 fusion protein purification, addition of 0.1% PEI at pH 7.0 in the cell lysis buffer can significantly reduce the levels of nucleic acids and most acidic proteins. The latter includes the maltose binding protein, which is a side product of fusion protein degradation.

The above native L30 protein purification is a better approach than a denaturing preparation. Although it is straightforward to directly express large quantities of L30 protein in *E. coli* as inclusion bodies, attempts to subsequently refold the protein were not successful. There are at least three different experimental observations, as described hereinafter, supporting a less than ideal refolded protein. First, although some proteins (*e.g.* S15 (Batey & Williamson, 1996), U1A (Nagai *et al.*, 1990)) can be refolded upon binding to their target RNA, this does not hold true for the L30 protein. Judging from the native gel shift assay, less than 1% of the refolded protein gains binding activity to MiniL32 RNA. Second, the ¹H-¹⁵N HSQC correlation spectrum of refolded protein displays very narrow chemical shift dispersion (about 1 ppm in the ¹H dimension) around 8.3 ppm, which is a characteristic of a molten globule and/or random coil conformation. This was also evident from NOESY experiments as there were only a few NOE cross peaks in the whole spectrum (typically folded proteins show many NOE cross peaks). Third, while the CD wavelength spectrum at neutral pH indicated the presence of some secondary structure in the refolded protein, the thermal melt showed a shallow and elongated transition, indicative of an aggregate or molten globule (data not shown).

On the contrary, L30 protein co-expressed as a maltose-binding protein fusion remains soluble under the aforementioned optimal native expression conditions, and purification of the MBP-L30 fusion on cationic and affinity columns renders homogenous fusion protein with optimal RNA binding affinity. Subsequent cleavage with Factor Xa to generate L30 protein also displays similar RNA binding activity. Finally, it was possible to concentrate this protein into half millimolar concentration for further NMR characterization.

2.1.2. In vitro RNA binding assay

2.1.2.1. Dissociation constant (K_d) determination

The purified MBP-L30 fusion and L30 protein were subjected to an RNA binding assay in order to ascertain the protein activity and stoichiometry of binding. In published results (Li et al., 1995), most RNA binding affinity and specificity assays were conducted using the MBP-L30 fusion, and verification that the sole RNA binding activity comes from L30 protein was tested in the Factor Xa mixture without further separation. During the course of the present protein purification, both purified MBP-L30 fusion protein and purified L30 protein from cleavage were tested for RNA binding. Similar to the published assays, the buffer used in this study contained 30 mM Tris·HCl (pH 8.0), 75 mM KCl, 2 mM MgCl₂, 1 mM DTT, 50 ng/µl bovine serum albumin (BSA) (New England Biolabs), 40 ng/µl tRNA (Sigma), and 0.2 unit/µl RNase inhibitor (Promega). Zero to 5000 ng/µl of MBP-L30 fusion protein or 0 to 1000 ng/µl of L30 protein was titrated into less than 0.01 nM 5' end $[\gamma - P^{32}]$ labeled RNA ($\ll K_d$) to achieve pseudo first order binding. Briefly, 0.01 nM 5' [y-P³²] labeled RNA was resuspended in 30 mM Tris·HCl, 75 mM KCl and 10 mM DTT, denatured at 65°C for 1 minute, and flash cooled on ice to induce RNA monomer formation. After the labeled RNA was equilibrated on ice for 5 min, 1 µl 80 ng/µl tRNA and 0.2 µl RNasin were added per 10 µl solution. The mixture was aliquoted as 10 µl fractions into 500 µl siliconized Eppendorf tubes and kept at room temperature. In the mean time, a series of two fold dilutions were used to prepare L30 protein with concentrations from 2000 to 1.95 ng/µl (or MBP-L30 fusion from 10000 to 9.8 ng/µl) in binding buffer (30 mM

Tris·HCl, 75 mM KCl, 10 mM DTT and 100 ng/µl BSA). The binding reaction was initiated by mixing 10 µl of protein (with varies concentration) into 10 µl of RNA (constant concentration), incubated at room temperature for 20 min, and immediately subjected to an electrophoretic gel shift experiment. Typically, 10 µl of each binding mixture was loaded onto 10% (w/v) native gels (29 to 1 ratio of acrylamide to bisacrylamide) with $0.5 \times$ TBE running buffer at 200 V/20 cm in a 4°C cold room. The resulting labeled bandshift data were quantified using a phosphorimager (Molecular Dynamics, Inc.). All binding affinity data were fitted to hyperbolic binding isotherms in the Pro3.0 Igor program (Wavemetrics).

2.1.2.2. Stoichiometry determination

The stoichiometry experiments were carried out similar to K_d determination with a slight modification. Instead of using trace amounts of RNA to achieve pseudo first order binding, the concentration of RNA in the assay was raised above K_d (~14 nM). About 300 nM unlabeled RNAs were titrated with increasing concentrations of L30 protein (or MBP-L30 fusion) ranging from 10 nM to 10 μ M. The fractions of bound RNA were traced by a small amount of 5' [γ -P³²] labeled L30 RNA added to the unlabeled RNA in the binding mixtures.

Freshly purified L30 protein and the MBP-L30 fusion have dissociation constants of 4 nM and 12 nM, respectively (Figure 2.1.2), which are similar to the reported values $(10 \pm 3 \text{ nM} \text{ and } 3 \pm 1 \text{ nM}, \text{respectively})$ (Li *et al.*, 1995). At least five- to ten- folds larger K_d values were observed during the earlier purification when inactive protein was copurified. Decreasing binding activities were also observed for both L30 protein and the MBP-L30 fusion with prolonged storage, with a much faster decay rate for L30 protein (half life less than couple of weeks). The activity loss can be quantified in a stoichiometry assay. A 1:1 stoichiometry of protein to RNA is typical with freshly prepared L30 protein and MBP-L30 fusion, however, if the ratio is any larger than 1:1 ratio, this indicates a potential loss of RNA binding activity. Because of the differences in the long-term stability, the MBP-L30 fusion has been used in the majority of K_d studies for testing different RNAs.

Figure 2.1.2: Gel shift assay of **a**, MBP-L30 fusion and **b**, L30 protein binding to L30N RNA. The 10% native polyacrylamide gel was run at 4°C. From left to right in lanes 1 to 15 the MBP-L30 concentration is 2000.0, 1000.0, 500.0, 250.0, 125.0, 62.5, 31.7, 16.0, 8.0, 4.0, 2.0, 1.0, 0.5, 0.3, and 0.1 μ M; in lanes 16 to 30 the amount of L30 protein is 8000.0, 4000.0, 2000.0, 1000.0, 500.0, 250.0, 125.0, 62.5, 31.7, 16.0, 8.0, 4.0, 2.0, 1.0, 0.5, 0.3, and 0.1 μ M; in lanes 16 to 30 the amount of L30 protein is 8000.0, 4000.0, 2000.0, 1000.0, 500.0, 250.0, 125.0, 62.5, 31.7, 16.0, 8.0, 4.0, 2.0, 1.0, 0.5, 0.3, and 0.1 μ M; in lanes 16 to 30 the amount of L30 protein is 8000.0, 4000.0, 2000.0, 1000.0, 500.0, 250.0, 125.0, 62.5, 31.7, 16.0, 8.0, 4.0, 2.0, 1.0, 0.5, μ M.

2.1.3. Circular dichroism

2.1.3.1. Secondary structure estimation

The α -helical and β -sheet contents of the L30 protein in the absence and presence of RNA were measured by circular dichroism, using either Aviv 60 DS or Aviv 292 SF spectrophotometers. Scans from 200-300 nm (0.5 nm steps, 15 second averaging time) were acquired (0.1 cm path length) on 400 μ l 25 μ M samples in 10 mM potassium phosphate buffer, pH 6.5 at 4°C. While potassium phosphate buffer was used for background correction of the free form protein signal, free RNA in the same buffer was used for the complex. This of course assumes no significant secondary structure changes upon binding with the RNA upon binding. The signal output, millidegree (m°), was converted to molar ellipticity ([θ]) via the following equation:

$$[\theta] = 100 * m^{\circ} / (l c N_{res})$$
(2.1)

where I is the path length of the cell (in cm), \mathbf{c} is the concentration of the sample (in millimolar), and \mathbf{N}_{res} is the number of residues in the protein.

The molar ellipticity at any fixed wavelength between 190 nm to 300 nm can provide a rough estimation of the secondary structure content of a given protein. In particular, the α -helix, β -sheet and coil forms of proteins each has its characteristic CD spectrum. The CD signal of a pure α -helix has two minimums at 222 and 206 nm, and a large positive band at 190 nm, which represent the n- π^* , π - π_{\parallel}^* , and π - π_{\perp}^* transitions; a β -sheet has a minimum at 216 nm, and two small positive bands between 225 and 250 nm; and coil has a minimum at 223 nm and a maximum around 200-202 nm. These characteristic bands can be used to qualitatively predict the predominant secondary structure in a protein. This molar ellipticity at any fixed wavelength can be calculated from the percent helix and sheet content according to the following equation:

$$X = f_{\rm H} X_{\rm H} + f_{\rm \beta} X_{\rm \beta} + f_{\rm R} X_{\rm R} \tag{2.2}$$

where X is the mean residue ellipticity, $[\theta]$, the $X_{\rm H}, X_{\beta}, X_{\rm R}$ are the reference values for pure α -helix, β -sheet and coil form (R) (Chen *et al.*, 1974).

The CD spectrum of the bound form of L30 protein closely resembles that of the free form (respective **b** and **a** in Figure 2.1.3). The spectra of both forms showed the presence of a mixture of α -helical and β -sheet conformation, with the bound form protein showing about 25% more negative signal around the lowest minimum (208 nm). Detailed analysis of the CD spectra using equation (2.2) gave an estimation of 50% α -helix, 25% β -sheet and 25% coil in the free form L30 protein. This information can be corroborated with analyses carried out in NMR studies. No estimation was made on the bound form L30 protein. Even though the additional signal could be explained as a more ordered protein secondary structure, potential contribution from the large absorbance of an RNA at 208 nm could influence the signal

2.1.3.2. Thermal denaturation

While the CD spectra provide a rough estimation of secondary structure of the L30 protein, circular dichroism thermal melts can be used to study the temperature dependent stability of the protein in the absence and presence of the RNA. Data points monitored at 218 nm from 4 to 88°C (2°C temperature step, 1 min equilibration, and 30 sec average time) were taken on the same samples used in the CD wavelength scans. The molar ellipticity ($[\theta]$) was fitted to a hyperbolic curve in Igor to derive the melting temperature.

As can be seen from the inserts in Figure 2.1.3, the free and bound L30 proteins have dramatically different thermal stabilities, despite sharing a great similarity in the secondary structures. While the free form protein has a shallow and elongated melting curve with an irreversible denaturation around 45°C, the bound form has a sharp and irreversible melting transition at a higher temperature around 68°C. The CD-monitored thermal denaturation of free form protein suggests that although the secondary structure elements are present, the protein can only adopt a quasi-folded (or a molten globule) conformation at low temperature, and the tertiary interactions are highly unstable. Contrary to the free protein, the RNA-bound L30 protein has significantly better thermal stability at temperatures below 60°C. Furthermore, a cooperative

Figure 2.1.3: A comparison of the CD spectra of **a**, the free form L30, **b**, the RNA bound L30 protein. The concentrations were approximately 25 μ M. The solution conditions are 10 mM potassium phosphate buffer, pH 6.5. The insets to **a** and **b** show the thermal denaturation of the proteins monitored at 218 nM.

thermal denaturation transition indicates a completely folded structure and/or stabilization of tertiary structures in the presence of RNA. The studies of the temperature-dependent stabilities of free and bound form L30 proteins were important for assisting the subsequent NMR characterization.

2.2. NMR of L30 Protein in Free Form

2.2.1. Optimization of NMR conditions

The first step in protein NMR spectroscopy is the optimization of sample conditions to achieve the most folded structure and hence the best dispersed spectra. At the onset, one may think that it would be best to have maximum sample concentrations, but this may not be true. Not all proteins are stable at high concentration, therefore an optimization must be drawn for each protein. In addition to the sample concentration, other factors also affect the NMR signals. The sensitivity of a one-dimensional experiment is proportional to:

S/N ~ N $\gamma_{exc} \gamma^{3/2}_{det} B_0^{3/2} (NS)^{1/2} (T_2 / T)$

where N is the number of molecules in the active sample volume, γ_{exc} is the gyromagnetic ratio of the excited spin, γ_{det} is the gyromagnetic ratio of the detected spin, \mathbf{B}_0 is the static magnetic field, NS is the number of scans. \mathbf{T}_2^{-1} is the homogeneous line width, and T is the temperature in Kelvin. As can be seen, besides sample concentration, NMR signal is also directly related to acquiring temperature and transverse relaxation \mathbf{T}_2 time (Cavanagh *et al.*, 1996). The transverse relaxation time can be prolonged with reduced sample viscosity using higher temperature or less amount of sample. With a given amount of sample, buffer pH, salt concentration and temperature also affect the intrinsic solubility of the protein, therefore the necessity to ascertain the optimal sample condition can be seen.

There are various methods to monitor protein folding by NMR. These vary from a simple proton 1D to heteronuclear correlation experiments. One of the best ways to achieve this is to monitor the ¹H-¹⁵N correlations. Both the backbone ¹⁵N and amide proton resonances are highly sensitive to the environment, and a well dispersed ¹⁵N-HSQC spectrum is a direct indication of a well-folded protein. Therefore, a series of ¹⁵N-HSQC spectra were recorded for the uniformly ¹⁵N-labeled L30 protein at various sample conditions to monitor the best NMR signal.

The optimization of sample condition was conducted by screening temperature, pH and salt concentration of the sample using ¹H-¹⁵N FHSQC (Mori et al., 1995) spectra recorded on the MIT Francis Bitter Lab 501 MHz instrument. Consistent with the observations during protein purification and results from CD thermal melt analysis, the instability of uncomplexed L30 protein is also directly observed in NMR experiments with temperatures above 15°C. In addition to temperature, the stability of L30 protein was also sensitive to pH, salt and sample concentration. Specifically, a 0.7 mM protein sample undergoes significant aggregation at the following conditions: temperature above 15°C, pH above 8 or below 5.5, low salt (below 200-300 mM NaCl). Because of this limitation, all the NMR experiments used to characterize the free form protein were recorded at 10°C with less than 0.7 mM protein sample in 300 mM NaCl, 0.02% NaN₃, 0.1 mM EDTA and 2.0 mM Tris HCl (98% deuterated) buffer, pH 6.5. For H₂O samples, 5% D₂O was included for deuterium locking; for D₂O samples, the samples were lyophilized, exchanged with 99.8% D₂O (Cambridge Isotope Laboratories, Cambridge, MA) twice, and redissolved in 99.996% D₂O (Isotech, Inc.). Even with the above optimal condition (i.e. low sample concentration, low temperature and high salt), obvious protein aggregation was observed over a two-week period. This clearly limited the application of many of the NMR experiments.

The free form L30 protein did indeed give a high quality NMR spectra, as can be seen from the ¹H-¹⁵N HSQC spectrum acquired at 10°C on a 0.5 mM sample, which correlates amide protons to its attached nitrogen (Figure 2.2.1). The good backbone resonance dispersion clearly suggests formation of distinct secondary structures and possible tertiary contacts within L30

Figure 2.2.1: ¹H-¹⁵N HSQC spectrum of the L30 protein in the free form at 10°C. The peaks are labeled with their assignments, with the one-letter code for the amino acid type followed by the sequence position. The side chain amides for Asn and Gln are connected with horizontal lines and labeled with their assignments and side chain positions with Greek letters. Arg ε side chain peaks are folded in this spectrum.

protein. Similar to circular dichroism analysis, chemical shifts in the NMR spectra also provide a general measurement of secondary structures in protein. It has been demonstrated for all amino acid residues that secondary structure formation induces very specific and significant chemical shift changes (Wishart et al., 1992). The method for estimating the rough secondary structure content in protein was based on these following empirical observations: 1) The number of residues in β -strands is proportional to the number of H_a resonances between 4.85 and 5.90 ppm. 2) The number of residues in the coil conformation is proportional to the number of backbone amide resonances between 8.20 and 9.00 ppm. 3) The number of residues in helices is proportional to the number of non-glycine H_{α} resonances between 3.40 and 4.10 ppm (Wishart & Sykes, 1994). A simplified analysis of the secondary structure of L30 protein was carried out on the basis of the amide backbone resonances in the ¹H-¹⁵N HSQC spectrum. This gave an estimate that about 35% residues are in coil conformation, with the rest either in β -sheet or α helix conformations. The percentage of secondary structure components is close to the result estimated from CD data, with about 25% of residues in coil conformation, and 75% in either βsheet or α -helix conformations. It is also clear from the ¹H-¹⁵N HSQC spectrum that the protein adopts a folded conformation in solution at close to millimolar concentration that allows further structural analysis.

2.2.2. NMR studies and resonance assignment

The first step towards structure determination by NMR is the sequential assignment of all the resonances in the spectra. L30 protein has a molecular weight of about 11 kDa, thus it is expected that the assignments can be made using the conventional NOESY, COSY and TOCSY types of 2D experiments. But a surprisingly high degree of resonance overlap and chemical shift degeneracy has been seen in the present case, which makes accurate interpretation somewhat difficult. Therefore it is necessary to utilize heteronuclear 2D/3D based assignment. In these experiments, the degeneracy of the proton resonances can be alleviated by the distinct chemical shifts of the heteronuclei, namely the carbons and the nitrogen. Furthermore, it is possible to

spread the proton 2D spectrum into a third dimension according to the chemical shift of the directly bonded heteronuclei.

2.2.2.1. Assignment of the exchangeable protons:

The ¹H-¹⁵N HSQC spectrum provides the fingerprint for the protein, as the amount of peaks is directly correspond to the number of amino acids. One might expect to see one backbone ${}^{1}H_{N}$ - ${}^{15}N$ peak correspond to each of all the amino acids (except the prolines). Besides this, the spectrum also displays the ¹H_N-¹⁵N correlations for the side chains. The L30 protein contains 104 amino acid residues, with two prolines (Pro) that have no backbone amide protons, and four glutamines (Gln), four asparagines (Asn) and three arginines (Arg), all having side chain amide protons. Excluding the N-terminal residue Ala2, of which the amino group is expected to exchange with solvent, and thus generally not observed, one might expect to observe a total of 120 peaks corresponding to 101 backbone amide peaks, eight pairs of side chain amide and three Arg side chain peaks. By careful analysis of the spectrum acquired at 10°C at pH 6.5 (Figure 2.2.1), and along with the HSQC spectra at different temperatures (10, 15, 20 and 25°C) and pH (5.0, 5.5, 6.0), it was possible to identify 116 ¹H-¹⁵N resonances, which were further identified as belonging to 97 backbone amide peaks, 8 pairs of side chain amides for Asn and Gln, and 3 Arg side chain amides. The smaller number of observed peaks, and the fact that some of the peaks exhibited broad linewidths and were only just visible at the contour level, suggest a possible regional conformational exchange broadening in the free form of the protein. Nevertheless, since most resonances display good dispersion and sharp linewidth, it is possible to carry out further specific resonance assignment.

In order to map out the sequential connectivities, $3D^{15}N$ edited experiments were acquired. The assignments were made based on heteronuclear 3D NOESY and TOCSY experiments. The former leads to sequential assignments, and the latter helps in spin system identifications. More specifically, TOCSY transfers occur within the *J*-correlated protons (*i.e.* intraresidue), whereas nuclear Overhauser effects (NOEs) are observed between protons that are close in space (typically < 5 Å), which occur by dipolar interactions. NOE patterns in the protein

spectra are also the signature of the secondary structure. Typically, in an ¹⁵N edited NOESY spectrum, characteristic sequential NOE patterns are observed between H_N-H_N resonances of the adjacent residues, and $H_N - H_\alpha$ resonances of approached residues i and i-3, and residues i and i-4 for an α helix; whereas β sheets show characteristic $H_N - H_\alpha$ resonances between residue i and i+1, and long-range backbone H_N-H_N cross peaks.

A ¹⁵N NOESY-HSQC experiment with 150 ms mixing time was acquired at Bitter 501 MHz instrument, using WALTZ (Shaka *et al.*, 1983) decoupling during acquisition. The ¹⁵N transmitter was set at 116 ppm, centered at the backbone amide resonance, and the ¹H transmitter was set at 4.93 ppm for water suppression. A data set with 512 complex points in t_3 (¹H), 128 complex points in t_2 (¹H) and 32 complex points in t_1 (¹⁵N) was acquired with 6000 Hz spectral widths in both t_3 (¹H) and t_2 (¹H) dimensions, and 1600 Hz sweep widths in the t_1 (¹⁵N) dimension. A total of 32 scans were acquired for each increment.

Before analyzing the NOESY spectra, it is essential to obtain the spin system identification, that is identifying each amino acid first by correlation of the backbone to its side chain. This was accomplished by an ¹⁵N TOCSY-HSQC (Grzesiek *et al.*, 1992) recorded on Varian Inova 600 MHz instrument, using 12 kHz for the spin-lock and a 50 ms mixing time (to maximize ${}^{1}\text{H}_{N}{}^{-1}\text{H}_{\alpha}$ correlation). The three dimensional spectrum was acquired with 512 × 128 × 32 complex points with 7000 Hz spectral widths for both t₃ (¹H) and t₂ (¹H) dimensions, and 2000 Hz for the t₁ (¹⁵N) dimension.

An almost complete assignment for the amides of the L30 protein was made primarily with the combination of the above two experiments using the standard approach (Wüthrich, 1986). Briefly, once the ¹⁵N strips were identified based on the TOCSY correlations, the ¹⁵N strips from the NOESY-HSQC 3D spectrum were aligned to locate the positions of intraresidue NOEs peaks. Once the intraresidue peaks are identified, the corresponding interresidue NOE peaks are used for sequential connection. One advantage in the 3D NOESY-HSQC spectrum is that the $H_N(i)$ - $H_N(i+1)$ NOEs occur twice in a symmetric manner that allows the identification of the adjacent H_N pairs. In many cases, the strongest NOEs for any given amide proton are

- 51 -

invariably the sequential $H_{\alpha}(i)-H_{N}(i+1)$ or $H_{N}(i)-H_{N}(i+1)$ connection. Long-range NOEs (*i.e.* interstrand H_N-H_N or H_N-H_α connections) are invariably of lower intensity. The α -helix or β sheet stretches in the protein were identified according to the characteristic NOE and TOCSY patterns. For example, shown in Figure 2.2.2, residues 14 - 17 occur as a regular α -helix, and hence are manifest in several ways in the 3D NOESY-HSQC and TOCSY-HSQC spectra: showing strong amide protons $H_N(i) - H_N(i+1)$ peaks, medium intraresidue $H_N - H_\alpha$, and interresidue $H_N(i)-H_{\alpha}(i-1)$ peaks, and medium $H_N(i) - H_{\alpha}(i-3)$ peaks in the NOESY spectrum and weak $H_{\scriptscriptstyle N}$ -H_ $_{\alpha}$ scalar correlation in TOCSY spectrum. In contrast, residues 90-93 that adopt a β sheet conformation have intense $H_{N}\text{-}H_{\alpha}$ TOCSY peaks but weak or missing intraresidue $H_{N}\text{-}H_{\alpha}$ NOEs, they also show intense interresidue $H_N(i)-H_\alpha(i-1)$ NOEs peaks. Besides the intensity of the NOE cross peaks, the H_{α} , H_{N} , and ¹⁵N chemical shifts for these residues also show a downfield shift compared to those of random coil or α -helical residues. The relative downfield chemical shifts of these atoms in a β -strand conformation place the resonances in well-resolved regions in each of the three-dimensions, facilitating their assignment. The complete analysis of the NOESY spectrum led to the identification of three stretches of α -helices, namely, residue 8-18, 31-37, and 51-62, and of four stretches of β-strands, *i.e.*, residues 22-26, 41-45, 66-70, and 89-93 in the protein. Assignment of 86% the backbone amides was achieved based on the above analysis. Weak or no NOE connectivity was observed between residues 27-30, 74-78 and 81-86, which were therefore difficult to assign. The weak NOEs or absence of observable backbone amide protons are results of intermediate exchange (either conformational exchange or solvent exchange) broadening on the NMR time scale.

2.2.2.2. Assignment of the nonexchangeable resonances

Although the nonexchangeable protons can in principle be assigned from a ¹⁵N-TOCSY-HSQC spectrum, the TOCSY transfer from the NH proton to β , γ , *etc.*, are often weak or absent for such an analysis. One of the main reasons for the decreased intensities is the dynamic range of water; as these experiments have to be recorded in at least 90% water sample to observe the amides, most magnetization is transferred to water. In addition, the increased solvent viscosity at low temperature results in slow protein correlations, which is responsible for some proton

Figure 2.2.2: Selective representation of H_N , H_α regions in 3D ¹⁵N NOESY-HSQC (longer slices) and ¹⁵N TOCSY-HSQC (shorter slices) spectra of ¹⁵N-labeled L30 protein. Alignment of NOESY and TOCSY spectra shows the cross peak intensities of four consecutive residues in **a**, α -helical, and **b**, β -sheet conformations. For a given residue, the correlation of H_N - H_α can be identified in a TOCSY-HSQC spectrum. By following the sequential NOEs in different slices, it is possible to identify the secondary structure adopted by a given residue.

linewidths larger than many of the proton-proton couplings. Since the ¹⁵N-edited TOCSY-HSQC experiment relies heavily on the small ¹H-¹H scalar coupling constants to transfer magnetization, most relays beyond H_N - H_β correlation were absence, in the majority of cases preventing the correlation of H_N chemical shifts with those of side-chain protons (H_B and beyond). In the present case, most of the H_{α} protons and some H_{β} protons are assigned from the $^{15}N\text{-}TOCSY\text{-}$ HSQC spectrum. While it is impossible to increase the temperature for better sensitivity, a better way to observe the aliphatic protons would be to recorded experiments in 100% D₂O. A simple TOCSY (or PCOSY) spectrum in D₂O can help in assigning various aliphatic protons. In some cases where H_N-H_B correlation was not observed in the ¹⁵N-edited TOCSY-HSQC spectra, the location of an H_{β} position was identified in a TOCSY or PCOSY spectrum acquired in D_2O through the H_{α} chemical shift assignment (provided that the H_{α} chemical shift was resolved). Concomitant with the assignments made in the TOCSY (or PCOSY) spectra, the H_β and H_γ chemical shifts can be corroborated with intraresidue H_N-H_β and/or H_N-H_γ NOE cross peaks in the 3D NOESY-HSQC spectrum. All Alanine (Ala) residues were easily assigned because of the relatively intense H_N-H_B correlation in the TOCSY-HSQC spectrum. A number of serine (Ser), threonine (Thr), valine (Val), isoleucine (Ile) and glycine (Gly) spin systems were identified on the basis of the characteristic coupling patterns in the homonuclear PCOSY and TOCSY spectra. Many aromatic residues were assigned based on the strong TOCSY relay peaks within ring protons, and characteristic NOEs between a ring H_{δ} group and H_{N} , H_{α} , H_{β} spin systems. Assignments of the three Arg were made through the backbone H_N and side chain H_ϵ NOESY-HSQC and TOCSY-HSQC correlation. A considerable degree of overlap for the H_{B} and H_{γ} resonances made this homonuclear based approach difficult for spin systems that extend beyond the β -methylene group, with lysines (Lys) and leucines (Leu) being the most troublesome cases.

In order to overcome problems associated with resonance overlaps and insufficient spin relays in the homonuclear-based side chain assignment, a ${}^{13}C/{}^{15}N$ double-labeled sample was prepared to for carbon-based assignment. The resolution of the side chain protons is improved by spreading the resonances into the ${}^{13}C$ dimension according to the chemical shift of the attached ${}^{13}C$, (the ${}^{13}C$ of aliphatic side chains gives a wide chemical shift dispersion, from ~70 ppm to ~10 ppm). Besides helping in resolution enhancement, heteronuclear ${}^{13}C$ -based

experiments also help in increasing magnetization transfer. Contrary to the small three-bond homonuclear coupling constant (< 10 Hz), the large heteronuclear ¹³C-¹³C (~35 Hz) and ¹H-¹³C (~120 Hz) one-bond couplings are known to transfer magnetization more efficiently, hence the through bond connectivity is improved.

The carbon HSQC spectrum can be differentiated into various regions containing different types of resonances. Among them, some resonances like the C_β of Leu, C_γ of Val , C_δ of Ile and Gly C_as have distinct ¹³C chemical shifts (Wishart *et al.*, 1995) and can be easily identified. A more helpful experiment would be to record a constant time CT-HSQC experiment. In the CT-HSQC, depending on the constant time period, the cross peaks can have different signs. When T = 1 / J_{CC} the sign of the ¹³C magnetization is opposite for carbons coupled to an odd, relative to an even number, of other aliphatic carbons. Figure 2.2.3 illustrates this point for the L30 protein. If, on the other hand, $T = 2 / J_{CC}$, all cross peaks will have the same sign. An additional advantage is that some spin system identifications can be made simply by observation of the aliphatic ¹³C chemical shifts as well as the sign of cross peaks in the ¹³C-edited CT-HSQC spectra even prior to conducting a more elaborate specific assignment. The above information is particularly helpful in assigning the following spins: ${}^{13}C_{\delta}s$ of Iles have the most upfield chemical shifts (< 17 ppm), while ${}^{13}C_{6}s$ of Thr have the most down field chemical shift (~70 ppm), but opposite sign to the ${}^{13}C_{\alpha}$ s that are close by. Within the ${}^{1}H_{\alpha}$ - ${}^{13}C_{\alpha}$ region, ${}^{13}C_{\beta}$ of Ser can be differentiated from other ${}^{13}C_{\alpha}s$ by the presence of two ${}^{1}H_{\beta}$ cross peaks at the 60 ppm region, and $^{13}C_{a}$ s of Gly occupy the most upfield region (~ 42 ppm) with a set of two H_as. All seven Thr ${}^{1}H_{B}s$, nine sets of Gly ${}^{1}H_{\alpha}s$ and eight of ten Ser ${}^{1}H_{B}s$ were identified in the CT-HSQC spectra. In addition, five Ile ${}^{1}H_{\delta}s$ were identified unambiguously from the chemical shifts of ${}^{13}C_{\delta}s$, two others were not ascertained because of the complexity introduced by some nearby ${}^{13}C_{\gamma 2}$ chemical shifts.

Although the categorization of spins can be made in the HSQC spectrum, the assignment of most spins to specific amino acids in the sequence has not yet become clear, except for a few ¹Hs with distinct chemical shifts (*e.g.*, 0.13 ppm of Ile18 ¹H_{δ}s). A more extensive side chain assignment using a ¹³C edited HCCH-TOCSY (Clore *et al.*, 1990) (¹H-¹³C-¹³C-¹H total

- 55 -

correlation spectroscopy) experiment acquired on the MIT Bitter Lab 500 MHz instrument. In this experiment, the ¹H carrier was positioned at 2.9 ppm to be in between the aliphatic side chains, while ¹³C carrier was positioned at 40 ppm between ¹³C_{α} and side chain ¹³Cs. The delay for the ¹H-¹³C transfer was set to 1.5 ms, $\sim 1/4J_{CH}$, and that for the ¹³C-¹³C transfer was set to 3.25 ms, about $1/8J_{CC}$. The ¹³C-¹³C isotropic mixing was accomplished with a 24 ms DIPSI-3 (Shaka *et al.*, 1988) applied along the y-axis with a 7 kHz bandwidth. No carbonyl decoupling was applied during evolution, and a GARP (Shaka *et al.*, 1985) decoupling for carbons was applied during acquisition.

In addition to the HCCH-TOCSY experiment, a ¹³C-edited NOESY-HSQC spectrum (Clore *et al.*, 1990) was also recorded on a Varian Inova 600 MHz with 100 ms mixing time. Besides the contributing intraresidue NOE information for assisting the HCCH-TOCSY side chain assignment, the ¹³C-edited NOESY-HSQC spectrum also provided the critical information of the approximate long-range NOEs that would help to define a full high-resolution three-dimensional fold for the protein. In this experiment, the ¹H carrier was placed at 2.62 ppm and ¹³C at 43.64 ppm, similar to those in the HCCH-TOCSY experiment. While a GARP decoupling sequence was applied during acquisition, an additional carbonyl decoupling was implemented during the evolution period, using a shaped 180° SEDUCE-1 (McCoy & Mueller, 1992) decoupling sequence.

Detailed assignments of the side chain ¹H and ¹³C resonances of L30 protein were made using the ¹³C-edited HCCH-TOCSY spectrum in conjunction with strong intraresidue NOEs identified in the ¹³C-edited NOESY-HSQC spectrum, and the ¹H_{α} assignments made in the ¹⁵N TOCSY-HSQC experiment. Similar to the homonuclear experiment, the most easily identified spins were also Gly, Ala, Thr, Val and Ser residues but with less ambiguous identification in the HCCH-TOCSY spectrum as described below. For glycines, two H_{α}s are attached to the same C_{α}, so a symmetric pattern appears about the diagonal. This characteristic pattern is also seen for βmethylene protons. The methylene H_{β}s not only have symmetric patterns about the diagonal but they are also associated with cross peaks to the H_{α} protons. For serines, the β-methylene protons are distinct as they resonate more downfield compared to others, such as Tyr, Phe, Asn and Asp

Figure 2.2.3: A ¹H-¹³C CT-HSQC spectrum of the L30 protein acquired with T = 27 ms at 10°C. The number of aliphatic carbons attached to a given ¹³C nucleus determine the sign of the ¹³C magnetization, in which odd-number coupled aliphatic carbons (shown in black) have opposite sign relative to even-number coupled aliphatic carbons (shown in red). Since the chemical shifts of carbonyl ¹³C and aromatic ¹³C are further away from the rest of ¹³C nuclei, it is not sufficiently decoupled during the evolution period, thus these nuclei do not produce any effect on the neighboring ¹³C nuclei. In addition, the intensities of the observed cross peaks are attenuated by the ¹³C transverse relaxation; hence, some resonances (*e.g.* Glys) are missing in the spectrum.

of other AMX spin systems. Using this approach, all of the nine Glys $H_{\alpha}s$ were assigned in association with the correlations made in the ¹⁵N-edited TOCSY-HSQC, and ten sets of Sers $H_{\beta}s$ were identified and connected to the backbone exchangeable protons via their own $H_{\alpha}s$.

The assignment of Thr and Val spin systems were based on the characteristic connectivity originating from the H_{α} to H_{β} and H_{γ} methyl protons. Differentiation of the two types of spin systems were made on the basis of different ${}^{13}C_{\beta}$ chemical shifts. The Thr ${}^{13}C_{\beta}$ chemical shifts are at 70-73 ppm, while those of Val are at 31-37 ppm. In addition, there is only one ${}^{13}C_{\gamma}$ methyl in each Thr residue, while there are two ${}^{13}C_{\gamma}$ methyls (mostly with different chemical shifts) in each Val residue. The two methyl groups in the Val residues usually display strong intraresidue NOEs in the ${}^{13}C$ -edited NOESY-HSQC spectrum. Excluding residues in the flexible region (Thr30, Val81 and Val87) where only tentative assignments were made, all of the remaining six Thr and seven Val were unambiguously identified.

A complete Ile spin systems identification was made starting from H_{δ} , since the directlyattached ${}^{13}C_{\delta}$ has the most upfield chemical shifts and fall in a distinct region in the ${}^{1}H{-}^{13}C$ HSQC spectrum. $H_{\delta}s$ can also be distinguished from other methyl groups in 2D-homonuclear COSY or short mixing time TOCSY spectra, since they often relay to two methylene protons, while others relay to only one proton. Ile $H_{\gamma 2}$ methyls were identified from the characteristic ${}^{13}C_{\gamma 2}$ chemical shifts around 17 ppm. These were easily differentiated from the nearby ${}^{1}H_{\beta} / {}^{13}C_{\beta}s$ of Ala through both characteristic intraresidue NOEs and HCCH-TOCSY correlation patterns. HCCH-TOCSY was further used to identify $H_{\gamma 1}s$ and $H_{\beta}s$ by the relays from the δ methyl group.

A similar approach was also used for the leucines as they contain two δ methyl groups and one γ proton. Precaution was needed with this approach, since without further relays, the same type of correlation pattern also occurs in Val residues (two H_{γ} and one H_{β} protons). The ambiguities were resolved by confirming the relays to the Leu H_{β} resonances. The Leu C_{β} also has a characteristic chemical shift in the ~43 ppm region, and was easily identified by the distinct signs in the CT-HSQC spectrum (T = 1/J_{CC}).

The most difficult assignments were again the twelve lysine (Lys) residues in L30 protein. The lack of chemical shift resolution and reduction of effective magnetization transfer through long side chains rendered the HCCH-TOCSY experiment less useful in distinguishing different lysine residues. Therefore, other than the H_{β} protons that were assigned with confidence, the rest of the spins only have tentative assignments.

2.2.2.3. Standard homonuclear experiment for specific assignments

In addition to the heteronuclear experiments which provide majority of the resonance assignments and NOE distance information, 2D NMR spectra, including NOESY, PCOSY (Marion & Bax, 1988), and TOCSY experiments, are necessary for assisting in resonance identification. These experiments, in particular, PCOSY and TOCSY with different mixing time acquired in D₂O, assisted the spin correlation assignments from H_{α} proton to side chain protons as described above. Short mixing time (11 ms) TOCSY experiment, in conjunction with short mixing time (50 ms) NOESY spectrum assisted in the stereo-specific assignment of many H_{β} protons. In addition, the aromatic protons of six tyrosines (Tyr) and two phenylalanines (Phe) were primarily assigned from TOCSY and NOESY spectra. The complete intraresidue aromatic protons were identified in a TOCSY relayed spectrum (35 ms) and were further connected to their H_{β}-methylene and H_{α} protons from a short mixing time NOESY spectrum.

2.2.2.4. Triple resonance experiments

Since the first description of triple-resonance based assignments as shown for calmodulin (Ikura *et al.*, 1990), 3D triple-resonance experiments have offered an alternative approach to classical NOE-based strategies for sequential assignment. In contrast to observation of characteristic short-range NOEs, these experiments correlate backbone ${}^{1}H_{N}$, ${}^{15}N$, ${}^{1}H_{\alpha}$, ${}^{13}C'$ (carbonyl carbon), and side-chain ${}^{1}H_{\beta}$ and ${}^{13}C_{\beta}$ spins using one-bond and two-bond scalar coupling interactions. These are particularly useful because these bond couplings, unlike NOEs, are independent of the structure. Thus, triple resonance experiments in practice offer less ambiguous sequential assignments than the classical NOE strategy. But these experiments

require a high sample concentration and rigorous optimization. For the L30 protein, though an HNCA experiment was tried on a 0.7 mM ¹³C/¹⁵N-labeled L30 protein, sufficient signal was not observed. Also, the protein started aggregating during the course of the experiment. No further triple-resonance experiments were tested on this sample as a result of this gradual aggregation.

Overall, with the combination of both 2D homonuclear and 3D heteronuclear experiments, approximately 80% of the ¹H, ¹⁵N and ¹³C chemical shift assignments of L30 protein in the free form were made. These chemical shifts are tabulated in Table 2.1. The general acquisition parameters used in all the homonuclear and heteronuclear experiments performed on the free L30 protein are listed in Table 2.2.

The chemical shifts of the various assigned resonances were further analyzed to determine the secondary structure of the protein. As mentioned earlier, the chemical shifts of all amino acids are directly related to the adopted secondary structures and the surrounding environment. In particular, the ${}^{1}H_{N}$, ${}^{1}H_{\alpha}$, ${}^{15}N$, ${}^{13}C_{\alpha}$ and ${}^{13}C'$ values are directly related to the backbone ϕ , ψ dihedral angles, which can be used as reliable indicators for secondary structure alignment. With the assignments in hand (except for ¹³C'), it is possible to calculate chemical shift deviations of ${}^{1}H_{N}$, ${}^{1}H_{\alpha}$, ${}^{15}N$ and ${}^{13}C_{\alpha}$ from the corresponding average random coil values and use this to map out the conformational propensities of the backbone. According to the empirical chemical shift index, the average secondary shifts of ¹⁵N, ${}^{1}H_{N}$, ${}^{13}C_{\alpha}$, and ${}^{1}H_{\alpha}$ of residues in α helices are -1.7 ± 0.3 , -0.19 ± 0.1 , 2.6 ± 0.5 and -0.38 ± 0.1 ppm, respectively, whereas in β sheets these are 1.2 ± 0.3 , 0.29 ± 0.1 , -1.4 ± 0.5 and 0.38 ± 0.1 ppm, respectively (Wishart & Sykes, 1994). Figure 2.2.4 shows the summary of ¹⁵N, ${}^{1}H_{N}$, ${}^{13}C_{\alpha}$, and ${}^{1}H_{\alpha}$ secondary shifts plotted for each residue. Four stretches of α -helices (with one incompletely identified) and four stretches of β -sheets can be identified in L30 protein in the free form, which is consistent with the NOE observation. It is notable that the largest secondary shifts are in regions of the middle of helices or sheets. The more reliable observation comes from the ${}^{13}C_{\alpha}$ and ${}^{1}H_{\alpha}$ secondary shifts. ¹⁵N and ¹H_N values on the other hand show more deviations, because they are not only affected by the backbone dihedral angle but also influenced by the strength of any hydrogen bonds (Wishart & Sykes, 1994).

Table 2.1: ¹ H, ¹⁵ N and ¹³ C chemical shift list of free form L30 protein at 10°C. Proton chemical shifts are referenced to internal TSP.
Nitrogen and carbon chemical shifts are referenced to external \hat{NH}_4Cl and TSP, respectively. The errors in chemical shifts are ± 0.02 ,
0.2, 0.3 ppm for proton, nitrogen and carbon, respectively. Tentative assignments are indicated in ().

Residue	H _N /N	Ηα/Cα	Ηβ/Cβ	Ηγ/Cγ	Н8/С8	Ηε/Cε	ENH2/EN
A2		4.42/51.0	1.55/18.1				
P3		4.58/62.9	1.89,2.36/23.3	2.05/27.7	3.76,3.65/50.6		
V4	8.50/121.4	4.08/62.5	2.06	32.90	1.00/21.5		
K5	8.60/125.6	4.39/56.4	1.78,1.71/33.1	1.52,1.45	1.85,1.97	3.02	
S6	8.48/117.2	4.44/58.4	4.01/62.7				
Q7	8.74/122.7	4.31/56.4	2.12,2.05/28.6	2.35/33.9			7.64 6.53/112.0
E8	8.45/121.1	4.25/57.0	2.44/36.46	2.44 2.60/36.9			
S9	8.44/116.5	4.47/58.9	4.20 3.97/63.73				
110	8.59/122.0	3.83/63.4	2.05/37.57	1.02,1.34,1.46/17.6,29.2	0.68/13.4		
N11	8.41/120.3	4.27/57.0	2.89/37.42				7.59,7.01/109.2
Q12	8.09/120.2	4.17/58.9	2.16,2.28/29.2	2.48/34.29			7.64,6.93/112.0
K13	7.93/119.5	4.16/59.7	1.62,1.83	1.28	1.67	2.92	
L14	8.60/119.5	3.85/57.6	1.34,1.73/41.8	1.50/27.30	0.60,0.50/25.1,23.8		
A15	8.16/121.2	3.98/55.5	1.55/17.7				
L16	7.44/116.9	4.36/57.0	1.59 1.81/40.1	1.64/27.17	1.02,0.91/24.8,24.2		
V17	7.98/124.5	3.66/66.5	2.33/31.4	1.25,1.00/23.5,20.0			
I18	7.98/118.7	3.70/62.8	1.98/36.3	0.76,1.02,1.23/17.5,27.8	0.13/10.16		
K19	7.65/117.6	4.30/58.6	1.97,1.73	1.50	1.72	2.99	
S20	8.05/110.1	4.99/59.1	3.87,4.12/67.7				
G21	9.07/115.2	4.57,4.77/44.0					
K22	9.10/129.1	5.03/55.4	1.77,1.74	1.53,1.38			
Y23	8.72/122.5	5.56/56.3	2.93,2.83/41.2		6.67/133.4	6.92/118.7	
T24	9.21/112.6	4.67/60.4	4.05/70.1	1.05/19.7			
L25	8.46/122.0	5.11/53.9	2.14,1.62/44.9	2.03/27.1	1.19,1.10/26.5,25.9		
G26	8.35/107.1	4.68,4.44/44.7					
Y27	8.60/123.5	3.90/63.3	3.31,3.19/39.3		7.02/133.2	6.88/119.3	
K28	8.95/119.8	3.70/60.7	1.85,2.00/32.5	1.69			
S29	9.28/115.0	4.15/60.9	3.95,3.88/62.1				
T30	8.02/120.7	3.77/67.9	4.12/66.6	(1.02/22.0)			
V31	8.79/124.0	3.28/68.2	1.75/31.35	0.64,0.42/23.8,21			
K32	7.39/119.3	3.91/61.4	1.80,1.86	1.46,1.66		2.92	
S33	7.81/114.0	4.24/61.7	4.00,3.62/63.3				
L34	7.85/123.9	4.34/54.2	1.73, 1.64/41.5	1.62/27.9	0.93,0.88/27.8,23.5		
R35	8.53/120.9	3.98/59.5	1.91,1.80	1.57,1.34	2.73,2.88		6.98/84.0
O36	7.93/113.5	4.29/56.0	2.35.2.07/29.5	2.63,2.36/34.5	,		7.51.6.87/114.5
G 37	7.83/108.6	4.09,3.98/46.8	· · · · · · · ·	,			,
K38	8.07/115.7	4.34/55.8	1.92,1.64	1.52	2.99		
S39	7.41/111.9	4.12/62.2	3,44,3,58/63.0				
K40	9.30/124.1	4.50/55.7	2.10.1.46	1.53			
L41	7.67/120.7	4.61/54.8	1.17,1.82/45.3	1.28/29.2	0.60,0.80/27.7,24.0		

142	8 50/110 2	5 50/58 5	1 62/41 3	0 87 1 00/19 3 28 1	0.77/15.8		
142 142	0.30/119.3	5.00/00.0	1.02/41.3	0.07,1.00/12.3,20.1	0 67/15 4		
143	8.90/125.2	5.21139.5	1.04/41.2	1.01, 0.02/10, 4.07, 9	0.07/1/0		
144	8.54/124.2	4.64/60.2	1.53/41.1	1.21,0.82/19.4,27.8	0.62/14.9		
A45	8.72/129.1	4.67/53.4	1.72/18.5				
A46	8.83/123.6	4.33/55.3	1.44/19.1				776700/1101
N47	8.28/111.7	4.82/52.4	3.19,2.94/36.5				/./6,/.28/112.1
T48	7.60/120.5	4.50/62.2	4.02/70.1	1.52/19.1			
P49		4.47/63.69	2.57/33.1	2.16,1.89/28.3	3.69 4.16/52.0		
V50	8.67/123.7	3.71/66.9	2.19/32.0	1.16,1.05/22.0,20.9			
1.51	8 88/120.6	4.21/58.4	1.53.1.71/41.9	1.68/27.5	0.93,0.90/24.9,25.2		
R52	6 93/116 6	4 28/57 0	1 57 1 91	1.50.1.40	2.62.2.73		7.06/83.8
K52	8 52/110.0	3 87/61 4	2 07 1 74	1 50			
NJJ 854	0.52/119.9	A A1/57 0	A 20 A 01/64 1	1.50			
534	0.02/112.2	4.41/37.7	2 02/20 1	2 30/36 7			
E33	/.09/123.8	4.22/39.1	2.02/30.4	2.50/30.7	1 02 1 02/26 8 24 0		
L56	8.36/118.4	4.00/58.0	1.55,1.85/42.0	1.09/20.7	1.02,1.02/20.8,24.9		
E57	8.68/116.6	3.80/60.0	2.03,2.35/30.5	2.70,2.28/37.4	(5)	6 50	
Y58	8.18/122.1	4.38/57.2	3.19,3.11/37.9		6.54	0.30	
Y59	8.26/116.3	4.11/62.4	3.11,2.84/38.8		1.21	7.03	
A60	9.00/124.3	4.06/57.0	1.44/17.35				
M61	8.21/119.9	4.20/58.8	2.26,2.44/31.9	2.77,2.53/31.0		2.09/17.0	
L62	7.94/112.0	3.98/57.7	1.71,1.51/42.6	1.40/26.7	0.77,0.64/23.0,25.4		
S63	7.57/109.8	4.50/57.8	3.96,4.19/64.8				
K64	7.88/120.6	4.00/57.3	2.09,1.92	1.78,1.43		3.06	
T65	8.84/118.2	4.26/62.8	3.46/70.0	1.05/21.6			
K66	8 18/127 5	4.08/57.0	1.85.1.80	1.57.1.48			
V67	8 11/121 3	4 47/60 7	1.78/34.5	0.32.0.77/21.8.21.7			
V68	0 12/128 1	4 72/56 6	2 80 2 85/41 1		7.09	6.90	
V60	9.12/120.1 9.00/127.2	4.60/55 7	2 53 2 93/36 9		7.05	6.70	
109 E70	0.09/127.2 0.26/126 A	4.00/55.7	3 03 2 84/41 1		7.26	7.26	
F/U	0.30/120.4	4.50/57.4	1 82 1 08/27 3	2 35 2 40/34 1	7.20		7.43.6.96/113.0
0/1	9.01/120.0	4.13/30.1	1.03,1.90/27.3	2.33,2.40/34.1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
G/2	7.08/107.2	5./7,4.10/44.0					
G73	8.46/105.9	4.4/,4.1//44./	0.00/07.1				7 02 7 00/111 2
N74	9.38/118.8	4.28	2.90/37.1				7.92,7.09/111.2
N75	9.11/123.2			0.440.57/00.0			1.00,0.90/114.5
E76	8.04/121.9	4.16/60.1	2.14,2.30	2.44,2.57/38.0	0.50.0.14/06.0.01.4		
L77	9.11/123.2	3.62/57.2	1.33,1.82/42.0	1.05/33.0	0.50,0.14/26.3,21.4		
G78	7.65/104.8	4.04,3.43/47.7					
T79	7.99/117.6	4.08/66.2	4.19/68.6	1.25/22.3			
A80	8.15/125.2	4.15/55.0	1.46/18.4				
V81	7.35/106.4	4.31/	(2.35/30.7)	(0.64,0.90/22.2,19.6)			
G82	7 79/107 9	3 92 3 78/45.4					
K 82	8 18/117 3	4 17/56 4	1.90				
1 9/	8 10/170 2	4 30	(1.65 1.52/40 1)	(2.36)	(0.82.0.93/24.1.24.4)		
L04 E04	6 10/120.2	4.50	3 36 3 08/10 0	(2.2.3)	7 21	7.34	
C03	0.40/114.0	4.73/00.1	1 72	(1.41)	3 19		7.35/857
K86	8.40/11/.3	4.39/01.3	1.73 (1.16/29.0)	(1.41) (0.41, 0.54/22, 6.22, 9)	3.17		1.55105.1
<u></u>	8.00/121.4	4.50/62.5	(1.10/38.9)	(0.41,0.34/22.0,23.8)			

G88	9.17/113.2	3.92,3.78/46.3			
V89	7.20/116.0	5.51/59.0	2.21/33.7	1.02,0.85/23.1,18.5	
V90	8.62/125.2	4.65/60.1	1.77/36.3	0.77,0.83/22.3,20.9	
S91	8.79/119.6	5.35/54.9	3.98,3.76/65.3		
I92	9.18/126.0	4.18/60.5	2.16/37.1	0.73,1.00,1.34/17.5,29.6	0.73/12.2
L93	8.72/129.1	4.75/56.5	1.35 1.99/43.0	1.55/28.8	0.68,0.74/24.0,25.5
E94	8.21/116.2	4.59/57.9	2.28,1.80/33.6	2.30,2.35/36.1	
A95	9.27/124.8	4.02/53.8	1.46/20.1	-	
G96	8.51/105.7	3.72,3.69/46.5			
D97	8.83/124.5	4.63/54.6	2.90,2.41/41.3		
S98	7.72/112.1	4.44/61.7	3.97,3.79/65.3		
D99	8.45/126.3	4.81/53.7	3.04,2.60/40.1		
I100	7.89/119.3	3.99/55.8	1.73/38.9	0.73,1.25,1.48/16.2 26.8	0.57/14.4
L101	8.56/116.6	4.16/56.1	1.83,1.66/42.19	1.41	0.96,0.71/25.5,23.1
T102	7.67/108.0	4.50/62.5	4.40/69.1	1.18/22.1	
T103	7.46/110.8	4.44/62.6	4.20/69.9	1.14/21.0	
L104	7.61/122.1	4.41/55.2	1.54 1.41/42.2	1.50/26.7	0.46,0.50/25.5,23.5
A105	7.81/129.2	4.18/53.9	1.40/20.7		

Table 2.2: Data acquisition parameters and pulse sequences used in free form L30 protein NMR experiments recorded at 10°C. The four subdivisions in each NMR dimension (F1, F2, or F3) are: **a**, complex data points, **b**, spectral width (Hz), **c**, carrier position (ppm) and **d**, nuclei. In a 2D experiment, F2 is the direct acquisition dimension, whereas F1 is the indirect detection dimension. In a 3D experiment, F3 is the direct acquisition dimension, whereas F1 and F2 are the indirect detection dimensions.

Molecule	Experiment	<i>F3</i> (a, b, c, d)	<i>F2</i> (a, b, c d)	<i>F1</i> (a, b, c, d)	Mixing time (ms)	Reference
Nonlabeled L32 Protein	NOESY (Varain 600)	-	2048, 6999.7, 4.91. ¹ H	512, 6999.7, 4.91, ¹ H	50, 100, 150, 200	
	NOESY-watergate (Varain 600)	-	2048, 14000, 4.91, ¹ H	512, 14000, 4.91, ¹ H	100, 200	
	dq-COSY (Varain 600)	-	2048, 6999.7, 4.91, ¹ H	512, 6999.7, 4.91, ¹ H	-	(Rance <i>et al.</i> , 1983) (Marion & Wüthrich, 1983)
	P-COSY (Bitter 501)	-	2048, 5500, 4.91, ¹ H	512, 5500, 4.91, ¹ H	-	(Marion & A.Bax, 1988)
	TOCSY (Varain 600)	-	2048, 6999.7, 4.91, ¹ H	450, 6999.7, 4.91, ¹ H	35, 50	· (Brauschweiler & Ernst, 1983)
	TOCSY (Bitter 501)	-	2048, 60002.4, 4.91, ¹ H	512, 6002.4, 4.91, ¹ H	11	
¹⁵ N Labeled L32 Protein	FHSQC(Varain 600)	-	1024, 7000, 4.91, ¹ H	128, 2000.0, 118.41, ¹⁵ N	-	(Mori <i>et al.</i> , 1995)
	T1ro, T1, NOE Relaxation (Varain	-	512, 7000, 4.91, ¹ H	128, 2000.0, 118.41, ¹⁵ N	-	(Dayie & Wagner, 1994)
	¹⁵ N Watergate NOESY-	512, 6000.2, 4.91, ¹ H	128, 6002.4, 4.91, ¹ H	32, 1600, 116.5, ¹⁵ N	100	(Mori <i>et al</i> ., 1995)

¹⁵ N, ¹³ C Labeled L32	¹⁵ N TOCSY-HSQC- watergate (Varian	512, 6999.7, 4.91, ¹ H	128, 7000.0, 4.91, ¹ H	32, 2000, 118.41, ¹⁵ N	50	(Marion <i>et al.</i> , 1989)
	600) ¹³ C HSQC-CT (Varian 600)	-	1024, 7000, 4.91, ¹ H	105, 3850, 43.64, ¹³ C	-	(Santoro & King, 1992)
Protein	¹³ C HSQC-CT (Varian 600)	-	1024, 7000, 4.91, ¹ H	512, 10999.6, 39.99, ¹³ C	-	(Santoro & King, 1992)
	¹³ C FHSQC (Varian 600)	-	1024, 7000, 4.91, ¹ H	512, 10999.6, 39.99, ¹³ C	-	(Mori <i>et al.</i> , 1995)
	¹³ C HSQC-NOESY (Varian 600)	512, 6999.7, 2.62, ¹ H	128, 4000, 2.62, ¹ H	32, 3850, 43.64, ¹³ C	100	(Clore et al., 1990)
	¹³ C HCCH-DIPSI (Bitter 501)	512, 6000.2, 2.90 , ¹ H	128, 6000.2, 2.90, ¹ H	32, 3210, 40.0, ¹³ C	12	(Clore et al., 1990)

HSQC(Bitter 501)

Figure 2.2.4: Summary of secondary ¹⁵N, ¹H_N, ¹³C_{α} and ¹H_{α} chemical shifts for the L30 protein in the free form. The deviations of the chemical shifts are derived from comparisons to the chemical shift index (CSI) values reported by Wishart *et. al.*, 1994. Residues with chemical shift deviation absolute values greater than 0.1 or 0.7 ppm for respective H_{α} or C_{α} are particularly useful in identification of protein secondary structure.

2.2.2.5. Stereospecific assignments

Stereospecific assignment is a necessary step in determining the side chain torsion angle for determination of a high-resolution structure in NMR. In order to determine the torsion angle χ_1 about the C_{α} - C_{β} bond, stereospecific assignment of atoms associated with the C_{β} prochiral center of many of the amino acids was necessary. There are two types of prochiral atoms at C_{β} positions, those with two β -methylene protons, and others with two γ -carbons. Stereospecific assignment of prochiral centers was primarily based on measuring ${}^{3}J_{H\alpha-H\beta}$ coupling constant, in combination with typical NOE patterns associated with the adopted conformation.

In the case of two β -methylene protons, if the two measured H_{α} -H_{β} coupling constants are < 5 Hz, the corresponding to $\chi_1 = +60^{\circ}$; whereas if one has a large coupling constant (> 10 Hz) and one has a small coupling constant (< 5 Hz), $\chi_1 = -60^\circ$ or $\chi_1 = +180^\circ$. Additional information about the relative intensities of the H_N-H_β and $H_\alpha-H_\beta$ NOEs is needed to distinguish between $\chi_1 =$ - 60° and $\chi_1 = +180^\circ$ (Wagner *et al.*, 1987) (see **a** in Figure 2.2.5). Pairs of H_a-H_b coupling constants that differ by less than 5 Hz usually indicate side-chain averaging about χ_1 . H_{α} - H_{β} coupling constants for residues with two β -protons can be obtained from a DQF-COSY experiment, or a short mixing time (11 ms) TOCSY experiment (Cai et al., 1995). Because the buildup rate of a TOCSY peak depends on the size of the scalar coupling constant, qualitative analysis of cross peak intensities therefore can be used to estimate coupling constants (Clore et al., 1991). From a DOF-COSY spectrum, the quantitative measurements can be made for the large coupling constants (> 5 Hz) but it is difficult for the small coupling constants (< 5 Hz). The absence of cross peaks in this spectrum may not be referred to small couplings as there may be other reasons why cross peaks are missing; nevertheless, this is the only method available for large protein. Overall, excluding residues with resonance that could not be identified because of severe overlap, a total of 40 residues with β -methylene protons were stereospecifically assigned.

For residues with two γ -groups (*i.e.*, Thr, Ile and Val), there is only one H_{α}-H_{β} coupling constant. In these cases if the measured $J_{\alpha\beta} > 10$ Hz, this correspond to $\chi_1 = -60^\circ$, whereas if $J_{\alpha\beta}$

Figure 2.2.5: Scheme for obtaining stereospecific assignments of **a**, β -methylene protons and **b**, γ -methyl protons on the basis of a qualitative analysis of the relative intensities of cross peaks in 3D ¹⁵N NOESY-HSQC, 3D ¹³C NOESY-HSQC, ¹⁵N TOCSY-HSQC and 11 ms ¹H TOCSY experiments. The expected patterns of cross-peak intensities are indicated for the three prefered χ_1 rotamers. A strong cross peak is indicated by the letter **s**, and a weak or missing peak is indicated by the letter **w**. The β and γ positions are defined according to the IUPAC-IUB convention.

< 5 Hz corresponds to either $\chi_1 = +60^\circ$ or $\chi_1 = +180^\circ$. For Thr, Ile and Val residues, which contain only one β -proton, the H_{α}-H_{β} coupling constants were measured from the antiphase splitting of the H_{α}-H_{β} cross peaks in the DQF-COSY spectrum collected in D₂O after incorporation of linewidth corrections. Stereospecific assignments for the methyl groups of the valine residues were obtained on the basis of the relative intensity of the intraresidue H_N-H_{γ} and H_{α}-H_{γ} NOEs (Zuiderweg *et al.*, 1985) (see **b** in Figure 2.2.5).

2.2.3. Backbone relaxation studies

Recently, relaxation measurements have gained recognition as an important tool for studying the dynamic properties of macromolecules. Preliminary studies of the backbone dynamic properties of the free form L30 protein were carried out using heteronuclear NOE, spin-lattice (T_1) and spin-spin (T_2) ¹⁵N relaxation measurements. Since the T_1 values and heteronuclear NOEs are sensitive to high frequency motions $(10^8-10^{12} \text{ s}^{-1})$ and T_2 values are a function of much slower processes, it is possible to explore dynamic events occurring over a large range of time scale (micro- to millisecond time scales). In addition to determining the overall correlation properties of the L30 protein in the absence and presence of RNA on the basis of the T_1 and T_2 relaxation data, these measurements are also helpful in understanding the local motional properties of the protein that might be important for RNA recognition.

The theoretical description for the T_1 , T_2 relaxation rates and the NOE enhancement has been described in detailed in the literature (Abragam, 1961). In summary, they can be described by the following equations:

$$1 / T_1 = d^2 \left[J(\omega_A - \omega_X) + 3J(\omega_X) + 6J(\omega_A + \omega_X) \right] + c^2 J(\omega_X)$$
(2.3)

$$1 / T_2 = 0.5d^2 \left[4 J(0) + J(\omega_A - \omega_X) + 3J(\omega_X) + 6J(\omega_A) + 6J(\omega_A + \omega_X) \right] + \frac{1}{6}c^2 \left[3J(\omega_X) + 4J(0) \right]$$
(2.4)

NOE = 1 + {(
$$\gamma_A / \gamma_X$$
) $d^2 [6J(\omega_A + \omega_X) - J(\omega_A - \omega_X)] T_1$ } (2.5)

with $d^2 = 0.1\gamma_A^2\gamma_X^2 h^2 / (4\pi^2)(1 / r_{AX}^3)^2$ and $c^2 = (2/15) \gamma_X^2 H_0^2 (\sigma_{\parallel} - \sigma_{\perp})^2$. $\mathbf{A} = {}^{1}\mathbf{H}, \mathbf{X} = {}^{15}\mathbf{N}, \gamma_i$ is the gyromagnetic ratio of spin *i*, *h* is Planck's constant, r_{AX} is the internuclear ${}^{1}\mathbf{H}{}^{-15}\mathbf{N}$ distance, H_0 is the magnetic field strength, σ_{\parallel} and σ_{\perp} are the parallel and perpendicular components of the axially symmetric ${}^{15}\mathbf{N}$ chemical shift tensor, and $J(\omega_i)$ is the spectral density function. The assumption of an axially symmetric chemical shift tensor has been shown to be valid for peptide bonds, with $\sigma_{\parallel} - \sigma_{\perp} = -160$ ppm (Hiyama *et al.*, 1988).

The spectral density function $J(\omega_i)$ of a protein in solution depends on both the overall motion of the macromolecule as a whole and on the internal motions of the ¹H-¹⁵N bond vector (Lipari & Szabo, 1982), which can be described as:

$$J(\omega) = S^2 \tau_c / [1 + (\omega \tau_c)^2] + (1 - S^2) \tau / [1 + (\omega \tau)^2]$$
(2.6)

where S^2 is a generalized order parameter, measuring the degree of spatial restriction of internal motions of the N-H bond vector, τ_e is the effective correlation time for the overall motion, and $1/\tau = 1/\tau_e + 1/\tau_e$, where τ_e is an effective correlation time describing the rapid internal motion. Assuming that $[(\omega_A \pm \omega_X)\tau_e]^2 <<1$, and $(\omega_X \tau_m)^2 >>1$, the T₁, T₂ and NOE relaxation terms in equation 2.3 - 2.5 can be rewritten as following (Kay *et al.*, 1989b):

$$1/T_1 = S^2 (1/T_1)_{isot} \{ [1 + (10 + \delta) / (3 + \delta)] (1 - S^2) / S^2] (\tau_e / \tau_m) (\omega_X \tau_m)^2 \}$$
(2.7)

$$1/T_2 = S^2 (1/T_2)_{isot} \{1 + [10 + (7/6)\delta)] / (2 + (2/3)\delta)][(1 - S^2) / S^2](\tau_e/\tau_m)\}$$
(2.8)

NOE = NOE_{isot} - 50/(3+
$$\delta$$
) {[(1 - S²) / S²](τ_e / τ_m)($\omega_X \tau_m$)²} (2.9)

where the subscript **isot** refers to the value in the absence of internal motion, and the value of $\delta = (c/d)^2$. Therefore the order parameter S^2 , effective correlation time τ_e and overall correlation time τ_m can be derived from fitting the above equations upon knowledge of the T₁, T₂ and NOE relaxation rate.

Two-dimensional ¹⁵N relaxation (T₁, T₂, NOE) measurements of the L30 protein were recorded on Varian Inova 600 instrument. Series of spectra were acquired on a 0.7 mM protein sample at 10°C using published pulse sequences (Dayie & Wagner, 1994). Water flip-back was used for water suppression. The spectral widths used were 7000 Hz in F_2 (¹H) and 2000 Hz in F_1 (¹⁵N). Sixteen scans were acquired for each t_1 increment; quadrature detection in the F_1 dimension was obtained using time-proportional phase incrementation (TPPI). A total of $1024 \times$ 256 real data points were acquired for 6 different T₁ delays, corresponding to 10.02, 20.04, 40.08, 120.24, 300.6 and 601.2 ms for the T₁ measurements, and with repetition points of 10.02 ms and 601.2 ms. A 1.9 s relaxation delay was used between scans. T₂ measurements were recorded with the same spectral widths, number of scans, and data sizes as T_1 data, with 6 different T_2 relaxation delays, corresponding to 2.74, 5.48, 21.93, 41.11, 65.78, 104.15 ms, and repetition points of 2.74 and 5.48 ms. To eliminate the influence of chemical exchange on T_2 measurements, a Carr-Purell-Meiboom-Gill (CPMG) pulse train (Carr & Purcell, 1954; Meiboom & Gill, 1958) was used during the transverse relaxation time. Heteronuclear NOE (¹H-¹⁵N) relaxation were measured using two spectra, one with the NOE effect, and one without. The duration of the recycling delay was 3 s per scan so as to ensure that the ¹⁵N magnetization reaches its equilibrium value prior to the first ¹⁵N pulse. The spectrum with NOE was obtained by proton saturation, which was achieved with a train of 120° hard pulses separated by a 5 ms delay for 3 s duration. The spectrum without NOE was recorded with identical parameters, except for the replacement of the 120° proton saturation pulses with a 3 s delay. The T₁, T₂, and NOE data sets were processed using Lorentzian-to-Gaussian apodization in both dimensions, and zero filling to 2048 (F₂) and 1024 (F₁) data points. Cross peak intensities (Barbato et al., 1992) rather than
II. The L30 Protein in the Free Form

integrated peak volumes were measured in NMRPipe program (Delaglio et al., 1995) and were used to determine the relaxation rates.

The T_1 , T_2 data values were extracted by fitting cross peak intensities to a single exponential function, as follows:

$$I(t) = I(0) \exp(-t/T_{1,2})$$

where $1/T_{1,2}$ is the relevant relaxation rate and I(t) is the intensity of a given cross peak at time t. More specifically, a conjugate gradient minimization was performed to determine the optimum value of the I(0) and T_{1,2} parameters by minimizing the χ^2 goodness of fit parameter:

$$\chi^2 = \sum [(I_c(t) - I_e(t)]^2 / \sigma_I^2]$$

where $I_e(t)$ are the intensities calculated from the fitting parameters, $I_e(t)$ are the experimental intensities, σ_I is the standard deviation of the experimental intensity measurements. The summation is performed over the number of time points recorded in each experiment. Errors in measured relaxation rates were estimated using Monte Carlo procedures (Farrow *et al.*, 1994).

The steady-state NOE values are determined from the ratios of the average intensities of the peaks with and without proton saturation. The standard deviation of the NOE values, σ_{NOE} , was determined on the basis of measured background noise levels using the following relationship:

$$\sigma_{\text{NOE}}/\text{NOE} = ((\sigma_{\text{Isat}}/\text{I}_{\text{sat}})^2 + (\sigma_{\text{Iunsat}}/\text{I}_{\text{unsat}})^2)^{1/2}$$

where I_{sat} and I_{unsat} represent the measured intensities of a resonance in the presence and absence of proton saturation, respectively, and σ_{Isat} and σ_{Iunsat} represent the standard deviations of the background noise. The root-mean-square value of the background noise regions was used to

II. The L30 Protein in the Free Form

estimate the standard deviation of the measured intensities. Spectra were recorded in duplicate to assess the validity of this estimate.

Figure 2.2.6 shows the relaxation parameters T_1 , T_2 and NOE measured on the L30 protein. As can be seen, nine residues at the N-terminus and four residues at the C-terminus show significantly large T_2 rates and negative heteronuclear NOEs. This is an indication of a rapid motion (picosecond time scale). The observation of disordered terminal regions of protein is consistent with many results from similar studies on different other proteins (Farrow *et al.*, 1994; Kay *et al.*, 1989b). For the rest of the residues, the flexibility of the backbone residues are similar, except for G73. The large T_2 and negative heteronuclear NOEs of G73 could be a result of the flexible linkers (G72, G73, N74 and N75) connecting a β -strand and another secondary structure (not clear at this stage). While most of the measurements are reliable, residues between 74-78, and 81-88 have either no or less accurate relaxation rates that are either missing assignments or broad proton linewidths. The weak or missing correlation peaks are likely to be due to either conformational exchange or rapid amide exchange with solvent. The weak correlation peaks for these residues suggest these regions are relatively more flexible (millisecond time scale).

Furthermore, the correlation time τ_m was determined by the ratio of T_1/T_2 for each residue, and the average value and standard deviation of the ratio were also determined. The relaxation parameters of the residues having T_1/T_2 values within one standard deviation of the mean value and NOE values greater than 0.65 were fit to obtain τ_m for each residue. A very rough estimation of the global τ_m was made from the average of the individual values. The average overall correlation time τ_m was calculated to be 8.2 ± 0.4 ns for the L30 protein at 10°C. Since the overall correlation time of a molecule should be approximately proportional to its molecular weight, it was compared to calculated values for other proteins of similar size. In comparison with the correlation time of an SH2 domain complex (~ 6.5 ns for 13 kDa protein at 30°C) (Farrow *et al.*, 1994), the L30 protein shows a slightly higher value of 8.2 ns at 10°C. The discrepancy could be a result of different temperatures at which the experiments were recorded. Since the viscosity of solvent also increase with decreased temperature, therefore the overall

Figure 2.2.6: Plots of backbone relaxation parameters T_1 , T_2 , and NOE of the unbound L30 protein as a function of residue number. The data were recorded on a 600 MHz spectrometer at 10°C. Measured T_1 values are shown in panel **a**, T_2 values in panel **b**, and ${}^{15}N{}^{-1}H$ NOE data in panel **c**. The missing data points result from either broad correlation peaks or overlapping peaks in the ${}^{15}N{}^{-}$ edited HSQC spectrum.

II. The L30 Protein in the Free Form

tumbling rate of L30 protein is slower at 10°C. A possibility could be the potential existence of a monomer-dimer equilibrium of L30 protein. Further measurements (*i.e.*, sedimentation equilibrium, light scattering) are necessary to investigate such speculation.

In conclusion, the biochemistry and NMR analyses of the L30 protein in the absence of RNA suggest that the protein adopts a structure with a mixture of both α -helices and β -sheets. The assignment of about 86% of the total observable proton resonances were achieved using the combination of both homonuclear and heteronuclear approaches. The analysis of sequential NOEs and chemical shift alignments of various backbone resonances facilitated mapping of the locations of three distinct α -helices and four β -strands within the L30 protein, with the exception of one flexible region (residues 74-88) of which the secondary structure is unclear at present. In addition, the initial studies of the dynamic properties of the protein reveal a possible flexible region (residues 74-88) that undergoes conformational exchange in the absence of its binding RNA. These studies of the L30 protein in the free form provide useful information, namely, resonance assignments, secondary structure maps and local conformational flexibility, which can assist in the later structural studies of the complex using NMR spectroscopy.

CHAPTER 3. The L30 RNA in the Free Form

Similar to the L30 protein in the free form, the studies of the L30 RNA in the absence of the binding counterpart are also essential for structural studies of the complex. In particular, the RNA under investigation is a large piece of premessenger RNA consisting of more than 1,000 nucleotides, but the functional regulatory regions reside at the 5' end of the exon and few residues within the intron. In order to make the target RNA amenable for structural studies using NMR spectroscopy, it is necessary to design a model system to reduce the size of the molecule based on the biochemical analyses.

3.1. Design of L30 RNA for NMR

The NMR spectrum of an RNA is much more crowded than that for a protein. Thus, for a feasible analysis it is necessary to have as small RNA as possible. When combined with the desire to determine the structure of the RNA bound to a protein, as is the case presented here, the design is mainly based on minimizing the size without losing binding affinity.

The L30 RNA design was based on MiniL32 (Li *et al.*, 1995), a small stem-loop-stem RNA that has been used as a model system for biochemical analyses of the L30 protein premRNA binding site for the auto-regulation of splicing. The MiniL32 RNA that was designed to mimic the phylogenetically derived stem-"purine rich loop"-stem structure has been subjected to extensive chemical and enzymatic probing studies. Results from RNase footprinting, chemical modification interference, and studies of protection on protein binding suggested that several purine bases in the internal loops are critical for protein binding (Li *et al.*, 1995) (Figure 3.1.1, panel **a**). More recently, *in vitro* selection experiments on RNA aptamers were carried out, and they also show the preservation of the wild type stem-internal loop-stem secondary structure (Li & White, 1997) (Figure 3.1.1, panel **b**). In particular, a two-plus-five internal loop that is rich in purines appears to be conserved and may be important for protein binding. These biochemical characterizations of the pre-mRNA autoregulatory binding site have helped in improving upon

Figure 3.1.1: Secondary structures of **a**, MiniL32 RNA used in biochemical analyses and **b**, L30N RNA used in NMR structural studies. In the MiniL32 RNA, circles (open or dashed) and arrows represent chemical modifications of bases and phosphates, respectively, that are important for L32 protein binding. Open circles represent nucleotides protected from cleavage upon protein binding. Lower case letters represent non-native nucleotides. The sequence of the L30N RNA used for NMR analysis is modified from the MiniL32 RNA: a G-C pair was added to stabilize the lower stem and replace the unpaired ends, and a GNRA tetraloop was used to replace the pentaloop at the upper stem and prevent dimerization of L30N RNA in NMR studies.

MiniL32, though more biochemical experiments had to be carried out for designing a suitable RNA model system for studying the structure and function of the L30 protein-RNA complex using NMR spectroscopy. A complete description of how the RNA was designed is given in the following subsections.

3.1.1. Structure mapping and design of RNA for NMR

3.1.1.1. Problems with MiniL32 RNA

As described above, the pre-mRNA autoregulatory binding site of the L30 protein can be best represented by a 36 nucleotide MiniL32 RNA used in biochemical characterizations (Li *et al.*, 1995) (Figure 3.1.1, panel **a**). Despite having a reasonable size, MiniL32 RNA was not an ideal model system for NMR analyses mainly of problems arising from the sequences selected for the lower and upper stems. More specifically, three Gs that were added for facilitating transcription create single stranded regions at both the 5' and the 3', while the chosen non-wild type loop rich in Us at the upper stem leads to thermal instability. Initial NMR studies on MiniL32 showed that the conformational flexibility at these ends lead to unfavorable exchange properties making it not suitable for NMR analyses (data not shown).

The conformational heterogeneity of MiniL32 made it necessary to modify the sequence. Initially the *in vitro* selection results were not available, therefore slight modifications were carried out to tailor the MiniL32 RNA for NMR studies. Later these regions were also found to be unimportant for L30 protein binding (Li & White, 1997). First, as alluded to above, the single stranded regions at the 5' and 3' ends were eliminated, and a G-C pair was added to stabilize the lower stem and facilitate T7 polymerase transcription. Second, the upper closing loop was replaced with GAGA (a GNRA-type tetraloop) loop. The preliminary analysis from a 2D NOESY spectrum suggested that there was a substantial amount of conformational and/or structural heterogeneity in this RNA sample. These was reflected by several sets of exchange peaks (with about 15% of a minor conformer) present in the imino resonance region. This

heterogeneity was also seen in the gel shift analysis and size exclusion chromatography, which showed a substantial amount (> 10%) of dimerization.

3.1.1.2. Preliminary mapping

The failure to design a conformationally stable RNA from the above results led not only to various other modifications and biochemical characterizations of MiniL32, but also to reinterpretations of the above studies. The first set of experiments was carried out to understand the exact base pairing in the asymmetric, purine rich loop. *In vitro* SELEX experiments (personal communication with Dr. Susan White) showed that the phylogenetically conserved A57 was always replaced by a cytosine. Such a replacement could in principle lead to an internal loop conformation resembling the Loop-E motif (Dallas *et al.*, 1995). When the sequence of the L30 pre-mRNA was compared to the Loop-E motif, it suggested the formation of a long continuous helix extended by wobble base pairs, rather than the stem-loop-stem conformation predicted from the phylogenetically related species (Eng & Warner, 1991).

To further check this prediction of a Loop-E motif conformation and to design a more stable RNA, a series of modified L30 RNA were made as summarized in Figure 3.1.2. Panel **a** of the figure is divided into two sections. The left side refers to modifications on the L30R RNA in which the loop in the MiniL32 is replaced by stable tetraloops, and a G-C pair was added at the 5'- and 3'-ends. The RNAs on the right side of the panel are different types of modifications, in which a tetraloop is used to stabilize the left stem and a G-C pair is added to the right stem. The general rationale for the modifications was to maximize the stability of the RNA monomers, which could be tested later by size exclusion chromatography at the millimolar NMR concentration. Among the RNAs listed in Figure 3.1.2, some were drawn as almost straight helices, resembling the Loop-E motif. These were used to test the hypothesis that the L30 RNA might adopt a Loop-E motif conformation rather than the predicted two-plus-five internal bulge loops.

Figure 3.1.2: The sequences of the RNAs and their binding affinities for MBP-L30 fusion protein. Panel a shows the secondary structures of the RNAs used for mapping the internal loop structure for L30 protein binding. Lower case letters indicate the modified base sequences. The secondary structures are drawn based on the putative base pairing for the sequences. Panel b shows the RNA binding affinities for the MBP-L30 fusion protein determined from gel shift binding assays.

a.

All these RNAs were tested for the binding activities to the MBP-L30 fusion protein. Their dissociation constants (K_d s) are listed in Figure 3.1.2, panel **b**. It is clear from the protein binding data that RNAs that adapt the two-plus-five internal bulge loop conformation have close to wild type binding activity. On the contrary, the alternative hypothesis that the RNA might adopted Loop E conformation was not consistent with the binding data. Both L30/29 and L30/33C show almost a 500- to 1000-fold reduction of binding affinity to the MBP-L30 fusion protein. This suggests that the Loop-E conformation, stabilized by the continuous helix formation, is unfavorable for binding. Even though L30/37C is expected to exist in a Loop-E conformation, the loose base pairing at the right side of the RNA allows base pairs to rearrange upon protein binding, ultimately resulting in the near wild type binding activity. Among the RNAs tested, L30N representing the best model system for studying the structure of the L30 protein pre-mRNA binding site and has the optimum activity.

3.1.1.3. Useful RNA mutants

In addition to designing a good model system for RNA structural analyses, mutants were also synthesized at different stages to facilitate NMR experiments. These mutants were made mainly because of the difficulties encountered in the resonance assignments in the internal loop region of L30N RNA. As an example, there are two putative wobble U·G and G·U pairs (G10-U60 and U14-G53) in the RNA. Ambiguities were raised when one base pair was constantly observed in the NMR spectroscopy at all temperature but the other one was seen only at low temperatures. It was known from the SELEX results (Li & White, 1997) and from phylogenetic comparisons (Eng & Warner, 1991) that the importance of U14·G53 was less significant, and thus it was possible to use a Watson-Crick base pair substitution without affecting the overall binding affinity to the protein. Therefore, a U14C mutant leading to a Watson-Crick pair at positions 14 and 53 was prepared to differentiate between the two wobble pairs. Other point mutants (A57C, A55C and A55U) were also designed according to SELEX results in order to facilitate the NMR assignments. This will be discussed in detail in Chapter 5. To ensure that the modifications in the RNA did not affect the protein binding, gel shift protein binding assays were carried out to determine the RNA binding affinities and stoichiometries to the L30 protein as

described previously in Chapter 2. All the RNAs had a protein binding affinity that was comparable to MiniL32 RNA. The near wild type MBP-L30 protein binding affinity ($K_d \sim 14 \pm 2$ nM) suggested that these RNA mutants would be valuable assistants in the structural analyses.

3.1.2. Size-exclusion chromatography assay

To monitor potential dimer formation at NMR concentrations, RNAs were analyzed on a Vydac size-exclusion chromatography column equilibrated with the standard NMR buffer (10 mM sodium phosphate, pH 6.5, 50 mM NaCl, and 0.1 mM EDTA). Briefly, RNAs ranging from 10 to 1000 μ M were heat denatured at 65°C for one minute, and then flash cooled on ice for 5 min. RNA aliquots of 2 μ l were injected into a Vydac column at a flow rate of 0.5 ml/min and the peaks were monitored by UV absorption at 260 nm. The retention time of the monomer was estimated by comparison to that of a previously measured monomeric RRE RNA (34 nucleotides), and it was further standardized by the retention times of protein markers with known molecular weights. The retention time for a dimer is expected to be less than that of a monomer, therefore the population of monomer versus dimer can be determined by the ratio of the areas under the two peaks.

Most RNA constructs used for the biochemical studies were subjected to the sizeexclusion chromatography assay. Among these RNAs, L30R RNA displayed about 15-20% dimerization at a relatively lower RNA concentration (0.5 mM), consistent with the earlier NMR observation on the free RNA. A majority of the RNAs with an extra-stable tetraloop at one end and two G-C closing pairs at the other end exhibit over 90% monomer conformation at millimolar concentrations.

3.2. RNA Synthesis

3.2.1. Preparation of ¹³C/¹⁵N nucleoside triphosphates (NTPs)

To facilitate the NMR assignments of the RNA, it was necessary to prepare doubly labeled RNA to help in resolving many ambiguities, similar to that in the case of the protein as described in Chapter 2. With the recent developments in preparing isotopically labeled nucleotides (Batey *et al.*, 1992), it is now possible to prepare ¹³C/¹⁵N-labeled samples. The basic protocol can be divided into two steps: preparation of NTPs and transcription into RNA. The NTPs were prepared and purified as described by Batey *et al.* (1992). A brief description of the various steps in the protocol is given below.

Cell growth: Ten liters of *Methylophilus methylotrophus* cells were grown in phosphate media (1.9 g/L K₂HPO₄, 1.79 g/L NaH₂PO₄•H₂O, 5.1 mg/ml FeCl₃, 0.81 mM MgSO₄ and 1× trace metals, pH 7.0) containing 1.75 g/L (15 NH₄)₂SO₄ and 10 ml of 13 C methanol as the sole nitrogen and carbon source, respectively. Cells were supplemented with four additional aliquots of 10 ml methanol when the cell density measured by OD₆₆₀ reached 0.4, 0.8, 1.2 and 1.6, and were harvested when the OD₆₆₀ reached 2.6. This procedure yielded about 61 grams of 13 C/ 15 N *Methylophilus methylotrophus* cells.

Preparation of ribose nucleoside monophosphates: About 16 grams of cells were lysed in STE buffer (0.1 M NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA) containing 0.5% SDS and were extracted with phenol/chloroform to separate nucleic acids from protein. The isopropanol-precipitated nucleic acids were then subjected to nuclease P1 digestion in a buffer containing 15 mM sodium acetate, pH 5.3, and 0.1 mM ZnSO₄ at 65°C for 12 hrs. Then the ribonucleoside monophosphates (NMPs) were separated from deoxyribonucleoside monophosphates (dNMPs) using boronate affinity chromatography. This column selectively binds the cis-diols of the ribose ring at pH 9.5, maintained by using 1 M triethylammonium bicarbonate (TEABC) buffer, and

can be eluted by acidified solution (carbonate water, pH 4.6). An RNA/DNA ratio of 3 was observed.

Preparation of ribose nucleoside triphosphates: Previously, instead of having buffer for stabilizing the pH of the solution, diluted HCl (0.1 N) was added occasionally through a peristaltic pump during the course of the charging reaction to neutralize the rising pH. As a result, the final volume of the reaction increased by about 30-40% compared to the original volume. In the present case, potassium phosphate buffer was chosen for maintaining the pH of the charging reaction. In buffer containing 50 mM potassium phosphate, pH 7.5, 10 mM MgCl₂, 15 mM dithiothreitol (DTT), 10 mM sodium 3'-phosphoglycerate, NMPs were enzymatically converted into NTPs. The following enzymes were used: phosphoglycerate mutase, nucleoside monophosphate kinase, enolase, myokinase, pyruvate kinase and guanylate kinase. Complete phosphorylation of all nucleotides took about 36 hours, and the reaction was monitored by Vydac nucleoside HPLC chromatography (Figure 3.2.1.). The NTPs were further purified for transcription with another round of boronate affinity column chromatography.

3.2.2. Preparation of the RNAs for NMR characterization

The following RNAs were prepared at various stages in the NMR studies (the nucleotides in bold are wild type sequence, and mutations are underlined):

L30N (wild type): 5'-GGACCGGAGUGUCGCAAGACGCAGAGAUGGUCC-3' L30R (wild type): 5'-GGACCGGAGUGUGAGAACGCAGAGAUGGUCC-3' L30U₁₄C (mutant): 5'-GGACCGGAGCGUCGCAAGACGCAGAGAUGGUCC-3' L30A₅₅C (mutant): 5'-GGACCGGAGUGUCGCAAGACGCCGAGAUGGUCC-3' L30A₅₇C (mutant): 5'-GGACCGGAGUGUCGCAAGACGCAGCGAUGGUCC-3' L30A₅₇U (mutant): 5'-GGACCGGAGUGUCGCAAGACGCAGCGAUGGUCC-3'

Figure 3.2.1: HPLC traces of the time course during enzymatic conversion of nucleotide monophosphates (NMP) into nucleotide triphosphates (NTP). An almost complete conversion of NMP into NTP occurred within 36 hrs.

The above RNAs were synthesized by phage T7 RNA polymerase transcription using different DNA templates containing identical double-stranded promoter regions and different single-stranded anti-sense coding regions (Wyatt *et al.*, 1991). The 18 nucleotide DNA promoter sequence ("top strand") used is 5'-CTAATACGACTCACTATA-3'. The individual DNA templates contains 5'-anti-sense coding sequences plus 5'-TATAGTGAGTCGTATTAG-3'. Transcription were performed in 80 mg/ml polyethylene glycol, 1× transcription buffer (80 mM HEPES, pH 8.1, 10 mM DTT, 1 mM spermidine, 0.01% triton X-100), with 300 nM DNA template, 300 nM T7 DNA top strand and 0.5 unit/ml inorganic pyrophosphatase. NTPs, MgCl₂ and T7 RNA polymerase concentrations were optimized for highest yields on the different DNA template (Table 3.1). Optimizations were carried out in 20 µl reactions containing trace amounts of [α -³²P] labeled GTP, and the full-length RNA products were quantified by phosphorimaging. Conditions that gave the maximum amount of full-length RNA per NTP input were chosen for large-scale RNA sample preparations.

A 50 ml transcription using the optimized condition generally yielded five to ten milligrams of RNA. More specifically, after the enzymatic synthesis at 37°C for 3.5 hrs, the crude reaction mixture was extracted with an equal volume of phenol, followed by extraction using a chloroform and isoamyl alcohol mixture (24:1 ratio). It was then allowed to precipitate overnight precipitation using three volumes of ethanol and 0.1 mM sodium acetate (pH 5.5) at -20°C. The crude RNA mixture was then purified using preparative gel ($45 \times 35 \times 0.3$ cm³) electrophoresis on a 20% (w/v) polyacrylamide (19:1) denaturing gel containing 8M urea. The product band was excised from the gel under UV shadowing. The RNA from the gel was recovered by electro-elution in an Elutrap apparatus (S&S), followed by ethanol precipitation of the electroeluant. The RNA pellet was completely suspended in 400 µl ddH₂O and dialyzed extensively against the NMR buffer (10 mM potassium phosphate, pH 6.0/6.5, 0.02% NaN₃, and 0.1 mM EDTA). The concentration of RNA was measured by UV₂₆₀ absorbance and calculated using the conversion factor 1 OD₂₆₀ = 35 ng of RNA. A 50ml transcription yielded a 1.5 mM to 2.0 mM NMR sample. Variations depended on the RNA sequence and the T7 enzyme activities. Unlabeled RNAs were prepared using the above protocol with NTPs purchased from Sigma;

Table 3.1: Optimized reagent conditions of T7 RNA polymerase transcription for all RNAs used in NMR experiments. All reactions were carried out in buffer containing 80.0 mM HEPES, pH 8.1, 10 mM DTT, 1.0 mM Spermidine, 0.01% (v/v) Triton X-100, 80 mg/ml PEG-8000, 300 nM DNA template, 300 nM T7 DNA promoter and 1 unit/ml inorganic pyrophosphatase. Characters in bold indicate ¹³C/¹⁵N-labeled nucleotide triphosphates.

Reagent	L32N	L32R	U14C mutant	A55C mutant	A57C mutant	A57U mutant	Uniformly ¹³ C/ ¹⁵ N labeled L32N	Selectively ¹³ C/ ¹⁵ N labeled L32N (guanosine)
ATP (mM)	4.0	4.0	4.0	3.5	3.5	3.5	2.0	2.0
GTP (mM)	6.0	4.0	6.0	6.0	6.0	6.0	2.0	2.0
CTP (mM)	4.0	4.0	4.5	4.5	4.5	4.0	2.0	2.0
UTP (mM)	2.0	4.0	1.5	2.0	2.0	2.5	2.0	2.0
MgCl ₂ (mM)	25.6	25.6	25.6	25.6	25.6	25.6	8.0	9.6
T7 RNA polymerase (mg/ml)	0.035	0.035	0.035	0.035	0.035	0.035	0.025	0.025

¹³C/¹⁵N-labeled RNAs were prepared using the NTPs purified from the *Methylophilus methylotrophus* as described above.

3.3. NMR Characterization of the L30N RNA in the Free Form

3.3.1. Optimization of the experimental conditions

Initially the NMR conditions were optimized solely based on the stability of the RNA in the absence of its cognate protein, and all NMR spectra were recorded at 15°C in a standard NMR buffer (50 mM NaCl, 10 mM sodium phosphate, pH 6.5, and 0.1 mM EDTA). Later it was determined that this buffer condition was not optimal for studying the L30 RNA-protein complex structure. The complex proved to give sharper signals at a lower salt concentration (10 mM monovalent ions) and higher temperature (30°C). Moreover, for the L30 protein in the complex, amide protons show much slower exchange rate with solvent around pH 5.5, which has greatly facilitated the triple resonance experiments carried out for backbone sequential correlations. In contrast to this, the RNA imino proton resonances broaden when the pH drops below 6.0 (both in the free and the complex form). Thus, the RNA data in the complex was collected in NMR buffer containing 10 mM potassium phosphate, pH 6.0, 0.02% NaN₃ and 0.1 mM EDTA. Temperature dependence (from 5°C to 25°C for free RNA) was used to resolve ambiguities associated with resonance overlaps and exchange broadening. All RNA complexes were dialyzed into pH 6.5 buffer for comparison with the free RNA.

3.3.2. Assignment of exchangeable proton resonances

Among the NMR experiments recorded for RNA structure analysis, homonuclear NMR experiments played a major role in these structural studies. Besides, isotopic labeling of RNA is much more expensive and a labor-intensive procedure (see section 3.2.1) compared to protein. Moreover, many heteronuclear experiments did not provide much useful information, especially those associated with aromatic rings, because of relaxation properties. For the mutants,

homonuclear experiments were solely sufficient to provide useful information by following the changes in the imino resonance spectra, or the appearance of H5-H6 cross peak upon mutation of purine to pyrimidine in D_2O NOESY and COSY spectra. Nevertheless, the assignment procedure did required a combination of both homonuclear and heteronuclear experiments.

3.3.2.1. Imino resonance assignment

For observing exchangeable proton resonances, 1D spectra of L30N RNA dissolved in 90/10% H₂O/D₂O were recorded on a Varian VXR-500 MHz instrument using 1331 binomial pulse sequence (Hore, 1983), or on a Varian Inova-600 MHz spectrometer using WATERGATE sequence (Mori et al., 1995) for water suppression. The imino protons of G's and U's in base pair conformations resonate quite downfield (between 12 to 15 ppm) and usually provide an estimate regarding the presence of base pairing. Thus, the imino resonances are a direct indication of structure formation in the RNA. The imino-proton regions of L30N RNA recorded at different temperatures were compared and used to optimize the resonance resolution and signal intensity. When the temperature was increased from 5 to 15°C, no significant changes in the imino resonances were observed. On the contrary, when the temperature was raised from 15°C to 30°C, some resonances sharpened as expected, but some broadened. The broadening occurs mainly because of the melting of the RNA. Resonances between 10 to 12 ppm broaden first, since they belong to the unpaired G imino protons, which experience exchange as the temperature is increased. Temperatures of 10, 15 and 25°C gave better resolution and signals in 1D imino proton resonance region were chosen to record 2D spectra for assignment of the imino resonances.

Two-dimensional NOESY-WATERGATE experiments with 100 ms and 150 ms mixing times were acquired on the RNAs in water on either the Bitter 500 MHz or Varian 600 MHz spectrometer. The WATERGATE delay was set to 110 μ s to maximize the signals in the imino resonance region. Data sets with 4096 complex points in t₂ and 512 complex points in t₁ were acquired with 12000 Hz (on the 500 MHz machine) or 14000 Hz (on the 600 MHz machine) spectral widths in both dimensions. A ROESY-WATERGATE experiment with a 50 ms mixing

time was acquired using similar acquisition parameters on the Varian 600 MHz spectrometer, except that the additional spin-lock period was achieved with a 7 kHz spin-lock pulse. The 2D NOESY spectra provide direct information on the base pairing and the sequential base pair connectivities (Wüthrich, 1986). Typically a Watson-Crick G-C (or C-G) pair is identified by the strong NOE cross peaks from the two amino protons of cytosine to the guanine imino proton, whereas a U-A (or A-U) pair is identified through a sharp cross peak between the uracil imino proton and the adenosine H2 proton. For temperatures greater than 10°C, the amino protons of both adenine and guanine are not observable when they are in Watson-Crick base pairs as there exists a slow rotation about the N6-C6 bond upon base pairing. Besides the two types of Watson-Crick base pairs, a wobbled G·U (or U·G) pair can be identified by strong intra-base pair imino-imino NOEs, and imino-amino proton NOEs. Based upon these characteristic patterns, two A-U/U-A pairs, six G-C/C-G pairs, and one U·G pair were observed in L30N RNA in the free form at 15°C. An additional G·U pair was observed in spectra acquired at 10°C, which disappeared with rising temperature (Figure 3.3.1).

The initial homonuclear NOE-based categorization of G and U imino resonances was further confirmed by a ¹H-¹⁵N HSQC spectrum acquired on a fully ¹³C/¹⁵N-labeled RNA. Standard ¹⁵N-edited HSQC (Mori *et al.*, 1995) spectra at 11, 15 and 25°C were acquired by either centering the ¹⁵N transmitter near 117 ppm to obtained ¹H/¹⁵N correlation for the entire exchangeable resonances or around 150 ppm for observing only the imino ¹H/¹⁵N correlation. The evolution period was optimized for a J_{HN} = 90 Hz. In a ¹⁵N-edited HSQC spectrum, the G H1 can be easily distinguished from the U H3 by the more down-field chemical shift of its attached ¹⁵N resonance (Figure 3.3.2). 12 G's and 4 U's imino resonances were observable in ¹⁵N-HSQC spectra acquired at 10°C, although there are a total of 13 G's and 4 U's in the sequence. These imino resonances include 7 G's and 4 U's that form base pairs, one G involved in a tetraloop base pair, and 4 others within internal loop which was not yet assigned. The missing imino must belong to the G5 at the 5'-end, which is expected to broaden out.

By analyzing the sequential weak imino-imino NOEs between stacked base pairs, the base pairs could be grouped into two segments corresponding to the two predicted helical stems.

Figure 3.3.1: Assignment of imino proton resonances. Imino NOEs observed for regions of a, non-imino (*i.e.*, aromatic, amino and sugar proton) resonances, and b, imino resonances of L30N RNA in 90/10% H_2O/D_2O at 10°C. The dashed lines trace the sequential imino-imino NOEs between the stacked base pairs.

Figure 3.3.2: ${}^{1}\text{H}{}^{15}\text{N}$ HSQC spectrum of L30N RNA. The spectrum was recorded in 10 mM potassium phosphate buffer, pH 6.0, containing 0.02% NaN₃ and 0.1 mM EDTA at 10°C. Peak assignments are given, and resonance types characterized by chemical shift ranges are denoted by brackets. The bases in parentheses are tentative assignments.

While most imino proton resonances of the G-C and A-U pairs within each helix were assigned on the basis of sequential NOE analyses, resonances associated with wobble G·U pairs could not unambiguously identified. There are two G·U pairs in the sequence: the G10·U60 pair at the end of internal loop and the U14.G53 pair in the helical stem. Only one wobble G·U pair showed a strong intra-base imino-imino NOEs at 15°C NOESY spectrum; the other one appeared only at lower temperature. The latter was assigned to the G10·U60 pair, because exchange broadening is anticipated for nucleotides at a helical end. But there is a slight ambiguity with this assignment. While the stronger pair (assigned to U14·G53) of imino resonances only gave sequential iminoimino NOEs to one G-C pair, two sequential NOEs are expected from the sequence prediction, since there the U14 G53 is sandwiched between two G-C pairs. According to phylogenetic comparisons and biochemical analyses (Eng & Warner, 1991; White & Li, 1995; Li & White, 1997), nucleotides G10 and U60 are expected to be an important base pair for protein recognition, whereas the U14.G53 pair should not be so important and can be replaced with a Watson-Crick base pair. To further support the resonance assignments, a mutant replacing the U14 with a C thereby creating a C-G pair was made. As expected, the strong resonance peaks corresponding to the U14·G53 pair disappeared, and peaks corresponding to a G-C pair appeared, which also showed similar NOE connection to the adjacent base pairs. This confirmed the assignments for the U14·G53 and the G10·U60 base pairs.

Weak sequential imino-imino NOEs connectivities were observed for all the stacked base pairs with one exception. No connection was seen between U14·G53 and G15C52, indicating a unique stacking arrangement adopted by the G·U pair. In an A-form helix, a G·U pair is nearly unstacked from the base pair 5' to the guanine, but it stacks well on the pair to the 3' side of the guanine. This stacking arrangement leads to the pattern of a highly twisted dinucleotide step followed by a step with low twist (Allain & Varani, 1995). Using the sequential NOE connectivities approach, imino resonances from an A-U and three G-C (or C-G) pairs were assigned in the lower stem; and an U-A, an U·G and three G-C (or C-G) pairs were assigned in the upper stem. Weak imino resonances of a sheared GA pair in the tetraloop and the G10·U60 wobble pair were also assigned using spectra recorded at lower temperature. Figure 3.3.1 shows the sequential NOE walk of the imino region in a NOESY spectrum acquired at 15°C. The inter-base NOE connectivities were interrupted at the internal loop region. The imino protons in the internal loop (G11, G54, G56 and G58) could be observed but had broad linewidths and narrow resonance dispersion (between 10.0 and 11.0 ppm) in ¹⁵N-edited HSQC spectra acquired at low temperature, indicative of conformational exchange and absence of hydrogen bonds in this region. As a result, these resonances did not give rise to observable NOEs in the NOESY experiment, and no specific assignments were made for these imino protons.

3.3.2.2. Amino resonance assignments

After completing the assignments of guanine imino resonances, identification of the cytosine amino protons was straightforward. There are 8 cytosine in the L30N RNA sequence, 7 of them are involved in Watson-Crick base pairing, and the other one is located within the tetraloop. Six pairs of amino protons were identified through the characteristic strong NOEs to directly paired G imino proton resonances. The C65 residue at the 3'-terminus and C19 in the tetraloop were not identified as they showed no cross peaks in either NOESY or ¹⁵N-edited HSQC spectra. The NOE-based assignment of cytosine amino proton resonances was confirmed by the ¹⁵N-edited HSQC spectrum, which shows pairs of amino proton resonances not only provided evidence for Watson-Crick base pair formation, it was also important for assisting in the assignment of nonexchangeable protons, as will be discussed later.

Purine amino proton resonances on the other hand, showed fewer observable cross peaks in NOESY and ¹⁵N-edited HSQC spectra. Exocyclic amino protons of most of the purines involved in hydrogen bonding conformation were not observable under the current experimental condition. This was primarily due to intermediate exchange rotation along C-N bonds, but the cross peaks corresponding to the amino protons that were not involved in hydrogen bonds were observed. Within the two helical regions, a strong NOE from the exocyclic amino proton was also observed for the G53 in the G53-U14 wobble pair. This was also expected because of free

rotation about the C2-N2 bond in the absence of hydrogen bonding. Similar NOE was also seen for the G10 amino resonances in the G10-U60 pair, but with relatively weaker intensity. In addition to observable guanine amino protons, a couple of adenosine amino protons within the tetraloop were also observed, consistent with the established tetraloop assignments (Battiste, 1996). Exocyclic amino protons of guanines were distinguished from those of adenosines on the basis of different chemical shifts of the attached ¹⁵N in an ¹⁵N-HSQC spectrum. Although most Watson-Crick paired purines displayed no noticeable NOEs from the amino protons in a NOESY spectrum, the G9-C22 pair that flanks the upper internal loop showed NOEs not only from the amino protons of C22 but also from the two distinctive amino protons of G9. These amino protons showed strong NOEs to its own imino protons and the amino protons of C22. This type of NOE pattern has been previously observed in the AMP-aptamer (Jiang et al., 1996), and can be explained by a more frequent "breathing" that occurs at the terminal base pair. None of the purines within the internal loop exhibited identifiable cross peaks. Conformational averaging within the internal loop rather than extensive hydrogen bonding between these purines accounts for the broad linewidth. Overall, only a few G's and A's amino protons were assigned in the L30N RNA sequence.

3.3.3. Assignment of the stem nonexchangeable resonances

The assignment of the nonexchangeable protons in the L30N RNA was made using a range of homonuclear and heteronuclear multidimensional NMR experiments. The strategy included initial analyses of two-dimensional homonuclear NOESY, COSY and TOCSY spectra, and followed by heteronuclear ¹³C HSQC, ¹³C NOESY-HMQC and ¹³C HCCH-TOCSY spectra.

3.3.3.1. Assignments using homonuclear spectra

The nonexchangeable protons were assigned by experiments recorded on samples in $100\% D_2O$. The samples were subsequently lyophilized, exchanged at least twice with 99.8% D_2O to remove most of the exchangeable protons, and dissolved in 99.996% D_2O NMR buffer.

A variety of homonuclear spectra were recorded. Two-dimensional homonuclear NOESY experiments were acquired with mixing times of 50 ms, 100 ms, 150 ms and 300 ms to monitor NOE buildups. Two-dimensional DQF-COSY and TOCSY (11 ms and 50 ms) experiments were recorded to identify pyrimidine H5/H6 resonances, and qualitatively determine sugar H1'-H2' coupling constants. These spectra were acquired mostly on the Varian 600 spectrometer with 6600 Hz sweep widths in both dimensions with $2048(t_2) \times 512(t_1)$ complex data points. All spectra were processed with Lorentzian-to-Gaussian window transformation and zero-filling to give a final data set of $4096(t_2) \times 1024(t_1)$ data points.

The assignment strategy of the nonexchangeable proton resonances in the helical stem was based on the standard "NOE walk" procedure (Wüthrich, 1986). Briefly, in a standard Aform (or B form) helix, a base aromatic proton (purine H8 or pyrimidine H6) and the adjacent 5'side ribose protons (H1', H2' and H3') on the same strand are in close proximity and give sequential peaks. Because of relatively better dispersion and a more down field-shift of the H1' resonances, resolved sequential NOE connectivities can be resolved from the ribose H1' to the base protons in NOESY spectra with long mixing times (> 250 ms). Furthermore, an adenine H2 proton is also close in space to the adjacent 3'-side ribose proton H1' on the same strand as well as the H1' on the opposite strand, 3' to this base. Because an A H2 proton can be easily identified from a NOESY spectrum acquired in H₂O through the strong NOE to imino protons of its paired U, it usually serves as a starting point for the nonexchangeable proton resonance assignments.

On the basis of the above assignment strategy, two A H2 protons (A7 and A52) that were assigned from the NOEs to the base paired U imino protons were used as starting points. In addition, the base protons of the pyrimidines (H6) were differentiated from that of the purine base protons (H8) on the basis of strong intra-nucleotide H5-H6 cross peaks in both NOESY and COSY spectrums. H6 proton chemical shifts of six cytosines, the three uracils in helical regions and the one cytosine in the tetraloop were identified in this manner prior to the sequential assignment. Figure 3.3.3 shows a region of the NOESY (300 ms mixing time) spectrum containing the aromatic (H8/H6/H2) to anomeric (H1'/H5) cross peaks. The sequential

connectivity H8/H6 to H1' within the lower stem (G5 to C9, G61 to G65), the upper stem (G13 to C17, G50 to C54) and the tetraloop (G18 to A21) are indicated.

Since there was significant overlap between 7.8 to 8.0 ppm in the above region, the assignments were verified from the NOESY spectrum acquired in H_2O . First, C H5 proton in a G-C base pair was identified from the two strong NOEs to its amino protons and a weak NOE (through spin diffusion) to the paired G imino proton. For example, the C17 H5 chemical shift was verified through the G50H1-C17NH₂-C17H5, a characteristic pattern of a Watson-Crick base pair. In addition to the H5 protons, the H1' proton assignments were verified through the sequential NOEs from the G imino protons to H1' on the same strand 3' to the G, and to the H1' of the ribose on the opposite strand 3' to this base pair (Heus & Pardi, 1991a). For example, C9 H1' and U63 H1' can be identified through the NOEs to G62 H1 (see Figure 3.3.1). Using the above homonuclear approach, sequential NOE walks in the anomeric-aromatic region were made at the lower stem, upper stem and tetraloop regions. The connectivities were not observed in the internal loop region (G10 to A12 and A55 to U60), consistent with the absence of NOEs of the exchangeable protons in this region. Tentative base-sugar connections were made for the three (G10, G11, and A55) out of nine nucleotides in this segment. No further identification was made because the base and ribose peaks were broad in this segment.

The most unusual feature among the identified base and ribose H1' protons of the free L30N RNA is the large upfield shift of the H1' proton of G50 (4.00 ppm) from the C17-G50 base pair that flanks the stable GCAA tetraloop. Such an upfield shift has been reported from earlier studies on GNRA hairpin loop-stem structures (Heus & Pardi, 1991b). Also an interesting upfield shift of a ribose proton (4.89 ppm) which show a strong NOE to an aromatic proton H8 (7.24 ppm) was observed within the internal loop. Due to the lack of sequential connectivity within the internal loop, the assignment was not made to these two chemical shifts.

After the sequential connections of the aromatic to H1' protons, an attempt next was made to correlate the H1' protons with the remaining sugar protons (H2', H3', H4' and H5', H5") using the conventional relay experiments (*i.e.*, COSY and TOCSY). These approaches are generally

Figure 3.3.3: Aromatic (H8/H6/H2) to ribose H1' proton regions of a 250 ms NOESY spectrum of L30N RNA recorded at 25°C. The solid lines trace the NOE sequential connections from G5 to G10 and U14 to A21, and dashed lines trace the connections from G50 to A55 and G61 to C65. The labels indicate intranucleotide H8/H6 to H1' NOEs. The G50 H1' resonance is shifted downfield at 3.95 ppm and is not included in this plot. Tentative assignments are indicated in parentheses.

difficult when applied to sugars protons in an A-form RNA because of the small H1'-H2' coupling constant (1-2 Hz) for the C3'-endo sugar conformation. But these can be useful for identifying ribose with unusual sugar conformations (e.g., C2'-endo having J-coupling of up to 12 Hz). While most of the H1'-H2' correlations for those in C3'-endo conformation are missing in either COSY or TOCSY spectra, sugars that adopted the unusual C2'-endo conformation are easily identified in these experiments, because of the large H1'-H2' coupling constant (up to 12 Hz). H1'-H2' cross peaks of four residues (G5, G11, A20 and A21) were identified in COSY and TOCSY (11 ms mixing time) experiments, suggesting possible C2'-endo conformations for these nucleotides. H3' protons of these nucleotides were subsequently identified using a 100 ms mixing time TOCSY experiment (H1'-H2'-H3' correlation). No further assignment was made for the remaining ribose protons (H4', H5' and H5") as the TOCSY relays were very weak for these protons. For the other nucleotides, almost no through-bond correlations could be made from H1' to the other sugar protons by either COSY or TOCSY experiments. This was either because of the small H1'-H2' coupling constants of sugars in the helical region, or because of conformational broadening in the internal loop region. Not only the J-correlated assignments were impossible for these nucleotides, a NOE-based through-space assignments were also not favorable. Despite the fact that a short mixing time NOESY (50 ms) could potentially help to identify H2' or H3' sugar protons, severe overlap of these resonances made assignment very difficult and less reliable. The small homonuclear coupling constants and resonance overlaps limited the application of the homonuclear experiment to identify the sugar resonances. Consequently, it was necessary to resort to a ¹³C-labeled RNA sample to complete the assignments.

3.3.2.2. Assignments using the heteronuclear spectra

The ¹³C/¹⁵N uniformly labeled L30N RNA were very useful for the assignments for the nonexchangeable protons. Besides helping in resolving overlaps in the NOESY spectra by ¹³C-edition, it also helped in the TOCSY transfers using the large ${}^{1}J_{CC}$ coupling constants in the HCCH-TOCSY experiments

Two types of isotopic labeling patterns were introduced in the RNA heteronuclear NMR experiments. These were the uniformly ¹³C/¹⁵N-labeled and ¹³C/¹⁵N-guanosine-only labeled L30N RNA. While the ¹³C/¹⁵N-labeled sample was used to identify all ¹H, ¹³C, ¹⁵N resonances in the RNA, the ¹³C/¹⁵N-guanosine only labeled sample was used to assist the purine assignments, particularly in the internal loop. The majority of the experiments were acquired on the Varian 600 MHz spectrometer; a few 3D experiments were acquired on the Varian 750 MHz spectrometer. Where appropriate, ¹³C and ¹⁵N decoupling during acquisition was accomplished with a GARP pulse train. Two-dimensional HSQC and various 3D ¹³C-NOESY-HSOC and HCCH-TOCSY experiments were acquired to obtain RNA assignment. Three-dimensional NOESY and TOCSY experiments were recorded on the uniformly ¹³C/¹⁵N-labeled sample to obtain RNA assignment in the free form. Using the sample in H₂O, 3D CN-NOESY-HSOC spectra were acquired centering the ¹⁵N transmitter around 120 ppm to observe NOEs originated from all exchangeable proton, and ¹³C around 104 ppm to observe NOEs from nonexchangeable aromatic and H1' protons. It was then exchanged into D₂O, and 3D ¹³C-HSQC-NOESY spectrum of 150 ms mixing time and 3D HCCH-TOCSY of 12 ms mixing time was recorded, the ¹³C transmitter was centered around 83 ppm for the sugar proton assignments. All 3D experiments were performed on the Varian 600 MHz spectrometer at 25°C.

Two-dimensional ¹³C-HSQC spectra at 15, 25 and 30°C were acquired by either centering the ¹³C transmitter at 116 ppm to maximize aromatic and H1'/C1' resonance ¹H-¹³C correlations, or around 83 ppm to obtain anomeric ¹H-¹³C correlations. Constant time ¹³C-HSQC spectra, centered at 83 ppm were acquired at 25 and 30°C with evolution periods optimized for $J_{HC} = 200$ Hz, and the constant-time period set to $1/J_{CC}$ (about 27 ms). In the aromatic region (140-160 ppm), H8, H6 and H2 protons were identified by the chemical shift of the directly attached carbon. The adenine H2s are well resolved from the rest of aromatic protons as the C2 chemical shifts are more down field. Among them, four of eight adenine H2/C2s exhibited relatively strong correlation peaks, and the rest were broad and nearly unrecognizable. Based on the imino to H2 NOE pattern in a 3D CN-NOESY-HSQC experiment, these four H2/C2s were identified as those of the A20 and A21 from tetraloop (through the G18 imino) and of A7 and A51 from two helical stem regions (through the respective U63 and U16 imino protons). The other four AH2

protons within the internal loop regions were not identified as a result of exchange broadening. While A H2/C2 are resolved from the other aromatic resonances, the purine H8 and pyrimidine H6 resonances fall in a region with ¹³C chemical shifts between 135-144 ppm. The H6/C6s of pyrimidines are distinguished from purine H8/C8 through the strong H6-H5 NOEs in the 3D NOESY-HSQC experiment. The differentiation of uracil and cytosine within the pyrimidines can be differentiated indirectly through two NMR observables. The C5 chemical shift of a cytosine has a more upfield shift than that of a uracil. In addition, a cytosine H5 also has strong of NOEs to its exocyclic amino protons observed in a 3D CN-NOESY-HSQC spectrum. All eight C's and three out of four U's were identified this way. It should be noted that the correlation cross peaks of H5/C5 and H6/C6 of U60 in the proposed G10-U60 base pair were not observed due to the broadening of the base pair that flanks the internal loop. The pyrimidine H6/C6 resonances were identified through characteristic intra-nucleotide peaks, whereas the unambiguous differentiation of purine H8/C8s are achieved through a ¹³C/¹⁵N guanine-only labeled sample. After excluding the correlation of G H8/C8 that are unambiguously identified in a ¹³C-edited HSQC spectrum on the G-only labeled sample, and the remaining H8/C8 cross peaks in the fully labeled sample were identified as those from adenosines. Using a 3D CN-NOESY-HSQC experiment, specific assignment were made for ten G's and five A's from the thirteen G's and seven A's observed in the 1H-13C HSQC spectrum. The unassigned bases were mainly due to weak correlation and lack of NOE cross peaks for these resonances. Nevertheless, a guanine residue was unusually showed an upfield shift of H8 (7.24 ppm) and down field shift of C8 (140.8 ppm). Although this G is unassigned at the moment, it was to be in the internal loop location and special chemical shift features suggested this residue adopts an unusual conformation.

Similar to aromatic protons in the bases, the resolution of ribose protons were also spread out by the attached ¹³C chemical shifts and can be observed in a simple ¹³C-edited HSQC spectrum (Figure 3.3.4). Furthermore, in a ¹³C-edited CT-HSQC spectrum (T = 27 ms), C1's and C5's not only were separated from C2', C3' and C4' by chemical shifts as those in a normal ¹³C-HSQC spectrum, but they also displayed opposite signs from C2', C3' and C4' resonances. This special feature was particularly useful in unambiguous identifications (*e.g.*, the G50 C1' that is

close to C4' resonance chemical shifts, and the C65 C3' that is close to C5' resonances chemical shift).

With the ¹³C chemical shifts from the HSQC spectrum and the H8, H1' proton resonance assignments made in homonuclear experiments, HCCH-TOCSY and NOESY-HMQC experiments were used to correlate the sugar protons through scalar coupling and through close proximity in space, respectively. Figure 3.3.5 shows several representative planes featuring the through bond correlation of the sugar protons in nucleotide C8 using HCCH-TOCSY experiment of uniformly ¹³C/¹⁵N-labeled RNA. Because of the excellent dispersion in both the ¹H and ¹³C chemical shifts of H1' and C1', many of the H2's, H3's, H4's and even H5's/H5"s were correlated to the H1' in TOCSY experiment. In addition, the sequential NOEs from the sugar H2' and H3' to its own and adjacent 3' side aromatic H8/H6 protons, and NOEs from sugar H5', H5" to its own H8/H6 protons, significant amount of assignments were obtained. Despite of the presence of overlap even in three-dimensional experiments, close to 90% sugar resonances were assigned in the helical stem region that are listed in Table 3.2. The general acquisition parameters used in Table 3.3.

Almost complete assignments for all the riboses in both helical stems and the tetraloop were made through analysis of ¹³C edited constant time (CT-) HSQC, NOESY-HMQC and HCCH-TOCSY spectra acquired in D_2O at 25°C. In summary, the NOE and sugar coupling constant patterns were consistent with the formation of standard A-form helices with C3'-endo sugar pucker for the lower and upper stems. The H2 protons for adenines at positions A7 and A51 in the stems exhibit directional NOEs to same-strand and cross-strand ribose H1' protons that are also characteristic of A-form helices in solution.

In summary, in order to study the L30 protein pre-mRNA binding site in NMR spectroscopy, an optimal L30N RNA was designed on the basis of biochemical analyses that include protein binding and size exclusion chromatography assays. The resonance assignments of the L30N RNA in the free form were carried out using a combination of homonuclear and

Figure 3.3.4: Ribose region of the ¹H-¹³C CT-HSQC spectrum acquired on a uniformly ¹³C/¹⁵N-labeled L30N RNA at 25°C with T = 27 ms. Negative cross peaks (in red) correspond to ¹³C nuclei (*i.e.*, C2', C3' and C4') that are coupled to two carbons. Positive cross peaks (in black) correspond to ¹³C nuclei (*i.e.*, C1' and C5') that are coupled to one carbon. Characteristic chemical shift ranges are denoted in brackets.

Figure 3.3.5: Selected slices of a 12 ms 3D HCCH-TOCSY spectrum of the ¹³C/¹⁵N-labeled L30N RNA at 25°C. These six regions of ¹³C slices (chemical shifts are indicated on the left) represent the correlations originated from H1', H2', H3', H4' and H5'/H5" of residue C8.

Table3.2: Free form L30N RNA exchangeable and nonexchangeable proton, nitrogen and carbon chemical shifts at 25°C. Proton chemical shifts are referenced to internal TSP. Nitrogen and carbon chemical shifts are referenced to external NH₄Cl and TSP, respectively. The errors in chemical shifts are \pm 0.02, 0.2, 0.3 ppm for proton, nitrogen and carbon, respectively. Tentative assignments are indicated in ().

Residue	H1,H3/N1,N3	amino/amN	H8,H6/C8,C6	H2,H5/C2,C5	H1'/C1'	H2'/C2'	H3'/C3'	H4'/C4'	H5',H5"/C5'
G5			8.18/139.4		5.85/90.8	4.97/75.5	4.75/75.4	4.58/84.2	4.42,4.33/67.8
G6	12.50/146.8		7.67/137.6		5.92/93.1	4.69/75.9	4.65/74.0	4.61/83.2	4.37,4.51/67.4
A7			7.94/140.5	7.86/154.4	6.05/93.3	4.63/76.1	4.63/73.1	4.55/82.5	4.20,4.65/65.4
C8		8.39.7.13/97.2	7.36/141.0	5.28/97.7	5.35/94.2	4.29/76.0	4.26/73.0	4.42/82.3	4.06,4.47//65.6
C9		8.35,6.67/97.1	7.44/141.2	5.34/98.2	5.42/95.1	4.55/75.2	4.29/72.8	4.35/82.6	4.07,4.52/65.2
G10	10.80/144.6		7.70/137.0		5.57/93.2	4.48/78.0	4.78/75.3	4.29/83.5	
G11	10.92/146.0		7.93/139.4		5.68/89.1	4.86/79.2	4.96/75.9	4.55/87.1	4.08
A12			8.14/142.8	8.00/154.9	5.99/93.8	4.15/75.9	4.52/73.0	4.63/82.2	
G13	12.96/147.4		8.06/138.3		5.99/92.3	4.90/75.5	4.32/70.5		
U14	11.93/158.5		7.89/141.4	5.49/104.45	5.49/94.3	4.46/75.9	4.42/72.7	4.39/82.29	4.26,4.32/67.9
G15	12.79/147.4		7.91/137.7		5.84/93.3	4.52/75.7	4.59/73.6	4.55/82.7	4.40,4.08/67.4
U16	14.36/162.4		7.80/142.3	5.15/103.0	5.58/94.5	4.51/76.0	4.43/73.1	4.44/82.3	4.15,4.54/65.3
C17		8.28,6.88/97.9	7.68/141.2	5.56/98.4	5.61/94.7	4.30/76.0	4.50/72.6	4.47/82.4	4.11,4.57/64.9
G18	10.74/146.0		7.70/137.0		5.62/92.4	4.56/76.7	4.68/74.9	4.43/83.2	4.43,4.12/65.9
C19		7.21/97.1	7.82/144.5	5.75/98.6	5.70/92.0	4.40/76.4	4.30/76.0	4.15/84.2	4.15,3.98/66.6
A20			7.21/97.1	7.90/155.0	5.63/91.7	4.37/77.5	4.57/76.6	4.22/84.4	3.77,3.88/66.9
A21			8.02/141.1	8.10/155.3	6.10/97.8	4.73/77.4	5.41/75.5	4.54/83.6	4.44,4.53/67.4
G22	12.35/146.6		8.28/142.8		4.00/92.9	4.42/75.4	4.30/74.8	4.40/83.3	4,41,4.31/70.1
A51			7.81/139.9	7.78/154.2	6.02/93.3	4.47/76.1	4.64/72.7	4.47/82.6	4.13,4.56/64.9
C52		8.45,6.95/98.3	7.40/141.0	5.22/97.8	5.51/93.6	4.41/76.4	4.40/73.1	4.41/82.1	4.07,4.51/65.3
G53	11.14/143.9	6.43/72.9	7.54/137.6		5.73/94.0	4.65/75.6	4.28/74.1	4.52/83.1	4.08,4.41/64.8
C54		8.10,7.13/98.8	7.54/140.5	5.25/97.7	5.57/94.2	4.47/75.7	4.52/72.0	4.47/82.5	4.11,4.52/64.8
A55		,	7.91/139.7		5.94/93.8	4.78/76.3			
G56	10.99/144.0		7.24/140.8		4.89/90.8	4.50/77.8	4.68/75.8	4.15	4.08,4.49/68.0
A57			8.21/141.6		6.04/89.3	4.91	4.7	4.58	4.31
G58			8.15/139.6		5.99/87.5	5.04/76.8	5.01/75.0	4.31	
A59			8.11/141.6		5.77/93.9	4.49/76.5	4.73/73.3		
U60	11.79/158.4		7.69/142.5	5.51	5.69/93.0				
G61	12.69/146.7		7.82/137.9		5.57/94.2	4.76/75.3	4.55/74.0	4.50/83.0	4.30/68.6
G62	13.34/148.2		7.31/136.7		5.81/93.6	4.53/75.8	4.56/72.9	4.51/82.6	4.54,4.11/65.1
U63	14.47/162.5		7.78/142.3	5.12/102.9	5.62/94.3	4.57/75.6	4.51/72.7	4.46/82.2	4.13,4.44/65.3
C64		8.64,7.13/98.2	7.92/142.3	5.72/98.1	5.64/94.3	4.40/76.8	4.68/74.5	4.48/83.0	4.15,4.52/64.6
C65		,	7.72/142.3	5.60/98.7	5.78/93.1	4.03/77.9	4.20/70.2	4.20/83.8	4.06,4.54/65.6
Table 3.3: Data acquisition parameters and pulse sequences used in free form L30 RNA NMR experiments. The four subdivisions in each NMR dimension (F1, F2, or F3) are: **a**, complex data points, **b**, spectral width (Hz), **c**, carrier position (ppm) and **d**, nuclei. In a 2D experiment, F2 is the direct acquisition dimension, whereas F1 is the indirect detection dimension. In a 3D experiment, F3 is the direct acquisition dimension, whereas F1 and F2 are the indirect detection dimensions.

Molecule	Experiment	<i>F3</i> (a, b, c, d)	<i>F2</i> (a, b, c, d)	<i>F1</i> (a, b, c, d)	T°C	Mixing time (ms)	Reference
L32N RNA	NOESY (Bitter 501)	-	4096, 5500.6, 4.87, ¹ H	512, 5500.6, 4.87, ¹ H	15°C	50, 100, 200, 400	
	NOESY (Varian 600)	-	2048, 6000, 4.78, ¹ H	512, 6000, 4.78, ¹ H	25°C	300	
	NOESY-watergate (Bitter 501)	-	4096, 11990 4.91, ¹ H	512, 11990, 4.91, ¹ H	5, 15, 25°C	100, 150	
	dq-COSY (Varain 600)	-	2048, 6000, 4.78, ¹ H	512, 6000, 4.78, ¹ H	25°C		(Rance <i>et al.</i> , 1983)
	TOCSY (Bitter 501)	-	2048, 5500.6, 4.87, ¹ H	512, 5500.6, 4.87, ¹ H	15°C	75	(Brauschweil er & Ernst, 1983)
L32(A ₅₇ C) RNA mutant	NOESY (Varian 600)	-	2048, 6000, 4.78, ¹ H	512, 6000, 4.78, ¹ H	15, 25°C	300	,
	dq-COSY (Varain 600)	-	2048, 6000, 4.78, ¹ H	512, 6000, 4.78, ¹ H	15, 25°C		(Rance <i>et al.</i> , 1983)
L32(U ₁₄ C) RNA mutant	NOESY-watergate (Varian 600)	-	2048, 14000, 4.91, ¹ H	512, 14000, 4.91, ¹ H	10°C	150	
	dq-COSY (Varain 600)	-	2048, 6000, 4.78, ¹ H	512, 6000, 4.78, ¹ H	15, 25°C		(Rance <i>et al.</i> , 1983)
L32(A55C) RNA mutant	NOESY-watergate (Varian 600)	-	2048, 14000, 4.87, ¹ H	512, 14000, 4.87, ¹ H	15°C	100	

L32(A ₅₅ U) RNA mutant	NOESY-watergate (Varian 600)	-	2048, 14000, 4.87, ¹ H	512, 14000, 4.87, ¹ H	15°C	100	
¹⁵ N, ¹³ C Labeled L32N RNA	¹⁵ N FHSQC (Bitter 501)	-	1024pts 11000, 4.87, ¹ H	128, 5000.0, 117.91, ¹⁵ N	15°C		(Mori <i>et al.</i> , 1995)
	¹³ C FHSQC (Varian 600)	-	1024, 7000, 4.87, ¹ H	128, 14000Hz 116.17, ¹³ C	15, 25, 30°C		(Mori <i>et al.</i> , 1995)
	¹³ C HSQC (Varian 600)	-	1024, 6000, 4.78, ¹ H	128, 7000, 82.97, ¹³ C	25°C		(Bax <i>et al</i> ., 1990)
	¹³ C HSQC-CT (Varian 600)	-	1024, 6000, 4.78, ¹ H	200, 7000, 82.97ppm ¹³ C	25°C		(Santoro & King, 1992)
	¹³ C HSQC-NOESY (Varian 600)	512, 6000, 4.78, ¹ H	128, 6000, 4.78, ¹ H	32, 4000, 82.97, ¹³ C		150	(Clore <i>et al.</i> , 1990)
	¹³ C HCCH-TOCSY (Varain 600)	512, 5000.0, 4.78 , ¹ H	128, 3000.0, 4.78 , ¹ H	32, 4000, 82.97, ¹³ C	25°C	12	(Clore <i>et al.</i> , 1990)
	¹⁵ N, ¹³ C HSQC- NOESY (Varian 600)	512, 6600, 9.00, ¹ H	96, 6600, 9.00, ¹ H	25, 4000, 119.58, ¹³ C (¹⁵ N)		150	(Pascal <i>et al.</i> , 1994)
¹⁵ N, ¹³ C- Guanosine Labeled L32N	¹⁵ N FHSQC (Bitter 501)	-	1024, 11000, 4.91, ¹ H	128, 5000.0, 117.91, ¹⁵ N	15°C		(Mori <i>et al.</i> , 1995)
RNA	¹³ C FHSQC (Varian 600)	-	1024, 7000, 4.87, ¹ H	128, 14000Hz 116.17, ¹³ C	15, 25, 30°C		(Mori <i>et al.</i> , 1995)
	¹³ C HSQC (Varian 600)	-	1024, 6000, 4.78, ¹ H	128, 7000, 82.97, ¹³ C	25°C		(Bax <i>et al.</i> , 1990)
	¹³ C HSQC-CT (Varian 600)	-	1024, 6000, 4.78, ¹ H	200, 7000, 82.97, ¹³ C	25°C		(Santoro & King, 1992)

III. The L30 RNA in the Free Form

III. The L30 RNA in the Free Form

heteronuclear experiments. The assignment strategy involves sequential NOE through-space approach to identify base pairings and sequential aromatic-sugar connection, and TOCSY through bond relay to correlate the intraresidue sugar proton resonances. Ninety-five percent of the proton resonances in the two helices and the tetraloop region, and few in the internal loop region were assigned using the above approaches. Based on the observable NOE patterns, the L30N RNA has been characterized as an undefined internal loop flanked by two helical stems in the absence of its cognate protein.

CHAPTER 4. The L30 Protein in the Bound Form

Though the structure of the protein-RNA complex is the ultimate goal in understanding the mode of recognition, it was very helpful to study the protein and the RNA in the free form. Most importantly, the studies on the free forms help in defining the changes that the protein and the RNA undergo upon complex formation and hence give clues to the mechanism. In addition, with respect to the NMR experiments, the studies on the free forms also help in analyzing the spectra of the complex. In a complex, due to the increased molecular weight, the correlation times become long, and as a consequence, the peaks broaden out. On the other hand, the protein and/or RNA NMR changes in the free and complex forms are generally predictable. The analyses of the free forms provide a solid foundation for determining the structure of the complex. Thus, with the data from the free L30 protein and RNA as described in the previous chapters, the studies on the L30 protein-RNA complex were initiated.

4.1. Complex Formation

4.1.1. RNase activity assay

Presence of any trace amount of RNase in the sample can lead to RNA degradation. Hence prior to formation of the L30 protein-RNA complex, it was necessary to conduct an RNase activity assay to ensure the quality of the L30 protein. Since the protein studied in the RNA complex was purified through native column purification, trace amounts of RNases are likely to co-purify with the MBP-L30 fusion and/or L30 proteins. The contamination of RNases, even a very small amount, can lead to significant degradation of the RNA within the complex. RNA degradation can be easily spotted in a NOESY spectrum by the presence of cross peaks having opposite signs to the diagonal, which derives from small molecules (*i.e.*, pyrimidine nucleotides, small oligos) that have been degraded from the RNA. The same was observed for the L30N RNA. Furthermore, the presence of degradation products was later confirmed by autoradiography by incubating trace amounts of $[\alpha^{-32}P]$ body labeled L30N RNA with the NMR

sample of the complex overnight. The addition of an RNase inhibitor in the millimolar RNA sample did not seem to help in reducing the degradation during NMR experiment. It was further found that the lack of a reducing agent (*e.g.*, DTT) in the solution increased the release of the previously bound RNases from the RNase inhibitor and actually accelerated the degradation.

Under such circumstances, it is best if the RNases can be removed from the protein earlier in the purification steps. The major contamination appeared to copurify on the CM column. Since the CM column non-selectively binds net cationic proteins, RNases with mostly positive charges could co-purify with MBP-L30 and/or L30 protein. Thus, affinity-based amylose column purification was used to remove the RNases from MBP-L30 protein. To be sure of the purification, L30 protein was always subjected to RNase activity assays prior to complex formation. Briefly, millimolar quantities of L30 protein were incubated with an equivalent amount of cold L30N and trace amounts of $[\alpha$ -³²P] body labeled L30N RNA in the NMR buffer at 37°C over a period of a week. Aliquots were taken during the course of incubation and were subjected to 20% PAGE gel analysis. The RNA degradation products generated from the contaminants in the L30 protein were compared to those in the absence of protein. Less than 10% overall degradation after a week was considered reasonable for proceeding with NMR measurements of the complex.

4.1.2. Titration

For the complex formation, it is necessary to have accurate concentrations of the individual protein and RNA. The concentration of L30 protein was determined based on the UV absorbance at 274 nm which derives from its six tyrosine residues (each Tyr has an average extinction coefficient $\varepsilon_{274.6 \text{ nm}} = 1420 \text{ M}^{-1} \text{ cm}^{-1}$) (Creighton, 1984). L30 protein has the same absorbance (at 274 nm) under native (10 mM sodium phosphate, pH 7.0) and denaturing conditions (8M Urea or 6M guanidine hydrochloride), with less than 5% difference. Therefore, the protein concentration was quantified under the native condition after dialysis in the phosphate buffer. But the RNA, containing both single-stranded and double-stranded regions, has an

extinction coefficient that is not easy to predict in its native fold. Therefore the RNA was subjected to overnight alkaline hydrolysis to generate individual nucleotides which give more accurate measurements using UV absorbance (the sum of the individual extinction coefficients for the nucleotides is $\varepsilon_{260 \text{ nm}} = 363 \text{ mM}^{-1} \text{ cm}^{-1}$).

Upon accurate determination of both protein and RNA concentrations, the complex was formed by titration. Unlike the typical titration performed in the NMR tube for most complexes, direct addition of either protein or RNA into its counter part at millimolar concentration leads to severe, irreversible aggregation. Thus an alternative method was involved in which the protein and the RNA at 1:1 stoichiometry were gently mixed in batches in a 1.5 ml Eppendorf tube at a concentration of 50 μ M, and these were transferred to a 2 ml Centricon-3 (Amicon) microconcentrator tube. The volume (almost 20 ml) was gradually reduced to about 500 μ l by centrifugation of the Centricon tube at 6,000 g. The concentrated complex was then dialyzed against one liter of NMR buffer (10 mM potassium phosphate, pH 5.5 - 6.5, 0.02% NaN₃ and 0.1 mM EDTA) over 24 hrs with several changes of buffers.

4.2. NMR Characterization of the L30 Protein in the Bound Form

4.2.1. Optimization of the NMR sample condition

Similar to studies of the protein in the free form, optimization of NMR conditions (salt, temperature and pH) was necessary. ¹H-¹⁵N-HSQC spectra of uniformly ¹⁵N-labeled protein in complex with unlabeled RNA indicated that the protein demonstrates the best ¹H and/or ¹⁵N linewidths and dispersion under low salt, pH of 5.5 in 10 mM potassium phosphate, and at elevated temperature. Therefore, subsequent NMR experiments on the protein in the complex were acquired at 30°C with the above buffer containing 0.02% NaN₃ and 0.1 mM EDTA.

In contrast to the free form of the protein, the protein in the complex is highly stabilized by the presence of L30N RNA and was not significantly affected by temperature and concentration changes. The CD thermal melt data indicated that the complex has a thermal denaturation transition around 68°C. Furthermore, up to a 2 mM NMR sample of the L30 complex remained stable at pH ranges from 5.5 to 6.5 at a temperature of 30°C for many weeks. The increased stability of the L30 protein in the presence of RNA was quite advantageous for the NMR studies. When experiments were recorded at elevated temperature, the spectra showed sharper linewidths and therefore better signal-to-noise ratios. Also, it was possible to record various triple resonance experiments as the sample had a prolonged lifetime, which were essential for complete ¹H, ¹⁵N, ¹³C_a and ¹³C' assignments. A step-by-step description of the NMR assignments of the protein in the complex is given in the following subsections.

4.2.2. The sequential backbone assignments of the protein

4.2.2.1. General characterization of the backbone amides

The complex formation is, in general, reflected by the changes in the chemical shifts in the spectra. The most noticeable differences were observed in the amide proton chemical shifts. As shown in a ¹H-¹⁵N HSQC spectrum acquired at 30°C (Figure 4.2.1), there is an increased dispersion in the chemical shifts upon complex formation. The peaks now span from 5.95 to 9.92 ppm as compared to 6.5 to 9.3 ppm for the free form of the protein. Furthermore, all of the 101 backbone amides, 8 pairs of side chain amides, and 3 arginine side chain amines were observed using ¹H-¹⁵N HSQC spectra acquired at different temperatures and pHs. In addition, three distinct pairs of arginine guanidinium side chains were also observed (ranging from 6.55 to 7.86 ppm for ¹H and from 62 to 75 ppm for ¹⁵N). This is an indication of hydrogen bond formation. Besides changes for some residues, the overall NMR spectra did not show very dramatic changes. Careful analysis of the HSQC spectra of the free and bound forms indicates that the most dramatic changes are for the peaks with either weak intensities or the peaks that are

absent in the free form. This suggests that sufficient stabilization occurs in some local conformation upon RNA binding.

4.2.2.2. NOE-based sequential assignments

NOE-based sequential assignment in the complex is more cumbersome as the additional RNA aromatic and sugar resonances interfere with the amide and H_{α} regions of the protein. Nevertheless, as the ¹H-¹⁵N HSQC spectra of the free and complex protein are similar, an attempt towards NOESY-HSQC and TOCSY-HSQC based sequential assignments was made.

The ¹⁵N-edited NOESY-HSQC and ¹⁵N-edited TOCSY-HSQC spectra were acquire at the Varian 600 MHz spectrometer (unless noted otherwise). The amide proton resolved spectra were further analyzed using assignment procedures described in Chapter 2, section 2.2.2.1, on the basis of characteristic backbone sequential NOE patterns. Comparisons of the free and bound spectra were made at various stages to help in the assignment. While the chemical shifts for some residues vary between free and bound, a majority of the residues in either α -helix or β sheet display similar sequential NOE patterns in the bound and in the free form. The 3D ¹⁵Nedited NOESY-HSQC spectrum of the complex was much more sensitive than that of the free form, most probably due to the increased concentration and elevated temperature. As can be seen in Figure 4.2.2, which displays selected strips of backbone NOEs of residues L51 to A60 derived from a ¹⁵N-edited NOESY-HSQC experiment acquired on a 750 MHz spectrometer, many more medium to long range NOEs were observed in this experiment. While the protein NOESY spectrum displays noticeable differences, the signal-to-noise ratio in the ¹⁵N-edited TOCSY-HSQC experiment acquired on the complex did not show significant improvement as compared to the free form, and most of the relays from ${}^{1}H_{N}$ disappeared beyond $H_{\beta}s$ in the ${}^{15}N$ edited TOCSY spectrum. This is expected, as the NOE buildup rates increase with increased correlation time upon complex formation, whereas the signals in the TOCSY experiment decay much faster upon complex formation.

Figure 4.2.1: A ¹H-¹⁵N HSQC spectrum of ¹⁵N-labeled L30 protein in complex with L30N RNA at 30°C. The peaks are labeled with the assignments, with the one-letter code for the amino acid type followed by the sequence position. The side chain amides for Asn and Gln are connected with horizontal lines and labeled with the assignments with side chain positions in Greek letters. Arg ε side chain peaks are folded in this spectrum. Residues that undergo dramatic chemical shift changes upon RNA binding are indicated in purple, while others are indicated in red.

Figure 4.2.2: Representative NOESY strips from a ¹⁵N NOESY-HSQC 3D spectrum of a ¹⁵N-labeled L30 protein in complex with the L30N RNA. The sequential α -helical H_N-H_N (i, i+1) and H_{α}-H_N (i, i+1) NOE connectivities from residues L51 to A60 are highlighted with dashed lines and solid lines, respectively. Many long-range NOEs to aliphatic side chains are also observed in this spectrum.

Upon completion of the analyses on the NOESY and TOCSY spectra, it was noticed that most of the secondary structure present in the free protein is preserved in the bound form. However, new secondary structures were observed in the bound protein. Particularly, residues 74 to 87 in the bound form show noticeable sharpening of resonance linewidths. Not only have all of the backbone amide resonances been observed in the ¹H-¹⁵N-HSQC spectra, they also display many medium-to-long range NOEs that are absent in the free protein. Based on characteristic NOE patterns, the segment from residues 76 to 81 was identified to adopt a helical conformation, while other residues are in a coil or loose turn conformation. Moreover, backbone amides of residues 27 to 29, 85 and 88 show dramatic chemical shift changes, some residues (27 to 29 and 88) with downfield shifts, and the other (85) an upfield shift. These changes indicate that these residues may be involved in binding the RNA.

4.2.2.3. Assignments based on triple resonance experiments

Though sequential backbone assignments of L30 protein in the complex were accomplished using a classical NOE-based approach, and with direct comparisons to that in the free form, there were doubts regarding assignments for residues with unusual NOEs or adopting unusual secondary structures (*e.g.*, tight turns). Missing or overabundant amide-amide NOEs further complicated the assignment process, and the presence of RNA aromatic and ribose resonances introduces additional confusion.

In order to corroborate the assignments, triple resonance experiments were recorded to provide complete backbone ¹H, ¹³C and ¹⁵N assignments. The basic building block of a triple resonance experiment consists of a set of pulses and delays during which magnetization is transferred between heteronuclei/homonuclei via large heteronuclei one- or two-bond scalar couplings. The experiments are named according to the spins that are frequency-labeled using HN, N, HA, CA, CO, and CB to represent the ¹H_N, ¹⁵N, ¹H^a, ¹³C_a, ¹³CO, ¹H_β, and ¹³C_β spins, respectively. These experiments share a common feature that is a so-called "out and back" pulse sequence in which the initially excited proton spin and the detected proton spin are identical. The sequential assignments based on these experiments are structure independent, as they

employ one- or two-bond J correlation for transfer, and hence provide an alternative and more reliable method than the NOE-based assignment.

There are two technical aspects that facilitate application of the triple resonance experiments to the L30 protein in the complex. First, in contrast to the protein in the free form, L30 protein in the complex is stable at low salt (10 mM potassium phosphate), which reduces the heating of the sample by extensive decoupling during magnetization transfer. Second, the protein is also stable at higher temperature (>30°C), therefore experiments recorded at the elevated temperature have sharper resonance linewidths. In addition to the technical reasons, there is also a practical necessity for using triple resonance on the complex. The complication of the protein spectra by the many RNA resonances at amide and α proton regions in the NOE base approach can be avoided by the through bond connection in triple resonance experiments. The approach used in triple resonance based assignment exploits the relatively large one-bond *J* couplings between the backbone ¹³C and ¹⁵N nuclei and between the backbone protons and the ¹⁵N and ¹³C_{α} nuclei to which they are directly attached. Therefore, correlation made by exploiting through bond scalar coupling in triple resonance experiments are more reliable than NOE-based through space connectivities.

Various triple resonance experiments were acquired on 0.75 mM ¹³C/¹⁵N doubly-labeled L30 protein in complex with unlabeled L30N RNA. These included HNCA (Ikura *et al.*, 1990), HN(CO)CA (Yamazaki *et al.*, 1994), HNCO (Muhandiram & Kay, 1994; Kay *et al.*, 1992) and HNCACB (Muhandiram & Kay, 1994). In all these experiments, WATERGATE was used at the end of the sequences for water suppression. Data for the above 3D experiments were processed using NMRPipe (Delaglio *et al.*, 1995). While processing the acquisition dimension (F3), a solvent suppression filter was applied to the data to minimize the water signal prior to apodization with a Lorentzian-to-Gaussian window function. Only the downfield half of the spectrum was retained in the 3D data set corresponding to the amide proton resonances. Small baseline distortions in F3 were removed by a first-order polynomial baseline correction. The second and third dimensions were processed subsequently by mirror image linear prediction (Zhu & Bax, 1990), apodized with a cosine-bell window function, and zero filled to double the

complex points. They were then Fourier transformed, phased, and with elimination of the imaginary half of the signal. In the case of the HNCACB experiment, the first data point was linear predicted to correct for the DC offset since the first point at t = 0 was not acquired. Peak positions and intensities for non-overlapping peaks were located interactively in the CAPP and PIPP (Garrett *et al.*, 1991) programs.

First, an HNCA (Ikura et al., 1990) spectrum was recorded to correlate the amide ¹H and $^{15}\mathrm{N}$ resonance with the $^{13}\mathrm{C}_{\alpha},$ which was important later in the HCCH-TOCSY correlation with the side chain resonances. This experiment correlates the amide ¹H and ¹⁵N chemical shifts with the intraresidue ${}^{13}C_{\alpha}$ shift, by making use of the relatively small one-bond ${}^{15}N$ - ${}^{13}C$ J-coupling (7-11 Hz) to establish J correlation between the ¹⁵N and ¹³C_{α} spins. In addition, this experiment also provides sequential connectivities by transferring coherence from the ¹⁵N spins to the ¹³C_{α} of the preceding residue via the interresidue two-bond ¹⁵N-¹³C J-coupling (4-9 Hz). Thus for this experiment, the carbon carrier is set to 61.7 ppm in the C_{α} region, and the nitrogen carrier is set to 119.8 ppm in the backbone amide region. Magnetization originating on amide protons is transferred to the directly attached ¹⁵N spin via an INEPT (insensitive nuclei enhancement by polarization transfer) sequence (Morris & Freeman, 1979). The ¹⁵N chemical-shift is evolved during the t₁ period. Following t₁ evolution, the ¹⁵N magnetization is transferred to the coupled ${}^{13}C_{\alpha}$ spins using the delay period δ set for $1/2J_{N-C\alpha}$ coupling. During the subsequent t₂ evolution period, both ¹H and ¹⁵N chemical shifts are refocused, and coherence evolution depends only on the ${}^{13}C_{\alpha}$ chemical shift. The magnetization present following the t₂ evolution period is transferred back to the observable ¹H_N magnetization by an INEPT transfer pathway. The HNCA experiment was acquired on a Varian Inova 750 MHz spectrometer. During the evolution and magnetization transfer periods, the carbonyls were decoupled using a shaped cosine-modulated WALTZ-16 pulse employed in a SEDUCE-1 profile (McCoy & Mueller, 1992), while proton decoupling is accomplished through WALTZ-16. All carbon pulses were applied using only a single carbon channel. The ¹⁵N resonances were decoupled by a GARP sequence (Shaka et al., 1985) during the acquisition period.

In addition to providing ¹³C_a assignments, the HNCA experiment also provided connectivities for the amide ¹H and ¹⁵N to the C_a of the preceding residue, transferring coherence via the ²J_{N-Ca} coupling. Since the magnitude of ¹J_{N-Ca} is usually larger than ²J_{N-Ca} coupling, it was possible to distinguish C_a of intra- from interresidues, and to make connectivity through the peptide backbone. Figure 4.2.3 shows representative ¹⁵N slices of the HNCA spectrum, from which sequential connectivities from residues 51 to 60 are made by the presence of stronger intra-residue C_a and weaker preceding residue C_a cross peaks in each H_N resonance. While most of the through-bond ¹H, ¹⁵N and ¹³C_a alignments were made through this method, a few ambiguities in some assignments remained. For example, there were circumstances where ¹J_{N-Ca} and ²J_{N-Ca} were comparable, which leads to two comparable cross peaks, and distinction between the intra- and interresidue ¹³C_a was not straightforward from only comparing intensities. There were also occasions where only one cross peak was observed, possibly due to degeneracy in adjacent residue ¹³C_a chemical shifts, or the absence of interresidue ¹³C_a correlation.

These ambiguities were resolved in a HN(CO)CA (Yamazaki et al., 1994) experiment. While the HNCA experiment provides both intra- and inter-residue correlations, the HN(CO)CA experiment renders exclusively interresidue connectivities. Similar to the HNCA, an HN(CO)CA experiment transfers magnetization originating on an H_N proton to its directly bonded ¹⁵N spin via an INEPT sequence, followed by the evolution of ¹⁵N chemical shifts during the t_1 period. The difference is that in the subsequent step, the magnetization is transferred to ${}^{13}C'$ (carbonyl) through ¹⁵N-¹³C' coupling, and then to ${}^{13}C_{\alpha}$ through the ${}^{13}C'$ - ${}^{13}C_{\alpha}$ coupling, which establishes four-spin ${}^{1}H_{N}$ - ${}^{15}N$ - $({}^{13}C')$ - ${}^{13}C_{\alpha}$ coherence. During the subsequent t₂ period, only the $^{13}C_{\alpha}$ chemical shifts are evolved and the 1H and ^{15}N chemical shifts are refocused by applying 180° pulses on both at the midpoint of the t₂ period. Magnetization is then transferred back to the $H_{\scriptscriptstyle N}$ protons for detection. Thus in the 3D spectrum, each peak is labeled by $^{15}N,\,^{13}C_{\alpha},$ and $H_{\scriptscriptstyle N}$ chemical shifts in the F1, F2, and F3 dimensions, respectively. The HN(CO)CA experiment was acquired on the Varian Inova 600 MHz spectrometer. While the ¹H and ¹⁵N carriers were centered at 4.7 ppm and 118 ppm, respectively, the ¹³C carrier was shifted during the experiment, jumping from 176 ppm for ${}^{13}C'$ to 58 ppm for ${}^{13}C_{\alpha}$. More specifically, the carbon carrier was centered at 176 ppm during carbonyl 180° pulses using a SEDUCE-1 (McCoy & Mueller, 1992)

Figure 4.2.3: Representative strips showing the sequential C_{α} connectivities of residues L51 to A60 in the 3D HNCA spectrum of ${}^{13}C/{}^{15}N$ -labeled, bound form L30 protein in H₂O. In each slice, the stronger cross peak corresponds to an intraresidue $H_{N(i)}$ - $C_{\alpha(i)}$ correlation, and the weaker one corresponds to an interresidue $H_{N(i)}$ - $C_{\alpha(i-1)}$ correlation. Sequential connectivities can be made in this manner.

profile with a peak amplitude of 4.72 kHz, and the carrier was then jumped to 59 ppm during the C_{α} period. ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ off-resonance decoupling was achieved by a 400 µs REBURP (Geen & Freeman, 1991) pulse with a peak amplitude of 15.7 kHz, centered around 176 ppm. Decoupling of ${}^{15}N$ during acquisition was achieved through WALTZ-16. Figure 4.2.4 shows the same ${}^{15}N$ planes (as compared to the HNCA experiment) of residues L51 to A60 in the HN(CO)CA spectrum. The only cross peak observed corresponding to each amide proton was to the ${}^{13}C_{\alpha}$ of the preceding residue. Following this path, each C_{α} of the preceding residue is unambiguously assigned in case of the degeneracy in the HNCA experiment. In combination with both HNCA, HN(CO)CA experiments, all backbone sequential assignments were made.

The backbone sequential alignment made with the triple resonance experiment was subsequently compared to that made t in the NOE-based approach. While most of the backbone alignments showed consistency with the two independent approaches, two small segments with misalignments were identified. One was the reversal of backbone assignments for Gly72 and Gly73. The ¹⁵N-edited TOCSY-HSQC did not allow differentiation between two glycine residues, thus the interresidue backbone H_N - H_N NOEs in the NOESY-HSQC spectrum were similar for both residues leading to the ambiguity. The other errors in the NOE-based sequential assignments were the misassignments of residues 81 and 83. Both showed strong NOEs to residue 82, and weak NOEs to the adjacent residues 80 and 84, respectively. Though the amino acid side chains were different (Val81 and Lys83), the peaks in the ¹⁵N-edited TOCSY-HSQC were broad enough that incomplete transfer was observed. These two examples clearly support the power of using both triple resonance experiments as well as a different approach in checking the consistency of resonance assignments.

Despite the successes of both HNCA and HN(CO)CA experiments, attempts at an HNCACB experiment was unsuccessful. The HNCACB experiment correlates the amide ¹H and ¹⁵N resonances with the ¹³C_{α} and ¹³C_{β} resonances of the same and preceding residues via ¹J_{C α N} and ²J_{C α N}. The general magnetization transfer scheme is similar to that of an HNCA experiment with an extra delay for the transfer of the C_{α} magnetization to the C_{β} and back. The HNCACB experiment was performed on a Varian Inova 600 MHz spectrometer. All the experimental

Figure 4.2.4: Selective slices of residues L51 to A60 in the 3D HN(CO)CA spectrum of ¹³C/¹⁵N-labeled, bound form L30 protein. In each slice, the only cross peak for each amide resonance corresponds to an interresidue $H_{N(i)}$ -C_{α (i-1)} correlation, thus allowing unambiguous identification of the C_{α} resonances.

details were similar to the HNCA experiment, except that the carbon carrier for the ${}^{13}C_{\alpha\beta}$ pulses was centered at 43.6 ppm. The failure of this experiment may be due to the relatively large size of the complex that leads to large linewidths. The magnetization is on ${}^{13}C$ for a longer time as compared to the HNCA experiment (for the ${}^{13}C_{\alpha}$ to ${}^{13}C_{\beta}$ transfer), and as the carbons are known to relax faster, one would expect less signals for the large complex. Since the S/N ratio of an HNCA experiment tested on the Varian 600 MHz spectrometer was poor for the complex, the failure of the HNCACB experiment was not a surprise. In the HNCACB experiment, only a handful of residues at the N- and C-terminus gave correlations in the spectrum, while a majority of the residues showed no correlation peaks.

Besides the sequential assignments of the backbone ¹H, ¹⁵N and ¹³C_{α} chemical shifts, the carbonyl (¹³C') chemical shifts were also obtained through an HNCO experiment (Muhandiram & Kay, 1994; Kay *et al.*, 1992). This sequence correlates the amide ¹H and ¹⁵N chemical shifts of one amino acid with the ¹³CO chemical shift of the preceding residue, by using the one-bond J_{N-C} coupling (~ 15 Hz). A WALTZ-16 pulse train was used for both ¹H and ¹⁵N decoupling. The C' pulses were applied at a narrow field strength of 4 kHz to ensure minimal excitation of the C_{α} resonances. The ¹³C_{α} 180° decoupling pulse was applied with a field strength of 9 kHz, which minimizes the perturbation of the ¹³C'. Since the HNCO sequence uses relatively large (about 15 Hz) coupling for correlation, the experiment acquired on the Varian 600 MHz spectrometer was very sensitive. Figure 4.2.5 shows representative slices of residues L51 to A60 from the HNCO spectrum, in which each strong cross peak represents the correlation between a backbone amide and the ¹³C' (carbonyl) resonance of the preceding residue.

After obtaining the backbone ${}^{1}H_{N}$, ${}^{15}N$, ${}^{13}C_{\alpha}$ and ${}^{13}C'$ assignments, attempts next was made to assign the H_{α}s. This information was obtained through a ${}^{15}N$ -edited TOCSY-HSQC, as mentioned previously in the NOE-based assignment, and confirmed using the HNHA experiment that will be discussed later in this chapter (section 4.2.5.1).

The backbone ${}^{1}H_{N}$, ${}^{15}N$, ${}^{13}C_{\alpha}$ and ${}^{13}C'$ information obtained using the triple resonance experiments not only provided starting points for the complex assignments, it was also valuable

Figure 4.2.5: Selective slices of residues L51 to A60 in the 3D HNCO spectrum of ${}^{13}C/{}^{15}N$ -labeled, bound form L30 protein. In each slice, the only cross peak for each amide resonance corresponds to an interresidue $HN_{(i)}$ -C'_(i-1) correlation.

for mapping out secondary structure using chemical shift index (Wishart & Sykes, 1994). Theoretical calculations (de Dios *et al.*, 1993) and empirical analyses of chemical shift database (Wishart & Sykes, 1994) showed that the backbone chemical shifts of ¹H, ¹⁵N, ¹³C_{α}, and ¹³C' are highly dependent upon the backbone torsion angles. These chemical shift values show a typical trend in comparison to the respective values in random coils for different secondary structures. Typically, ¹³C_{α}, ¹³C' resonances of residues in α -helices are shifted downfield by an average of 2.6 ppm and 1.7 ppm, respectively, whereas in β -sheet conformations they are shifted upfield by an average of 0.19, 0.38 and 1.7 ppm respectively in α -helices, and shift downfield by 0.29, 0.38 and 1.2 ppm respectively in β -sheets. Thus the deviations of these chemical shifts are mapped, and a quick approximation of protein secondary structure content can be obtained.

Figure 4.2.6 shows the summary of the deviations in the chemical shifts of the protein residues in the complex form. In addition to the ${}^{1}H_{N}$, ${}^{15}N$, ${}^{13}C_{\alpha}$ and ${}^{1}H_{\alpha}$ shifts that were available for the protein in the free form, the ${}^{13}C'$ chemical shifts were obtained for the protein in the complex. As can be seen in Figure 4.2.6, the chemical shift data clearly suggest the existence of four α -helices and four β -sheets. More specifically, the secondary ${}^{13}C_{\alpha}$, and ${}^{13}C'$ chemical shifts show contiguous segments with large downfield secondary shifts in all four helices and upfield shifts for the four strands. The secondary components mapped out with chemical shift index were found consistent with those characterized by the sequential short range NOEs in the ${}^{15}N$ -NOESY-HSQC spectrum. Among the five values, the ${}^{13}C_{\alpha}$ secondary shifts are largest in the central regions of the helix, suggesting decreased stability and dynamic fraying at the ends. The ${}^{13}C_{\alpha}$ secondary shifts of residues in helix 4 are on average smaller, showing that the helix is not completely folded in this segment and there may be residual fluctuations of the peptide chain allowing sampling of non-helical conformations.

Figure 4.2.6: Summary of secondary ¹⁵N, ¹H_N, ¹³C', ¹³C_{α}, and ¹H_{α} chemical shifts for the L30 protein in bound form. The deviation of the chemical shifts are derived from comparisons to the chemical shift index (CSI) values reported by Wishart, *et. al.*, 1994. Residues with chemical shift deviation absolute values greater than 0.1, 0.5, or 0.7 ppm for respective H_{α}, C', or C_{α} are particularly useful for identification of protein secondary structure.

4.2.3. Assignments of the side chain resonances

While the backbone sequential correlations provide some insight into the secondary structure of the protein, complete assignments of the side chains are necessary to identify all the long-range NOE correlations, which are critical for structure calculations. With the unambiguous identification of sequential backbone resonances, the side chain assignment procedure was carried out using experiments similar to those for the free form of the protein. The ${}^{1}H_{\alpha}$ resonance assignments were obtained in a ${}^{15}N$ -edited TOCSY-HSQC (60 ms mixing time) spectrum and were used in combination with the ${}^{13}C_{\alpha}$ assignments obtained from the HNCA and HN(CO)CA experiments to achieve through-bond side chain correlations. The side chain assignments were carried out using an HCCH-TOCSY experiment, in combination with a ¹³C-edited NOESY-HSQC experiment acquired in D₂O described in Chapter 2, Section 2.2.2.2. The HCCH-TOCSY spectrum was acquired on a Varian Inova 600 MHz instrument with an adapted pulse sequence (Clore et al., 1990) modified by Kay et al, 1995. This experiment produced a much better result due to the experimental settings than that for the free L30 protein acquired on the Bitter 500 MHz instrument. First, carbonyl off-resonance decoupling pulses were applied during the carbon evolution period, centered at 176 ppm using a SEDUCE-1 (McCoy & Mueller, 1992) profile with a peak amplitude of 4.72 kHz. This resulted in sharper C_a linewidths, and thus better relays were observed. Second, a shorter DIPSI-3 (Shaka et al., 1988) mixing time (18 ms instead of 28 ms) was used, which reduced the net loss of magnetization due to ¹³C relaxation. In an HCCH-TOCSY experiment, the mixing time can be optimized to compensate mainly for two factors. First, it is necessary to increase the total mixing time to see relays for the long side chains. But on the other hand, it is also critical to keep the mixing time as short as possible to avoid the rapid magnetization relaxation. There is a 2-fold reduction in signal if one of the carbons has two magnetically nonequivalent protons attached; the reduction is 4-fold if both carbons have nonequivalent protons attached (Clore et al., 1990). By choosing 18 ms for the mixing period in the HCCH-TOCSY, the overall signals were

relatively strong, though complete transfers for the long side chains were not seen (*e.g.*, Lys, Arg, etc.).

In addition to a ¹³C-edited NOESY-HSQC experiment, a CN-NOESY-HSQC (Pascal *et al.*, 1994) spectrum with simultaneous acquisitions of ¹⁵N and ¹³C-edited NOESY was recorded on the ¹³C/¹⁵N-labeled protein in the complex. A NOESY-HSQC spectrum was acquired on the Varian 600 MHz instrument with the carbon carrier centered at 43.6 ppm and nitrogen at 118.4 ppm. Decoupling of the carbonyl was achieved using a 600 Hz SEDUCE-1 decoupling pulse train centered at 175 ppm. The spectrum takes advantage of the fact that aliphatic and amide protons resonate at different regions in the spectrum. In such a spectrum, a symmetry-related cross peak can be seen for each NOE between a carbon-bound proton and a nitrogen-bound proton. This provides a rapid and straightforward approach for unambiguous assignments of most of the NOEs between aliphatic (¹³C-attached) and amide (¹⁵N-attached) protons, which are often missed in the ¹³C-edited NOESY experiment acquired in D₂O.

Though the CN-NOESY-HSQC experiment is highly advantageous, it does have a less sensitivity because of the differences in J_{NH} and J_{CH} (J_{NH} is ~92 Hz and J_{CH} varies from ~125 Hz for methyl groups to 200 Hz for aromatic residues). In the experimental setup, the intensity of ¹³C-modulated cross peaks was maximized (J = 120 Hz chosen) at the expense of some sensitivity loss for the ¹⁵N-edited cross peaks. The sensitivity loss has been estimated to be about 20% (Pascal *et al.*, 1994). Moreover, the resolution of the cross peak in the ¹⁵N-edited spectrum also suffered, despite the fact that extensive folding of carbon resonance was employed, with a minimum spectral width of about 3.65 kHz to allow unambiguous interpretation of NOEs. The cross peaks were observed on planes with an appropriate F1 chemical shift (either ¹⁵N or ¹³C) depending on whether the destination proton is an amide or aliphatic proton.

Complete backbone and approximately 80% of the side chain ¹H, ¹⁵N and ¹³C resonances were successfully assigned in the bound form L30 protein. Among these residues, all 8 Ala, 2 Asp, 8 Gly, 7 Ile, 1 Met, 4 Asn, 2 Pro, 4 Glu, 10 Ser, 7 Thr, 9 Val and 6 Tyr side chains were completely identified. In addition, 12 out of 13 Leu, 4 out of 5 Glu and 2 out of 3 Arg, were

completely identified. Only partial assignments were obtained for the remaining Leu, Glu and Arg and all the 12 Lys. The assignments obtained are listed in Table 4.1.

4.2.4. Amide exchange measurements

Upon completion of the assignment process, it is possible to analyze the secondary and tertiary structure present in the L30 protein by the presence of NOEs in NOESY spectra. In the mean time, the identification of slowly exchanging protons can be used to help locate hydrogenbonded groups within the protein. The presence of slowly exchanging amide H_N resonances can be rationalized in terms of regular secondary structure elements (Wüthrich, 1986). Using uniformly ¹⁵N labeled protein in an HSQC experiment, in which a majority of amide resonances are resolved, it is possible to simultaneously measure the exchange rates of all the slowly exchanging amide protons. The amide exchange measurements were started by dissolving the lyophilized sample of ¹⁵N labeled L30 protein in complex with non-labeled L30N RNA in 99.8% D₂O at room temperature. The sample was then immediately inserted into the magnet at 30°C and allowed to come to thermal equilibrium, as judged by the stability of the deuterium lock signal. A series of ¹⁵N-HSQC experiments were acquired in order to follow the intensity of cross peaks at amide positions as a function of time. A total of 16 spectra were recorded in D₂O at 30°C over a period of 20 hrs to follow the exchange. The protonation rates of individual backbone amide protons were fitted into single exponential curves to derive the exchange rates. Figure 4.2.7 shows a series of these spectra recorded as a function of time after the addition of D₂O to the protein. The first spectrum was recorded within 1 hr, starting 10 min after the addition of D_2O to the protein-RNA complex. The others were recorded after 3 hrs, 10 hrs and 20 hrs after the D_2O exchange. The amide protons that were not detectable in the first spectrum were considered to be not hydrogen-bonded. Amide protons with half-lives much longer than 1 hr can reasonably be assumed to be involved in hydrogen bonding in the interior of the protein.

Slowly exchanged amide protons within a protein can be explained by the presence of regular secondary elements (*i.e.*, α -helix and β -sheet). The amide protons and carbonyl oxygens

Table 4.1: ¹H, ¹⁵N and ¹³C chemical shift list of L30 protein in bound form at 30°C. Proton chemical shifts are referenced to internal TSP. Nitrogen and carbon chemical shifts are referenced to external NH₄Cl and TSP, respectively. The errors in chemical shifts are \pm 0.02, 0.2, 0.3 ppm for proton, nitrogen and carbon, respectively. Tentative assignments are indicated in ().

Residue	N _H /N	C'	Ηα/Cα	Ηβ/Cβ	Ηγ/Cγ	Ηδ/Cδ	He/Ce	NH2/EN
A2			4.40/51.1	1.53/18.2				
P3		177.0	4.54/63.2	1.87,2.32/32.3	2.05/27.7	3.71,3.61/50.5		
V4	8.37/121.3	176.7	4.08/62.6	2.06/33.0	0.98,0.96/21.1,21.6			
K5	8.5/125.8	177.5	4.35/56.6	1.84,1.71/33.2	1.45/25.9		2.95/42.4	
S6	8.34/117.3	175.2	4.41/58.7	3.91,3.85/64.1				
Q7	8.6/122.8	176.5	4.31/56.4	2.10,1.95/29.3	2.33/34.3			7.47,6.59/111.9
E8	8.34/121.7	177.0	4.29/57.7	2.00,1.95/36.5	2.25/36.4			
S9	8.39/116.9	176.8	4.46/59.2	4.10,3.97/64.5				
I10	8.53/122.2	177.2	3.86/63.3	1.98/37.9	0.98,1.28,1.38/17.6,29.1	0.59/13.6		
N11	8.3/120.9	178.6	4.24/57.2	2.85/37.2				7.46,6.82/109.1
Q12	8.04/120.4	179.1	4.10/59.1	2.16,2.24/30.5	1.94,2.44/34.3			7.45,6.82/111.4
K13	7.83/119.7	180.4	4.12/59.7	1.54,1.64/26.3	1.82,1.92/23.3		3.06/	
L14	8.51/120.0	178.5	3.82/57.3	1.63,1.31/42.0	1.42/27.4	0.43,0.51/23.9,25.0		
A15	8.04/121.5	180.8	3.93/55.5	1.48/17.9		,		
L16	7.36/116.4	180.9	4.29/57.5	1.55,1.79/42.8	1.64/28.1	0.98,0.88/25.0,25.0		
V17	7.85/124.2	178.1	3.64/66.5	2.26/31.6	1.20,0.95/23.6,22.1			
I18	7.87/118.9	179.0	3.70/62.9	1.91/36.4	0.67,0.93,1.21/17.3,27.4	0.02/9.9		
K19	7.55/117.5	178.0	4.29/58.5	1.92/34.3	1.52/25.6			
S20	7.94/110.4	174.5	4.95/59.2	4.12,3.83/67.7				
G21	8.99/115.2	173.6	4.52,3.74/44.1					
K22	9/119.4	175.7	4.98/55.5	1.72,1.66/36.8	1.49,1.37/25.6		2.96/	
Y23	8.55/123.0	173.1	5.53/56.3	2.78/		6.55/133.4	6.87/118.7	
T24	9.13/113.3	171.1	4.64/61.1	3.92/70.6	1.06/19.2			
L25	8.65/125.3	176.7	4.80/53.5	1.07,1.89s/43.6	1.91/27.1	0.78,0.83/26.8,25.7		
G26	8.2/107.2	176.8	4.62,4.40/44.4					
Y27	9.57/124.9	176.5	4.00/63.7	3.04,2.82/35.9		7.06/133.2	6.93/119.3	
K28	9.55/119.9	181.0	3.65/61.5	1.68,1.18/	2.02,1.87/	1.35,1.48/	3.14,3.00/	
S29	9.73/117.8	179.2	3.91/61.3	3.82,4.01/	/			
Т30	8.41/125.8	178.4	3.71/68.5	4.17/68.9	0.93/23.0			
V31	8.86/125.3	178.2	3.18/68.6	1.74/31.3	0.38,0.45/21.2,23.9			
K32	7.64/119.6	178.6	3.81/61.1	1.83,1.76/32.6	1.52,1.71/26.7		2.75,2.87/	

	5 0 (/1 1 1 5	186.0			,	······		
S33	7.96/114.7	175.8	4.12/62.1	4.01,3.64/63.6				
L34	7.8//124.3	181.0	3.97/59.8	1.70/42.5	1.66/27.9	0.85,0.75/27.8,24.1		6 00/00 0
R35	8.58/121.4	179.2	4.11/59.8	1.85s,1.30/	1.43,1.55/	2.83,2.90/43.9		0.83/83.9
Q36	7.85/113.9	177.0	4.30/56.0	2.23,1.83/29.5	2.59,2.40/34.3			1.28,6.83/110.4
G 7	7.81/108.9	176.0	3.96,4.07/46.9					
K38	8.13/116.3	176.8	4.31/56.4	1.91,1.52/35.6	1.64,1.32/			
S39	7.27/111.8	176.2	4.11/59.0	3.42,3.54/63.4				
K40	9.3/124.8	176.9	4.51/55.9	1.28,1.42/33.4				
L41	7.69/121.5	174.8	4.64/55.7	1.11,2.10/45.2	1.21/27.4	0.56,0.75/27.9,24.5		
I42	8.43/118.9	173.9	5.55/58.8	1.52/41.0	0.82,0.91,1.20/19.4	0.70/15.9		
I43	8.86/123.9	174.9	5.22/59.7	1.57/41.4	0.70,1.38,0.91/19.4	0.58/15.3		
I44	8.48/124.8	176.7	4.56/60.6	1.54/41.2	1.14,1.50/17.5	0.77/14.8		
A45	8.77/129.8	179.4	4.45/53.6	1.69/19.1				
A46	8.85/124.4	178.6	4.31/55.3	1.38/18.5				
N47	8.27/111.9	175.4	4.76/52.6	3.21,2.92/36.8				7.76,6.86/111.4
T48	7.5/120.2		4.31/62.5	3.93/70.5	1.50/			
P49		178.0	4.27/63.3	1.60,1.75/	2.32/	3.46,2.88/50.9		
V50	8.53/123.8	178.0	3.64/67.1	2.12/32.0	1.01,1.09/21.0,22.0			
L51	8.81/121.3	180.1	4.20/58.8	1.66,1.52/42.0	1.64/27.7	0.94,0.88/24.9,24.7		
R52	6.84/116.9	178.6	4.25/58.3	1.60,1.54/33.0	1.36,1.19/	2.30,2.60/42.8		7.14/83.8
K53	8.44/120.3	178.1	3.86/61.4	2.02,1.80/33.4	1.74,1.46/31.3	1.74/	3.13,2.91/	
S54	8.54/112.8	177.8	4.40/61.9	4.01/63.1				
E55	7.8/123.8	178.7	4.26/59.8	2.50/29.8	2.49,2.62/35.7			
L56	8.37/119.3	179.3	3.96/58.9	1.16,1.42/40.2	1.62/28.0	0.71,0.96/23.9,26.7		
E57	8.6/116.7	179.6	3.80/60.2	2.02,2.30/29.3	2.64,2.20/37.3			
Y58	8.18/122.7	177.7	4.33/61.5	3.18,3.10/38.1		6.57/133.6	6.58/118.5	
Y59	8.34/117.0	180.2	4.07/62.5	2.78,3.013/39.1		7.22/133.4	7.01/118.7	
A60	8.94/124.3	179.1	4.06/55.8	1.39/17.3				
M61	8.23/120.3	181.1	4.18/59.1	2.27,2.42/31.2	2.74,2.52/31.9		2.08/17.1	
L62	7.92/120.4	179.0	3.96/57.9	1.49,1.68/42.5	1.39/26.9	0.75,0.64/23.5,25.5		
S63	7.58/110.3	174.0	4.49/58.0	3.97,4.12/63.7				
K64	7.88/120.7	176.2	3.94/57.6	1.69,1.50/	1.39/			
T65	8.79/118.8	173.9	4.19/63.3	3.44/70.3	1.02/21.7			
K66	7.87/127.7	174.6	4.09/57.3	1.82,1.76/34.3	1.57,1.46/			
V67	7.99/121.4	175.1	4.41/61.0	1.74/34.6	0.30,0.75/21.9,21.9			
Y68	9.03/128.4	173.7	4.67/56.7	2.73,2.79/41.1	· ·	7.02/133.2	6.89/118.7	
Y69	7.95/127.8	174.5	4.57/58.0	2.52,2.93/37.3		7.01/133.2	6.64/118.5	
Y69	7.95/127.8	174.5	4.57/58.0	2.52,2.93/37.3		7.01/133.2	6.64/118.5	

F70	8.41/126.9	176.6	4.44/57.8	2.80,2.98/41.3	7.17/132.4	7.17/132.4	7.15/132.4	
071	8.74/127.8	176.0	4.14/56.2	1.93,1.75/27.3	2.25,2.30/34.3			7.30,6.79/112.3
G72	6.96/107.4	172.8	3.66,4.14/44.3					
G73	8.45/106.0	173.9	4.55,4.16/44.7					
N74	9.12/118.9	179.3	4.44/55.2	3.10,2.46/37.1				7.98,7.02/113.8
N75	8.86/122.9	176.9	4.33/56.9	2.70/37.3				7.73,7.01/114.2
E76	7.84/122.3	179.6	4.06/60.0	2.26,2.37/29.6	2.49,2.32/38.1			
L77	9.03/124.2	178.2	3.51/57.3	2.33,0.68/39.0	0.89/26.4	-0.28,0.42/21.3,26.3		
G78	7.41/104.8	176.0	3.15,3.80/47.5					
Т79	7.69/117.0	178.5	3.96/66.3	4.07/70.4	1.17/21.9			
A80	8.08/126.1	179.1	4.07/55.0	1.37/18.3				
V81	7.14/106.8	174.9	4.12/60.3	2.16/30.2	0.47,0.70/22.4,19.6			
G82	7.69/107.8	174.9	3.67,3.78/46.2					
K83	7.83/117.4	176.8	4.31/51.7	0.65,-0.18/33.0	1.35,1.58/			
L84	8.21/119.5	176.2	4.16/54.0	1.80,1.31/40.5	1.53/27.7	0.82,0.94/24.1,24.4		
F85	5.98/114.3	173.8	4.54/53.4	2.19,2.67/40.4	6.30/128.2	6.25/130.1	6.55/133.0	
R86	7.78/117.3	176.7	3.73/56.8	1.50,1.22/	1.50,1.03/	2.85,3.01/43.5		7.10/83.9
V87	7.64/119.7	174.6	3.89/61.5	1.29/36.1	0.41,0.54/22.6,23.9			
G88	9.93/114.7	174.6	3.92,4.04/46.4					
V89	7.08/115.8	171.4	5.40/59.3	2.22/36.1	0.89,0.96/18.8,23.3			
V90	8.47/125.8	174.0	4.53/60.1	1.64/36.1	0.64,0.70/22.5,20.9			
S91	8.79/120.3	174.7	5.25/55.0	3.89,3.92/65.3				
I92	9.2/127.1	175.2	4.14/60.9	2.11/37.1	0.74,0.95,1.27/17.5	0.65/12.3		
L93	8.7/129.9	177.1	4.77/56.4	1.32,1.71/42.5	1.52/29.2	0.74,0.66/25.9,24.4		
E94	8.18/116.3	176.3	4.57/55.9	2.05,2.26/31.3	2.30/36.0			
A95	9.16/125.0	178.4	4.04/53.7	1.42/20.1				
G96	8.46/105.9	171.1	3.69,4.14/46.5					
D97	8.76/124.9	176.7	4.65/54.7	2.88,2.43/41.2				
S98	7.73/112.4	175.6	4.36/58.4	3.80,3.92/65.6				
D99	8.42/126.0	179.6	4.80/53.9	3.01,2.61/40.1				
I100	7.83/119.9	174.6	3.69/64.9	1.76/40.6	0.69,1.23,0.98/16.2	0.51/14.3		
L101	8.44/117.0	179.3	4.12/56.7	1.59,1.78/42.2	1.53/27.4	0.75,0.92/23.1,25.6		
T102	7.64/108.3	176.4	4.44/62.8	4.37/69.5	1.18/22.0			
T103	7.47/111.3	175.2	4.43/62.7	4.19/70.2	1.15/21.9			
L104	7.53/122.8	175.9	4.40/55.3	1.43,1.52/42.4	1.50/27.0	0.50,0.50/25.6,23.9		
A105	7.72/129.8		4.18/53.9	1.40/20.8				

.

Figure 4.2.7: $^{1}H^{-15}N$ HSQC spectra of L30 protein recorded at **a**, 1 hr, **b**, 3 hrs, **c**, 10 hrs, and **d**, 16 hrs after the complex was dissolved in D₂O. An observed cross peak in spectra recorded after 3 hrs of exchange suggests the possible existence of a hydrogen bond.

are involved in hydrogen bonds for all residues in a regular secondary structure, with the exception of the first four residues in an α -helix and every second residue in the peripheral strands of β -sheets. Although slowly exchanging amides can result from hydrogen bond formation, an alternative explanation could be that the proton is buried in a solvent-inaccessible region of the protein. Consequently, specific hydrogen bonds were only considered in the presence of a supporting NOE pattern. Thus, in the case of a β -sheet, a hydrogen bond can be assigned between the H_N of residue i on one β -strand to the carbonyl group of residue j on the opposite β -strand in the presence of the following NOEs: H_N(*i*)-H_{α}(*j*), H_N(*i*)-H_N(*j*-1) and by H_{α}(*i*-1)-H_{α}(*j*+1). Similarly, in the case of an α -helix, a hydrogen bond can be assigned between residue *i*-3 in the presence of the following strong NOEs: an extended run of strong H_N(*i*)-H_N(*i*-1), H_N(*i*)-H_{α}(*i*-3) and H_{β}(*i*)-H_{α}(*i*-3). Using the above criteria and judging from the backbone amide D₂O exchange rates, the existence of four β -strands and four α -helices within L30 protein could be interpreted.

4.2.5. Torsion angle measurements

Besides the distance information provided by analysis of NOEs, the torsion angle information that is obtained from spin-spin coupling constants is also an important source for understanding the secondary structure of the protein. Specifically, two types of torsion angle measurements (*i.e.*, backbone and side chain torsion angles) provide information about the local conformation adopted by a particular residue. These measurements are achieved through different types of experiment, and possibly at different stages during the structure determination based on stereospecific assignments.

4.2.5.1. Backbone torsion angle ϕ measurements

The H_N - H_α coupling constant is used to derive the protein backbone torsion angle ϕ , which can ultimately be used in structure calculations. Two approaches were used to obtain

accurate measurements of ${}^{3}J_{NH\alpha}$ coupling constants: 2D HMQC-J (Kay *et al.*, 1989a) and 3D HNHA-JR (Vuister & Bax, 1993; Kuboniwa *et al.*, 1994) experiments.

HMQC-J (Kay *et al.*, 1989a), also known as an HMQC-COSY experiment, estimates the ${}^{3}J_{\text{HNH}\alpha}$ coupling constants from the cross peak splittings detected in the 15 N cross sections of 1 H- 15 N correlations. As the cross peak splitting is to be interpreted, the spectra had to be processed with very high resolution. In the HMQC-J experiment acquired on a 15 N-labeled L30 protein in the complex, a harsh Lorentzian-to-Gaussian apodization function was used in combination with zero-filling to 4K in the F1 dimension (15 N) to yield a final digital resolution of < 0.5 Hz/point. Apparent ${}^{3}J_{NH\alpha}$ values were measured directly from the cross peak splittings in the 15 N dimension. No simulations of line shapes or fitting the data with multiple-quantum linewidths were pursued.

The data obtained from the HMQC-*J* spectrum was more qualitative than quantitative, mainly because of the large ¹⁵N linewidth associated with the protein-RNA complex. The $J_{\text{HNH}\alpha}$ coupling constants could be accurately determined for 5 residues at the N-terminus and 2 residues at the C-terminus, because of the long T₂ resulting in narrow ¹⁵N linewidths. The information obtained for the remaining residues only gave a "yes" or "no" splitting answer. The smallest measured $J_{\text{HNH}\alpha}$ coupling constant measured from the HMQC-*J* spectrum was 7 Hz, and the largest one was 9 Hz. A majority of peaks did not exhibit measurable splitting. The cross peaks could be divided into three classes: peaks that clearly exhibited good signal to noise ratios; peaks that had poor signal-to-noise ratios and appeared to possess broad ¹⁵N or ¹H linewidths; and peaks that could not be interpreted because of cross peak overlap. Cross peaks in the first category were assigned $J_{\text{HNH}\alpha}$ coupling constant values of < 5.0 Hz, provided that these residues also had characteristic α -helical NOE patterns. No values for the coupling constant were assumed for the other categories.

A more quantitative analysis was achieved through the HNHA experiment, which measured the ${}^{3}J_{NH\alpha}$ coupling constants from the diagonal to cross peak intensity ratios in a ${}^{15}N$ -edited H_{N} - H_{α} correlation experiment. The HNHA experiment was carried out at 30°C on the Bitter 500 MHz instrument equipped with a triple-resonance probe and z-gradient. The delay δ

- 139 -

and ζ were set to 4.5 ms and 13.05 ms, respectively. Solvent suppression was achieved by a water-flip back sequence. The spectrum was recorded with 512 (t₃) × 64 (t₂) × 64 (t₁) complex points in order to achieve good resolution in the ¹⁵N dimension. After the data processing, the size of the absorptive part of the resulting 3D spectrum was 256(F3) × 256(F2) × 128(F1). Data analyses to obtain $J_{\text{HNH}\alpha}$ coupling constants were based on the ratio of the diagonal-peak (positive) to cross-peak (negative) intensity ratio using the following equation:

$$S_{\rm cross} / S_{\rm diag} = -\tan^2 \left(2\pi J_{\rm HNH\alpha}\zeta\right) \tag{4.1}$$

where the S_{cross} and S_{diag} are the intensity of the cross and diagonal peak, ζ is set to 13.05 ms (2 $\zeta \approx 1/(4J_{\text{HH}})$). The backbone dihedral angle ϕ was calculated using the Karplus equation (Karplus, 1963):

$$J(\phi) = A\cos^{2}(\phi - 60) + B\cos(\phi - 60) + C_{\alpha}\zeta$$
(4.2)

where A = 6.51, B = -1.76, C = 1.60.

There are certain corrections that need to be applied when measuring the *J* from an HNHA experiment. Because the H_N - H_α cross peaks and the diagonal peaks result from the antiphase and in-phase terms, respectively, the faster relaxation of the anti-phase term attenuates the cross peak intensity relative to the diagonal peak, which results in an underestimate of the *J* coupling. However, the fractional error in the derived *J* coupling is independent of the size of the coupling and can be corrected using the available H_α flip-rate (Vuister & Bax, 1993). In addition to this, there is a relatively large error associated with glycine residues because the strong dipolar interaction between the geminal H_α protons gives rise to faster cross relaxation rates than for most other residues. This causes a decrease in the value of *J* measured for the larger of the two H_N - H_α couplings and a concomitant increase for the smaller ones.

Taking into account the above consideration in combination with the losses of magnetization in some resonances during the long dephasing and rephasing delays of the HNHA experiment and some overlaps of the "diagonal" resonance, the *J* values of 66 residues could be measured in L30 protein. No couplings were obtained from Ala2 at the N-terminus, the 2 prolines that carry no H_N protons, or 15 other residues that have short T_2 or weak ¹H-¹⁵N correlations. For the other 20 residues, only a qualitative estimate of the size of the *J*-coupling could be made because of overlap of the diagonal ¹H-¹⁵N correlations.

Besides measurements of $J_{\text{HNH}\alpha}$ coupling constants, the HNHA experiment also helped in identifying the intraresidue H_{N} - H_{α} correlations, which were useful to exclude ambiguities from the H_{β} resonances (*e.g.*, Sers and Thrs) identified in the ¹⁵N-TOCSY-HSQC experiment.

4.2.5.2. Sidechain torsion angle χ_1 measurements

The side chain torsion χ_1 angles were derived from stereospecific assignment of β methylene protons and γ -methyl groups. While the basic approach was described in detailed in Chapter 2, section 2.2.2.5, there were difficulties associated with stereospecific assignment of Ser β -methylene protons. Because of both overlapping with α -protons, and complications from RNA resonances, most Ser residues were not stereospecifically assigned.

Figure 4.2.8 summaries the sequential and short range NOEs, amide proton exchanges, and backbone coupling constants obtained. A complete analysis of the data to the determination of secondary structure elements has been performed, corroborating the existence of four α -helices and four β -sheets. The analysis of the NMR data resulted in a scheme for the β -sheet structure that is shown in Figure 4.2.9.

A summary of all the experiments performed on the protein in the bound form, all the data acquisition parameters were listed in Table 4.2.

Figure 4.2.8: Scheme of the NMR data supporting the identification of the secondary structure elements in the L30 protein. The hydrogen exchange rates, backbone coupling constance ${}^{3}J_{\rm HNH\alpha}$, and sequential proton-proton NOE connectivities are used to identify the the secondary structure elements of the protein. The shaded bar indicates a NOE was observed, of which the thickness indicates the intensity.

Figure 4.2.9: Schematic representation of NMR evidence for the presence of β -sheet in the L30 protein. Slowly exchanging amide protons are shown in bold. Interstrand, long-range ¹H-¹H NOEs $d_{\alpha\alpha}(i,j)$, $d_{\alpha N}(i,j)$ and $d_{NN}(i,j)$ are indicated by double-headed arrows.

Table 4.2: Data acquisition parameters and pulse sequences used in NMR experiments on L30 protein in complex. Unless specified, all experiments were acquired at 30°C. The four subdivisions in each NMR dimension (F1, F2, or F3) are: **a**, complex data points, **b**, spectral width (Hz), **c**, carrier position (ppm) and **d**, nuclei. In a 2D experiment, F2 is the direct acquisition dimension, whereas F1 is the indirect detection dimension. In a 3D experiment, F3 is the direct acquisition dimension, whereas F1 and F2 are the indirect detection dimensions.

Molecule	Experiment	<i>F3</i> (a, b, c, d)	<i>F2</i> (a, b, c, d)	<i>F1</i> (a, b, c, d)	T°C	Mixing	Reference
						time (ms)	
L32 Protein	NOESY (Varain 600)	-	2048, 6600,	512, 6600,	15,	50, 100,	
/L32N RNA			4.73, 'H	4.73, 'H	25, 30, 35	150, 300	
	NOESY-watergate (Bitter 501)	-	2048, 11990, 4.73, ¹ H	512, 11990, 4.73, ¹ H	15, 25, 30	100, 150	
	NOESY-watergate (Varian)	-	2048, 14000, 4.73, ¹ H	512, 14000, 4.73, ¹ H	15, 30	100	
	dq-COSY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H			(Rance <i>et al.</i> , 1983)
	ROESY-watergate (Varian)	-	2048, 14000, 4.73, ¹ H	512, 14000, 4.73, ¹ H		50	(Bax & Davis, 1985)
L32N RNA/ ¹⁵ N L32 Protein	FHSQC (Varain 600)	-	1024, 7000, 4.73, ¹ H	128, 2000.0, 118.41, ¹⁵ N			(Mori <i>et al.</i> , 1995)
	HMQC-J (Varain 600)	-	1024, 7000, 4.73, ¹ H	400, 2000.0, 118.41, ¹⁵ N			(Kay <i>et al</i> ., 1989a)
	T1ro, T1, NOE Relaxation (Varain 600)	-	512, 7000, 4.73, ¹ H	128, 2000.0, 118.41, ¹⁵ N			(Dayie & Wagner, 1994)
	¹⁵ N Watergate NOESY-HSQC (Varian 750)	512, 9000, 4.73, ¹ H	32, 2600, 116.34, ¹⁵ N	124, 9000, 4.73, ¹ H		150	(Mori <i>et al</i> ., 1995)
	¹⁵ N TOCSY-HSQC- watergate (Varian	512, 6999.7, 4.73, ¹ H	128, 7000, 4.73, ¹ H	32, 2000, 118.41, ¹⁵ N	60	(Marion <i>et al.</i> , 1989)	
---	--	--------------------------------------	---------------------------------------	---	-----	--	
	¹⁵ N HNHA-JR (Bitter 501)	512, 6000, 4.73, ¹ H	64, 6000, 4.73, ¹ H	30, 1600, 116.45, ¹⁵ N		(Kuboniwa <i>et</i> <i>al.</i> , 1994)]	
L32N RNA/ ¹⁵ N, ¹³ C	¹³ C FHSQC (Bitter 501)	-	1024, 6002.4, 4.73, ¹ H	512, 12000, 34.83, ¹³ C		(Mori <i>et al</i> ., 1995)	
L32 Protein	¹³ C HSQC-arom (Varian 600)	-	1024, 6000, 4.73, ¹ H	64, 4000, 125.55, ¹³ C		(Bax <i>et al.</i> , 1990)	
	¹³ C HSQC-CT (Bitter 600)	-	1024, 6002.4, 4.73, ¹ H	206, 9000, 38.79, ¹³ C		(Santoro & King, 1992)	
	¹³ C HSQC-CT (Varian 600)	-	1024, 7000, 4.73, ¹ H	105, 3850, 43.64, ¹³ C		(Santoro & King, 1992)	
	¹³ C HSQC-NOESY (Varian 600)	512, 6999.7, 4.73, ¹ H	96, 7000, 4.73, ¹ H	24, 3850, 43.64, ¹³ C	150	(Clore <i>et al.</i> , 1990)	
	¹⁵ N, ¹³ C HSQC- NOESY (Varian 600)	512, 7500, 4.73, ¹ H	128, 7500, 4.73, ¹ H	28, 3850, 43.64, ¹³ C (¹⁵ N)	100		
	¹³ C HCCH-TOCSY (Varian 600)	512, 7000.2, 4.73, ¹ H	128, 7000.2, 4.73, ¹ H	32, 3850, 43.64, ¹³ C	18	(Clore <i>et al.</i> , 1990)	
	HNCA (Varian 750)	512, 9000.2, 4.73, ¹ H	96, 5600, 61.74, ¹³ C	32, 2400, 119.85, ¹⁵ N		(Ikura <i>et al</i> ., 1990)	
	HNCO (Varian 600)	512, 7000.2, 4.73, ¹ H	96, 1800, 176.18, ¹³ C	30, 2000, 118.41, ¹⁵ N		(Muhandiram & Kay, 1994; Kay	
	HN(CO)CA (Varian 600)	512, 7000.2, 4.73, ¹ H	64, 5000, 59.0, ¹³ C	28, 2000, 118.41, ¹⁵ N		(Yamazaki <i>et al.</i> , 1994)	
	HNCACB (Varian 600)	512, 7000.2, 4.73, ¹ H	64, 8000, 43.64, ¹³ C	14, 2000, 118.41, ¹⁵ N		(Muhandiram & Kay, 1994)	

- 145 -

IV. The L30 Protein in the Bound Form

.

and another system system where a real of the state

IV. The L30 Protein in the Bound Form

4.2.6. Backbone relaxation studies

Two-dimensional ¹⁵N relaxation (T_1 , T_2 , NOE) measurements of L30 protein in the complex were also recorded. The pulse sequences, data size and processing parameters were similar to that described for the free form in Chapter 2, section 2.2.3. There are a few subtle differences: these experiments were recorded on a 1.1 mM protein-RNA complex sample at 30°C, with 8 T₁ relaxation delays (10.02, 20.04, 40.08, 150.3, 300.6, 601.2, 801.6, and 1202.0 ms, and repetition points of 10.02 ms and 601.2 ms), and 7 T₂ relaxation delays (2.55, 5.10, 10.21, 20.42, 38.28, 61.25, 96.98 ms, and repetition points of 2.55 and 10.21 ms). The heteronuclear NOE (¹H-¹⁵N) relaxation were measured by two spectra, one with the NOE effect, and one without. The T₁ and T₂ relaxation rates were extracted from fitting cross peak intensities to a single exponential decay curve, and the heteronuclear NOEs were measured by the ratio of peak intensities between with-NOE/without-NOE spectra as described in Chapter 2, section 2.2.3.

Figure 4.2.10 shows the relaxation parameters T_1 , T_2 and NOEs measured for the L30 protein in the bound form. Similar to the protein in the unbound form, nine residues at the N-terminus and five at the C-terminus are disordered because of relatively rapid motion, which are expected for the terminal regions. In addition, G73 also shows greater motion than the surrounding residues because of the flexible G72-G73-Asn74-Asn75 linker. Despite the flexibility at the termini and linker, the rest of the residues in the protein show similar relaxation rates, which suggest homogeneous motion. The largest difference between the free and bound form L30 protein is observed in the region between residues 74-88. This region is relatively flexible in the free form, as judged by either exchange broadened or missing correlation peaks, relaxation rates on the millisecond time scale. Upon RNA binding, not only do all of these resonances display observable correlation peaks, the relaxation rates can also be accurate determined (except those that have overlapping chemical shifts). The measurable T_1 , T_2 and NOE relaxation parameters confirm the stabilization of this region upon complex formation.

- 146 -

1.50

1.25 1.00

0.75 0.50 0.25 0.00

0

а

T₁ (sec)

Figure 4.2.10: Plots of backbone relaxation parameters T_1 , T_2 , and NOE of the bound form L30 protein as a function of residue number. The data were recorded with a 600 MHz spectrometer at 30°C. Measured T_1 values are shown in panel **a**, T_2 values in panel **b**, and ¹⁵N-¹H NOE data in panel **c**. The missing data points result from overlapping cross peaks in the ¹⁵N-edited HSQC spectrum.

IV. The L30 Protein in the Bound Form

In conclusion, the formation of the L30 protein and L30N RNA complex was carried out by titration at a low concentration. A millimolar concentration complex sample was obtained by gradual concentration, which enabled the subsequent NMR analysis of the complex. The unambiguous assignments of almost all backbone resonances (${}^{1}H_{N}$, ${}^{15}N$, ${}^{13}C'$, ${}^{1}H_{\alpha}$ and ${}^{13}C_{\alpha}$) were achieved using a series of triple resonance experiments, and the assignments of 95% of the side chain ¹H, ¹⁵N and ¹³C resonances were obtained using heteronuclear-edited TOCSY and NOESY experiments. The backbone torsion ϕ angles for 70% of the residues have been derived from $J_{\rm HNH\alpha}$ measurements obtained from 3D HNHA and 2D HMQC-J experiments. The analysis of sequential NOEs, chemical shift alignments of various backbone resonances, backbone D_2O exchange rates, and backbone $J_{\text{HNH}\alpha}$ coupling-constant measurements confirmed the existence of four α -helices and four β -strands within the protein in the bound form. Comparison of resonance chemical shifts and sequential NOEs of the protein suggests that the overall folds are similar in the free and bound form with a few local conformational reorganizations. However, the protein in the bound form is significantly stabilized by the presence of the RNA. As compared to the protein in the free form, the bound protein has a substantially increased thermal stability, completely observable backbone resonances, and almost homogenous relaxation rates for the four α -helices and four β -strands.

Chapter 5. The L30N RNA in the Bound Form

5.1. NMR Characterization of the Bound Form L30N RNA

The next step after the protein assignments is the correlations of the L30N RNA resonances in the bound form. Since the RNA has been characterized in the free form, similar buffer conditions (10 mM potassium phosphate, pH 6.0-6.5, 0.02% NaN₃ and 0.1 mM EDTA) were used for the bound form RNA. Initial temperature dependence analyses of proton 1D NMR spectra show that the RNA proton resonances have very broad linewidth at temperatures below 20°C, and the resolution increases with elevated temperatures. In order to achieve better resolution for most RNA resonances, and also to be consistent with the assignment conditions for the L30 protein in the bound form, 30°C was used for most experiments. Various 2D experiments with different temperatures were acquired to resolve resonances with degenerate chemical shifts, which also assisted the assignment process.

5.1.1. Use of mutants to assist the assignment of the RNA

The relatively large size of the L30 protein-RNA complex has been a challenging NMR project, especially for the characterization of L30N RNA in the bound form. While the traditional NOE-based assignment procedures are useful for A-form RNA, the sequential NOE connectivities occasionally break down at non-standard conformations. Recently, sequence specific assignments of an RNA can be achieved by triple resonance experiments. However, in the case of L30 RNA in the bound form, the large size and the chemical anisotropy effects associated with aromatic resonances limited the application of many triple resonance experiments. Despite the limitations, the use of isotopically labeled RNAs (¹³C/¹⁵N uniformly labeled RNA, or ¹³C/¹⁵N-guanine-only labeled RNA) greatly facilitated the assignment procedure, and mutation studies were also very useful in resolving ambiguities in the spectra.

First, it is necessary for the mutants to be equally active as wild type, so as to justify their usefulness in the assignment. Active mutants U14C, A55C, A55U and A57C RNA were selected on the basis of in vitro selection results (Li & White, 1997). In all these mutants, the individually changed residue did not affect the protein binding affinity dramatically. The mutant RNAs used in the NMR studies each carry a point mutation. The binding affinities of these mutants were comparable to that of the wild type $(12 \pm 4 \text{ nM})$ as determined in gel shift assays. Also, the backbone resonances, as determined in the ¹⁵N-edited HSQC spectra of the L30 protein, displayed similar resonance shifts, indicating the similarities in the complex structures of all the three mutants (U14C, A55C and A55U) (Figure 5.1.1). Only minor differences (± 0.1 ppm) were observed for protein residues close to the RNA mutation (if any). For the A57C complex, since the protein was unlabeled, no HSQC spectrum was recorded. For the RNAs, the homonuclear 2D H₂O NOESY, D₂O NOESY, TOCSY and COSY spectra of all the mutants showed the preservation of the overall RNA conformation. Typically, in the aromatic-sugar region of the NOESY, no chemical shift differences greater than 0.2 ppm have been detected. A few significant chemical shift changes were observed in the RNA imino resonance region, and these can easily be attributed to the mutation itself or by ring current effects of the mutation. These results indicate that the mutations adopt similar conformations as wild type, and thus helped in assignments by the small chemical differences that was generated by the mutations.

5.1.2. Assignment of the exchangeable protons

The assignments of the exchangeable protons were made using both homonuclear and heteronuclear experiments. In addition to the standard homonuclear NOESY spectra acquired in H_2O , heteronuclear 2D correlation spectra were recorded using either uniformly ¹³C/¹⁵N-labeled, or ¹³C/¹⁵N-guanosine-only labeled L30N RNA in complex. Standard ¹⁵N-edited FHSQC (Mori *et al.*, 1995) spectra were acquired at 11, 15 and 25°C. These were recorded by centering the ¹⁵N transmitter either around 117 ppm to obtain the fully exchangeable ¹H-¹⁵N correlations, or around 150 ppm to obtained the imino ¹H-¹⁵N correlations. The evolution period was optimized for J_{HN} =

Figure 5.1.1: ¹H-¹⁵N HSQC spectra of the L30 protein in complexes with **a**, L30N, **b**, A55C, **c**, A55U, and **d**, U14C RNAs. Not that the Arg ε side-chain peaks in **d** are folded differently than those in **a**, **b** and **c** because of different spectral widths in the ¹⁵N dimension.

90 Hz. Furthermore, 3D CN-NOESY-HSQC spectra were recorded by centering the ¹⁵N transmitter around 120 ppm and ¹³C around 104 ppm to observe the nonexchangeable aromatic and H1' protons. A ¹⁵N NOESY-HMQC spectrum was recorded at 750 MHz centering ¹⁵N to 150 ppm to observe imino-proton NOEs.

5.1.2.1. Imino resonance assignments

The imino proton resonances of L30N RNA showed no significant changes in a homonuclear spectrum upon complexing with protein. The only exception was the appearance of one additional imino resonance at 11.18 ppm. Even the NOE pattern of these imino resonances did not show a large change on complex formation (Figure 5.1.1, panel b). The imino-imino NOEs between the stacked base pairs were easily observable even though the resonance linewidths were broader compared to those in the free form. These imino protons correspond to the two helical regions, suggesting the preservation of two helices upon protein binding. The imino-imino NOEs were observed between G6-U63-G62-G61 within the lower helix, and G13-U14 and G53, and G15-U16-G50 within the upper helix, similar to that observed in the free form of the protein.

Though the helices were similar in the free and bound RNA, the imino resonances displayed larger differences in the internal loop region. These differences were particularly clear in an ¹H-¹⁵N HSQC spectrum (Figure 5.1.2, panel **a**) which shows the appearance of another additional guanine imino resonance with a further upfield shift (9.0 ppm). This resonance could not be observed in a homonuclear experiment as it was masked by the protein amide resonances. Furthermore, the imino protons of G10, G13 and G61 flanking the internal loop also displayed slight differences in their chemical shifts, indicating the conformational changes within the internal loop. No further change was observed for the imino resonance of U60 that forms a wobble base pair with G10 in the free form at low temperature (< 10°C). Unfortunately, it was not possible to go below 10°C to observe this peak, as the linewidth became too broad.

Figure 5.1.2: Imino proton spectra of the L30N RNA. **a**, A ¹H-¹⁵N HSQC of the uniformly ¹³C/¹⁵N-labeled RNA, and **b**, a 100 ms proton NOESY of the RNA in the complex. These spectra are recorded at 30°C in H₂O containing 10 mM potassium phosphate, pH 6.5, 0.1 mM EDTA, and 0.02% sodium azide. The concentrations of labeled and unlabeled RNA were 0.8 mM and 1.6 mM, respectively. The imino peaks are labeled with the assignments in each spectrum, and dashed lines trace the sequential imino-imino NOEs in panel **b**.

The assignments of the two additional imino protons that appeared in the complex were particularly challenging, not only because there were no sequential imino-imino NOE connectivities, but also because they showed no conventional NOE patterns (*i.e.*, regular Watson-Crick or wobble base pairs) for base pair identification. Although an HCCNH-TOCSY type of experiment would have been ideal to correlate the exchangeable and nonexchangeable proton, no signals were observed for the HCCNH-TOCSY experiment. This was expected due to the short T_2 resulting from chemical shift anisotropy relaxation of the aromatic protons and intermediate exchange properties of the residues.

Thus to carry out the assignment of these imino protons, the NOE-based approach was again employed for the assignments of all the nonexchangeable protons were obtained (will be discussed below in section 5.1.3). The resonance at 11.18 ppm was assigned to G11 based on internucleotide and intermolecular NOEs, which included a strong NOE to 7.38 ppm belonging to the G56 H8. A strong NOE to the G56 H8 and no NOE to its own amino protons suggest that G11 and G56 form a reverse Hoogsteen type of base pair involving the G11 imino proton and the exocyclic amino proton forming hydrogen bonds to G56 N7 and O6, respectively. The resonance at 9.0 ppm to G56 was assigned to G56 though the NOE patterns were more complex. The peak was initially ignored in the homonuclear NOESY experiment because of the imino resonance at 9.0 ppm were identified only in an ¹⁵N-edited NOESY-HMQC experiment, and only one of these was to A12 H2. Most of the other NOEs were to the Phe85 resonances of the protein. Thus, at this stage it is reasonable to that the G56 might form a hydrogen bond with the protein.

5.1.2.2. Exocyclic amino resonance assignments

Since all cytosines are located outside of the internal loop, it was not surprising that the amino proton resonances do not undergo significant changes upon protein binding. All but the C19 and C65 amino protons were assigned according to strong NOEs to the imino protons in the Watson-Crick pairs, and cross-checked with NOEs to their H5s once the nonexchangeable proton

were assigned. The chemical shifts of the attached ¹⁵Ns were assigned according to their proton NOEs in a ¹H-¹⁵N NOESY-HSQC spectrum.

Compared to the cytosines, amino protons of the guanines and the adenines display additional resonances upon complex formation, which is expected as these are in the internal loop region. Unfortunately, all the amino proton peaks are significantly broader than those in the free form, and thus NOE-based assignments were unsuccessful. An ¹H-¹⁵N CPMG-NOESY (Mueller *et al.*, 1995) spectrum was acquired to assist in the correlation of these exchange broadened amino peaks, but no improvement was observed in this spectrum.

5.1.3. Assignment of nonexchangeable resonances

In contrast to the exchangeable protons, the nonexchangeable protons display dramatic and unusual changes for the residues within the internal loop region upon the complex formation with the protein. The changes are particularly significant in the aromatic-anomeric region of the homonuclear NOESY spectrum (Figure 5.1.3). In addition to the sequential NOE walks in the helices that had previously been established in the free RNA, more sequential NOE cross peaks which were identified to belong to the internal loop region were observed in a homonuclear NOESY spectra. These additional resonances were more obvious in a ¹³C-edited HSQC spectrum, many of the resonances showed large chemical shift changes. Some of these are unusually downfield, such as peaks at 8.8 ppm in the base region, at 6.8 ppm for H1' and at 5.22 ppm for H4'. The increased dispersion of chemical shifts and new NOEs within the internal loop suggested formation of a more regular structure.

Two types of isotopic labeling patterns were introduced to facilitate the RNA heteronuclear NMR experiments. These were a uniformly ¹³C/¹⁵N-labeled and ¹³C/¹⁵N-guanosine-only labeled L30N RNA. While the ¹³C/¹⁵N-labeled sample was used to identify all ¹H, ¹³C, ¹⁵N assignments of RNA, the ¹³C/¹⁵N-guanosine-only labeled sample was used to assist in the purine assignments in the internal loop.

Figure 5.1.3: Aromatic (H8/H6/H2) and ribose H1' proton regions of a 300 ms NOESY spectrum of L30N RNA in the complex recorded at 30°C. The solid lines trace the sequential NOE connectivities from G5 to A21, and dashed lines trace the connectivities from G50 to A55 and A57 to C65. The labels indicate intranucleotide H8/H6 to H1' NOEs. The G51 and G56 H1' resonances are shifted downfield to 4.01 and 4.63 ppm, respectively, and are not included in this plot.

The following experiments were acquired for the nonexchangeable proton assignments. Constant time ¹³C-HSQC spectra with the carbon offset at 83 ppm were recorded at 25 and 30°C. The evolution periods were optimized for $J_{\rm HC}$ = 200 Hz, and the constant-time period was set to $1/J_{\rm CC}$ (about 27 ms). Because of the relatively low concentration of the ${}^{13}{\rm C}/{}^{15}{\rm N}$ -guanosine labeled RNA sample, 3D NOESY and TOCSY experiments were acquired only on the uniformly ¹³C/¹⁵N-labeled sample. A 3D CN-NOESY-HSQC spectrum was acquired with the¹⁵N transmitter around 120 ppm to observe NOEs originating from all exchangeable protons, and ¹³C around 104 ppm to observe NOEs from nonexchangeable aromatic and H1' protons, respectively. Various 2D and 3D experiments were recorded with the sample in D₂O. These included 2D ¹³C-HSQC spectra at 15, 25 and 30°C. The HSQC spectra were acquired by either centering the ¹³C transmitter at 116 ppm for the aromatic ¹H-¹³C correlations, or around 83 ppm to obtain sugar ¹H-¹³C correlations. A 3D ¹³C-HSOC-NOESY spectrum with 150 ms mixing time and a 3D HCCH-TOCSY with 12 ms mixing time were as recorded for sugar assignments, with the ¹³C transmitter around 83 ppm for the sugar proton assignment. While the HCCH-TOCSY and CN-NOESY-HSQC spectra were acquired at 600 MHz, ¹³C HSQC-NOESY spectrum was acquired on a 750 MHz spectrometer. Two additional experiments were also acquired to assist in the assignments. A ¹³C HSQC-NOESY spectrum with the ¹³C-carrier at 140 ppm, in the middle of the C8/C6 and C2 region, was acquired on a 600 MHz spectrometer to observe aromatic protein NOEs.

Although a series of triple resonance sequences designed to correlate either sugar to aromatic or aromatic exchangeable to nonexchangeable resonances have become available (Simorre *et al.*, 1995; Fiala *et al.*, 1996) in recent past, they were not successful for the L30N RNA. The main problem was due to the fast decay of the signal that was apparent with the small overall correlation time of the complex. Besides this, conformational exchange and chemical shift anisotropy effects on the aromatic nuclei further reduce T_2' (less than 25 ms for the internal loop region).

5.1.3.1. The nonexchangeable proton resonances in the stem

The resonance assignments of two helical stems were carried out in a similar manner as for the free form. Since many resonances show similar NOEs and chemical shifts, the assignments were straightforward and were obtained by the combination of sequential walks in homonuclear NOESY (Figure 5.1.3), ¹³C-NOESY-HMQC and HCCH-TOCSY experiments.

5.1.3.2. The nonexchangeable proton resonances in the internal loop

The peak patterns for the residues in the internal loop of the RNA were much different in the complex as compared to the free form. Many distinct peaks were observed in an HSQC spectrum, which showed a wide chemical shift dispersion (*e.g.*, ranging from 4.0 to 6.8 ppm in H1' resonances). Furthermore, many interbase NOEs were observed in the NOESY spectrum. Though it was possible to make sequential assignment on the basis of NOEs, the assignments were not foolproof since the internal loop leads to unusual NOE features that could mask the correct assignment. Thus the final assignment was made with the help of the ¹³C/¹⁵N uniformly labeled and G-specific labeled L30N RNA samples, and by using the four RNA mutants. The G-specific labeled RNA was particularly important in differentiating the purine aromatic resonances within the internal loop that is rich in purines (containing four adenosines and four guanines). Comparison of the HSQC spectra between the fully labeled RNA and G-only labeled RNA allowed unambiguous identification of all G-aromatic resonances within the internal loop (Figure 5.1.4). The RNAs with point mutations were also important for sequential assignments within the internal loop, which will be discussed along with the assignment process.

The assignments were initiated by analyzing the base to sugar proton regions. Briefly, sequential walks for the base protons (H8/H6) to ribose H1' protons of G10 to G13 and C54 to G61 within and flanking the internal loop of the complex were obtained on homonuclear NOESY spectra acquired at various mixing times. Spin system information (*e.g.*, G vs A, H1' vs H4', *etc.*) was supplemented with the corresponding 2D ¹³C-edited HSQC experiment; and sequential connection with degenerate chemical shifts were verified using a 3D ¹³C-edited NOESY-HMQC spectrum. Weak connectivities at the G10-G11, A12-G13, A59-U60-G61, and broken

connections at A55-G56-A57 were observed within the internal loop. One of the most noticeable features was the existence of three sets of unusual medium to medium-strong sugar H1'-H1' NOEs between A12 and G13, G13 and A59, and A55 and A59 (Figure 5.1.5, panel a). None of these NOEs are due to spin-diffusion, as they can be seen even in NOESY spectra with a 50 ms mixing time. It was initially speculated that these NOEs might have been a result of conformational exchange, but subsequent experiment suggested otherwise. A ROESY spectrum confirmed that these peaks were true NOEs and not due to exchange, as the true NOE peaks have the opposite sign to the diagonal peaks, while exchange peaks have the same sign as the diagonal in a ROESY spectrum (Cavanagh et al., 1996; Battiste, 1996). The assignment of the peak at 6.78 ppm was confirmed by the ¹³C/¹⁵N G-only labeled sample. In addition, the point mutation of A57 to C, and A55 to either C, or U showed preservation of the observable NOE patterns (Figure 5.1.5, panel b, c and d). The assignment of the G13 was based on sequential A12 H1'-G13 H8-G13 H1'-U14 H6 NOE connectivities, and on the direct chemical shift changes (from 6.78 to 6.65 ppm) that occur between L30N wild type and a U14 to C mutation (data not shown). The resonance at 6.05 ppm was assigned to A55 according to the sequential C54 H1'-A55 H8-A55 H1' NOE connectivity, and from the spectra of the two mutants A55U and A55C. The assignment of the peak at 6.30 ppm as belonging to A59 was made according to sequential G58 H1'-A59 H8-A59 H1' NOEs. After unambiguously identifying these four H1' resonances, the other sugar H1' protons (from G11, G56, A57 and G58) were assigned based on sequential NOE connectivities to the adjacent base, in conjunction with information from the G specific labeled sample and mutant RNAs. For example, the assignment of the A57 at 6.22 ppm was confirmed by the use of the mutant A57C. This mutant also facilitated the assignments of G56 and G58, because of slight changes in the chemical shifts effected by the mutation. The differentiation of G56 from G58 was made clear using the A55C and A55U mutants. Base and sugar resonances in G56 showed slight chemical shift changes in both mutants by the near-neighboring effect, whereas resonances in G58 did not.

The assigned sugar H1' protons were then used to correlate the remaining sugar protons. The H2' to H1' cross peaks of 4 nucleotides (G11, G56, A57 and G58) were initially identified in a COSY spectrum; this was possible because of the large ${}^{3}J_{\rm HH}$ coupling constant of the C2'-endo

Figure 5.1.5: NOESY spectra showing sugar H1' regions of a, L30N (wt), b, A57C, c, A55C, and d, A55U RNAs in complexes with L30 protein. The existence of three sets of H1'-H1' sugar NOEs have been observed in all of these RNAs in the presence of protein. The mixing times used in the NOESY experiments are slightly different, with 50 ms in spectra a and d, and 150 ms for spectra b and c. Nevertheless, in each case, there are medium to medium strong NOEs between the G13 H1' and A12 H1', G13 H1' and A59 H1', and A59 H1' and A55 (or C55, U55) H1' protons.

sugar pucker. The assignments were subsequently cross-checked with a ¹H-¹³C HSQC spectrum. It was essential to identify these H2' proton resonances because of the unusual chemical shifts adopted by these resonances. For example, the chemical shifts of the H1' and H2' of G56 are 4.64 ppm and 5.15 ppm, respectively, which the reverse order from what is expected. Another example is the H4' of A57; it has a chemical shift of 5.22 ppm, and could be mis-assigned to H2' proton.

The G56 was seen to exist in a different glycosidic conformation. This was concluded from the intensity of the G56 H8-G56 H1' cross peak which was much stronger than all the other aromatic to H1' cross peaks, and was comparable to the H5-H6 cross peaks of pyrimidines. In a short mixing time NOESY spectrum, the volume of this cross peak corresponded to a distance of approximately 2.5 Å, which is more than twice the volume of the G56 H8 to H2' cross peak. This indicates that the glycosidic torsion angle for G56 is in the *syn* conformation. As it was pointed out earlier in the imino proton assignment, there exists a strong G imino proton NOE to the G56 H8 resonance (7.38 ppm). The unusual G-G base pair hydrogen pattern and the glycosidic conformation indicate a possible role of G56 in the protein-RNA recognition.

More than 50% of the other sugar protons within the internal loop were assigned using ¹³C-edited NOESY-HSQC and HCCH-TOCSY experiments, in conjunction with a homonuclear NOESY experiment. Nearly complete assignments were made to G11, G56, A57 and G58, supported by the unambiguous identification of the H2'/C2' which were in the C2'-endo conformation, and also by the information provided in the HCCH-TOCSY spectrum. On the contrary, only partial assignments were obtained for A12, A55, A59 and U60, as these resonances show exchange broadening. The broader linewidth of these resonances can be easily observed in different regions of the ¹³C-edited HSQC spectrum. The peaks corresponding to these residues were either weak or absent in the HCCH-TOCSY spectrum making assignments ambiguous. Only partial assignments were made for the H2', H4', and only a few H3', H5' and H5" of these nucleotide were assignable using the NOE-based approach. The assignments involved the use of a short mixing time (50 ms) NOESY experiment, in which strong cross peaks were observed between H1'-H2' and H1'-H4' because of their close proximity (~2.5 to 3.0 Å and

~2.8 to 3.3 Å, respectively) (Wüthrich, 1986). Provided that there is no degeneracy in the H1' chemical shifts, the assignments of H2' and H4' were made, and they were differentiated using the ¹³C-edited HSQC and ¹³C-edited NOESY-HSQC correlation spectra.

The base and sugar proton and carbon chemical shifts thus obtained are listed in Table 5.1.

5.1.4. Torsion angles

5.1.4.1. Glycosidic torsion angles

The *anti* and *syn* glycosidic conformations for the residues of L30N RNA in the complex were obtained on the basis of the intensities of the NOE cross peaks between base (purine H8 or pyrimidine H6) protons and the H1' proton. A strong NOE is associated with a *syn* conformation (~ 2.5 Å distance), whereas weaker NOE indicates *anti* conformation (~ 3.7 Å distance) (Wüthrich, 1986). Among the nucleotides in both the helical stems and the internal loop region, only G56 in the internal loop exists in *syn* conformation. Consistent with the intensity of the H1'-H2' cross peak for this residue, the chemical shift of the H2' proton of G56 is shifted downfield to 5.15 ppm. This is a result of the in-plane ring current contribution associated with the *syn* alignment of purine bases and the C2'-endo sugar pucker in the complex. All other residues adopt the *anti* conformation with stronger base to H2' proton NOE patterns.

5.1.4.2. Sugar puckers

The sugar conformation (C3'-endo or C2'-endo) can be directly estimated from the ${}^{3}J_{\rm HI'-H2'}$ coupling constants. A value greater than 10 Hz is indicative of C2'-endo conformation, whereas a value smaller than 2 Hz is indicative of C3'-endo conformation. Three bond ${}^{3}J_{\rm HI'-H2'}$ coupling constants can be measured using homonuclear COSY and short mixing time (11 ms) TOCSY spectra. There were only seven H1'-H2' cross peaks clearly visible in both spectra, which correspond to G5, G11, C19, A20, G56, A57 and G58 (Figure 5.1.6). COSY spectrum generally

Table 5.1: Protein-bound L30N RNA proton, nitrogen and carbon chemical shifts. Proton chemical shifts are referenced to international shifts are referenced to international shifts are referenced to international shifts.
TSP. Nitrogen and carbon chemical shifts are referenced to external NH ₄ Cl and TSP, respectively. The errors in chemical shifts ar
± 0.02 , 0.2, and 0.3 ppm for proton, nitrogen and carbon, respectively. Tentative assignments are indicated in ().

Residue	H1,H3/N1,N3	amino/amN	H8,H6/C8,C6	H2,H5/C2,C5	H1'/C1'	H2'/C2'	H3'/C3'	H4'/C4'	H5',H5"/C5'
			0.14/120.4		5 92/00 9	1 07/75 5	A 01/75 A	1 60/01 2	A AD A 22/67 8
GS	10 54/146 0		8.14/139.4		5.03/90.0	4.91/13.3	4.01/73.4	4.00/04.2	4.42,4.33/07.0
G6	12.54/146.8		7.66/137.6	7 02/154 4	5.94/93.1	4.09/75.9	4.32/74.0	4.04/03.2	4.57,4.51/07.4
A 7			7.94/140.5	7.83/154.4	6.03/93.3	4.05/70.1	4.05/73.1	4.52/82.5	4.12,4.03/03.4
C8		8.38,6.99/97.2	7.34/140.6	5.26/97.7	5.34/94.2	4.29/76.0	4.20/73.0	4.42/82.3	4.06,4.47/65.6
C9		8.31,6.42/97.1	7.50/141.1	5.16/98.2	5.35/95.1	4.61/75.2	4.29/72.8	4.35/82.6	4.07,4.52/65.2
G10	10.87/146.0		7.52/136.2		5.51/93.2	3.43/76.1	4.45/73.0	4.22/83.3	4.45
G11	11.18/144.0		8.00/138.5		5.80/89.1	5.07/76.3	4.89/80.0	4.67/87.5	
A12			8.04/140.8	7.65/154.9	6.04/89.0	4.94/79.7	4.59/78.8	4.94/85.4	
G13	12.79/147.4	8.69/73.4	8.10/138.2		6.78/94.0	5.00/79.9	4.53/	4.99/83.8	4.38
U14	11.93/158.5		8.02/140.5	5.50/104.5	5.51/94.3	4.46/75.9	4.42/72.7	4.39/82.3	4.26,4.32/67.9
G15	12.93/147.4		7.92/137.7		5.88/93.3	4.57/75.7	4.59/73.6	4.58/82.7	4.36,4.16/67.4
U16	14.22/162.4		7.78/142.3	5.17/103.0	5.59/94.5	4.48/76.0	4.43/73.1	4.44/82.3	4.15,4.54/65.3
C17		8.19,6.73/97.9	7.67/141.2	5.56/98.4	5.60/94.7	4.30/76.0	4.50/72.6	4.42/72.4	4.11,4.57/64.9
G18	10.94/146.0		7.78/137.2		5.63/92.4	4.57/76.7	4.69/74.9	4.44/83.2	4.43,4.12/65.9
C19		7.11/97.1	7.77/144.5	5.72/98.6	5.68/92.0	4.38/76.4	4.32/76.0	4.15/84.2	4.15,3.98/66.6
A20			8.01/141.1	7.92/155.0	5.63/91.7	4.38/77.5	4.57/76.6	4.22/84.4	3.77,3.88/66.9
A21			8.27/142.8	8.03/155.3	6.10/97.8	4.77/77.4	5.43/75.5	4.55/83.6	4.44,4.53/67.4
G22	12.35/146.6			7.82/137.9	4.07/92.9	4.42/75.4	4.30/74.8	4.40/83.3	4.58,4.22/66.9
A51			7.79/139.9	7.79/154.2	6.02/93.3	4.50/76.1	4.64/72.7	4.50/82.6	4.13,4.56/64.9
C52		8.55,6.99/98.3	7.42/141.0	5.22/97.8	5.51/93.6	4.41/76.4	4.40/73.1	4.41/82.1	4.07,4.51/65.3
G53	11.14/143.9	6.35/72.9		7.53/137.6	5.80/94.0	4.65/75.6	4.28/74.1	4.52/83.1	4.08,4.41/64.8
C54		7.97.6.99/98.8	7.55/140.5	5.23/97.7	5.60/94.2	4.47/75.7	4.52/72.0	4.47/82.5	4.11,4.52/64.8
A 55		,	8.18/140.2	8.14/155.3	6.03/91.0	4.03/76.3	4.65		4.20/87.8
G56	8 98/146 0			7.38/140.8	4.63/90.8	5.14/71.5	4.45/79.2	3.44/85.5	3.81,4.04/69.0
A 57	0190/11010		8.67/143.1	8.32/156.4	6.24/89.7	4.63/80.1	4.60/78.3	5.24/85.4	4.32,4.04
658			8 40/139.0		6.17/86.1	5.14/77.5	5.08/82.1	4.88/87.2	4.48,4.31
A 50			8 25/143 7	7 65/154 9	6.30/94.6	4.90	4.62	4.82/81.7	4.26
1160	11 70/158 /		7 35/142 5	5 77/105 5	5 73/93 0	4.53		4.40	4.36
C61	12 20/146 7		7.33/142.3	5.111105.5	5 52/94 2	4 31/75 8	4 55/74 0	4 50/83.0	4.30/68.6
C62	12.23/140.7		7.74/13/.2		5 81/93 6	4 53/75 8	4 56/72 9	4 51/82 6	4 57 4 11/65 1
U02	13.20/140.2		7 66/112 2	5 10/102 0	5 58/0/1 2	A 57/75 6	4 51/72 7	4 46/82 2	4 13 4 44/65 3
063	14.22/102.3	0 64 7 12/09 2	7.00/142.3	5.10/102.7	5 60/04 2	4.57775.0 A A0/76 0	-1.51/12.1 1 68/71 5	1 18/83 0	A 15 A 52/64 6
C64		8.04,/.13/98.2	/.84/142.1	J.09/98.1	5.00/94.5	4.40/70.0	4.00/74.3	4.40/03.0	4.06 A 5A/65 6
C65			7.70/143.5	5.52/98.7	5.///93.1	4.03/77.9	4.20/70.2	4.20/83.8	4.00,4.34/03.0

Figure 5.1.6: Ribose H1' and H2' proton regions of a DQF-COSY spectrum for the L30N RNA in the bound form. The plotted horizontal axis and vertical axis represent H1' and H2' proton chemical shifts, respectively, except for G56 which has the reverse orientation. Peaks are labeled with the assignments. The large H1' and H2' coupling constants (up to 12 Hz) suggest unusual sugar pucker conformations (*i.e.*, C2'-endo) for these residues .

leads to overestimation of the *J*-couplings, as there are partial cancellation of positive and negative peaks due to line broadening effects. Nevertheless, rough estimates could be made for these resonances. All the peaks in the present case correspond to *J*-couplings greater than 5 Hz, suggesting a possible C2'-endo or inter-conversion between C2'-endo and C3'-endo sugar conformations. The $J_{\rm HI'-H2'}$ -couplings for nucleotides G5 at the 5'-terminal, and C19 and A20 at the tetraloop are expected to be greater than 5 Hz. The sugar puckers of these types of nucleotides have been reported to have approximately 60% C2'-endo conformations (Heus & Pardi, 1991b). In particular, G11, G56, A57 and G58 have splittings greater than 8 Hz, suggesting these residues adopt primarily C2'-endo pucker conformation. The C2'-endo type of sugar puckers has been reported to be important in expanding the sugar-phosphate backbone in the loop, therefore suggesting unique conformations adopted by these nucleotides in the complex. In contrast, the nucleotides in the C2'-endo conformation, H1'-H2' peaks of other nucleotides in L30N RNA were not observed in either spectrum, which is expected if the sugars are in the C3'-endo conformation.

Table 5.2 shows the summary of all the experiments performed on the L30N RNA in the complex.

5.2. Unusual Features in the RNA NMR Spectrum

After obtaining nearly complete assignments for the RNA in the complex, the chemical shifts of the RNA resonances and the NOESY spectra were analyzed more vigorously to identify various unusual features that are direct signatures of the unusual conformation of the individual residues. A systematic description of all these features is discussed below.

Table 5.2: Data acquisition parameters and pulse sequences used in NMR experiments on L30N RNA in complex. Unless specified, all experiments were acquired at 30°C. The four subdivisions in each NMR dimension (F1, F2, or F3) are: **a**, complex data points, **b**, spectral width (Hz), **c**, carrier position (ppm) and **d**, nuclei. In a 2D experiment, F2 is the direct acquisition dimension, whereas F1 is the indirect detection dimension. In a 3D experiment, F3 is the direct acquisition dimension, whereas F1 and F2 are the indirect detection dimensions.

Molecule	Experiment	<i>F3</i> (a, b, c, d)	<i>F2</i> (a, b, c, d)	<i>F1</i> (a, b, c, d)	T°C	Mixing time (ms)	Reference
L32 Protein /L32N RNA	NOESY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H	15, 25, 30, 35	50, 100, 150, 300	
	NOESY-watergate (Bitter 501)	-	2048, 11990, 4.73, ¹ H	512, 11990, 4.73, ¹ H	15, 25, 30	100, 150	
	NOESY-watergate (Varian)	-	2048, 14000, 4.73, ¹ H	512, 14000, 4.73, ¹ H	15, 30	100	
	dq-COSY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H			(Rance <i>et al.</i> , 1983)
	ROESY-watergate (Varian)	-	2048, 14000, 4.73, ¹ H	512, 14000, 4.73, ¹ H		50	(Bax & Davis, 1985)
L32(U ₁₄ C) RNA/ ¹⁵ N L32 Protein	TOCSY (Bitter 501)	-	2048, 60002.4, 4.73, ¹ H	512, 6002.4, 4.73, ¹ H		11	(Brauschweile r & Ernst, 1983)
Tiotom	NOESY (Bitter 750)	-	2048, 9000, 4.73, ¹ H	512, 9000, 4.73, ¹ H	25	400	,
L32(A ₅₇ C) RNA/L32 Protein	NOESY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H		150, 300	
Tiotein	NOESY-watergate (Varian)	-	2048, 14000, 4.73, ¹ H	512, 14000, 4.73, ¹ H		100	
	dq-COSY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H			(Rance <i>et al.</i> , 1983)

L32(A ₅₅ C) RNA/ ¹⁵ N L32 Protein	NOESY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H	150, 300	
	NOESY-watergate (Varian)	-	2048, 14000, 4.73, ¹ H	512, 14000, 4.73, ¹ H	100	
	dq-COSY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H		(Rance <i>et al.</i> , 1983)
L32(A ₅₅ U) RNA/ ¹⁵ N L32 Protein	NOESY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H	150, 300	
	NOESY-watergate (Varian)	-	2048, 14000, 4.73, ¹ H	512, 14000, 4.73, ¹ H	100	
	TOCSY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H		(Brauschweile r & Ernst, 1983)
	ROESY (Varain 600)	-	2048, 6600, 4.73, ¹ H	512, 6600, 4.73, ¹ H	50	(Bax & Davis, 1985)
L32 protein / ¹⁵ N, ¹³ C L32N RNA	¹⁵ N FHSQC (Bitter 501)	-	1024, 11000, 4.73, ¹ H	128, 5000.0, 117.91, ¹⁵ N		(Mori <i>et al.</i> , 1995)
	¹³ C FHSQC (Varian 600)	-	1024, 7000, 4.73, ¹ H	128, 14000, 116.17, ¹³ C		(Mori <i>et al</i> ., 1995)
	¹³ C HSQC (Varian 600)	-	1024, 6000, 4.73, ¹ H	128, 7000, 82.97, ¹³ C		(Bax <i>et al.</i> , 1990)
	¹³ C HSQC-CT (Varian 600)	-	1024, 6000, 4.78, ¹ H	200, 7000, 82.97, ¹³ C	25	(Santoro & King, 1992)
	¹³ C HSQC-NOESY (Varian 750)	512, 6000, 4.7 8 , ¹ H	128, 6000, 4.73, ¹ H	32, 4000, 82.97, ¹³ C	150	(Clore <i>et al.</i> , 1990)
	¹³ C HSQC-NOESY arom (Varian 600)	512, 6000, 4.78, ¹ H	128, 6000, 4.73, ¹ H	32, 4000, 140, ¹³ C	100	(Clore <i>et al.</i> , 1990)

- - ----

. .

<u>an - managana kana kana kana kana kana kana ka</u>	¹³ C HCCH-TOCSY (Varain 600)	512, 5000.0, 4.78 , ¹ H	128, 3000.0, 4.73 , ¹ H	32, 4000, 82.97, ¹³ C	*****	12	(Kay <i>et al</i> ., 1993)
	¹⁵ N, ¹³ C HSQC- NOESY (Varian 600)	512, 6600, 9.00, ¹ H	96, 6600, 9.00, ¹ H	22, 4000, 119.58, ¹³ C (¹⁵ N)		150	(Pascal <i>et al.</i> , 1994)
	¹⁵ N NOESY-HMQC (Varian 600)	1024, 18000, 4.73, ¹ H	128, 18000, 4.73, ¹ H	16, 4000, 119.58, ¹³ N		100	
L32 protein/ ¹⁵ N, ¹³ C G only L32N RNA	¹⁵ N FHSQC (Bitter 501)	-	1024, 11000, 4.91, ¹ H	128, 5000.0, 117.91, ¹⁵ N	15		(Mori <i>et al.</i> , 1995)
	¹³ C FHSQC (Varian 600)	-	1024, 7000, 4.87, ¹ H	128, 14000, 116.17, ¹³ C	15, 25, 30		(Mori <i>et al.</i> , 1995)
	¹³ C HSQC (Varian 600)	-	1024, 6000, 4.78, ¹ H	128, 7000, 82.97, ¹³ C	25		(Bax <i>et al.</i> , 1990)
	¹³ C HSQC-CT (Varian 600)	-	1024, 6000, 4.78, ¹ H	200, 7000, 82.97, ¹³ C	25		(Santoro & King, 1992)

.

5.2.1. Unusual sugar carbon chemical shifts

Recent studies have showed that the sugar C1', C3' and C4' carbons exhibit distinct chemical shifts for sugars in C2'-endo or C3'-endo conformations with *anti* glycosidic torsion angles. More specifically, while the C1' carbons resonate at ~86 ppm for C2'-endo sugar pucker conformations, they are shifted downfield by about 7 ppm for C3'-endo sugar puckers. In contrast, the C3' carbons resonate at ~78 ppm and C4' carbons at ~86 ppm for C2'-endo sugars, and both are shift upfield by ~5 ppm for C3'-endo sugar puckers (Greene *et al.*, 1995; Greenbaum *et al.*, 1995; Jiang *et al.*, 1996). According to the above empirical criteria, the chemical shifts (C1', C3' and C4') of G11 (89.1, 78.3 and 87.4 ppm, respectively), G56 (90.7, 79.2 and 85.4 ppm), A57 (89.7, 78.3 and 85.4 ppm), and G58 (86.0, 82.1 and 86.5 ppm) in the L30N RNA were identified to be in C2'-endo sugar conformations. This is in agreement with the observation of large ${}^{3}J_{\text{HI-H2'}}$ coupling constants in the COSY spectrum.

5.2.2. Unusual intra- and inter-molecular NOEs

5.2.2.1. Unusual NOEs within the internal loop

<u>Conformation of G11:</u> The G10 H1' and H2' sugar protons show weak connectivities to the G11 base proton, and this suggests that the base stacking is poor in this step and an extension of the phosphate occurred this step. On the contrary, there are strong NOE cross peaks for the G11 H1' to A12 H8, and G11 imino and amino protons to the base and sugar protons of A12 (H2, H1' and H2' protons), suggesting the stacking of the G11 above A12. Weak intraresidue sugar to base cross peaks, weak sequential NOEs for A12, together with medium strong NOEs between sugar H1'-H1' imply an unusual turn at the G11 to A12 positions. In addition, the observation of a strong NOE between the imino-proton of G11 and the H8 proton of G56 appears to be consistent with the formation of a G11-G56 base pair involving the Watson-Crick edge of G11 and the reverse Hoogsteen edge of G56 in the complex.

The sequential base-H1' protons exhibit a very weak NOE at the G10-G11 step. Although there is a medium NOE between the G10 H2' and the G11 H8, the chemical shift of the H2' has been shifted upfield to 3.44 ppm, which is most likely due to ring current effects. It appears from the NOE patterns that the G11 makes a kink in the sugar-phosphate backbone. Specifically, the G11 H2' and H3' protons display only strong NOEs to its own base H8 proton, but no inter-residue NOEs to either the 3'- or 5'-flanking bases. On the contrary, the H1' proton of G11 exhibits strong NOE to the base H8 of A12. This can be explained by the C2'-endo conformation of the G11 residue which displays the H2' and H3' protons away from the backbone. Furthermore, G11 is involved in the formation of a G11-G56 mismatch, involving the imino proton of G11 and the H8 proton of G56. Spin diffusion peaks from the imino proton of G11 and the H8 proton of G11 and the N7 of G56, and an amino proton of G11 and the O6 of G56.

<u>Position of A12</u>: Though the NOEs between A12 H1'-G13 H8 and A12 H2'-G13 H8 protons are relatively weak, the A12 H1'-G13 H1' protons show a very strong NOE. Furthermore, A12 did not exhibit any stacking pattern to the G13-C54 pair, as there are no NOEs observed from either A12 H2 or H8 to the G13 imino proton. The medium-strong NOE observed between H2 of A12 to H2 of A55 suggests that these two base pairs are close in space, though no direct evidence can be obtained for the formation of an A12·A55 base pair. However, indirect evidence involving the A55U mutant suggests there is no base pair between residues 12 and 55, since no base pairing NOE pattern is observed between A12 and U55.

Stacking of A55 below the G13-C54 pair: There are at least three separate observations that suggest the complete stacking of A55 below the G13-C54 pair. First, there is a medium C54 H1' to A55 H8 NOE, and strong C54 H2'-A55 H8 and C54 H3'-A55 H8 NOEs. Second, in a long mixing time NOESY (300 ms), there are base proton stacking NOEs between A55 H8 and C54 H5, H6. Moreover, there is a weak NOE between the A55 H2 and G13 imino protons, which

disappears upon mutation of A55 into either U or C. All these experimental data indicate that A55 is fully stacked below G13-C54 pair.

<u>Conformation of G56:</u> The G56 base with its *syn* glycosidic torsion angle and its C2'-endo sugar pucker displays no sequential base to sugar NOEs to the adjacent A55, and very few weak sugar to base NOEs to A57. Compared to other sugar protons in G56, H4' displays a number of interbase NOEs, to base and sugar protons of A57, and further extends to base and sugar protons of G58. An unusual large upfield chemical shift for H4' (3.4 ppm) of G56 further supports the proposed positioning of G56. It appears that the NOE patterns require the G56 and A57 bases to be orthogonal to each other so that the A57 base is positioned along and over the C4'-C5' backbone of G56. Also, unusual NOEs are observed between the H8 proton of A57 and the H4', H5'/H5'' protons of G56. This alignment is facilitated by both G56 and A57 adopting predominantly C2'-endo sugar pucker conformations in the complex, therefore extend the RNA backbone at this segment. The observed strong NOE between the imino proton of G11 to the H8 proton of G56 appears to be consistent with the formation of a G11-G56 mismatch involving the Watson-Crick edge of G11 and the reverse Hoogsteen face of G56 in the complex.

There are several unusual NOEs within the G56, A57 and G58 bases that are suggestive of a hairpin-like chain reversal by the segment. The extremely weak sequential NOE between G56 and A57 suggests that the chain reversal must occur at this step. The weak to almost absent sequential NOEs between A57 and G58, together with the C2'-endo sugar pucker adopted by both residues, implies an extended backbone at the A57 and G58 step.

<u>Conformation of A57</u>: Upon protein binding, the resonances of A57 display much sharper linewidths than the rest of the RNA. The near absence of NOEs to any adjacent sugar protons from either aromatic H8 or H2 protons of A57 implies that the base is loop out of the RNA helix.

<u>Conformation of G58:</u> Although there is a weak NOE from the G58 H8 to A57 H8 proton in the long mixing time NOE (through spin diffusion), the stacking of the two bases is not extensive. This is interpreted as there is only a weak H1'-base NOE from A57 to G58. The H2' and H3'

protons of A57 also display weak connectivities to G58 base protons. In contrast, the H4' proton of A57 displays a medium NOE to G58 base proton. The presence of a G56 H4' NOE to the G58 H8 proton suggests a sharp kink in the backbone from the G56-A57-G58 region.

<u>Conformation of A59</u>: The sequential base-sugar H1' NOE connectivity resumes at the G58-A59 step, indicative of the continuation of the right-handed stacking alignment from the A59 residue. But the presence of a medium strong long range NOE from the sugar H1' proton of A59 to the H1' proton of A55, and a medium long-range NOE from the H1' of A59 to the H1' proton of G13 suggest a distortion at the phosphate backbone of A59. In addition, the H1' proton of A59 also exhibit medium NOEs to H2 protons of A12 and A55. The unusual NOE patterns put A59 in a conformation that appears to be perpendicular to G13 and parallel to the G11-G56 base pair.

Extension of the helical stems into the internal loop: The stacking of the internal loop with adjacent Watson-Crick helical stem segments represents the unusual conformation adopted by the asymmetric internal loop upon protein binding. The NOE and chemical shift patterns indicate that the leftward stem is extended through stacking of the G11 (*anti*) - G56 (*syn*) mismatch pair to the G10-U60 wobble base pair in one direction and only partial stacking of G11 with G10. On the contrary, the rightward stem stacking is only extended through A55 to the Watson-Crick G13-C54 pair in one direction, is broken between G56 to G58, and resumes at A59 with partial stacking to U60 of the G10-U60 wobble pair.

5.2.2.2. Long range NOEs between the RNA and protein

Long range NOEs between RNA and protein have been observed in all NOESY experiments acquired on either nonlabeled or ¹³C/¹⁵N-labeled samples. Detailed studies of these intermolecular contacts were carried out by the analysis of homonuclear NOESY spectra acquired in H₂O and D₂O in combination with heteronuclear NOESY spectra of labeled molecule with its nonlabeled counterpart. More specifically, these are ¹⁵N-edited NOESY-HSQC spectra of ¹³C/¹⁵N-labeled L30 protein/nonlabeled L30N RNA, ¹⁵N-edited NOESY-HSQC spectra of ¹³C/¹⁵N-labeled L30N RNA/nonlabeled L30 protein, ¹³C-edited NOESY-HSQC spectra of ¹³C/¹⁵N-labeled

L30 protein/nonlabeled L30N RNA, ¹³C-edited NOESY-HSQC spectra of ¹³C/¹⁵N-labeled L30N RNA/nonlabeled L30 protein. All ¹⁵N-edited NOESY spectra were acquired in H_2O , whereas ¹³C-edited NOESY spectra were recorded in both H_2O and D_2O .

The most distinct long-range NOEs that can be observed in homonuclear experiments originate from two types of resonances. The first types were observed in H₂O, where the downfield shifted imino-resonances in the RNA (between 10 and 14.5 ppm) are isolated from the protein exchangeable resonances. The second types were observed in D₂O, from the aromatic and some H1' resonances that are separated from most protein proton resonances, since the labile amide protons from either the protein or the RNA are exchanged away by the solvent. In both categories, direct RNA-protein NOEs were observed through the downfield RNA proton resonances to the upfield proton resonances to the protein side chains (Figure 5.2.1). Other RNA resonances in close proximity of the protein were observed in the ¹³C-edited NOESY-HSQC experiment. The results of the intermolecular NOEs are summarized in Table 5.3.

Unusual long range intermolecular NOEs have been observed for many residues within the internal loop, including G11, A55, G56, A57 and G58, but most of them were located around residues 55 to 58 on one side of the internal loop. Among the nucleotides that are in close proximity to the protein, G56 gives rise to most of the distinct long range NOEs to the protein residues. The frequently observed resonance is the H8 of G56, which gives NOEs to backbone amides, nonexchangeable side chain and aromatic protons of the protein as seen in various 2D and 3D NOESY spectra. The contacting protein residues include Leu25, Gly25, Tyr27, Phe85 and Val87, many of which being hydrophobic residues.

In summary, the comprehensive assignments of the aromatic and ribose ¹H, ¹³C and ¹⁵N resonances of the L30N RNA in the bound form were made through analysis of homonuclear and heteronuclear experiments. Studies of the spectra with ¹³C/¹⁵N-G-specific labeled RNA and homonuclear spectra of three RNA mutants also facilitate the unambiguous resonance assignments, thus allowing identification of many unusual long range intra-molecular NOEs within the internal loop and inter-molecular NOEs between the RNA and the protein. The G11-

Figure 5.2.1: Unusual intermolecular NOEs identified from a NOESY spectrum recorded in D_2O . Assignments for the RNA bases are given in Table 5.1.

RNA	Protein	NOE intensity
G11 (H1)	Ser26 (H _N)	very weak
G11 (H1)	Ser29 (H _N , β)	very weak
A55 (H2)	Phe85 (β , δ , ϵ , ζ)	very weak - medium
G56 (H1', 2', 3', H8)	Leu25 (H_N , α , β , γ , δ)	very weak - medium
G56 (H1', H8)	Gly26 (H_N , α)	weak, medium
G56 (H2', 3', H1, H8)	Phe85 (β , δ , ϵ , ζ)	very weak - medium
G56 (H8)	Tyr27 (H _N)	very weak
G56 (H8)	Val87 ($H_N, \alpha, \beta, \gamma$)	very weak
G56 (H8)	Gly88 (H_N , α)	very weak
A57 (H1', H8)	Arg52 (γ, δ, ε)	very weak - medium
A57 (H4')	Lys28 (H _N)	very weak
A57 (H4', 5',")	Tyr27 (H_N , α , β , δ , ϵ)	very weak - medium
A57 (H2)	Thr48 (H_N , α)	very weak
A57 (H2)	Pro49 (α , β , γ)	very weak - medium
G58 (H1', 2', H8)	Tyr27 (H_N , α , β , δ , ϵ)	very weak - weak
G58 (H1', 2', H8)	Lys28 (H_N , α , β , γ , δ , ϵ)	very weak - weak
G58 (H2', H8)	Arg52 (γ, δ, ε)	very weak - medium
G58 (H4')	Ser29 (H _N , β)	very weak

Table 5.3: Unusual long-range inter-molecular NOEs. For simplicity, NOEs are group together by the order of RNA residues. For a more detailed list, see **Appendix C** for the entire NMR restraint set for molecular modeling.

G56 the reverse Hoogsteen base pair was identified, of which G56 adopts an unusual *syn* glycosidic conformation. The phosphate backbone from G56 to G58 seems to undergo a dramatic kink at this region, with the A57 and the G58 stacking away from the main RNA helix. The existence of three pairs of long-range H1'-H1' NOEs between A12 and G13, G13 and A57, and A55 and A57 further supports the distortion of the phosphate backbone. Studies of the ¹³C chemical shifts and the torsion angle measurements facilitated the identification of the unusual C2'-endo conformation of the four RNA residues (G11, G56, A57 and G58) within the internal loop. These unusual conformations are facilitated by the complex formation, which are stabilized either by hydrogen bonding between nucleotides or interactions with protein residues. Among those interacting with the protein, residues on one side of the loop (A55, G56, A57 and G58) seem to make extensive contacts with proteins. These unusual RNA conformations and RNA-protein interactions will become obvious from the structural modeling, which will be discussed in the next two chapters.

Chapter 6. Molecular Modeling

The previous chapters described the substantial efforts, spanning the fast few years, recording many NMR experiments and analyzing many spectra to obtain comprehensive sequence-specific assignments of the L30 protein and RNA. While these assignments usually do not reveal much about the tertiary structure of the complex, they are a prerequisite for achieving the biochemical goal. This ultimate purpose is to obtain the structure of the L30 protein-RNA complex and to understand the functional recognition elements within the complex. With these sequence-specific assignments in hand, the next step towards the ultimate goal is to solve the three-dimensional structure of the L30 complex through molecular modeling.

There are currently four types of information obtained by NMR analyses that can be useful in providing restraints for generating structures: dihedral angles and interproton distances (Wüthrich, 1986), chemical shifts (Kuszewski *et al.*, 1995) and dipolar vector orientations (Tjandra & Bax, 1997). Dihedral angles are derived from measuring scalar coupling constants, interproton distances are interpreted from the nuclear Overhauser effect (NOE), chemical shifts are themselves manifested through sequence-specific assignment of resonances, and dipolar vectors in an oriented molecule are derived from residual dipolar coupling constants. Currently, the first two categories of information, namely dihedral angles and interproton distances, constitute the main stream in providing NMR-derived restraints for macromolecular structure determination. The other have started to be implemented into structure refinements in recent couple of years, although their application has not completely matured. Hence the latter two (chemical shifts and dipolar vectors) have not been fully explored as restraints for generating L30 complex structure haven't been fully explored during the course of this thesis work.

In the modeling process, the coupling constants and NOE information obtained for the L30 protein and RNA in the complex are subsequently converted into respective dihedral angles and distance restraints, which can be used in either distance geometry (DG) or restrained molecular dynamics (rMD) structure calculations. Distance geometry procedures determine an ensemble of 3D structures solely on the basis of the consistency of distance constraints without
the involvement of dihedral angles (Crippen & Havel, 1988). The restrained molecular dynamics approach provides an alternative to the distance geometry methods by involving both distance and dihedral as part of the molecular force field. In addition, the structural potential of the target is reduced through temperature heat-cool annealing cycles (Nilges *et al.*, 1991). Typically, a hybrid method has been used in many laboratories to generate protein structure, in which initial structures are generated in distance geometry and later refined with restrained molecular dynamics (Nilges *et al.*, 1988). In the case of the L30 complex, both DG and rMD approaches were tested initially for generating the protein and RNA structure; only the restrained molecular dynamics gave better folded protein and RNA structures. Therefore, the subsequent calculations were carried out using mainly rMD, which will be discussed in detail in the following sections. These calculations were performed using the X-PLOR program (Brünger, 1992). Figure 6.0.1 and 6.0.2 illustrate the overall schemes for NMR-derived structure determination son the initial protein and RNA structures and RNA structure determination son the initial protein and RNA structures determination son the initial protein and RNA structures in the complex.

6.1. NMR-derived Structural Restraints

6.1.1. Theory

Currently, interproton distances and dihedral angles are two commonly experimentallyderived restraints used in generating an ensemble of NMR derived structures. The distances can be calculated from NOE intensities measured in NOESY experiments, since the cross relaxation rate constant of two spins is inversely proportional to the sixth power of their distance:

$$\sigma_{\rm NOE} \propto \{-1 + 6/(1 + 4\omega^2 \tau_c^2)\}/r^6$$

where ω is the spectrometer frequency, τ_c is the correlation time and r is the distance between the two spins. The NOE intensity between two dipolar-coupled spins is related to the cross relaxation rate constant and the time to which it occurs:

Figure 6.0.2: Outline of the strategy used to generate the initial L30 RNA structure in the complex.

$$I_{\rm NOE} \propto \sigma_{\rm NOE} / \rho$$

where $1/\rho$ is the duration of cross relaxation period. In a fixed mixing time, an unknown distance r_{ij} between two dipolar-coupled protons can be determined from a reference distance r_{kl} based on their NOE intensities

$$r_{ii} = r_{kl} \left(I_{kl} / I_{ii} \right)^{1/6} \tag{6.1}$$

where I_{kl} and I_{ij} are respective NOE intensities.

Contrary to interproton distance derivations, dihedral angles are directly calculated from *J*-coupling constants measured in COSY-type experiments using the Karplus equation (Karplus, 1963), and in some cases with the combination of stereo-specific assignments in proteins. For instance, the backbone dihedral angle ϕ is calculated from the Karplus equation:

$$J(\phi) = A\cos^{2}(\phi - 60) + B\cos(\phi - 60) + C$$
(6.2)

where A = 6.51, B = -1.76, C = 1.60 (Vuister & Bax, 1993).

6.1.2. Protein restraints

6.1.2.1. Distance restraints

Three types of NOESY experiments were used to obtain NOE-based distance restraints. 3D ¹⁵N-edited NOESY-HSQC spectra were used to derive NOEs originating from backbone and side chain exchangeable protons; 3D ¹³C-edited NOESY-HSQC spectra were used to derive NOEs originating from nonexchangeable protons (*i.e.*, aliphatic side chains); and 2D homonuclear NOESY spectra were mainly used to derive NOEs originating from aromatic side chains. Distances derived in a 2D homonuclear NOESY spectrum utilize the known distance of

a Tyr H_{δ}/H_{ϵ} (2.4 Å) cross peak as a reference distance to calibrate the other distances. However, this reference information is lost in a 3D NOESY spectrum. In the 3D experiments, NOE cross peak intensities are not only determined from the cross-relaxation between two dipolar-coupled spins, they are also affected by the T₂ relaxation of the attached heteronucleus. The differences in NOE absolute intensities are particularly obvious by comparison of those from the terminal residues to those in the protein core. Even within the same residue, an NOE intensity originating from an H_a, say to a methyl proton, is different from that of the same methyl proton to the same H_a. Therefore, the NOE cross peak to diagonal ratio was used to determine distances in a 3D NOESY-HSQC spectrum.

Because of complications from cross-relaxation by spin-diffusion, the intensities of NOE cross peaks were classified as strong, medium, weak and very weak, corresponding to upper distance bounds of 3.0, 4.0, 5.0 and 6.0 Å, respectively, and the same lower bound limit set to 1.8 Å. 1.0 Å was added to the upper distance limits for NOEs involving methyl protons to account for the higher apparent intensity of methyl resonances. Distances involving methyl groups and non-stereospecifically assigned methylene protons were represented as pseudoatoms.

In addition to NOE-based distance restraints, hydrogen bonds were also supplemented in backbone distance restraints. The hydrogen-bonded amide protons were identified from D_2O exchange experiments with slow solvent-exchange rates, in combination with the presence of characteristic NOE patterns of regular secondary structure. Each hydrogen bond was represented by two distance restraints (2.95 Å for N to O and 1.95 Å for HN to O) to preserve linear bond geometry.

6.1.2.2. Dihedral angles

Dihedral angles of backbone and side chain atoms were restrained based on observed scalar coupling constants. In addition, stereospecific assignments are necessary for the side chains with prochiral centers. Within ϕ and ψ backbone dihedral angles of each residue, only ϕ angles have been determined. The ϕ dihedral angle restraints were derived from ${}^{3}J_{\text{HNHA}}$ coupling

constants determined from an HNHA experiment, with the addition of uncertainty boundaries. In most cases, where ${}^{3}J_{\text{HNHA}} < 5.5$ Hz, the backbone dihedral angle ϕ was restrained to $-65^{\circ} \pm 25^{\circ}$; when ${}^{3}J_{\text{HNHA}} > 8.0$ Hz, the backbone dihedral angle ϕ was restrained to $-120^{\circ} \pm 40^{\circ}$. Among the side chain dihedral angles of each residue, only χ_{1} angles have been determined using ${}^{3}J_{\text{H}\alpha\text{H}\beta}$ coupling constants and, if necessary, stereospecific assignments of β -methylene protons. The resulting χ_{1} angle was correspondingly assigned to one of the three rotamers: $+60^{\circ}$, $+180^{\circ}$ and -60° . The stereospecific assignments of two-methyl groups at the prochiral center of Val residues were achieved only after completion of the initial calculations.

6.1.3. RNA restraints

6.1.3.1. Distance restraints

Similar to those in L30 protein, 3D ¹³C-edited NOESY-HSQC, 3D ¹⁵N-edited NOESY-HSQC, and a series of 2D homonuclear NOESY experiments were used to generate distance restraints for the RNA. Interproton distances between nonexchangeable base to H1' protons were estimated from the NOE cross peak buildup rates measured in 2D homonuclear NOESY spectra with different mixing times (50, 100, 150, 300 ms). The pyrimidine H5/H6 distance (2.41 Å) was used as the reference distance in these experiments. Other nonexchangeable proton distances were obtained from the 3D ¹³C-edited NOESY-HSQC spectrum. NOEs between nonexchangeable protons were classified as strong, medium, weak, and very weak, with corresponding distance ranges from 1.8-3.0, 1.8-4.0, 1.8-5.0 and 1.8-6.0 Å, respectively. The systematic usage of 1.8 Å as the lower bound can be rationalized from errors in estimating interproton distances causing by internal motions and spin diffusion. Interproton distances between exchangeable protons, and exchangeable to nonexchangeable protons were derived from 2D NOESY, 3D ¹³C/¹⁵N-edited NOESY-HSQC and 3D ¹⁵N-edited NOESY-HSQC spectra acquired in H₂O. Most NOE cross peaks involving exchangeable RNA protons were only classified as weak, except that the U NH to A H2 and G NH to C NH2 interactions in Watson-Crick base pairs were included as strong constraints. Because the existence of spin diffusion and

exchange phenomena could potentially affect the observable NOEs and complicate the interpretations of cross peak intensities, loose upper bounds of 4.0 or 5.0 Å were paced on base to sugar distances that can be clearly identified at short mixing times (100 ms). Canonical hydrogen bonds existing between known Watson-Crick base pairs and wobble G·U pairs were estimated from the significant downfield imino shifts and slow rates of exchange with solvent. Since there are few observable proton resonances within each base, hydrogen bonds were supplemented into the structure restraints. Two hydrogen bonds were used for each A-U pair; three for each G-C pair and two for each G·U wobble pair. Although the G56 H1 proton would satisfy at least one of the above criteria, hydrogen-bonding constraints were not included to avoid misidentification of acceptor atoms.

6.1.3.2. Dihedral angles

In RNA, the conformation of the sugar-phosphate backbone is defined by six torsion angles (α , β , γ , δ , ε and ζ), the ribose ring is defined by five endocyclic torsion angles (ν_0 , ν_1 , ν_2 , v_3 , and v_4) and the orientation of the base relative to the sugar is given by the glycosidic angle χ (Saenger, 1984). Among the backbone dihedral angles, the only source of direct experimental information for α (P-O5') and ζ (O3'-P) are the ³¹P chemical shifts; while measurable backbone angles β (O5'-C5'), γ (C5'-C4'), δ (C4'-C3') and ϵ (C3'-O3') involve either stereo-specific assignment of H5' and H5" and/or measurements of heteronuclear ¹H-³¹P couplings. These backbone torsion angles were not obtained, either because the ³¹P chemical shifts could not be assigned, or because of the severe overlapping of the proton resonances involved (H3', H4', H5', or H5"). Among the five torsion angles that define the ribose ring, only v_1 (C1'-C2') could be unambiguously obtained from the H1'-H2' coupling constants, since the chemical shifts of H1' protons have better dispersion and suffer less from chemical shift degeneracy and overlap. The H1'-H2' scalar coupling constants were measured in a 2D high-resolution DQF-COSY spectrum. Four nucleotides (G11, G56, A57 and G58) with H1'-H2' coupling constants larger than 8 Hz were classified as C2'-endo conformation. Five nucleotides (G5, G18, C19, A20 and A20) with observable H1'-H2' cross peaks and estimates of coupling constants between 2 and 8 Hz were classified as interconverting sugar puckers and thus were not included in the calculation. The

remaining nucleotides yielded no observable H1'-H2' cross peaks in either COSY or TOCSY spectra were classified as C3'-endo conformation. Except for G56, the χ glycosidic torsion angles (C1'-N1 or C1'-N9) for all other nucleotides were estimated to be in *anti* conformations. The established of the *syn* conformation for G56 is based on the strong H8 to H2' cross peak observed in short mixing time NOESY spectra.

Among the 12 total torsion angles in a nucleotide, only two torsion angles derived from experimental measurements (*i.e.*, sugar pucker v_1 and glycosidic χ) were used as dihedral restraints in the calculation. Typical uncertainties for the dihedral angle constraints were ±30° for sugar puckers, and ±120° for glycosidic torsion angles. The only nonexperimental constraints are the planarity restraints (0° ± 5°) for those residues with amino groups (*i.e.*, G, C and A) which keeps these protons from flipping during the calculation. No other non-experimental constraints were added to introduce a bias towards idealized A-form RNA helices or perfect base-pair planarity.

6.1.4. Complex restraints

The distances between the L30 protein and RNA are derived from intermolecular NOEs observed from 2D and 3D experiments. Table 6.1 lists the observed NOEs between protein and RNA, which are converted into distance restraints for final structure calculation. Possible four hydrogen bonds between two protein side chains and two RNA bases are included only in the very last stage of the calculations.

6.2. Molecular Modeling

6.2.1. Theory

With the obtained experimental distance and dihedral restraints in hand, 3D structure calculations can be performed using the X-PLOR program (Brünger, 1992) incorporating the

Protein	RNA	NOE intensity
Leu25 (H_N , α , β , γ , δ)	G56 (H1', 2', 3', H8)	very weak - medium
Gly26 (H_N , α)	G56 (H1', H8)	weak, medium
Ser26 (H _N)	G11 (H1)	very weak
Tyr27 (H _N)	G56 (H8)	very weak
Tyr27 (H_N , α , β , δ , ϵ)	A57 (H4', 5',")	very weak - medium
Tyr27 (H_N , α , β , δ , ϵ)	G58 (H1', 2', H8)	very weak - weak
Lys28 (H _N)	A57 (H4')	very weak
Lys28 (H_N , α , β , γ , δ , ϵ)	G58 (H1', 2', H8)	very weak - weak
Ser29 (H_N , β)	G11 (H1)	very weak
Ser29 (H _N , β)	G58 (H4')	very weak
Thr48 (H_N , α)	A57 (H2)	very weak
Pro49 (α , β , γ)	A57 (H2)	very weak - medium
Arg52 (γ, δ, ε)	A57 (H1', H8)	very weak - medium
Arg52 (γ, δ, ε)	G58 (H2', H8)	very weak - medium
Phe85 (β, δ, ε, ζ)	A55 (H2)	very weak - medium
Phe85 (β, δ, ε, ζ)	G56 (H2', 3', H1, H8)	very weak - medium
Val87 (H_N , α , β , γ)	G56 (H8)	very weak
Gly88 (H _N , α)	G56 (H8)	very weak

Table 6.1: L30 protein-RNA NOEs. For simplicity, NOEs are group together by the order of protein residues (the same data as in Table 5.3 which was sorted by RNA order). For a more detailed list, see **Appendix C** for the entire NMR restraint set for molecular modeling

restrained molecular dynamics (rMD) method outlined in Figure 6.1.1. The protocol in rMD involves solving Newton's equation of motion subject to a simplified target energy function comprising terms for the experimental restraints (E_{exp}) , covalent geometry $(E_{covalent})$, and non-bonded contacts $(E_{non-bonded})$, which can be expressed in following potential energy terms:

$$E_{total} = E_{covalent} + E_{non-bonded} + E_{exp}$$
(6.3)

where

$$E_{covalent} = E_{bond} + E_{angle} + E_{dihedral} + E_{improper}$$
(6.4)

$$E_{non-bonded} = E_{van \ der \ Waals} + E_{electrostatic} + E_{hydrogen \ bond} \tag{6.5}$$

and

$$E_{exp} = E_{NOE} + E_{cdih} \tag{6.6}$$

The covalent energy function includes bond (E_{bond}) , angle (E_{angle}) , dihedral $(E_{dihedral})$, and improper $(E_{improper})$, which is added to keep rings planar and to maintain the chirality of chiral centers) energy terms. The non-bonded energy function includes van der Waals $(E_{van der Waals})$, electrostatic $(E_{electrostatic})$ and hydrogen bond $(E_{hydrogen bond})$ terms. The initial velocities are assigned from a Maxwellian distribution corresponding to the desired temperature, commonly maintained using a temperature bath. Newton's equations of motion link the force acting on a particle to its acceleration. These can be solved by numerical integration over very small time steps to give both the velocity of the atom after the time step and the displacement of the atom during the time step. The time steps must be smaller than the time scales of the highest frequency motion in the system. Higher mass (e.g., 100 amu) is assigned to hydrogen atoms in order to keep them with relatively low velocities. In determining structures from NMR data, experimentally determined distance and dihedral angle constraints need to be satisfied, which is achieved by adding more terms to the non-bonded potential. One means of applying the distance constraints is to use a square well potential of the forms:

Figure 6.1.1: A representative scheme of NMR structure determination based on simulated annealing in X-PLOR (Brünger, 1992).

$$E_{NOE} = \begin{cases} k_{\text{NOE}} (d_{ij} - u_{ij})^2, \text{ if } d_{ij} > u_{ij} \\ k_{\text{NOE}} (l_{ij} - d_{ij})^2, \text{ if } d_{ij} < l_{ij} \\ 0 \text{ otherwise} \end{cases}$$
(6.7)

Similarly, dihedral angle constraints can be incorporated using a square well potential of the form

$$E_{cdih} = \begin{cases} k_{tor} (\phi_{ij} - \phi_{ij})^2, \text{ if } \phi_{ij} > \phi_{ij} \\ k_{tor} (\phi_{ij} - \phi_{ij})^2, \text{ if } \phi_{ij} < \phi_{ij} \\ 0 \text{ otherwise} \end{cases}$$
(6.8)

In order to generate structures carrying global minimal energy, a simulated annealing approach is used in the rMD. The underlying principle is to achieve global minimal energy by raising the temperature of the system and then slowly cooling it down. During the process, false local minima and large potential energy barriers along the path should be overcome, and consistency with the experimental restraints can be met by sampling the conformational space efficiently and comprehensively. The iterative cycle comes to an end when all of the experimental data have been interpreted without sacrificing covalent geometry and nonbonded contacts.

Based upon the above rMD theory, the structure calculation of the L30 protein-RNA complex structure was carried out with simulated annealing by generating initial structure from random coordinates and then further refining with the experimental restraints. Generally, there are two approaches to generate a complex structure, either through generating the complex as a whole, or through docking of the individually refined components. Directly generating the complex structure from random coordinates was not an ideal choice for the L30 complex. Since the total number of distance restraints used to generate the L30 protein-RNA complex structure exceeds 3,000, it requires large amounts of CPU time and prolongs each calculation step. In addition, the number of long-range distance restraints for the protein is significantly more than the RNA, and directly generating the complex structure gives very low structural convergence

(data not shown). The alternative, generating the individual components (namely the protein and the RNA) independently and then forming the complex through docking, gave much better results. More specifically, ensembles of the protein and the RNA structures were first generated independently using only intramolecular restraints. Then, the refined protein and RNA structures were docked under the influence of intermolecular distance restraints to give the complex structure; further refinement of the docked complex structure yielded the final structure of the complex.

6.2.2. Generating protein structures

6.2.2.1. Modeling protocols

The topology file for the L30 protein was prepared from X-PLOR using the parallhdg.pro parameter set using linear peptide coordinates generated from the Biopolymer Module in Insight II (MSI, Inc.). The 3D protein structures were generated on the basis of three protocols in the X-PLOR manual: (1) random.inp (Nilges et al., 1988), (2) dgsa.inp (Nilges et al., 1988) and (3) refine.inp (Nilges et al., 1991). Slight modifications were made to adapt the calculation to the L30 protein, and the respective names were changed to randomhm.inp, dgsahm.inp and refinehm.inp (See Appendix B for details). The starting point for the structure generation was based on restraints with no stereospecific assignment and backbone torsion angle restraints. The first protocol (randomhm.inp) uses simulated annealing starting from a completely random array of atoms, with the choice of R^{-6} for distance averaging, and a soft-square potential as a restraining function for distance and torsion angle. The initial phase involved ramping up covalent geometry and distance restraints over total duration of 380 ps in dynamic calculations. There were 95 cycles of dynamic (100 integration time steps of 40 fs each) performed at 1000 K. While the force constants for van der Waals and improper energy terms were held constant at 0.1 kcal mol⁻¹ Å⁻⁴, and 0 kcal mol⁻¹ rad⁻², respectively, bond, angle, and NOE terms were slowly increased at each cycle by a factor of 1.25. These constants were increased from 0.5 to 10.0 kcal $mol^{-1} Å^{-2}$, 0.25 to 5 kcal mol⁻¹ rad⁻², and 0.0005 to 0.01 kcal mol⁻¹ Å⁻², respectively. In the second

phase, three dynamic calculation (500 integration time steps of 3 fs each) were performed to increase the force constants for bond, angle, van der Waals terms from 20 to 100 kcal mol⁻¹ Å⁻², 2.5 to 50 kcal mol⁻¹ rad⁻², and 0.002 to 0.01 kcal mol⁻¹ rad⁻⁴, while holding the NOE force constants at 5 kcal mol⁻¹ Å⁻². The second protocol (dgsahm.inp) was then used to regularize the initial structures by template fitting, which tests for the correct enantiomer and generates the missing atoms and then regularizes the coordinates. These structures were then refined through simulated annealing the third protocol (refinehm.inp). The structures were slowly cooled from 1000-100 K over a total duration of 10 ps. These were 18 cycles of cooling, each comprising 0.556 ps (111 integration time steps of 5 fs each), with a reduction in temperature of 20 K per cycle. During this period the force constants for bond, angle, improper, NOE and dihedral angle terms were held constant at 1000 kcal mol⁻¹ Å⁻², 500 kcal mol⁻¹ rad⁻², 500 kcal mol⁻¹

About 50% of the initial structures generated after these three steps had a significant small number of NOE and dihedral violations, and relatively lower total energy. Pairwise comparison of these structures indicates that these structures have a relatively low root-mean-square deviation (r.m.s.d.) for all heavy atoms (~3.0 Å), suggesting good convergence of the calculation. The other 50% of structures not only had higher total energy, in particular a much higher number of NOE violations, but also showed a significantly large r.m.s.d. compared to the converged structures. The nonconverging structures were discard without further analysis.

6.2.2.2. Iterative refinements

Next, the initial generated structures were subjected to iterative refinement using the "refinehm.inp" protocol. Despite the first three steps that generated structures with relatively good initial convergence, the initial structures carried a large number of NOE violations (over 100). This can be examined from the distribution of violations in the ensemble of calculated

structures. The apparent violations could be resulted from three sources. First, systematic NOE violation might occur because of possible incorrect assignments and the existing of ambiguous assignments from degeneracy in the NOESY experiments. The accuracy of the assignments with interproton distances greater than 6 Å was double-checked with the NOESY spectra. Since the molecular modeling requires that restraints involving ambiguous NOEs must be consistent with the current structure, unreasonable assignments with interproton distances greater than 6 Å were eliminated. Second, since the 3D heteronuclear-edited NOESY experiments were recorded with mixing times of 100 to 150 ms, it was apparent that the classification of NOEs into strong, medium, weak and very weak categories could be influenced by spin-diffusion effects. Consequently, NOEs in the restraint list were evaluated for spin-diffusion effects on the basis of observed distances and spatial relationships in the convergent ensemble of structures. If the resulting distance was significantly longer than that predicted from the observed NOE intensity, and a spin diffusion pathway was highly probable on the basis of the spatial geometry of the relevant protons, the corresponding upper bound distance limit for the NOE was either adjusted upward to the next class, or removed from the restraint list if the NOE was originally classified as very weak. The procedure was employed specifically for three types of situations: (1) where two methylene (or methyl) protons exhibit an NOE to the same spin, but one of the two protons clearly points away from this spin at a distance greater than 6 Å; (2) where the complete ring system of a Phe (or Tyr) shows NOEs to a particular spin, but it is clear from the spatial configuration that only one aromatic proton is close in space to this spin; (3) as the approximate interproton distance restraints are classified into four ranges, the resulting distinct cutoffs can result in systematic errors for interproton distances whose values lie at the boundary of two distance ranges. Thus, if a particular interproton distance restraint was systematically violated in all of the structures, it was reclassified into the next class.

With each round of iterative refinement, more experimental restraints were corrected as the quality of the structure improved. More importantly, the current ensemble of refined structures also aided in the identification of misidentified NOEs that arose as a result of the very limited ¹H chemical shift dispersion, therefore more restraints were added into the calculation. Simulated annealing calculations were then repeated after each update of the restraint list, and a new set of structures was generated for further analysis with NMR data.

6.2.2.3. Stereospecific assignments

The refined structures also assisted in the stereospecific assignments, in particular, many methyl groups with prochiral centers. At the end of the iterative refinement cycle, stereospecific assignments were obtained for 41 residues with β -methylene protons, and for 12 Leu and 8 Val residues with prochiral (CH₃)₂C groups. Residues without stereospecific assignments correspond to either surface residues with disordered side chains, or residues with degenerate β -methylene protons, or residues with chemical shifts masked by overlaps in NMR spectra. The validity of stereospecific assignments was subsequently confirmed by being properly accounted for in further refined structures.

For well-defined Phe and Tyr residues, the NOE distance restraints to the H_{δ} and H_{ϵ} protons can often be assigned to only one side of the ring, thereby discriminating between the $H_{\delta 1}$ and $H_{\delta 2}$ or the $H_{\epsilon 1}$ and $H_{\epsilon 2}$ protons (Powers *et al.*, 1993). In the L30 protein, all six Tyr and two Phe residues have well defined conformations, making it possible to assign NOE restraints to only one of the pair of H_{δ} and H_{ϵ} protons when it was clear that the NOE could only be from one face.

The incorporation of the torsion angle restraints mainly assists in the convergence rate of the calculation, particularly since the torsion angle restraint boundaries were always much larger than the resulting standard deviation for the corresponding torsion angles in the calculated ensemble of structures.

After properly correcting all mischaracterized distance restraints and implementing the stereospecific assignment of many prochiral centers and aromatic residues, the simulated annealing in restraint molecular dynamic calculation procedure was repeated once more. In the end, starting with generating initial structures from random coordinates and repeating with three

rounds of iterative refinement, about 90% of the calculated structures converged with no significant violation energies that is larger than 400 kcal mol⁻¹.

6.2.3. Generating RNA structures

6.2.3.1. Modeling protocols

Unlike the protein structures, the RNA structures were generated from a slightly different approach involving modifying the "random.inp" and "refine gentle.inp" protocols (see Appendix B for details) in the X-PLOR manual. Instead of starting from random coordinates, an A-form RNA with double stranded upper and lower stems was used to start the calculation. R⁻⁶ was chosen for distance averaging, and a soft-square potential for the restraining function. The first phase was the "mainit.inp" protocol involving ramping up covalent geometry and distance restraints over a total duration of 63 ps in dynamic calculation. There were 21 cycles of dynamic (1000 integration time steps of 3 fs each) performed at 1000 K. While the force constants for van der Waals and improper energy terms were held constant at 0.1 kcal mol⁻¹ Å⁻⁴ and 0 kcal mol⁻¹ rad⁻², respectively, bond, angle, and NOE terms were slowly increased in each cycle by a factor of 1.25. These constants were increased from 0.5 to 10.0 kcal mol⁻¹ Å⁻², 0.25 to 5 kcal mol⁻¹ rad⁻², and 0.5 to 50 kcal mol⁻¹ Å⁻², respectively. In the second phase, the force constant for the van der Waals term was ramped up from 0.01 kcal mol⁻¹ rad⁻⁴ to its full value (1 kcal mol⁻¹ rad⁻⁴) over 36 ps dynamic while holding the bond, angle and NOE force constants at their current value. There were 12 cycles of dynamics with 1000 integration time steps of 3 fs each. In the next step using the "rnarefine.inp" protocol, the structures were refined through molecular dynamic calculation and conjugate gradient minimization. Throughout the refinement, the force constants for bond, angle, improper, NOEs, dihedral angles and van der Waals were held constant at 1000 kcal mol⁻¹ Å⁻², 500 kcal mol⁻¹ rad⁻², 500 kcal mol⁻¹ rad⁻², 50 kcal mol⁻¹ A⁻², 200 kcal mol⁻¹ rad⁻², and 1 kcal mol⁻¹ rad⁻⁴, respectively. Two hundred cycles of Powell minimization were performed preceding the three dynamics cycles of 10 ps (10000 integration time steps of 1 fs each) at 1000 K, 600 K

and 400 K. Finally, 200 cycles of Powell minimization were performed with the values of the various force constants set to their final values attained at the end of the cooling phase.

6.2.3.2. Iterative refinements

Similar to the protein structure calculations, iterative refinements were also performed in order to correct errors associated with misassignment of NOEs and incorrect torsion angle restraints. In the end, structures with no NOE violations larger than 0.3 Å were subjected to pairwise comparison. The convergence in the RNA structures was significantly smaller (only about 50%) than that of the protein, even though many of the RNA structures have no apparent NOE violation, but show a significantly larger r.m.s.d. (> 2.5 Å for all heavy atoms). The main reason for the apparent discrepancy relies on the lack of long-range NOEs to define the orientation of the two helical stems separated by the internal loop. Therefore, the selection of the converged structures was based on the best superimposed internal loops rather than the overall r.m.s.d. of the whole RNA ((< 1.8 Å for all heavy atoms).

6.2.4. Docking of complex

6.2.4.1. Docking protocols

After the structures of both protein and RNA had been calculated and individually refined under intramolecular distance constraints, they were docked by simulated annealing. The coordinates of the protein were first rotated up to 360° and placed 100 Å away from those of the RNA in a random orientation. The protein and the RNA were then brought together slowly through the intermolecular NOEs. Briefly, while holding the intramolecular NOE force constant at 50 kcal mol⁻¹ A^{-2} , the intermolecular NOE force constant was slowly ramped up from 0.001 to 50 kcal mol⁻¹ A^{-2} over a total duration of 156 ps. There were 26 cycles of NOE ramping, each comprising 6 ps (2000 integration time steps of 3 fs each), with the NOE force constant increased at each cycle by a factor of 1.5. In all cases, convergence to the same ensemble of structures was achieved (~85%). The complex structures were further refined through constant temperature

simulated annealing and slow cooling to obtain the final structures using the refinement procedure described for the RNA calculations. The target function that was minimized during simulated annealing comprises only quadratic potentials for the covalent geometry, a square-well quadratic potential for the experimental distance and torsion angle restraints together with a quartic van der Waals repulsion term. No classical empirical energy terms for electrostatic or hydrogen-bonding interactions were present in the target function, which prevents the false contacts influenced by these interactions.

Initially, it was thought that there might be a problem associated with using only a repulsion term for nonbonded contacts. In general, if the nonbonded contacts are only represented by a simple quartic van der Waals repulsion term, the only attractive forces present in the target function are those associated with the interproton distance restraints. Hence, the lower the number of interproton distance restraints, the smaller the contribution of the attractive forces to the target function, which will tend to result in a systematic expansion of the calculated structures. This was primarily a concern for the RNA structures that were calculated with less long-range distance restraints. An alternative that includes Leonard-Jones potential containing both attractive and repulsion terms was used in the refinement; no apparent r.m.s.d. changes between the RNA structures generated using Leonard-Jones potential function and those generated from a repulsion function were observed.

6.2.4.2. Hydrogen bonds

In the very final stage of the calculations, intermolecular hydrogen bonding restraints between the protein side chains of Asn47 and Arg52 to RNA bases were tested. The side chains of these residues are buried at the protein-RNA interface and interact with the RNA. Since no direct intermolecular NOEs involving guanidino protons of Arg52 or the amide side chain of Asn48 were observed, the exact location of the donor and acceptor groups could not be determined from NMR. Evidence that the functional groups of the interacting arginines are either buried at the interface or involved in some sort of electrostatic interaction comes from the observation of the Hɛ and guanidino protons in the complex. Hɛ-Nɛ cross peaks for all the Args

were observed in the ¹H-¹⁵N correlation spectrum of the complex, with ¹H and ¹⁵N shifts in the range of 6.8-7.2 and 82-83 ppm, respectively. Three patches of four broad cross peaks arising from the hydrogen bonded guanidino groups of Args were also observed in the region from 6.5-7.9 ppm in the ¹H dimension and 61-73 ppm in the ¹⁵N dimension. In addition, weak NOEs between the HE and guanidino protons were observed in the 3D ¹⁵N-separated NOE spectrum. In contrast to the bound form, in the free protein, Arg52 has a single NE-HE cross peak (with ¹H and ¹⁵N chemical shifts of 7.43 and 84.6 ppm, respectively, similar to those of a free Arg) and no guanidino cross peaks were observed in the ¹H-¹⁵N correlation spectrum. Line broadening of the guanidino cross peaks is mainly due to rotation about the N ϵ -C ζ partial double bond, as well as flipping about the CZ-Nŋ bonds (Henry & Sykes, 1995). A similar chemical exchange mechanism involving rotation about a C-N bond is responsible for broadening of the proton resonances of the 6-NH₂ and 2-NH₂ groups of adenine and guanine, respectively, both of which are involved in Watson-Crick base pairing. Similar to the Arg52 guanidino group, the $N_{\delta 2}$ -H_{$\delta 2$}' and $N_{\delta 2}$ -H $_{\delta 2}$ " cross peaks for Asn48 are also broad, impeding the observation of any intermolecular NOEs from $H_{\delta 2}$ ' and $H_{\delta 2}$ " protons of Asn48 in the ¹⁵N-separated NOE spectrum. Line broadening of Asn side-chain amides involved in hydrogen bonding with RNA bases has been previously observed in the Rev-RRE complex (Battiste et al., 1996).

The calculation strategy employed for the interfacial protein-base hydrogen bonding restraints involved two types of distance restraints: (i) 'repulsive' distance restraints with a lower bound of 4 Å (and an unrestrained upperbound); and (ii) ambiguous distance restraints (with a range of 2.4 -3.3 Å), represented by the $(\sum r^{-6})^{-1/6}$ sum, between donor groups of these side chains and all possible acceptor groups of the RNA bases. It was known that the introduction of the interfacial hydrogen bonding restraints had no effect on the overall structure of the complex, but this improved local convergence and precision for the N ϵ and guanidino groups of Arg52 and the carboxyamide of Asn48. Thus, excluding the latter atoms, the precision of the coordinates (protein backbone and side chains and the RNA) remains unchanged. The r.m.s.d. of the mean coordinate positions obtained with and without interfacial hydrogen bonding restraints is only 0.2 Å, which is well within the errors of the coordinates.

6.3. Structure Statistics

6.3.1. Overall statistics

The final ensemble of structures of the L30 protein-RNA complex was determined on the basis of 3358 NMR experimental restraints summarized in Table 6.2 (see Appendix C for details), in conjunction with the inter-molecular hydrogen bonding restraints discussed above. These comprise distance restraints of 2241 protein and 804 RNA intramolecular, 90 intermolecular (protein-RNA), and torsion angle restraints of 127 in protein and 106 in RNA. The protein interproton distance restraints are subdivided as follows: 902 intraresidue, 538 interresidue sequential (|i-j| = 1), 380 interresidue short-range ($| i-j | \le 4$), 363 interresidue long-range (| i-j | > 4) NOE derived restraints, 58 backbone hydrogen bonds. The RNA distance restraints include 428 intraresidue, 224 interresidue sequential (| i-j | = 1), 78 interresidue long-range (| i-j | > 1) NOE derived restraints and 74 base pair hydrogen bonds. The torsion angles comprise 75 backbone ϕ and 52 χ_1 for protein and 33 glycosidic, 44 sugar pucker and 29 amino group in the RNA.

The distance restraint distribution of the protein and RNA are further summarized the charts shown in Figure 6.3.1, with panel **a** for the protein and panel **b** for the RNA. As can be seen, the average mount of intra-molecular distance restraints is 22 per residue in the protein (providing that each restraint is only counted once for paired protons), and 24 per residue in the RNA. Although the average intra-molecular distance restraints per residue are similar, the amount of long range distance restraints (|i-j| > 4 for protein and (|i-j| > 1 for RNA) that help to define the tertiary structure is significant more in the protein than in the RNA.

A summary of structural statistics based on the ensemble of 31 final simulated annealing structures of the complex is given in Table 6.3. As is evident from the data, there are no interproton distances and torsion angle violations greater than 0.5 Å and 3°, respectively which suggests good convergence and precision of the calculated structures. Two views of a

Types of restraints	Sum of restraints	Average restraints per
		residue
Total restraints	3358	24.5
I otal distance restraints used for the complex	3125	22.8
Protein distance restraints	2241	21.5
intraresidue NOEs	902	8.7
interresidue NOEs	1281	12.3
sequential NOEs $(i-j = 1)$	538	5.2
strong	37	0.4
medium	180	1.7
weak	164	1.6
very weak	157	1.5
short range NOEs $(1 < i-j \le 4)$	380	3.7
strong	5	0.0
medium	86	0.8
weak	119	1.1
very weak	170	1.6
long range NOEs ($ i-j > 4$)	363	3.5
strong	10	0.1
medium	85	0.8
weak	142	1.4
very weak	126	1.2
hydrogen bond restraints	58	0.6
RNA distance restraints	804	24.4
intraresidue NOEs	428	13.0
interresidue NOEs	376	11.4
sequential NOEs ($ i-i = 1$)	224	6.8
strong	19	0.6
medium	52	1.6
weak	98	3.0
very weak	55	1.7
long-range NOEs ($ i-j > 1$)	78	2.4
strong	9	0.3
medium	26	0.8
weak	34	1.0
very weak	9	0.3
hydrogen bond restraints	74	2.2
Protein-RNA inter-molecule NOE restraints	80	0.6
strong	0	0.0
medium	11	0.1
weak	28	0.2
verv weak	41	0.3
Dihedral angle constraints	233	1.7
Protein backhone d	75	0.7
Protein backhone v.	52	0.5
RNA alveosidie x	33	1.0
DNA sugar pucker & and y	41	13
RNA amino groups	29	0.9
KINA annio gioups	29	0.9

Table 6.2: Summary of constraints for L30 protein-RNA complex structure calculations.

Figure 6.3.1: The number of NOE distance restraints for each residue in **a**, the L30 protein and **b**, the RNA. Intraresidue restraints are counted only once; interresidue and intermolecular restraints are counted twice, once for each residue involved.

	{SA}	<sa>r</sa>
R.m.s.d from NOE distance restraints $(Å)^2$	0.026 ± 0.003	0.027
R.m.s.d from expt. dihedral angle restraints (deg)	0.684 ± 0.086	0
R.m.s.d from idealized covalent geometry		
Bond (Å)	0.003 ± 0.0002	0.003
angles (deg)	0.534 ± 0.012	0.538
Impropers (deg)	0.631 ± 0.051	0.646
Restraint violations		
number of distance violations > 0.2 Å	10.9 ± 4.1	10
largest distance violation (Å)	0.4	0.29
number of dihedral violation $> 2^{\circ}$	1.3	2
largest dihedral violation (deg)	3.1	4.9
Final energies (kcal mol ⁻¹)	555.2	604.9
bond	27.5	29.2
angle	222.8	224.8
improper	46.0	48.0
van der Waals	152.2	190.1
distance restraints	106.5	112.6
dihedral angles	0.2	0

Table 6.3: Summary of structural statistics of the L30 protein-RNA complex based on simulated annealing (SA) calculations using the X-PLOR program.

The notation of the NMR structures is as follows: {SA} refers to the final ensemble of 31 accepted structures. <SA> refers to the average structure obtained by averaging the coordinates of the individual SA structures best fitted to each other (with respect to all the heavy atoms). <SA>r refers to the restrained minimized average structure. For the ensemble, the average value plus or minus the standard deviation is quoted.

superposition of the 31 final simulated annealing structures of the complex are shown in Figure 6.3.2 and Figure 6.3.3. The overall non-hydrogen atom pairwise rmsd is about 2.65 ± 0.70 Å. This relatively high r.m.s.d. came from two separated regions. Residue 2-8 and 101-105 at the N and C termini, respectively, appear to be disordered in solution since only intraresidue and sequential interresidue NOEs are observed. The intrinsic flexible conformations of these two segments in the protein were independently corroborated by the ¹⁵N backbone dynamic studies, in which the relaxation parameters suggests rapid motions at these two segments (see Chapter 4.2.6). The other source of the high overall r.m.s.d. of the complex structures comes from the orientations of the two RNA helices; this is expected because of the occurrence of RNA bending at the internal loop, and no long-distance restraints could be obtained in the NMR observable. Taking these factors into the account, excluding the two RNA helical region and N- and C-termini of the protein, the precision is 1.39 ± 0.10 Å for all heavy atoms in the core of the complex (residues 9 to 100 in the protein plus residues 11-12, 55-59 in the RNA).

6.3.2. Protein statistics

Within the L30 complex, the precision of the protein is much better than the RNA because an overwhelming larger amount of long-distance restraints were obtained from the NMR data to define the protein structure. As can been seen in Figure 6.3.4, the ensemble of protein backbones in the complex form are significantly organized on the basis of best fitting to protein backbones. The precision of the protein coordinates is 1.07 ± 0.30 Å for all the protein backbone (N, Ca, C, and O atoms) in the complex using pairwise rmsd analysis. Excluding the poorly defined residues 2 to 8 and 101 to 105 at the respective N- and C-termini, the precision of the protein coordinates is 0.60 ± 0.09 Å for the backbone atoms (N, Ca, C, O atoms). The backbone of the core of the protein comprising the elements of regular secondary structure is defined to an even greater degree of precision and accuracy. Among the regular protein secondary elements (*i.e.*, α -helices and β -strands), residues 9 to 18 show the best precision, 0.12 ± 0.03 Å, and residues 75 to 81 show the least precision, 0.26 ± 0.11 Å. The differences in the structural precisions are directly related to the amount of distance restraints used in the structure calculation

(shown in Figure 6.3.1). Not surprisingly, surface side chains, and in particular residues with longer side chains such as lysine and arginine, tend to be partially disordered, especially beyond $C\gamma$ position.

6.3.3. RNA statistics

In contrast to the protein, the precision of the RNA is significantly less, with an overall 2.23 ± 0.53 Å calculated on best superposition of all the RNA heavy atoms (C, O, N and P). As mentioned earlier, this less than ideal precision is directly resulted from the orientation of the two helices, and the ends fraying at the RNA termini. The respective local structures of the two helices are quite good, with 1.37 ± 0.34 Å for the lower stem (residues 5-10 and 60-65), and 0.98 \pm 0.22 Å for the upper stems (residues 13 to 17 and 50 to 54). By only taking into account of the RNA internal loop (residues 11-12 and 55 to 59), the precision is increased significantly, with 1.17 ± 0.27 Å. In particular, an increase in the number of restraints not only reduces the atomic rms spread of the ensemble of simulated annealing structures but also results in a concomitant and significant increase in the accuracy of both the ensemble and means coordinates.

In summary, the distance information derived from NOE measurement and the torsion angle information obtained from the three bond *J*-coupling measurement allowed the molecular modeling to be carried out for the NMR derived the L30 protein-RNA complex structure. 3358 of experimentally derived restraints, including 3125 distance restraints and 233 torsion angle restraints are input into the complex modeling that was out carried out on the basis of simulated annealing in restraint molecular dynamic in the X-PLOR program. The strategy for generating the complex structure involved generating the individual protein and RNA component independently with intra-molecular restraints, and then docking the protein and RNA together under the influence of inter-molecular distance restraints. An iterative refinement approach was used to identify the unassigned, or misarranged restraints. The improved experimental restraints in return facilitate the convergence of the final calculated structures. The final ensemble of

Figure 6.3.2: Stereo view of a best fit superposition of 31 simulated annealing structures of the L30 protein-RNA complex. This view shows the major groove of the internal loop of the RNA. The N- and C-termini of the protein are labeled as well as the 5' and 3' ends of the RNA. Only the non-hydrogen backbone atoms are shown for the protein, and no hydrogens are represented in the RNA.

Figure 6.3.3: Stereo view of a best fit superposition of 31 simulated annealing structures of the L30 protein-RNA complex. This view shows the minor groove (as compared to the major groove in Figure 6.3.2) of the internal loop of the RNA. The N- and C-termini of the protein are labeled as well as the 5' and 3' ends of the RNA. Only the non-hydrogen backbone atoms are shown for the protein, and no hydrogens are represented in the RNA.

Figure 6.3.4: Stereo view of a best fit superposition of 31 simulated annealing structures of the L30 protein in the complex. The N- and C-termini of the protein are labeled as well as Helix 2 and Helix 3. Only the non-hydrogen backbone atoms are shown for the protein.

structures consists of 31 accepted SA structures, which were selected on the basis of minimal total energy. The structural core of the complex, which consists of approximately 90 ordered protein residues and 10 residues within and flanking the internal loop of the RNA, has a root-mean squared (r.m.s.) difference of 1.39 ± 0.10 Å for all heavy atoms of the core residues in complex between the 31 superposition structures. When the entire molecule is considered, including the disordered the N-and the C-termini of the protein, and the less defined orientations of the two RNA helices gave rise to the major structural r.m.s deviation (2.65 ± 0.70 Å) for all heavy atoms. These regions are locally order, but globally disordered because of the lack of long range restraints.

VII. Structure of the L30 Complex

CHAPTER 7. Structure of the L30 Complex

7.1. Structure Description of the L30 Complex

The unambiguous identification of various intra- and inter-molecular NOEs and accurate measurement of many coupling constants yielded an unusually complete set of experimental restraints for structural modeling in X-PLOR, leading to an ensemble of well-defined L30 protein-RNA complex structures with high-resolution. The overall view of the complex from the superimposed 31 structure presented in Figure 6.3.2 and 6.3.3 shows the intimate contacts between the protein and RNA. Detailed analyses of this ensemble of structures and the average structure of the complex allowed the identification of the major structural elements present in both the protein and the RNA. Careful examination of the interfaces between the protein and RNA in the complex should facilitate the identification of structural and functional elements that are important for the protein-RNA recognition. The protein and the RNA structures are described in detail below.

7.1.1. Protein structure

7.1.1.1. Secondary structural elements observed in NMR analysis

The patterns of sequential and short-range NOE cross peaks, the ${}^{3}J_{\text{HNH}\alpha}$ coupling constants, and the slowly exchanging amide protons for the L30 protein, which all give indications of the secondary structure of the protein, were summarized in Figure 4.2.8 on page 92. Four regions of α -helical structure are clear from the patterns of short range NOEs (*i* to *i*+3, *i* to *i*+4) and are further supported by relatively strong sequential amide-proton to amide-proton cross peaks and small ${}^{3}J_{\text{HNH}\alpha}$ coupling constants. Four regions of β -strand are also obvious from the pattern of strong sequential H_{N} - H_{α} (*i* to *i*-1), weak or absent sequential amide to amide proton cross peaks and large ${}^{3}J_{\text{HNH}\alpha}$ coupling constants. The hydrogen-bonding patterns were also

VII. Structure of the L30 Complex

obvious for all helices and strands, judging from the slowly exchanging amide resonances. In the helical regions, the D_2O exchange rates for amide protons of the first three to four residues are much faster, comparing to those involving hydrogen bonds within helices. In the β -sheet region, D_2O exchange rates of the amide protons at the edge of Strand A and strand C showed an alternate pattern: those exposed to the solvent have a much faster solvent exchange rate than the alternate amides involving hydrogen bonds with the inner strands. On the contrary, the amide protons of Strand B and Strand D have homogeneous slow D_2O exchange rates, resulting from the formation of hydrogen bonds at both sides of each strand.

7.1.1.2. Overall description of the protein tertiary structure from molecular modeling

The experimentally observed secondary structure elements in the L30 protein can be clearly seen in the final ensemble of tertiary structures shown in stereoview in Figure 7.1.1. The L30 protein 3D structure can be best characterized as an α - β sandwich, in which the fourstranded β -sheet is sandwiched between two layers of α -helices. The four strands, indicated in alphabetical order from N- to C-terminal, comprise the following residue numbers: Strand A (Lys22 - Gly26); Strand B (Leu41 - Ala45); Strand C (Thr65 - Phe70) and Strand D (Val89 -Leu93). The four helices, indicated in numerical order, comprise the following residue numbers: Helix 1: Glu8 - Ile18; Helix 2: Thr30 - Gly37; Helix 4: Leu51 - Leu62; and Helix 4: Glu76 -Gly82. A schematic representation is shown in Figure 7.1.2. A unique characteristic of the protein structure is the arrangement of the four β -strands. Starting with Strand A at one edge of the β -sheet, three strands (*i.e.*, Strands A, D and B) run anti-parallel to each other. But Strand C, at the far edge of the β -sheet in Figure 7.1.2, reverses the antiparallel order by running parallel to Strand B. A network of hydrogen bonds connects the backbones of the adjacent β-strands into a β -sheet platform, allowing two sets of parallel α -helices to pack on each side of the β -sheet; all β -strands are bridged through α -helices. In this arrangement of secondary structures, Helix 2 and Helix 3 run almost parallel to each other and are packed on one side of the β -sheet platform, while Helix 1 and Helix 3 are on the other side of the β -sheet. In addition to these regular structures (namely α -helices and β -strands), there are six loops connecting these elements. The first loop, adjoining Helix 1 and Strand A, is established by a four-residue turn (residues 19-22).

VII. Structure of the L30 Complex

The second loop (27-29) turns Strand A into Helix 2. Loop 3 (37-40) joints Helix 2 and Strand B. The forth loop (45-50) connects Strand B and Helix 3, which is connected to Strand C by a tight-turn (63-65). The fifth loop (71-75) bridges Strand C and Helix 4, and the sixth loop (83-88) connects Helix 4 and Strand D. The backbone is completed with a coil (94-105) at C-terminus.

7.1.1.3. Hydrophobic core of the protein

As can be seen in the ensemble of the superimposed structures, the protein is stabilized by various interactions. Besides a network of hydrogen bonds that connects the backbones of each helix and the adjacent β-strands, extensive hydrophobic residues play critical roles in stabilizing the protein core. First, the most direct observations lie within the β -sheet, the core structural element of the protein. The slight right-handedness of the curved β -sheet provides a hydrophobic platform for the packing of the α -helices on both sides. There are a number of phylogenetically conserved hydrophobic and aromatic residues on both sides of the β -sheet. These residues not only stabilize interactions between strands, but also act as contacting points for orienting the helices on both sides of the β -sheet (Figure 7.1.3). More specifically, in the upper layer of the protein (facing towards Helix 2 and Helix 3), hydrophobic contacts are seen at residues Val67 and Tyr69 of Strand C, Ile42 and Ile44 of Strand B, and Val 89 of Strand D. These hydrophobic and aromatic residues on the top layer of the β -sheet make further contacts to residues Val31 and Leu34 from Helix 2, and Leu56 and Tyr59 from Helix 3. These interactions not only help to define the orientations of Helix 2 and Helix 3 with respect to the β -sheet, they also define the orientations between these two helices. Furthermore, there are a few clusters of hydrophobic residues on the bottom layer of the β -sheet (facing towards Helix 1 and Helix 4). These residues, namely Tyr68 and Phe70 of Strand C, Ile43 of Strand B, and Val90 and Ile92 from Strand D, form the lower core of the protein with residues Ile10, Leu14 and Ile18 on Helix 1, and Leu77 and Val81 on Helix 4. Among them, Ile43 from Strand B is the key hydrophobic residue in holding three of the β -strands (B, C and D) and two of the α -helices (1 and 4) close together. The critical role of Ile43 is supported by an *in vivo* experiment showing a slow growth

Figure 7.1.1: Two stereo views of a best fit superposition of 19 simulated annealing structures of the L30 protein in the bound form. The N- and C-termini of the protein are labeled, and only the non-hydrogen backbone atoms are shown. In green are the N-terminus (Helix 1), Helix 4 and the C-terminus. The four-stranded β -sheet is shown in blue, and Helix 2 and Helix 3 are depicted in red. The top view shows the protein with Helix 2 and Helix 3 closest to the viewer. The bottom view shows the RNA binding cleft with Strand A closest to the viewer.

Figure 7.1.2: MOLSCRIPT (Kraulis, 1991) ribbon representation of the L30 protein in the bound form. The N- and C-termini of the protein are labeled, as well as the helix and strand secondary elements. The RNA binding loops are highlighted in green.

Figure 7.1.3: Stereo view highlighting the hydrophobic core of the L30 protein. The side chains of these residues are shown in red, and the protein backbone is traced in grey.

rate and a crippled of 60S subunit of *S. cerevisiae* upon deletion of Ile43 (Vilardell & Warner, 1997).

Besides those in the β -sheet, conserved hydrophobic residues are also seen within the four helices, which are particularly important in positioning the helices. Among the four helices, residues 10 to 18 from Helix 1 show the best-superimposed backbone and sidechain r.m.s.d. among the ensemble of SA structures. The ordered arrangement of Helix 1 is accomplished by extensive hydrophobic contacts from Helix 1 to one edge (strand C) of the β -sheet to the other one (Strand A). More specifically, residue 110 of Helix 1 interacts with Tyr68 and Phe70 of Strand C define the starting position of this helix. The hydrophobic interactions are further propagated through residue Leu14, which makes contacts with Ile43 of Strand B and Ile92 of Strand D, and terminates with residue Ile18, which interacts with Ile92 in Strand D and Tyr23 in Strand A. The well-defined orientation of Helix 1 is also fortified by the peripheral hydrophobic interactions between Helix 1 and Helix 4, and between Helix 1 and the C-terminus.

The orientations of Helix 2 and Helix 3 are defined through the hydrophobic contacts to the β -sheet, in conjunction with interactions between the two helices. First, the position of Helix 3 with respect to the β -sheet is defined through hydrophobic contacts between Ala60 and Leu56 on Helix 3 to hydrophobic residues of Strand C and Strand B, and fortified by the tight turn connecting Helix 3 and Strand C. As a result, Helix 3 has a very well defined structure, particularly at the C-terminus. In contrast, Helix 2 has only a few interactions with the β -sheet, with only residue Leu34 contacting the β -sheet. The position of Helix 2 is held mainly through helical amphipathic contacts to Helix 3. These interactions can be seen between residues Tyr27, Val31 and Arg35 on Helix 2, and residues Arg52, Leu56 and Tyr59 on Helix 3. Conserved hydrophobic residues Tyr27 and Val31 from Helix 2 intercalate into the grooves formed between Arg52 and Leu56, Leu56 and Tyr59 from Helix 3. These interactions help to orient the two helices with respect to each other.

Among the four helices, Helix 4, though locally well define as a helix, has the least ordered orientation in the NMR derived ensemble of structures. This is most likely the direct

result of a lack of sufficient long-range distance restraints in the structure calculation, and not because of the dynamical disorder. A few long range contacts were observed in the NMR studies: the side chain of Leu77 on Helix 4 makes hydrophobic contacts to Phe70 of Strand C, Ile43 of Strand B and Val90 of Strand D, and the side chain of Val 81 on Helix 4 also contacts parts of Helix 1. But in general, these long-range contacts are not sufficient to define a highresolution structure in the NMR-based calculations. The lack of NOEs rather than an intrinsic flexible conformation is also supported by the backbone dynamics of the protein in the complex form, which show comparable relaxation T_1 , T_2 and heteronuclear NOE parameters to the other ordered segments of the protein. Therefore, the apparent less-ordered orientation of Helix 4 in the ensemble of structures is expected in the structural calculations.

7.1.1.4. Salt bridges in the protein

While the interior of the L30 protein is mostly hydrophobic, the exterior is more hydrophilic and comprises a reasonable percentage of charged residues. As can be seen in the primary sequence alignment of L30 proteins from several species (see Figure 1.2.1), there are several strictly conserved charged residues within the protein sequences. Detailed analyses of the ensemble of SA structures show that the side chains of these residues (particularly Lys22, Arg35, Lys53, Glu55, Glu57 and Glu94), though partially disorder at the terminal groups since no additional restraints were included for the structure refinement, are reasonably ordered. As a result, the side chains of these residues relative to the remainder of the protein are sufficiently positioned, allowing identification of potential salt bridges present in the protein. Several of these side chains residues were identified to be in close proximity in the ensemble of SA structures, which suggests the presence of salt bridges.

Detail analysis of the structure suggests the presence of the following salt bridges, either within a helix, between two helices, or at a helical turn, thereby further contributing to the protein stability. Among them, an interhelical salt bridge is formed between conserved residues Lys53 and Glu57 in Helix 3, which contributes the helix stability. The remaining salt bridges are found in regions involving the protein packing. Residue Arg35 from Helix 2 and E55 from Helix

3 formed an interhelical salt bridge at the periphery of the two parallel-packed helices, which enhances the hydrophobic packing between Val31 of Helix 2 and Tyr59 of Helix 3. Another salt bridge exists between Lys22 of Strand A and Glu94 of Strand D, which fortify the interactions between Strand A and D, as well as strengthen the turns connecting Helix 1 and Strand A.

7.1.1.5. Functional roles of the glycines

Given the positions of the secondary structure elements, most loops are rather short, and many of them carry glycines. There are a total of nine glycine residues in the yeast L30 protein, seven of which are highly conserved throughout a number of species: Gly21, Gly26, Gly37, Gly71, Gly78, Gly82 and Gly96. Except for Gly78, all the other conserved glycines are located within the loops connecting the α -helices and β -strands. Glycine has been observed to carry the most favorable helix-terminating propensity among all amino acids, therefore the presence of these conserved glycines within the turns are important for making the transitions between regular secondary structures. The only two turns in which glycine is absent are the one connecting Strand B and Helix 3, which uses a conserved proline residue, and the other one connecting Helix 3 and Strand C, which instead uses a tight hydrogen bond between three residues instead.

The loop connecting Strand C and Helix 4 displays significant flexibility, most likely due to the residues Gly72, Gly73, Asn74 and Asn75 within this segment. The apparent flexibility within this region is not only visible from the superimposed SA structures, it was also observed in the protein backbone ¹⁵N relaxation studies. The conserved Gly72 has a negative heteronuclear ¹H-¹⁵N NOE value (-0.19) in the dynamics measurements, suggesting the disorder results from the intrinsic flexibility adopted by this region, but not from insufficient long distance restraints in the structure calculations.

7.1.2. RNA structure

7.1.2.1. Secondary elements observed in the NMR studies

The use of both uniformly and selectively (G-only) ¹³C/¹⁵N-labeled RNA samples, in combination with four mutant (U14C, A55C, A55U and A57C) studies allowed accurate interpretation of many NOEs within the two helical stems and the asymmetric internal loop of the L30 RNA in the bound form. The sequential imino-imino and nonexchangeable aromatic (H8/H6/H2) to anomeric (H1', H2' and H3') protons connectivities all indicated the existence of two helical regions. The selective labeling and mutant studies provided many essential resonance assignments within the internal loop region, which allowed the accurate identification of an unusual base pair and a unique conformational arrangement of the nucleotides within the internal loop.

7.1.2.2. Overall description of the RNA structure from molecular modeling

The presence of two nearly A-form helical stems joined by a highly distorted internal loop can be clearly seen in the averaged SA structure shown in Figure 7.1.4. The RNA adopts an overall bent conformation, in which the helical conformation unwinds at the internal loop region. The relative orientation of the two helices appears to have an overall 90° bending away from a coaxial stacking conformation, which is a direct result of the asymmetric internal loop and the protein binding. The backbone of the RNA is significantly distorted in the G56-A59 segment, which adopts a hairpin-like structure. With a bent conformation at the internal loop region, partial continuation of base stacking is maintained by G11, A12, A55, G56 and A59 within the internal loop, while A57 and G58 are bulged out of the stacking conformation to make contact with the protein.

7.1.2.3. Helical stems

As can be seen in Figure 7.1.4, the two helical regions have nearly A-form conformations, as more than three base pairs within each helix adopt a geometry that satisfies A-

Figure 7.1.4: Two views of the L30N RNA in the bound form. The internal loop is colored magenta. The left view shows the major groove of the internal loop, while the right view shows the minor groove.

form criteria. In a standard A-form RNA, the twist angle for each base is ~33° (verses ~35° for B form), the inclination is larger than 0° (but ~0° for B) and displacement from the helix axis is ~4 Å (versus ~0 Å for B form; Saenger, 1984). As can be seen in the average structure of the L30N RNA, most Watson-Crick base pairs with the lower stem (displayed upside down in the figure) maintain good stacking with an average 30° twist angle, 2° inclination, and 4 Å displacement from the helix axis. In the upper stem (displayed in the lower part of the figure), the presence of the U14·G53 wobble base pair appears to distort the A-form helical conformation slightly. This wobble base pair is nearly unstacked from the base pair 5' to the guanine (C52), but does stack well on the pair to the 3' side of the guanine G13-(C54). This stacking arrangement leads to a high twist at the G13-C54 and U14·G53 pair step, but a low twist at the U14·G53 and G15-C52 step. This type of stacking conformation associated with the wobble U·G pair is expected (Saenger, 1984), and also has been observed in other cases (Allain & Varani, 1995). In addition to A-form base stacking, many sugar puckers of the residues in both helical regions maintain C2'-endo conformations, this is also a characteristic of an A-form RNA structure. The only exception is the terminal G5 with an inter-converting pucker between C2'- and C3'-endo, which is expected for a terminal nucleotide. While the local conformation of each stem is well defined (~1.0 Å r.m.s.d. by superposition of each segment), the orientation of one stem with respect to the other is not as clearly preserved in the superimposed SA structures, as both helices have about 2.0 Å r.m.s.d. for all heavy atoms in the complex structures. The swinging of the two helices in the ensemble of structures is mostly due to the lack of long-range distance restraints.

Biochemical analyses have shown that the base identities within the two helical stems are unimportant for L30 protein binding (Li *et al.*, 1995; Li & White, 1997). However, the maintenance of a minimum of two to three base pairs within each stem is necessary for the RNA binding to the protein (Li & White, 1997). The variation in length and lack of sequence specificity of both helical stems suggests that bases in the stems do not interact directly with the protein in the complex, but the base pairs within each stem are important in indirectly stabilizing the RNA-protein interactions. Among the base pairs within the helical region, G10·U60 base pair adjacent to the internal loop has been studied extensively (White & Li, 1995). While the G·U wobble base pair is highly favorable for the MBP-L30 fusion protein binding, other non-

standard base pairs also display moderate protein binding affinity. A Watson-Crick base pair is not favorable at this position. This observation is consistent with the NMR structure, as the 10:60 position is juxtaposed to the internal loop and partially unstacks away from the internal loop on the U60 side. Any Watson-Crick base pair in this position would be deleterious to the protein binding, as it would tend to close the major groove that is important for protein binding.

7.1.2.4. Tetraloop

The GCAA tetraloop sequence in the L30N RNA is a result of a sequence modification that was used to stabilize the hairpin structure in the upper stem. Nevertheless, the observed structural features in this study are consistent with previously reported GNRA tetraloop-types of structures (Heus & Pardi, 1991b;Battiste, 1996). The conformation of the GCAA tetraloop in the L30N RNA will be described briefly as follows.

The hydrogen bonding pattern of the shear G18·A21 base pair within the tetraloop is schematically shown in Figure 7.1.5, panel a. Two interbase hydrogen bonds are formed in this base pair: one from a G18 exocyclic amino proton to the A21 N-7, and the other from an A21 exocyclic amino proton to the G18 N3. Although no direct NOE evidence was observed for the formation of these two hydrogen bonds, indirect NOEs suggest the formation of a shared GA base pair. More specifically, through spin diffusion from the G18 amino proton, there is a weak NOE between the G18 imino and A21 H8 protons. In addition, the observed sugar puckers for the nucleotides in the tetraloop also suggest the reversal of the phosphate backbone at the tetraloop region. In the structure, one of the G18 amino protons is within standard hydrogen bonding distance of the A20 N7, but both A21 amino protons are farther away from the G18 N2. However, one of the A21 amino protons is within hydrogen bonding distance of the sugar 2' oxygen on G18. This interaction may help to stabilize the formation of this GA base pair. To accommodate this unusual GA base pair, the helical twist for this base pair is small compared to a standard A- or B-form helix. This conformation for A21 is created by a G18 β-torsion angle that is gauche instead of the normal trans. In this conformation there is a large ring current effect of the A21 base on the G22 H1', which accounts for the unusual upfield chemical shift (4.10

Figure 7.1.5: The sheared G18 A21 pair (top) and reverse Hoogsteen G11:G56 pair (bottom).

ppm) for this resonance. Stacking of the bases in the loop is performed by A21 on G18 and A20 stacking on A8, but C19 does not stack on either G18, A20 or A21. Instead, the sugar phosphate backbone between G18 and C19 is extended, putting the C19 base on top of the hairpin loop. This conformation is supported by internucleotide H1'/H2'-H6/H8 NOEs observed between C19 and A20, A20 and A21, but not between G18 and C19.

7.1.2.5. Internal loop

The purine-rich internal loop is the most important part of the RNA, where the recognition of the RNA by protein takes place. An asymmetric two-plus-five length requirement and sequence conservation for bases at a majority of positions suggest that both the overall shape of the internal loop and the identity of individual bases are important for protein binding. The NMR structure provides an opportunity for observing the base pairing and spatial orientation of the nucleotides in the internal loop, therefore leading to the understanding of the L30 RNA-protein sequence-specific recognition.

As can be seen in Figure 7.1.4 (in which showing the view of the RNA is upside down with 5'- and 3'-end on the top), the phosphate backbones are significantly distorted on both sides of the internal loop. The distorted backbones are facilitated by two distinct conformational arrangements in the internal loop, best described as extensive purine-purine base stackings and a hairpin-type looping structure that reverses the direction of the phosphate backbone. In the first case, purine-base stackings are observed between G11, A12, G56 and A59, with the complete base stacking of A59 on top of G56, and partial stacking of A12 with G11 (Figure 7.1.6). The reverse Hoogsteen base pair between G11 and G56 appears to be the centerpiece of the stacking interactions. Two interbase hydrogen bonds are formed in this base pair: one from a G11 exocyclic amino proton to the G56 O6, and the other from a G11 imino proton to the G56 N7 (Figure 7.1.5). These hydrogen-bonding patterns are supported by observation of the strong NOE between G11 imino to G56 H8 protons. In addition, the *syn* glycosidic conformation and the reversal of the sugar orientation of G56 facilitate the formation of this G11·G56 base pair. Aside from the stabilization of the RNA internal loop through hydrogen bonding, the G11G56

mismatch pair also serves as a platform bridging the protein and RNA together through aromatic stacking (Figure 7.1.6).

During the structure calculation the orientation of A12 within the internal loop has been observed as two major conformers, with 50% of the initial RNA structures in an "out" A12 conformation Figure 7.1.6 in respective panel a, and 25% in an "in" A12 conformation (Figure 7.1.6, and panel b). The so called "in" and "out" refer to the position of A12 with respect to the G11·G56 base pair, where "in" refers to A12 stacking between nucleotide A59 and the G11·G56 base pair, and "out" refers to stacking outside and below the G11 G56 pair. As can been seen in a superposition of the average structures of the two conformers (shown in Figure 7.1.7), most of the remainder of the residues adopt very defined structures in the two conformation; only the relative position of A12 is not defined. These observations are a direct result of insufficient long distance restraints for this nucleotide in the molecular modeling, with no significant overall energy or NOE violations were observed between these two conformers. However, NMR observations and detailed structural analyses suggest that the "out" conformation could likely be the actual position adopted by A12. More specifically, the strong G11 imino proton resonance has been observed upon complex formation, indicating potential hydrogen-bond formation. In addition, a medium-strong NOE was observed between the G56 imino proton and the A12 H2 proton. Furthermore, the A12 was found in in vitro selection studies to be a conserved residue for protein binding (Li & White, 1997). In the modeled structure, this imino proton is very close to the A12 N1 in the "out" conformation, but not close to other hydrogen acceptors in the "in" conformation. This observation greatly suggests the possibility of hydrogen bonding formation between G56 imino proton and A12 N1. As a result of this hydrogen bonding arrangement, no base pair is formed between A12 and A55 (which was initially anticipated). In the structure, A55 is fully stacked above the G13-C54 base pair, and A12 slides on top of A55 for hydrogen bonding with G56. The absence of base pair arrangement between position 12 and 55 is supported by experimental observations. First, both A12 and A55 adopt anti glycosidic angles, whereas a syn angle is expected in an A-A base pair. While sequential stacking NOEs are observed between A55 to the G13-C54 base pair, very weak or no NOEs are observed from the A12 base to the G13-C54 base pair. Furthermore, the adenine at position 55 is not conserved and

Figure 7.1.6: Stereo views of the internal loop of the L30N RNA. Both panels show the continuous stacking of Phe85, G56, and A59 with residues A57 and G58 looping out of the RNA helix. In the top panel, A12 ("out" conformation) is below G11, while in the bottom panel residue A12 ("in" conformation) is stacking between G11 and A59.

Figure 7.1.7: Superposition of the average structures of two conformers showing the internal loop of the L30N RNA. The "out" conformation of residue A12 is in magenta, and the "in" conformation of residue A12 is in yellow. The G11-G56 Hoogsteen base pair (in blue) is emphasized.

can substituted with other nucleotides. Substitution of A55 to a uracil could potentially create a base pair between A12 and U55. However, the A55U mutant shows no observable uracil imino resonance that would be expected in a base-paired conformation.

Besides the stacking interaction maintained by most residues within the internal loop, A57 and G58 are bulged out of the helical region to make base-specific contacts with the protein. The bulge conformations were anticipated from the NMR observations, since these two nucleotides lack both interresidue and interstrand stacking NOEs to the rest of the nucleotides in the RNA, but show overwhelming NOEs to the protein. Despite the lack of intra-molecular hydrogen bonds with residues in the internal loop, each of the unpaired nucleotides is involved in intermolecular hydrogen bonding and hydrophobic interaction with the protein. As a result of the bulge conformation of A57 and G58, and the resumption of base stacking in A59, the phosphate backbone of the RNA is dramatically kinked in this region. The conformations adopted by these two nucleotides create a dramatic distortion at the phosphate backbone, since both bases are protruding into the concavity formed by the protein loops. The appearance of the hairpin like phosphate backbone is supported by the observation of the long range NOEs between the G56 H4' to base and sugar protons of A57 and G59. This conformation can also be explained by the observation of medium-strong NOEs between the H1' protons of A59, G12 and A55.

7.1.3. Specific intermolecular contacts

Figure 7.1.8 shows render surfaces of two views of the L30 protein in the bound form. One face of the protein carries a large concavity with distinctive electropositive residues on the sides, in which one side of the RNA internal loop makes contacts with protein. As a result of the conformational arrangement in the RNA internal loop, two distinct clusters of protein residues involved RNA recognition are observed in the complex structure. One cluster is centered on base G56, with which contacts are made from the conserved residues Leu25 and Gly26 from Strand A, Phe85 and Val87 from the loop connecting Helix 4 and Strand D. The other one is the concavity formed between two loops that contact bases A57 and G58, involving residues Tyr27

- 239 -

and Ly28 from the loop connecting Strand A and Helix 2, Asn47, Thr48, Pro49 within the loop connecting Strand B and Helix 3, and Arg52 in Helix3. The RNA-binding site in the L30 protein involves a combination of conserved basic residues, and conserved and solvent-exposed hydrophobic residues.

In the absence of RNA binding, there are two stretches of amide protons that display significant exchange broadening. The shorter one is from Tyr27 to Thr30, corresponding to the loop region connecting Strand A and Helix 2. The longer one involves residues Asn74 to Gly88, corresponding to Helix 4 and the loop connecting it to Strand D. Upon binding of the RNA, these residues became much more ordered, judging from the sharpness of the resulting amide proton resonances and extensive NOEs from the side chain of these residues. From the NMR-derived structure, many of these residues participate in the RNA binding interaction (Figure 7.1.9).

7.1.3.1. Hydrophobic contacts

While the helical conformation is extended into the internal loop by the complete stacking of A55 above the G13-C54 pair, a change in the stacking direction occurs between A55 and G56. The reverse Hoogsteen mismatch base pair formed between G11 and G56 orients almost orthogonal to residue A55. The stabilization of this conformational arrangement not only comes from the base stacking and hydrogen bonding within the bases in the internal loop, it also is a direct result of hydrophobic interaction from the protein. These interactions involves conserved residues Leu25 and Gly26 from the edge of Strand A, and Phe85 and Val87 from the loop connecting Helix 4 and Strand D. Hydrophobic residues Leu25, Phe85 and Val87 form a hydrophobic, concave surface around G56, and heightened by an almost complete stacking interaction of Phe85 with G56 (Figure 7.1.10, panel **a**). The aromatic ring of Phe85 acts like a shim that protrudes into the two bases, resulting in the changing of the base G56 orientation with respect to A55.

Figure 7.1.8: Molecular surface of the L30 protein in the bound form showing the electrostatic surface contour from $-10 k_B T$ (red) to $+10 k_B T$ (blue). The electrostatic surface was calculated by the program GRASP (Nichols *et al.*, 1991). On the left is the RNA binding cleft which has a high density of positively charged residues. The right side shows the opposite face of the protein.

Figure 7.1.9: Schematic representation of the protein-RNA NOEs.

Figure 7.1.10: Contacts between the protein (yellow) and RNA (cyan) in the L30 complex. Panel **a** shows the hydrophobic contacts between Leu25, Phe85, and Val87 on the protein and G56 on the RNA. Panel **b** shows the specific recognition of Asn47 with A57 and Arg52 with G58.

Another hydrophobic contact involves Pro49 and A57. It is likely that Pro49 serves to turn the amino acids that lead Strand B into Helix 3, the hydrophobic side chain could also be responsible for stabilization of the conformation of A57.

7.1.3.2. Specific recognition

Base specific recognition between protein and RNA, on the other hand, plays major roles in stabilization of the conformations of the internal loop. Examples of this type of interaction include the observation of two base-specific recognitions (Figure 7.1.10, panel **b**). A detailed close-up view shows that Arg 52 is contacting G58, Asp 47 with A57, and Lys 28 with either the base or the phosphate of A59. G58 is stabilized by a hydrogen bonding interaction between the G57 O6, the G57 N7 and the guanidinium group from Arg 52. Hydrogen bonds are formed between the A57 H61 and the Asn47 carboxyl group, and A57 N7 and the Asn47 amino group. These interactions are further fortified by the hydrophobic interaction between the A57 aromatic ring and Pro49.

In many protein-nucleic acid interactions, arginines and asparagines play critical roles in recognition (Mandel-Gutfreund & Margalit, 1998). In the case of arginine, two types of interactions involving arginines have been found. The first type is the direction hydrogen bonding interaction between the guanidinium group of an arginine and the O6 and N7 atoms of a guanine (Cai *et al.*, 1998; Battiste, 1996; Elrod-Erickson *et al.*, 1998). With three lone pairs of electrons (two from O6 and one from N7), guanine is the best nucleotide for accepting hydrogen from the guanidinium group of arginine. The second type of interaction uses an arginine to neutralize negative charges on the phosphate backbone on complex formation (Battiste, 1996). While arginines are always associated with base specific recognition of guanines, asparagines have been observed to interact with adenosine and cytosine. The side chain of an asparagine serves as both hydrogen-bond donor and acceptor, which interact preferably with adenine and/or cytosine at the Watson-Crick face. Taking these into account, it is obvious that residues Asn47 and Arg52 in the L30 protein are conserved throughout all species, while A (or C), and G are most frequently observed in position 57 and 58 respectively.

7.1.3.3. Other possible contacts

In addition to the above interactions and specific contacts, analysis of the complex structure also suggests other possible contacts between the protein and RNA. Looking into the RNA binding surface on the protein, Helix 2 is particularly in close proximity to the RNA. More specifically, a majority of residues at the N-terminus and one face of Helix 2 are involved in the intermolecular contacts. Among them, three residues Lys28, Ser29 and Lys32 could play major roles in either forming hydrogen bond or making phosphate backbone contacts to the RNA. Briefly, significant numbers of NOEs were observed from the side chain and backbone protons of Lys28 to the sugar and base protons of G56 on the RNA. In the modeled structure, the side chain of Lys28 is in parallel position next to G56 base, which appears to involve in hydrophobic stacking interaction with G56. On the other hand, the positively charged side chain of Lys28 could potentially involve in making backbone contact to the phosphate of A56. Second, the NOE observations and the structure modeling suggest that the hydroxyl group of Ser29 may involve in a long-range hydrogen bond contacts with two RNA bases. The hydroxyl group of Ser can serve as either hydrogen bond donor or acceptor. As a donor, the hydrogen on the hydroxyl group is near two potential hydrogen-bond acceptors: the O6 of G or N7 of G11. As an acceptor, its oxygen can potentially form a hydrogen bond with the exocyclic amino group from the A57 in the RNA internal loop. It is also possible that the S29 may also form a watermediated hydrogen bond with purine bases; this type of hydrogen bond is frequently observed in the X-ray crystal structures of protein-DNA complexes (Elrod-Erickson et al., 1998). An additional interaction from Helix 2 is observed at residue Lys32, which is positioned on the side of Helix 2 as Ser29. Throughout the complex structural calculation, the side chain of Lys32 is in close proximity to the phosphate backbone of G10. No direct NOEs were observed between the side chain protons of Lys32 and the ribose protons of G10; this may suggest that Lys32 be involved in non-specific charge contact with the phosphate backbone.

7.2. Structural Similarity of L30 with Other Proteins

Structures of a number of RNA-binding proteins have been determined, with most of them belonging to the $\alpha\beta$ family protein. These include the U1 snRNP protein A, aminoacyltRNA synthetases, many prokaryotic ribosomal protein (*e.g.* S5, S6, L1, L6, L7/L12, L9, L22 and L30) and proteins from RNA viruses (*e.g.*, tobacco mosaic virus, and bacteriophage MS2 protein), which carry an **abc**/ α d-unit with a split β - α - β motif. The schematic presentation of the basic **abc**/ α d-unit (with two variants) is shown in Figure 7.2.1, in which region **c** has an α helical conformation, regions **b**, **c** and **d** form the right-handed β - α - β superhelix, and strand **a** is located between strands **b** and **d** in the direction antiparallel to them (Rao & Rossmann, 1973). Variants are also observed with the insertion of other secondary structures within each unit, but a left-handed crossover is generally prohibited (Richardson *et al.*, 1992).

The structure of the L30 protein has been compared with known RNA-binding proteins to look for the evolutionary relationships and common RNA-binding motifs. To search for protein structures that are homologous to L30, the coordinates were submitted to the program SCOP (Murzin et al., 1995). Currently, the structure of the L30 protein is not homologous with any of the known protein structures. The L30 protein presents a novel topology with a β -sheet formed by a mixture of parallel and anti-parallel β-strands sandwiched between two sets of helices. The arrangement of three anti-parallel strands and one parallel strand β -sheet has been observed in RNase P (Stams et al., 1998), ribosomal protein S5 and ribosomal translocase elongation factor G. However, close structural inspection suggests that these proteins, with the unusual lefthanded $\beta - \alpha - \beta$ crossover topology, are different from the L30 protein. Detailed analysis of the L30 folding topology shows that the protein exhibits a right handed β - α - β crossover, which is closely related to the $abc/\alpha d$ family shared by many other RNA binding proteins. For instance, Strand D, Strand B, Helix 2 and Strand A can be considered as the respective a, b, c and d regions within the **abc**/ α **d**-unit, while Helix 3, Strand C and Helix 4 can be regarded as a large insertion between a and b regions (See Figure 7.2.1 (3)). The long loop connecting ab regions has been observed in the structure of chorismate mutase (Chook et al., 1993). While only

(3)

Figure 7.2.1: Schematic representation of the basic $abc/\alpha d$ -unit (1) and (2), and one of the variants (3) with a long loop between the **a** and **b** segments.

considering the segment of the **abcd** region, segments of four other proteins are found to share a close similarity with L30 protein, including the N-terminal domain of S8 (Davies *et al.*, 1996), DNase I (Weston *et al.*, 1992), DNA methyltransferase (Reinisch *et al.*, 1995) and EPSP synthase (Stalling & Kishore, 1991).

7.3. Biological Implications:

7.3.1. Correlation with biochemistry data:

The impact of the various base specific interactions with L30 protein in stabilizing the L30 protein and RNA complex has been demonstrated by biochemical mapping and SELEX experiments (Li *et al.*, 1995; Li & White, 1997; White *et al.*, 1995). In contrast to testing individual point mutants that might affect the complex stability, SELEX experiments showed an accelerated *in vitro* phylogenetic conservation of the important bases in the binding, which was consistent with the chemical modification interference results. Backbone modification of A55 and G56 with ENU abolishes protein binding. Carboxyethylation of all purines except A57 in the internal loop either abolished or strongly inhibited the binding.

Conservation of G11 in SELEX studies and inhibition of binding by carboxyethylation at this position can be explained by hydrogen bonding recognition from Ser29. Specifically, the hydroxyl group from the Ser29 side chain forms a hydrogen bond with the G11 N7 (or O6) position. In addition, G11 also forms a mismatch base pair with G56, using the Watson-Crick face to hydrogen bond with G56. The G11 to C substitution reduces the binding by about 7-fold (data from S. A. White).

The functional importance of A12 might lie in the stacking potential in stabilizing the complex structure. Among the four nucleotides, adenosine provides the strongest stacking stabilization, and purines in general are better than pyrimidines (Saenger, 1984). The absence of a G substitution at position 12 could be explained by the steric hindrance and electrostatic

- 251 -

repulsion arising from the presence of the bulky exocyclic $2-NH_2$ group in G which replaces the H2 proton of A in the minor groove. Consistent with the observation that the close proximity of H1' protons of A59 to A55 on the same strand and G13 on the cross strand leaves little room for the amino group.

In the SELEX experiment, A55 is the least conserved residue, which can be substituted with either C or U. Binding constants measured by gel shift assay with either RNA replacement are almost identical to wild type RNA (data in Chapter 2). Interestingly, a deletion study showed an absolute necessity of this nucleotide, since removal of A55 completely abolishes the protein binding (White *et al.*, 1995). The functional importance of the 55 position may lie in the phosphate backbone and spacing between the internal loop bases and the upper stem. Consistent with the abolished binding by ENU modification of A55, its role might explain the observation of a conserved Arg86 close to the phosphate backbone in the NMR structure. Arg86 in this case serves to neutralize negative charges on the phosphate backbone and bring the RNA close to the protein.

Conservation of G56 is obvious from the NMR refined structure, since it not only forms hydrogen bonds with G11 using both the N7 and O6 positions, it also makes extensive contacts with protein. Specifically, there is a hydrophobic core made up by Leu25, Phe85 and Val87 surrounding G56, and this is accentuated by the complete aromatic stacking of Phe85 under G56. Consistent with biochemistry data, carboxyethylation of N7 positions strongly inhibit protein binding and ENU modification of the phosphate abolishes protein binding. In addition, substitution of G56 with C greatly reduces the binding affinity to L30 protein (> 300 fold). Concomitant with the stacking observation, replacing the Phe85 with an Ala completely abolishes the protein binding to the wild type RNA (> 1000 fold).

The observation of an unusual frequency of C substitution at the A57 position could be explained by the similarity of the Watson-Crick faces of cytosine and adenine. Both could potentially form two hydrogen bonds between the carboxyamide of Asn47, specifically that between the O δ 1 atom of Asn and the exocyclic amino group of either A or C, and the NH δ
VII. Structure of the L30 Complex

group of Asn to the N1 or N3 of the respective A or C. This is consistent with the observation that Asn47 is phylogenetically conserved among various species in the ribosomal protein L30.

The importance of G58 can be rationalized by the recognition of Arg52. Direct hydrogen bonding interactions between the guanidinium group of arginine and the O6 and N7 atoms of a guanine stabilizes this specific recognition. With three lone pairs of electrons (two from O6 and one from N7), a guanine is the best nucleotide for accepting hydrogen from the guanidinium group of an arginine. Upon carboxyethylation of G58, the bulky ethyl group not only serves as steric interference with Arg recognition, but also prevents the formation of proper hydrogen bond involving the N7 position.

The conservation of A59 in SELEX experiments, and the carboxyethylation at A59 interfering with protein binding can be explained by the recognition by Lys28. Although no direct NOE was observed from the A59 H8 to Lys28, the direct penetration of Lys28 into the major groove and targeted towards A59 could be easily seen in the refined structure. There is a potential hydrogen bond formation from the side chain amino group towards the A59 N7 position, consistent with the observation that substitution of Lys28 with Ala reduces the binding by at least 20-fold (data from S. A. White).

The functional importance of theG10·U60 base pair is less understood from the structure. In the NMR analysis, while a wobbled G·U pair in the free RNA was observed at low temperature (<10°C), this base pair (in particular U60) in the complex underwent chemical exchange that broadened out the resonance. Although biochemistry data indicate that G·A, C·C, U-A, U·C or G·G can replace this base pair with lower binding affinity and a Watson-Crick G-C base pair is highly unfavorable, no direct NOE was observed to either bases. A potential contact might come from the conserved Lys32 that is close to the phosphate of G10 in the NMR refined structure. The stabilization of the binding comes from the charge neutralization rather than specific base recognition.

7.3.2. Relationship to splicing

The ribosome is the site of protein synthesis in all organisms. It is a large, two-subunit complex of three RNAs and up to 75 proteins in most eukaryotic organisms. The regulation of ribosomal protein synthesis is an important step in controlling the production of the ribosome assemblage. The model of autoregulation specifies that binding of L30 prevents the splicing of the RPL30 transcripts. The molecular model predicts that the MBP-L30 fusion protein would not affect the splicing of the mutant transcripts of RPL30 to which it does not bind, which was confirmed by the C9U mutant result. In the splicing, the first step appears to be the binding of the U1 snRNP to the transcript, probably at the 5' splice site to form a commitment complex. Subsequently, in an ATP-dependent process, several splicing factors as well as the U2 snRNP bind, followed by the assembly of other components to form the complete spliceosome.

The co-existence of U1 snRNP and L30 protein on the pre-mRNA suggests that the binding of L30 to its transcript blocks splicing at a step before the association with the U2 snRNP (Vilardell & Warner, 1994). It seems likely that the U1 RNA displaces nucleotides 6-9 (GACC) from their base-pairings with the 5' splice site without eliminating the binding of L30. As can be seen in the structure of the L30 protein-RNA complex, the L30 protein should be in close proximity to the U1 snRNP. However, the displacement of the L30 protein away from the potential U1 snRNP binding site (nucleotide G61 and beyond) in the complex could potentially allow base pairing without significant steric interference. Furthermore, the L30 protein might also interact with part of the U1 snRNP that further stabilizes the nonspliceable complex, therefore prevent in the association of the U2 snRNP that is necessary to form a complete spliceosome.

splice site

7.3.3. Relation to the yeast ribosome

The ribosome is the center of protein synthesis in all cells, and for over 30 years many efforts to understand its structure and mechanism have been ongoing. Such a goal represents a significant challenge because of the complexity involved in the molecule. The contribution here towards that aim is the determination of the structure of the important eukaryotic ribosomal protein L30. The overall structural features and specific functional residues with its cognate auto-regulatory binding site might reveal a potential ribosomal RNA binding site, which can be correlated to the ongoing research in this area. The L30 protein structure also facilitates further experiments to be designed to probe the local ribosomal environment that can associate with L30 protein, and further assists in the understanding of the function of an eukaryotic ribosome through reconstruction.

7.4. Future Research

7.4.1. Protein mutants

At present, the role of the RNA in the autoregulation has been studied extensively in many biochemical analyses. A 2 + 5 asymmetric internal loop and sequence specific conservation of several purine residues are the most important recognition elements on the RNA side of the complex. In contrast, few biochemistry studies have been carried out in understanding the functional role of the L30 protein in recognition. The L30 protein-RNA complex structure presents a vivid picture describing in detail the possible structural elements that might be important for recognition. However, these structural interpretations can only be validated with confirmation from biochemistry studies.

Currently, an ongoing mutagenesis analysis of L30 protein is being carried out by a coworker in this laboratory, based on the functional elements present in the NMR-derived complex

VII. Structure of the L30 Complex

structure. These include the replacements of Leu25, Tyr28, Lys29, Asn47, Arg52, Phe85 and Arg86 with alanine to study the specific interactions (*i.e.*, base-specific recognition, hydrophobic interaction) interpreted from the NMR structure. These mutation studies are primarily based on the gel shift binding assay to derive the binding constants. However, gel shift experiments can only provide limited information on the protein recognition, namely binding or no binding. Information including the preservation of the protein tertiary structure and binding constants $>\mu$ M is difficult to obtain in this experiment. Future research can be carried out using relatively simple NMR (*e.g.*, ¹H-¹⁵N-HSQC experiments) to analyze the tertiary structure and poor binding constants. In addition, calorimetry titration and denaturant unfolding of the complex can also be used to explore the stability of the complex.

In addition to residue specific mutagenesis, a phage-display method can be used to screen potential RNA recognition elements within the protein. The phage display selection has provided much useful information regarding the DNA-binding specificity in a zinc finger-DNA complex (Rebar & Pabo, 1994). In principle, the gene of the L30 protein can be engineered into phage genomic DNA and co-expressed with the phage coat protein. This should provide an excellent opportunity to explore the specific recognition principles between the L30 protein and RNA.

7.4.2. Crystallization of L30 protein-RNA complex with U1 snRNP fragment

One of the important features of the L30 protein is the regulation of splicing of the ribosomal protein transcript. This feature provides a rationale for the presence of introns in two-thirds of the ribosomal protein gene, whereas they are rare in other genes in yeast. The presence of an accumulated unspliced precursor molecule in the presence of L30 protein presents an opportunity for studying the splicing. More specifically, there seems to be a coexistence of L30 protein and U1 snRNP on the unspliced pre-mRNA transcript. Biochemistry studies are necessary to map out the minimal fragment of the tertiary complex. Furthermore, a revelation of the three component interactions in a crystal structure would present a satisfying explanation for

VII. Structure of the L30 Complex

the presence of introns as a general mechanism for regulation of ribosomal protein production in yeast.

Appendix A. Data Processing in NMRPipe

This appendix provides brief NMR data processing protocols using NMRPipe program (Delaglio *et al.*, 1995). Since data were recorded on two types of spectrometers (namely Varian and MIT Francis-Bitter Magnet Lab), different protocols were used to convert the data into NMRPipe readable format prior to the application of the window functions. These files are indicated as either "*var2pipe.com" for the Varian data or "*bin2pipebit.com" for the MITFBL data in the following protocols. Shown below are four protocols typical for processing (1) 2D Varian data, (2) 3D Varian data, (3) 2D MITFBL data, and (4) 3D MITFBL data. Detail parameters should consult the NMRPipe manual.

(1) var2pipe.com

#! /bin/csh

#var2pipe.cor	n				
#converting v	arian 21	D data t	o NMRPipe	format	
#					
var2pipe -in	fid				١
-xN	8192	-	yN	1024	١
-xT	4096		-yT	512	١
-xMODE	Comp	lex	-yMODE	Comp	lex\
-xSW	6600		-ySW	6600	١
-xOBS	599.94	14	-yOBS	599.94	 4\
-xCAR	4.73	-	yCAR	4.73	١
-xLAB	F2		-yLAB	F1	١
-ndim	2		-aq2D	States	١
#processing f	irst and	second	dimensions		
NMRPipe -f	n EM -l	b -15.0			١
NMRPipe -f	n GM -	g2 16.0			١
NMRPipe -f	n FT -v	erb			١
NMRPipe -f	n PS -p	0 1.2 - р	10-di		١
NMRPipe -f	'n POLY	7 -auto	-ord 1		١
NMRPipe -f	'n TP				١
NMRPipe -f	'n EM -l	lb -10.0			١
NMRPipe -f	n GM -	g2 17.0			١
NMRPipe -f	n ZF -si	ize 1024	1		١
NMRPipe -f	n FT -v	erb			١
NMRPipe -f	'n PS -p	0 0 -p1	0 -di		١
NMRPipe -f	'n POLY	Z-auto	-ord 1		١

-ov -out data.ft2

(2) bin2pipebit.com

#! /bin/csh

#bin2pipebit.c	om		
#converting B	itter Lab data t	o NMRPipe for	mat
#			
bin2pipe -in d	atar.dat \		
datai.dat \			
-xN	8192 -	yN	1024 \
-xT	4096	-yT	512 \
-xMODE	Complex	-yMODE	Complex\
-xSW	6002.4	-ySW	6002.4 \
-xOBS	501.85	-yOBS	501.85 \
-xCAR	4.91	-yCAR	4.91 \
-xLAB	H1	-yLAB	H1 \
-ndim	2	-aq2D	States \
-bad 0.0 -out f	fid -ov -verb -b	o 1044 -bp 12	-ri
#processing fi	rst and second	dimensions	
NMRPipe -in	fid		١
NMRPipe -fi	n SOL		١
NMRPipe -fi	n CBF -last 10		١
NMRPipe -fi	n EM -lb -15.0		١
NMRPipe -fi	n GM -g2 15.0		١
NMRPipe -fi	n FT -verb		١
NMRPipe -fi	n REV		١
NMRPipe -fi	n PS -p0 -18.7 ·	-p1 35.8 -di	١
NMRPipe -f	n POLY -auto -	ord 1	١
NMRPipe -fi	n TP		١
NMRPipe -f	n EM -lb -15.0		١
NMRPipe -fi	n GM -g2 20.0		١
NMRPipe -f	n ZF -auto		
NMRPipe -f	n FT -verb		١
NMRPipe -f	n REV		١
NMRPipe -f	n PS -p0 0 -p1	-9.4 -di	١
NMRPipe -f	n POLY -auto -	-ord 1	١
-0V -0	ut data.ft2		

(3) **3dvar2pipe.com** #!/bin/csh

١

#3dvar2pipe.com
Varian 3D States-Mode 750 3dwg Conversion:
#"-aqORD 1" selects for (3D d3,d2,phase,phase2) acquisition.

var2pipe -in	fid \					
-xN	1024	-yN	64	-zN	248	١
-xT	512	-yT	32	-zT	124	\
-xMODE	Complex	-yMODE	Complex	-zMODE	Complex	\
-xSW	9000	-ySW	2600	-zSW	9000	١
-xOBS	750.079	-yOBS	75.01	-zOBS	750.079	١
-xCAR	4.78	-yCAR	116.34	-zCAR	4.78	١
-xLAB	H1	-yLAB	N15	-zLAB	H1	١
-ndim3	-aq2D	States	-aqORD 1			١
-out data%0	3d.fid -verb -o	v	-			

١

	•	~ ·	1	1	1.	•
#proc	essing	tirst	and	second	dime	nsion

• •	
xyz2pipe -in data%02d.fid -x	١
NMRPipe -fn SOL	١
NMRPipe -fn SP -off .45 -end 0.98 -pow 3 -c 1.0	۱
NMRPipe -fn FT -verb	١
NMRPipe -fn REV	١
NMRPipe -fn PS -p0 108 -p1 0 -di	١
NMRPipe -fn EXT -x1 6.0ppm -xn 9.5ppm -sw	۱
NMRPipe -fn POLY -auto -ord 1	۱
NMRPipe -fn TP	١
NMRPipe -fn LP -after -pred 128	١
NMRPipe -fn SP -off 0.45 -end 0.98 -pow 4 -c 1.0	۱
NMRPipe -fn ZF -auto	
NMRPipe -fn FT -verb	١
NMRPipe -fn PS -p0 -40 -p1 0 -di	۱
NMRPipe -fn REV	۱
NMRPipe -fn EXT -x1 -0.3ppm -xn 9.5ppm -sw	۱
NMRPipe -fn POLY -auto -ord 1	١
pipe2xyz -out data%2d.ft2 -y	

#processing third dimension
xyz2pipe -in data%2d.ft2 -z
| NMRPipe -fn LPC
| NMRPipe -fn SP -off 0.5 -end 1.0 -pow 3 -c 1.0
| NMRPipe -fn FT -verb
| NMRPipe -fn PS -p0 0 -p1 0 -di
| pipe2xyz -out data%03d.ft3 -z

(4) 3dbin2pipe.com

```
#!/bin/csh
#
#3dbin2pipe.com
# shell to convert 3D bitter lab felix files to 3D NMRPipe files
set in = data
set out = data
set from = 1
set to = 32
set rr = rr
set ir = ir
set ri = ri
set ii = ii
(a) totslice = to * 2
if (\$totslice < 1000) then
       set dig = 3
endif
if (\$totslice < 100) then
       set dig = 2
endif
set zer = 0
echo "beginning conversion"
set n = from
while (\$n \le \$to)
(a) num3di = n * 2
(a) num3dr =  num3di - 1
       if ( \$num3dr < 10 ) then
               set num3dr = $zer$num3dr
       endif
       if ( $dig == 3 ) then
               if (\$num3dr < 100) then
                      set num3dr = zernum3dr
               endif
       endif
       if ( $num3di < 10 ) then
               set num3di = $zer$num3di
       endif
       if ( dig = 3 ) then
               if (\$num3di < 100) then
                      set num3di = $zer$num3di
               endif
       endif
       echo $in$rr$n.dat $in$ir$n.dat $out$num3dr.fid
```

bin2pipe -in	\$in\$rr\$n.dat \$	in\$ir\$n.dat \							
-xN	1024	-yLAB	H1	-zLAB	15N	١			
-xT	512	-yN	256	-zN	64	١			
-xMODE	Complex	-yT	128	-zT	32	١			
-xSW	6002.4	-yMODE	Complex	-zMODE	Comp	olex\			
-xOBS	501.86	-ySW	6002.4	-zSW	1600.	0 \			
-xCAR	4.91	-yOBS	501.86	-zOBS	50.85	6 \			
-xLAB	H1	-yCAR	4.91	-zCAR	118	١			
-ndim 2	-aq2D State	S				١			
-bad 0.0 -ver	rb -bo 1044 -br	o 12 -ri				١			
-out \$out\$num3di.fid -fmt -ov									

echo \$in\$ri\$n.dat \$in\$ii\$n.dat \$out\$num3di.fid

	bin2pipe -in \$	in\$ri\$n.dat \$in	\$ii\$n.dat \			
	-xN	1024	-yLAB	H1	-zLAB	15N \
	-xT	512	-yN	256	-zN	64 \
	-xMODE	Complex	-yT	128	-zT	32 \
	-xSW	6002.4	-yMODE	Complex	-zMODE	Complex\
	-xOBS	501.86	-ySW	6002.4	-zSW	1600.0 \
	-xCAR	4.91	-yOBS	501.86	-zOBS	50.856 \
	-xLAB	H1	-yCAR	4.91	-zCAR	118 \
	-ndim 2	-aq2D States				١
	-bad 0.0 -verb	-bo 1044 -bp 1	l2 -ri			١
	-out \$out\$nun	n3di.fid -fmt -o	v			
# rese	t ndim to 3					
	setfdata \$out\$	num3dr.fid -nd	lim 3			
	setfdata \$out\$	num3di.fid -nd	lim 3			
	@n = n + 1					
end						
exit						
#proce	essing first and	second dimens	ion			
xyz2pi	ipe -in data%02	2d.fid -x		N ,		
NMR	Pipe -fn SOL		• • • •	N N		
NMR	Pipe -fn SP -of	ff.45 -end 0.98	-pow 3 -c 1.0	N N		
NMR	Pipe -fn FT -ve	erb		N N		
NMR	Pipe -fn REV			N N		
NMR	Pipe -fn PS -p	0 108 -p1 0 -di	~ -	N N		
NMR	Pipe -fn EXT -	-x1 6.0ppm -xn	9.5ppm -sw	\ \		
NMR	Pipe -fn POLY	auto -ord 1		\ \		
NMR	Pipe -fn TP			\ \		
NMR	Pipe -fn LP -at	fter -pred 128		N N		
NMR	Pipe -fn SP -of	ff 0.45 -end 0.9	98 -pow 4 -c 1.0) \		
NMR	Pipe -fn ZF -au	uto			١	
NMR	Pipe -fn FT -ve	erb		١		

	١
	١
	١
	١
١	
	١
	١
	١
	١
	١

Appendix B. Modeling Protocol

This section is a reference to details of the modeling protocols used for calculating L30 protein-RNA complex structure in the X-PLOR program. The procedure used for generating the initial protein structures involves three protocols: randomhm.inp, dgsahm.inp and refinehm.inp, which are adopted from the X-PLOR tutorial section for generating protein structure. The procedure used for generating the initial RNA structures involves two protocols: rnainit.inp and rnarefine.inp, which are adopted from Brodsky's RNA modeling protocol. The complex structure are generated from docking of the initial protein structures to the initial RNA structures from a given distance and random orientation. The procedure involves three protocols: doc.inp, complexr.inp and complexr2.inp, which are based on the RNA protocols and refined during the modeling. The X-PLOR manual should be consulted for specific information on the parameters used in these protocols.

remarks nmr/randomhm.inp

```
remarks The ultimate simulated annealing protocol for NMR structure
remarks determination!
remarks The starting structure for this protocol can be completely
remarks arbitrary, such as random numbers. Note: the resulting
remarks structures need to be further processed by the dgsa.inp protocol.
remarks Reference: Nilges, Clore, and Gronenborn 1988a.
remarks Author: Michael Nilges
remarks Modified from the random.inp for L30 protein calculation by HM
{====>}
evaluate (\$init_t = 1000)
                            {* Initial simulated annealing temperature.*}
parameter
                                 {*Read the parameter file.*}
    {====>}
    @TOPPAR:parallhdg.pro
end
    ==>}
{==
structure @L30P.psf end
                                    {*Read the structure file.*}
noe
{====>}
    reset
                      {*Estimate greater than the actual number of NOEs.*}
    nres=6000
    class all
    {====>}
    @L30P noe.tbl
                                      {*Read NOE distance ranges.*}
end
{====>}
@L30P dih.tbl
                              {*Read dihedral angle restraints.*}
noe
                     {*Parameters for NOE effective energy term.*}
```

```
ceiling=1000
    averaging * R-6
    potential * soft
    scale * 1
    sqoffset * 0.0
    sqconstant * 1.0
    sqexponent * 2
    soexponent * 1
                                  {* Initial value - modified later. *}
    asymptote * 2.0
    rswitch * 1.0
end
set message=off end
                                                                              = Generate random coordinates.*}
{* =
{====>}
                                     {* Number of structures. *}
evaluate ($end count=20)
evaluate (scount = 0)
set seed=FOOBAR end
while ($count < $end_count ) loop main
    evaluate ($count=$count+1)
                                                                                {* Generate a starting structure. *}
    vector do (x = (random()-0.5)*20) (all)
    vector do (y = (random()-0.5)*20) (all)
    vector do (z = (random()-0.5)*20) (all)
                               {*Friction coefficient for MD heatbath.*}
    vector do (fbeta=10) (all)
    vector do (mass=100) (all)
                                       {*Uniform heavy masses to speed*}
                                                                                         {*molecular dynamics. *}
    parameter nbonds
         atom cutnb 100 tolerance 45 repel=1.2
         rexp=2 irexp=2 rcon=1.0 nbxmod 4
    end end
    flags exclude * include bonds angle impr vdw noe cdih harm end
    evaluate (\ = 0.5)
                                           {* Bonds.
    evaluate (\begin{subarray}{c} kbon = 0.00005 \end{subarray})
                                           {* Angles.
                                                               *}
    evaluate (\ = 0.00005 )
    evaluate (kimp = 0.0)
                                         {* Impropers.
    evaluate (kvdw = 0.1)
                                         {* Vdw.
    constraints
         interaction (not name ca) (all)
         weights bond $kbon angl $kang impr $kimp vdw 0 elec 0 end
         interaction (name ca) (name ca)
         weights bond $kbon angl $kang impr $kimp vdw $kvdw end
    end
                                                                                   =High temperature dynamics. *}
       {* =
    vector do (vx = maxwell(\$init_t)) (all)
    vector do (vy = maxwell($init_t)) (all)
    vector do (vz = maxwell($init_t)) (all)
    evaluate ($timestep = 0.04)
    evaluate (step = 100)
    while ($kbon < 0.01) loop stage1
         evaluate (\$kbon = min(0.25, \$kbon * 1.25))
         evaluate ($kang = $kbon)
         evaluate (kimp = 0)
         noe scale * $knoe end
         restraints dihed scale 0, end
```

```
constraints
         interaction (not name ca) (all)
         weights bond $kbon angl $kang impr $kimp vdw 0 elec 0 end
         interaction (name ca) (name ca)
         weights bond $kbon angl $kang impr $kimp vdw $kvdw end
    end
    dynamics verlet
         nstep=$nstep timestep=$timestep iasvel=current
         tcoupling=true tbath=$init t nprint=50 iprfrq=0
    end
end loop stage1
restraints dihed scale 0. end
noe scale * 5 end
                    {* Parameters for the repulsive energy term. *}
parameter
    nbonds
        repel=0.9
                         {* Initial value for repel - modified later. *}
        nbxmod=-3
                           {* Initial value for nbxmod - modified later. *}
        wmin=0.01
        cutnb=4.5 ctonnb=2.99 ctofnb=3.
        tolerance=0.5
    end
end
constraints
    interaction (all) (all)
    weights bond 0.02 angl 0.02 impr 0 vdw 0.002 elec 0 end
end
dynamics verlet
    nstep=500 timestep=0.003 iasvel=maxwell
    firstt=1500
    tcoupling=true
    tbath=1500 nprint=50 iprfrq=0
end
constraints
    interaction (all) (all)
    weights bond 0.05 angl 0.05 impr 0 vdw 0.005 elec 0 end
end
dynamics verlet
     nstep=500 timestep=0.003 iasvel=current tcoupling=true
     tbath=1500 nprint=50 iprfrq=0
end
constraints
    interaction (all) (all)
    weights bond 0.1 angl 0.1 impr 0 vdw 0.01 elec 0 end
end
dynamics verlet
     nstep=500 timestep=0.003 iasvel=current tcoupling=true
     tbath=1500 nprint=50 iprfrq=0
end
                                                                          = Write out the final structure(s).*}
remarks =
remarks
               overall, bonds, angles, improper, vdw, noe, cdih
remarks energies: Sener, Sbond, Sangl, Simpr, Svdw, Snoe, Scdih
                       {*Name(s) of the family of final structures.*}
{==
    =>}
evaluate ($filename="random "+encode($count)+".pdb")
```

```
write coordinates output =$filename end
end loop main
stop
```

```
remarks file nmr/dgsahm.inp -- Simulated annealing regularization
                     and refinement for embedded distance
remarks
                     geometry structures or substructures.
remarks
remarks Authors: Michael Nilges, John Kuszewski, and Axel T. Brunger
remarks modified from dgsa.inp for L30 calculation
{====>}
                               {*Initial annealing temperature, in K.*}
evaluate (\sin t = 2000)
{====>}
                                  {*Total number of steps at high temp.*}
evaluate ( \text{shigh steps} = 1000 )
{====>}
                                   {*Total number of steps for cooling.*}
evaluate ($cool_steps = 1000)
                                  {*Read the parameter file.*}
parameter
    ==>}
    @TOPPAR:parallhdg.pro
end
{====>}
                                       {*Read the structure file.*}
structure @L30P.psf end
noe
    {====>}
    reset
                      {*Estimate greater than the actual number of NOEs.*}
    nres=6000
    class all
    {====>}
                                         {*Read NOE distance ranges.*}
    @L30P noe.tbl
end
{==
     =>}
                                {*Read dihedral angle restraints.*}
@L30P dih.tbl
vector do (fbeta=10) (all) {*Friction coefficient for MD heatbath, in 1/ps.*}
                                  {*Uniform heavy masses to speed MD.*}
vector do (mass=100) (all)
                     {*Parameters for NOE effective energy term.*}
noe
    ceiling =1000
    averaging * R-6
    potential * square
    sqconstant * 1.
    sqexponent * 2
                        {*Constant NOE scale throughout the protocol.*}
    scale
            * 50.
end
                        {*Parameters for the repulsive energy term.*}
parameter
    nbonds
                             {*Initial value for repel--modified later.*}
        repel=0.5
        rexp=2 irexp=2 rcon=1.
                              {*Initial value for nbxmod--modified later.*}
        nbxmod=-2
        wmin=0.01
        cutnb=4.5 ctonnb=2.99 ctofnb=3.
        tolerance=0.5
    end
end
```

```
restraints dihedral scale=5.
                                            {*Initial weight--modified later.*}
end
{=
     ==>}
set seed=FOOBAR end
                                {*Loop through a family of 50 structures.*}
evaluate ($end count=20)
evaluate (scount = 0)
while ($count < $end count ) loop main
    evaluate ($count=$count+1)
                               {*Filename(s) for embedded coordinates.*}
    {====>}
    evaluate ($filename="random "+encode($count)+".pdb")
                                                                       {*Test for the correct enantiomer;
                                                                                                                *}
    {====>}
                        {*if you want to bypass this test because the *}
                      {*substructures were tested previously, simply*}
                      {*remove the -1 from the next statement.
    for simage in (1 - 1) loop imag
        coor initialize end
         coor @@$filename
         vector do (x=x * $image) ( known )
         vector identity (store1) (not known)
                                                 {*Set store1 to unknowns.*}
                                                               = Create local ideal geometry by template fitting;*}
           {*
         {*
                       this also takes care of unknown atoms.
                                                                   *}
        set message=off echo=off end
                             {*Store current coordinates in comparison set.*}
        coor copy end
                             {*The user has to supply a template coordinate set.*}
         {====>}
        coor @@generate_template.pdb
         for $id in id ( tag ) loop fit
                                           {*Loop over residue tags.*}
                                   {*LSQ fitting using known coordinates.*}
             coordinates
             fit select = ( byresidue (id $id) and not store1 )
             end
                                                             {*Store fitted template coordinates for this residue.*}
             coor copy selection=( byresidue (id $id) ) end
        end loop fit
        coor swap end
         set message=on echo=on end
                                                              ——— Minimization of bonds, VDWs, and NOEs.*}
           {* =
         restraints dihedral scale=5. end
        parameter nbonds nbxmod=-2 repel=0.5 end end
        flags exclude * include bond vdw noe cdih end
         constraints interaction (all) (all) weights * 1. vdw 20. end end
         minimize powell nstep=100 nprint=10 end
                                                                                               =Include angles. *}
           {* =
         flags include angl end
         minimize powell nstep=100 nprint=10 end
                                                       = Dynamics, slowly introducing chirality and planarity. *}
         {* =
         flags include impr end
         evaluate (step1 = int(steps/8))
         evaluate ($nstep2 = int($high steps/2))
         constraints inter (all) (all) weights * 0.1 impr 0.05 vdw 20. End end
         dynamics verlet
             nstep=$nstep1 time=0.003 iasvel=maxwell firstt=$init t
             tcoup=true tbath=$init t nprint=100 iprfrg=0
         end
         constraints inter (all) (all) weights * 0.2 impr 0.1 vdw 20. End end
         dynamics verlet
```

```
nstep=$nstep1 time=0.003 iasvel=current firstt=$init_t
        tcoup=true tbath=$init t nprint=100 iprfrq=0
    end
    parameter nbonds repel=0.9 end end
    constraints inter (all) (all) weights * 0.2 impr 0.2 vdw 0.01 end end
    dynamics verlet
        nstep=$nstep1 time=0.003 iasvel=current firstt=$init_t
        tcoup=true tbath=$init t nprint=100 iprfrq=0
    end
    parameter nbonds nbxmod=-3 end end
    constraints inter (all) (all) weights * 0.4 impr 0.4 vdw 0.003 end end
    dynamics verlet
        nstep=$nstep2 time=0.003 iasvel=current firstt=$init t
        tcoup=true tbath=$init t nprint=100 iprfrq=0
    end
    constraints inter (all) (all) weights * 1.0 impr 1.0 vdw 0.003 end end
    dynamics verlet
        nstep=$nstep1 time=0.003 iasvel=current firstt=$init t
        tcoup=true tbath=$init_t nprint=100 iprfrq=0
    end
    if (\$image = 1) then
        vector do (store7=x) ( all ) {*Store first image in stores.*}
        vector do (store8=y) (all)
        vector do (store9=z) (all)
        vector do (store4=vx) ( all )
        vector do (store5=vy) ( all )
        vector do (store6=vz) ( all )
    end if
end loop imag
                                                            Establish the correct handedness of the structure.*}
  {* ==
energy end
evaluate ($e minus=$ener)
coor copy end
vector do (x=store7) ( all )
vector do (y=store8) ( all )
vector do (z=store9) ( all )
energy end
evaluate ($e plus=$ener)
if ( $e plus > $e minus ) then
    evaluate ($hand=-1)
    coor swap end
    else
    evaluate ( and = 1)
    vector do (vx=store4) ( all )
    vector do (vy=store5) ( all )
    vector do (vz=store6) ( all )
end if
                                                                         =Increase VDW interaction and cool.*}
  {* =
restraints dihedral scale=200. end
evaluate (final t = 100) { K }
evaluate ($tempstep = 50) { K }
evaluate ($ncycle = ($init_t-$final_t)/$tempstep)
evaluate ($nstep = int($cool steps/$ncycle))
                              evaluate (fin_rad = 0.75)
evaluate (\sin i rad = 0.9)
```

```
evaluate ($ini con= 0.003)
                               evaluate (fin con= 4.0)
evaluate (bath = binit t)
evaluate ($k_vdw = $ini_con)
evaluate (k_v dw fact = (fin con/fini con)^{(1/fucycle)})
evaluate ($radius= $ini rad)
evaluate ($radfact = ($fin rad/$ini rad)^(1/$ncycle))
evaluate (\sin cool = 0)
while ($i cool < $ncycle) loop cool
    evaluate ($i cool=$i cool+1)
    evaluate ($bath = $bath - $tempstep)
    evaluate ($k_vdw=min($fin_con,$k_vdw*$k_vdwfact))
    evaluate ($radius=max($fin rad,$radius*$radfact))
    parameter nbonds repel=$radius end end
    constraints interaction (all) (all) weights * 1. vdw $k vdw end end
    dynamics verlet
        nstep=$nstep time=0.005 iasvel=current firstt=$bath
        tcoup=true tbath=$bath nprint=$nstep iprfrq=0
    end
                                            {*Abort condition.*}
    {====>}
    evaluate ($critical=$temp/$bath)
    if (|| critical > 10.) then
        display ****&&&& rerun job with smaller timestep (i.e., 0.003)
        stop
    end if
end loop cool
    {* =
                                                                                       =Final minimization.*}
minimize powell nstep= 200 nprint=25 end
  {* =
                                                                =Analyze and write out the final structure(s).*}
print threshold=0.5 noe
evaluate ($rms noe=$result)
evaluate ($violations noe=$violations)
print threshold=5. cdih
evaluate ($rms cdih=$result)
evaluate ($violations cdih=$violations)
print thres=0.05 bonds
evaluate ($rms_bonds=$result)
print thres=5. angles
evaluate ($rms angles=$result)
print thres=5. impropers
evaluate ($rms impropers=$result)
remarks =
remarks
               overall, bonds, angles, improper, vdw, noe, cdih
remarks energies: $ener, $bond, $angl, $impr, $vdw, $noe, $cdih
remarks
remarks
               bonds, angles, impropers, noe, cdih
remarks rms-d: $rms bonds,$rms angles,$rms impropers,$rms noe,$rms cdih
remarks :
remarks
                 noe, cdih
remarks violations.: $violations noe, $violations cdih
remarks :
remarks handedness: $hand, enantiomer discrimination ( $e_plus : $e_minus )
                        {*Name(s) of the family of final structures.*}
{====>}
evaluate ($filename="dgsa_"+encode($count)+".pdb")
write coordinates output =$filename end
```

end loop main stop

```
remarks file nmr/refinehm.inp -- Simulated annealing refinement
                      for NMR structure determination
remarks
remarks Authors: Michael Nilges, John Kuszewski, and Axel T. Brunger
remarks adapted from refine.inp by hm for L30P 2/19/98
{====>}
evaluate (\sin t = 1000)
                               {*Initial annealing temperature, in K.*}
{====>}
                                 {*Total number of steps during cooling.*}
evaluate (cool_steps = 2000)
                                 {*Read the parameter file.*}
parameter
    {====>}
    @TOPPAR:parallhdg.pro
end
{==
    ==>}
                                   {*The structure file.*}
structure @L30P.psf end
noe
    {==
         =>}
    reset
                      {*Estimate greater than the actual number of NOEs.*}
    nres=6000
    class all
    {====>}
    @L30P_noe.tbl
                                    {*Read NOE distance ranges.*}
    @L30P hbond.tbl
end
{====>}
@L30P_dih.tbl
                             {*Read dihedral angle restraints.*}
                {*Friction coefficient for MD heatbath, in 1/ps.*}
vector do (fbeta=10) (all)
                             {*Heavy masses to speed molecular dynamics.*}
vector do (mass=100) (all)
                     {*Parameters for NOE effective energy term.*}
noe
    ceiling=1000
    averaging * R-6
    potential * square
    sqconstant * 1.
    sqexponent * 2
                        {*Constant NOE scale throughout the protocol.*}
    scale
             * 50.
end
                        {*Parameters for the repulsive energy term.*}
parameter
    nbonds
                             {*Initial value for repel--modified later.*}
         repel=0.5
         rexp=2 irexp=2 rcon=1.
         nbxmod=3
         wmin=0.01
         cutnb=4.5 ctonnb=2.99 ctofnb=3.
         tolerance=0.5
    end
end
restraints dihedral scale=100 end
{====>}
                               {*Loop through a family of 50 structures.*}
evaluate ($end count=20)
evaluate (scount = 0)
```

```
while ($count < $end count ) loop main
    evaluate ($count=$count+1)
    {====>}
                               {*Filename(s) for embedded coordinates.*}
    evaluate ($filename="dgsa_"+encode($count)+".pdb")
    coor @@$filename
    flags exclude * include bond angl impr vdw noe cdih end
    vector do (vx=maxwell($init t)) ( all )
    vector do (vy=maxwell($init_t)) ( all )
    vector do (vz=maxwell($init t)) ( all )
    evaluate (final t = 100) { K }
    evaluate ($tempstep = 50) { K }
    evaluate ($ncycle = ($init t-$final t)/$tempstep)
    evaluate ($nstep = int($cool_steps/$ncycle))
    evaluate (\sin i rad = 0.9) evaluate (fin rad = 0.75)
    evaluate ($ini con= 0.003) evaluate ($fin con= 4.0)
    evaluate ($bath = $init t)
    evaluate ($k vdw = $ini con)
    evaluate ($k vdwfact = ($fin con/$ini con)^(1/$ncycle))
    evaluate ($radius= $ini rad)
    evaluate ($radfact = ($fin rad/$ini rad)^(1/$ncycle))
    evaluate (( \cos \theta = 0 ))
    while ($i_cool < $ncycle) loop cool
        evaluate ($i cool=$i cool+1)
        evaluate ($bath = $bath - $tempstep)
        evaluate ($k_vdw=min($fin_con,$k_vdw*$k_vdwfact))
        evaluate ($radius=max($fin rad,$radius*$radfact))
        parameter nbonds repel=$radius end end
        constraints interaction (all) (all) weights * 1. vdw $k_vdw end end
        dynamics verlet
            nstep=$nstep time=0.005 iasvel=current firstt=$bath
            tcoup=true tbath=$bath nprint=$nstep iprfrq=0
        end
                                                {*Abort condition.*}
        {====>}
        evaluate ($critical=$temp/$bath)
        if (|| critical > 10.) then
            display ****&&&& rerun job with smaller timestep (i.e., 0.003)
            stop
        end if
    end loop cool
                                                                                    === Final minimization.* }
    {* =
   minimize powell nstep= 200 nprint=25 end
    {* =
                                                                            = Write out the final structure(s).*}
   print threshold=0.5 noe
    evaluate ($rms_noe=$result)
    evaluate ($violations noe=$violations)
   print threshold=5. cdih
    evaluate ($rms cdih=$result)
    evaluate ($violations cdih=$violations)
    print thres=0.05 bonds
    evaluate ($rms_bonds=$result)
   print thres=5. angles
   evaluate ($rms angles=$result)
   print thres=5. impropers
    evaluate ($rms_impropers=$result)
```

```
remarks =
                   overall, bonds, angles, improper, vdw, noe, cdih
    remarks
    remarks energies: $ener, $bond, $angl, $impr, $vdw, $noe, $cdih
    remarks =
    remarks
                   bonds, angles, impropers, noe, cdih
    remarks rms-d: $rms bonds,$rms angles,$rms_impropers,$rms_noe,$rms_cdih
    remarks
    remarks
                     noe, cdih
    remarks violations.: $violations noe, $violations cdih
    remarks
                            {*Name(s) of the family of final structures.*}
    {====>}
    evaluate ($filename="refineP_"+encode($count)+".pdb")
    write coordinates output =$filename end
end loop main
stop
remarks nmr/rnainit.inp
remarks The ultimate simulated annealing protocol for NMR structure
remarks determination!
remarks The starting structure for this protocol can be completely
remarks arbitrary, such as random numbers. Note: the resulting
remarks structures need to be further processed by the dgsa.inp protocol.
remarks Reference: Nilges, Clore, and Gronenborn 1988a.
remarks Author: Michael Nilges
remarks adapted by jrw 12/95
remarks Add dihedral restraint 12/28/97 by HM
remarks An A form pdb is put in for caluculation. 2/23/98 by HM
                                             {*Read the parameter file.*}
parameter
                                             {*This file is in subdirectory*}
    @TOPPAR:gammahmao.par
end
                                              {*Read the structure file.*}
structure @L30N.psf end
noe
    reset
                       {*Estimate greater than the actual number of NOEs.*}
    nres=6000
    class all
    {===
          =>
                                            {*Read NOE distance ranges.*}
    @L30N_noe.tbl
end
                           {*Parameters for NOE effective energy term.*}
noe
         ceiling=1000
         averaging * R-6
         potential * soft
                 *
         scale
                      1
         sqoffset * 0.0
         sqconstant * 1.0
         sqexponent * 2
         soexponent * 1
         asymptote * 2.0
         rswitch * 1.0
end
     ==>}
{=
@L30N_dih.tbl
```

```
restraints dihedral scale=1.0 end
set message=off end
evaluate ($end count=40)
                                            {* Number of structures. *}
evaluate (\$init t = 1000)
                            {* Initial simulated annealing temperature.*}
evaluate (scount = 0)
set seed=FOOBAR end
while ($count < $end count ) loop main
    evaluate ($count=$count+1)
    evaluate ($filename="L30N.pdb") {*Filename(s) for SA calculation.*}
    coor @@$filename
                                {*Friction coefficient for MD heatbath.*}
    vector do (fbeta=10) (all)
                                     {*Uniform heavy masses to speed*}
    vector do (mass=100) (all)
                                                   {*molecular dynamics.*}
    parameter nbonds
        atom cutnb 45 tolerance 100 repel=1.2
        rexp=2 irexp=2 rcon=1.0 nbxmod 4 wmin=0.01
        end
    end
    flags exclude * include bonds angle impr vdw noe cdih harm end
    evaluate (\ = 0.5)
                                                 {* Bonds.
    evaluate (\begin{subarray}{c} kbon = 0.01 \end{subarray})
    evaluate (\ = 0.01 )
                                                 {* Angles.
                                                 {* Impropers.
    evaluate (kimp = 0.0)
                                                 {* Vdw.
                                                                     *}
    evaluate (kvdw = 0.01)
    constraints
        interaction (all) (all)
        weights bond $kbon angl $kang impr $kimp vdw $kvdw end
    end
    minimize powell
        nsteps=100 drop=10 nprint=20
    end
    {* =
                                                                         =High temperature dynamics.*}
    vector do (vx = maxwell($init_t)) (all)
    vector do (vy = maxwell(\$init_t)) (all)
    vector do (vz = maxwell($init_t)) (all)
    evaluate (timestep = 0.003)
    evaluate (snstep = 1000)
    evaluate (\ = min(0.25, \ = 1.10))
        evaluate ($kang = $kbon)
        evaluate (kimp = 0)
        noe scale * $knoe end
        restraints dihed scale 0.0 end
        constraints
             interaction (all) (all)
             weights bond $kbon angl $kang impr $kimp vdw $kvdw end
        end
        dynamics verlet
             nstep=$nstep timestep=$timestep iasvel=current
             tcoupling=true tbath=$init t nprint=50 iprfrq=0
         end
    end loop stage1
    noe scale * 50 end
                               {* Parameters for the repulsive energy term. *}
    parameter
```

```
nbonds
                              {* Initial value for repel - modified later. *}
        repel=0.9
        nbxmod=-3
                            {* Initial value for nbxmod - modified later. *}
        wmin=0.01
        cutnb=4.5 ctonnb=2.99 ctofnb=3.
        tolerance=0.5
    end
end
evaluate ($kbon= 0.01)
evaluate (kvdw = 0.01)
                                                                                  {* initialize dynamics *}
constraints
    interaction (all) (all)
    weights bond $kbon angl $kbon impr $kbon vdw $kvdw elec 0 end
end
dynamics verlet
    nstep=1000 timestep=0.003 iasvel=maxwell
    firstt=$init_t
    tcoupling=true
    tbath=$init t nprint=50 iprfrq=0
end
                                                                              {* ramp up covalent terms *}
evaluate (kvdw = .01)
while ($kbon < 1.0) loop rampcov
    evaluate ($kbon = $kbon*1.25)
    constraints
        interaction (all) (all)
        weights bond $kbon angl $kbon impr $kbon vdw $kvdw elec 0 end
    end
    dynamics verlet
        nstep=1000 timestep=0.003 iasvel=current
        tcoupling=true
        tbath=$init t nprint=50 iprfrq=0
    end
end loop rampcov
restraints dihed scale 200. end
flags exclude * include bonds angle impr vdw noe cdih dihe end
                                               {* ramp up vdw *}
evaluate ($kbon=1.0)
evaluate ($kvdw=0.01)
while (kvdw < 1.0) loop rampvdw
    evaluate ($kvdw = $kvdw*1.5)
    constraints
        interaction (all) (all)
        weights bond $kbon angl $kbon impr $kbon vdw $kvdw elec 0 end
    end
    dynamics verlet
        nstep=1000 timestep=0.003 iasvel=current
        tcoupling=true
        tbath=$init t nprint=50 iprfrq=0
    end
end loop rampvdw
                                                                     ====ut the final structure(s).*}
```

=>}

{*Name(s) of the family of final structures.*}

```
evaluate ($filename="randomR_"+encode($count)+".pdb")
write coordinates output =$filename end
end loop main
stop
```

```
-- Gentle simulated annealing refinement
remarks file nmr/rnarefine.inp
                          for NMR structure determination
remarks
remarks based on pardi annealing protocol from Biochemistry on small loop.
remarks adapted by hm 3/4/98
{====>}
                                      {*SA temperature, in K.*}
evaluate (\sin t = 1000)
{====>}
evaluate (second_t = 600)
{====>}
evaluate ( third t = 400)
{====>}
evaluate ($cool steps =10000)
                                       {*Total number of SA steps.*}
                                 {*Read the parameter file.*}
parameter
{====>}
    @TOPPAR:gammahmao.par
end
{===>} structure @L30N.psf end
                                        {*Read the structure file.*}
noe
    reset
                      {*Estimate greater than the actual number of NOEs.*}
    nres=3000
    class all
    {====>}
                                     {*Read NOE distance ranges.*}
    @L30N noe.tbl
end
                     {*Parameters for NOE effective energy term.*}
noe
    ceiling=1000
    averaging * R-6
    potential * square
           * 50
    scale
    sqoffset * 0.0
    sqconstant * 1.
    sqexponent * 2
    soexponent * 1
    asymptote * 2.0
                                 {* Initial value - modified later. *}
    rswitch * 1.0
end
parameter
    nbonds
    repel=0.9
    rexp=2 irexp=2 rcon=1.
    nbxmod=-5
    wmin=0.01
    cutnb=4.5 ctonnb=2.99 ctofnb=3.
    tolerance=1
    end
end
 {====>}
                               {*Read dihedral angle restraints.*}
@L30N_dih.tbl
```

```
restraints dihedral scale=50. end {* scale above 100 is bad base on nt. tests *}
{====>}
set seed=FOOBAR end
evaluate ($end count=40)
                              {*Loop through a family of 7 structures.*}
evaluate ($count = 0)
while ($count < $end count ) loop main
   evaluate ($count=$count+1)
    {====>}
                             {*Filename(s) for embedded coordinates.*}
   evaluate ($filename="randomR_"+encode($count)+".pdb")
   coor @@$filename
    flags exclude * include bond angl impr vdw noe cdih end
    {* in nucl. tests impr too high led to collapse of bases *}
    constraints
        interaction (all) (all)
        weights impr 0.5 end
    end
                                                                                =Intial minimization.*}
    {* =
   minimize powell nstep= 100 nprint=25 end
                                                                       ==== Constant temperature SA.*}
    {* =
    vector do (fbeta=100.) (all)
                                       {* Coupling to heat bath. *}
    vector do (mass=100.) (all)
                                       {* Set mass to heavy. *}
    dynamics verlet
       nstep=$cool steps timestep=0.00075
       iasvel=maxwell firsttemperature=$init_t
       tbath=$init t
       tcoup=true
       nprint=250 iprfrq=2500
   end
                                                                          ==== 700 step minimization.*}
    {*
    minimize powell nstep= 700 nprint=25 end
                                                                                   = 600 K dynamics *}
    {* =
    dynamics verlet
       nstep=$cool steps timestep=0.00075
       iasvel=maxwell firsttemperature=$second t
       tbath=$second t
       tcoup=true
       nprint=250 iprfrq=2500
    end
                                                                   {*
    minimize powell nstep= 700 nprint=25 end
                                                                                =====400 K dynamics *}
    {* ==
    dynamics verlet
       nstep=$cool steps timestep=0.00075
       iasvel=maxwell firsttemperature=$third t
       tbath=$third t
       tcoup=true
       nprint=250 iprfrq=2500
   end
                                                                            ====Final minimization.*}
    {*
   minimize powell nstep= 1000 nprint=25 end
                                                                 {* =
    print threshold=0.5 noe
    evaluate ($rms noe=$result)
```

evaluate (\$violations noe=\$violations)

```
print threshold=5. cdih
    evaluate ($rms cdih=$result)
    evaluate ($violations cdih=$violations)
    print thres=0.05 bonds
    evaluate ($rms bonds=$result)
    print thres=5. angles
    evaluate ($rms angles=$result)
    print thres=5. impropers
    evaluate ($rms impropers=$result)
    print thres=5. dihedrals
    evaluate ($rms dihedrals=$result)
    remarks =
    remarks
                   overall, bonds, angles, improper, vdw, noe, cdih
    remarks energies: $ener, $bond, $angl, $impr, $vdw, $noe, $cdih
    remarks =
    remarks
                   bonds, angles, impropers, noe, cdih
    remarks rms-d: $rms_bonds,$rms_angles,$rms_impropers,$rms_noe,$rms_cdih
    remarks =
    remarks
                     noe, cdih
    remarks violations.: $violations_noe, $violations_cdih
    remarks
                            {*Name(s) of the family of final structures.*}
    {====>}
    evaluate ($filename="refineR "+encode($count)+".pdb")
    write coordinates output =$filename end
end loop main
stop
remarks file nmr/doc.inp -- Docking of protein to RNA
remarks including rotating protein and send away at random angle.
{====>}
                               {*Initial annealing temperature, in K.*}
evaluate (\sin t = 1000)
             {*Total number of steps during constant emperature SA.*}
{====>}
evaluate ($ctemp_steps = 50000)
{====>}
parameter
                                  {*Read the parameter file.*}
    @TOPPAR:gammahmao.par
                                              {*This file is in subdirectory*}
end
                                  {*Read the parameter file.*}
parameter
      =>}
    @TOPPAR:parallhdg.pro
end
{====>}
                                      {*The structure file.*}
structure @L30C.psf end
noe
{====>}
    reset
    nres=6000
                      {*Estimate greater than the actual number of NOEs.*}
    class rna @L30N noe.tbl
    class pro @L30P noe.tbl
              @L30P_hbond.tbl
    class comp @L30NP noe.tbl
end
                              {*Read dihedral angle restraints.*}
{====>}
```

```
@L30P dih.tbl
@L30N_dih.tbl
                {*Friction coefficient for MD heatbath, in 1/ps.*}
vector do (fbeta=10) (all)
vector do (mass=100) (all)
                             {*Heavy masses to speed molecular dynamics.*}
                     {*Parameters for NOE effective energy term.*}
noe
    ceiling=100
    averaging * R-6
    potential * square
    sqoffset * 0.0
    sqconstant * 1.
    sqexponent * 2
    soexponent * 1
                                 {* Initial value - modified later. *}
    asymptote * 2.0
    rswitch * 1.0
end
parameter
    nbonds
    repel=0.9
    rexp=2 irexp=2 rcon=1.
                    {* excludes nonbonded interactions between bonded atoms *}
    nbxmod=-2
    wmin=0.01
    cutnb=4.5 ctonnb=2.99 ctofnb=3.
    tolerance=10
    end
end
restraints dihed scale 10. end
{====>}
set seed=FOOBAR end
                                 {*Loop through a family of 20 structures.*}
evaluate ($end_count=20)
evaluate ($count = 0)
while ($count < $end count ) loop main
    evaluate ($count=$count+1)
                                          {* protein structure *}
         ==>}
    {==
    evaluate ($filename="refineP_" + encode($count)+".pdb")
    coor @@$filename
                                                                               = rotate protein coordinates *}
    {* =
    coordinates copy end
    evaluate ($t1 = random()*180)
    evaluate (t_2 = random()*360)
    evaluate (t_3 = random()*360)
    evaluate (\$m11=cos(\$t1)*cos(\$t3)-sin(\$t1)*cos(\$t2)*sin(\$t3))
    evaluate ($m12=sin($t1)*cos($t3)+cos($t1)*cos($t2)*sin($t3))
    evaluate (\$m13=sin(\$t2)*sin(\$t3))
    evaluate ($m21=-sin($t1)*cos($t2)*cos($t3)-cos($t1)*sin($t3))
    evaluate (\$m22=-sin(\$t1)*sin(\$t3)+cos(\$t1)*cos(\$t2)*cos(\$t3))
    evaluate ($m23=sin($t2)*cos($t3))
    evaluate ($m31=sin($t1)*sin($t2))
    evaluate (\$m32 = -\cos(\$t1) * \sin(\$t2))
    evaluate ($m33=cos($t2))
    vector do (x=xcomp*$m11+ycomp*$m12+zcomp*$m13) (all)
    vector do (y=xcomp*$m21+ycomp*$m22+zcomp*$m23) (all)
    vector do (z=xcomp*$m31+ycomp*$m32+zcomp*$m33) (all)
                                                             {* translate protein coordinates was 70, too short. *}
```

```
evaluate ($tdist=100.0)
evaluate ($sx=random()-0.5)
evaluate ($sy=random()-0.5)
evaluate ($sz=random()-0.5)
evaluate ($len=sqrt($sx*$sx+$sy*$sy+$sz*$sz))
evaluate ($tx=$tdist*$sx/$len)
evaluate ($ty=$tdist*$sy/$len)
evaluate ($tz=$tdist*$sz/$len)
vector do (x=x+tx) (all)
vector do (y=y+ty) (all)
vector do (z=z+tz) (all)
{====>}
                                      {* RNA structure *}
evaluate ($filename="refineR " + encode($count)+".pdb")
coor @@$filename
flags exclude * include bond angl impr vdw noe cdih dihe end
restraints plane
    group
        selection =(
                 (not (name P or name O1P or name O2P or name O5' or name H5T or
                     name H1' or name H2' or name H3' or name H4' or name H5' or
                     name O2' or name HO2' or name H5" or
                     name O3' {or name C1'} or name C2' or name C3' or name C4' or
                     name C5' or name O4' or name H3T) and residue 207)
               or (not ( name P or name O1P or name O2P or name O5' or name H5T or
                     name H1' or name H2' or name H3' or name H4' or name H5' or
                     name O2' or name HO2' or name H5" or
                     name O3' {or name C1'} or name C2' or name C3' or name C4' or
                     name C5' or name O4' or name H3T) and residue 224)
        )
        weight=1.0
    end
end
flags include plan end
                         {* The planarity energy term needs to be turned on *}
constraints
    interaction (all) (all)
    weights * 1 impr 0.5 end
end
evaluate (totsteps = 0)
{* =
                                                                   =Ramping up NOE during docking*}
vector do (fbeta=100.) (all)
                                    {* Coupling to heat bath. *}
                                     {* Coupling to heat bath. *}
vector do (mass=100.) (all)
noe scale pro 50 end
noe scale rna 50 end
evaluate (\ = 0.001)
While (\ knoe < 50) loop noeramp
    noe scale comp $knoe end
    evaluate ($knoe = $knoe*1.5)
    dynamics verlet
        nstep=2000 timestep=0.003
        iasvel=maxwell firsttemperature=$init t
        tbath=$init t
        tcoup=true
        nprint=250 iprfrq=2500
        end
```

```
end loop noeramp
                                                                                    ---Final minimization.*}
    {* =
   minimize powell nstep= 200 nprint=25 end
                                                                          =Write out the final structure(s).*}
    {* :
   print threshold=0.5 noe
   evaluate ($rms noe=$result)
   evaluate ($violations noe=$violations)
   print threshold=5. cdih
   evaluate ($rms_cdih=$result)
   evaluate ($violations cdih=$violations)
   print thres=0.05 bonds
   evaluate ($rms_bonds=$result)
   print thres=5. angles
   evaluate ($rms angles=$result)
    print thres=5. impropers
    evaluate ($rms_impropers=$result)
    remarks =
                   overall, bonds, angles, improper, vdw, noe, cdih
    remarks
   remarks energies: $ener, $bond, $angl, $impr, $vdw, $noe, $cdih
   remarks
                   bonds, angles, impropers, noe, cdih
   remarks
   remarks rms-d: $rms bonds,$rms angles,$rms impropers,$rms noe,$rms_cdih
   remarks =
                    noe, cdih
   remarks
   remarks violations .: $violations noe, $violations_cdih
   remarks ==
                           {*Name(s) of the family of final structures.*}
    {====>}
    evaluate ($filename="doc "+encode($count)+".pdb")
    write coordinates output =$filename end
end loop main
stop
                                    -- Gentle simulated annealing refinement
remarks file nmr/complexr.inp
                         for NMR structure determination
remarks
remarks based on pardi annealing protocol from Biochemistry on small loop.
remarks complex first refinement hm 3/4/98
{====>}
                                       {*SA temperature, in K.*}
evaluate (\$init t = 1000)
{====>}
evaluate (second_t = 600)
{====>}
evaluate ($third t = 400)
{====>}
evaluate ($cool_steps =10000 )
                                        {*Total number of SA steps.*}
parameter
                                              {*This file is in subdirectory*}
    @TOPPAR:gammahmao.par
end
                                  {*Read the parameter file.*}
parameter
    {====>}
    @TOPPAR:parallhdg.pro
end
                                                {*The structure file.*}
    ==>} structure @L30C.psf end
{=
```

```
noe
    reset
    nres=6000
                      {*Estimate greater than the actual number of NOEs.*}
    class rna @L30N noe.tbl
    class pro @L30P noe.tbl
               @L30P hbond.tbl
    class comp @L30NP noe.tbl
end
{====>}
                              {*Read dihedral angle restraints.*}
@L30P dih.tbl
@L30N dih.tbl
noe
                     {*Parameters for NOE effective energy term.*}
    ceiling=1000
    averaging * R-6
    potential * square
    scale
            * 50
    sqoffset * 0.0
    sqconstant * 1.
    sqexponent * 2
    soexponent * 1
    asymptote * 2.0
                                 {* Initial value - modified later. *}
    rswitch * 1.0
end
parameter
    nbonds
    repel=0.9
    rexp=2 irexp=2 rcon=1.
    nbxmod=-5
    wmin=0.01
    cutnb=4.5 ctonnb=2.99 ctofnb=3.
    tolerance=1
    end
end
restraints dihedral scale=10. end
                                 {* scale above 100 is bad base on nt. tests *}
{====>}
set seed=FOOBAR end
evaluate ($end count=20)
                                {*Loop through a family of 20 structures.*}
evaluate ($count = 0)
while ($count < $end count ) loop main
    evaluate ($count=$count+1)
                               {*Filename(s) for embedded coordinates.*}
    {=
         =>}
    evaluate ($filename="doc_"+encode($count)+".pdb")
    coor @@$filename
    flags exclude * include bond angl impr vdw noe cdih end
    {* in nucl. tests impr too high led to collapse of bases *}
    constraints
        interaction (all) (all)
        weights impr 0.5 end
    end
    {*
                                                                                    =Intial minimization.*}
    minimize powell nstep= 100 nprint=25 end
    {* :
                                                                               =Constant temperature SA.*}
    vector do (fbeta=100.) (all)
                                         {* Coupling to heat bath. *}
    vector do (mass=100.) (all)
                                         {* Set mass to heavy. *}
```

```
dynamics verlet
    nstep=$cool_steps_timestep=0.00075
    iasvel=maxwell firsttemperature=$init t
    tbath=$init t
    tcoup=true
    nprint=250 iprfrq=2500
end
                                                                             = 700 step minimization.*}
{* =
minimize powell nstep= 700 nprint=25 end
                                                                                    =600 K dynamics *}
{* ==
dynamics verlet
    nstep=$cool steps timestep=0.00075
    iasvel=maxwell firsttemperature=$second t
    tbath=$second t
    tcoup=true
    nprint=250 iprfrq=2500
end
                                                                       =======700 step minimization.*}
{*
minimize powell nstep= 700 nprint=25 end
                                                                                   = 400 K dynamics *}
{* =====
dynamics verlet
    nstep=$cool_steps timestep=0.00075
    iasvel=maxwell firsttemperature=$third_t
    tbath=$third t
    tcoup=true
    nprint=250 iprfrq=2500
end
                                                                                 =Final minimization.*}
{*
minimize powell nstep= 1000 nprint=25 end
                                                                       Write out the final structure(s).*}
{* =
print threshold=0.5 noe
evaluate ($rms_noe=$result)
evaluate ($violations noe=$violations)
print threshold=5. cdih
evaluate ($rms cdih=$result)
evaluate ($violations cdih=$violations)
print thres=0.05 bonds
evaluate ($rms_bonds=$result)
print thres=5. angles
evaluate ($rms angles=$result)
print thres=5. impropers
evaluate ($rms_impropers=$result)
print thres=5. dihedrals
evaluate ($rms dihedrals=$result)
remarks =
remarks
               overall, bonds, angles, improper, vdw, noe, cdih
remarks energies: Sener, Sbond, Sangl, Simpr, Svdw, Snoe, Scdih
remarks =
               bonds,angles,impropers,noe,cdih
remarks
remarks rms-d: $rms_bonds,$rms_angles,$rms_impropers,$rms_noe,$rms_cdih
remarks =
                 noe, cdih
remarks
```

```
remarks =
    {====>}
                           {*Name(s) of the family of final structures.*}
    evaluate ($filename="refine_"+encode($count)+".pdb")
    write coordinates output =$filename end
end loop main
stop
remarks file nmr/complexr2.inp
                                   -- Gentle simulated annealing refinement
remarks
                          for NMR structure determination
remarks based on pardi annealing protocol from Biochemistry on small loop.
remarks complex second refinement adapted by hm 3/4/98
{====>}
evaluate (\$init t = 1000)
                                       {*SA temperature, in K.*}
{====>}
evaluate (final t = 10)
{====>}
evaluate ($cool_steps =10000)
                                       {*Total number of SA steps.*}
{====>}
                                 {*Read the parameter file.*}
parameter
    @TOPPAR:gammahmao.par
                                             {*This file is in subdirectory*}
end
                                 {*Read the parameter file.*}
parameter
    @TOPPAR:parallhdg.pro
end
{====>} structure @L30C.psf end
                                               {*The structure file.*}
noe
{====>}
    reset
    nres=6000
                      {*Estimate greater than the actual number of NOEs.*}
    class rna @L30N noe.tbl
    class pro @L30P_noe.tbl
               @L30P hbond.tbl
    class comp @L30NP noe.tbl
end
                              {*Read dihedral angle restraints.*}
{====>}
@L30P dih.tbl
@L30N_dih.tbl
                     {*Parameters for NOE effective energy term.*}
noe
    ceiling=1000
    averaging * R-6
    potential * square
            * 50
    scale
    sqoffset * 0.0
    sqconstant * 1.
    sqexponent * 2
    soexponent * 1
                                 {* Initial value - modified later. *}
    asymptote * 2.0
    rswitch * 1.0
end
parameter
    nbonds
        repel=0.9
```

remarks violations.: \$violations_noe, \$violations_cdih

```
rexp=2 irexp=2 rcon=1.
        nbxmod=-5
        wmin=0.01
        cutnb=4.5 ctonnb=2.99 ctofnb=3.
        tolerance=1
    end
end
restraints dihedral scale=10. end {* scale above 100 is bad base on nt. tests *}
{====>}
set seed=FOOBAR end
evaluate ($end_count=20)
                                {*Loop through a family of 7 structures.*}
evaluate (scount = 0)
while ($count < $end count ) loop main
    evaluate ($count=$count+1)
    {====>}
                               {*Filename(s) for embedded coordinates.*}
    evaluate ($filename="refine_"+encode($count)+".pdb")
    coor @@$filename
    flags exclude * include bond angl impr vdw noe cdih end
    restraints plane
    group
        selection =(
                (not (name P or name O1P or name O2P or name O5' or name H5T or
                     name H1' or name H2' or name H3' or name H4' or name H5' or
                     name O2' or name HO2' or name H5" or
                    name O3' {or name C1'} or name C2' or name C3' or name C4' or
                    name C5' or name O4' or name H3T) and residue 207)
               or (not ( name P or name O1P or name O2P or name O5' or name H5T or
                    name H1' or name H2' or name H3' or name H4' or name H5' or
                    name O2' or name HO2' or name H5" or
                    name O3' {or name C1'} or name C2' or name C3' or name C4' or
                    name C5' or name O4' or name H3T) and residue 224)
        )
        weight=1.0
        end
    end
    flags include plan end
                             {* The planarity energy term needs to be turned on *}
    {* in nucl. tests impr too high led to collapse of bases *}
    constraints
        interaction (all) (all)
        weights impr 0.5 end
    end
    {*
                                                                                     = Intial minimization.*}
    minimize powell nstep= 200 nprint=25 end
                                                                                 Constant temperature SA.*}
    {* =
    vector do (fbeta=100.) (all)
                                        {* Coupling to heat bath. *}
    vector do (mass=100.) (all)
                                         {* Set mass to heavy. *}
   evaluate (final t = 100)
                             { K }
   evaluate ($tempstep = 10) { K }
   evaluate ($ncycle = ($init t-$final_t)/$tempstep)
   evaluate ($nstep = int($cool steps/$ncycle))
   evaluate (\sin i rad = 0.9) evaluate (fin rad = 0.75)
   evaluate ($ini con= 0.003) evaluate ($fin con= 4.0)
   evaluate (bath = sinit t)
    evaluate ($k vdw = $ini con)
```

```
evaluate (k_vdwfact = (fin con/fini con/(1/fincycle))
evaluate ($radius= $ini rad)
evaluate ($radfact = ($fin_rad/$ini_rad)^(1/$ncycle))
evaluate ((i \ cool = 0))
while ($i cool < $ncycle) loop cool
    evaluate ($i cool=$i cool+1)
    evaluate ($bath = $bath - $tempstep)
    evaluate ($k_vdw=min($fin_con,$k_vdw*$k_vdwfact))
    evaluate ($radius=max($fin rad,$radius*$radfact))
    parameter nbonds repel=$radiusend end
    constraints interaction (all) (all) weights * 1. impr 0.5 vdw $k vdw end end
    dynamics verlet
        nstep=$nstep time=0.00075 iasvel=maxwell firstt=$bath
        tcoup=true tbath=$bath nprint=$nstep iprfrq=0
    end
    {* =
                                                                               =700 step minimization.*}
    minimize powell nstep= 100 nprint=25 end
                                            {*Abort condition.*}
    {====>}
    evaluate ($critical=$temp/$bath)
    if (|| critical > 10.) then
        display ****&&&& rerun job with smaller timestep (i.e., 0.003)
        stop
    end if
end loop cool
{* ==
                                                                                  =Final minimization.*}
minimize powell nstep= 1000 nprint=25 end
{* ==
                                                                        Write out the final structure(s).*}
print threshold=0.5 noe
evaluate ($rms_noe=$result)
evaluate ($violations noe=$violations)
print threshold=5. cdih
evaluate ($rms cdih=$result)
evaluate ($violations cdih=$violations)
print thres=0.05 bonds
evaluate ($rms bonds=$result)
print thres=5. angles
evaluate ($rms_angles=$result)
print thres=5. impropers
evaluate ($rms impropers=$result)
print thres=5. dihedrals
evaluate ($rms dihedrals=$result)
remarks =
               overall, bonds, angles, improper, vdw, noe, cdih
remarks
remarks energies: $ener, $bond, $angl, $impr, $vdw, $noe, $cdih
remarks
remarks
               bonds, angles, impropers, noe, cdih
remarks rms-d: $rms bonds,$rms angles,$rms impropers,$rms noe,$rms cdih
remarks =====
remarks
                 noe, cdih
remarks violations.: $violations_noe, $violations_cdih
remarks =
{====>}
                        {*Name(s) of the family of final structures.*}
evaluate ($filename="refine2_"+encode($count)+".pdb")
write coordinates output =$filename end
```

Appendix B. Modeling Protocol

end loop main stop

.

-

Appendix C. Restraints

Table C. Molecular modeling restraint files used in X-PLOR calculation (*.tbl). There are six "*.tbl" files in this table, including four distance restraints: L30P_noe.tbl, L30P_hbond.tbl, L30N_noe.tbl and L30NP_noe.tbl, and two dihedral restraints: L30P_dih.tbl and L30N_dih.tbl. The columns for distance restraints are as follows: (1) "assign", (2) "(resid", (3) residue #, (4) "and", (5) "name", (6) atom name ")", (7) "(resid", (8) residue #, (9) "and", (10) "name", (11) atom name ")", (12) distance, (13) d_{minus}, and (14) d_{plus}. The columns for dihedral angle restraints are similar, except for the following ones: (12) energy constant, (13) dihedral angle, (14) range around the restrained angle, and (15) exponent of the restraining function. Restraints are divided into various classes of restraints for clarity of reading. The different sections are headed by comments "!". Note that the numbering of the RNA in the restraint file is different than the main body of the text. The RNA is numbered as 201-233.

!Protein intra- and inter- residue restraints, L30P_noe.tbl ,7/10/98 set echo = off end

!intra- ressidue restraints

!ALA													
assign	(resid	2	and	name	HA)	(resid	2	and	name	HB*)	2.4	0.6	0.6
!PRO					,	`				,			
assign	(resid	3	and	name	HB1)	(resid	3	and	name	HA)	2.4	0.6	0.6
assign	resid	3	and	name	HB2)	resid	3	and	name	HA)	2.4	0.6	0.6
assign	resid	3	and	name	HD*)	resid	3	and	name	HB1)	3.9	2.1	2.1
assign	resid	3	and	name	HD*)	resid	3	and	name	HB2)	3.9	2.1	2.1
assign	resid	3	and	name	HG*)	resid	3	and	name	HB1)	2.4	0.6	0.6
assign	resid	3	and	name	HG*)	resid	3	and	name	HB2)	2.4	0.6	0.6
assign	(resid	3	and	name	HG* ý	resid	3	and	name	HD*)	2.4	0.6	0.6
!VAL	C	_				•							
assign	(resid	4	and	name	HB)	(resid	4	and	name	HA)	2.9	1.1	1.1
assign	(resid	4	and	name	HGI [*])	resid	4	and	name	HA)	2.4	0.6	0.6
assign	resid	4	and	name	HG2*)	resid	4	and	name	HA)	2.4	0.6	0.6
assign	(resid	4	and	name	HG1*)	(resid	4	and	name	HB)	2.9	1.1	1.1
assign	resid	4	and	name	HG2*)	(resid	4	and	name	HB)	2.9	1.1	1.1
assign	(resid	4	and	name	HN)	(resid	4	and	name	HA)	2.4	0.6	0.6
assign	(resid	4	and	name	HN)	(resid	4	and	name	HB)	2.4	0.6	0.6
assign	(resid	4	and	name	HN)	(resid	4	and	name	HG2*)	2.9	1.1	1.1
assign	(resid	4	and	name	HN)	(resid	4	and	name	HG1*)	3.4	1.6	1.6
!LYS	`					•							
assign	(resid	5	and	name	HB1)	(resid	5	and	name	HA)	2.4	0.6	0.6
assign	resid	5	and	name	HB2)	(resid	5	and	name	HA)	2.4	0.6	0.6
assign	resid	5	and	name	HE*)	(resid	5	and	name	HA)	3.4	1.6	1.6
assign	(resid	5	and	name	HE*)	(resid	5	and	name	HB*)	3.4	1.6	1.6
assign	(resid	5	and	name	HE*)	(resid	5	and	name	HN)	3.9	2.1	2.1
assign	(resid	5	and	name	HG*)	(resid	5	and	name	HB*)	2.4	0.6	0.6
assign	(resid	5	and	name	HN)	(resid	5	and	name	HA)	2.9	1.1	1.1
assign	resid	5	and	name	HN)	(resid	5	and	name	HB1)	2.4	0.6	0.6
assign	resid	5	and	name	HN)	resid	5	and	name	HB2)	2.9	1.1	1.1
assign	(resid	5	and	name	HN)	(resid	5	and	name	HD*)	3.9	2.1	2.1
assign	resid	5	and	name	HNÍ	(resid	5	and	name	HG*)	3.4	1.6	1.6
ISER	(-				`							
assign	(resid	6	and	name	HB*)	(resid	6	and	name	HA)	2.4	0.6	0.6
assign	(resid	6	and	name	HNÍ	resid	6	and	name	HA)	2.4	0.6	0.6
assign	(resid	Ğ	and	name	HN)	(resid	6	and	name	HB*)	2.9	1.1	1.1
GLN	(10010	Ũ				(,			
assion	(resid	7	and	name	HB1)	(resid	7	and	name	HA)	2.4	0.6	0.6
assign	(resid	7	and	name	HB2	resid	7	and	name	HAÚ	2.4	0.6	0.6
assion	(resid	7	and	name	HE2*)	resid	7	and	name	HA)	3.4	1.6	1.6
assion	(resid	7	and	name	HE2*)	(resid	7	and	name	HB*)	3.9	2.1	2.1
assign	(resid	7	and	name	HG*	resid	7	and	name	HA	3.4	1.6	1.6
العادده	(Lesta	'	autu	manie	10)	(10010)			

set message = off end
		~			TTO+ \	1 1	-				24	06	06
assign	(resid	7	and	name	HG ⁺)	(resid	/	and	name	пы)	2.4	0.6	0.0
assign	(resid	7	and	name	HG*)	(resid	7	and	name	HB2)	2.4	0.6	0.6
assign	rocid	7	and	name	HG# S	resid	7	and	name	HE2*)	2.9	1.1	1.1
assign	(I cold	<i>-</i>		name		(TOSIG				TTA	24	0.6	0.6
assign	(resid	7	and	name	HN)	(resid	1	and	name	HA)	2.4	0.6	0.6
assign	resid	7	and	name	HN)	(resid	7	and	name	HB1)	2.9	1.1	1.1
annian	recid	7	and	name	HNÍ	resid	7	and	name	HB2)	34	16	16
assign	(Testa	ź	410	пате		(reold	4	and		UE2*)	20	2 1	2.1
assign	(resid	1	and	name	HN)	(resia	/	and	name	HE2")	3.9	2.1	2.1
assign	(resid	7	and	name	HN)	(resid	7	and	name	HG*)	3.4	1.6	1.6
GIL	(-					•							
.010		~				/ · ·	•			TTA \	24	06	06
assign	(resid	8	and	name	HB-)	(resid	ð	and	name	nA)	2.4	0.0	0.0
assign	(resid	8	and	name	HG*)	(resid	8	and	name	HA)	2.9	1.1	1.1
	(monid	ō	and	nama	HG#)	Tracid	8	and	name	HB*)	24	06	0.6
assign	(resid	0	and	Indille		(I cold	0	and	Indino		2.4	0.0	0.0
assign	(resid	8	and	name	HN)	(resid	8	and	name	па)	2.4	0.0	0.0
assign	(resid	8	and	name	HN)	(resid	8	and	name	HB*)	2.9	1.1	1.1
	(manid	ō	and		LINI	irocid	8	and	name	HG*)	29	11	11
assign	(Testa	0	and	maine	, m, j	(I cold	0		Indiate				•••
!SER													
assign	(resid	9	and	name	HB1)	(resid	9	and	name	HA)	2.9	1.1	1.1
anion	(regid	۰ ۵	and	name	HB2 \	(resid	9	and	name	HA	2.4	0.6	0.6
assign	(Testu	2	4110	name	$\frac{11D2}{101}$	(Teste	ó	and		TIA (20	1 1	1 1
assign	(resid	9	and	name	HN)	(resid	9	and	name	HA)	2.9	1.1	1.1
assign	(resid	9	and	name	HN)	(resid	9	and	name	HB1)	2.4	0.6	0.6
	and	0	and	nomo	HN	recid	Q	and	name	HB2 \	24	06	0.6
assign	(resid	7	anu	nanie	III J	(Testa		ans	Indillo	1102)		0.0	0.0
!ILE													
assign	(resid	10	and	name	HB)	(resid	10	and	name	HA)	2.9	1.1	1.1
	(manid	10	and	name	HD1+)	Tresid	10	and	name	ΗΔΊ	3.4	1.6	1.6
assign	(Testa	10	4110	name		(Teste	10			TID (20	1 1	1 1
assign	(resid	10	and	name	HDI*)	(resia	10	and	name	пь)	2.9	1.1	1.1
assign	(resid	10	and	name	HG1*)	(resid	10	and	name	HA)	2.9	1.1	1.1
20010	(rooid	10	and	name	HG1*5	Tresid	10	and	name	HBÍ	2.9	1.1	1.1
assign	(resid	10	anu	name	1101)	(itesid	10		Indine		2.4	0.0	0.0
assign	(resid	10	and	name	HGI*)	(resid	10	and	name	HDI+)	2.4	0.6	0.0
assion	Íresid	10	and	name	HG2*)	(resid	10	and	name	HA)	3.4	1.6	1.6
	(manid	10	and		HC2+)	racid	10	and	name	HRÍ	29	11	11
assign	(resid	10	and	name	1102)	(resid	10	and	mane		2.0	1.1	
assign	(resid	10	and	name	HG2∓)	(resid	10	and	name	HDIT)	2.9	1.1	1.1
assion	resid	10	and	name	HG2*)	(resid	10	and	name	HG1*)	2.9	1.1	1.1
assign	(nonid	10	and	20220	HN	resid	10	and	name	HAJ	29	11	11
assign	(resid	10	and	name		(I cold	10		manie		24	0.6	0.6
assign	(resid	10	and	name	HN)	(resid	10	and	name	нь)	2.4	0.0	0.0
assign	resid	10	and	name	HN)	(resid	10	and	name	HD1*)	3.9	2.1	2.1
anim	(manid	10	and	nama	HNÍ	Tracid	10	and	name	HG1*5	34	16	1.6
assign	(resid	10	and	name		(I cold	10			HC2*	20	1 1	1 1
assign	(resid	10	and	name	HN)	(resia	10	and	name	но ₂ .)	2.9	1.1	1.1
1ASP													
	(manid	11	and	name	HR#)	(resid	11	and	name	HA)	2.4	0.6	0.6
assign	(resid	11	and	name		(Tesid	11			TTA (2 4	16	16
assign	(resid	11	and	name	$HD2^{+})$	(resid	11	and	name	HA)	5.4	1.0	1.0
assign	(resid	11	and	name	HD2*)	(resid	11	and	name	HB*)	2.4	0.6	0.6
anian	(resid	11	and	name	HN)	iresid	11	and	name	HA	2.4	0.6	0.6
assign	(resid	11	anu	name		(Teste		- und		UD*	24	0.6	0.6
assign	(resid	11	and	name	HN)	(resia	11	and	name	пр.)	2.4	0.0	0.0
assign	(resid	11	and	name	HN)	(resid	11	and	name	HD2*)	3.9	2.1	2.1
IGI N	(•							
OLN						(:4	10			UA)	21	06	06
assign	(resid	12	and	name	HB2)	(resid	12	and	name	IA)	2.4	0.0	0.0
assign	(resid	12	and	name	HB1)	(resid	12	and	name	HA)	2.9	1.1	1.1
assign	regid	12	and	name	HF2*1	resid	12	and	name	HA)	3.9	2.1	2.1
assign	(resid	12	and	manic	TID2)	(ICSIG	10			UD1 \	2.0	21	21
assign	(resid	12	and	name	HE2*)	(resia	12	and	name	пы)	3.7	2.1	2.1
assign	(resid	12	and	name	HE2*)	(resid	12	and	name	HB2)	3.4	1.6	1.6
accian	(recid	12	and	name	HG* 1	(resid	12	and	name	HA)	2.9	1.1	1.1
assign	(Tesid	12	and	name		(resid	12	and		LIP2	21	0.6	0.6
assign	(resid	12	and	name	HG ⁺)	(resid	12	and	name	IID2 J	2.4	0.0	0.0
assign	(resid	12	and	name	HG*)	(resid	12	and	name	HE2*)	2.4	0.6	0.6
accion	(resid	12	and	name	HN)	(resid	12	and	name	HA)	2.4	0.6	0.6
assign	(resid	12	and			(regid	12	and	name	HBIN	29	11	11
assign	(resid	12	anu	name		(i estu	12			UD2	24	04	04
assign	(resid	12	and	name	HN)	(resid	12	and	name	п D 4)	2.4	0.0	0.0
assign	(resid	12	and	name	HN)	(resid	12	and	name	HG₹)	3.4	1.6	1.6
accion	resid	12	and	name	HNÍ	resid	12	and	name	HE2*)	3.9	2.1	2.1
assign	(Testu	14	and	name	III ,)	(10010)			
!LYS								_			~ ~		
assign	(resid	13	and	name	HA)	(resid	13	and	name	HD ▼)	3.9	2.1	2.1
accion	Terrid	13	and	name	HB* Ú	(resid	13	and	name	HA)	2.9	1.1	1.1
moight		12			UD±	(12	and	name	HF* \	34	16	16
assign	(resid	15	and	name	nd)	(Lesia	13	1	maine		2.7	1.0	1.0
assign	(resid	13	and	name	HG*)	(resid	13	and	name	HA)	3.4	1.6	1.6
accian	Tesid	13	and	name	HG* Ú	(resid	13	and	name	HE*)	2.9	1.1	1.1
assign	(10510	12	and a			(manid	12	and	name	на і	24	0.6	06
assign	(resid	15	and	name	<u> </u>	(Lesia	13	and	manne		2.7	1 1	1 1
assign	(resid	13	and	name	HN)	(resid	13	and	name	нвт)	2.9	1.1	1.1
assim	recid	13	and	name	HNÍ	(resid	13	and	name	HD*)	3.4	1.6	1.6
monghi	(1030	10	and a			(manial	12	and	nama	HG* S	34	16	16
assign	(resid	13	and	name	IIIN)	(10010	15	and	Marine		2.4	1.0	1.0
assign	(resid	13	and	name	HN)	(resid	13	and	name	ne•)	3.4	1.6	1.6
แม้บ	`				-								
	(14	o 4		HPIN	(recid	14	and	name	HA)	2.9	11	1.1
assign	(resid	14	anu	name		(Testa	14			<u></u>	24	04	04
assign	(resid	14	and	name	нв2)	(resid	14	and	name	na)	2.4	0.0	0.0
assion	resid	14	and	name	HD2*)	(resid	14	and	name	HA)	3.4	1.6	1.6
andigu	(14			HD2*	Torid	14	and	name	HBIN	2.9	1.1	1.1
assign	(resid	14		ITATLE		(I COLO	14			HG \	24	0.6	04
assign	(resid	14	and	name	нD2*)	(resid	14	and	name	10)	2.4	0.0	0.0
assign	(resid	14	and	name	HD2*)	(resid	14	and	name	HDI*)	2.4	0.6	0.6
accian	(ranid	14	and	name	HD1*1	resid	14	and	name	HB2 Ú	2.9	1.1	1.1
0.001211	LI COLU	7.44)	1				/		-	. –

assion	(resid	14	and	name	HD1*)	(recid	14	and	name	HG)	24	06	06
assign	(regid	14	and	mame		(read	14	and	name		2.4	1.1	1.1
assign	(Tesid	14	and	name		(resid	14	and	name		2.9	1.1	1.1
assign	(resid	14	and	name	HG)	(resid	14	and	name	HA)	3.4	1.6	1.6
assign	(resid	14	and	name	HG)	(resid	14	and	name	HB1)	2.9	1.1	1.1
assign	(resid	14	and	name	HG)	(resid	14	and	name	HB2)	2.9	1.1	1.1
assign	(resid	14	and	name	HNÍ	resid	14	and	name	HA	2.9	1.1	1.1
assion	resid	14	and	name	HNÍ	resid	14	and	name	HBI	24	0.6	0.6
assign	(regid	14	and	70000		(rooid	14	and			24	0.6	0.0
assign	(Tesiu	14	anu	name			14	and	name	HD2)	2.4	0.0	0.0
assign	(resid	14	and	name	HN)	(resid	14	and	name	HDI+)	3.4	1.6	1.6
assign	(resid	14	and	name	HN)	(resid	14	and	name	HD2*)	3.9	2.1	2.1
assign	resid	14	and	name	HNÍ	resid	14	and	name	HG)	3.4	1.6	1.6
ΙΔΙΔ	C					(,			
	(manid	15				(manid	15	amd		UA)	24	04	06
assign	(resid	15	and	name		(resid	15	and	name		2.4	0.0	0.0
assign	(resid	15	and	name	HN)	(resid	15	and	name	HA)	2.4	0.6	0.6
assign	(resid	15	and	name	HN)	(resid	15	and	name	HB₹)	2.4	0.6	0.6
!LEU													
assign	(resid	16	and	name	HB1)	(resid	16	and	name	HA)	2.9	1.1	1.1
assign	resid	16	and	name	HB2 \	resid	16	and	name	HA	24	0.6	0.6
assign	(resid	10	and	manie		(ICSIG	10	and a	mame		2.4	2.1	2.1
assign	(resid	10	and	name	ng)	(resid	10	and	name		3.9	2.1	2.1
assign	(resid	16	and	name	HD1*)	(resid	16	and	name	HA)	3.4	1.6	1.6
assign	(resid	16	and	name	HD1*)	(resid	16	and	name	HB1)	2.9	1.1	1.1
assign	resid	16	and	name	HD1*)	resid	16	, and	name	HG)	2.4	0.6	0.6
assign	Tesid	16	and	name	HD2+5	resid	16	and	name	HAÍ	29	11	11
assign	(resid	10		name		(resid	14	and	mame		20	1 1	1 1
assign	(resia	16	and	name	$HD2^{+})$	(resid	10	and	name	$\frac{102}{10}$	2.7	1.1	1.1
assign	(resid	16	and	name	HD2*)	(resid	16	and	name	HG)	2.4	0.6	0.6
assign	(resid	16	and	name	HN)	(resid	16	and	name	HA)	2.4	0.6	0.6
assign	(resid	16	and	name	HNÍ	resid	16	and	name	HB1)	2.4	0.6	0.6
assign	recid	16	and	name	HN	resid	16	and	name	HB2 S	24	0.6	06
assign	(resid	10	and	manie		(reald	14	and	name		2 1	1.6	1.6
assign	(resid	10	and	name		(resid	10		name	IID1')	3.4	1.0	1.0
assign	(resid	16	and	name	HN)	(resid	16	and	name	$HD2^{+})$	3.9	2.1	2.1
assign	(resid	16	and	name	HN)	(resid	16	and	name	HG)	2.9	1.1	1.1
VAL.	•					•							
2000	(recid	17	and	name	HA)	(resid	17	and	name	HB)	29	1.1	1.1
assign	(resid	17	and	name	H(2)*)	(recid	17	and	name	HAN	24	0.6	0.6
assign	(resid	17	anu	name		(resid	17	anu 	manic		2.4	1 1	1 1
assign	(resid	17	and	name	$HG2^{+}$)	(resid	17	and	name		2.9	1.1	1.1
assign	(resid	17	and	name	HG2*)	(resid	17	and	name	HG1*)	2.4	0.6	0.6
assign	resid	17	and	name	HG2*)	(resid	17	and	name	HN)	2.4	0.6	0.6
assign	resid	17	and	name	HG1* \	(resid	17	and	name	HAÍ	2.4	0.6	0.6
assign	(resid	17	and	name		(recid	17	and	name	HRÍ	24	0.6	0.6
assign	(resid	17	and	name		(icsiu	17	anu	mame		2.7	1.0	1.0
assign	(resid	17	and	name	HGI+)	(resid	17	and	name	HIN)	3.4	1.0	1.0
assign	(resid	17	and	name	HN)	(resid	17	and	name	HA)	2.9	1.1	1.1
assign	resid	17	and	name	HN)	(resid	17	and	name	HB)	2.4	0.6	0.6
IIIE					,	`				-			
.ILL	(married	19	and	nama	НА)	(recid	18	and	name	HB)	29	11	11
assign	(resid	10		name		(Testu	10	and	mamo		2 1	1.1	16
assign	(resid	18	and	name	HA)	(resid	18	and	name	HOI!)	5.4	1.0	1.0
assign	(resid	18	and	name	HA)	(resid	18	and	name	HG2*)	2.4	0.6	0.6
assign	resid	18	and	name	HD1*)	(resid	18	and	name	HA)	2.9	1.1	1.1
assign	(resid	18	and	name	HD1*)	resid	18	and	name	HB)	3.4	1.6	1.6
action	(recid	19	and	name	HG1*5	resid	18	and	name	HBÍ	2.9	1.1	1.1
assign	(resid	10	and	name		(recid	18	and	name	HD1+)	24	0.6	0.6
assign	(resid	10		manie		(Testu (nestid	10	and	mamo		24	0.6	0.6
assign	(resid	18	and	name	HG2*)	(resid	10	and	name		2.4	0.0	1.0
assign	(resid	18	and	name	HG2*)	(resid	18	and	name	HDI+)	3.4	1.6	1.6
assign	(resid	18	and	name	HG2*)	(resid	18	and	name	HGI*)	2.4	0.6	0.6
assign	resid	18	and	name	HN)	(resid	18	and	name	HA)	3.4	1.6	1.6
assion	resid	18	and	name	HΝί	(resid	18	and	name	HB	2.4	0.6	0.6
accion	Tooid	19	and	name	HN	Tesid	18	and	name	HD1+1	3.4	1.6	1.6
assign	(Tesid	10		name		(nonid	10	and	name	HGIN	20	1 1	1 1
assign	tresia	18	and	name		(IESIU	10	aug	name	LICO*	2 4	16	1 4
assign	(resid	18	and	name	HN)	(resia	18	and	name	nG2+)	5.4	1.0	1.0
!LYS											_ ·		
assign	(resid	19	and	name	HA)	(resid	19	and	name	HN)	2.4	0.6	0.6
assion	regid	19	and	name	HB2 \	(resid	19	and	name	HΑ Ύ	2.4	0.6	0.6
assign	(resid	10	and	mame	UD1 ((recid	10	and	name	HAS	24	0.6	0.6
assign	(resia	19	and	name		(iesia	17		manie		2.7	0.4	0.0
assign	(resid	19	and	name	ны)	(resid	19	and	name		2.4	0.0	0.0
assign	(resid	19	and	name	HG*)	(resid	19	and	name	HA)	2.9	1.1	1.1
assign	(resid	19	and	name	HG*)	(resid	19	and	name	HB*)	2.4	0.6	0.6
assion	recid	19	and	name	HG* \	resid	19	and	name	HN)	2.9	1.1	1.1
accian	(ranid	10	and	name	HG*	recid	19	and	name	HE* ∖́	2.4	0.6	0.6
assign	(resid	17	anu	Hallic	10.1		10			HD *	2.9	1 1	1 1
assign	(resid	19	and	name	но•)	(resia	17	and	name	пр.)	2.7	1.1	1.1
!SER											-	_ ·	
assign	(resid	20	and	name	HB1)	(resid	20	and	name	HA)	2.4	0.6	0.6
assion	resid	20	and	name	HB2 \	resid	20	and	name	HA)	2.4	0.6	0.6
accian	(resid	20	and	name	HN	(resid	20	and	name	HAS	2.9	1.1	1.1
assign	(resid	20	auu	name		(manial	20	and	name	HRI	20	1 1	1 1
assign	(resia	20	and	name		(resid	20		Hallic		2.1	1 4	1.1
assign	(resid	20	and	name	HN)	(resid	20	and	name	пD2)	5.4	1.0	1.0
!GLY											_		_ ·
assign	(resid	21	and	name	HN)	(resid	21	and	name	HA*)	2.4	0.6	0.6
ILVE	(,	•							
11.1.2													

							~~			TTT:+ \	20	~ 1	0.1
assign	(resid	22	and	name	HA)	(resid	22	and	name	HET)	3.9	2.1	2.1
assion	(recid	22	and	name	HBI	(resid	22	and	name	HA)	2.4	0.6	0.6
assign	(Testu	22		manie			55			TTA	2.0	1 1	1 1
assign	(resid	22	and	name	HB2)	(resia	22	and	name	HA)	2.9	1.1	1.1
assion	resid	22	and	name	HB1)	(resid	22	and	name	HG*)	2.4	0.6	0.6
		22			TIDO	inonid	22	and	nama	UC* S	20	11	11
assign	(resid	22	and	name	по2)	(Tesia	44	anu	name	110 /	2.7	1.1	1.1
assign	(resid	22	and	name	HE*)	(resid	22	and	name	HD*)	2.9	1.1	1.1
	(10014	22			UC*	inanid	22	and	nama	HNÍ	30	21	21
assign	(resia	22	and	name	nc.)	(Testu	22	anu	manie		5.2	2.1	2.1
assion	(resid	22	and	name	HG*)	(resid	22	and	name	HA)	3.9	2.1	2.1
unoi pri	(iteore				TIC* S	2	22	and		UD * \	21	06	06
assign	(resid	22	and	name	по-)	(resid	22	anu	manie	ΠD)	2.7	0.0	0.0
assion	Tresid	22	and	name	HG*)	(resid	22	and	name	HE*)	2.4	0.6	0.6
assign	(TOSIG	~~~		1100110						TTA	24	16	16
assign	(resid	22	and	name	HN)	(resid	44	and	name	na)	5.4	1.0	1.0
assion	Tracid	22	and	name	HN)	(resid	22	and	name	HB1)	3.4	1.6	1.6
assign	(Testu	22	and	mane			22				2.0	1 1	1 1
assign	(resid	22	and	name	HN)	(resid	22	and	name	п b 2)	2.9	1.1	1.1
anniam	ironid	22	and	name	HNÌ	resid	22	and	name	HG*)	3.9	2.1	2.1
assign	(Testa	22	anu	name	····)	(10510)			
!TYR													
anniam	(racid	73	and	name	HA)	(resid	23	and	name	HB1)	2.4	0.6	0.6
assign	(Testu	25	and	manie		(i cold				TIDO	2.4	0.4	0.4
assign	(resid	23	and	name	HA)	(resid	23	and	name	пв2)	2.4	0.0	0.0
accion	Tresid	23	and	name	HD1)	(resid	23	and	name	HA)	3.4	1.6	1.6
assign	(I cold	25				(in the second s	00				24	06	06
assign	(resid	23	and	name	HDI)	(resid	23	and	name	пы)	2.4	0.0	0.0
accian	Ironid	23	and	name	HD2)	(resid	23	and	name	HA)	3.4	1.6	1.6
assign	(Testa	25		1100110			22			UD2)	24	0.6	06
assign	(resid	23	and	name	HD2)	(resia	23	and	name	пьг)	4.4	0.0	0.0
assion	(resid	23	and	name	HE1)	(resid	23	and	name	HB1)	3.4	1.6	1.6
assign	(10310				THE C	in the second	22	and	name	HDIŃ	24	06	06
assign	(resid	23	and	name	nci)	(resia	43	anu	Haille	1101)	4.4	0.0	0.0
accion	Tregid	23	and	name	HE2)	(resid	23	and	name	HB2)	3.4	1.6	1.6
assign	(ICSIG	25		1100110	TIFO					up2 S	24	06	06
assign	(resid	23	and	name	HE2)	(resia	23	and	name	ΠD_{2}	2.4	0.0	0.0
accion	(recid	22	and	name	HN)	(resid	23	and	name	HA)	3.4	1.6	1.6
assign	(resid			intite	m; ((22			UDI	21	14	14
assign	(resid	23	and	name	HN)	(resid	23	and	name	пы)	5.4	1.0	1.0
	(manid	22	and	name	HNÍ	Tresid	23	and	name	HD1)	2.9	1.1	1.1
assign	(resid	25	anu	name		(ICSIG				TTEL	20	0.1	0.1
assign	(resid	23	and	name	HN)	(resid	23	and	name	nei)	3.9	2.1	2.1
ITUD	•												
: 111						1	~ 4			LTA)	24	04	06
assign	(resid	24	and	name	нв)	(resia	24	and	name	па)	2.4	0.0	0.0
accion	resid	24	and	name	HG2*)	(resid	24	and	name	HA)	2.9	1.1	1.1
assign	(ICSIG	27	-	100110	TION					UD S	24	06	06
assign	(resid	24	and	name	HG2*)	(resia	24	DILL	name	IID)	2.4	0.0	0.0
accion	Tresid	24	and	name	HN)	(resid	24	and	name	HA)	2.9	1.1	1.1
assign	(10010					(manid	24	and	name	щаί	29	11	11
assign	(resid	24	and	name	nn)	(resid	24	anu	manne		2.7	1.1	1.1
assion	(resid	24	and	name	HN)	(resid	24	and	name	HG2*)	2.4	0.6	0.6
	(10010					•							
ILEU							~ ~				~ ^		1 1
assign	(resid	25	and	name	HA)	(resid	25	and	name	HBI)	2.9	1.1	1.1
		25	and		uλí	Tracid	25	and	name	HB2)	29	11	1.1
assign	(resia	25	and	name	117.)	(resid	25	and	mane	TT	2.0		~ 1
assion	(resid	25	and	name	HD1*)	(resid	25	and	name	HA)	3.9	2.1	2.1
	(05			UD1*1	Tracid	25	and	name	HB*)	34	16	1.6
assign	(resia	25	and	name	IIDI)	(icsiu	25	-	Indite			0.0	
assign	(resid	25	and	name	HD1*)	(resid	25	and	name	HG)	2.4	0.6	0.6
unoi Bri	(10010	25			UD1#	innid	25	and	name	HNÍ	34	16	16
assign	(resid	25	and	name	пл.,	(Testa	25	anu	manic		5.4	1.0	1.0
assion	(resid	25	and	name	HD2*)	(resid	25	and	name	HA)	2.9	1.1	1.1
- in the second		25			UD2*	iracid	25	and	name	HR*)	34	16	16
assign	(resia	25	and	name	nD ₂)	(resid	25	anu	manne		5.4	1.0	
assign	(resid	25	and	name	HD2*)	(resid	25	and	name	HG)	2.4	0.6	0.6
- and - En			d		1102*1	inanid	25	and	name	HNÍ	39	21	21
assign	(resid	25	and	name	HD2)	(Testu	25	and	name		5.7	1.1	1.6
assion	(resid	25	and	name	HG)	(resid	25	and	name	HA)	3.4	1.6	1.6
asign		25				innid	25	and	name	ΗΔ	39	21	21
assign	(resia	25	and	name	III)	(Testu	25	and	manie		2.2		
assign	(resid	25	and	name	HN)	(resid	25	and	name	HBI)	2.9	1.1	1.1
		25	and		uni	Tracid	25	and	name	HB2)	24	0.6	0.6
assign	(resid	25	anu	name		(I Cold	25		104110	TICH	2.0	1 1	1 1
assign	(resid	25	and	name	HN)	(resid	25	and	name	HG [*])	2.9	1.1	1.1
ICIV	Q					•							
:OLI						1	20			LI / *)	20	11	11
assign	(resid	26	and	name	HN)	(resia	20	and	name	na)	2.9	1.1	1.1
ITYP	-												
		07	4			(manid	27	and	name	HB2)	29	11	11
assign	(resid	21	and	name	mu)	Gesia	21		imilio		2.2	1 1	1 1
assion	(resid	27	and	name	HD1)	(resid	27	and	name	nA)	2.9	1.1	1.1
-		27	and		uno í	Creed	27	and	name	HB1)	2.9	1.1	1.1
assign	(resia	41	DILA	Inallic	111/2	(Lesia				HA V	2 4	1.4	14
assign	(resid	27	and	name	HD2)	(resid	27	and	name	пA)	J.4	1.0	1.0
	(mani d	27	and	name	HE2 \	Tresid	27	and	name	HB1)	3.9	2.1	2.1
assign	(resia	21	and	manne	11152)	(i cald	27	-			20	2.1	2.1
assign	(resid	27	and	name	HEI)	(resid	27	and	name	HB2)	3.9	2.1	2.1
	(27	and	name	HEIŃ	(recid	27	and	name	HA)	3.9	2.1	2.1
assign	(resid	41	allu	name	11101		22			114	20	1 1	1 1
assign	(resid	27	and	name	HN)	(resid	27	and	name	na)	4.7	1.1	1.1
	(mani d	27	and	name	HNÍ	(resid	27	and	name	HB1)	3.9	2.1	2.1
assign	(resia	41	مالك	name	- H2 (~~			UD2	20	1 1	1.1
assign	(resid	27	and	name	HN)	(resid	27	and	name	п b 2)	2.9	1.1	1.1
	(read	27	and	name	HNÍ	(resid	27	and	name	HD1)	3.9	2.1	2.1
assign	(resid	41	and	1101110		(-	
!LYS											• •		
accion	(recid	28	and	name	HA)	(resid	28	and	name	HB*)	2.9	1.1	1.1
assign	(Lesia	40	_ 1		UA ((manid	20	and	name	н ∩ * у́	30	21	21
assign	(resid	28	and	name	пА)	(resia	28	anu	maine	, ,	5.5	2.1	2.1
acción	recid	28	and	name	HG*)	(resid	28	and	name	HA)	3.9	2.1	2.1
assign	(i calu	20			UC*	(mani 4	20	and	name	HD*΄\	30	21	2.1
assign	(resid	28	and	name	nor)	(resid	20	anu	manne		2.2	1 1	1 1
assion	(resid	28	and	name	HN)	(resid	28	and	name	HA)	2.9	1.1	1.1
	(ac-14	20	and	nama	HNÍ	recid	28	and	name	HB*)	3.4	1.6	1.6
assign	(resia	28	anu	Hallie		1.0310	20				20	2 1	2.1
assign	(resid	28	and	name	HN)	(resid	28	and	name	HDr)	3.9	2.1	2.1
	(manid	20	and	name	HNÍ	(resid	28	and	name	HG*)	3.9	2.1	2.1
assign	(resia	4 8	210	Harrie	, run ((10010	20)			
!SER													
	(manid	20	and	name	HA)	(resid	29	and	name	HB*)	2.9	1.1	1.1
4551911	110310	47	an 10	1104110		1							

Appendix	С	Restraints	5
----------	---	------------	---

assign	(resid	29	and	name	HN)	(resid	29	and	name	HA)	2.4	0.6	0.6
assign	recid	20	and	name	HN	resid	29	and	name	HB*)	29	11	11
assign	(resid	29	and	name	ш ч)	(resid	2.7	and	name	m)	2.7	1.1	1.1
!THR													
assign	(resid	30	and	name	HA)	(resid	30	and	name	HG2*)	2.9	1.1	1.1
	(married	20	and	nomo	HR S	recid	30	and	name	HA)	24	0.6	06
assign	(resid	50	and	name		(I costu	20	410	Indillo		2.4	0.0	0.0
assign	(resid	30	and	name	нв)	(resid	30	and	name	HG2*)	2.4	0.6	0.6
assign	(resid	30	and	name	HN)	(resid	30	and	name	HA)	3.4	1.6	1.6
accion	ranid	30	and	nama	HNÍ	regid	30	and	name	HRÍ	29	11	11
assign	(resid	50	and	name		(icsid	50		manie		2.7	1.1	0.0
assign	(resid	30	and	name	HN)	(resid	30	and	name	$HG2^{+}$)	2.4	0.6	0.6
!VAL													
accion	(resid	31	and	nama	ቸል ነ	(recid	31	and	name	HB)	34	16	16
assign	(icsid	51	410	name		(resid	21	and a	1101110	TTA (20	1 1	1 1
assign	(resid	31	and	name	HGI+)	(resid	31	and	name	HA)	2.9	1.1	1.1
assign	(resid	31	and	name	HG1*)	(resid	31	and	name	HB)	2.4	0.6	0.6
accion	regid	31	and	name	HG1*1	resid	31	and	name	HNÍ	34	16	16
assign	(Tesiu	51	and 1	manie		(I cold	21	and	Indine	TICOL	2.4	0.6	0.0
assign	(resid	31	and	name	HGI*)	(resia	31	and	name	HG2+)	2.4	0.0	0.0
assign	(resid	31	and	name	HG2*)	(resid	31	and	name	HA)	2.9	1.1	1.1
accion	Tresid	31	and	name	HG2* \	(resid	31	and	name	HBÍ	24	06	06
assign	(resid	21		mamo		(nonid	21	and			20	1 1	1 1
assign	(resia	31	and	name	нG2+)	(resid	51	and	name	nn)	2.7	1.1	1.1
assign	(resid	31	and	name	HN)	(resid	31	and	name	HA)	3.4	1.6	1.6
assion	(resid	31	and	name	HNÍ	resid	31	and	name	HB)	2.4	0.6	0.6
IT NO	(resid	51	- CALLO	Inclus		(••)			
ILIS											~ .	• -	
assign	(resid	32	and	name	HA)	(resid	32	and	name	HG*)	3.4	1.6	1.6
assion	(resid	32	and	name	HB*)	resid	32	and	name	HA)	2.9	1.1	1.1
	(resid	22	and			and	22	and		HA S	30	21	21
assign	(resid	32	and	name	<u>пр.</u>)	(Testu	34	and	name		5.2	2.1	4.1
assign	(resid	32	and	name	HD*)	(resid	32	and	name	HB*)	3.4	1.6	1.6
assion	(resid	32	and	name	HD*)	resid	32	and	name	HG*)	2.4	0.6	0.6
assign	(ICSIG	20		mame		(needed)	22	and		UE*	2.0	2.1	2.1
assign	(resia	32	and	name	HG ⁺)	(resid	54	and	name	nc)	3.7	2.1	2.1
assign	(resid	32	and	name	HN)	(resid	32	and	name	HA)	2.4	0.6	0.6
assion	resid	32	and	name	HNÍ	Íresid	32	and	name	HB*)	2.4	0.6	0.6
assign	(resid	22	and			(manid	22	and		UE*	20	2.1	2.1
assign	(resia	32	and	name	IIN)	(resid	54	anu	name	IL)	5.7	2.1	2.1
assign	(resid	32	and	name	HN)	(resid	32	and	name	HG*)	2.9	1.1	1.1
ISER	•												
anian	(manid	22	and	nama	HB1)	(resid	33	and	name	HA)	24	0.6	06
assign	(resid	33	anu	name		(resid	33		manie		0.0	1.1	1 1
assign	(resid	33	and	name	HB2)	(resid	33	and	name	HA)	2.9	1.1	1.1
assign	(resid	33	and	name	HN)	(resid	33	and	name	HA)	2.4	0.6	0.6
accien	(ronid	22	and	nama	HNÍ	Tracid	33	and	name	HRIN	29	11	11
assign	(resid	55	anu	name	m	(Testa	22		Indenie		2.2	0.6	0.6
assign	(resid	33	and	name	HN)	(resia	33	ano	name	nd2)	2.4	0.6	0.0
!LEU													•
accion	(resid	34	and	name	HA)	(resid	34	and	name	HB2)	2.9	1.1	1.1
assign	(10510	24	Line J		HA ((manid	24	and		UD1 S	24	0.6	0.6
assign	(resid	34	and	name	HA)	(resid	54	and	name	пы	2.4	0.0	0.0
assign	(resid	34	and	name	HA)	(resid	34	and	name	HG)	2.9	1.1	1.1
assion	resid	34	and	name	HD1*)	(resid	34	and	name	HA)	3.4	1.6	1.6
assign	(itesite	34	1	name		(resid	24	and			24	0.4	0.4
assign	(resid	34	and	name	HDI+)	(resid	54	and	name	пв.)	2.4	0.0	0.0
assign	(resid	34	and	name	HD1*)	(resid	34	and	name	HG)	2.4	0.6	0.6
assion	Iresid	34	and	name	HD1*∫	Íresid	34	and	name	HN)	3.4	1.6	1.6
assign	(resid	24	and		UD2*	(recid	34	and	name	HAÍ	29	11	11
assign	(resid	34	and	name	HD2.)	(Testu	34	anu	manie		2.7	1.1	1.1
assign	(resid	34	and	name	HD2₹)	(resid	34	and	name	нв•)	2.4	0.6	0.6
assign	resid	34	and	name	HD2*)	(resid	34	and	name	HG)	2.4	0.6	0.6
	(acaid	24	and		¥D2*)	(recid	31	and	name	HNÍ	30	21	21
assign	(resid	34	and	name	InD ₂	(Tesiu	34	and	name		2.2	1 1	1 1
assign	(resid	34	and	name	HN)	(resid	34	and	name	HA)	2.9	1.1	1.1
assign	(resid	34	and	name	HN)	(resid	34	and	name	HB2)	2.4	0.6	0.6
assion	resid	34	and	name	HN	(resid	34	and	name	HB1)	2.9	1.1	1.1
assign	(resid	24	and			(ragid	21	and	name	HGÍ	20	1 1	11
assign	(resia	34	anu	name	IIIN)	(resta	54	anu	name	110)	2.7	1.1	1.1
!ARG													
assign	(resid	35	and	name	HA)	(resid	35	and	name	HB1)	2.4	0.6	0.6
assion	resid	35	and	name	HAÍ	resid	35	and	name	HB2)	2.9	1.1	1.1
assign	(ICSIC	35		manne		(nonid	25	and		HC*	2.0	21	21
assign	(resid	33	anu	name	nA)	(Tesia	35	and	name	110)	5.7	2.1	2.1
assign	(resid	35	and	name	HD*)	(resid	35	and	name	HB*)	3.4	1.6	1.6
assign	resid	35	and	name	HD*)	(resid	35	and	name	HH*)	3.9	2.1	2.1
	(manid	25	and		UE V	(recid	35	and	name	HB* 1	34	16	16
assign	(resid	35	and	name	nc)	(Testu	35	4110	name		5.7	1.0	1.0
assign	(resid	35	and	name	HE)	(resid	35	and	name	HD")	2.4	0.6	0.0
assign	(resid	35	and	name	HE)	(resid	35	and	name	HG*)	2.9	1.1	1.1
accian	(manid	25	and	nama	HES	resid	35	and	name	нн ∗ ∖́	24	06	06
assign	(resid	55		name		(resid	25				2.4	0.4	0.4
assign	(resid	33	and	name	nor)	(resia	33	and	name	пл [.])	2.4	0.0	0.0
assign	(resid	35	and	name	HN)	(resid	35	and	name	HA)	2.9	1.1	1.1
accion	Tresid	35	and	name	HNÍ	resid	35	and	name	HB2)	2.9	1.1	1.1
assign	(10310	25				(25	لرسم		upi (3 1	1 4	1 4
assign	(resid	33	and	name	nin)	(resid	33	and	name	<u>, 101</u>	3.4	1.0	1.0
assign	(resid	35	and	name	HN)	(resid	35	and	name	HD*)	3.4	1.6	1.6
assion	recid	35	and	name	HNÍ	Tesid	35	and	name	HE	3.9	2.1	2.1
assign	(10310	25			in ((25	and a		uc*	3 1	1.6	16
assign	(resid	55	and	name	nn)	(resia	33	and	name	по [.])	5.4	1.0	1.0
!GLN													
assign	(resid	36	and	name	HA)	(resid	36	and	name	HB1)	2.9	1.1	1.1
accion	(resid	36	and	name	HAS	Terid	36	and	name	HB2 \	34	16	16
assign	cresia	50	anu	name		(Lesia	30	1	manie		2.4	1.0	1.0
assign	(resid	36	and	name	HE2*)	(resid	30	and	name	nA)	3.4	1.0	1.6
assign	(resid	36	and	name	HE2*)	(resid	36	and	name	HB2)	3.4	1.6	1.6
	N	20	and	name	HE2*\	resid	36	and	name	HBIŃ	3.4	16	1.6
accian	(recid	10	24116.5					******					A.V
assign	(resid	30	and	name	UC*	(manial	34	and	nama	HAN	30	21	21

		~ <			TTO:	1	26	4			1 1	1 1
assign	(resid	36	and	name	HG*)	(resid	30	and	name	ПВІ) 2.9	1.1	1.1
accion	(resid	36	and	name	HG*)	(resid	36	and	name	HB2) 2.9	1.1	1.1
un i Bri	(10010	20			TTC+ (26	and		HE2*) 20	1 1	11
assign	(resid	30	and	name	HG ⁺)	(resia	30	and	name	HEZ ²) 2.3	1.1	1.1
assion	resid	36	and	name	HN)	(resid	36	and	name	HA) 2.4	0.6	0.6
assign	(10510	20	1				26			UDO) 24	06	06
assign	(resid	36	and	name	HN)	(resia	30	and	name	HB2) 2.4	0.6	0.0
accion	Tresid	36	and	name	HN)	(resid	36	and	name	HB1) 2.9	1.1	1.1
assign	(10310			1102110	This is		20			TIEON 20	2.1	2.1
assign	(resid	36	and	name	HN)	(resia	30	and	name	пе2 ⁺) 5.9	2.1	2.1
accian	Tresid	36	and	name	HN)	(resid	36	and	name	HG*) 2.9	1.1	1.1
assign	(restu	50	and	mane	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(10010						
!GLY												
accion	(recid	37	and	name	HN)	(resid	37	and	name	HA*) 2.4	0.6	0.6
assign	(Testa	57	ano	indific	····)	(10510	5.		100000	, , ,		
!LYS												
	(marined	20	and	nama	HA)	(recid	38	and	name	HB*) 29	11	11
assign	(Testu	50	anu	name		(I cold	50		1104110	TIGE)		
assign	(resid	38	and	name	HA)	(resid	38	and	name	HG ⁺) 2.9	1.1	1.1
	inneria	20	and	name	HB*	Tracid	38	and	name	HG*) 34	16	16
assign	(Testa	20	anu	manne		(Testa	50	allo	Interito		1.0	0.0
assign	(resid	38	and	name	HN)	(resid	38	and	name	HA) 2.4	0.6	0.6
	(manid	29	and	nama	HNÍ	Treesid	38	and	name	HB*) 29	11	11
assign	(resta	20	anu	manie	- <u> </u>	(I cold	50	and	mame	110 / 20		
assign	(resid	38	and	name	HN)	(resid	38	and	name	HE*) 3.9	2.1	2.1
anian	inanid	38	and	name	HNÍ	Tresid	38	and	name	HG*) 34	1.6	1.6
assign	(Testa	20	anu	manie	, m,)	(10510	50		Include	110) 511		
!SER												
accien	(ranid	20	and	name	HB2)	(resid	39	and	name	HA) 2.4	0.6	0.6
assign	(Testu	55	anu	name	1102)	(10010			111110		0.0	0.0
assign	(resid	39	and	name	HBI)	(resid	39	and	name	HA) 2.4	0.6	0.6
anim	innid	20	and	name	HNÍ	resid	30	and	name	HA) 24	0.6	0.6
assign	(Testa	39	anu	name		(I cold			THEFT		0.0	0.0
assign	(resid	39	and	name	HN)	(resid	39	and	name	HBI) 2.4	0.6	0.6
		20	and		TIN S	irocid	30	and	name	HB2) 29	11	11
assign	(resia	39	anu	name	m)	(restu	57	410	mane	1102) 2.7	1.1	
ILYS												
	(: 1	40	and	nama	HA)	(rooid	⊿∩	and	name	HB*) 24	06	06
assign	(resia	40	ano	name	11/1)	(Lesia	-10	anu	manie	110 J 2.4	0.0	0.0
accion	(resid	40	and	name	HB*)	(resid	40	and	name	HE*) 2.4	0.6	0.6
- Series		40			TID* \	innia	40	and		UC* \ 30	21	21
assign	(resid	40	and	name	пр•)	(resid	40	anu	Hame	110) 5.9	2.1	2.1
assion	(resid	40	and	name	HE*)	(resid	40	and	name	HG*) 2.4	0.6	0.6
assign		40			TICA	(manid	40	and	nama	HAÝ 30	21	21
assign	(resid	40	and	name	ng,)	(resid	40	anu	name	IIA) 5.2	2.1	2.1
assion	(resid	40	and	name	HN)	(resid	40	and	name	HA) 2.4	0.6	0.6
assign	(resid	10					40			UD*) 24	06	06
assign	(resid	40	and	name	HN)	(resia	40	and	name	п ^Б) 2.4	0.0	0.0
accion	irecid	40	and	name	HN)	(resid	40	and	name	HG*) 3.4	1.6	1.6
assign	(Testa	40	ano	Interite		(10010				/		
!LEU												
accian	(resid	41	and	name	HB*)	(resid	41	and	name	HG) 2.4	0.6	0.6
assign	(resid	-71	and	manie	THE .	(icold		1		114 24	1.6	16
assign	(resid	41	and	name	HDI*)	(resia	41	ano	name	ПА) 5.4	1.0	1.0
antian	irorid	41	and	name	HD1*)	Tresid	41	and	name	HB*) 3.4	1.6	1.6
assign	(Testu	41	410	Inditio		10010				TIC) 24	0.4	0.6
assign	(resid	41	and	name	HDI*)	(resid	41	and	name	HG) 2.4	0.0	0.0
acción	racid	41	and	name	HD1*)	Tresid	41	and	name	HD2*) 2.4	0.6	0.6
assign	(Testa		ano	Indite		(I COIG				TTA X 20	1 1	1.1
assign	(resid	41	and	name	HD2*)	(resid	41	and	name	HA) 2.9	1.1	1.1
anim	Consid	41	and	name	HD2*5	Tresid	41	and	name	HB*) 3.4	1.6	1.6
assign	(i calu	-11	and	mane	TIDAt					TIC) 24	06	04
assign	(resid	41	and	name	HD2+)	(resid	41	and	name	HG) 2.4	0.0	0.0
anim	inanid	41	and	name	HD2*\	Tesid	41	and	name	HN) 3.9	2.1	2.1
assign	(Tesia	41	anu	manic		(TOSIG		1		114 20	1 1	1 1
assign	(resid	41	and	name	HN)	(resid	41	and	name	HA) 2.9	1.1	1.1
anniam	readid	41	and	name	HNÌ	(resid	41	and	name	HB*) 2.9	1.1	1.1
assign	(resid	41	and	manne			41			HC 1 24	16	16
assign	(resid	41	and	name	HN)	(resid	41	and	name	HG) 3.4	1.0	1.0
ut E	•											
HLE.			-								0.0	07
assign	(resid	42	and	name	HA)	(resid	42	and	name	HB) 2.4	0.0	0.0
anniam	ironid	12	and	name	HA)	resid	42	and	name	HD1*) 3.9	2.1	2.1
assign	(resid	42	anu	name	117 /	(Testa	42		Indito		0.1	0.1
assign	(resid	42	and	name	HA)	(resid	42	and	name	$HG1^{+}$) 3.9	2.1	4.1
	(mani d	12	and	nama	HΔŃ	(recid	47	and	name	HG2*) 2.9	1.1	1.1
assign	(resia	42	and	name	IIA)	(Tesiu	72	ana	Indino			
assign	(resid	42	and	name	HG1*)	(resid	42	and	name	$HD1^{+})$ 2.4	0.6	0.0
	(manid	40	and	name	HG2* \	Tresid	42	and	name	HB) 2.4	0.6	0.6
assign	(Testa	42	anu	mattic	1102)	(Tesia		1	1100110		1.0	1.0
assign	(resid	42	and	name	HG2*)	(resid	42	and	name	nur) 3.4	1.0	1.0
assion	Tresid	47	and	name	HN)	(resid	42	and	name	HA) 3.9	2.1	2.1
maight			- 1			1	40	and	-	HR 1 20	21	21
assign	(resid	42	and	name	nn)	(resid	42	anu	name	JUD J 3.9	4.1	4.1
accion	resid	42	and	name	HN)	(resid	42	and	name	HD1*) 3.4	1.6	1.6
asign	(Teolo					(manid	42	and	nama	HG1*5 34	16	16
assign	(resid	42	and	name	HN)	(resid	42	anu	name	1101) 3.4	1.0	1.0
accion	Tresid	42	and	name	HN)	(resid	42	and	name	HG2*) 2.9	1.1	1.1
assign	(10310	744		1100110)	(,		
ILE.								-				1.
assion	(resid	43	and	name	HA)	(resid	43	and	name	нв) 3.4	1.6	1.6
		40	1		UA ((manial	12	and	name	HD1*1 30	21	2.1
assign	(resid	45	ano	name	nA)	resid	-+-3	anu	name	1101 1 3.2	~	2.1
assign	(resid	43	and	name	HA)	(resid	43	and	name	HGI*) 3.9	2.1	2.1
	(42			HUIT	Granid	12	and	name	HB) 29	11	1.1
assign	(resia	43	and	name	<u> </u>	resid	-1-3		mane		1 1	1 1
assion	(resid	43	and	name	HG1*)	(resid	43	and	name	HDI*) 2.9	1.1	1.1
	(10			UC2*	Granid	12	and	name	HA) 24	0.6	0.6
assign	(resid	43	and	name	HG2 ⁺)	(10510	43	2010	1141110	1111 J 2.17		
assion	(resid	43	and	name	HG2*)	(resid	43	and	name	HB) 2.9	1.1	1.1
assign	(10010	10	. 1		UCO*	(mar.)	12	and	nama	HD1*1 20	11	11
assign	(resid	43	and	name	пG2*)	(resia	43	and	name	1101) 4.7	1.1	1.1
acción	recid	43	and	name	HG2*	(resid	43	and	name	HG1*) 2.9	1.1	1.1
assign	(Lesia				11001	(mar.) 3	42	J		HN 20	21	21
assign	(resid	43	and	name	HG2*)	(resid	43	and	name	111N J 5.9	4.1	4.1
accim	recid	43	and	name	HN)	(resid	43	and	name	HA) 3.4	1.6	1.6
assign	(105iu	45				/	42	and	nama	HR 1 24	0.6	06
assign	(resid	43	and	name	HN)	(resid	43	and	name	110) 2.4	0.0	0.0
accion	Tracid	43	and	name	HN	(resid	43	and	name	HD1*) 3.4	1.6	1.6
العادده	restu					(ma - 1 - 1	43			HG1*1 24	0.6	06
assign	(resid	43	and	name	пiN)	resia	43	and	name	1101 / 2.4	0.0	0.0
assion	(resid	43	and	name	HN)	(resid	43	and	name	HG2*) 3.4	1.6	1.6
	(10010				/	•				•		
ILE.						,				TTCOT > CC		1 1
assign	(resid	44	and	name	HA)	(resid	44	and	name	HG2*) 2.9	1.1	1.1

assign	(resid	44	and	name	HA)	(resid	44	and	name	HG1*)	29	11	11
	(resid		and a	Incine	TTA ((resid	44		maine	THOI)	2.0	1.1	1.1
assign	(resid	44	and	name	HA)	(resid	44	and	name	нв)	2.9	1.1	1.1
assign	(resid	44	and	name	HB)	(resid	44	and	name	HD1*)	2.9	1.1	1.1
assign	(resid	44	and	name	HD1*)	resid	44	and	name	HA)	3.9	2.1	2.1
accion	rouid	44	and	20000		(ranid	4.4	and			24	0.4	0.4
assign	(i calu		anu	name		(i colu		and	mame	IIOT)	2.7	0.0	0.0
assign	(resid	44	and	name	HDI+)	(resid	44	and	name	HG2*)	3.4	1.6	1.6
assign	(resid	44	and	name	HG2*)	(resid	44	and	name	HA)	3.4	1.6	1.6
assign	resid	44	and	name	HG2*)	resid	44	and	name	HBÍ	2.4	0.6	0.6
assign	(recid	11	and	nome	HC2+	(recid	11	and	nama	HGIA	24	0.6	0.6
assign	(Tesia	44	and	name	HG2)	(Tesia	44	and	name	HOI!)	2.4	0.0	0.0
assign	(resid	44	and	name	HN)	(resid	44	and	name	HA)	3.4	1.6	1.6
assign	(resid	44	and	name	HN)	(resid	44	and	name	HB)	2.9	1.1	1.1
assion	resid	44	and	name	HNÍ	Tesid	44	and	name	HDIÝ	29	11	11
assign	(resid			Interne		(resid	44	d	manie		24	1.1	1.1
assign	(resid	44	and	name	HN)	(resid	44	and	name	HGIT)	3.4	1.6	1.6
assign	(resid	44	and	name	HN)	(resid	44	and	name	HG2*)	3.4	1.6	1.6
!ALA													
accion	(recid	45	and	name	HB*)	(resid	45	and	name	HA)	24	0.6	06
assign	(resid	45	and	manie		(resid	45	and	manic		2.4	0.0	1.1
assign	(resid	45	and	name	HN)	(resid	45	and	name	HA)	2.9	1.1	1.1
assign	(resid	45	and	name	HN)	(resid	45	and	name	HB₹)	2.4	0.6	0.6
IALA	•												
accion	(recid	16	and	nama	HA)	(recid	16	and	name	HB*)	24	0.6	06
assign	(resid	40		manie		(resid	40	and	manie		2.7	0.0	0.0
assign	(resid	46	and	name	HN)	(resid	46	and	name	HA)	2.4	0.6	0.6
assign	(resid	46	and	name	HN)	(resid	46	and	name	HB*)	2.4	0.6	0.6
IASN	•				,	•							
anair	(manid	47	and		UD1)	(manid	17	and	nama	Π Λ)	20	11	11
assign	(resid	4/	and	name		(Tesia	4/	anu	maine		2.7	1.1	1.1
assign	(resid	47	and	name	HB2)	(resid	47	and	name	HA)	2.9	1.1	1.1
assign	(resid	47	and	name	HD2*)	(resid	47	and	name	HA)	3.9	2.1	2.1
accion	resid	47	and	name	HD2*1	resid	47	and	name	HBIN	29	11	11
assign	liesid	4/	and	name	IID2)	(resid	47	410	пате		2.2	1.1	1.1
assign	(resid	47	and	name	$HD2^{+})$	(resid	47	and	name	HB2)	2.9	1.1	1.1
assign	(resid	47	and	name	HD2*)	(resid	47	and	name	HN)	3.9	2.1	2.1
assion	(resid	47	and	name	HN)	resid	47	and	name	HA)	2.9	1.1	1.1
andigu	(resid	47	and	nomo		(rasid	17	and	namo	HRI	20	1 1	1.1
assign	(resid	4/		name	IIN /	(Tesiu	4/	and	name		2.7	1.1	1.1
assign	(resid	47	and	name	HN)	(resid	47	and	name	HB2)	3.4	1.6	1.6
!THR													
assion	(resid	48	and	name	HB)	(resid	48	and	name	HA)	2.9	1.1	1.1
assign	(resid	40	and	manne		(rooid	10	and		цл	31	1.6	1.6
assign	(resid	48	and	name		(resid	40	and	name		3.4	1.0	1.0
assign	(resid	48	and	name	HG2*)	(resid	48	and	name	HB)	2.9	1.1	1.1
assign	resid	48	and	name	HN)	(resid	48	and	name	HA)	2.9	1.1	1.1
assign	racid	18	and	nama	HNÍ	Treeid	48	and	name	HRÍ	24	06	0.6
assign	(resid	40	and	name		(i cold	40	and a	Inditio		2.4	1.1	1 1
assign	(resid	48	and	name	HN)	(resid	48	and	name	HG2+)	2.9	1.1	1.1
!PRO													
assion	(resid	49	and	name	HA)	(resid	49	and	name	HB*)	2.9	1.1	1.1
and the second	(resid	10	and a		TTA ((manid	10	and		UD*)	30	21	21
assign	(resid	49	and	name	IA)	(Tesia	47	and	name		5.5	2.1	2.1
assign	(resid	49	and	name	HA)	(resid	49	and	name	HG*)	2.9	1.1	1.1
assign	resid	49	and	name	HD*)	(resid	49	and	name	HB*)	3.9	2.1	2.1
agaigen	(magid	40	and	nama	<u>₩</u> 0* \	(recid	10	and	name	HG* \	34	16	16
assign	(Testu	47	anu	name	m)	(resid	47	and	name	no)	5.4	1.0	1.0
!VAL													
assign	(resid	50	and	name	HB)	(resid	50	and	name	HA)	2.9	1.1	1.1
assion	resid	50	and	name	HG2*)	(resid	50	and	name	HA	2.9	1.1	1.1
assign	(resid	50	and	mamo		(resid	50	and	name	HA	2.0	1.1	1 1
assign	(resid	50	and	name	HOI!	(Tesid	50	and	name		2.1	0.6	0.4
assign	(resid	50	and	name	HG2+)	(resid	50	and	name	пр	2.4	0.6	0.0
assign	(resid	50	and	name	HG1*)	(resid	50	and	name	HB)	2.4	0.6	0.6
assign	resid	50	and	name	HN)	(resid	50	and	name	HA)	2.4	0.6	0.6
accion	(recid	50	and	name	HNÍ	resid	50	and	name	нвί	29	11	11
assign	(Tesiu	50	and	name		(resid	50	and	mame	TICON	20	1 1	1 1
assign	(resia	50	ano	name		(resid	50	anu	name	1102	2.7	1.1	1.1
assign	(resid	50	and	name	HN)	(resid	50	and	name	HGI*)	3.4	1.6	1.6
!LEŪ													
assim	(resid	51	and	name	HB2)	(resid	51	and	name	HA)	2.9	1.1	1.1
	(10010	51	لديره		UDI ((ranid	51	and	name	на	21	0.6	0.6
assign	(resid	51	and	name	пы)	(Testu	51		manne		2.7	0.0	0.0
assign	(resid	51	and	name	HD1*)	(resid	21	and	name	HA)	2.9	1.1	1.1
assign	(resid	51	and	name	HD1*)	(resid	51	and	name	HB*)	2.9	1.1	1.1
andian	ranid	51	and	name	HD1*5	Tresid	51	and	name	HGÍ	24	0.6	06
assign	(Testu	51	anu	name		(icsic	51	and	mane		2.1	1 1	1 1
assign	(resid	51	and	name	HDI*)	(resia	21	and	name	nn)	4.9	1.1	1.1
assign	(resid	51	and	name	HD2*)	(resid	51	and	name	HA)	3.4	1.6	1.6
accion	TACIA	51	and	name	HD2*1	resid	51	and	name	HB*)	2.9	1.1	1.1
assign	(10510	51			UD2*	(mani d	51	and	10000	HO	24	0.6	0.6
assign	resia	21	and	name	<u></u>	(resid	1		natic		2.4	1.0	1.0
assign	(resid	51	and	name	HD2*)	(resid	51	and	name	HN)	2.9	1.1	1.1
assign	(resid	51	and	name	HG)	(resid	51	and	name	HA)	3.9	2.1	2.1
accion	(ranid	51	and	name	HG	resid	51	and	name	HB* ∖́	2.9	1.1	1.1
assign	resid	51	anu	Hallie		(10010	51	م م		μ.	24	0.4	0.4
assign	(resid	51	and	name	HN)	(resid	21	and	name	na)	4.4	0.0	0.0
assign	(resid	51	and	name	HN)	(resid	51	and	name	HB1)	2.9	1.1	1.1
assim	resid	51	and	name	HΝŃ	resid	51	and	name	HB2 S	2.4	0.6	0.6
anim	(nonid	51	and		LINI ((recid	51	and	name	HG	34	16	16
assign	(resia	21	anu	name	nn)	(resid	51	ann	name	i on	5.4	1.0	1.0
!ARG											_	_ ·	-
assign	(resid	52	and	name	HA)	(resid	52	and	name	HB2)	2.4	0.6	0.6
accion	Tesid	52	and	name	HAÍ	(resid	52	and	name	HB1 S	2.9	1.1	1.1
assign	(10310	50				(ronid	\$2	and	nama	HB* 1	30	21	21
assign	(resid	52	and	name	<u>пр</u> ,)	(resid	54	and	name		5.9	4.1	4.1
assign	(resid	52	and	name	HE)	(resid	52	and	name	пA)	3 .4	1.6	1.6

							60	4		TITN:	24	04	04
assign	(resid	52	and	name	HE)	(resia	52	and	name	nD [•])	2.4	0.0	0.0
assign	(resid	52	and	name	HE)	(resid	52	and	name	HG*)	2.9	1.1	1.1
and	(and a second	50	and		HC+	Tracid	52	and	name	HB* \	29	11	1.1
assign	(resia	52	and	name	no.)	(Testa	52	and	name		2.0		1.1
assign	(resid	52	and	name	HG*)	(resid	52	and	name	HD•)	2.9	1.1	1.1
anaign	(recid	52	and	name	HNÍ	(resid	52	and	name	HA)	2.4	0.6	0.6
assign	(Tesiu	52	410	indite		(reold	50	and			20	1 1	1.1
assign	(resid	52	and	name	HN)	(resid	52	anu	manie	IIDI)	2.7	1.1	1.1
accion	Óresid	52	and	name	HN)	(resid	52	and	name	HB2)	2.4	0.6	0.6
assign	(I COLD	50				(manid	50	and	nama	ម្នា)* វ	30	21	21
assign	(resid	52	and	name	nn)	(resid	52	anu	manne		5.7	2.1	2.1
assion	resid	52	and	name	HN)	(resid	52	and	name	HE)	3.9	2.1	2.1
un i Gri		50				innerid	52	and	name	HG*	34	16	16
assign	(resia	52	and	name	nn)	(Testu	52	autu	name	10)	5.4	1.0	1.0
ILYS													
	(manid	52	and	nama	HA)	(recid	53	and	name	HD*)	3.9	2.1	2.1
assign	(Iesiu	55	anu	name		(Testa	55	1		TTC+	20	2.1	2.1
assign	(resid	53	and	name	HA)	(resid	53	and	name	HG ⁺)	3.9	2.1	2.1
annian	ranid	53	and	name	HRI	resid	53	and	name	HA)	2.4	0.6	0.6
assign	(Testu	55	and	manie			50			TTA	24	06	06
assign	(resid	53	and	name	HB2)	(resid	55	and	name	па)	2.4	0.0	0.0
accion	Tracid	53	and	name	HD^*)	(resid	53	and	name	HB*)	2.4	0.6	0.6
assign	(Tuble	55	1	1100110	TTC*	(52	and		UD* 1	20	21	21
assign	(resid	53	and	name	HET)	(resid	22	and	name	IID)	5.2	2.1	2.1
assion	(resid	53	and	name	HE*)	(resid	53	and	name	HD*)	2.4	0.6	0.6
asign	(10010	52	and		UC#)	Tracid	53	and	name	HR* \	29	11	1.1
assign	(resid	23	and	name	no)	(Testa	55	and	manic		2.0		
assign	(resid	53	and	name	HG*)	(resid	53	and	name	HD ⁺)	2.9	1.1	1.1
	(manid	52	and	name	HG* \	resid	53	and	name	HE*)	3.4	1.6	1.6
assign	(Testu	55	410	name		(10510	50	- and		HA (20	1 1	1.1
assign	(resid	53	and	name	HN)	(resia	23	and	name	пА)	4.7	1.1	1.1
accion	irecid	53	and	name	HN)	(resid	53	and	name	HB1)	2.4	0.6	0.6
assign	(I cond		1		TINT	(maria	52	and	nama	нва 🔪	20	11	1 1
assign	(resid	53	and	name	HIN)	(resid	22	anu	name	1102)	2.7	1.1	1.1
accion	resid	53	and	name	HN)	(resid	53	and	name	HD₹)	3.4	1.6	1.6
	(10010	62				inanid	53	and	name	HE* \	39	21	2.1
assign	(resia	23	and	name		(resid	55	410	Indine		2.4	1.6	1 2
assign	(resid	53	and	name	HN)	(resid	53	and	name	HG*)	3.4	1.6	1.6
ICED	(•							
SER						/	F 4			TT A \	24	<u>م د</u>	06
assign	(resid	54	and	name	HB₹)	(resid	54	and	name	HA)	2.4	0.0	0.0
anim	ranid	54	and	name	HNÍ	Íresid	54	and	name	HA)	2.9	1.1	1.1
assign	(resid	54	and .	manie	m	(10010	5.4			UD*	24	0.6	0.6
assign	(resid	54	and	name	HN)	(resid	54	and	name	пь•)	2.4	0.0	0.0
GUI	L												
1010					***	(- m d			21	0.6	0.6
assign	(resid	55	and	name	HA)	(resia	22	and	name	nd)	2.4	0.0	0.0
assion	resid	55	and	name	HB*)	(resid	55	and	name	HG*)	2.4	0.6	0.6
assign	(Teste		d		UC*	(monid	55	and	name	HAÍ	29	11	11
assign	(resid	22	and	name	no.)	(Testu	55	and	manie		2.7	1.1	0.7
assion	resid	55	and	name	HN)	(resid	55	and	name	HA)	2.4	0.6	0.6
						Consid	55	and	name	HB*	29	11	11
assign	(resia	22	and	name	min)	(resid	55	and .	Itanic		~ ~	1.6	1.2
assion	(resid	55	and	name	HN)	(resid	55	and	name	HG*)	3.4	1.6	1.0
ITELL	(•							
ILEU											20	1 1	1 1
assign	(resid	56	and	name	HA)	(resid	56	and	name	нв•)	2.9	1.1	1.1
	(marid	56	and	name		Tesid	56	and	name	HA)	3.9	2.1	2.1
assign	(resid	50	anu	name		(10010	50				21	16	16
assign	(resid	56	and	name	HDI*)	(resid	26	and	name	πN)	5.4	1.0	1.0
ancion	reacid	56	and	name	HD1*)	(resid	56	and	name	HB*)	3.4	1.6	1.6
assign	liesiu	50	and	manie		(included)	56	and		HGÍ	24	0.6	0.6
assign	(resid	56	and	name	HDI*)	(resia	20	and	name	no)	2.4	0.0	0.0
accion	resid	56	and	name	HD1*)	(resid	56	and	name	HD2*)	2.9	1.1	1.1
assign	(itesite	50	and a		UD2*	ranid	56	and	name	HA)	29	11	11
assign	(resid	56	and	name	$\Pi D2^{-})$	(resid	50	and	manie		2.0		
assion	resid	56	and	name	HD2*)	(resid	56	and	name	HN)	2.9	1.1	1.1
unoi Bri					บ⊓ว≉ \	ironid	56	and	name	HB*)	34	1.6	1.6
assign	(resia	20	and	name	nD2)	(Tesiu	50	and	Inclus		2.1	0.0	0.4
assign	(resid	56	and	name	HD2*)	(resid	56	and	name	HG)	2.4	0.6	0.0
	(mani d	56	and	nama	HG	Tesid	56	and	name	HA)	3.4	1.6	1.6
assign	(Icsia	50	anu	manie		(I COLG	50			LID*	2.0	21	21
assign	(resid	56	and	name	HG)	(resid	26	and	name	nd)	3.7	2.1	2.1
	inanid	56	and	name	HN)	(resid	56	and	name	HA)	2.9	1.1	1.1
assign	(i colu	50		Interne			50	and		⊔ ρ∗΄∖	34	16	16
assign	(resid	56	and	name	HN)	(resid	20	anu	name		3.4	1.0	1.0
assion	(resid	56	and	name	HN)	(resid	56	and	name	HG)	5.4	1.6	1.6
	(•				•			
GLU			-		TT 4 `	1		د		UC* \	20	21	21
assign	(resid	57	and	name	HA)	(resid	57	and	name	по.)	3.7	4.1	4.1
accion	recid	57	and	name	HB1)	(resid	57	and	name	HA)	2.9	1.1	1.1
assign	(LOSIG	57			UPO	(ranid	57	and	name	ндί	24	06	06
assign	(resid	57	and	name	п <u>в</u> 2)	(resid	51	allu	Halle		2.7	0.0	0.0
assion	(resid	57	and	name	HB1)	(resid	57	and	name	нG*)	2.4	0.6	0.6
andight	(57	and	nama	HB2 \	Tesid	57	and	name	HG* גֹ	2.4	0.6	0.6
assign	(resia	57	ano	name	11104	(TOSIG				HA V	24	<u>^</u>	<u>^</u>
assign	(resid	57	and	name	HN)	(resid	57	and	name	пA)	2.4	0.0	0.0
000100	(roaid	57	and	name	HNÍ	(resid	57	and	name	HB1)	2.4	0.6	0.6
assign	(Testu	57	and	Incertio			57	and		up2 \	21	06	06
assign	(resid	57	and	name	nn)	(resia	57	and	name	1104)	4.7	0.0	1.0
	Tracid	57	and	name	HN	(resid	57	and	name	HG*)	2.9	1.1	1.1
assign	(1 cold	51)	(2.						
!TYR								-			• •		
accion	(resid	58	and	name	HA)	(resid	58	and	name	HBI)	2.9	1.1	1.1
a	(1 cold				ш. ((manial	50	and	name	HB2 \	24	0.6	0.6
assign	(resid	28	and	name	па)	(16210	50	2010	name			1 1	1 1
assion	(resid	58	and	name	HA)	(resid	58	and	name	HDI)	2.9	1.1	1.1
assign	(i cold	20			UP2 \	(ronid	59	and	name	HDIŃ	29	1.1	1.1
assign	(resid	28	and	name	пб2)	(16210	50	anu	manie		2.4	1 /	1 /
assion	(resid	58	and	name	HB2)	(resid	58	and	name	HEI)	5.4	1.6	1.0
		20	 L		HB1 V	Torid	58	and	name	HD2	2.9	1.1	1.1
assign	(resid	28	and	name	11D1)	(restu	50	. 1		UE2	2 4	14	1.6
assign	(resid	58	and	name	HBI)	(resid	58	and	name	nez)	5.4	1.0	1.0
	(mar.) 1	50	and	name	HNÍ	(resid	58	and	name	HA)	2.9	1.1	1.1
assign	(resid	28	allu	Indille	THE L	(10010	20			UPI	21	0.6	06
assign	(resid	58	and	name	HN)	(resid	28	and	name	пы)	2.4	0.0	0.0
	(marial	49	and	name	HNÍ	(resid	58	and	name	HB2)	2.4	0.6	0.6
assign	resia	20	200	name	1111	(10010	20	اد		HDI	3 1	16	16
assign	(resid	58	and	name	HN)	(resid	28	and	name	пл)	5.4	1.0	1.0
ITVP													

assign	(resid	59	and	name	HA)	(resid	59	and	name	HB1)	2.4	0.6	0.6
	inonid	50	and		TIA S	innia	50	and		TIDO	20	1 1	1 1
assign	(resia	39	and	name	па)	(resia	22	and	name	пьг)	2.9	1.1	1.1
assign	(resid	59	and	name	HA)	(resid	59	and	name	HD2)	2.9	1.1	1.1
		50			TTA (50			TIEO	20	0.1	0.1
assign	(resid	29	and	name	HA)	(resid	39	and	name	HE2)	3.9	2.1	2.1
accion	(resid	59	and	name	HBIN	Tresid	59	and	name	HDI	39	21	21
unsign	(i cald		and	mane		(10510			mane		5.7	2.1	4.1
assign	(resid	59	and	name	HB2)	(resid	59	and	name	HDI)	3.9	2.1	2.1
accion	irogid	50	and	nama	HBI	Tracid	50	and	name	HEIÍ	30	21	21
assign	(Testa	59	and	name	mbr)	(IESIG	59	anu	name	III)	3.7	2.1	2.1
assign	(resid	59	and	name	HB2)	(resid	59	and	name	HE1)	3.9	2.1	2.1
·		50		1101110			50	1		TT A	~ ~	0.0	2.2
assign	(resid	59	and	name	HN)	(resid	- 59	and	name	HA)	2.4	0.6	0.6
accion	ironid	50	and	nama	LINI Ń	Iracid	50	and	name	HRIN	20	11	11
assign	(Testu	59	and	name	nn)	(ເຣເດ	23	anu	name	nn)	2.7	1.1	1.1
assign	(resid	59	and	name	HN)	(resid	59	and	name	HB2)	2.4	0.6	0.6
assign	(resid	59	and	name	HN)	(resid	- 59	and	name	HDI)	2.9	1.1	1.1
anniam	innid	50	and	nama	LINIÁ	ironid	50	and	name	HEIN	31	16	16
assign	(resid	55	and	name	m)	(Testu	55	anu	name	mer j	J.4	1.0	1.0
!ALA													
··	/ •1	<i>c</i> 0	1			1	<i>(</i> 0	4		TTA \	0.4	07	0.0
assign	(resid	60	and	name	нвт)	(resia	60	and	name	HA)	2.4	0.6	0.6
accion	Tresid	60	and	name	HNI	resid	60	and	name	HA)	24	06	0.6
assign	(resid	00	and	name	1111 /	(icsid	00	and	manie		2.4	0.0	0.0
assign	(resid	60	and	name	HN)	(resid	60	and	name	HB*)	2.4	0.6	0.6
DATT	•					•							
IVIC I													
assign	(resid	61	and	name	HB1)	(resid	61	and	name	HA)	2.9	1.1	1.1
iga										TTA (0.4	0.0	0.0
assign	(resia	61	and	name	HB2)	(resia	01	and	name	HA)	2.4	0.0	0.0
assion	resid	61	and	name	HE*)	(resid	61	and	name	HA)	39	21	21
assign	(I Cold	01	and	name	· · · · · · · · · · · · · · · · · · ·	(Tesia	01	and	mane	11/1	5.2	2.1	2.1
assign	(resid	61	and	name	HE*)	(resid	61	and	name	HB1)	3.9	2.1	2.1
anniam	innerid	6 1	and		UTF* \	leanid	61	and	nama	up2 \	20	21	21
assign	(resia	01	and	name	пс•)	(Testa	01	and	name	пб2 ј	3.7	2.1	2.1
assign	(resid	61	and	name	HG*)	(resid	61	and	name	HA)	2.9	1.1	1.1
ig		~	1		TTO+			. 1			0.0		
assign	(resid	61	and	name	HG ⁺)	(resid	61	and	name	ны)	2.9	1.1	1.1
anion	ironid	61	and	nama	HC* S	Irocid	61	and	name	HB2 \	20	11	11
assign	(resid	01	anu	name	110)	(resid	01	and	Inatio	11112	2.7	4.4	1.1
assign	(resid	61	and	name	HG*)	(resid	61	and	name	HE*)	2.9	1.1	1.1
		~			TINT	2	<u>(1</u>			TTA	0.4	0.7	0.0
assign	(resid	01	and	name	HN)	(resia	01	and	name	na)	2.4	0.0	0.0
accion	Tresid	61	and	name	HN)	(resid	61	and	name	HB1)	24	0.6	0.6
assign	(I Cold	01	and	mane		(ICSIG	01		mane			0.0	0.0
assign	(resid	61	and	name	HN)	(resid	61	and	name	HB2)	2.4	0.6	0.6
	(mani d	<i>c</i> 1	and		un í	innia	61	and		υς* γ	21	16	16
assign	(resid	01	anu	name	nn)	(Testa	01	anu	name	nc)	5.4	1.0	1.0
assion	(resid	61	and	name	HN)	(resid	61	and	name	HG*)	3.4	1.6	1.6
	(10010	•••)	(•••)			
!LEU													
accion	(recid	62	and	name	HB1)	(resid	62	and	name	HA)	24	0.6	06
assign	(I cold	02	and	mane	1101)	(i caid			mane			0.0	0.0
assign	(resid	62	and	name	HB2)	(resid	62	and	name	HA)	2.9	1.1	1.1
anion	innia	67	and		ี นาการ์ง	ironid	62	and	nama	цιί	31	16	16
assign	(Tesia	02	and	name	nDr)	(IESIG	02	anu	name	IIA)	7.4	1.0	1.0
assign	(resid	62	and	name	HD1*)	(resid	62	and	name	HB*)	2.9	1.1	1.1
			1		TTDIA	2	10				2.4	0.0	0.0
assign	(resid	62	and	name	HDI")	(resia	62	and	name	ng)	2.4	0.0	0.0
accion	Tresid	62	and	name	HD1*)	(resid	62	and	name	HN)	34	16	16
assign	(Testa	02	and	manie		(resid			Interio			1.0	1.0
assign	(resid	62	and	name	HDI [∓])	(resid	62	and	name	HD2*)	2.4	0.6	0.6
anim	innia	62	and		un2*≦	inanid	62	and	nom 4	บง \์	21	06	06
assign	(resia	62	ano	name	пD2+)	(resid	62	and	name	па)	2.4	0.0	0.0
assign	(resid	62	and	name	HD2*)	(resid	62	and	name	HB*)	2.4	0.6	0.6
assign	(10010		1		TIDAT						2.4	0.0	0.0
assign	(resid	62	and	name	HD2*)	(resia	62	and	name	HG)	2.4	0.6	0.0
accion	rocid	62	and	name	HD2*)	Tresid	62	and	name	HN)	34	16	16
assign	(I calu	02	and	manie	11102)	(icald	02	and	mane		5.4	1.0	1.0
assign	(resid	62	and	name	HG)	(resid	62	and	name	HA)	3.4	1.6	1.6
	· · · · · ·	(2)	المسم		ucí	innid	67	and		UD * \	20	1 1	1 1
assign	(resia	62	and	name	ng)	(Testa	02	ano	name	пр.)	4.7	1.1	1.1
assion	(resid	62	and	name	HG)	(resid	62	and	name	HN)	2.4	0.6	0.6
asign	(10510			1104110				1		TT A		0.0	0.0
assign	(resid	62	and	name	HN)	(resid	62	and	name	HA)	2.4	0.6	0.6
accian	Gracid	62	and	name	HNÍ	Tresid	62	and	name	HB2)	29	11	11
assign	(I Cold	62	and	mane		(resid		1	Incarite	TIDI	2.0		.
assign	(resid	62	and	name	HN)	(resid	62	and	name	HBI)	2.9	1.1	1.1
ICED	•					•							
SER													
assign	(resid	63	and	name	HA)	(resid	63	and	name	HB*)	2.4	0.6	0.6
		(2				innia	62	and		uλí	24	06	06
assign	(resia	03	and	name	nn)	(Testa	03	and	name	па)	2.4	0.0	0.0
assign	(resid	63	and	name	HN)	(resid	63	and	name	HB*)	2.4	0.6	0.6
IT MO	((,			
ILIS.													
accion	(resid	64	and	name	HA)	(resid	64	and	name	HB*)	2.4	0.6	0.6
assign	(I Cold	04	and	Interio		(interior			1100110	TTO+ (
assign	(resid	64	and	name	HA)	(resid	64	and	name	HG*)	2.9	1.1	1.1
	innaid	61	and		unií	General	64	and	nama	ΗΔ Υ	24	0.6	06
assign	(resid	04	and	name	m)	(Icsiu	04	and	manie	<u>, , , , , , , , , , , , , , , , , , , </u>	2.7	0.0	0.0
assign	(resid	64	and	name	HN)	(resid	64	and	name	HB*)	2.9	1.1	1.1
un i Bri	(10010		1		TDT (TICt	2.0	1 1	1 1
assign	(resid	64	and	name	HN)	(resid	64	and	name	HG ⁺)	2.9	1.1	1.1
ITHD	`					•							
TULK											- ·		
assign	(resid	65	and	name	HB)	(resid	65	and	name	HA)	2.4	0.6	0.6
		~~			TICON		<i>(</i> =			HA	20	1 1	1 1
assign	(resid	65	and	name	HG2*)	(resid	63	and	name	nA)	2.9	1.1	1.1
accion	inania	65	and	name	HC2*1	(recid	65	and	name	HRÍ	34	16	16
assign	(resid	05	anu	Hallie	1104)	liesia	00		manne	, <u> </u>	5.7	1.0	1.0
assign	(resid	65	and	name	HN)	(resid	65	and	name	HA)	2.4	0.6	0.6
- series	(10310	~~					15				24	0.4	0.4
assign	(resid	65	and	name	HN)	(resid	63	and	name	нв)	2.4	U.6	0.6
accim	irania	65	and	nama	HNÍ	(recid	65	and	name	HG2* \	34	16	16
assign	(resid	05	and	name		(restu	05		manie	1102)	5.4	1.0	1.0
!LYS													
	("				(41	لمسم		UD# \	24	06	0 E
assign	(resid	66	and	name	HA)	(resia	00	and	name	прт)	4.4	0.0	0.0
assion	(recid	66	and	name	HA	(resid	66	and	name	HE*)	3.9	2.1	2.1
maight	(1 cold			1101110			~~			TTA (24	1.2	1 4
assign	(resid	66	and	name	HG*)	(resid	66	and	name	HA)	3.4	1.0	1.6
2001	(rorid	66	and	name	HNÍ	Treeid	66	and	name	HAN	29	11	11
assign	(16210	00	and	name	1111	(resta	00	aud	manie		4./	1.1	1.1
assign	(resid	66	and	name	HN)	(resid	66	and	name	HB*)	2.9	1.1	1.1
	1	4	 L			(ranid	66	and	name	н г ∗ \́	30	21	21
assign	(resid	00	and	name	nin)	(resid	00	ano	name	nc^{+})	5.9	4.1	4.1
assion	(resid	66	and	name	HNÍ	(resid	66	and	name	HG*	2.9	1.1	1.1
assign	(1 cold	00		indite	····)	(10010	50		1100110				
!VAL													
	(ranid	67	and	nama	HA)	(recid	67	and	name	HB)	34	16	16
اللانخمه	resta	07	anu	name		(restu	07	and	manic	رسي	5.4	1.0	1.0

										** • •	• •		
assign	(resid	67	and	name	HGI*)	(resid	67	and	name	HA)	2.9	1.1	1.1
	inned	67	and	nama	HGI	Trecid	67	and	name	HB)	24	06	06
assign	(Testu	07	and	manne	1101)	(i cond			1104110		2.4	1.6	1.0
assign	(resid	67	and	name	HGI*)	(resid	67	and	name	HN)	3.4	1.0	1.0
anniam	ironid	67	and	name	HG1*5	Tesid	67	and	name	HG2*)	24	0.6	0.6
assign	(I csiu	07	and	maine		(Teste	67		1144110	1102)	2.0	1 1	1 1
assign	(resid	67	and	name	HG2*)	(resid	6/	and	name	HA)	2.9	1.1	1.1
accion	resid	67	and	name	HG2*)	(resid	67	and	name	HB)	2.4	0.6	0.6
assign	(icald			111111	TTOOT (67				2.4	0.6	06
assign	(resid	67	and	name	HG2+)	(resia	67	and	name	nn)	2.4	0.0	0.0
accion	resid	67	and	name	HN)	(resid	67	and	name	HA)	3.4	1.6	1.6
assign	(i colu						67			TID	2.0	1 1	1 1
assign	(resid	67	and	name	HN)	(resia	6/	and	name	пь)	2.9	1.1	1.1
ITVD	•												
TIK							<i>(</i> 0				24	0.0	0.0
assign	(resid	68	and	name	HA)	(resid	68	and	name	ны)	2.4	0.0	0.0
accian	irocid	68	and	name	HA)	resid	68	and	name	HB2)	2.9	1.1	1.1
assign	(Tesid	00	and	mane			60				2.0	1 1	1 1
assign	(resid	68	and	name	HBI)	(resid	68	and	name	HD_2)	2.9	1.1	1.1
accion	Tracid	68	and	name	HBI	(resid	68	and	name	HE2)	3.9	2.1	2.1
assign	(Testa	00	and	Indite			60				2.0	1 1	1 1
assign	(resid	68	and	name	HB2)	(resid	68	and	name	HDI)	2.9	1.1	1.1
ancian	Tracid	68	and	name	HB2	resid	68	and	name	HE1)	3.9	2.1	2.1
assign	(resid	00	and	Interne		(I COLO		1		TTA	2.0	1 1	1 1
assign	(resid	68	and	name	HDI)	(resia	68	and	name	па)	2.9	1.1	1.1
accion	Tresid	68	and	name	HD2)	(resid	68	and	name	HA)	3.4	1.6	1.6
assign	(I cold	00	410	Incarro			60	J		TTA	2.0	0.1	2.1
assign	(resid	68	and	name	HEI)	(resia	08	ano	name	па)	3.7	2.1	2.1
accion	Tresid	68	and	name	HN)	(resid	68	and	name	HA)	3.4	1.6	1.6
assign	(icald	00					10			UDI	20	1 1	11
assign	(resid	68	and	name	HN)	(resia	08	anu	name	IIDI)	2.7	1.1	1.1
accian	Tresid	68	and	name	HN)	(resid	68	and	name	HB2)	2.9	1.1	1.1
assign	(icald	60	1	114110		(20	and		HD2)	21	16	16
assign	(resid	68	and	name	HN)	(resia	68	and	name	пD2)	5.4	1.0	1.0
ITYP	•												
					TT A \	(<i>(</i> ^	4.1			20	1 1	11
assign	(resid	69	and	name	HA)	(resid	69	and	name	nbi)	2.9	1.1	1.1
accian	Granid	69	and	name	HA)	(resid	69	and	name	HB2)	3.4	1.6	1.6
assign	(resid	0,	and	manne						TIED	24	16	14
assign	(resid	69	and	name	HBI)	(resid	69	and	name	ncz)	5.4	1.0	1.0
ancian	ironid	60	and	name	HRI	(resid	69	and	name	HD2)	2.4	0.6	0.6
assign	(Testu	0,		manne		(i and	~			TIDI	24	0.6	04
assign	(resid	69	and	name	HB2)	(resid	69	and	name	nui)	2.4	0.0	0.0
accion	Tresid	69	and	name	HE ₂)	(resid	69	and	name	HA)	3.9	2.1	2.1
assign	(itesid				TIDO		6			IIA S	20	1 1	11
assign	(resid	69	and	name	HD2)	(resia	69	and	name	пА)	2.7	1.1	1.1
accion	Tresid	69	and	name	HN)	(resid	69	and	name	HA)	2.9	1.1	1.1
assign	(I cold		1	1104110			60				20	1 1	11
assign	(resid	69	and	name	HN)	(resia	69	and	name	пы)	4.7	1.1	1.1
accion	Tresid	69	and	name	HN)	(resid	69	and	name	HB2)	2.9	1.1	1.1
assign	(10010	~				(mani d	60	and		uni (31	16	16
assign	(resid	69	and	name	nn)	(resid	69	anu	name	mor)	5.4	1.0	1.0
PHE													
	(:4	70	and		UA \	(resid	70	and	name	HR2)	24	06	0.6
assign	(resia	70	anu	name	nA)	(Testu	70	410	name	11102)			
assign	(resid	70	and	name	HA)	(resid	70	and	name	HBI)	2.9	1.1	1.1
	(and a	70	and		TTA S	regid	70	and	name	HDI	34	16	16
assign	(resia	70	and	name	nA)	(iesiu	70	and	name		5.4	1.0	
assign	(resid	70	and	name	HB1)	(resid	70	and	name	HD2)	2.9	1.1	1.1
		70	d		UD2	leanid	70	and	name	HDIŃ	29	11	11
assign	(resia	70	and	name	п Б 2)	(Iesiu	70	anu	manie		2.7	1.1	1.1
assign	(resid	70	and	name	HN)	(resid	70	and	name	HA)	3.4	1.6	1.6
		70			บางว่	Granid	70	and	name	HRIN	29	11	11
assign	(resia	70	and	name	mn)	(LESIG	70	and	name		2.2		
assign	(resid	70	and	name	HN)	(resid	70	and	name	HB2)	2.9	1.1	1.1
	innid	70	and	nama	HNIS	Treeid	70	and	name	HD1)	29	1.1	1.1
assign	(resia	70	anu	manne	111 v)	(10310	70	6110	1100110				
!GLN													
	(marine)	71	and	name	HB2)	(recid	71	and	name	HA)	2.4	0.6	0.6
assign	(Testu	/1	and	Indiffe		(reold				TTA	2.0	1 1	1 1
assign	(resid	71	and	name	HBI)	(resid	71	and	name	па)	2.9	1.1	1.1
anim	iranid	71	and	name	HE2*)	resid	71	and	name	HA)	3.4	1.6	1.6
assign	(resid	/1	and	Indiffe	TIDE (1			2.0	0.1	2.1
assign	(resid	71	and	name	HE2*)	(resid	71	and	name	ны)	3.9	2.1	2.1
accion	irocid	71	and	name	HE2*)	(resid	71	and	name	HB2)	3.9	2.1	2.1
assign	(Testu	/1	and	1104110	TIDA		<u> </u>			IIC*	20	1 1	11
assign	(resid	71	and	name	HE2*)	(resid	71	ano	name	ng.)	2.9	1.1	1.1
accion	recid	71	and	name	HG*)	(resid	71	and	name	HA)	2.9	1.1	1.1
assign	(Teste	<i>,</i>	1	111111	TICH		71	han		ມນອາໃ	24	06	06
assign	(resid	71	and	name	HG ⁺)	(resid	/1	and	name	пы	2.4	0.0	0.0
assign	(resid	71	and	name	HN)	(resid	71	and	name	HA)	2.4	0.6	0.6
	(HNI	(rocid	71	hre	name	HRIN	24	0.6	0.6
assign	(resid	/1	and	name	111N /	(resid	/1	and	114110		~. T	0.0	0.0
assign	(resid	71	and	name	HN)	(resid	71	and	name	HB2)	2.4	0.6	0.0
	(marid	71	and	name	HNÍ	resid	71	and	name	HG*)	3.4	1.6	1.6
assign	(resid	/1	and	name	III)	(16310	/1		1000110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••		
!GLY												_	
	(mani d	70	and	name	HINI)	(recid	72	and	name	HA*)	24	0.6	0.6
assign	(resia	12	and	name	nn)	(resid	12	and	manie	I)	20. 1	0.0	•.•
!GLY													
annian	(readid	73	and	name	HN)	(resid	73	and	name	HA*)	2.4	0.6	0.6
assign	(Testu	15	and	Indillo	, m,)	(10010				,			
!ASN													
accion	(resid	74	and	name	HA)	(resid	74	and	name	HB1)	2.9	1.1	1.1
assign	(Lesia				TT A	(74		-	HB2	20	1 1	11
assign	(resid	74	and	name	HA)	(resia	/4	and	name	1102)	4.7	1.1	1.1
accim	Trecid	74	and	name	HD2*)	(resid	74	and	name	HA)	3.9	2.1	2.1
moight		, - T			UD0+	(man !)	74	and	namo	HRIŃ	20	11	11
assign	(resid	74	and	name	ΠD2*)	(16210	/4	anu	name	1101)	2.7	1.1	
assion	(resid	74	and	name	HD2*)	(resid	74	and	name	HB2)	2.9	1.1	1.1
assign	(105)0	74	t.		LINI	(ronid	74	and	name	нд γ	29	11	1.1
assign	(resid	74	and	name	nin)	(resid	/4	and	1141110		2.7	1.1	1.1
assion	(resid	74	and	name	HN)	(resid	74	and	name	ны)	5.4	1.6	1.6
	(mani d	71	and	name	HNÍ	recid	74	and	name	HB2	3.4	1.6	1.6
assign	(resid	/4	ann	name		(10010				100*	20	2.1	21
assign	(resid	74	and	name	HN)	(resid	74	and	name	пD2*)	3.7	4.1	4.1
IACNI													
Niene:	,					(1	75	لمسم	-	HA \	21	16	16
assign	(resid	75	and	name	ны)	(resia	13	and	name	inv)	5.4	1.0	1.0
assion	(resid	75	and	name	HB2)	(resid	75	and	name	HA)	2.9	1.1	1.1
and get	(75		nama	HD2+	Tread	75	and	name	HAN	3.9	2.1	2.1
assign	(resid	15	and	name	1102°)	(resid			manie		2.2	1 1	1 1
assign	(resid	75	and	name	HD2*)	(resid	75	and	name	ны)	2. 9	1.1	1.1
	· · · · · · · · · · · · · · · · · · ·	-				•							

assign	(resid	75	and	name	HD2*)	(resid	75	and	name	HB2)	29	11	11
assign	resid	75	and	name	HD2*)	(resid	75	and	name	HN	3.9	21	21
assign	resid	75	and	name	HN	(resid	75	and	name	HA	21	0.6	2.1
accion	(recid	75	and	namo		(resid	75	and	name		2.4	0.0	0.0
assign	(resid	75	and	name	HN)	(resid	75	and	name		2.9	1.1	1.1
IGIU	(10310	15	and	name	inv)	(resid	15	anu	name	пь2)	5.4	1.0	1.0
. OLO	(manid	76	لمسم			(71	4			~ .		~ ~
assign	(resid	70	and	name		resid	70	and	name	HA)	2.4	0.6	0.6
assign	(resid	/6	and	name	HB2)	(resid	76	and	name	HA)	2.9	1.1	1.1
assign	(resid	76	and	name	HG*)	(resid	76	and	name	HA)	2.9	1.1	1.1
assign	(resid	76	and	name	HG*)	(resid	76	and	name	HB*)	2.9	1.1	1.1
assign	(resid	76	and	name	HN)	resid	76	and	name	HA Ú	2.4	0.6	0.6
assign	resid	76	and	name	HN	(resid	76	and	name	HBI	34	16	16
assion	(resid	76	and	name	HN	(recid	76	and	name		2.4	1.0	1.0
assign	(read	70	and	manie		(resid	70		name		2.9	1.1	1.1
assign	(Testa	70	and	name	HN)	(resia	/0	and	name	HG [*])	2.9	1.1	1.1
ILEU													
assign	(resid	77	and	name	HA)	(resid	77	and	name	HB1)	2.4	0.6	0.6
assign	(resid	77	and	name	HA)	(resid	77	and	name	HB2)	2.9	1.1	1.1
assign	(resid	77	and	name	HA)	resid	77	and	name	HGÍ	3.9	2.1	2.1
assign	resid	77	and	name	HD1*)	(resid	77	and	name	HAS	24	0.6	0.6
assign	(resid	77	and	name		(recid	77	and	name	HP2 \	2.4	1.1	1 1
assign	(reald	77	and	mame		(resid	77		name		2.7	1.1	1.1
assign	(resid	22	and	name		(resid	~ ~ ~	and	name	HG)	2.4	0.6	0.6
assign	(resid	11	and	name	HDI+)	(resid	-77	and	name	HN)	3.4	1.6	1.6
assign	(resid	77	and	name	HDI*)	(resid	77	and	name	HD2*)	2.4	0.6	0.6
assign	(resid	77	and	name	HD2*)	(resid	77	and	name	HN)	2.9	1.1	1.1
assign	(resid	77	and	name	HD2*)	(resid	77	and	name	HB1)	3.4	1.6	1.6
assign	resid	77	and	name	HD2*)	resid	77	and	name	HGÍ	3.4	1.6	1.6
assign	resid	77	and	name	HD2*	resid	77	and	name	HA	34	16	16
assign	racid	77	and	name	UN V	(recid	77	and	name	TTA (2 1	1.0	1.0
assign	(resid	77	and	name		(resid	77	and	name		2.4	1.0	1.0
assign	(resid		and	name		(resid		and	name		2.9	1.1	1.1
assign	(resid	11	and	name	HN)	(resid	- 77	and	name	HB2)	2.4	0.6	0.6
assign	(resid	77	and	name	HN)	(resid	77	and	name	HG)	3.9	2.1	2.1
assign	(resid	78	and	name	HN)	(resid	78	and	name	HA*)	2.9	1.1	1.1
!THR						•				,			
assign	(resid	79	and	name	HB)	(resid	79	and	name	HA)	2.4	0.6	0.6
assion	resid	79	and	name	HG2+)	resid	79	and	name	HA	29	11	11
assign	(recid	70	and	name	HG2*)	(recid	70	and	name		2.1	0.6	0.6
assign	(resid	73	and	name		(Tesid	17	and	name		2.4	0.6	0.0
assign	(resia	19	and	name	HN)	(resid	19	and	name	HA)	2.4	0.6	0.6
assign	(resid	79	and	name	HN)	(resid	79	and	name	HB)	2.9	1.1	1.1
assign	(resid	79	and	name	HN)	(resid	79	and	name	HG2*)	3.4	1.6	1.6
!ALA													
assign	(resid	80	and	name	HB*)	(resid	80	and	name	HA)	2.4	0.6	0.6
assign	resid	80	and	name	HNÍ	(resid	80	and	name	HA	2.4	0.6	0.6
assign	(recid	80	and	name	HN S	(recid	80	and	name	HB*	2.1	0.6	0.6
137 A T	(resta	80	anu	manne	III)	(resid	80	and	name	IID [*])	2.4	0.0	0.0
! VAL		~			** • `						• •		
assign	(resid	81	and	name	HA)	(resid	81	and	name	нв)	2.9	1.1	1.1
assign	(resid	81	and	name	HG1*)	(resid	81	and	name	HB)	2.4	0.6	0.6
assign	(resid	81	and	name	HG1*)	(resid	81	and	name	HA)	2.9	1.1	1.1
assign	resid	81	and	name	HG1* j	resid	81	and	name	HNÍ	2.9	1.1	1.1
assign	(resid	81	and	name	HG1*	(resid	81	and	name	HG2*)	2.4	0.6	0.6
assign	(resid	81	and	name	HG2*)	resid	81	and	name	HB	24	0.6	0.6
assign	(rocid	01	and	namo		(recid	01	and	name		20	1 1	1 1
assign	(resid	01	and	name	1102°	(resid	01	and	name		2.7	1.1	1.1
assign	(resid	81	and	name	HG2+)	(resid	81	and	name	HIN)	2.4	0.6	0.0
assign	(resid	81	and	name	HN)	(resid	81	and	name	HA)	2.9	1.1	1.1
assign	(resid	81	and	name	HN)	(resid	81	and	name	HB)	3.4	1.6	1.6
!GLY													
assign	(resid	82	and	name	HN)	(resid	82	and	name	HA*)	2.4	0.6	0.6
!LYS										-			
assign	(resid	83	and	name	HA)	(resid	83	and	name	HB1)	2.4	0.6	0.6
assign	(resid	83	and	name	HAÍ	resid	83	and	name	HB2 S	2.9	1.1	1.1
assign	resid	83	and	name	НА	resid	83	and	name	HG*	3.0	21	21
assign	(recid	83	and	name		(recid	83	and	name		3.0	2.1	21
assign	(resid	05		name		(resid	05	and	Hallie		5.5	2.1	2.1
assign	(resia	83	and	name	HN)	(resid	83	and	name	HA)	2.4	0.6	0.6
assign	(resid	83	and	name	HN)	(resid	83	and	name	HB2)	2.4	0.6	0.6
assign	(resid	83	and	name	HN)	(resid	83	and	name	нві)	2.9	1.1	1.1
assign	(resid	83	and	name	HN)	(resid	83	and	name	HG*)	3.4	1.6	1.6
!LEŪ					,					,			
assign	(resid	84	and	name	HA)	(resid	84	and	name	HB*)	2.9	1.1	1.1
assion	(recid	84	and	name	HN	(recid	84	and	name	HA	24	0.6	0.6
assign	(rocid	04	anu	name		(real d	04	anu	name		2.4	1 4	1.4
assign	(iesiu	04	allu	name		(resid	04	anu	name		5.4	1.0	1.0
assign	resid	84	and	name		resid	84	and	name	HG)	2.4	0.6	0.6
assign	(resid	84	and	name	HDI*)	(resid	84	and	name	HA)	3.4	1.6	1.6
assign	(resid	84	and	name	HD1*)	(resid	84	and	name	HN)	3.4	1.6	1.6
assign	(resid	84	and	name	HD2*)	(resid	84	and	name	HB*)	3.4	1.6	1.6
assign	(resid	84	and	name	HD2*)	(resid	84	and	name	HG)	2.4	0.6	0.6
assign	(resid	84	and	name	HD2* Ú	(resid	84	and	name	HA Ś	3.4	1.6	1.6
assign	resid	84	and	name	HD2*	(resid	84	and	name	HNÍ	3.4	1.6	1.6
assign	(resid	84	and	name	HN	(resid	84	and	name	HB*	29	1 1	1 1
	(10010	07	us I G	mane	****)	(10310			mane	, chi	4.7	1.1	1.1

PHE!													
assign	(resid	85	and	name	HB1)	(resid	85	and	name	HD2)	2.9	1.1	1.1
assign	(resid	85	and	name	HB2)	(resid	85	and	name		2.9	1.1	1.1
assign	(resid	80 85	and	name	HB2	(resid	85 85	and	name	HA)	2.4	0.6	0.6
assign	(resid	85	and	name	HEI	(resid	85	and	name	HB1)	3.9	2.1	2.1
assign	(resid	85	and	name	HE2)	(resid	85	and	name	HB2)	3.9	2.1	2.1
assign	(resid	85	and	name	HN)	(resid	85	and	name	HA)	2.9	1.1	1.1
assign	(resid	85	and	name	HN)	(resid	85	and	name	HB1)	2.4	0.6	0.6
assign	(resid	85	and	name	HN)	(resid	85	and	name	HB2)	2.9	1.1	1.1
assign	(resid	85	and	name	HN)	(resid	85	and	name	HD2)	2.4 2 /	0.6	0.6
assign	(resid	82	and	name	HN)	(resid	85 85	and	name	HZ)	39	2.1	21
	(resid	65	anu	Hame	III)	(resid	05	and	Indillo	112)	5.7	<i>2</i> .1	2.1
assign	(resid	86	and	name	HA)	(resid	86	and	name	HB*)	3.4	1.6	1.6
assign	(resid	86	and	name	HA)	(resid	86	and	name	HD*)	3.9	2.1	2.1
assign	(resid	86	and	name	HA)	(resid	86	and	name	HG*)	3.9	2.1	2.1
assign	(resid	86	and	name	HD*)	(resid	86	and	name	HB*)	3.9	2.1	2.1
assign	(resid	86	and	name	HE)	(resid	86	and	name	HA)	3.9 7 1	2.1	2.1
assign	(resid	86	and	name	HE)	(resid	80	and	name		2.4	0.6	0.0
assign	(resid	80 92	and	name		(resid	86	and	name		2.4 3.4	16	16
assign	(resid	80 86	and	name	HG*)	(resid	86	and	name	HB*)	2.9	1.1	1.1
assign	(resid	86	and	name	HG*	(resid	86	and	name	HD*	2.9	1.1	1.1
assign	(resid	86	and	name	HG*	(resid	86	and	name	HE)	3.9	2.1	2.1
assign	(resid	86	and	name	HN)	(resid	86	and	name	HA)	2.9	1.1	1.1
assign	(resid	86	and	name	HN)	(resid	86	and	name	HB*)	2.9	1.1	1.1
assign	resid	86	and	name	HN)	(resid	86	and	name	HD*)	3.9	2.1	2.1
assign	(resid	86	and	name	HN)	(resid	86	and	name	HG*)	3.4	1.6	1.6
!VAL										TT 4 \	~ 4	17	10
assign	(resid	87	and	name	HG1*)	(resid	87	and	name	HA)	3.4	1.6	1.0
assign	(resid	87	and	name	HGI*)	(resid	8/	and	name		2.7	1.1	1.1
assign	(resid	87	and	name	$HG1^{+})$	(resid	87	and	name	HG2*)	2.9	1.1	11
assign	(resid	87	and	name	HG2*)	(resid	87	and	name	HN	3.4	1.6	1.6
assign	(resid	87	and	name	HG2*)	(resid	87	and	name	HA)	2.9	1.1	1.1
assign	(resid	87	and	name	HA)	(resid	87	and	name	HB)	2.4	0.6	0.6
assign	(resid	87	and	name	HN)	(resid	87	and	name	HB)	2.4	0.6	0.6
assign	(resid	87	and	name	HN)	resid	87	and	name	HA)	2.9	1.1	1.1
!GĽY	•												
assign	(resid	88	and	name	HN)	(resid	88	and	name	HA*)	2.9	1.1	1.1
!VAL							00	1			~ 4	0.6	06
assign	(resid	89	and	name	HA)	(resid	89	and	name		2.4	0.0	0.0
assign	(resid	89	and	name	HA)	(resid	89	and	name	HB)	2.7	1.1	1.1
assign	(resid	89	and	name	HG1*)	(resid	89	and	name	HA)	3.4	1.6	1.6
assign	(resid	89	and	name	HG1*)	(resid	89	and	name	HN)	2.9	1.1	1.1
assign	(resid	89	and	name	HGI*	(resid	89	and	name	HG2*)	2.9	1.1	1.1
assign	(resid	89	and	name	HG2*)	resid	89	and	name	HB)	2.4	0.6	0.6
assign	(resid	89	and	name	HG2*)	resid	89	and	name	HA)	2.9	1.1	1.1
assign	(resid	89	and	name	HG2*)	(resid	89	and	name	HN)	3.4	1.6	1.6
assign	(resid	89	and	name	HN)	(resid	89	and	name	нв)	2.4	0.6	0.6
!VAL		•				(: 4	00	and		ШΛ)	31	16	16
assign	(resid	90	and	name	HGI*)	(resid	90	and	name	HN)	3.4	1.6	1.6
assign	(resid	90	and	name	HGI*)	(resid	90	and	name	HB	2.9	1.1	1.1
assign	(resid	90	and	name	HG1*)	(resid	90	and	name	HA)	2.9	1.1	1.1
assign	(resid	90	and	name	HG2*)	(resid	90	and	name	HA)	2.9	1.1	1.1
assign	(resid	90	and	name	HG2*)	resid	90	and	name	HN)	2.9	1.1	1.1
assign	resid	90	and	name	HG2*)	(resid	90	and	name	HB)	2.9	1.1	1.1
assign	(resid	90	and	name	HA)	(resid	90	and	name	HB)	3.4	1.6	1.6
assign	(resid	90	and	name	HN)	(resid	90	and	name	HA)	3.4	1.0	1.0
assign	(resid	90	and	name	HN)	(resid	90	and	name	пь)	2.7	1.1	1.1
ISER	(01	and		UB1)	(resid	91	and	name	HA)	3.4	1.6	1.6
assign	(resid	91	and	name	HB2 \	(resid	91	and	name	HA	2.9	1.1	1.1
assign	(resid	91 Q1	and	name	HN)	(resid	91	and	name	HA	3.9	2.1	2.1
assign	(resid	91	and	name	HN S	(resid	91	and	name	HB1)	2.9	1.1	1.1
assign	(resid	91	and	name	HN)	(resid	91	and	name	HB2)	2.9	1.1	1.1
!ILE	(1.0010					•				•			
assign	(resid	92	and	name	HA)	(resid	92	and	name	HB)	2.9	1.1	1.1
assign	(resid	92	and	name	HA)	(resid	92	and	name	HG1*)	3.9	2.1	2.1
assign	(resid	92	and	name	HD1*)	(resid	92	and	name	HA)	2.9	1.1	1.1
assign	(resid	92	and	name	HD1*)	(resid	92	and	name	HB	3.4 20	1.0	1.0
assign	(resid	92	and	name	HDI*)	(resid	92	and	name	HG2*	∠.7 79	1.1	1 1
assign	(resid	92	and	name	(*ועת ווחק	(recid	92	and	name	HN	3.4	1.6	1.6
assign	(resia	74	anu	name	101°)	(reard	/4		*******	,			

assign	(resid	92	and	name	HG1*)	(resid	92	and	name	HB) 3.9	2.1	2.1
anim	(ranid	02	and		HOI*	(monid	02	and		HC2*) 24	1.4	1 4
assign	(Testu	24	anu	name	1101)	(resid	74	anu	name	1102) 3.4	1.0	1.0
assign	(resid	92	and	name	HG2*)	(resid	92	and	name	HA) 2.9	1.1	1.1
assign	(resid	92	and	name	HG2* \	Íresid	92	and	name	HB \ 2.4	06	0.6
	(resid	00			TICAT	(10010	60				1.0	1.0
assign	(resid	92	and	name	HG2+)	(resia	92	and	name	HN) 3.4	1.6	1.6
assign	(resid	92	and	name	HN)	(resid	92	and	name	HA) 3.4	1.6	1.6
accion	recid	92	and	name	HNÍ	resid	92	and	name	HR \ 29	11	11
ASSIET	(10310	14	and	manie	, internet	(16310	12	and	mame	IID) 2.7	1.1	1.1
!LEU												
assign	(resid	93	and	name	HA)	(resid	93	and	name	HB2) 2.9	1.1	1.1
ussign	(10514		1	mane	TTA	(10010	00				1.4	
assign	(resid	93	and	name	HA)	(resia	93	and	name	HBI) 3.4	1.6	1.6
assign	(resid	93	and	name	HD2*)	(resid	93	and	name	HA) 3.9	2.1	2.1
	(married	02	and		102*1	(rooid	02	and		HD*) 24	0.6	0.4
assign	(Testa	33	and	name	11122)	(Tesiu	33	anu	matric	1110) 2.4	0.0	0.0
assign	(resid	93	and	name	HD2*)	(resid	93	and	name	HG) 2.4	0.6	0.6
assign	(resid	93	and	name	HD2*)	(resid	93	and	name	HD1*) 2.4	0.6	0.6
	(included)	02	and a		TIDOX	(mania)	02	and			1 4	1.6
assign	(resia	93	ano	name	$HD2^{+}$)	(resid	95	and	name	HN) 5.4	1.0	1.0
assign	(resid	93	and	name	HD1*)	(resid	93	and	name	HA) 2.9	1.1	1.1
accion	Tresid	03	and	name	HD1*∫	resid	03	and	name	HB*) 24	06	0.6
assign	(Itald	22		Incente		(10310		0010	Indino		0.0	0.0
assign	(resid	93	and	name	HDI*)	(resid	93	and	name	HG) 2.4	0.6	0.6
assign	(resid	93	and	name	HD1*)	(resid	93	and	name	HN) 3.4	1.6	1.6
	(martial	02				(and a	02			TTA 24	1.0	1 6
assign	(resid	93	and	name	по)	(resid	93	and	name	ПА) 5.4	1.6	1.0
assign	(resid	93	and	name	HN)	(resid	93	and	name	HA) 3.4	1.6	1.6
assion	resid	03	and	name	HNÍ	Íresid	93	and	name	HB2) 34	16	16
assign	(resid	22		manie		(icald	22	4110	THAT IC	1102) 5.4	1.0	1.0
assign	(resid	93	and	name	HN)	(resid	93	and	name	HBI) 2.9	1.1	1.1
assign	(resid	93	and	name	HN)	(resid	93	and	name	HG) 3.4	1.6	1.6
CIU	(10010					(10020)		
:GLU												
assign	(resid	94	and	name	HA)	(resid	94	and	name	HG*) 2.9	1.1	1.1
accion	irecid	04	and	name	HBIN	Treeid	94	and	name	HA \ 74	0.6	06
assign	(resid	24	410	name		(resid	24		manie	114) 2.4	0.0	0.0
assign	(resid	94	and	name	HB2)	(resid	94	and	name	HA) 2.9	1.1	1.1
assign	resid	94	and	name	HB1)	(resid	94	and	name	HG*) 2.9	1.1	1.1
	(mania)	04			TIDO	(mani d	04	and		HC* 20	1 1	1 1
assign	(resid	24	and	name	пь2)	(TESIG	24	anu	name	110) 2.9	1.1	1.1
assign	(resid	94	and	name	HN)	(resid	94	and	name	HA) 2.9	1.1	1.1
assion	Ìresid	94	and	name	HNÍ	Íresid	94	and	name	HB1) 24	06	0.6
ussien.	10310	04	1	Indino		(10010	64				1 1	1 1
assign	(resid	94	and	name	HN)	(resid	94	and	name	HB2) 2.9	1.1	1.1
!ALA												
action	(married	05	and	nama	HD*)	(recid	05	and	nama	HA) 24	0.6	0.6
assign	(Tesia	35	anu	name	III.)	(resid	25	and	mame	11/1) 2.4	0.0	0.0
assign	(resid	95	and	name	HN)	(resid	95	and	name	HA) 2.9	1.1	1.1
assign	resid	95	and	name	HN)	(resid	95	and	name	HB*) 2.4	0.6	0.6
ICT V	(10010			11-211-0		(
:GL1												
assign	(resid	96	and	name	HN)	(resid	96	and	name	HA*) 2.4	0.6	0.6
INCO	•					•						
: .												
assign	(resid	97	and	name	HBI)	(resid	97	and	name	HA) 2.9	1.1	1.1
assign	(resid	97	and	name	HB2)	(resid	97	and	name	HA) 2.4	0.6	0.6
unipit	(iouid	07			TINI	(07	and a		114 20	1 1	1 1
assign	(resia	9/	and	name	HN)	(resid	97	and	name	ПА) 2.9	1.1	1.1
assign	(resid	97	and	name	HN)	(resid	97	and	name	HB1) 2.9	1.1	1.1
accion	Tresid	97	and	name	HNÍ	Tresid	97	and	name	HB2) 24	0.6	0.6
LOED	(i cold	~	and	mame	, in ,	(10310			maine	1100) 2.1	0.0	0.0
ISER												
assign	(resid	98	and	name	HB*)	(resid	98	and	name	HA) 2.9	1.1	1.1
anniam	(marid	00	and			(recid	08	and	nama	HA 1 24	0.6	06
assign	(resid	70	anu	name	IIIN)	(Testu	20	and	manie	11/1) 2.4	0.0	0.0
assign	(resid	98	and	name	HN)	(resid	98	and	name	HB*) 2.4	0.6	0.6
!ASP												
assion	(recid	00	and	nama	HB1)	(resid	00	and	name	HA) 24	0.6	0.6
assign	liesiu	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and	name		(resid		and	manie	11A) 2.4	0.0	0.0
assign	(resid	99	and	name	HB2)	(resid	99	and	name	HA) 2.4	0.6	0.6
assign	(resid	99	and	name	HN)	(resid	99	and	name	HA) 3.4	1.6	1.6
	(marid	00	and			racid	00	and	nama	HR2) 20	1 1	1 1
assign	(Lesia	/7	and	1101110		(Lesia	00		name	1104 / 4.7	1.1	1.1
assign	(resid	9 9	and	name	HN)	(resid	77	and	name	пы) 3.4	1.6	1.6
!ILE												
assim	(recid	100	and	name	HA)	(resid	100	and	name	HB) 29	11	11
assign	(Lesia	100		manne		(10010	100		indite	11011	1.1	1.1
assign	(resid	100	and	name	на)	(resid	100	and	name	пог•) 3.4	1.6	1.6
assign	(resid	100	and	name	HD1*)	(resid	100	and	name	HA) 3.4	1.6	1.6
	(manid	100	and		UD1*1	(married	100	and		UP) 20	1 1	1 1
assign	(resid	100	ano	name	nDI)	(Testa	100	anu	name	IID) 2.9	1.1	1.1
assign	(resid	100	and	name	HG1*)	(resid	100	and	name	HB) 2.9	1.1	1.1
assion	Íresid	100	and	name	HG1*	(resid	100	and	name	HD1*) 2.4	0.6	0.6
assign	(icold	100	410	mane	TTOOT ((10010	100				1 1	1 1
assign	(resid	100	and	name	HG2+)	(resia	100	and	name	HA) 2.9	1.1	1.1
assign	(resid	100	and	name	HG2*)	(resid	100	and	name	HB) 2.4	0.6	0.6
assim	recid	100	and	name	HG2*	Tesid	100	and	name	HD1*1 29	11	11
assign	(i colu	100		manie	1102)	(10010	100		indite		1.1	
assign	(resid	100	and	name	HG2*)	(resid	100	and	name	HGI+) 2.9	1.1	1.1
assign	(resid	100	and	name	HN	(resid	100	and	name	HA) 2.9	1.1	1.1
	(100	J			(100			HR 1 20	21	21
assign	(resid	100	and	name	IIIN)	uesia	100	and	name	nd) 3.9	2.1	2.1
assign	(resid	100	and	name	HN)	(resid	100	and	name	HD1*) 2.9	1.1	1.1
assion	Trecid	100	and	name	HNÍ	Tregid	100	and	name	HG1*1 20	11	11
assign	(Testu	100	anu	Hallie		(restu	100	410	name		1.1	1.1
assign	(resid	100	and	name	HN)	(resid	100	and	name	н 62*) 2.9	1.1	1.1
!LEU					-							
accian	(ranid	101	and	n ama	Ц А \	(ronid	101	and	n ama	HN) 20	1 1	1 1
assign	restu	101	anu	name		(restu	101		name	111N J 2.9	4.1	1.1
assign	(resid	101	and	name	нв∗)	(resid	101	and	name	HA) 2.9	1.1	1.1
assign	(resid	101	and	name	HD1*)	(resid	101	and	name	HA) 34	1.6	16
and	(10010	101				(101	and a			0.4	1.0
assign	(resid	101	and	name	пл1+)	(resid	101	and	name	по") 2.4	0.6	0.6
assign	(resid	101	and	name	HD1*)	(resid	101	and	name	HG) 2.4	0.6	0.6
	·					· · · · ·				, =: •		

					TTD 1 + \	(101	and		UNI \ 20	3 11	1 1
assign	(resid	101	and	name		(resid	101		name	110 $($ 2		1.1
assign	(resid	101	and	name	HDI+)	(resid	101	and	name	HD2+) 2.4	+ 0.0	0.0
assign	(resid	101	and	name	HD2*)	(resid	101	and	name	HA) 3.4	4 I.6	1.6
assign	íresid	101	and	name	HD2*)	(resid	101	and	name	HB*) 2.4	4 0.6	0.6
assion	(resid	101	and	name	HD2*)	(resid	101	and	name	HG) 2.4	4 0.6	0.6
assign	(read	101	and	name	HD2*1	Tesid	101	and	name	HN $\hat{)}$ 2.9	ə 1.1	1.1
assign	(Tesid	101	and	name		(resid	101	and	name	HA) 20	9 11	11
assign	(resia	101	and	name		(i csid	101		name			0.6
assign	(resid	101	and	name	HG)	(resid	101	and	name	HB ⁺) 2.4	+ 0.6	0.0
assign	(resid	101	and	name	HN)	(resid	101	and	name	HB*) 2.9	9 1.1	1.1
assion	resid	101	and	name	HN)	resid	101	and	name	HG) 2.9	ə 1.1	1.1
ITTID	(10010	101	uno			(
. Ink		100				(married	102	and	nama	HG2+) 2) 11	11
assign	(resid	102	and	name		(Tesia	102	and	Indille			0.6
assign	(resid	102	and	name	HB)	(resid	102	and	name	HA) 2.4	+ 0.0	0.0
assign	(resid	102	and	name	HB)	(resid	102	and	name	HN) 3.4	4 1.6	1.6
assion	(resid	102	and	name	HG2*)	(resid	102	and	name	HB) 2.	9 1.1	1.1
accion	resid	102	and	name	HNÚ	resid	102	and	name	HA) 2.4	4 0.6	0.6
assign	(resid	102	and	name	HN	(resid	102	and	name	$HG2^{\star}) 2$	4 0.6	0.6
assign	(resia	102	anu	manie	int)	(10510	102	uno	1100110	1102 / 2.		•••
!THR			_							TTOOT > O		0.0
assign	(resid	103	and	name	HA)	(resid	103	and	name	HG2+) 2.	4 0.0	0.0
assign	resid	103	and	name	HB)	(resid	103	and	name	HA) 2.	9 1.1	1.1
assion	resid	103	and	name	HG2*)	resid	103	and	name	HB) 2.4	4 0.6	0.6
assign	(resid	103	and	name	HNÚ	(resid	103	and	name	HA) 2.	4 0.6	0.6
assign	(resid	105	لمسلم	Hame		(resid	102	and	name		11	11
assign	(resid	103	and	name	HN)	(resid	105	and	name			1.1
assign	(resid	103	and	name	HN)	(resid	103	and	name	$HG2^{+}$) 2.	9 1.1	1.1
!LEU												
assion	(resid	104	and	name	HB*)	(resid	104	and	name	HA) 2.	9 1.1	1.1
assign	(recid	104	and	name	HB*)	resid	104	and	name	HD*) 2.	9 1.1	1.1
assign	(resid	104	and	manie		(monid	104	and	nomo	HG 1 3	9 21	21
assign	(resid	104	and	name		(resid	104	anu	Hame			2.1
assign	(resid	104	and	name	HB*)	(resid	104	and	name	HN) 2.	9 1.1	1.1
assign	resid	104	and	name	HD*)	(resid	104	and	name	HA) 3.	4 1.6	1.6
assion	resid	104	and	name	HD*)	resid	104	and	name	HN) 3.	4 1.6	1.6
assign	(readid	104	and	name	HGÍ	resid	104	and	name	HA) 3.	9 2.1	2.1
assign	(resid	104	and	manne		(resid	104	and	name	HD*) 2	4 06	0.6
assign	(resid	104	and	name		(resid	104		maine		4 1 6	1.6
assign	(resid	104	and	name	HG)	(resid	104	and	name		4 1.0	1.0
assign	(resid	104	and	name	HA)	(resid	104	and	name	HN) 2.	9 1.1	1.1
assion	(resid	104	and	name	HN)	(resid	104	and	name	HA) 2.	4 0.6	0.6
	(10010				,	`				•		
ALA	(105	and	name	HB*)	(resid	105	and	name	HA) 2	4 0.6	0.6
	1 TeS10	10,7	anu	name	ind i	(ICSIG	105	and	Interio			
assign	10010	105			TINT	incaid	105	and	name	HB*) 2	4 06	0.6
assign	(resid	105	and	name	HN)	(resid	105	and	name	HB*) 2.	4 0.6	0.6
assign assign assign	(resid (resid	105 105	and and	name name	HN) HN)	(resid (resid	105 105	and and	name name	HB*) 2. HA) 2.	4 0.6 4 0.6	0.6 0.6
assign assign assign	(resid (resid	105 105	and	name name	HN) HN)	(resid (resid	105 105	and and	name name	HB*) 2. HA) 2.	4 0.6 4 0.6	0.6 0.6
assign assign assign	(resid (resid (resid	105 105 lue restra	and and unts	name name	HN) HN)	(resid (resid	105 105	and and	name name	HB*) 2. HA) 2.	4 0.6 4 0.6	0.6 0.6
assign assign assign !protein !AI A2	(resid (resid (resid	105 105 iue restra	and and unts	name name	HN) HN)	(resid (resid	105 105	and and	name name	HB*) 2. HA) 2.	4 0.6 4 0.6	0.6 0.6
assign assign !protein !ALA2	(resid (resid inter-resid	105 105 lue restra	and and unts	name name	HN) HN)	(resid (resid	105 105	and and and	name name	HB*) 2. HA) 2. HD*) 2.	4 0.6 4 0.6 9 1.1	0.6 0.6
assign assign !protein !ALA2 assign	(resid (resid inter-resid (resid	105 105 iue restra 2	and and uints and	name name name	HN) HN)	(resid (resid	105 105 3	and and and	name name	HB*) 2. HA) 2. HD*) 2.	4 0.6 4 0.6 9 1.1	0.6 0.6 1.1
assign assign !protein !ALA2 assign assign	(resid (resid inter-resid (resid (resid	105 105 105 10e restra 2 2	and and uints and and	name name name	HN) HN) HA) HB*)	(resid (resid (resid	105 105 3 3	and and and	name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3.	4 0.6 4 0.6 9 1.1 4 1.6	0.6 0.6 1.1 1.6
assign assign !protein !ALA2 assign assign assign	(resid (resid inter-resid (resid (resid (resid	105 105 lue restra 2 2 2	and and iints and and and	name name name name	HN) HN) HA) HB*) HB*)	(resid (resid (resid (resid (resid	105 105 3 3 3	and and and and and	name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6	0.6 0.6 1.1 1.6 1.6
assign assign !protein !ALA2 assign assign !VALA	(resid (resid inter-resid (resid (resid (resid	105 105 lue restra 2 2 2	and and uints and and and	name name name name name	HN) HN) HA) HB*) HB*)	(resid (resid (resid (resid (resid	105 105 3 3 3	and and and and and	name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6	0.6 0.6 1.1 1.6 1.6
assign assign !protein !ALA2 assign assign !VAL4 assign	(resid (resid inter-resid (resid (resid (resid	105 105 iue restra 2 2 2 2	and and uints and and and and	name name name name	HN) HN) HA) HB*) HB*) HB*)	(resid (resid (resid (resid (resid (resid	105 105 3 3 3 5	and and and and and and	name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3. HN) 2.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1	0.6 0.6 1.1 1.6 1.6 1.1
assign assign !protein !ALA2 assign assign assign !VAL4 assign	(resid (resid inter-resid (resid (resid (resid (resid	105 105 lue restra 2 2 2 2 4	and and uints and and and and	name name name name name	HN) HN) HA) HB*) HB*) HB*) HB)	(resid (resid (resid (resid (resid (resid	105 105 3 3 3 5 5	and and and and and and	name name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3. HN) 2. HN) 2.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1	0.6 0.6 1.1 1.6 1.6 1.1 1.1
assign assign !protein !ALA2 assign assign !VAL4 assign assign assign	(resid (resid inter-resid (resid (resid (resid (resid (resid	105 105 lue restra 2 2 2 4 4	and and uints and and and and and	name name name name name	HN) HN) HA) HB*) HB*) HB*) HB()	(resid (resid (resid (resid (resid (resid (resid	105 105 3 3 3 5 5	and and and and and and and and	name name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3. HN) 2. HN) 2.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 4 1.6	0.6 0.6 1.1 1.6 1.6 1.1 1.1
assign assign !protein !ALA2 assign assign !VAL4 assign assign assign assign	(resid (resid inter-resid (resid (resid (resid (resid (resid (resid	105 105 105 2 2 2 2 4 4 4	and and ints and and and and and and	name name name name name name name	HN) HN) HB*) HB*) HB*) HB*) HB) HB) HGI*)	(resid (resid (resid (resid (resid (resid (resid (resid	105 105 3 3 3 5 5 5	and and and and and and and and	name name name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 2.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 4 1.6	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6
assign assign !protein !ALA2 assign assign assign assign assign assign assign assign	(resid (resid inter-resid (resid (resid (resid (resid (resid (resid (resid	105 105 105 due restra 2 2 2 2 4 4 4 4 4	and and and and and and and and and and	name name name name name name name	HN) HN) HB*) HB*) HB*) HB*) HG1*) HG2*)	(resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 3 3 3 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6
assign assign !protein !ALA2 assign assign assign assign assign assign assign assign assign	(resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 lue restra 2 2 2 2 4 4 4 4 4 4 4 4	and and and and and and and and and and	name name name name name name name name	HN) HN) HB*) HB*) HB*) HB*) HG*) HG2*) HN)	(resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 3 3 3 5 5 5 5 5 3	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HN) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 0.6	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 0.6
assign assign !protein !ALA2 assign assign assign assign assign assign assign assign assign assign	(resid (resid inter-resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 105 2 2 2 2 2 4 4 4 4 4 4 4 4 4	and and and and and and and and and and	name name name name name name name name	HN) HN) HB*) HB*) HB*) HB*) HG1*) HG2*) HN)	(resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 3 3 3 3 5 5 5 5 5 3 3 3	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HG*) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HA) 2. HD*) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 0.6 1.6
assign assign !protein !ALA2 assign assign assign assign assign assign assign assign assign assign	(resid (resid inter-resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 105 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HG1*) HG2*) HN) HN) HN)	(resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 3 3 3 5 5 5 5 5 3 3 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3. HN) 2. HN) 3. HN) 3. HN) 3. HD*) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 0.6 1.6
assign assign !protein !ALA2 assign assign assign assign assign assign assign assign assign assign	(resid (resid inter-resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 105 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4	and and and and and and and and and and	name name name name name name name name	HN) HN) HA) HB*) HB*) HB*) HG1*) HG2*) HN) HN) HN)	(resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 3 3 3 5 5 5 5 5 3 3 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HN) 3. HN) 3. HN) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 0.6 1.6 1.6
assign assign !protein !ALA2 assign assign assign assign assign assign assign assign assign assign assign	(resid (resid inter-resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 105 2 2 2 2 2 4 4 4 4 4 4 4 4 4 5	and and and and and and and and and and	name name name name name name name name	HN) HN) HB) HB*) HB*) HB*) HB*) HB*) HB*) HB*) HB*) HB*) HB) HN) HN) HN) HN)	(resid (r	105 105 3 3 3 5 5 5 5 5 3 3 5 4	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HD*) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HN) 3. HD*) 3. HD*) 3. HD*) 3. HD*) 3. HD*) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 9 2.1	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 0.6 1.6 1.6 2.1
assign assign !protein !ALA2 assign assign !VAL4 assign assign assign assign assign assign assign assign assign assign	(resid (resid inter-resid (res	105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HB*) HG1*) HG1*) HC2*) HN) HN) HN) HN)	(resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid))))))))))))))))))))))))))))))))))))	105 105 3 3 3 5 5 5 5 5 3 3 5 4	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HD*) 3. HD*) 3. HN) 2. HN) 3. HN) 3. HN) 3. HN) 3. HD*) 3. HO*) 3. HO*) 3. HO*) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 9 1.1 4 1.6 4 1.6 2 1.1 9 2.1 9 2.1	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 1.6 1.6 2.1
assign assign !protein !ALA2 assign assign assign assign assign assign assign assign assign assign assign assign assign assign assign	(resid (resid inter-resid (res	105 105 105 2 2 2 2 2 4 4 4 4 4 4 4 4 5 5	and and and and and and and and and and	name name name name name name name name	HN) HN) HA) HB*) HB*) HB*) HG1*) HG2*) HN) HN) HN) HN) HN) HN) HN)	(resid (r	105 105 3 3 3 5 5 5 5 5 5 3 3 5 4 4	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HD*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HN) 3. HN) 3. HO*) 3. HO	4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 9 2.1 9 2.1 9 2.1 9 2.1	0.6 0.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2.1 2.1
assign assign !protein !ALA2 assign a	(resid (resid inter-resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HN) HA) HB*) HB*) HB*) HB*) HB(1*) HN) HN) HN) HN) HN) HN) HN) HN	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 3 3 5 4 4 4 3	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 3. HN) 3. HN) 3. HN) 3. HD*) 3. HD*) 3. HD*) 3. HG1*) 3. HG2*) 3.	4 0.6 9 1.1 4 1.6 9 1.1 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 9 2.1 9 2.1 9 2.1	0.6 0.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 2.1 2.1 2.1
assign assign !protein !ALA2 assign assign !VAL4 assign as	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HG1*) HG2*) HN) HN) HN) HN) HN) HN) HN) HN	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HD*) 3. HD*) 3. HN) 2. HN) 3. HN) 3. HN) 3. HN) 3. HN) 3. HN) 3. HD*) 3. HD*) 3. HD*) 3. HG2*) 3. HG2*) 3. HA) 2.	4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 9 1.1 4 1.6 4 1.6 9 2.1 9	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 1.6 1.6 2.1 2.1 2.1 0.6
assign assign !protein !ALA2 assign assign assign assign assign assign assign assign assign assign assign assign assign assign assign assign	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HG1*) HG1*) HG2*) HN) HN) HN) HN) HN) HN) HB1) HB2) HB1) HB2) HB2) HB2) HB2) HB2) HB2) HB2) HB3] HB3]	(resid (resid))))))))))))))))))))))))))))))))))))	105 105 3 3 3 5 5 5 5 5 3 3 5 4 4 4 3 3 4	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 3. HN) 3. HN) 3. HN) 3. HN) 3. HA) 2. HN) 3. HA) 3. HG1*) 3. HG2*) 3. HB2) 2. HB) 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.6\\ 0.6\\ \end{array}$
assign assign !protein !ALA2 assign assign assign assign assign assign assign assign assign assign assign assign assign assign assign assign assign	(resid (resid))))))))))))))))))))))))))))))))))))	105 105 105 105 2 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HG!*) HO HC2*) HN) HN) HN) HN) HN) HN) HN) HN	(resid (r	105 105 3 3 3 5 5 5 5 5 5 3 3 5 4 4 3 3 4 6	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HN) 3. HN) 3. HN) 3. HN) 3. HA) 3. HG1*) 3. HG2*) 3. HB2) 2. HB) 3. HB2) 2.	4 0.6 4 0.6 9 1.1 4 1.6 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 9 2.1 9 2.1 9 2.1 9 2.1 9 2.1 9 2.1 9 1.1 1.6 9 1.1 1.6 9 1.1 1.6 9 1.1 1.6 9 1.1 9 1.1 1.6 9 1.1 9 1.1 1.6 9 1.1 9 1.1 1.6 9 1.1 9 1.1 1.6 9 1.1 9 1.1 1.6 9 1.1 9 1.1 1.6 4 1.6 4 1.6 9 2.1 9 2.1 9 2.1 9 2.1 9 2.1 9 2.1 9 1.1 1.6 4 1.6 9 1.1 9 2.1 9 2.1 9 2.1 9 1.1 9 1.1	0.6 0.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2.1 2.1 2.1 0.6 1.6 1.6
assign assign ssign !protein !ALA2 assign as	(resid (resid))))))))))))))))))))))))))))))))))))	105 105 105 2 2 2 2 4 4 4 4 4 4 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HB*) HB*) HG2*) HN) HC2*) HN) HN) HD1) HD1) HD1) HD2*) HC2*)	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HN) 3. HA) 2. HN) 3. HA) 3. HA) 3. HB) 3. HB) 3. HB) 3. HA) 3. HB2) 2. HB) 3. HG*) 3.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 9 2.1 9 2.1	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 1.6 1.6 1
assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HB*) HG1*) HG1*) HG2*) HN) HN) HB1) HB1) HB1) HB1) HB1) HB1) HB4*) HB4*) HB4*) HB4*) HB4) HB4*) HB4) HB4*) HB	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB* 2. HA 2. HA 2. HG* 3. HD* 3. HN 2. HN 2. HN 3. HN 3. HN 3. HN 3. HD* 3. HB* 3. HG1* 3. HB2 2. HB 3. HAA 2. HB 3. HAA 2. HB 3. HAA 2.	4 0.6 4 0.6 9 1.1 4 1.6 4 1.6 9 1.1 9 1.1 4 1.6 4 1.6 9 2.1 9 1.1 4 1.6 4 1.6 1.1 9 2.1 9 1.1 1.1 9 1.1 1.1 1.1 9 1.1 1.1 9 1.1 1.1 9 1.1 1.1 9 1.1 1.1 9 1.1 1.1 9 1.1	0.6 0.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 2.1 2.1 2.1 0.6 1.6 1.1 2.1
assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HB*) HB*) HB*) HG2*) HN) HS1) HD*) HB1) HB1) HD*) HB1) HD*) HB1) HD*) HB1) HD*) HD*) HD*) HD*) HD*) HD*) HD) HD*) HD) HD) HD) HD) HD) HD) HD) HD	(resid (r	105 105 3 3 3 5 5 5 5 5 3 3 5 4 4 3 3 4 6 8 6	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HC*) 3. HD*) 3. HD*) 3. HN) 2. HN) 3. HN) 3. HN) 3. HN) 3. HA) 2. HD*) 3. HG2*) 3. HG2*) 3. HB2) 2. HB) 3. HA) 2.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.6\\ 0.6\\ \end{array}$
assign assign !protein !ALA2 assign a	(resid (r	105 105 105 105 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HB*) HG2*) HN) HG2*) HN) HB1) HB1) HB1) HB1) HD*) HB*) HC*) HC	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HN) 3. HN) 3. HA) 2. HN) 3. HA) 2. HB*) 3. HB) 3. HB) 3. HA) 2. HB) 3. HA) 2. HB) 3. HA) 2. HG*) 3. HN) 2. HG*) 3. HN) 2.	4 0.6 9 1.1 4 1.6 9 1.1 4 1.6 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 2.1 9 2.1 9 2.1 9 2.1 9 2.1 9 2.1 9 1.1 9 2.1 9 1.1 9 1.1 9 1.1 9 1.1	0.6 0.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1.1
assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HB*) HG(2*) HN) HS(2*) HN) HS1) HS1) HB1) HB1) HB1) HB*)	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HD*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HB*) 3. HB*) 3. HG1*) 3. HG2*) 3. HB) 3. HA) 2. HB) 3. HA) 2. HA) 2. HA) 2.	4 0.6 9 1.1 4 1.6 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 2.1 9 2.1 9 2.1 9 2.1 9 1.1 9 1.1 9 1.1	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.1 1.6 1.6 1.6 1
assign assign !protein !ALA2 assign a	(resid (resid))))))))))))))))))))))))))))))))))))	105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HB*) HG1*) HG1*) HG1*) HG2*) HN) HB1)	(resid (resid))))))))))))))))))))))))))))))))))))	105 105 3 3 3 5 5 5 5 5 3 3 5 4 4 4 3 3 4 6 8 6 2 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HB*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HA) 3. HB*) 3. HB2) 2. HB) 3. HA) 2. HG*) 3. HN) 2. HB) 3. HA) 2. HB) 3. HA) 2. HB) 3. HA) 2. HB*) 3.	4 0.6 9 1.1 4 1.6 9 1.1 4 1.6 9 1.1 4 1.6 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 9 2.1 9 2.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 2.1	$\begin{array}{c} 0.6\\ 0.6\\ \end{array}$
assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HB*) HG(2*) HN) HG(2*) HN) HN) HB1) HB1) HD*) HB*	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HN) 3. HA) 2. HN) 3. HA) 2. HB*) 3. HB) 3. HB) 3. HA) 2. HB) 3. HA) 2. HB) 3. HA) 2. HA) 3.	4 0.6 9 1.1 4 1.6 9 1.1 4 1.6 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 2.1 4 1.6 9 2.1 9 2.1 9 2.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1	$\begin{array}{c} 0.6\\ 0.6\\ 0.6\\ \end{array}$
assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB* 2. HA 2. HA 2. HG* 3. HD* 3. HN 2. HN 2. HN 3. HN 3. HN 3. HN* 3. HD* 3. HB* 3. HG2* 3. HA 2. HB 3. HA* 2. HB* 3. HA 2. HB* 3. HN 2. HB* 3. HN* 2. HB* 3. HN* 2. HB* 3. HN* 2. HB* 3. HG* 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 1.6 1.6 1
assign assign !protein !ALA2 assign assign !VAL4 assign as	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB*) HB*) HB*) HB*) HB*) HB*) HB*) HB*) HB1) HB1) HB1) HB*) HB	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB* 2. HA 2. HA 2. HG* 3. HD* 3. HN 2. HN 2. HN 3. HN 3. HN 3. HA* 3. HN 3. HB* 3. HG1* 3. HB2 2. HB 3. HA 2. HG* 3. HN 2. HB* 3. HN 2. HB* 3. HN 3. HA 2. HB* 3. HN 3. HG* 3.	4 0.6 9 1.1 4 1.6 9 1.1 4 1.6 9 1.1 9 1.1 9 1.1 9 1.1 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 4 1.6 9 2.1 9 2.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1	0.6 0.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1
assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*) HB	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HA) 2. HN) 3. HA) 2. HN) 3. HA) 2. HB*) 3. HB) 3. HA) 2. HB) 3. HA) 2. HB) 3. HA) 2. HA) 2. HA) 2. HA) 2. HA) 3. HN) 3. HG*) 3. HG*) 3. HG*) 3. HG*) 3.	4 0.6 9 1.1 4 1.6 9 1.1 4 1.6 9 1.1 4 1.6 9 1.1 4 1.6 4 1.6 4 1.6 9 2.1 9 2.1 9 2.1 9 2.1 9 2.1 9 1.1 9 2.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1	0.6 0.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1
assign assign iprotein iALA2 assign a	(resid (r	105 105 105 2 2 2 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HA) HB*	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB* 2. HA 2. HA 2. HG* 3. HD* 3. HN 2. HN 2. HN 3. HN 3. HN 3. HB* 3. HG1* 3. HG2* 3. HB 3. HB2 2. HB 3. HA 2. HB* 3. HG* 3. HA 2. HB* 3. HB* 3. HG* 3.	4 0.6 9 1.1 4 1.6 9 1.1 4 1.6 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 2.1 4 0.6 4 1.6 9 2.1 9 2.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.1 9 1.6	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.6 1.6 1.6 1.6 1
assign assign iprotein !ALA2 assign a	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HA) HB*	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB* 2. HA 2. HA 2. HG* 3. HD* 3. HN 2. HN 2. HN 3. HN 3. HN 3. HA* 3. HN 3. HB* 3. HG1* 3. HB2 2. HB 3. HAA 2. HB* 3. HN 2. HB* 3. HN 2. HB* 3. HN 2. HB* 3. HN 3. HR* 3. HB* 3. HG* 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.6\\ 0.6\\ \end{array}$
assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HA) HB*)	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HN) 3. HA) 2. HN) 3. HA) 2. HN) 3. HA) 2. HB*) 3. HB) 3. HA) 2. HB) 3. HA) 2. HB) 3. HA) 2. HB*) 3. HG*) 3. HA) 2. HB*) 3. HG*) 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.6\\ 0.6\\ 0.6\\ \end{array}$
assign assign assign !Protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*)	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HB) 3. HB2) 2. HB) 3. HA) 2. HB) 3. HA) 2. HB) 3. HA) 2. HB*) 3. HG*) 3. HN) 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.6\\ 0.6\\ 0.6\\ \end{array}$
assign assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*)	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB* 2. HA 2. HA 2. HG* 3. HD* 3. HN 2. HN 3. HN 3. HN 3. HN 3. HD* 3. HB* 3. HG1* 3. HG2* 3. HA 2. HB 3. HA* 2. HB* 3. HA* 3. HG* 3. HG* 3. HN* 3. HO* 3. HN* 3. HO* 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6 0.6 1.1 1.6 1.6 1.1 1.1 1.1 1.6 1.6 1.6 1
assign assign !protein !ALA2 assign a	(resid (r	105 105 105 105 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	and and and and and and and and and and	name name name name name name name name	HN) HA) HA) HB*)	(resid (r	105 105 105 3 3 5 5 5 5 3 5 5 3 4 3 4 3 4 3 4 3 4 3 4 3 4 5 5 7 4 5 5 7 8	and and and and and and and and and and	name name name name name name name name	HB* 2. HA 2. HA 2. HG* 3. HD* 3. HN 2. HN 2. HN 3. HN 3. HA 2. HN 3. HA* 3. HA* 3. HB* 3. HB2 2. HB* 3. HA 2. HB* 3. HN 2. HB* 3. HN 2. HB* 3. HG* 3. HG* 3. HG* 3. HG* 3. HO* 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6 0.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1
assign assign assign !protein !ALA2 assign	(resid (r	105 105 105 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN) HA) HB*)	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB*) 2. HA) 2. HA) 2. HA) 2. HG*) 3. HD*) 3. HN) 2. HN) 2. HN) 3. HN) 3. HA) 2. HN) 3. HA) 2. HB) 3. HA) 2. HB) 3. HB2) 2. HB) 3. HA) 2. HB) 3. HA) 2. HB*) 3. HG*) 3. HA) 2. HB*) 3. HG*) 3. HA) 2. HB*) 3. HG*) 3. HN) 3. HN) 3. HN) 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6 0.6 0.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1
assign assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HN HA HA HN HA HA HN HA HA HB* HA HA HG1* HA HA HG1* HA HA HA HA	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB* 2. HA 2. HA 2. HG* 3. HD* 3. HN 2. HN 2. HN 3. HN 3. HN 3. HO* 3. HN 3. HG1* 3. HG2* 3. HA 2. HB 3. HA 2. HB* 3. HG* 3. HN 3. HG* 3. HN 3. HG* 3. HN 3. HG* 3. HG1* 3. HG2*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.6\\ 0.6\\ \end{array}$
assign assign assign !protein !ALA2 assign a	(resid (r	105 105 105 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	and and and and and and and and and and	name name name name name name name name	HNHAHAHB*HAHB*HAHA*	(resid (r	105 105 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and and and and and and and and and and	name name name name name name name name	HB* 2. HA 2. HA 2. HG* 3. HD* 3. HN 2. HN 3. HN 2. HN 3. HN 3. HA 3. HN 3. HG1* 3. HB2 2. HB 3. HA 2. HB* 3. HN 3. HG*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.6\\ 0.6\\ \end{array}$

assion	(resid	7	and	name	HB*)	(resid	8	and	name	HN)	34	16	16
assign	(recid	7	and	name		(resid	0	and	name		2.0	2.1	21
assign	(resid	4	anu	name	LIE2*)	(Testu (resid	10	and	name		2.2	2.1	2.1
assign	(resid	2	and	name	HE2*)	(resid	10	and	name	HDI+)	3.9	2.1	2.1
assign	(resid	1	and	name	$HE2^{+}$)	(resid	10	and	name	$HG2^{+}$)	2.9	1.1	1.1
assign	(resid	7	and	name	HE2*)	(resid	70	and	name	HD1)	3.4	1.6	1.6
assign	(resid	7	and	name	HE2*)	(resid	70	and	name	HE1)	3.4	1.6	1.6
assign	(resid	7	and	name	HN)	(resid	6	and	name	HA)	2.9	1.1	1.1
assign	(resid	7	and	name	HN)	(resid	8	and	name	HN)	2.9	1.1	1.1
IGLU8	`				,	•							
assion	(resid	8	and	name	HA)	(resid	11	and	name	HB*)	39	21	21
assign	(recid	ě	and	name	HA ((recid	11	and	name	HD2*)	31	16	16
assign	(Tesid	0		name			11		name		2.4	1.0	1.0
assign	(resid	8	and	name	HG ⁺)	(resid	4	and	name	HGIT)	3.9	2.1	2.1
assign	(resid	8	and	name	HG [*])	(resid	2	and	name	HG*)	3.9	2.1	2.1
assign	(resid	8	and	name	HG*)	(resid	9	and	name	HB*)	3.9	2.1	2.1
assign	(resid	8	and	name	HN)	(resid	9	and	name	HB*)	3.9	2.1	2.1
assign	(resid	8	and	name	HN)	(resid	9	and	name	HN)	2.9	1.1	1.1
ISER9	`					•				,			
assion	(resid	9	and	name	HA)	(resid	12	and	name	HB1)	29	11	11
assign	(read	ó	and	name	HA \	(resid	12	and	name	HB2	31	16	1.1
assign	(Tesia	2		name		(Testu	12		manne	1102	2.4	2.1	2.1
assign	(resid	9	and	name	HA)	(resid	12	and	name		3.9	2.1	2.1
assign	(resid	9	and	name	HB ⁺)	(resid	10	and	name	HN)	3.4	1.6	1.6
assign	(resid	9	and	name	HN)	(resid	8.	and	name	HA)	2.9	1.1	1.1
assign	(resid	9	and	name	HN)	(resid	8	and	name	HG*)	3.4	1.6	1.6
assign	resid	9	and	name	HN)	resid	8	and	name	HB*)	2.9	1.1	1.1
assign	resid	9	and	name	HNÍ	resid	10	and	name	HNÍ	2.9	1.1	1.1
assign	(recid	ó	and	name	HN	resid	11	and	name	HB*)	39	21	21
assign	(reald	6	and	name		(rooid	0	and	name		20	21	21
assign	(Tesia	2	and	name			0		IIdille		2.2	2.1	2.1
assign	(resid	9	and	name	HN)	(resid	8	and	name		2.9	1.1	1.1
assign	(resid	9	and	name	HN)	(resid	11	and	name	HN)	3.4	1.6	1.6
assign	(resid	9	and	name	HN)	(resid	12	and	name	HN)	3.4	1.6	1.6
!ILE10													
assign	(resid	10	and	name	HA)	(resid	11	and	name	HB*)	3.9	2.1	2.1
assign	resid	10	and	name	HAÍ	resid	13	and	name	HB*)	2.9	1.1	1.1
assign	(resid	10	and	name	HA	resid	14	and	name	HB1 S	3.9	2.1	2.1
assion	(resid	10	and	name	HAN	resid	14	and	name	HB2)	29	11	11
assign	(regid	10	and	name	HA)	(recid	104	and	name	HD*	3.0	21	21
assign	(lesiu	10	and	name		(resid	11	and	mame		2.2	2.1	2.1
assign	(resia	10	and	name		(resid	11	and	name	IN)	2.7	1.1	1.1
assign	(resid	10	and	name	нв)	(resid	104	and	name	HD ⁺)	3.9	2.1	2.1
assign	(resid	10	and	name	HD1*)	(resid	7	and	name	HA)	3.9	2.1	2.1
assign	(resid	10	and	name	HD1*)	(resid	11	and	name	HB*)	3.9	2.1	2.1
assign	(resid	10	and	name	HD1*)	(resid	14	and	name	HD2*)	3.4	1.6	1.6
assign	resid	10	and	name	HD1*)	resid	43	and	name	HD1*)	2.9	1.1	1.1
assion	(resid	10	and	name	HDI*	resid	68	and	name	HD2)	3.4	1.6	1.6
assign	(recid	10	and	name	HDI*)	(resid	68	and	name		34	16	16
assign	(resid	10	and	name		(recid	. 70	and	name	HEI	20	1 1	1 1
assign	(Tesia	10	anu	name	$\frac{11D1}{11}$		14		Hame		2.7	1.1	1.1
assign	(resid	10	and	name		(resid	14	and	name	$\frac{1102}{110}$	2.7	1.1	1.1
assign	(resid	10	and	name	HG2*)	(resid	9	and	name	HA)	3.9	2.1	2.1
assign	(resid	10	and	name	HG2*)	(resid	11	and	name	нв∗)	3.9	2.1	2.1
assign	(resid	10	and	name	HG2*)	(resid	11	and	name	HD2*)	3.4	1.6	1.6
assign	(resid	10	and	name	HG2*)	(resid	11	and	name	HN)	2.9	1.1	1.1
assign	(resid	10	and	name	HG2*)	(resid	12	and	name	HN)	3.9	2.1	2.1
assign	(resid	10	and	name	HG2*)	resid	43	and	name	HD1*)	3.9	2.1	2.1
assign	resid	10	and	name	HG2* \	resid	68	and	name	HE2)	3.4	1.6	1.6
assion	resid	10	and	name	HG2*)	(resid	68	and	name	HD2)	3.4	1.6	1.6
assign	(recid	10	and	name	HG2*)	(resid	70	and	name	HEI)	29	11	11
assign	(resid	10	and	name	HC2*)	(recid	104	and	name	HD2+)	3.0	21	21
assign		10	and	name		(resid	0	and	name		2.2	1 1	1 1
assign	(resid	10	and	name		(Testu	7		IIdille		2.7	1.1	1.1
assign	(resid	10	and	name	HN)	(resid	8	and	name		2.4	1.0	1.0
assign	(resid	10	and	name	HN)	(resid	11	and	name	HB ⁺)	3.9	2.1	2.1
assign	(resid	10	and	name	HN)	(resid	11	and	name	HN)	2.9	1.1	1.1
assign	(resid	10	and	name	HN)	(resid	12	and	name	HN)	3.9	2.1	2.1
!ASN11													
assign	(resid	11	and	name	HA)	(resid	14	and	name	HB1)	2.9	1.1	1.1
assign	(resid	11	and	name	HA	resid	14	and	name	HD2*)	3.4	1.6	1.6
accion	(recid	11	and	name	HA	(resid	14	and	name	HN	2.9	1.1	1.1
assign	(racid	11	and	nama		(rooid	Q,	and	name	HB*	30	21	21
assign	(10510	11	and	name	11D2.)	(real d	70	and	name	up (30	$\frac{2}{2}$ 1	2.1
assign	resid	11	and	name		(resid	79		name		J.7 20	2.1	2.1
assign	(resid	11	and	name	HD2•)	(resid	/0	and	name		3.7	2.1	2.1
assign	(resid	11	and	name	HN)	(resid	9	and	name	нв∗)	3.4	1.6	1.6
assign	(resid	11	and	name	HN)	(resid	9	and	name	HA)	2.9	1.1	1.1
assign	(resid	11	and	name	HN)	(resid	9	and	name	HN)	3.9	2.1	2.1
assign	resid	11	and	name	ΗN ̈́	(resid	10	and	name	HA)	3.4	1.6	1.6
assion	resid	11	and	name	HΝ	resid	10	and	name	HD1 ⁺)	3.9	2.1	2.1
assign	(recid	11	and	name	HN	resid	10	and	name	HG1*1	3.4	1.6	1.6
assign	(ronid	11	and	name	HN	(recid	7	and	name	HR*	34	16	16
assign		11		maine		(real d	4	and	name		34	1.6	1.0
assign	(resid	11	and	name		(resid	10		name		5.4 7 4	1.0	1.0
assign	(resid	11	and	name	пм)	(resia	14	and	name	111N)	2.4	0.0	0.0

assign assign !GLN12	(resid (resid	11 11	and and	name name	HN) HN)	(resid (resid	13 70	and and	name name	HN) HZ)	3.9 3.9	2.1 2.1	2.1 2.1
assign	(resid	12	and	name	HA)	(resid	15	and	name	HB*)	2.9	1.1	1.1
assign	resid	12	and	name	HA)	(resid	15	and	name	HN)	2.9	1.1	1.1
assign	resid	12	and	name	HB1)	(resid	13	and	name	HN)	3.4	1.6	1.6
assign	resid	12	and	name	HB2)	resid	13	and	name	HN)	3.4	1.6	1.6
assign	(resid	12	and	name	HB1)	resid	15	and	name	HB*)	3.9	2.1	2.1
assign	recid	12	and	name	HBI	resid	15	and	name	HNÍ	3.9	2.1	2.1
assign	(recid	12	and	name	HG*	(recid	13	and	name	HN	34	16	16
assign	(resid	12	and	manne		(resid	15	and	name		20	21	21
assign	(resid	12	and	name	IDV)	(Itesiu (nonid	0	and	mame		2.0	2.1	2.1
assign	(resid	12	and	name	HN)	(resid	9	DILL	name		2.2	2.1	2.1
assign	(resid	12	and	name	HN)	(resid	9	and	name	пр.)	3.7	2.1	2.1
assign	(resid	12	and	name	HN)	(resid	10	and	name	HA)	3.9	2.1	2.1
assign	(resid	12	and	name	HN)	(resid	10	and	name	HGI*)	3.9	2.1	2.1
assign	(resid	12	and	name	HN)	(resid	10	and	name	HB*)	3.9	2.1	2.1
assign	(resid	12	and	name	HN)	(resid	11	and	name	HA)	3.4	1.6	1.6
assign	resid	12	and	name	HN)	(resid	11	and	name	HB*)	2.9	1.1	1.1
assign	resid	12	and	name	HN)	(resid	13	and	name	HG*)	3.9	2.1	2.1
accion	(resid	12	and	name	HNÍ	resid	13	and	name	HN)	2.9	1.1	1.1
II YS13	(1 0010					C							
accion	(recid	13	and	name	HA)	(resid	16	and	name	HB2)	2.9	1.1	1.1
assign	(resid	12	and	name		(recid	16	and	name		3.9	21	21
assign	(resid	15	and	name		(Iesiu (read	16	and	mame		3.0	2.1	2.1
assign	(resid	13	and	name		(resid	10	and	Hame	HD2)	2.9	2.1	2.1
assign	(resid	13	and	name	HA)	(resid	10	and	name	HG)	3.9	2.1	2.1
assign	(resid	13	and	name	HN)	(resid	10	and	name	HA)	2.9	1.1	1.1
assign	(resid	13	and	name	HN)	(resid	11	and	name	HA)	3.9	2.1	2.1
assign	(resid	13	and	name	HN)	(resid	12	and	name	HA)	2.9	1.1	1.1
assign	(resid	13	and	name	HN)	(resid	14	and	name	HN)	2.9	1.1	1.1
!LEU14	`												
assign	(resid	14	and	name	HA)	(resid	17	and	name	HB)	2.9	1.1	1.1
assion	resid	14	and	name	HAÍ	(resid	17	and	name	HG2 ⁺)	2.9	1.1	1.1
accion	(resid	14	and	name	HAS	resid	17	and	name	HG1*)	3.9	2.1	2.1
assign	(recid	14	and	name	HBI	(resid	15	and	name	HNÍ	2.9	1.1	1.1
assign	(resid	14	and	nome	HB2	(recid	15	and	name	HN	34	16	16
assign	(resid	14	and	manne		(read	11	and	name	НА	30	21	21
assign	(resid	14	and	name		(Iesiu	15	and	name		3.1	1.6	16
assign	(resid	14	and	name	$HD2^{+}$	(resid	13	DIIG	Hame		24	1.0	1.0
assign	(resid	14	and	name	HD2+)	(resid	43	and	name	$HD1^{+}$	3.4	1.0	1.0
assign	(resid	14	and	name	$HD2^{+}$)	(resid		and	name	HD2*)	3.4	1.0	1.0
assign	(resid	14	and	name	HD1*)	(resid	17	and	name	HN)	3.9	2.1	2.1
assign	(resid	14	and	name	HD1*)	(resid	43	and	name	HDI*)	2.9	1.1	1.1
assign	(resid	14	and	name	HD1*)	(resid	77	and	name	HD2*)	3.9	2.1	2.1
assign	(resid	14	and	name	HN)	(resid	10	and	name	HA)	2.9	1.1	1.1
assign	resid	14	and	name	HN)	(resid	10	and	name	HD1*)	3.9	2.1	2.1
assign	resid	14	and	name	HN)	resid	10	and	name	HG1*)	3.4	1.6	1.6
assign	resid	14	and	name	HN)	(resid	13	and	name	HA)	3.4	1.6	1.6
assign	(resid	14	and	name	HN	resid	13	and	name	HB*)	2.9	1.1	1.1
assign	(recid	14	and	name	HN	resid	13	and	name	HG* j	3.4	1.6	1.6
assign	(resid	14	and	name	HN	(resid	15	and	name	HNÍ	29	1.1	1.1
assign	(resid	14	anu	manic	ш м)	(10310	15	410	114110			•••	
!ALAIS					TT 4 \	(manid	10	and		HA)	34	16	16
assign	(resid	15	and	name	HA)	(resid	12	and	name		2.4	2.1	2.0
assign	(resid	15	and	name	HA)	(resid	16	and	name		3.9	2.1	2.1
assign	(resid	15	and	name	HA)	(resid	17	and	name	HN)	3.9	2.1	2.1
assign	(resid	15	and	name	HA)	(resid	18	and	name	HA)	3.9	2.1	2.1
assign	(resid	15	and	name	HA)	(resid	18	and	name	HB)	2.9	1.1	1.1
assign	(resid	15	and	name	HA)	(resid	18	and	name	HDI+)	3.4	1.6	1.6
assign	(resid	15	and	name	HA)	(resid	18	and	name	HG2*)	2.9	1.1	1.1
assign	resid	15	and	name	HB*)	(resid	11	and	name	HA)	3.9	2.1	2.1
assign	resid	15	and	name	HB*)	(resid	14	and	name	HN)	3.9	2.1	2.1
assign	resid	15	and	name	HB*)	resid	16	and	name	HN)	2.9	1.1	1.1
assign	(resid	15	and	name	HB* ົ	resid	18	and	name	HN)	3.4	1.6	1.6
assign	(resid	15	and	name	HB* ∖́	resid	18	and	name	HD1 [*])	3.9	2.1	2.1
assign	(resid	15	and	name	HNÍ	resid	12	and	name	HG*)	3.9	2.1	2.1
assign	(resid	15	and	name	HN	resid	14	and	name	HAÍ	3.4	1.6	1.6
assign	(Tesia	15	and	manne		(recid	16	and	name	HN	2.9	1.1	1.1
assign	(resid	15	and	name			10	and	name		3.4	1.6	16
assign	(resid	15	and	name	HN)	(resid	10		name		2.0	2.1	2 1
assign !LEU16	(resid	15	and	name	HN)	(resid	18	and	name		3.9	2.1	2.1
assign	(resid	16	and	name	HA)	(resid	17	and	name	HA)	3.9	2.1	4.1
assign	(resid	16	and	name	HA)	(resid	19	and	name	HB*)	2.9	1.1	1.1
assign	resid	16	and	name	HA)	(resid	19	and	name	HG*)	3.9	2.1	2.1
assion	resid	16	and	name	HB2)	(resid	17	and	name	HN)	3.4	1.6	1.6
accian	(recid	16	and	name	HBI	resid	17	and	name	ΗN Ύ	2.9	1.1	1.1
assign	(recid	16	and	name	HBI	resid	17	and	name	HΝ Ύ	3.4	1.6	1.6
assign	(resid	16	and	name	HUI+	(resid	17	and	name	HNÍ	3.9	2.1	2.1
assign	(resid	10	لمعمد	name		(recid	19	and	name	HD*	3.4	1.6	1.6
assign	(resid	10	and	name	ייותם ((10310	10	and	name	HE* \	34	1.6	16
assign	(resid	10	and	name	(יועת	(16310	17	and	Haile	inc)	5.4	1.0	1.0

assign	(resid	16	and	name	HD1*)	(resid	97	and	name	HB1) 3.	4 1.6	1.6
assign	resid	16	and	name	HD1*)	(resid	99	and	name	HN) 3.	9 2.1	2.1
assign	resid	16	and	name	HD2* \	resid	17	and	name	HN) 3.	4 1.6	1.6
assion	(resid	16	and	name	HD2*1	(resid	19	and	name	HD*) 3	4 1.6	1.6
assign	(resid	16	and	name		(resid	10	and	name	HE*) 3.	A 16	1.6
assign	(Testa	10		name		(resid	07	and	name		4 1.0 A 1.6	1.0
assign	(resid	10	and	name	$\frac{102^{\circ}}{100^{\circ}}$	(resid	97	and	name		4 1.0	1.0
assign	(resid	16	and	name	$HD2^{+})$	(resid	97	and	name	HB2) 3.	4 1.0	1.0
assign	(resid	16	and	name	HD2*)	(resid	99	and	name	HN) 3.	9 2.1	2.1
assign	(resid	16	and	name	HG)	(resid	17	and	name	HA) 3.	9 2.1	2.1
assign	resid	16	and	name	HG)	(resid	98	and	name	HN) 3.	9 2.1	2.1
assion	resid	16	and	name	HΝ Ύ	resid	13	and	name	HA) 2.	9 1.1	1.1
accion	(resid	16	and	name	HN	(resid	14	and	name	HA) 3	4 16	16
assign	(resid	10	and	manne		(manid	14	and		HN 1 3	0 21	21
assign	(resid	10	anu	name		(Testu	14	and	Hame		2.1	1 1
assign	(resid	16	and	name	HN)	(resid	15	and	name	$(\mathbf{H}\mathbf{A}) = 2.$	2 1.1	1.1
assign	(resid	16	and	name	HN)	(resid	17	and	name	HA) 3.	9 2.1	2.1
assign	(resid	16	and	name	HN)	(resid	17	and	name	HN) 2.	9 1.1	I
!VAL17												
assign	(resid	17	and	name	HA)	(resid	19	and	name	HG*) 3.	9 2.1	2.1
assign	resid	17	and	name	HA	resid	21	and	name	$HN \hat{)} 3.$	9 2.1	2.1
assign	(reald	17	and	name	HA \	(recid	02	and	name	HG1+) 3	9 21	21
assign	(resid	17		name		(resid	06	and	name		0 11	1 1
assign	(resid	17	and	name		(resid	90		name	(110) (2.10)	0 21	2.1
assign	(resid	17	and	name	HA)	(resid	97	and	name	HN) 3.	9 2.1	2.1
assign	(resid	17	and	name	HGI*)	(resid	18	and	name	HDI*) 3.	4 1.6	1.6
assign	(resid	17	and	name	HG1*)	(resid	92	and	name	HD1*) 2.	9 1.1	1.1
assign	(resid	17	and	name	HG1*)	(resid	21	and	name	HN) 3.	9 2.1	2.1
assign	resid	17	and	name	HG1* \	resid	23	and	name	HB1) 3.	4 1.6	1.6
assign	(recid	17	and	name	HG1+	resid	23	and	name	HDI 1 3	9 21	21
assign	(resid	17	and	name		(read	01	and	name	HN) 3	9 21	21
assign	(resid	17	and	name			24	and	name	\mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H}	/ <u>2</u> .1	1.1
assign	(resid	17	and	name	HGIT)	(resia	95	and	name	$(\mathbf{n}\mathbf{A}) = \mathbf{S}$	4 1.0	1.0
assign	(resid	17	and	name	HGI*)	(resid	96	and	name	HN) 3.	4 1.6	1.6
assign	(resid	17	and	name	HG2*)	(resid	21	and	name	HN) 3.	9 2.1	2.1
assign	(resid	17	and	name	HG2*)	(resid	95	and	name	HA) 3.	4 1.6	1.6
assign	resid	17	and	name	HG2*)	(resid	96	and	name	HN) 3.	9 2.1	2.1
assion	resid	17	and	name	HG2* \	(resid	98	and	name	HN) 3.	4 1.6	1.6
assign	(recid	17	and	name	HG2*)	Tesid	100	and	name	$HD1^{\pm})$ 2	9 1.1	1.1
assign	(resid	17	and	name	LINI)	(recid	14	and	name	H_{Δ}) 2	9 11	1 1
assign	(resid	17	and	name		(Icsiu	14	and	name	$\mathbf{u}_{\mathbf{A}}$) 2.	0 11	1.1
assign	(resid	17	and	name	HN)	(resid	10	and	name	$(\Pi A) = 2.$	7 1.1	1.1
assign	(resid	17	and	name	HN)	(resid	18	and	name	HDI^{-}) 3.	9 2.1	2.1
assign	(resid	17	and	name	HN)	(resid	18	and	name	HN) 2.	9 1.1	1.1
assign	(resid	17	and	name	HN)	(resid	19	and	name	HN) 3.	9 2.1	2.1
assign	(resid	17	and	name	HNÍ	resid	100	and	name	HD1*) 3.	9 2.1	2.1
ILE18	(,	•						
assign	(recid	18	and	name	HA)	(resid	23	and	name	HD1) 2	9 1.1	1.1
assign	(nonid	10	and	name	H A ((recid	23	and	name		9 11	11
assign	(resid	10	anu	name		(resid	10	and	mamo		0 11	1 1
assign	(resid	18	and	name		(resid	19	and	name	$\Pi N = 2$	7 1.1 0 0 1	1.1
assign	(resid	18	and	name	HD1*)	(resid	14	and	name	HA) 3.	9 2.1	2.1
assign	(resid	18	and	name	HD1*)	(resid	19	and	name	HN) 3.	9 2.1	2.1
assign	(resid	18	and	name	HD1*)	(resid	23	and	name	HD2) 2.	9 1.1	1.1
assign	resid	18	and	name	HD1*)	(resid	23	and	name	HE2) 3.	4 1.6	1.6
assign	(resid	18	and	name	HD1*)	(resid	81	and	name	HA) 2.	9 1.1	1.1
assign	(resid	18	and	name	HD1*)	resid	81	and	name	HB) 2.	9 1.1	1.1
accion	(recid	18	and	name	HGI*	resid	15	and	name	HA) 3	9 2.1	2.1
assign	(resid	19	and	name	HG1*	(resid	23	and	name	HEI) 3	4 16	16
assign	(resid	10	and	mame		(resid	10	and	name	HN) 2	9 11	1 1
assign	(resid	18	and	name		(Testu	12	and	manic		7 1.1 A 1.6	1.1
assign	(resid	18	and	name	HG2+)	(resid	23	and	name	HD1 = 3.	4 1.0	1.0
assign	(resid	18	and	name	HG2+)	(resid	23	and	name	HEI 3 .	4 1.0	1.0
assign	(resid	18	and	name	HN)	(resid	14	and	name	HA) 3.	9 2.1	2.1
assign	(resid	18	and	name	HN)	(resid	15	and	name	HA) 3.	4 1.6	1.6
assign	(resid	18	and	name	HN)	(resid	16	and	name	HA) 3.	9 2.1	2.1
assign	resid	18	and	name	HN)	(resid	17	and	name	HA) 3.	4 1.6	1.6
assign	(resid	18	and	name	HN S	resid	17	and	name	HB) 3.	9 2.1	2.1
assign	(recid	19	and	name	HN	resid	17	and	name	HG1*) 3	4 16	16
assign	(resid	10	and	name		(read	10	and	name	HN) 2	0 11	1 1
assign	(resid	18	and	name			17	and	name	1110 $j $ $2.$	1 16	1.1
assign	(resid	18	and	name	HN)	(resid	21	and	name	(IN) (3)	4 1.0	1.0
assign	(resid	18	and	name	HN)	(resid	23	and	name	HEI) 3.	9 2.1	2.1
!LYS19												
assign	(resid	19	and	name	HA)	(resid	20	and	name	HN) 2.	.9 1.1	1.1
assign	resid	19	and	name	HG*)	(resid	16	and	name	HG) 3.	.9 2.1	2.1
assion	(recid	19	and	name	HB* 1	resid	18	and	name	HN 1 3	9 21	2.1
2001211	(recid	10	and	name	HB*	(recid	20	and	name	HN 1 3	4 16	1.6
assign		17		114110		(real of	15	and	1101110		A 1 C	1.0
assign	(resid	19	and	name		(resid	10	ano	name		л 1.0 1 г	1.0
assign	(resid	19	and	name	HN)	resid	16	and	name	(nA) = 2	.7 1.1	1.1
assign	(resid	19	and	name	HN)	(resid	16	and	name	HN) 3.	9 2.1	2.1
assign	(resid	19	and	name	HN)	(resid	16	and	name	HD*) 3.	.9 2.1	2.1
assign	(resid	19	and	name	HN)	(resid	18	and	name	HA) 2.	.9 1.1	1.1
assign	resid	19	and	name	HΝ Ύ	(resid	18	and	name	HG1 [*]) 3.	.4 1.6	1.6
assion	resid	19	and	name	HNÍ	resid	20	and	name	HA) 3	9 21	2.1
	(10010				,	(, 0		

											2.1	2.1
assign	(resid	19	and	name	HN)	(resid	20	and	name	HBI) 3.9	2.1	2.1
assign	(resid	19	and	name	HN)	(resid	20	and	name	HB2) 3.9	2.1	2.1
anian	(recid	10	and	name	HNÍ	(resid	20	and	name	HN) 2.9	1.1	1.1
assign	(Testu	10	and	marine		(monid	21	and	name	HN 1 39	21	21
assign	(resid	19	and	name	nn)	(resid	21	anu	name	III () 5.2	2.1	4.1
SER20												
assign	(resid	20	and	name	HA)	(resid	19	and	name	HG*) 3.9	2.1	2.1
and the second	(manid	20	and	name	HNÍ	resid	17	and	name	HA) 2.9	1.1	1
assign	(resid	20	and	manie		(ICSIG	10				21	21
assign	(resid	20	and	name	HN)	(resia	19	and	name	л Д *) 3.9	2.1	2.1
assign	resid	20	and	name	HN)	(resid	19	and	name	HG*) 2.9	1.1	1.1
accient	(resid	20	and	name	HNÍ	resid	21	and	name	HN) 2.4	0.6	0.6
assign	(resid	20	4110	manie		(resid	07	and			21	21
assign	(resid	20	and	name	HN)	(resia	91	and	name	m) 5.9	2.1	2.1
!GLY21												
accion	(recid	21	and	name	HN)	(resid	94	and	name	HG*) 3.9	2.1	2.1
assign	(TCSIG	21				(readid	10	and	name	HG1*) 39	21	21
assign	(resia	21	and	name	III)	(Testa	10	410	name		2.1	2.1
assign	(resid	21	and	name	HN)	(resid	19	and	name	HA) 3.9	2.1	2.1
assion	resid	21	and	name	HN)	(resid	19	and	name	HB*) 3.9	2.1	2.1
assign	(resid	21	and	name	HNÍ	resid	19	and	name	HG*) 3.9	2.1	2.1
assign	(resid	21	410	name		(resid	20	and		HA) 34	1.6	1.6
assign	(resid	21	and	name	HN)	(resid	20	and	name		1.0	1.0
assign	(resid	21	and	name	HN)	(resid	20	and	name	HB2) 3.9	2.1	2.1
accian	rooid	21	and	name	HNÍ	(resid	22	and	name	HN) 3.4	1.6	1.6
assign	(Tesiu	21		Incario		(manid	04	and	nome	HA#) 24	0.6	0.6
assign	(resid	21	and	name	IIN)	(iesiu	90	and	name	116π j 2.7	0.0	0.0
assign	(resid	21	and	name	HN)	(resid	96	and	name	HN) 3.9	2.1	2.1
IT V822	•											
	1	22	المعمد		UD1)	(recid	23	and	name	HN) 29	1.1	1.1
assign	(resia	22	and	name		(Testa	60		manie		1.6	1.6
assign	(resid	22	and	name	HB2)	(resia	93	and	name	HD2-) 5.4	1.0	1.0
assign	Íresid	22	and	name	HB2)	(resid	94	and	name	HG*) 3.4	1.6	1.6
andigu	(manid	22	and	name	HB2 S	iresid	94	and	name	HN) 2.9	1.1	1.1
assign	(resid	44	and	name		(resid	02	and	1100110		1.6	16
assign	(resid	22	and	name	HG ⁺)	(resid	93	and	name	HD2) 3.4	1.0	1.0
assign	resid	22	and	name	HG*)	(resid	94	and	name	HG*) 3.9	2.1	2.1
anim	(recid	22	and	name	HNÍ	Íresid	18	and	name	HG1*) 3.9	2.1	2.1
assign	(iesiu	22	and	mame		(resid	21	and	name	HA*) 24	0.6	0.6
assign	(resid	22	and	name	HN)	(resid	21	and	name	IIA) 2.4	0.0	0.0
assign	(resid	22	and	name	HN)	(resid	23	and	name	HN) 3.9	2.1	2.1
accion	Tresid	22	and	name	HN)	(resid	94	and	name	HB1) 3.4	1.6	1.6
assign	(I Cold	~~~				(ranid	0/	and	name	HB2 \ 34	16	16
assign	(resid	22	and	name	IIN)	(resid	24	410	name	1102 3.4	1.0	1 1
assign	(resid	22	and	name	HN)	(resid	94	and	name	HN) 2.9	1.1	1.1
accian	Tracid	22	and	name	HN)	resid	96	and	name	HN) 3.9	2.1	2.1
assign	(I cold	22	uno	1100110	····)	(,		
11YR23							~~			TTA > 04	0.0	06
assign	(resid	23	and	name	HA)	(resid	92	and	name	HA) 2.4	0.6	0.0
assion	resid	23	and	name	HA)	(resid	92	and	name	HB) 3.9	2.1	2.1
assign	(Tuble	20	and a		HA ((manid	02	and	name	HD1 [*]) 34	16	1.6
assign	(resid	23	ano	name	na)	(resid	74	and	manie		2.1	0.1
assign	(resid	23	and	name	HA)	(resid	92	and	name	HGI^{+}) 3.9	2.1	2.1
accion	Tresid	23	and	name	HA)	(resid	93	and	name	HN) 2.9	1.1	1.1
assign	(resid	22	and			recid	22	and	name	HA) 34	1.6	1.6
assign	(resid	23	and	name		(Testu	24	and	Interne		2 1	2 1
assign	(resid	23	and	name	HD2)	(resid	24	and	name	ПА) 3.9	2.1	2.1
assign	Íresid	23	and	name	HD2)	(resid	25	and	name	HG) 2.4	0.6	0.6
	(marial	22	and	name	HELÍ	Ìresid	22	and	name	HA) 3.9	2.1	2.1
assign	(resid	25	4110	name		(resid	24	and		UA) 30	21	21
assign	(resid	23	and	name	HE2)	(resid	24	and	name	11A) 5.5	2.1	1 1
assign	resid	23	and	name	HE2)	(resid	25	and	name	HG) 2.9	1.1	1.1
	(monid	23	and	name	HNÍ	resid	18	and	name	HA) 3.4	1.6	1.6
assign	(resid	25	and	Inclusio		(manid	22	and	name	HA \ 24	0.6	06
assign	(resid	23	and	name	nn)	(Tesiu	44	410	matric		1.6	1.6
assign	(resid	23	and	name	HN)	(resid	22	and	name	пвт) 5.4	1.0	1.0
accion	resid	23	and	name	HN)	(resid	22	and	name	HG*) 3.4	1.6	1.6
assign	(Itald	23	and		HN	resid	24	and	name	$HN \uparrow 3.4$	1.6	1.6
assign	(resia	23	and	name	111 v)	(Testa	27		Indino	III () U (
!THR24												
assign	(resid	24	and	name	HG2*)	(resid	91	and	name	HBI) 2.9	1.1	1.1
accion	(recid	24	and	name	HG2*)	(resid	91	and	name	HN) 3.4	1.6	1.6
assign	(Testu	27				and	22	and	name	HA 1 24	0.6	0.6
assign	(resid	24	and	name	IN)	(Tesia	23	and	maine	11D*) 20	1 1	1 1
assign	(resid	24	and	name	HN)	(resid	23	and	name	ΠD [*]) 2.9	1.1	1.1
accion	resid	24	and	name	HN)	(resid	23	and	name	HD2) 3.4	1.6	1.6
assign	(resid	24	and	name	HNÍ	resid	23	and	name	HE2) 3.9	2.1	2.1
assign	(resid	24	410	name		(resid	25	and	name	HN) 34	16	16
assign	(resid	24	and	name	HN)	(resia	25	and	name		2.1	2 1
assign	(resid	24	and	name	HN)	(resid	34	and	name	HG) 3.9	2.1	2.1
accion	resid	24	and	name	HN)	(resid	90	and	name	HA) 3.9	2.1	2.1
assign	(24	and	nama	HN	resid	91	and	name	HB1) 2.9	1.1	1.1
assign	resid	24	and	name		(Lesia	~	t		HB2 1 20	21	21
assign	(resid	24	and	name	HN)	(resid	91	and	name	1102 3.9	4.1	4.1
assion	resid	24	and	name	HN)	(resid	91	and	name	HN) 3.4	1.6	1.6
andight	(24	and	nama	HNÍ	recid	90	and	name	HG1*) 3.4	1.6	1.6
assign	(resid	24	anu	1101110		(00	and	nama	HA) 34	16	16
assign	(resid	24	and	name	HN)	(resid	92	and	name	ПА J 3.4	1.0	1.0
assion	resid	24	and	name	HN)	(resid	92	and	name	HDI*) 2.9	1.1	1.1
17 171 10 4	(10010	2.			,	`						
:LEU23	,				TTA \	(*******	00	and	nama	HA) 24	06	0.6
assign	(resid	25	and	name	nA)	(resid	20	anu	mattic		1 2	1 2
assign	(resid	25	and	name	HD1*)	(resid	23	and	name	ныг) 3.4	0.1	1.0
	(read A	25	and	name	HD1*\	(resid	23	and	name	HD2) 2.9	1.1	1.1
assign	(resid	25		100110		(monid	22	and	name	HE* 1 34	1.6	1.6
assign	(resid	25	and	name		resid	23	anu	mane	UD1#\ 20	2 1	21
assign	(resid	25	and	name	HD2*)	(resid	18	and	name	пD1") 3.9	2.1	2.1
accion	Tesid	25	and	name	ذ *HD2	(resid	23	and	name	HD2) 2.9	1.1	1.1
assign	(ICSIG	25	d	nomo	HD2+	Terid	23	and	name	HE2) 3.4	1.6	1.6
assign	(resid	20	and	name	1102°)	(resid	20			, 5		

	(:4	25	A		IIDat)	(00	.		114 2 2	0 21	0.1
assign	(resid	25	and	name	$HD2^{+})$	(resid	90	and	name	ПА) э .	9 2.1	2.1
assign	(resid	25	and	name	HD2*)	(resid	90	and	name	HB) 3.	9 2.1	2.1
assign	Tracid	25	and	name	HD2*1	Tresid	90	and	name	HG1*) 2	9 11	11
assign	(i caid	25	and	manie	III ,	(Testa	20	410	manie	1101) 2.		1.1
assign	(resid	25	and	name	HN)	(resid	23	and	name	HD2) 3.	9 2.1	2.1
assion	(resid	25	and	name	HN	(resid	23	and	name	HE2) 3.	9 2.1	2.1
assign	(resid	25		Indific		(I COIG	24		1104110			2.1
assign	(resid	25	and	name	HN)	(resia	24	and	name	HA) 2.	4 0.6	0.6
assign	(resid	25	and	name	HN)	(resid	24	and	name	HG2*) 3.	4 1.6	1.6
	(mania)	25	d			land	24	and			A 16	16
assign	(resia	23	and	name	nn)	(resid	24	ana	name	пр ј э.	4 1.0	1.0
!GLY26												
accien	(marid	26	and	nama	HNI)	(racid	25	and	name	HA) 3	0 21	21
assign	(resid	20	and	name	my)	(iesiu	25	anu	name	$\Pi A = 3$.	2.1	2.1
assign	(resid	26	and	name	HN)	(resid	25	and	name	HB1) 2.	9 1.1	1.1
assim	irecid	26	and	name	HNÍ	Tresid	25	and	name	HR2 1 3.	4 16	16
assign	(i calu	20	and	name		(Testa	25	410	manne	$\frac{1102}{5}$	+ 1.0	1.0
assign	(resid	26	and	name	HN)	(resid	27	and	name	HN) 3.	4 1.6	1.6
assion	Íresid	26	and	name	HNÍ	resid	89	and	name	HN) 3	4 16	16
assign	(Tesid	20	and	name		(Teste		410	manie		- 1.0	1.0
assign	(resid	26	and	name	HN)	(resid	89	and	name	HGI*) 2.	9 1.1	1.1
accion	Tresid	26	and	name	HNÍ	resid	87	and	name	HG1*) 3.	4 16	16
assign	(i coid	20	ano	manie		(Testa	07		manie	HOI) S.		1.0
assign	(resid	26	and	name	HN)	(resid	87	and	name	HG2*) 2.	9 1.1	1.1
assign	resid	26	and	name	HN)	(resid	90	and	name	HA) 3.	4 1.6	1.6
um v Dog	(10010					(,		
!1YK2/												
assign	(resid	27	and	name	HD2)	(resid	28	and	name	HB*) 3.	9 2.1	2.1
	(mani d	27			up2 S	inneid	20	and		HC+ 2	0 21	21
assign	(Testa	21	and	name	m_2	(Testu	40	anu	name	110) 5.	2.1	2.1
assign	(resid	27	and	name	HD1)	(resid	89	and	name	HG1*) 2.	9 1.1	1.1
ancien	ranid	27	and	nama	HDIS	iracid	80	and	name	HG2*1 2	0 11	11
assign	(resiu	21	and	name	1101)	(Testa	02	and	name	1102) 2.		1.1
assign	(resid	27	and	name	HDI)	(resid	89	and	name	HB) 3.	9 2.1	2.1
accion	irorid	27	and	name	HE2 \	Irecid	28	and	name	HA \ 3	0 21	21
assign	(Testu	21	anu	name	111112	(i colu	20	410	manie		2.1	2.1
assign	(resid	27	and	name	HE2)	(resid	31	and	name	HG2*) 2.	9 1.1	1.1
accion	recid	27	and	name	HF2 \	Tresid	31	and	name	HG1*) 3	9 21	21
assign	(Testa	27	and	name		(Testa	51		Inanie		- 11	2.1
assign	(resid	27	and	name	HEI)	(resid	56	and	name	HD2*) 2.	9 1.1	1.1
assion	resid	27	and	name	HE1)	(resid	56	and	name	HD1*) 3.	9 2.1	2.1
·		27	1	1101110			õč			TTAR) O	0 11	1 1
assign	(resia	27	and	name	HN)	(resia	26	and	name	па ⁺) 2.:	9 1.1	1.1
assign	(resid	27	and	name	HN)	(resid	28	and	name	HA) 3.	9 2.1	2.1
	(manid	27	and			iranid	20	and	nama	UNI 1 2	1 16	16
assign	(resia	21	ano	name	nn)	(resid	20	and	name	nn) 5.	4 1.0	1.0
!LYS28												
accion	(recid	28	and	name	HG#)	(resid	27	and	name	HR*) 3	9 21	21
assign	(i calu	20	and	manie	110)	(I Cold	27		mane	IIID) 5.		2.1
assign	(resid	28	and	name	HN)	(resid	27	and	name	HA) 3.	4 1.6	1.6
assion	resid	28	and	name	HNÌ	(resid	27	and	name	HB*) 2	9 1.1	1.1
asien	(icsid	20	units 1	Indite	The second secon	(I COLO	27				0 11	
assign	(resid	28	and	name	HN)	(resia	27	and	name	$\mathbf{n}\mathbf{D}\mathbf{z}$) \mathbf{z}	9 1.1	. 1.1
assign	(resid	28	and	name	HN)	(resid	27	and	name	HE2) 3.	9 2.1	2.1
		20				(manid	20	and			0 11	1 1
assign	(resid	20	ano	name	III)	(resid	23	anu	name	111N) 2.	7 1.1	1.1
assign	(resid	28	and	name	HN)	(resid	30	and	name	HN) 3.	9 2.1	2.1
accion	iracid	28	and	name	HNÍ	resid	31	and	name	HN 1 2	9 11	11
assign	(restu	40	anu	name	· · · · · · · · · · · · · · · · · · ·	(Testa	51	and	mame	III() 2.	/ 1.1	1.1
SER29												
assion	(resid	29	and	name	HA)	(resid	32	and	name	HD*) 3.5	9 2.1	2.1
assign	(i cold	2/		mane		(10510	20	1	1100110			1.6
assign	(resid	29	and	name	HA)	(resia	32	and	name	нвт) <i>з.</i> -	4 1.6	1.6
assign	(resid	29	and	name	HN)	(resid	28	and	name	HA) 2.	9 1.1	1.1
	(and d	20	and			ranid	20	and	-	UD*) 2	0 11	1 1
assign	(resid	29	and	name	IIN)	(Testa	20	anu	name	$\frac{11D}{2}$	2 1.1	1.1
assign	(resid	29	and	name	HN)	(resid	28	and	name	HG*) 3.	9 2.1	2.1
	ranid	20	and	nama	HNÍ	iracid	30	and	name	HN 1 2	4 06	06
assign	(resid	47	anu	name	III J	(resid	50	and	name	111() 2.	+ 0.0	0.0
!THR30												
accion	(resid	30	and	name	HA)	(resid	34	and	name	HD1*) 3	4 1.6	1.6
assign	(resid	20			TTA ((and d	22	and			1 16	14
assign	(resia	50	and	name	$\pi \lambda$	(resid	33	2010	name	IID2 J 3.	- 1.0	1.0
assign	(resid	30	and	name	HB)	(resid	29	and	name	HB*) 3.	9 2.1	2.1
action	racid	30	and	name	HG24	Tracid	27	and	name	ี มาว่า จ	9 21	21
assign	(Testu	50	410	name	1102)	(Testa	21		mane	TID: J.		2.1
assign	(resid	30	and	name	HN)	(resid	28	and	name	_ нвт) 3.9	9 Z.I	2.1
assign	(resid	30	and	name	HN)	(resid	28	and	name	HG*) 3.	9 2.1	2.1
0000	(mani J	20	and	nomo	HN	(rooid	20	and	nama	на у 2	4 16	14
assign	(Iesiu	50	anu	name	1111 /	(Testa	47	anu	Indille	11A) 3.	- 1.0	1.0
assign	(resid	30	and	name	HN)	(resid	29	and	name	HBI) 2.	9 1.1	1.1
assion	Tresid	30	and	name	HNÍ	Ìresid	29	and	name	HB2) 2	9 11	1.1
assign	(resid	30	410	marine		(I cold	21	410	Indite	$\frac{1102}{101}$		1.1
assign	(resid	30	and	name	HN)	(resid	31	and	name	HN) 3.	4 1.6	1.6
VAL31												
	(21	ل سم			(maria	24	6-------------		UD*) 2	1 16	16
assign	(resia	31	ano	name	па)	(resia	54	anu	name	пв) э.	4 1.0	1.0
assign	(resid	31	and	name	HA)	(resid	34	and	name	HD1*) 2.	9 1.1	1.1
	(maria	21	and		на	Tracid	31	and	name	HD2*1 2	9 21	21
assign	(resia	51	and	name	пАј	(Testu	54	anu	name	\mathbf{HD}_{2}) 5.	2.1	2.1
assign	(resid	31	and	name	HB)	(resid	30	and	name	HN) 3.	9 2.1	2.1
2001	(ronid	21	and	name	нві	Tracid	37	and	name	HNÍ	9 11	11
assign	(resid	51	anu	name	110)	(resid	54	a10	Hallie	111 J 2.	· 1.1	1.1
assign	(resid	31	and	name	HGI*)	(resid	32	and	name	HN) 3.	4 1.6	1.6
acción	Terid	31	and	name	HG1*1	Tresid	35	and	name	HNÍZ	9 71	21
assign	(i colu	51		mane		(10010	22	the last			- <u> </u>	1 1
assign	(resid	31	and	name	HGI▼)	(resid	30	and	name	н ∪ т) 2.	ו.ו ע	1.1
assion	(resid	31	and	name	HG1*5	(resid	35	and	name	HG*) 3	4 1.6	1.6
maight	10310	21		indite	11014	(10010	55			на у р.		2.5
assign	(resid	31	and	name	HGI*)	(resid	26	and	name	па) 3.	9 2.1	2.1
assign	(resid	31	and	name	HG1*)	(resid	34	and	name	HD1*) 3.	4 1.6	1.6
0001-0-0	(recid	21	and	namo	HGI	Granid	50	and	name	HDI 1 2	4 16	16
assign	(resid	51	and	name	nor)	(nesia	57	and	name	1101) 3.	- 1.0	1.0
assign	(resid	31	and	name	HGI*)	(resid	59	and	name	HE1) 2.	9 1.1	1.1
assion	Treeid	31	and	name	HG2*	Tesid	59	and	name	HDIY 2	9 11	11
annight	(Leona			1101110	1102			and		TIE: 1 2.	- <u></u>	
assign	(resid	31	and	name	HG2₹)	(resid	29	and	name	HEI) 2.	9 I.I	1.1
accion	(31	and	name	HNÚ	(resid	27	and	name	HA 1 3	4 16	1.6
A	recin					1.0030	-			J.	. 1.0	1.0
assign	(resid				TTAT	1	20			TTA \ ~	A 11	
assign	(resid	31	and	name	HN)	(resid	30	and	name	HA) 2.	9 1.1	1.1

accion	(resid	31	and	name	HN)	(resid	30	and	name	HB)	3.4	1.6	1.6
assign	(TODIO	21				and	20	and	name	HG2+)	29	11	11
assign	(resia	51	and	name	IIIN)	(Testu	50	anu	manie	1102)	2.2	1.1	
assign	(resid	31	and	name	HN)	(resid	32	and	name	HN)	2.9	1.1	1.1
annian	ranid	31	and	name	HNÍ	Íresid	34	and	name	HN)	3.9	2.1	2.1
assign	(i cald	51	410	Inditio		(and a	56	and		1112×1	20	21	21
assign	(resid	31	and	name	HN)	(resid	20	and	name	mD2)	5.5	2.1	2.1
assign	(resid	31	and	name	HN)	(resid	89	and	name	HGI*)	3.9	2.1	2.1
IT VE22	、					•							
:L1052							24				21	16	14
assign	(resid	32	and	name	HA)	(resid	36	and	name	HG ⁺)	3.4	1.0	1.0
accion	resid	32	and	name	HA)	(resid	35	and	name	HB*)	2.9	1.1	1.1
assign	(I cond	52		1100110	TTA (25			UC# \	2 /	16	16
assign	(resid	32	and	name	па ј	(resid	35	and	name	10.)	J. T	1.0	1.0
assion	resid	32	and	name	HG*)	(resid	29	and	name	HA)	3.9	2.1	2.1
un si		22			HC+ S	(recid	20	and	name	HB*)	30	21	21
assign	(resid	52	and	manne	IIO)	(Testa	2/	and	Inditte	The second secon	2.0	2.1	0.1
assign	(resid	32	and	name	HE₹)	(resid	36	and	name	HN)	3.9	2.1	2.1
assign	irecid	37	and	name	HNÌ	(resid	29	and	name	HA)	2.9	1.1	1.1
assign	(i coid	52	- I	1104110	TIDAT	(and a	21	and		HGIT	20	11	11
assign	(resid	32	and	name	niv)	(Testa	51	anu	name		2./	1.1	1.1
assign	(resid	32	and	name	HN)	(resid	31	and	name	HG2*)	3.4	1.6	1.6
	land	22	and	name	HNÍ	Tresid	31	and	name	HA)	3.4	1.6	1.6
assign	(lesia	52	2010	Inditio		(resid	22	and			20	1 1	11
assign	(resid	32	and	name	HN)	(resia	33	and	name	IIIN)	2.9	1.1	1.1
accion	(resid	32	and	name	HN)	(resid	34	and	name	HN)	3.4	1.6	1.6
LOTIDAA	(10010	52			/	C				•			
SER33											~ ^		1 1
assign	(resid	33	and	name	HA)	(resid	36	and	name	HB2)	2.9	1.1	1.1
accian	irecid	33	and	name	HAN	Íresid	36	and	name	HB1)	3.4	1.6	1.6
assign	(i cold	33	and	manie	TTA ((nonid	26	and	nama	HG#)	20	11	11
assign	(resid	33	and	name	HA)	(resia	30	and	name	no	2.7	1.1	1.1
assion	(resid	33	and	name	HN)	(resid	30	and	name	HA)	2.9	1.1	1.1
		22	and	nama	HINI Ś	Tracid	32	and	name	HA)	29	1.1	1.1
assign	(resid	33	anu	Hame		(i cold	52	and	Inerite		20	1 1	1 1
assign	(resid	33	and	name	HN)	(resid	32	and	name	HB+)	2.9	1.1	1.1
anniam	ranid	33	and	name	HNÍ	Tresid	32	and	name	HG*)	3.4	1.6	1.6
assign	(Testu	55	and	Indillo		(10010	24			LINI V	24	0.6	0.6
assign	(resid	33	and	name	HN)	(resia	34	and	name	niv)	2.4	0.0	0.0
11 FT 134	•												
	1	24	است			(read	37	and	name	H4*)	29	11	11
assign	(resid	34	and	name	117)	(Testu	57	and	Indino	TTA Y	20	1 1	1 1
assign	(resid	34	and	name	HD1₹)	(resid	31	and	name	HA)	2.9	1.1	1.1
annian	resid	34	and	name	HD1*)	resid	35	and	name	HN)	3.4	1.6	1.6
assign	(Tesid	34	4110	Indite		(included)	60	and		UD1)	34	16	16
assign	(resid	34	and	name	HUIT)	(resid	39	and	name	IIDI)	J. T	1.0	1.0
assign	(resid	34	and	name	HD1*)	(resid	59	and	name	HEI)	2.9	1.1	1.1
	(and a second	24	and	nama	нгр2 * \́	Tresid	24	and	name	HB	2.9	1.1	1.1
assign	(resid	34	anu	manne		(Testa	24		1100110	TICOX	24	14	14
assign	(resid	34	and	name	HD2*)	(resid	24	and	name	нG2+)	5.4	1.0	1.0
accion	Tresid	34	and	name	HD2*)	(resid	59	and	name	HD1)	3.9	2.1	2.1
assign	(i coid	24		1101110	UD2*	and	50	and	name	HELÍ	39	21	21
assign	(resid	34	and	name	$HD2^{+})$	(resid	23	anu	name	11151)	5.7	2.1	2.1
assign	(resid	34	and	name	HD2*)	(resid	37	and	name	HA•)	3.9	2.1	2.1
	(manid	24	and	name	HN V	Tresid	30	and	name	HA)	2.9	1.1	1.1
assign	(resid	34	anu	name		(10010	20				2.0	2.1	2.1
assign	(resid	34	and	name	HN)	(resid	30	and	name	пр)	3.9	2.1	2.1
accion	Tesid	34	and	name	HN)	(resid	30	and	name	HG2*)	3.4	1.6	1.6
assign	(i coid	34				(manid	21	and	name	ี หลุ่ง โ	29	11	11
assign	(resid	34	ana	name	HN)	(resid	51	and	manne		2.2	1.1	
assign	(resid	34	and	name	HN)	(resid	31	and	name	HB)	3.9	2.1	2.1
	(manid	24	and	name	HNÍ	(resid	32	and	name	HA)	3.4	1.6	1.6
assign	(resia	54	anu	name		(I CSIG	22				2 /	1.6	1.6
assign	(resid	34	and	name	HN)	(resid	33	ano	name		3.4	1.0	1.0
accion	resid	34	and	name	HN)	(resid	35	and	name	HN)	2.9	1.1	1.1
assign	(10310	54	-)	(
!ARG35											24	16	16
assign	(resid	35	and	name	HA)	(resid	36	and	name	HN)	3.4	1.6	1.0
0001000	ranid	25	and	name	HA	resid	38	and	name	HB*)	3.9	2.1	2.1
assign	(Testa	35	4110	name			20	and		UD*)	20	21	21
assign	(resid	35	and	name	HA)	(resid	39	and	name	IID)	5.2	2.1	4.1
accion	resid	35	and	name	HE)	(resid	31	and	name	HGI*)	3.4	1.6	1.6
assign	(manial	25	and		HE S	recid	32	and	name	HA)	3.9	2.1	2.1
assign	(resid	33	anu	name		(icsid	50			HEO \	2.0	21	2.1
assign	(resid	35	and	name	HE)	(resid	28	and	name	nc ₄)	3.7	4.1	4.1
assign	(resid	35	and	name	HE)	(resid	55	and	name	HG [*])	5.4	1.6	1.6
	(rooid	25	and	name	HD*΄)	resid	31	and	name	HG1*)	3.4	1.6	1.6
assign	(Testu	35	and	Indillo		(included)	50	and			34	16	16
assign	(resid	35	and	name	н л.)	(resid	38	and	name		J. 4	1.0	1.0
assion	resid	35	and	name	HD*)	(resid	58	and	name	HE2)	2.9	1.1	1.1
	and	25	and	name	HD* \	Tresid	59	and	name	HE2)	3.9	2.1	2.1
assign	(resid	33	anu	name		(10010	~~	t		<u>u</u> , (20	1 1	1 1
assign	(resid	35	and	name	HN)	(resid	52	and	name	na)	4.7	1.1	1.1
acción	Tesid	35	and	name	HN)	(resid	34	and	name	HA)	2.9	1.1	1.1
assign	(25			HN	Torid	34	and	name	HB*)	2.9	1.1	1.1
assign	(resia	33	and	name	IIN)	(resid	37	4110	manie		24	1 4	14
assign	(resid	35	and	name	HN)	(resid	34	and	пате	<u>по</u>)	3.4	1.0	1.0
accion	Terrid	35	and	name	HNÌ	(resid	36	and	name	HN)	2.9	1.1	1.1
assign	(Testa	25				(manin	50	and	name	HDI	39	2.1	2.1
assign	(resid	33	and	name		(resid		allu	mattic	TIPI	20	2.1	21
assign	(resid	35	and	name	HN)	(resid	59	and	name	HEI)	3.9	2.1	⊿.1
ICI M24	(•							
:OLN36					TT 4 \	1	27	له ــــــــــــــــــــــــــــــــــــ		HA*)	30	21	21
assign	(resid	36	and	name	HA)	(resid	51	and	name	na j	5.7	4.1	4.1
accion	Tesid	36	and	name	HB1)	(resid	37	and	name	HN)	3.4	1.6	1.6
assign	(Lesia	50			UD0	(man: 1	27	and	name	HNÍ	34	16	16
assign	(resid	36	and	name	пв2)	(resid	51	Ditte	Indille		2.7	2.0	2.1
assign	(resid	36	and	name	HE2*)	(resid	32	and	name	нв•)	3.9	2.1	2.1
2001	(recid	36	and	name	HE2*1	(resid	32	and	name	HG*)	3.9	2.1	2.1
assign	(resid	50	a110	maine	TTEAT		22	 d	noma	на	30	21	21
assign	(resid	36	and	name	HE2*)	(resid	33	and	name		5.7	2.1	2.1
assion	(resid	36	and	name	HE2*)	(resid	35	and	name	HA)	3.9	2.1	2.1
assign		24			HE2+	Toold	37	and	name	HNÍ	3.9	2.1	2.1
assign	(resid	30	and	name)	(resid	57	and		TTA (2 1	1.4	1.4
assign	(resid	36	and	name	HN)	(resid	32	and	name	na)	5.4	1.0	1.0
accion	Terid	36	and	name	HNÍ	(resid	33	and	name	HA)	3.4	1.6	1.6
الظادده	(LCOLO	50		********	/	(,			

assion	(resid	36	and	name	HN)	(recid	35	and	nama	HR*)	31	16	16
assign	(resid	36	and	name	HN	(resid	37	and	name	\mathbf{U}_{A*}	2.4	2.1	2.1
assign	(resid	26	and	name		(Iesiu	27	and	name	IN)	3.9	2.1	2.1
assign	(resid	30	and	name	IN)	(resid	3/	and	name	HN)	2.9	1.1	1.1
assign	(resia	30	and	name	HN)	(resid	38	and	name	HN)	3.4	1.6	1.6
IGLY37													
assign	(resid	37	and	name	HA*)	(resid	38	and	name	HG*)	3.9	2.1	2.1
assign	(resid	37	and	name	HA*)	(resid	38	and	name	HN)	3.9	2.1	2.1
assign	(resid	37	and	name	HN)	resid	33	and	name	HAÍ	3.4	1.6	1.6
assign	Ìresid	37	and	name	HNÍ	(resid	34	and	name	HD2*)	39	21	21
assion	resid	37	and	name	HN	(recid	35	and	name	HN	3.0	21	21
assign	(rooid	27	and	manne		(reald	24	and	marile		2.2	2.1	2.1
assign	(resid	37	and	name	HN)	(resid	30	and	name	HA)	2.9	1.1	1.1
assign	(resid	37	and	name	HN)	(resid	36	and	name	HG*)	3.9	2.1	2.1
assign	(resid	37	and	name	HN)	(resid	38	and	name	HN)	2.9	1.1	1.1
assign	(resid	37	and	name	HN)	(resid	39	and	name	HN)	3.9	2.1	2.1
!LYS38	•					•				,			
assign	(resid	38	and	name	HA)	(resid	37	and	name	HN)	39	21	21
assion	resid	38	and	name	HB*)	(resid	62	and	name	HDIX	39	21	21
assign	(regid	29	and	1100110		(read	25	and	name		2.0	2.1	2.1
assign	(Tesiu	20		name	IN)	(Testu	35	and	name		3.7	2.1	2.1
assign	(resid	38	and	name	HN)	(resid	33	and	name	HA)	3.9	2.1	2.1
assign	(resid	38	and	name	HN)	(resid	39	and	name	HN)	2.9	1.1	1.1
assign	(resid	38	and	name	HN)	(resid	62	and	name	HD1*)	3.4	1.6	1.6
assign	(resid	38	and	name	HN)	(resid	62	and	name	HB*)	3.9	2.1	2.1
!SER39	`				,	`				,			
assign	(resid	39	and	name	HA)	(resid	40	and	name	HN)	29	11	11
assign	(recid	30	and	name	H A ((resid	41	and	name		2.0	2 1	2 1
assign	(Testu	33	and	IIAIIIC			41	and	name		3.7	2.1	2.1
assign	(resia	39	and	name	HA)	(resia	93	and	name	HA)	3.4	1.6	1.6
assign	(resid	39	and	name	HN)	(resid	35	and	name	HA)	3.4	1.6	1.6
assign	(resid	39	and	name	HN)	(resid	63	and	name	HB*)	3.4	1.6	1.6
assign	(resid	39	and	name	HN)	(resid	38	and	name	HA)	2.9	1.1	1.1
assign	resid	39	and	name	HNÍ	(resid	38	and	name	HB* ́)	3.4	1.6	1.6
assign	resid	39	and	name	HN	(resid	38	and	name	HG* j	39	21	21
assign	(recid	30	and	name	HNI S	(recid	10	and	name	HN	31	16	16
assign	(resid	33		name		(Iesiu	40		name		2.4	1.0	1.0
assign	(resid	39	and	name	HN)	(resid	02	and	name	HDI")	3.4	1.0	1.6
assign	(resid	39	and	name	HN)	(resid	93	and	name	HD2*)	3.9	2.1	2.1
!LYS40													
assign	(resid	40	and	name	HA)	(resid	39	and	name	HA)	3.9	2.1	2.1
assign	(resid	40	and	name	HB*)	resid	39	and	name	HA	3.9	2.1	2.1
assign	resid	40	and	name	HB*)́	resid	41	and	name	HB*)	39	2.1	2.1
assign	(resid	40	and	name	HF*)	(resid	64	and	name	HN	3.4	16	16
assign	(resid	40	and	manic		(resid	07	and	name		24	1.0	1.0
assign	(resid	40	and	name	HET)	resid	93	and	name	HA)	3.4	1.0	1.6
assign	(resid	40	and	name	HN)	(resid	41	and	name	HN)	2.4	0.6	0.6
assign	(resid	40	and	name	HN)	(resid	93	and	name	HD*)	2.9	1.1	1.1
!LEU41													
assign	(resid	41	and	name	HD2*)	(resid	43	and	name	HG1*)	3.4	1.6	1.6
assign	resid	41	and	name	HD2*)	resid	67	and	name	HA)	3.4	1.6	1.6
assign	(resid	41	and	name	HD2*)	resid	68	and	name	HNÍ	34	16	16
assign	(recid	41	and	name	HD2+)	(recid	68	and	name	HBI	29	1 1	1 1
assign	(Testa	41		Itallie	IID2*)	(Tesiu	00		Hante		2.7	1.1	1.1
assign	(resid	41	and	name	$HD2^{*}$	resid	00	and	name		2.9	1.1	1.1
assign	(resid	41	and	name	HD2+)	(resid	68	and	name	HDI)	3.4	1.6	1.6
assign	(resid	41	and	name	HD2*)	(resid	42	and	name	HN)	2.4	0.6	0.6
assign	(resid	41	and	name	HD2*)	(resid	66	and	name	HN)	3.4	1.6	1.6
assign	(resid	41	and	name	HD1*)	(resid	68	and	name	HB*)	3.9	2.1	2.1
assign	(resid	41	and	name	HD1*)	(resid	68	and	name	HD1)	3.9	2.1	2.1
assign	(resid	41	and	name	HD1*∫	resid	42	and	name	ΗΝÚ	3.4	1.6	1.6
assign	resid	41	and	name	HN)	(resid	40	and	name	HAN	29	11	11
assign	resid	41	and	name	HNÍ	(resid	40	and	name	HB*)	29	11	11
assign	(recid	41	and	name		(resid	40	and	name		21	1.1	1.1
assign	(Testa	41	and	liallie			40	and	name	IDV)	2.4	1.0	1.0
assign	(resid	41	and	name		(resid	92	and	name		3.4	1.0	1.0
assign	(resid	41	and	name	HN)	(resid	42	and	name	HN)	3.9	2.1	2.1
!ILE42													
assign	(resid	42	and	name	HA)	(resid	43	and	name	HN)	2.4	0.6	0.6
assign	(resid	42	and	name	HA)	(resid	91	and	name	HA)	2.4	0.6	0.6
assign	resid	42	and	name	HBÍ	resid	43	and	name	HNÍ	2.9	1.1	1.1
assion	resid	42	and	name	HDIT	resid	43	and	name	HNÍ	3.9	2.1	2.1
accion	(resid	42	and	name	HDI+	(recid	60	and	name	HA	34	16	16
0001211	(real d	12	and	name		(ronid	67	and	name		2.4	1 1	1 1
assign		44		name		(resid	67		manne		2.7	1.1	1.1
assign	resid	42	and	name		resid	0/	and	name	ngi")	2.7	1.1	1.1
assign	(resid	42	and	name	HG2*)	(resid	91	and	name	HB2)	3.9	2.1	2.1
assign	(resid	42	and	name	HG2*)	(resid	91	and	name	HA)	3.4	1.6	1.6
assign	(resid	42	and	name	HG2*)	(resid	92	and	name	HN)	2.9	1.1	1.1
assign	resid	42	and	name	HN Ú	resid	41	and	name	HAÍ	2.4	0.6	0.6
assign	resid	42	and	name	HN	(resid	41	and	name	HB*	39	21	21
accian	(recid	42	and	name	HN	(recid	67	and	nama	HA	20	1 1	1 1
assign	(recid	12	and	name		(recid	67	and	name		31	1.1	14
assign	(16210	42	ona	name	mn)	(16210	07	anu	name	1102*)	3.4	1.0	1.0
:ILE43	,	40	•		TT 4	<i>,</i>				MO.+ \	~ ~		• •
assign	(resid	43	and	name	HA)	(resid	42	and	name	HGI*)	3.9	2.1	2.1
assign	(resid	43	and	name	HA)	(resid	68	and	name	HB2)	3.4	1.6	1.6

		40			TT 4 \	(10			UD1) 24	16	16
assign	(resid	43	and	name	HA)	(resid	00	and	name	11D1 = 3.4	1.0	1.0
assign	(resid	43	and	name	HA)	(resid	68	and	name	HD2) 3.4	1.6	1.6
assion	resid	43	and	name	ΉΒŃ	resid	90	and	name	HN) 3.4	1.6	1.6
assign	(resid	42	and			racid	41	and	name	HG) 34	16	16
assign	(resid	43	and	name		(iesia	41		Harrie		1.0	1.0
assign	(resid	43	and	name	HD1*)	(resid	41	and	name	$HD2^{-}) 3.4$	1.6	1.6
assign	(resid	43	and	name	HD1*)	(resid	41	and	name	HD1*) 2.9	1.1	1.1
ancian	recid	13	and	name	HD1+∫	iresid	44	and	name	HN) 3.9	2.1	2.1
assign	(Tesid	43		manic		(resid	20	and		UD*) 30	21	21
assign	(resid	43	and	name	HDI-)	(resid	08	and	name		2.1	2.1
assign	(resid	43	and	name	HD1*)	(resid	68	and	name	HD2) 2.9	1.1	1.1
assim	iresid	43	and	name	HD1*5	Íresid	68	and	name	HN) 3.4	1.6	1.6
assign	(icald	40	410	Indino		Canadid	70	and		UD1) 20	21	21
assign	(resid	43	and	name	$HDI^{+})$	(resia	/0	and	name	$\frac{11}{10}$	2.1	2.1
assign	(resid	43	and	name	HDI*)	(resid	70	and	name	HEI) 3.9	2.1	2.1
assion	irecid	43	and	name	HG1*5	resid	68	and	name	HD2) 3.9	2.1	2.1
assign	licold	42	and		HCOM	(monid	44	and	nama	HN 1 20	11	1.1
assign	(resid	43	and	name	HG2+)	(resid	44	and	name	11N (2.5)	1.1	1.1
assign	(resid	43	and	name	HG2*)	(resid	68	and	name	HB*) 3.4	1.6	1.6
accion	Tresid	43	and	name	HG2*5	Tesid	68	and	name	HD2) 2.9	1.1	1.1
assign	licald	40		Incente	TICOL	Consid	20	and		HE2 1 34	16	16
assign	(resia	43	and	name	<u>но</u> 2-)	(resid	00	مالك	manie	11102) 5.4	1.0	1.0
assign	(resid	43	and	name	HG2*)	(resid	69	and	name	HA) 3.9	2.1	2.1
accion	Tresid	43	and	name	HG2*)	resid	70	and	name	HB*) 3.9	2.1	2.1
assign	(iesia	40	and	manie	TIC2*	(nooid	70	and			1 1	11
assign	(resid	43	and	name	HG2+)	(resid	/0	and	name	IID1) 2.9	1.1	1.1
assign	(resid	43	and	name	HG2*)	(resid	70	and	name	HEI) 2.9	1.1	1.1
accion	resid	43	and	name	HG2*)	(resid	77	and	name	HD1*) 2.9	1.1	1.1
assign	(resid	42	and		UN V	ragid	12	and	name	HN 1 39	21	21
assign	(resid	45	and	name	III)	(Tesid	74		name		1 1	1 1
assign	(resid	43	and	name	HN)	(resid	91	and	name	HA) 2.9	1.1	1.1
III F44	•											
.11212.4.4	(4.4				(marid	13	and	name	HR) 39	21	21
assign	(resid	44	and	name	IA)	(iesiu	40	410	Hame		0.4	0.0
assign	(resid	44	and	name	HA)	(resid	89	and	name	HA) 2.4	0.6	0.6
assion	Tresid	44	and	name	HD1*)	(resid	45	and	name	HN) 2.9	1.1	1.1
assign	(nonid		and			ranid	52	and	name	ΗΔ ή 29	11	11
assign	(resia	44	and	name	nDI)	(Testa	55	410	Inalite		1.1	1.0
assign	(resid	44	and	name	HD1*)	(resid	67	and	name	HGI*) 3.4	1.0	1.0
assion	Óresid	44	and	name	HD1*)	(resid	69	and	name	HA) 3.4	1.6	1.6
assign	(real d		and			ranid	60	and	name	HD2) 29	11	1.1
assign	(resid	44	and	name	IDI')	(Testu	09	and	manne		1 1	1 1
assign	(resid	44	and	name	HDI*)	(resid	69	and	name	HEZ) 2.9	1.1	1.1
assion	resid	44	and	name	HG2*)	(resid	45	and	name	HN) 3.4	1.6	1.6
	(nonid		and		HG2+)	resid	53	and	name	HA 1 34	16	1.6
assign	(resid	44	and	name	1102-)	(Tesid	22	and	Indillo		1.0	1 4
assign	(resid	44	and	name	HG2*)	(resid	20	and	name	HD1+) 5.4	1.0	1.0
assign	resid	44	and	name	HG2*)	(resid	56	and	name	HD2*) 3.4	1.6	1.6
anim	(ragid	44	and	name	HG2*)	resid	69	and	name	HD2) 3.4	1.6	1.6
assign	(Testu		410	Indine	HO2)	(resid	~~~~			1152 20	1 1	1 1
assign	(resid	44	and	name	HG2*)	(resid	69	and	name	nE2) 2.9	1.1	1.1
assign	resid	44	and	name	HG2*)	(resid	89	and	name	HA) 2.9	1.1	1.1
	(monid	44	and	name	HG2+)	Tesid	89	and	name	HB) 3.9	2.1	2.1
assign	(Tesia		4110	Inattic		(I costd	42	and			0.6	0.6
assign	(resid	44	and	name	HN)	(resid	43	and	name	ПА) 2.4	0.0	0.0
assign	resid	44	and	name	HN)	(resid	43	and	name	HG1*) 3.9	2.1	2.1
anian	ranid	44	and	name	HNÍ	Tesid	43	and	name	HN) 3.9	2.1	2.1
assign	(Testa	44	410	manie		(resta	(0)	and		HA 1 24	0.6	0.6
assign	(resid	44	and	name	HN)	(resid	69	ano	name		0.0	0.0
assign	(resid	44	and	name	HN)	(resid	68	and	name	HB*) 3.4	1.6	1.6
accion	Tanid	AA	and	name	HNÍ	Íresid	69	and	name	HE2) 2.9	1.1	1.1
assign	(Tesiu	77	410	manie	m	(resid	60	and		HD2) 34	16	16
assign	(resid	44	and	name	HN)	(resid	09	and	name	1102) 5.4	1.0	1.0
!ALA45												
accian	(recid	45	and	name	HA)	(resid	44	and	name	HB) 3.9	2.1	2.1
assign	(resid	45		mamo	TTA ((manid	44	and	name	HG1+) 39	21	21
assign	(resid	45	and	name	HA)	(resid	44	anu	name		2.1	1.6
assign	(resid	45	and	name	HA)	(resid	46	and	name	HB*) 3.4	1.6	1.0
accion	Tresid	45	and	name	HB*)	resid	46	and	name	HB*) 3.9	2.1	2.1
assign	(resid	45	and		UD# \	read	73	and	name	HA* \ 2.9	11	1.1
assign	(resid	43	and	name		(Tesid	75	and	Indillo		21	21
assign	(resid	45	and	name	нв•)	(resid	/0	and	name	3.9 TDI) 3.9	4.1	4.1
assign	resid	45	and	name	HB*)	(resid	73	and	name	HN) 3.4	1.6	1.6
	(manid	15	and	name	HB*)	resid	74	and	name	HN) 3.4	1.6	1.6
assign	(resid	45	and	name		(I cold	77	and		1112*1 20	1.1	1.1
assign	(resid	45	and	name	HB ⁺)	(resia		and	name	HD2) 2.9	1.1	1.1
assign	(resid	45	and	name	HB*)	(resid	77	and	name	HDI*) 3.9	2.1	2.1
accion	resid	45	and	name	HB* ∖́	resid	77	and	name	HG) 3.9	2.1	2.1
assign	(Tesid	45	and	Indino	TID*)	(manid	00	and	name	HA*) 34	16	16
assign	(resid	45	and	name	пь•)	(Testu	00	0,110	name		0.0	0.6
assign	(resid	45	and	name	HN)	(resid	44	and	name	HA) 2.4	0.6	0.0
accion	resid	45	and	name	HN)	resid	44	and	name	HB) 2.9	1.1	1.1
assign	(10010	45	لمسط		HN	(rooid	AA	and	name	HG1*) 34	1.6	1.6
assign	(resid	45	and	name	111 /	(Lesia		and	manie		1 4	14
assign	(resid	45	and	name	HN)	(resid	44	and	name	пім) 3.4	1.0	1.0
assion	Tresid	45	and	name	HN	(resid	46	and	name	HN) 3.4	1.6	1.6
assign	(45	and		HN	Torid	77	and	name	HD2*) 3.4	1.6	1.6
assign	(resia	43	and	name	my /	(restu			indite.	UA# \ 20	21	21
assign	(resid	45	and	name	HN)	(resid	88	and	name	пат) 3.9	4.1	4.1
141 446	•				-							
	1	AC	6 m d		HA \	(recid	17	and	name	HN) 2.9	1.1	1.1
assign	(resia	40	ano	name		(resid			11001110		1 1	1 1
assign	(resid	46	and	name	HA)	(resid	48	and	name	TIN J 2.9	1.1	1.1
assign	(resid	46	and	name	HB*)	(resid	47	and	name	HN) 2.9	1.1	1.1
andian	(mani d	16	and	name	HR* \	recid	48	and	name	HN) 3.4	1.6	1.6
assign	(resid	40	anu	name		(10010	A A	میں ام	nama	HD1*1 20	21	21
assign	(resid	46	and	name	HN)	(resid	44	and	name		2.1	2.1
assign	(resid	46	and	name	HN)	(resid	45	and	name	HA) 3.9	2.1	2.1
accion	Tracid	46	and	name	HNÍ	resid	45	and	name	HB*) 2.9	1.1	1.1
assign	resid	-0	anu . 1	mattic				and	nama	HN 1 34	16	16
assign	(resid	46	and	name	nn)	(resid	4/	allu	name	····) 5.4	1.0	1.0

	(manid	40	4			1 . 1	~~				~ .		
assign	(resid	40	and	name	HN)	(resia	69	and	name	ны)	3.4	1.6	1.6
assign	(resid	46	and	name	HN)	(resid	70	and	name	HD2)	2.9	1.1	1.1
assion	resid	46	and	name	HNÍ	Tresid	70	and	nama	HNI	3 1	16	1 4
ussign	(Teste	40	and	name		(resid	70	anu	name	IIN)	5.4	1.0	1.0
assign	(resid	46	and	name	HN)	(resid	71	and	name	HA)	3.9	2.1	2.1
assign	(resid	46	and	name	HNÍ	Tesid	73	and	name	HA* N	20	11	1 1
	(and a	40		1114110		(10510	7.5	and	name		2.7	1.1	1.1
assign	(Testu	40	and	name	nn)	(resia	74	and	name	HN)	3.9	2.1	2.1
!ASN47													
accian	(marined	17			TTAT)	(40				2.0	~ 1	
assign	(resid	4/	and	name	HN)	(resia	48	and	name	нв)	3.9	2.1	2.1
assign	(resid	47	and	name	HN)	(resid	71	and	name	HA)	3.9	2.1	21
accion	ironid	17	and			(72			TTAT	20		~ 1
assign	(Testu	4/	and	name	nn)	(resid	13	ano	name	HAT)	3.9	2.1	2.1
assign	(resid	47	and	name	HN)	(resid	48	and	name	HN)	2.9	1.1	1.1
ITHD/9	•				,	、				/		•••	•••
:11111-10													
assign	(resid	48	and	name	HA)	(resid	49	and	name	HB*)	3.9	2.1	2.1
assion	resid	48	and	name	HΔÍ	Tresid	40	and		un∗í	21	06	04
and Bri	(reold	40	. 1	Indillo		(i cold		and	name		2.4	0.0	0.0
assign	(resia	48	and	name	HA)	(resid	49	and	name	HG*)	3.9	2.1	2.1
assign	(resid	48	and	name	HB	(resid	44	and	name	HG1*)	39	21	21
	(manial	40							1100110			1.1	2.1
assign	(resia	48	and	name	нв)	(resia	4/	and	name	HB2)	3.4	1.6	1.6
assign	(resid	48	and	name	HB)	(resid	47	and	name	HB1)	34	16	16
accion	Generid	18	and		HC2+	(manid	4.4	and		TID	20	1 1	1 1
assign	(Testa	40	anu	name	но ₂ .)	(Testu	44	anu	name	пь)	2.9	1.1	1.1
assign	(resid	48	and	name	HG2*)	(resid	44	and	name	HD1*)	3.4	1.6	1.6
accian	irecid	18	and	nama	HC2 *1	ironid	40	and		UD2 1	20	1 1	1 1
assign	(i catu	40	anu	name	1102)	(resid	47	anu	name	HD_2)	2.9	1.1	1.1
assign	(resid	48	and	name	HG2*)	(resid	52	and	name	HN)	3.4	1.6	1.6
assion	resid	48	and	name	HG2+5	Tracid	52	and	nama	HC*	21	16	16
	(Teste	40	and .	mane	1102)	(itesia	52	410	name	110.)	5.4	1.0	1.0
assign	(resid	48	and	name	HG2*)	(resid	53	and	name	HN)	2.9	1.1	1.1
assign	(resid	48	and	name	HN)	Tresid	47	and	name	HΔĺ	34	16	16
	(10010	40	1	manie		(Testa		410	name		J. T	1.0	1.0
assign	(resid	48	and	name	HN)	(resid	47	and	name	HB2)	2.9	1.1	1.1
assign	(resid	48	and	name	HN)	(resid	47	and	name	HBI	34	16	16
	(included)	40		114110	This is	(I COIG	40		name		5.4	1.0	1.0
assign	(resia	48	and	name	HN)	(resia	49	and	name	HD•)	3.9	2.1	2.1
PRO49										-			
accien	(ranid	40	and			(manid	10			TICON	20	~ 1	• •
assign	(iesia	47	anu	name	па)	(resid	48	and	name	HG2+)	3.9	2.1	2.1
assign	(resid	49	and	name	HA)	(resid	50	and	name	HB)	3.9	2.1	2.1
assion	Tresid	49	and	name	HΙΔ	Tracid	50	and	nama	HCOX	21	16	1.6
asign	(itesid	42	and	name		(i colu	50	and	name	1102)	5.4	1.0	1.0
assign	(resid	49	and	name	HA)	(resid	50	and	name	HN)	2.4	0.6	0.6
!VAL50					-								
	(50	1		TTA \	1	<i>E</i> 1				~ ~		
assign	(resia	50	ano	name	HA)	(resia	21	and	name	HB+)	3.9	2.1	2.1
assign	(resid	50	and	name	HA)	(resid	53	and	name	HB*)	34	16	16
	(manid	50			TTA ((10010	50	- dates	marite		2.4	1.0	1.0
assign	(resid	20	and	name	HA)	(resia	23	and	name	HG ⁺)	3.9	2.1	2.1
assign	(resid	50	and	name	HB)	(resid	49	and	name	HG*)	3.9	2.1	2.1
accion	readid	50	and		UD ((manid	51	and			20	1 1	
assign	(resid	50	and	name	пр	(resid	51	and	name	nn)	2.9	1.1	1.1
assign	(resid	50	and	name	HGI*)	(resid	51	and	name	HN)	2.9	1.1	1.1
accion	(resid	50	and	name	HG2* \	Tracid	51	and	nama	HNÍ	20	1 1	1 1
	(I cold	50		name	1102)	(i cold	51	anu	name	IIIN)	4.7	1.1	1.1
assign	(resid	50	and	name	HN)	(resid	49	and	name	HB₹)	3.4	1.6	1.6
assign	(resid	50	and	name	HNÌ	resid	51	and	name	HN Ú	34	16	16
IT IT IS 1	(10010	20		1111110		(10010	51	and	mane	III ()	5.4	1.0	1.0
ILEU21													
assign	(resid	51	and	name	HA)	(resid	54	and	name	HB*)	39	21	21
aniam	(manid	51			TIDE	(id	50				2.0	1 1	
assign	(resid	21	and	name	пв•)	(resia	52	and	name	HN)	2.9	1.1	1.1
assign	(resid	51	and	name	HB*)	(resid	54	and	name	HB*)	3.9	2.1	2.1
accion	racid	51	and			(manid	50	and			2.0	2.1	21
assign	(Testa	51	anu	name	nD1)	(16310	50	and	name	nn)	3.9	2.1	2.1
assign	(resid	51	and	name	HD1*)	(resid	52	and	name	HN)	3.4	1.6	1.6
assion	Tresid	51	and	name	HD2*5	Tresid	50	and	nama	HNÍ	30	21	21
usign	(Teste	51	4110	name	TID2)	(i cold	50	and	manie	IIIN)	5.5	2.1	2.1
assign	(resid	21	and	name	HD2*)	(resid	52	and	name	HN)	3.4	1.6	1.6
assign	(resid	51	and	name	HN	(resid	48	and	name	HG2 [*])	39	21	21
	(51			This (1	mamo	1102)	5.7	2.1	2.1
assign	(resid	21	and	name	nn)	(resia	50	and	name	HA)	3.4	1.6	1.6
assign	(resid	51	and	name	HN)	(resid	52	and	name	HN)	2.9	1.1	1.1
assign	Tresid	51	and	name	HNÍ	Tracid	53	and	nomo		2.0	2.1	2.1
LADOSO	(10510	21	and	manie	, interview ((Testa	55	and	name	m)	5.2	2.1	2.1
IARG52													
assign	(resid	52	and	name	HA)	(resid	56	and	name	HB2)	29	11	11
	(mania	50	t an		H	(mag: 1	61			TIC ,	20		4.1
assign	(resid	52	and	name	па)	(resia	20	and	name	HG)	3.9	2.1	2.1
assign	(resid	52	and	name	HA)	(resid	55	and	name	HB*)	3.4	1.6	1.6
assion	Trecid	52	and	name	HD+	Tooid	51	and	nama	HA	20	21	2 1
assign	(Testu	52	anu	name	mD [•])	(Testa	21	anu	name	па)	3.9	2.1	4.1
assign	(resid	52	and	name	HN)	(resid	50	and	name	HA)	3.9	2.1	2.1
assion	recid	52	and	name	HNÍ	Tracid	50	and			2.0	1 1	1 1
assign	(i coiu	52	anu .	name		(resid	50	anu	name	mn)	4.7	1.1	1.1
assign	(resid	52	and	name	HN)	(resid	51	and	name	HA)	2.9	1.1	1.1
assion	resid	52	and	name	HNÍ	Trecid	52	and	name	нл	21	04	04
IT YOCO	110010			1101110	····)	(restu	23	auto	Haille	111N J	4.7	0.0	0.0
LI 853													
assign	(resid	53	and	name	HA)	(resid	54	and	name	HN V	29	11	11
	(50	1		TTTTTTTTTTTTT	(Leolu			name		2./	1.1	1.1
assign	(resid	23	and	name	HA)	(resid	26	and	name	HB*)	3.4	1.6	1.6
assign	(resid	53	and	name	HD*	(resid	50	and	name	HAÍ	3.9	21	21
00010	(mani d	52	 L =		11D+ ((64				2.0	~	~ 1
assign	(resia	23	and	name	н⊔•)	(resid	54	and	name	HN)	3.9	2.1	2.1
assign	(resid	53	and	name	HD*	(resid	57	and	name	HG*	3.4	1.6	1.6
2001	Ironid	52	and				<i>c</i> o	J		iiiii (2.1	1.0	1.0
ணைய	(1 cold	55	and	name	(ייעח	(16210	09	ano	name	nei)	3.4	1.6	1.6
assign	(resid	53	and	name	HE*)	(resid	69	and	name	HE1)	3.4	1.6	1.6
assion	recid	53	and	name	HE* S	Terid	60	and	nomo	HDI	3.0	21	21
moight	(itestu	55	anu .	Halic	110.)	(resid	09	anu	name	<u>п</u> рі)	3.9	2.1	2.1
assign	(resid	53	and	name	HG*)	(resid	54	and	name	HN)	3.4	1.6	1.6
assign	(resid	53	and	name	HG* \	resid	56	and	name	HG* \	30	21	21
	(10010	50	. 1	maine	110	(i colu	50		nanic	110.)	J.7	2.1	2.1
assign	(resid	35	and	name	HGŦ)	(resid	69	and	name	HEI)	3.9	2.1	2.1
assign	(resid	53	and	name	HNÍ	(resid	50	and	name	HAÍ	24	0.6	06
9-	、	-			/	(*)	T	0.0	0.0

assign	(resid	53	and	name	HN)	(resid	50	and	name	HB)	3.9	2.1	2.1
assign	resid	53	and	name	HNÍ	resid	52	and	name	HA)	2.9	1.1	1.1
assign	(recid	53	and	name	HN	resid	54	and	name	HNÍ	2.9	1.1	1.1
assign	(Testu	55	and	marrie		(recid	55	and	name	HNÍ	3.9	21	21
assign	resid	55		name		(resid	14	and	name		20	1 1	1 1
assign	(resid	55	and	name		(Tesiu	44	and	mame		2.1	1.1	1.1
assign	(resid	53	and	name	HN)	(resia	44	ano	name	nD(*)	5.4	1.0	1.0
ISER54											• •		
assign	(resid	54	and	name	HA)	(resid	57	and	name	HBI)	2.9	1.1	1.1
assign	resid	54	and	name	HA)	(resid	57	and	name	HB2)	2.9	1.1	1.1
assign	resid	54	and	name	HA	(resid	57	and	name	HG*)	3.9	2.1	2.1
assign	(resid	54	and	name	HB*)	resid	55	and	name	HN)	2.9	1.1	1.1
assign	(resid	54	and	name	HNÍ	resid	50	and	name	HAÍ	2.9	1.1	1.1
assign	(resid	54	and	name		(resid	50	and	name	HGI	34	16	16
assign	(resid	54	and	manne		(resid	51	and	name	HA)	29	11	1 1
assign	resid	54	and	name		(lesid	51		manne		2.0	2 1	2 1
assign	(resid	54	and	name	HIN)	(resid	51	and	manne	IDI)	2.0	2.1	2.1
assign	(resid	54	and	name	HN)	(resid	51	and	name	HN)	3.9	2.1	2.1
assign	(resid	54	and	name	HN)	(resid	53	and	name	HB ⁺)	2.9	1.1	1.1
assign	(resid	54	and	name	HN)	(resid	57	and	name	HG ⁺)	3.9	2.1	2.1
assign	(resid	54	and	name	HN)	(resid	55	and	name	HN)	2.9	1.1	1.1
IGLU55	•												
assion	(resid	55	and	name	HA)	(resid	56	and	name	HN)	2.9	1.1	1.1
assign	(recid	55	and	name	HAÍ	resid	58	and	name	HBI	2.9	1.1	1.1
assign	(resid	55	and	name	на	(resid	58	and	name	HB2)	2.9	1.1	1.1
assign		55	and	name		(recid	56	and	name	HN	29	11	11
assign	(resid	55	and	name		(resid	56	and	manne	HN S	3.1	16	16
assign	(resid	22	and	name	HB2)	(resid	50		mame		2.0	2.0	2.1
assign	(resid	55	and	name	HBI)	(resid	39	and	name		3.7	2.1	2.1
assign	(resid	55	and	name	HG [∓])	(resid	59	and	name	HN)	3.9	2.1	2.1
assign	(resid	55	and	name	HG*)	(resid	59	and	name	HD_2)	3.4	1.6	1.6
assign	(resid	55	and	name	HG*)	(resid	59	and	name	HE2)	2.9	1.1	1.1
assign	resid	55	and	name	HN)	(resid	52	and	name	HA)	2.9	1.1	1.1
assign	resid	55	and	name	HN)	(resid	54	and	name	HA)	3.4	1.6	1.6
assion	resid	55	and	name	HΝ	resid	56	and	name	HN)	2.9	1.1	1.1
IL FLISS	(10010				,	、				,			
.LLC.JC	(married	56	and	name	HA)	(resid	59	and	name	HB2)	2.9	1.1	1.1
assign	(Iesiu	50		manne		(resid	44	and	name	HGI+)	29	11	11
assign	(resid	50	and	name		(resid	52	and	mamo	<u>u</u> ,)	3 4	1.6	1.6
assign	(resid	56	and	name	HDI*)	(resid	55	and	Itaine		2.4	1.0	1.0
assign	(resid	56	and	name	HDI+)	(resid	57	and	name		3.4	1.0	1.0
assign	(resid	56	and	name	HD2 *)	(resid	57	and	name	HN)	3.9	2.1	2.1
assign	(resid	56	and	name	HD2*)	(resid	31	and	name	HGI*)	3.9	2.1	2.1
assign	(resid	56	and	name	HD2*)	(resid	31	and	name	HG2*)	2.9	1.1	1.1
assign	resid	56	and	name	HN)	(resid	27	and	name	HE1)	3.4	1.6	1.6
assign	resid	56	and	name	HN)	(resid	53	and	name	HA)	3.4	1.6	1.6
assign	(resid	56	and	name	HN	resid	54	and	name	HA)	3.9	2.1	2.1
accion	resid	56	and	name	HNÍ	resid	55	and	name	HG*)	2.9	1.1	1.1
assign	(resid	56	and	name	HNÍ	resid	57	and	name	HN)	2.9	1.1	1.1
IGI IIS7	(10010	50			,	C							
idL057	(mani d	57	and		μΑ)	(resid	58	and	name	HN)	2.9	1.1	1.1
assign	(resid	57	and	name		(resid	60	and	name	HB*)	2.9	1.1	1.1
assign	(resid	57		name		(resid	56	and	name	HAN	30	21	21
assign	(resid	57	and	name		(resid	50		manie		21	16	16
assign	(resid	57	and	name	HG ⁺)	(resid	53	and	name		3.4	1.0	1.0
assign	(resid	57	and	name	HN)	(resid	53	and	name	HB [•])	3.9	2.1	4.1
assign	(resid	57	and	name	HN)	(resid	54	and	name	HA)	3.4	1.6	1.6
assign	(resid	57	and	name	HN)	(resid	56	and	name	HA)	2.9	1.1	1.1
assign	resid	57	and	name	HN)	(resid	56	and	name	HB*)	2.9	1.1	1.1
assign	resid	57	and	name	HN)	(resid	56	and	name	HG)	3.4	1.6	1.6
assign	resid	57	and	name	HΝ Ύ	(resid	67	and	name	HG2*)	2.9	1.1	1.1
assion	(resid	57	and	name	HNÍ	(resid	58	and	name	HN)	2.9	1.1	1.1
ITVD59	(resid	51	uno	1100110		(
:11KJ8	(======================================	59	and	name	ΗΔ \	(resid	57	and	name	HN)	3.9	2.1	2.1
assign	(resid	38	and	name		(resid	61	and	name	HBI	29	11	1.1
assign	(resid	38	and	name		(Testu (Testu	61	and	name	HP2	34	1.6	16
assign	(resid	28	and	name	HA)	(Tesia	61		manie	UE#)	2.0	21	21
assign	(resid	58	and	name	HA)	(resid	61	and	name		2.2	2.1	2.1
assign	(resid	58	and	name	HA)	(resid	61	and	name		3.7	2.1	2.1
assign	(resid	58	and	name	HB *)	(resid	עכ	and	name	IIN)	3.7	2.1	2.1
assign	(resid	58	and	name	HD2)	(resid	55	and	name	HA)	3.4	1.0	1.6
assign	(resid	58	and	name	HD2)	(resid	59	and	name	HA)	3.9	2.1	2.1
assign	resid	58	and	name	HD2)	(resid	59	and	name	HD2)	3.4	1.6	1.6
assign	(resid	58	and	name	HD2 S	resid	59	and	name	HE2)	3.4	1.6	1.6
accian	(recid	58	and	name	HEI	(resid	61	and	name	HE* Ύ	2.9	1.1	1.1
assign	(resid	50	and	name	HEI	(resid	61	and	name	HG* \	3.4	1.6	1.6
assign	(ICSIG	50	and	name	HNI	(recid	55	and	name	HAN	29	1.1	1.1
assign	(resid	28 50	DIIG	name			55	and	name	HB*	30	21	21
assign	(resid	28	and	name		(resid	55		name		31	1.6	16
assign	(resid	58	and	name	HN)	(resid	5/	and	name		J.4 2 A	1.0	1.0
assign	(resid	58	and	name	HN)	(resid	57	and	name	$\frac{nD2}{UOt}$	2.4	1.0	2.0
assign	(resid	58	and	name	HN)	(resid	57	and	name	nu,	3.Y	4.1	2.1
assign	(resid	58	and	name	HN)	(resid	59	and	name	HN)	2.9	1.1	1.1
assign	(resid	58	and	name	HN)	(resid	60	and	name	HN)	3.4	1.6	1.6

!TYR59												
assign	(resid	59	and	name	HA)	(resid	62	and	name	HG) 2.9	1.1	1.1
assign	(resid	59	and	name	HA)	(resid	62	and	name	HN) 2.9	1.1	1.1
assign	(resid	59	and	name	HBI	(resid	42	and	name	HD1*) 39	21	21
assign	resid	59	and	name	HDI	resid	56	and	name	HA) 29	1 1	1 1
assign	resid	59	and	name	HD2 \	(resid	58	and	name	HE2 \ 20	2 1	2.1
assign	(recid	50	and	name		(resid	21	and	name	$IIE_2 = 3.9$	2.1	2.1
assign	(resid	50		name		(Tesia	51	and	name	HB) 3.4	1.6	1.6
assign	(resid	59	and	name	HN)	(resid	56	and	name	HA) 2.9	1.1	1.1
assign	(resid	59	and	name	HN)	(resid	56	and	name	HB*) 3.9	2.1	2.1
assign	(resid	59	and	name	HN)	(resid	58	and	name	HA) 2.9	1.1	1.1
assign	(resid	59	and	name	HN)	(resid	58	and	name	HD2) 2.9	1.1	1.1
assign	(resid	59	and	name	HN)	(resid	60	and	name	HN) 2.9	1.1	1.1
assign	resid	59	and	name	HNÍ	(resid	55	and	name	HG*) 39	21	21
assign	resid	59	and	name	HN	(resid	55	and	name	HB* 1 30	21	2.1
LAT AGO	(10010	• •	uno	104110	, interview of the second seco	(10510	55	and	Hame	mb) 5.7	2.1	2.1
ALAOU	(<i>(</i> 0			TT 4 \	(~~					
assign	(resid	00	and	name	HA)	(resid	63	and	name	HB*) 3.9	2.1	2.1
assign	(resid	60	and	name	HA)	(resid	65	and	name	HB) 2.9	1.1	1.1
assign	(resid	60	and	name	HA)	(resid	65	and	name	HG2*) 3.4	1.6	1.6
assign	(resid	60	and	name	HA)	(resid	65	and	name	HN) 3.9	2.1	2.1
assign	(resid	60	and	name	HB*)	(resid	57	and	name	HB1) 3.9	2.1	2.1
assign	resid	60	and	name	HB* ∖́	resid	57	and	name	HB2 1 39	21	21
assion	resid	60	and	name	HB* \	(recid	61	and	name	HN) 20	1 1	1 1
assign	(recid	60	and	mamo		(resid	65	and	name	$\frac{110}{110} \rightarrow 2.9$	1.1	1.1
assign	(Tesid	60	anu	name		(resid	65	and	name	ПВ) 3.4	1.0	1.0
assign	(resid	60	and	name	HB•)	(resid	65	and	name	HG2*) 3.9	2.1	2.1
assign	(resid	60	and	name	HB*)	(resid	65	and	name	HN) 3.9	2.1	2.1
assign	(resid	60	and	name	HB*)	(resid	67	and	name	HB) 3.4	1.6	1.6
assign	(resid	60	and	name	HB*)	(resid	67	and	name	HG1 [*]) 3.9	2.1	2.1
assign	(resid	60	and	name	HB* ∖́	resid	67	and	name	HG2*) 2.4	0.6	06
assign	resid	60	and	name	HNÍ	resid	42	and	name	HG2*) 3.4	16	1.6
assign	(recid	60	and	name	HN S	(regid	42	and	name	UD1*) 24	1.0	1.0
assign	(resid	60		name		(Tesid	44	anu	name	$HD1^{\circ}$ J° J°	1.0	1.0
assign	resid	60	and	name	HIN)	(resid	20	and	name	HA) 2.9	1.1	1.1
assign	(resid	60	and	name	HN)	(resid	57	and	name	HA) 3.4	1.6	1.6
assign	(resid	60	and	name	HN)	(resid	59	and	name	HA) 2.9	1.1	1.1
assign	(resid	60	and	name	HN)	(resid	59	and	name	HB1) 3.4	1.6	1.6
assign	(resid	60	and	name	HN)	(resid	59	and	name	HB2) 3.4	1.6	1.6
assign	resid	60	and	name	HNÍ	resid	59	and	name	HD1) 34	16	16
assign	(resid	60	and	name	HN	resid	61	and	name	HA) 39	21	21
assign	(recid	60	and	name	HN	(rooid	61	and	name		1 1	2.1
IMET(1	(resid	00	anu	name	ma)	(restu	01	and	name	пм) 2.9	1.1	1.1
INIE 101		~					~					
assign	(resid	61	and	name	HA)	(resid	62	and	name	HA) 3.4	1.6	1.6
assign	(resid	61	and	name	HA)	(resid	62	and	name	HN) 2.9	1.1	1.1
assign	(resid	61	and	name	HB2)	(resid	60	and	name	HB*) 3.9	2.1	2.1
assign	(resid	61	and	name	HB1)	(resid	62	and	name	HN) 2.9	1.1	1.1
assign	(resid	61	and	name	HB2)	resid	62	and	name	HN) 3.4	1.6	1.6
assign	resid	61	and	name	HE*	tresid	62	and	name	HA) 39	21	21
assion	resid	61	and	name	HE* ((recid	62	and	name	HN) 30	21	21
accion	(recid	61	and	name		(resid	62	and	name	IN) 3.0	2.1	2.1
assign	(resid	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	and	name	IIO)	(Testu	57	DILLA	name	$\frac{111}{114}$	2.1	2.1
assign	(resid	01	and	name	HIN)	(resid	57	and	name	HA) 3.9	2.1	2.1
assign	(resid	61	and	name	HN)	(resid	58	and	name	HA) 3.4	1.6	1.6
assign	(resid	61	and	name	HN)	(resid	58	and	name	HD1) 3.9	2.1	2.1
assign	(resid	61	and	name	HN)	(resid	60	and	name	HA) 2.9	1.1	1.1
assign	(resid	61	and	name	HN)	(resid	64	and	name	HA) 3.9	2.1	2.1
assign	(resid	61	and	name	HN)	(resid	62	and	name	HD1 [*]) 3.9	2.1	2.1
assign	(resid	61	and	name	HN)	resid	62	and	name	HD2*) 3.4	1.6	1.6
assign	resid	61	and	name	HNÍ	resid	62	and	name	HN) 29	11	11
assign	resid	61	and	name	HN	Tesid	63	and	name	HN 39	21	21
IL FU62	(10010	•••		Imilio	, interview (1997)	(16510	05	410	marie	III() 5.7	2.1	2.1
.LLCCC2	(ranid	62	and			(manial	50	المسم			~ 1	2.1
assign	(Testu	62	and	name		(resid	59	and	name	HD2) 3.9	2.1	2.1
assign	(resid	62	and	name	HG)	(resid	61	and	name	HE*) 3.9	2.1	2.1
assign	(resid	62	and	name	HD1*)	(resid	63	and	name	HN) 3.4	1.6	1.6
assign	(resid	62	and	name	HD1*)	(resid	58	and	name	HD2) 3.4	1.6	1.6
assign	(resid	62	and	name	HD1*)	(resid	58	and	name	HE2) 2.9	1.1	1.1
assign	resid	62	and	name	HD1*5	resid	59	and	name	HA) 29	11	11
assign	Tesid	62	and	name	HD1+	Tesid	50	and	name	HD2) 20	1 1	1 1
accion	(rocid	62	and	name		(rocid	50	ميرين محا	manic		1.1	1.1
assign	(Testa	02	and	name		(lesid	59	and	name	HE2) 5.4	1.0	1.0
assign	(resid	02	and	name	нD2*)	(resid	28	and	name	HD2) 3.4	1.6	1.6
assign	(resid	62	and	name	HD2*)	(resid	58	and	name	HE2) 2.9	1.1	1.1
assign	(resid	62	and	name	HD2*)	(resid	59	and	name	HA) 2.9	1.1	1.1
assign	(resid	62	and	name	HD2* ύ	(resid	59	and	name	HD2) 3.9	2.1	2.1
assign	(resid	62	and	name	HD2*	resid	61	and	name	HN) 29	11	11
assign	resid	62	and	name	HD2*	(resid	61	and	name	HE# \ 3.4	1.6	1.6
assion	(resid	67	and	name	HD2*	(recid	63	and	name	HN) 24	1.0	1 4
accian	(ronid	62	and	name	1102°	(resid	20	10110	manne	$\frac{110}{100} = 5.4$	1.0	1.0
assign		62	and	name	IN)	(resid	38	and	name	HD2) 3.9	2.1	2.1
assign	(resid	62	and	name	HN)	(resid	29	and	name	HD2) 3.9	2.1	2.1
assign	(resid	62	and	name	HN)	(resid	60	and	name	HN) 3.9	2.1	2.1
•	>		-									
assign	(resid	62	and	name	HN)	(resid	63	and	name	HN) 2.9	1.1	1.1

		~~			** *	1	<i>(</i>)	A		TTD# \ 20	2.1	21
assign	(resid	63	and	name	HA)	(resia	64	and	name	пБ*) 5.9	2.1	2.1
assign	(resid	63	and	name	HN)	(resid	38	and	name	HA) 3.9	2.1	2.1
assign	racid	63	and	name	HNÍ	Ìresid	60	and	name	HA) 3.4	1.6	1.6
assign	(Testu	05	and	mane		(I COIC				114 20	1 1	1 1
assign	(resid	63	and	name	HN)	(resid	62	and	name	HA) 2.9	1.1	1.1
assion	resid	63	and	name	HN)	(resid	62	and	name	HB1) 3.4	1.6	1.6
assign	(Teste	~~~	and a		IDI	(and d	60	and		HP2 1 34	16	16
assign	(resid	63	and	name		(Testu	02	and	manie	1102) 5.4	1.0	1.0
assign	(resid	63	and	name	HN)	(resid	62	and	name	HG) 2.9	1.1	1.1
	(and d	62	and		LINI	iracid	38	and	name	HB*) 39	21	21
assign	(resia	63	and	name	nn)	(Testu	30	and	name		2.1	2.1
assign	(resid	63	and	name	HN)	(resid	64	and	name	HN) 2.4	0.6	0.6
	(manid	62	and	name	HNÍ	Treesid	65	and	name	HB) 39	2.1	2.1
assign	(resid	03	and	name	IIIN /	(Testu	05	416	Interito		1 1	
assign	(resid	63	and	name	HN)	(resid	65	and	name	HN) 2.9	1.1	1.1
IT VELA	•					•						
:11304					**		~			TTE: > 24	16	16
assign	(resid	64	and	name	HA)	(resid	61	and	name	HET) 3.4	1.0	1.0
accion	Tresid	64	and	name	HA)	(resid	65	and	name	HA) 3.4	1.6	1.6
assign	(i cald	64	and	Inditio			65				0.6	0.6
assign	(resid	64	and	name	HA)	(resia	65	and	name	min) 2.4	0.0	0.0
assion	resid	64	and	name	HG*)	(resid	65	and	name	HN) 3.9	2.1	2.1
assign	(10010					(manial	60	and	nomo	น ก วั 3 4	16	16
assign	(resid	64	and	name	HN)	(resid	00	anu	name	11/4) 5.4	1.0	1.0
assign	(resid	64	and	name	HN)	(resid	63	and	name	HA) 2.9	1.1	1.1
	(and a	64	and		HNI	irorid	63	and	name	HB*໌) 29	11	11
assign	(resid	04	and	name	1111	(i calu	05	410	Incento		0.1	
assign	(resid	64	and	name	HN)	(resid	65	and	name	HB) 3.9	2.1	2.1
	(marial	61	and	nama	HNÍ	Terrid	65	and	name	HN) 24	0.6	0.6
assign	(resid	04	anu	manne	III)	(16310	05	0110	Instite	····) -··	0.0	
!THR65												
anniam	(marid	65	and	name	HA)	(resid	40	and	name	HG*) 3.9	2.1	2.1
assign	(Iesia	05	allu	manie		(Testa	40				1.0	1.0
assign	(resid	65	and	name	HA)	(resid	64	and	name	HG ⁺) 3.4	1.0	1.0
	innid	65	and	name	Η Δ ή	resid	66	and	name	HN) 2.4	0.6	0.6
assign	(Testu	05	auu	Hame		(Teste		1	1100110		1.6	1.0
assign	(resid	65	and	name	HA)	(resid	66	and	name	HG ⁺) 3.4	1.0	1.0
anniam	racid	65	and	name	HRÍ	resid	42	and	name	HG2*) 3.4	1.6	1.6
assign	(iesiu	05	ano	name		(Testa	41				1 1	1 1
assign	(resid	65	and	name	HG2*)	(resid	41	and	name	ПА) 2.9	1.1	1.1
accion	irecid	65	and	name	HG2*)	(resid	42	and	name	HG2*) 3.4	1.6	1.6
assign	(resid	05	410	mane	TOOT	(and a	40	and		HNI) 24	16	16
assign	(resid	65	and	name	HG2*)	(resia	42	and	name	ПN) 5.4	1.0	1.0
accion	resid	65	and	name	HG2*)	(resid	66	and	name	HB*) 3.4	1.6	1.6
assign	(Teste	65				Consid	61	and	nome	HB* 1 34	16	16
assign	(resid	65	and	name	nn)	(resid	04	anu	name	11D) 5.4	1.0	1.0
assign	(resid	65	and	name	HN)	(resid	66	and	name	HN) 3.9	2.1	2.1
IT YOU	(•				-		
1LI 200			_							TTA \ 24	1.4	10
assign	(resid	66	and	name	HN)	(resid	41	and	name	HA) 3.4	1.0	1.0
	innid	66	and	nama	HNÍ	Tresid	65	and	name	HB) 3.4	1.6	1.6
assign	(resid	00	anu	name		(Testa	65	and			0.6	0.4
assign	(resid	66	and	name	HN)	(resid	65	and	name	HG2+) 2.4	0.0	0.0
assion	irecid	66	and	name	HNÍ	(resid	67	and	name	HN) 3.9	2.1	2.1
assign	(resid	00	anu	Itanie	, m,)	(10010	0,					
!VAL67												
accion	(resid	67	and	name	HA)	(resid	43	and	name	HA) 3.9	2.1	2.1
assign	(Testa		und I		TTA	(manid	12	and	name	HG1+1 39	21	21
assign	(resid	67	and	name	na)	(resid	45	anu	itattic	101) 5.7	2.1	2.1
assion	(resid	67	and	name	HG1*)	(resid	42	and	name	HN) 3.4	1.6	1.6
· · · ·					UCIA	innid	68	and	name	HN 1 29	11	11
assign	(resid	6/	and	name	nor)	(restu	00	and	manie	1110) 2.5	1.1	1.1
assign	(resid	67	and	name	HG1*)	(resid	69	and	name	HD2) 3.4	1.6	1.6
	(and a	67	and	nama	HG1*5	Tresid	69	and	name	HE2) 2.9	1.1	1.1
assign	(resia	67	anu	name	nor)	(resid	0,	and	Indiano		2.1	21
assign	(resid	67	and	name	HG2*)	(resid	42	and	name	HN) 5.9	2.1	2.1
	inneria	67	and	name	HG2*\	resid	57	and	name	HA) 2.9	1.1	1.1
assign	(Testa	07	and	maine	TIO2)	(10310					1 1	1 1
assign	(resid	67	and	name	HG2*)	(resid	60	and	name	HN) 2.9	1.1	1.1
anian	inorid	67	and	name	HG2*)	(resid	66	and	name	HA) 2.9	1.1	1.1
assign	(Testu	07	and	name	The second secon		~~			HCA 24	16	16
assign	(resid	67	and	name	HN)	(resid	66	and	name	по) 3.4	1.0	1.0
acción	regid	67	and	name	HN)	(resid	66	and	name	HB*) 2.9	1.1	1.1
assign	(itesid		and	Indiate				and		UA 1 74	06	06
assign	(resid	67	and	name	nn)	(resid	00	anu	name	11A) 2.4	0.0	0.0
assign	(resid	67	and	name	HN)	(resid	68	and	name	HN) 3.9	2.1	2.1
ITVDCO	·				,	•						
111808						<i>,</i> .,	60	A		UNI \ 20	21	21
assign	(resid	68	and	name	нв•)	(resia	69	ano	name	111V J 5.9	4.1	4.1
assion	(resid	68	and	name	HD2)	(resid	70	and	name	HDI) 2.9	1.1	1.1
	(20			HDI	(rooid	104	and	name	HB* ∖ 34	1.6	1.6
assign	(resia	08	anu	name	IIDI)	(resid	104		Inerro		1 1	1 1
assign	(resid	68	and	name	HD1)	(resid	104	and	name	п ∪ т) 2.9	1.1	1.1
0001	Inorial	69	and	name	HDIŃ	resid	104	and	name	HG) 3.4	1.6	1.6
assign	(resid	00	and	name	1101)	(Testa	104	4446	11001110	TTD1#) 20	2.1	2.1
assign	(resid	68	and	name	HE2)	(resid	43	and	name	прт.) 3.9	4.1	4.1
accion	Tregid	68	and	name	HE2)	(resid	70	and	name	HB1) 2.9	1.1	1.1
maight	(LOOID	20			HEO	(manid	70	and	name	HR2 \ 34	16	16
assign	(resid	68	and	name	пс2)	(resia	70	and	TIGUIC		1.0	1 1
assion	(resid	68	and	name	HE2)	(resid	70	and	name	HDI) 2.9	1.1	1.1
unight	(/0			HEI ((ronid	104	hre	name	HD* \ 2 9	1.1	1.1
assign	(resid	68	and	name	nei)	(resta	104	anu .	manie			2 1
assign	(resid	68	and	name	HE1)	(resid	104	and	name	HG) 3.9	2.1	2.1
	(20		-	HN	Tracid	47	and	name	HN) 34	1.6	1.6
assign	(resia	08	and	name	in)	(resid	74		inditio		1 /	1 /
assign	(resid	68	and	name	HN)	(resid	44	and	name	HN) 3.4	0.1	1.0
	(married	60	and	name	HNÍ	Tresid	43	and	name	HA) 2.9	1.1	1.1
assign	(resid	00	anu	name		10010				UG1*1 20	2.1	21
assign	(resid	68	and	name	HN)	(resid	43	and	name	nor) 3.9	4.1	4.1
20010	Tooid	68	and	name	HN	(resid	67	and	name	HA) 2.4	0.6	0.6
اللانحم	(resid	00	and	1101110		(67	and	nama	HR 1 20	21	21
assign		68	and	name	пN)	(resia	0/	and	name	J.J. J. J.J.	4.1	2.1
	(resid				UN \	(resid	69	and	name	HN) 3.9	2.1	2.1
assion	(resid	68	and	name	THIN I	\+						
assign	(resid (resid	68	and	name	mn)	(
assign !TYR69	(resid (resid	68	and	name	ш х)	,					17	1.4
assign !TYR69 assign	(resid (resid (resid	68 69	and and	name name	HA)	(resid	44	and	name	HD1*) 3.4	1.6	1.6
assign !TYR69 assign	(resid (resid (resid	68 69 69	and and	name name	HA)	(resid	44 53	and and	name name	HD1*) 3.4 HB*) 3.9	1.6 2.1	1.6 2.1
assign !TYR69 assign assign	(resid (resid (resid (resid	68 69 69	and and and	name name	HA) HD1)	(resid (resid	44 53	and	name name	HD1*) 3.4 HB*) 3.9 HB) 3.9	1.6 2.1	1.6 2.1 2.1
assign !TYR69 assign assign assign	(resid (resid (resid (resid (resid	68 69 69 69	and and and and	name name name	HA) HD1) HD2)	(resid (resid (resid	44 53 67	and and and	name name name	HD1*) 3.4 HB*) 3.9 HB) 3.9	1.6 2.1 2.1	1.6 2.1 2.1
assign !TYR69 assign assign assign	(resid (resid (resid (resid (resid	68 69 69 69	and and and and	name name name name	HA) HD1) HD2) HD1)	(resid (resid (resid (resid	44 53 67 68	and and and and	name name name name	HD1*) 3.4 HB*) 3.9 HB) 3.9 HA) 3.4	1.6 2.1 2.1 1.6	1.6 2.1 2.1 1.6

assign	(resid	69	and	name	HD2)	(resid	44	and	name	HB)	3.4	1.6	1.6
		10	1		TIPL					TTC+	2.0	0.1	0.1
assign	(resia	69	and	name	HEI)	(resia	55	and	name	HG ⁺)	3.9	2.1	2.1
assion	Tesid	69	and	name	HEIS	Tresid	53	and	name	HD*)	34	16	16
asign	(I cold	0,	and	name	1101)	(I costa	55	and	Interite	, in , i	5.4	1.0	1.0
assign	(resid	69	and	name	HE2)	(resid	67	and	name	HB)	2.4	0.6	0.6
accion	Irocid	60	and	nama		Irecid	68	and	name	ΗΔ	30	21	21
assign	(resid	09	anu	name	пет)	(resta	08	anu	manne	IIA)	5.5	2.1	4.1
assign	(resid	69	and	name	HN)	(resid	68	and	name	HA)	2.4	0.6	0.6
anim	(manid	20	and			(manid	20	and			20	21	21
assign	(resia	09	and	name	nn)	(resid	00	anu	name	mor)	3.7	2.1	4.1
assign	(resid	69	and	name	HN)	(resid	68	and	name	HE1)	3.9	2.1	2.1
-		~~~	1	1104110			30			TT	2.0	0.1	~ 1
assign	(resid	69	and	name	HN)	(resid	70	and	name	HA)	3.9	2.1	2.1
anion	innaid	60	and	nomo	uni	ironid	70	and	nama	HNÍ	30	21	21
assign	(resid	09	anu	name	nn)	(resid	70	anu	manne	nn)	3.7	2.1	4.1
PHE 70													
		=0					60			TTAN	24	1.4	1.4
assign	(resid	70	and	name	HDI)	(resia	69	and	name	HA)	3.4	1.0	1.0
accian	Treeid	70	and	name	HD2	(resid	71	and	name	HA)	34	16	16
assign	(i cold	10	and	manie	1104)	(10310	71	and	Inditio		5	1.0	
assign	(resid	70	and	name	HE2)	(resid	76	and	name	HB2)	3.4	1.6	1.6
	innid	70	and		117 Ú	inanid	76	and	nama	HB2	31	16	16
assign	(resid	/0	and	name	nL)	(resiu	/0	and	name	п <u>ь</u> г)	3.4	1.0	1.0
assign	(resid	70	and	name	HE2)	(resid	76	and	name	HG*)	3.4	1.6	1.6
······					TTG \					TTOT	24	1.7	10
assign	(resid	70	and	name	HZ)	(resid	76	and	name	HG ⁺)	3.4	1.6	1.0
accion	Tresid	70	and	name	HD2)	Tresid	72	and	name	HA*)	39	2.1	21
assign	(Testa	70	and	mane	1100	(I COLG			1100010		0.7		
assign	(resid	70	and	name	HZ)	(resid	TT	and	name	HA)	3.4	1.6	1.6
assign	racid	70	and	nama	H7 \	irecid	77	and	name	HDIÍ	24	06	06
assign	(resid	/0	anu	name	$\mathbf{n}_{\mathbf{L}}$	(Testa		anu	name	, , , , , , , , , , , , , , , , , , , ,	2.7	0.0	0.0
assign	(resid	70	and	name	HE1)	(resid	77	and	name	HD2*)	2.9	1.1	1.1
		70			117 \	land	77	and		⊔⊡ว * \	20	1 1	1 1
assign	(resia	/0	and	name	HL)	(resia	//	. and	name	$\Pi D 2^{+}$	4.9	1.1	1.1
accion	(resid	70	and	name	HE1)	(resid	77	and	name	HG)	34	16	16
assign	(I Cold	70	and	incanto		(10010			1100110			1.0	
assign	(resid	70	and	name	HN)	(resid	44	and	name	HDI*)	3.4	1.6	1.6
accian	General	70	and	nama	HNÍ	Treeid	44	and	name	HNÍ	39	21	21
assign	(resid	/0	anu	name	m)	(resid		anu	name	111)	5.7	2.1	2.1
assign	(resid	70	and	name	HN)	(resid	69	and	name	HA)	2.4	0.6	0.6
		70	1			1	20	L		LIDI	24	14	10
assign	(resid	70	and	name	HN)	(resid	69	and	name	ны)	3.4	1.0	1.0
accion	Tracid	70	and	name	HN	Tresid	69	and	name	HB2)	34	16	16
assign	(i cold	10	and	manie		(I COLG			THEFT				
assign	(resid	70	and	name	HN)	(resid	69	and	name	HD2)	3.4	1.6	1.6
	(manid	70	and			innid	71	and	nama	HNI V	20	21	21
assign	(resia	70	and	name	nn)	(resid	/1	anu	name	nn)	3.7	2.1	2.1
IGLN71													
		<i></i>			** • `	1	41			TTA \	24	10	10
assign	(resid	71	and	name	HA)	(resid	46	and	name	HA)	3.4	1.0	1.0
accion	Tracid	71	and	name	HA)	Tresid	46	and	name	HB*)	30	21	21
assign	(itesid	/1	and	manie		(i coita			1104110		2.2		
assign	(resid	71	and	name	HA)	(resid	72	and	name	HN)	2.9	1.1	1.1
	inner	71	and		un í	inanid	16	and	nama	HR*	30	21	21
assign	(resid	/1	and	name	nn)	(Testa	40	anu	name	<u>, m</u>	3.7	2.1	2.1
assion	(resid	71	and	name	HN)	(resid	70	and	name	HA)	2.4	0.6	0.6
					TRI		-				20	0.1	0.1
assign	(resid	71	and	name	HN)	(resia	70	and	name	ны)	3.9	4 .1	2.1
accion	Trovid	71	and	name	HNÌ	(resid	70	and	name	HB2)	39	21	2.1
assign	(resid	/1	and	name		(itesite	70	410	name		5.2		
assign	(resid	71	and	name	HN)	(resid	70	and	name	HD2)	2.9	1.1	1.1
	innaid	71	and		unií	ironid	77	and	nama	HNÍ	20	11	11
assign	(resid	/1	and	name	nn)	(Testa	12	anu	name	mv)	4.7	1.1	1.1
!GLY72													
	1	70			TTAX \	(71	المسط		LIA \	24	14	16
assign	(resia	12	and	name	па•)	(resia	/1	and	name	na)	5.4	1.0	1.0
accion	resid	72	and	name	HN)	(resid	46	and	name	HB*)	2.9	1.1	1.1
asign	(Teste		-	1100110				1			24	1.6	1.4
assign	(resid	72	and	name	HN)	(resid	46	and	name	HN)	3.4	1.6	1.0
accion	Tracid	72	and	name	HNÍ	Tresid	.70	and	name	HD2)	29	11	11
assign	(Testa	12	and	name	111 v)	(icalu	70	and	manie	1102)	2.7	1.1	1.1
assign	(resid	72	and	name	HN)	(resid	71	and	name	HG₹)	2.9	1.1	1.1
		70			TINT	2	72			un í	20	1 1	1 1
assign	(resia	14	and	name	nn)	(resid	13	anu	manne	m)	2.7	1.1	1.1
assion	(resid	72	and	name	HN)	(resid	74	and	name	HN)	3.9	2.1	2.1
assign	(I cold	12	and	Interito		(I COIG					0.0		
assign	(resid	72	and	name	HN)	(resid	75	and	name	HN)	3.9	2.1	2.1
IGI Y73	•												
.001/5					** • * •		~ .			TTAT	2.0	~ 1	0.1
assign	(resid	73	and	name	HA*)	(resid	74	and	name	HN)	3.9	2.1	2.1
anian	innerid	72	and	nama	HNÍ	Tracid	72	and	name	HA*)	29	11	11
assign	(Testa	75	and	name		(itesia	12	and	manie		2.7	1.1	
assign	(resid	73	and	name	HN)	(resid	74	and	name	HN)	3.4	1.6	1.6
	innerid	72	and	n 0 m 0	un í	irosid	75	and	name	HNÍ	30	21	21
assign	(resid	13	anu	name	III)	(Testu	15	anu	manie	, m	5.7	2.1	4.1
!ASN74													
	(74	- -			(manid	75	and		UNI \	20	11	11
assign	(resia	74	and	name	nuv)	(resid	15	anu	name	IIIN)	4.7	1.1	1.1
IASN75													
	(75	a		TTA \	(71	ال عم			20	21	2.1
assign	(resid	75	and	name	HA)	(resid	76	and	name	HN)	3.9	2.1	2.1
accion	ironid	75	and	name	HB*	Trecid	76	and	name	HN)	29	11	11
assign	(1 colu	75	and	name		(ICSIG	70	and	manie		2.7	1.1	1.1
assign	(resid	75	and	name	HN)	(resid	74	and	name	HA)	3.4	1.6	1.6
	in a start	75	d			inanid	74	and	nama	up*΄\	20	21	21
assign	(resia	15	and	name	nn)	(Testa	/4	anu	maine	IID [.])	5.9	2.1	2.1
assion	(resid	75	and	name	HN)	(resid	76	and	name	HA)	3.9	2.1	2.1
assign	(Testa			Incluse				1		TTOT	2.0	0.1	0.1
assign	(resid	75	and	name	HN)	(resid	76	and	name	HG ⁺)	3.9	2.1	2.1
anniam	innid	75	and	nome		Cracid	76	and	name	HNN	24	0.6	0.6
वञ्चाद्या	(16210	15	anu	name	111N)	(resia	70	anu	mane	····)	4.4	0.0	0.0
!GLU76													
	1	-	·*			(: 1	70	د		up \	20	1 1	1 1
assign	(resid	76	and	name	HA)	(resid	79	and	name	пв)	2.9	1.1	1.1
assion	(recid	76	and	name	HG*)	(resid	77	and	name	HN	3.4	1.6	16
للعادهه	(Lesia	10	and	name		(LOSIG	<i></i>						
assign	(resid	76	and	name	HN)	(resid	70	and	name	HZ)	2.9	1.1	1.1
	(mani 1	74	لمسم		HNI	(ranid	70	and	nomo	н л *́`\	20	21	21
assign	(resid	/0	and	name	nn)	(resia	12	and	name	п А .)	3.9	2.1	4.1
assion	(resid	76	and	name	HN)	(resid	73	and	name	HN)	3.4	1.6	1.6
											2.0	2.1	~ ~ ~
assign	(resid	/6	and	name	HN)	(resid	- 77	and	name	пвт)	3.9	2.1	2.1
assim	recid	76	and	name	HNÍ	(resid	77	and	name	HN	29	11	11
assign	(resid	10	and	manic	, , , , , , , , , , , , , , , , , , ,	(restu	,,	and	manie	, , , , , , , , , , , , , , , , , , ,	<u> </u>	1.1	***
!LEU77													
acai	(=======	77	المسم	n a	на \	(ranid	15	and	nama	HD* \	30	21	21
assign	(resia	11	and	name	IIA)	(resid	45	anu	Haille	. , <u>, , , , , , , , , , , , , , , , , ,</u>	5.7	4.1	4.1
assign	(resid	77	and	name	HA)	(resid	80	and	name	HB*)	2.9	1.1	1.1
		<u> </u>			UDIX	1	00			UD*	20	1 1	1.1
	(m						A17	DOK	name				
assign	(resid	77	and	name	mor)	(resta		4110	Inditto	, m	2.7	1.1	1.1
assign	(resid	77 77	and and	name	HD1*)	(resid	90	and	name	HNÍ	3.4	1.1	1.6

							-					0.1
assign	(resid	77	and	name	HD2*)	(resid	70	and	name	HDZ) 3.	9 2.1	2.1
assign	(resid	77	and	name	HD2*)	(resid	81	and	name	HN) 3.	9 2.1	2.1
assign	resid	77	and	name	HN)	(resid	70	and	name	HE2) 2.5	9 1.1	1.1
assign	resid	77	and	name	HNÍ	(resid	74	and	name	HA) 3.	4 1.6	1.6
assign	(read	77	and	name	HN	(resid	75	and	name	HN 1 3	9 2.1	2.1
assign	(Testu	~~	and	liame		(resid	76	and	name	HA) 3	4 16	16
assign	(resid	11	and	name	IIN)	(resid	70	and	name	$\frac{11}{10}$	- 1.0 0 1.1	1.0
assign	(resid	77	and	name	HN)	(resid	78	and	name	HN) 2.	9 1.1	1.1
assign	(resid	77	and	name	HN)	(resid	79	and	name	HN) 3.	4 1.6	1.6
IGI Y78	(,	•						
	(married	79	and	name	H4*)	(resid	79	and	name	HN) 2.	9 1.1	1.1
assign	(resid	70	anu	name		(resid	74	and			0 21	21
assign	(resid	78	and	name	HN)	(resid	/4	and	name	$\Pi A = J$	2.1	2.1
assign	(resid	78	and	name	HN)	(resid	75	and	name	HA) 3.	9 2.1	2.1
assign	resid	78	and	name	HN)	(resid	76	and	name	HN) 3.	4 1.6	1.6
assign	recid	78	and	name	HNÍ	Íresid	77	and	name	HB*) 2.	9 1.1	1.1
assign	(Teste	70	and			(read	77	and	name	HD2+1 3	4 16	16
assign	(resid	/8	and	name		(IESIG	22		name	HD1* 2	0 21	2 1
assign	(resid	78	and	name	HN)	(resid		and	name	HDI^{\prime} 3.	2.1	2.1
assign	(resid	78	and	name	HN)	(resid	77	and	name	HG) 3.	9 2.1	2.1
assion	resid	78	and	name	HN)	(resid	79	and	name	HB) 3.	4 1.6	1.6
acoign	(rosid	79	and	name	HNÍ	resid	79	and	name	HA) 3.	9 2.1	2.1
assign	(Tesid	70		Indine		(resid	70	and	name	HN 1 2	4 06	0.6
assign	(resid	/8	and	name	nn)	(resid	13	anu	name		4 0.0 0 1 1	1 1
assign	(resid	78	and	name	HN)	(resid	80	and	name	HN) 2.	9 1.1	1.1
!THR79	•											
assion	(resid	79	and	name	HA)	(resid	80	and	name	HN) 2.	9 1.1	1.1
assign	(nonid	70	and	name	на	Terid	82	and	name	HA*) 3	9 2.1	2.1
assign	(resid	13		Hame		(I costa	7	and			1 16	16
assign	(resid	79	and	name	пв)	(resid	/0	and	name	, j 3.	- 1.0	1.0
assign	(resid	79	and	name	HB)	(resid	80	and	name	нв ∗) 3.	9 2.1	2.1
assion	resid	79	and	name	HB	(resid	80	and	name	HN) 3.	4 1.6	1.6
assign	(nonid	70	and		HG2+)	resid	80	and	name	HN 1 2	9 1.1	1.1
assign	(resid	19	and	name	IIO2)	(Iesiu	70	and	manne	\mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H}	0 21	21
assign	(resid	79	and	name	HN)	(resid	76	and	name	$\Pi A = 3$	7 2.1	2.1
assign	(resid	79	and	name	HN)	(resid	76	and	name	HN) 3.	4 1.6	1.6
assion	resid	79	and	name	HN)	resid	77	and	name	HA) 3.	9 2.1	2.1
assign	(monid	70	and	name	HN	Tresid	80	and	name	HN) 2.	9 1.1	1.1
assign	(resid	73	anu	manne		(reald	01	and	name	HN 1 3	4 16	16
assign	(resid	79	and	name	HN)	(resia	61	and	name	IIIN) 5.	4 1.0	1.0
!ALA80												
assign	(resid	80	and	name	HA)	(resid	79	and	name	HG2*) 3.	4 1.6	1.6
assign	resid	80	and	name	HAÍ	Ìresid	81	and	name	HN) 2.	9 1.1	1.1
assign	(Tesid	00	and	Interne		(roaid	77	and	name	HG 1 3	4 16	16
assign	(resid	80	and	name	IID.)	(resid		and	Indino		A 16	16
assign	(resid	80	and	name	нв•)	(resid	14	and	name	$(\mathbf{n}\mathbf{D}2^*)$ 3.	4 1.0	1.0
assign	(resid	80	and	name	HB*)	(resid	81	and	name	HN) 2.	9 1.1	1.1
assign	Tresid	80	and	name	HNÍ	resid	77	and	name	HA) 3.	4 1.6	1.6
assign	(resid	00	and		HN	(recid	77	and	name	$HD2^{\pm}$) 3	4 1.6	1.6
assign	(resid	80	and	name		(resid	01	and	manno		0 11	11
assign	(resid	80	and	name	HN)	(resid	81	and	name	110 $2.$	9 1.1	2.1
assign	(resid	80	and	name	HN)	(resid	11	and	name	HB*) 3.	9 2.1	2.1
!VAL81												
accian	(resid	81	and	name	HB)	(resid	18	and	name	HG1*) 3.	.9 2.1	2.1
assign	(marid	01	and	name	HGIT	Tresid	18	and	name	HD1*) 2.	.9 1.1	1.1
assign	(Tesid	01	bitte	manne		(reald	10	and	name	HGI+) 3	4 16	16
assign	(resid	81	and	name		(Tesia	10		Hame		A 16	1.6
assign	(resid	81	and	name	HGI*)	(resid	11	and	name	$(\mathbf{D}^{(1)}) = \mathbf{S}$.4 1.0	1.0
assign	(resid	81	and	name	HG1*)	(resid	80	and	name	HB *) 3.	.4 1.6	1.6
assion	(resid	81	and	name	HG1*)	(resid	82	and	name	HN) 3.	.4 1.6	1.6
assign	(recid	81	and	name	HGI*	resid	83	and	name	HN) 3.	.9 2.1	2.1
assign	(Tesiu	01	and	TILLETTIC .		(read	00	and	name	HGIX) 3	4 16	16
assign	(resid	81	and	name	HOI!	(Testu	20	410	mame		1 16	1.6
assign	(resid	81	and	name	HG2+)	(resid	80	and	name		.4 1.0	1.0
assign	(resid	81	and	name	HG2*)	(resid	18	and	name	HDI^{+}) 3.	.9 2.1	2.1
assign	resid	81	and	name	HG2*)	(resid	82	and	name	HN) 2.	.9 1.1	1.1
assion	resid	81	and	name	HG2* í	(resid	83	and	name	HN) 3.	.4 1.6	1.6
assign	(monid	01	and	nama	HG2*)	resid	78	and	name	HA2) 3.	4 1.6	1.6
assign	(Tesiu	01	and	Hame		(rooid	19	and	name	HDI*) 3	9 21	21
assign	(resid	81	and	name		(resid	10	and	name		0 21	2.1
assign	(resid	81	and	name	HN)	(resid	-77	and	name	HA) 3.	.9 2.1	2.1
assign	(resid	81	and	name	HN)	(resid	77	and	name	HD1*) 3.	.9 2.1	2.1
assign	Tesid	81	and	name	HNÍ	Íresid	25	and	name	HD2*) 3.	.4 1.6	1.6
assign	(nonid	01	and	nama	HN	resid	78	and	name	HA2 1 3.	.4 1.6	1.6
assign	(resid	01	anu	manie		(resid	70	and		HN 1 3	9 21	21
assign	(resid	81	and	name	nn)	resid	/8	and	name		0 21	2.1
assign	(resid	81	and	name	HN)	(resid	7 9	and	name	нА) 3.	.7 2.1	2.1
assion	resid	81	and	name	HN)	(resid	79	and	name	HG2*) 3	.y 2.1	2.1
accion	(recid	81	and	name	HNÍ	resid	82	and	name	HA*) 3	.4 1.6	1.6
assign	(ICSIU	01	a		HN ((rocid	82	and	name	$HN \hat{1} 2$	4 0.6	0.6
assign	(resid	81	and	name		(I COLU	02	410	1.04110	IN 2	A 14	1.6
assign	(resid	81	and	name	HN)	(resid	83	and	name	ли) 3	1.0	1.0
!GLY82											_	
assion	(resid	82	and	name	HN)	(resid	79	and	name	HA) 2	.9 1.1	1.1
0001 <u>211</u>	(01	and	nama	HN	recid	79	and	name	HG2*) 3	.4 1.6	1.6
assign	(resid	04	and	Halile		(10010	70	and	nama	HBV	9 21	21
assign	(resid	82	and	name	IIN)	(resid	19	ano	name		0 2.1	2.1
assign	(resid	82	and	name	HN)	(resid	80	and	name	$n_{\rm IN}$) 3	.7 4.1	2.1
assion	resid	82	and	name	HN)	(resid	81	and	name	HA) 2	.9 1.1	1.1
accion	(recid	87	and	name	ΗNÍ	resid	81	and	name	HB) 3	.9 2.1	2.1
assign	(mani d	02	and	nama	HN	(resid	83	and	name	HN) 2	.9 1.1	1.1
assign	(resid	02	anu	Inatilie	J	(10310	35					
!LY 583												

assion	(resid	83	and	name	HA)	(resid	84	and	name	HD*)	30	21	21
		00	1	Interio		(TOSIG	04	and	manie		5.7	2.1	2.1
assign	(resid	83	and	name	HA)	(resid	84	and	name	HN) :	3.9	2.1	2.1
accion	ironid	63	and		UΛÍ	inanid	05	and			20	21	2.1
assign	(resid	03	and	name	па)	(resid	85	anu	name	nin).	3.9	2.1	2.1
assign	(resid	83	and	name	HB*)	(resid	85	and	name	HZ)	3.4	1.6	1.6
		00			TIDA		05		11001110		~ .	1.0	
assign	(resid	83	and	name	HB•)	(resid	85	and	name	HE2)	3.4	1.6	1.6
accion	(resid	83	and	name	HR* \	Tresid	85	and	name	HD2	34	16	16
assign	(ICSIG	05	and	name		(Testa	05	and	manie	11102)	5.4	1.0	1.0
assign	(resid	83	and	name	HN)	(resid	79	and	name	HA) 1	2.9	1.1	1.1
annian	inorid	02	and		บงเว่	inanid	02	and		11/* <u>(</u>	20	1 1	1 1
assign	(Testa	65	anu	manie	m)	(resid	04	anu	name	na j	4.7	1.1	1.1
assign	(resid	83	and	name	HN)	(resid	84	and	name	HA)	3.9	2.1	2.1
		00	1							m	2.4	1.6	1.2
assign	(resid	83	and	name	HN)	(resid	84	and	name	HN).	3.4	1.6	1.6
IT ET IQA	•				,	•				,			
111004								_					
assign	(resid	84	and	name	HA)	(resid	85	and	name	HN) 3	3.9	2.1	2.1
anniam	innaid	91	and		UNIŃ	(manid	02	and		UD* \	21	14	14
assign	(resid	04	and	name	nn j	(Testa	63	ano	name	пр.).	5.4	1.0	1.0
assign	(resid	84	and	name	HN)	(resid	83	and	name	HG*) :	3.9	2.1	2.1
	(04				2	05			TIPO	2 4	10	1.0
assign	(resia	84	ano	name	nn)	(resia	83	and	name	п <u>с</u> 2).	5.4	1.0	1.0
assion	(resid	84	and	name	HN)	(resid	85	and	name	HD2) '	34	16	16
·							05	1			~ ~		
assign	(resid	84	and	name	HN)	(resid	85	and	name	HN)	2.9	1.1	1.1
IPHE85													
		~ *					~ ^ /				~ .		
assign	(resid	85	and	name	HA)	(resid	84	and	name	HD*) ∶	3.4	1.6	1.6
accion	rooid	85	and	name	HDIN	Tracid	87	and	nama	HGIX	21	06	06
assign	(resid	05	and	name	mor)	(resid	0/	anu	name	101)	2.4	0.0	0.0
assign	(resid	85	and	name	HD1)	(resid	25	and	name	HD1*) (3.9	2.1	2.1
a ani an	(mani d	05			UDIS	land	07	and		UD V	2.0	2.1	2.1
assign	(resia	83	and	name	HDI)	(resia	8/	and	name	по).	3.9	2.1	4.1
accion	(recid	85	and	name	HD2)	(resid	83	and	name	HG*) '	39	21	21
ussign	(10510	0.5		manie	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(10010		1		TTOT (~ ~		
assign	(resid	85	and	name	HE2)	(resid	83	and	name	HG*) .	3.9	2.1	2.1
annian	inania	95	and	noma	HE2 S	inaria	83	and	nama	_ HD* \ ′	31	16	16
assign	(restu	00	anu	manie	1162)	(resid	65	auu	Haune	m , .	5.4	1.0	1.0
assign	(resid	85	and	name	HE2)	(resid	83	and	name	HE*) :	3.9	2.1	2.1
		0.5			TIPI	2	05			TIDIA	2.0	1 1	1 1
assign	(resia	85	and	name	HEI)	(resia	25	and	name		2.9	1.1	1.1
assion	resid	85	and	name	HE1)	(resid	87	and	name	HG1*)	2.9	1.1	1.1
	(inclusion	0.5		1100110			07	1			~ 4	1.7	1.2
assign	(resid	85	and	name	HEI)	(resid	87	and	name	нв).	3.4	1.6	1.6
annian	ironid	95	and	nama	H7 \	irocid	83	and	name	HG#)	30	21	21
assign	(resid	0,7	anu	mante	112.)	(resid	65	and	maine	110) .	5.7	4.1	4.1
assign	(resid	85	and	name	HZ)	(resid	83	and	name	HD*) 3	3.9	2.1	2.1
		0.5			117	(mani d	02			UF# 1	20	1 1	1 1
assign	(resia	83	ano	name	HL)	(resia	83	and	name	пс ⁻).	2.9	1.1	1.1
assion	(resid	85	and	name	HZ)	(resid	25	and	name	HD1*)	2.4	0.6	0.6
insign	(I Cold	0.5		1100110			07			TICIN	2.4	1.6	1.0
assign	(resid	85	and	name	HL)	(resia	8/	and	name	HGIT).	3.4	1.6	1.0
accian	irocid	85	and	name	HZÍ	Tesid	87	and	name	HR	34	16	16
assign	(Testu	85	and	manie	112)	licald	07	and	manne		5.4	1.0	1.0
assign	(resid	85	and	name	HN)	(resid	83	and	name	HB*) :	3.4	1.6	1.6
- mian	(maria	05			untí	innid	02	and		uc*í	21	16	16
assign	(resia	85	anu	name	nn)	(Testa	63	anu	name	no	5.4	1.0	1.0
assign	(resid	85	and	name	HN)	(resid	84	and	name	HB*) (2.9	1.1	1.1
		0.5			TINT		04				2.0	1 1	1 1
assign	(resid	82	and	name	HN)	(resia	84	and	name	по).	2.9	1.1	1.1
accion	Tresid	85	and	name	HN)	(resid	84	and	name	HD*) '	34	16	16
assign	(Testa	0.7	and	mane		(ICSIG	01	1	Incarite	The second secon	<u> </u>	1.0	1.0
assign	(resid	85	and	name	HN)	(resid	86	and	name	HN).	3.4	1.6	1.6
148686	•				,	•							
.74(000											• •		
assign	(resid	86	and	name	HA)	(resid	87	and	name	HN) 3	3.9	2.1	2.1
		07			TTE S	in and	05	and		u í ·	20	21	21
assign	(resia	80	ano	name	пс)	(resid	85	and	name	na j.	3.7	4.1	2.1
assion	(resid	86	and	name	HG*)	(resid	87	and	name	HN)	3.9	2.1	2.1
assign	(I Cold	00		manie		(10010	0,	1		TTA	0.0	1 1	
assign	(resid	86	and	name	HN)	(resid	85	and	name	HA)	2.9	1.1	1.1
accion	Tresid	86	and	name	HNÍ	Tresid	85	and	name	HB2)	29	11	11
assign	(Testa	00	and	mane		(resid	0.5		Indiio				
assign	(resid	86	and	name	HN)	(resid	85	and	name	HBI) 🗆	2.9	1.1	1.1
anniam	inneria	96	and	nomo	LINI \	ironid	85	and	name		20	11	11
assign	(resid	80	and	name	1110)	liesiu	85	and	name		2.7	1.1	1.1
assign	(resid	86	and	name	HN)	(resid	85	and	name	HEI) :	3.9	2.1	2.1
	imania	92	and			ironid	97	and	nama	HNÍ	20	11	11
assign	(Testa	80	anu	name	m)	(resid	0/	anu	name	III)	4.)	1.1	1.1
VAL 87													
	(manid	07	and		UC1*)	(manid	96	and		<u>ц</u> и) -	21	16	16
assign	(resid	0/	and	name	nor)	(resid	80	anu	name	IIA)	3.4	1.0	1.0
assign	(resid	87	and	name	HG1*)	(resid	85	and	name	HD1)	2.9	1.1	1.1
		07			TICITÓ		05	المسم		UEL	21	16	14
assign	(resia	8/	and	name	ngr)	(resid	82	and	name	nci).	5.4	1.0	1.0
assign	Tresid	87	and	name	HN)	(resid	86	and	name	HB*)	2.9	1.1	1.1
		07	1				04			TITA	24	1 (10
assign	(resid	87	and	name	HN)	(resid	80	ano	name	HD)	3.4	1.0	1.0
accian	Treeid	87	and	name	HN \	resid	88	and	name	HA*)	39	21	21
assign	(It-sid	07	and	name		(I cold	00	and	manie		2.2		
assign	(resid	87	and	name	HN)	(resid	88	and	name	HN)	2.9	1.1	1.1
ICI VOO	•					•							
:UL1 88													
assign	(resid	88	and	name	HA*)	(resid	89	and	name	HN)	2.9	1.1	1.1
·		00	. 1				07			TICIES	2.4	06	00
assign	(resid	88	and	name	HN)	(resia	8/	and	name	ngr)	2.4	0.0	U.D
assion	resid	88	and	name	HNÍ	(resid	87	and	name	HG2*)	2.9	1.1	1.1
assign	(resid	00	autu	name		(1 colu	07		indite.	1102)	2.2		<u> </u>
assign	(resid	88	and	name	HN)	(resid	87	and	name	HB)	3.9	2.1	2.1
000100	(mania	00	and	nomo		Toria	80	and	name	HNÍ	29	11	11
assign	(resid	ōō	anu	name	m J	(resid	07	فالله	name	in)	4.1	1.1	1.1
!VAI 89													
	(00	. 1		TT 4 \	(A E	د م			20	11	11
assign	(resid	89	and	name	na)	(resid	43	and	name	nn)	4.7	1.1	1.1
assion	(resid	89	and	name	HAN	(resid	44	and	name	HB	3.4	1.6	1.6
amaight	(resid	5/		manie						The second secon	~	<u></u>	
assign	(resid	89	and	name	HA)	(resid	90	and	name	HN)	2.4	0.6	0.6
20010	(rooid	90	and	name	HOIÍN	Tracid	27	and	name	HNÍ	30	21	21
assign	(resid	07	anu	name	101.)	(resid	41	anu	name	1111	5.9	4.1	2.1
assign	(resid	89	and	name	HG1*)	(resid	27	and	name	HA)	2.9	1.1	1.1
00010-	(00			UC1+	(manial	2¢		nomo	HA*1	30	21	21
assign	(resid	97	and	name	(יוטח	(resid	20	anu	name	na•)	3.7	2.1	2.1
assion	(resid	89	and	name	HG1*	(resid	26	and	name	HN)	2.9	1.1	1.1
		00	t		II COt		20			HCO+	24	1.4	1 1
assign	(resid	89	and	name	HG2*)	(resid	30	and	name	по2т)	э.4	1.0	1.0
assion	(resid	80	and	name	HG•2*√	(resid	44	and	name	HBÚ	2.9	11	11
assign	(10010	07	and	manne	1102	(10010			inaile		2.2		1.1
assign	(resid	89	and	name	HG2 *)	(resid	44	and	name	HA)	3.9	2.1	2.1
	(manid	80	and	nome	HC2*1	Tracid	00	and	name	HNÍ	20	11	11
2001000											·		

							~ ~			TTDAt) 20	~ 1	0.1
assign	(resid	89	and	name	HN)	(resid	25	and	name	$HD2^{-}$) 3.9	2.1	2.1
assign	(resid	89	and	name	HN)	(resid	87	and	name	HB) 3.4	1.6	1.6
assign	(resid	89	and	name	HN)	(resid	87	and	name	HG1*) 2.9	1.1	1.1
assign	resid	89	and	name	HN)	(resid	90	and	name	HN) 3.9	2.1	2.1
IVAL 90	(,	•						
. VALVO	(maria	90	and	name	HG1+)	(resid	18	and	name	HD1*) 3.4	1.6	1.6
assign	(Iesia	20	and	manie		(recid	01	and	name	HN) 29	11	11
assign	(resid	90	and	name		(resid	91	anu	name		1.1	1.1
assign	(resid	90	and	name	HGI*)	(resid	23	and	name	HD2) 3.4	1.0	1.0
assign	(resid	90	and	name	HG1*)	(resid	23	and	name	HB*) 3.4	1.6	1.6
assion	resid	90	and	name	HG1*)	resid	77	and	name	HD1*) 3.9	2.1	2.1
action	(recid	00	and	name	HGI*	Tesid	77	and	name	HD2*5 3.9	2.1	2.1
assign	(Tesia	20	and	manie		(manid	14	and	name	HD2*) 3.4	1.6	1.6
assign	(resia	90	and	name		(Tesiu	14	and	Itatile	$11D_2$) 3.4	1.0	1.0
assign	(resid	90	and	name	HGI*)	(resid	14	and	name	$HD1^{+}) 3.4$	1.0	1.0
assign	(resid	90	and	name	HG2*)	(resid	77	and	name	HD1*) 2.9	1.1	1.1
assign	resid	90	and	name	HG2*)	(resid	77	and	name	HG) 2.9	1.1	1.1
assign	resid	90	and	name	HG2*)	Íresid	77	and	name	HD2*) 3.4	1.6	1.6
assign	(numini	60	and	name	HG2*)	(recid	AA	and	name	HA) 34	16	16
assign	(resid	90	Dita	manie		(nonid	44	and		HR 34	1.6	1.6
assign	(resid	90	and	name	IIN)	(resid	44	and	Hame	11D = 3.4	1.0	1.0
assign	(resid	90	and	name	HN)	(resid	44	and	name	$HG2^{+}$) 3.4	1.6	1.6
assign	resid	90	and	name	HN)	(resid	89	and	name	HB) 3.4	1.6	1.6
ISER91	¢.					•						
.opic i	(resid	01	and	name	HA)	(resid	43	and	name	HB) 3.9	2.1	2.1
assign	(Tesiu	21		marine		(rooid	34	and	name	HD2*) 29	11	11
assign	(resid	91	and	name		(resid	34	anu	name	11D2 + 2.7	1.1	1.1
assign	(resid	91	and	name	HBI)	(resid	34	and	name	HD1+) 3.4	1.0	1.0
assign	(resid	91	and	name	HB1)	(resid	92	and	name	HA) 3.4	1.6	1.6
assion	resid	91	and	name	HN)	(resid	24	and	name	HA) 3.9	2.1	2.1
assign	(monid	01	and	name	HN	resid	34	and	name	HD*´) 3.4	1.6	1.6
assign	(resid	21	anu	Indiffe		(resid	00	and		HA) 24	0.6	0.6
assign	(resid	91	and	name	nn)	(resid	90	anu	manne	IIA) 2.4	0.0	0.0
ILE92!								_				
assign	(resid	92	and	name	HA)	(resid	23	and	name	HB*) 3.9	2.1	2.1
assign	resid	92	and	name	HD1*)	(resid	14	and	name	HD2*) 3.4	1.6	1.6
assign	(resid	02	and	name	HD1+)	(resid	14	and	name	HG*) 3.9	2.1	2.1
assign	(lesiu	22	and	manic		(read	10	and	name	HA) 34	16	16
assign	(resid	92	and	name		(Tesid	10		name	11A = 3.4	1.0	1.6
assign	(resid	92	and	name	HDI+)	(resid	18	and	name	$\frac{1}{10} \frac{1}{10} \frac$	1.0	1.0
assign	(resid	92	and	name	HD1*)	(resid	18	and	name	$HD1^{-}$) 3.9	2.1	2.1
assign	resid	92	and	name	HD1*)	(resid	18	and	name	HG1*) 2.9	1.1	1.1
assign	(resid	92	and	name	HD1*)	resid	23	and	name	HB*) 2.9	1.1	1.1
assign	(readid	62	and	name	HDI*	resid	93	and	name	HN 1 3.9	2.1	2.1
assign	(resid	72		Indille		(resid	100	and	name	HD1*) 34	16	16
assign	(resid	92	and	name	HG2+)	(resid	100	and	name	1101° 3.4°	2.1	2.1
assign	(resid	92	and	name	HG2*)	(resid	41	and	name	HN) 3.9	2.1	2.1
assign	resid	92	and	name	HG2*)	(resid	40	and	name	HB*) 3.4	1.6	1.6
assign	(resid	92	and	name	HG2*	(resid	93	and	name	HN) 2.9	1.1	1.1
assign	(rooid	02	and	name	HG2*)	resid	94	and	name	HN 5 3.4	1.6	1.6
assign	(iesiu	72	and	manie		(read	05	and	name	HA) 39	21	21
assign	(resid	92	and	name		(iesia	35		name		1.4	1 4
assign	(resid	92	and	name	HN)	(resid	42	and	name	HA) 3.4	1.0	1.0
assign	resid	92	and	name	HN)	(resid	91	and	name	HA) 2.4	0.6	0.6
assign	resid	92	and	name	HNÍ	resid	91	and	name	HB1) 3.9	2.1	2.1
assign	(readid	62	and	name	HN	resid	91	and	name	HB2) 3.4	1.6	1.6
assign	(resid	94	anu	liattie	, ma)	(Testa	<i></i>		100110	, , ,		
ILE093							~ 4			TTD# \ 20	2.1	2.1
assign	(resid	93	and	name	нв∗)	(resid	94	and	name	п <u>Б</u> ⁺) 3.9	2.1	2.1
assign	(resid	93	and	name	HB*)	(resid	94	and	name	HN) 2.9	1.1	1.1
assign	Íresid	93	and	name	HD1*)	(resid	22	and	name	HE*) 3.9	2.1	2.1
assign	(recid	03	and	name	HD1*)	Ìresid	24	and	name	HG2*) 3.4	1.6	1.6
assign	(nonid	02	and	nome	HD1+1	resid	23	and	name	HA) 3.4	1.6	1.6
assign	(resid	93	and	name		(recid	22	and	name	HN 1 39	21	2.1
assign	(resid	73	and	name		(10310	27	and	name	HA* \ 34	16	16
assign	(resid	93	and	name	HDI+)	(resid	37	and	name		1.0	1.0
assign	(resid	93	and	name	HD1*)	(resid	92	and	name	HA) 3.4	1.0	1.0
assign	(resid	93	and	name	HD1*)	(resid	94	and	name	HN) 3.4	1.6	1.6
assign	resid	93	and	name	HD2*)	(resid	94	and	name	HN) 3.4	1.6	1.6
accion	(recid	03	and	name	HD2*)	(resid	38	and	name	HB*) 3.9	2.1	2.1
assign	(resid	02	and	name	HG	(resid	92	and	name	HA) 3.9	2.1	2.1
assign	(resid	93	and	name		(I Cold	01	and	110110	HN) 34	16	16
assign	(resid	93	and	name	ng)	(Tesiu	24		marie	110± \ 20	2 1	2 1
assign	(resid	93	and	name	HN)	(resid	23	and	name	$\frac{10^{1}}{101}$	2.1	2.1
assign	(resid	93	and	name	HN)	(resid	24	and	name	HN) 3.9	2.1	2.1
assign	resid	93	and	name	HN)	(resid	92	and	name	HA) 2.4	0.6	0.6
accion	(recid	02	and	name	HNÍ	resid	92	and	name	HG1*) 3.9	2.1	2.1
assign	(nestu	02		namo	HN ((recid	94	and	name	HA) 39	2.1	2.1
assign	(resia	73	and	name			27	and a		HN 20	1 1	1 1
assign	(resid	93	and	name	HN)	(resid	94	and	name	111N) 2.9	1.1	1.1
!GLU94												
assion	(resid	94	and	name	HG*)	(resid	22	and	name	HD*) 3.4	1.6	1.6
assim	(recid	94	and	name	HG*	(resid	22	and	name	HE*) 3.9	2.1	2.1
assign	(manial	04	and	namo	HBI	(recid	95	and	name	HN 1 3.4	1.6	1.6
assign	(resid	24	and	Hallic		(manial	05	and	20000	HN 1 20	1 1	11
assign	(resid	94	and	name	нв2)	(resid	70	and	name	LIN J 2.9	1.1	1.1
assign	(resid	94	and	name	HB2)	(resid	96	and	name	IIIN) 3.4	1.0	1.0
assign	(resid	94	and	name	HN)	(resid	21	and	name	HA ∓) 3.9	2.1	2.1
assion	resid	94	and	name	HNÍ	(resid	22	and	name	HA) 3.9	2.1	2.1
assign	(ranid	04	and	nama	HN	(recid	23	and	name	HA 1 3.9	2.1	2.1
assign	(resid	24	anu	name	····)	(10010				,		

assion	(resid	94	and	name	HN)	(resid	93	and	name	HA)	39	21	21
assign	(reald	04	and	name		(resid	05	and	name		2.0	2.1	2.1
assign	(resid	94	anu	name		(resid	95	and	name		3.7	2.1	2.1
assign	(resid	94	and	name	HN)	(resid	95	and	name	HN)	3.4	1.6	1.6
ALA95													
assign	(resid	95	and	name	HA)	(resid	96	and	name	HA*)	3.9	2.1	2.1
assion	(resid	95	and	name	HAÍ	resid	96	and	name	HNÍ	2.9	1.1	11
assign	(resid	05	and	Judite		(resid	04	and	name	TTA Y	2 1	1 4	1 4
assign	(resid	95	and	name	nd.)	(Tesia	74	and	name	IA)	5.4	1.0	1.0
assign	(resid	95	and	name	HB *)	(resid	96	and	name	HA*)	3.9	2.1	2.1
assign	(resid	95	and	name	HB*)	(resid	96	and	name	HN)	3.4	1.6	1.6
assign	(resid	95	and	name	HB*)	resid	101	and	name	HB*)	3.9	2.1	2.1
accian	(rooid	05	and	name	11D*	(regid	101	and	name	HD2*)	20	1 1	1 1
assign	(resid	95	and	name	ID.)	(Tesia	101	and	name		4.7	1.1	1.1
assign	(resid	95	and	name	нв•)	(resid	101	and	name	HDI*)	3.4	1.6	1.6
assign	(resid	95	and	name	HN)	(resid	94	and	name	HA)	2.4	0.6	0.6
assign	resid	95	and	name	HN)	resid	94	and	name	HG [*])	3.4	1.6	1.6
assign	racid	05	and	nama	HN	(resid	96	and	name	HA* S	30	21	21
assign	(i cald	05	and	manie		(reald	20	and	mame	int)	2.0	1 1	1 1
assign	(resid	95	and	name	HN)	(resid	96	and	name	IIN)	2.9	1.1	1.1
assign	(resid	95	and	name	HN)	(resid	17	and	name	HGI*)	3.4	1.6	1.6
assign	(resid	95	and	name	HN)	(resid	17	and	name	HG2*)	3.4	1.6	1.6
assion	resid	95	and	name	HNÍ	resid	101	and	name	HG*)	3.9	2.1	2.1
LOT VOC	(16516			1101110	····)	(10510		CALLO	1141110	,	5.7		
:GL190					** • * `					** • `		~ ·	~ 1
assign	(resid	96	and	name	HA*)	(resid	94	and	name	HA)	3.9	2.1	2.1
assign	(resid	96	and	name	HA*)	(resid	97	and	name	HN)	3.4	1.6	1.6
assign	Ìresid	96	and	name	HNÍ	resid	21	and	name	HA#)	2.9	1.1	1.1
assign	(recid	96	and	name	HN	(resid	97	and	name	HNÍ	29	11	11
assign	(Testu	30	4110	name		(itesia	17		manie		2.0	0.1	2.1
assign	(resid	96	and	name	HN)	(resid	17	and	name	HGIT)	3.9	2.1	2.1
assign	(resid	96	and	name	HN)	(resid	17	and	name	HG2*)	3.9	2.1	2.1
!ASP97													
assion	(recid	97	and	name	HA)	(resid	16	and	name	HD1*)	39	21	21
assign	(Testu	07	and	manic		(itestu	10	and	Indinic		2.0	2.1	21
assign	(resid	97	and	name	HA)	(resia	10	and	name	\mathbf{HD}^{2*}	3.9	2.1	2.1
assign	(resid	97	and	name	HN)	(resid	16	and	name	HDI*)	3.9	2.1	2.1
assign	(resid	97	and	name	HN)	(resid	16	and	name	HD2*)	3.9	2.1	2.1
assign	(resid	97	and	name	HNÍ	(resid	20	and	name	HA)	39	21	21
assign	(resid	07		Indino		(nonid	00	and	mame		20	1 1	1 1
assign	(resia	97	and	name	HN)	(resid	98	ano	name	nn)	2.7	1.1	1.1
ISER98													
assign	(resid	98	and	name	HA)	(resid	16	and	name	HD1*)	2.9	1.1	1.1
assign	(resid	98	and	name	HA	(resid	16	and	name	HD2*)	3.4	1.6	1.6
accion	(resid	08	and	name	HB*	resid	16	and	name	HB2)	34	16	16
assign	(resid	20		manie		(icald	16	and	maine		21	1.0	· 1 2
assign	(resid	98	and	name	HN)	(resid	10	and	name	пы)	5.4	1.0	1.0
assign	(resid	98	and	name	HN)	(resid	16	and	name	HB2)	3.9	2.1	2.1
assign	(resid	98	and	name	HN)	(resid	16	and	name	HD2*)	3.4	1.6	1.6
assign	resid	98	and	name	HNÍ	(resid	16	and	name	HD1*5	3.4	1.6	1.6
assign	(Teste	00	and	manne		(reald	05	and		HA V	20	21	21
assign	(resid	98	and	name	IN)	(resid	95	and	name		3.7	2.1	2.1
assign	(resid	98	and	name	HN)	(resid	95	and	name	нв•)	3.4	1.6	1.6
assign	(resid	98	and	name	HN)	(resid	96	and	name	HA*)	2.9	1.1	1.1
assign	(resid	98	and	name	HNÍ	resid	97	and	name	HA)	2.9	1.1	1.1
anim	(rooid	09	and	nama	HNI	(recid	07	and	name	HB2)	34	16	16
assign	(resid	20		manic		(resid	07	1	Indine	TID1	24	1.0	1.0
assign	(resid	98	and	name	HN)	(resid	9/	and	name	пы)	5.4	1.0	1.0
assign	(resid	98	and	name	HN)	(resid	99	and	name	HA)	3.9	2.1	2.1
assign	(resid	98	and	name	HN)	(resid	99	and	name	HN)	3.4	1.6	1.6
IASP99	•					•							
accion	(resid	00	and	name	HA)	(resid	102	and	name	HB)	39	2.1	2.1
assign	(resid	<i>99</i>		manie		(resid	102	and	name		21	1.6	16
assign	(resid	99	and	name	na j	(resid	102	and	name	HG2 ⁺)	2.4	1.0	1.0
assign	(resid	99	and	name	ны)	(resid	102	and	name	$HG2^{+}$)	3.4	1.6	1.6
assign	(resid	99	and	name	HB2)	(resid	102	and	name	HG2*)	3.4	1.6	1.6
assign	resid	99	and	name	HNÍ	resid	98	and	name	HA)	2.9	1.1	1.1
accion	(resid	00	and	name	HNÍ	Tesid	98	and	name	HB*)	34	16	16
assign	(resid	00	and	manne		(resid	100	and	name	LIN)	20	1 1	1 1
assign	(resid	99	and	name	nn)	(Tesia	100	ano	name	IIIN)	4.9	1.1	1.1
!ILE100													
assign	(resid	100	and	name	HA)	(resid	101	and	name	HB*)	3.9	2.1	2.1
assion	(resid	100	and	name	HG2*)	resid	14	and	name	HA)	3.9	2.1	2.1
anian	(ranid	100	and	nama	HC2*)	(recid	13	and	name	HB*)	34	16	16
assign	(lesiu	100	and	name	IIO2)	(restu	15	410	name		2.4	1.0	1.0
assign	(resid	100	and	name	HN)	(resia	98	and	name	HA)	5.4	1.0	1.0
assign	(resid	100	and	name	HN)	(resid	99	and	name	HA)	3.4	1.6	1.6
assign	resid	100	and	name	HN)	(resid	99	and	name	HB*)	3.9	2.1	2.1
accion	(recid	100	and	name	HNÍ	recid	101	and	name	HN	34	16	16
assign	(resid	100	ann	1104110	· · · · ·	(10010	101		THEFT		5.4		1.0
TEOIOI	۱ ,				** * *	<i>,</i>	100			TICAL	2.0	<u>.</u> .	~ •
assign	(resid	101	and	name	HA)	(resid	102	and	name	HG2 *)	3.9	2.1	2.1
assign	(resid	101	and	name	HD1*)	(resid	102	and	name	HN)	3.9	2.1	2.1
assion	(resid	101	and	name	HD2*1	resid	102	and	name	HNÍ	3.4	1.6	1.6
assign	(10310	101		nome	цу,)	(rooid	104	and	10000		30	21	21
assign	(resid	101	and	name		(resid	104	and	Haile	<u>т</u> ,)	5.7	4.1	2.1
assign	(resid	101	and	name	HN)	(resid	100	and	name	HA)	3.4	1.6	1.6
assign	(resid	101	and	name	HN)	(resid	100	and	name	HB)	3.4	1.6	1.6
assion	resid	101	and	name	HΝŃ	(resid	102	and	name	HG2 [*])	2.9	1.1	1.1
accion	(rocid	101	and	nama	HN	(recid	102	and	name	HN	20	11	1 1
assign	(ICSIU	101		name		(resid	104		Hallie		2 4	1.1	1.1
assign	resid	101	and	name	nn)	(resid	104	and	name	nn)	5.4	0.1	1.0
!THR10	2												
assign	(resid	102	and	name	HG2*)	(resid	99	and	name	HA)	3.4	1.6	1.6
-						-							

												Арр	oendix C	Restraints
assign	(resid	102	and	name	HB)	(resid	103	and	name	HN)	3.9	2.1	2.1	
assign	(resid	102	and	name	HN)	(resid	99	and	name	HA)	3.9	2.1	2.1	
assign	resid	102	and	name	HN)	resid	99	and	name	HB*)	3.9	2.1	2.1	
assign	resid	102	and	name	HNÍ	resid	101	and	name	HA)	3.4	1.6	1.6	
assign	resid	102	and	name	HN)	resid	101	and	name	HB*)	3.4	1.6	1.6	
assign	resid	102	and	name	HN)	(resid	101	and	name	HG)	3.4	1.6	1.6	
assign	resid	102	and	name	HN)	resid	103	and	name	HN)	3.4	1.6	1.6	
!THR103	3`				,	•								
assign	(resid	103	and	name	HG2*)	(resid	99	and	name	HB*)	3.4	1.6	1.6	
assign	resid	103	and	name	HG2*)	(resid	100	and	name	HG2*)	3.4	1.6	1.6	
assign	resid	103	and	name	HN)	resid	99	and	name	HA)	3.9	2.1	2.1	
assign	resid	103	and	name	HN)	(resid	99	and	name	HB*)	3.9	2.1	2.1	
assign	resid	103	and	name	HN)	(resid	100	and	name	HA)	3.9	2.1	2.1	
assign	resid	103	and	name	HN)	(resid	100	and	name	HG2*)	3.9	2.1	2.1	
assign	resid	103	and	name	HN)	(resid	100	and	name	HG1*)	3.4	1.6	1.6	
assign	resid	103	and	name	HN)	(resid	100	and	name	HN)	3.9	2.1	2.1	
assign	resid	103	and	name	HN)	(resid	104	and	name	HN)	2.9	1.1	1.1	
!LEU104	L'													
assign	(resid	104	and	name	HB*)	(resid	105	and	name	HN)	3.9	2.1	2.1	
assign	resid	104	and	name	HD*)	(resid	41	and	name	HD1*)	2.4	0.6	0.6	
assign	resid	104	and	name	HD*)	(resid	41	and	name	HG)	2.9	1.1	1.1	
assign	resid	104	and	name	HD*)	(resid	105	and	name	HN)	3.4	1.6	1.6	
assign	resid	104	and	name	HN)	(resid	100	and	name	HA)	3.9	2.1	2.1	
assign	resid	104	and	name	HN)	(resid	100	and	name	HN)	3.9	2.1	2.1	
assign	resid	104	and	name	HN)	(resid	101	and	name	HA)	2.9	1.1	1.1	
assign	resid	104	and	name	HN)	(resid	103	and	name	HA)	2.9	1.1	1.1	
assign	resid	104	and	name	HN)	(resid	103	and	name	HB)	2.9	1.1	1.1	
assign	resid	104	and	name	HN)	(resid	103	and	name	HG2*)	2.9	1.1	1.1	
!ALA10:	5													
assign	(resid	105	and	name	HA)	(resid	104	and	name	HB*)	3.4	1.6	1.6	
assign	(resid	105	and	name	HA)	(resid	104	and	name	HD*)	3.9	2.1	2.1	
assign	resid	105	and	name	HA)	(resid	104	and	name	HG)	2.9	1.1	1.1	
assign	(resid	105	and	name	HB*)	(resid	104	and	name	HA)	3.9	2.1	2.1	
assign	(resid	105	and	name	HB*)	(resid	104	and	name	HG)	2.9	1.1	1.1	
assign	(resid	105	and	name	HN)	(resid	68	and	name	HE1)	3.9	2.1	2.1	
assign	resid	105	and	name	HN)	(resid	68	and	name	HD1)	3.9	2.1	2.1	
assign	(resid	105	and	name	HN)	(resid	101	and	name	HA)	3.4	1.6	1.6	
assign	(resid	105	and	name	HN)	(resid	104	and	name	HA)	2.9	1.1	1.1	
assign	(resid	105	and	name	HN)	(resid	104	and	name	HG)	2.9	1.1	1.1	
assign	(resid	105	and	name	HN)	(resid	104	and	name	HN)	2.9	1.1	1.1	

.

set echo = on end set message = on end

!hydrogen bonding restraints, L30P_hbond.tbl, 7/10/98 set echo = off end set message = off end !b-sheet hydrogen bonds retraints

assign	(resid	22	and	name	0)	(resid	93	and	name	HN)	1.95	0.25	0.25
assign	(resid	22	and	name	Ο)	(resid	93	and	name	N)	2.95	0.25	0.25
assign	resid	91	and	name	0	5	resid	24	and	name	HN´)	1.95	0.25	0.25
assign	resid	91	and	name	0	Ś.	resid	24	and	name	N)	2.95	0.25	0.25
assign	resid	24	and	name	Ó	ś	resid	91	and	name	HN)	1.95	0.25	0.25
assign	resid	24	and	name	Ō	ś	(resid	91	and	name	N)	2.95	0.25	0.25
assion	(resid	92	and	name	ŏ	<u>`</u>	(resid	41	and	name	HN	1.95	0.25	0.25
accian	(resid	92	and	name	ŏ	{	(resid	41	and	name	N	2.95	0.25	0.25
assign	(resid	A1	and	namo	ŏ	<	(resid	02	and	name	HN	1.05	0.25	0.25
assign	(resid	41	and	name	ŏ	{	(resid	92	and	name	N)	2.95	0.25	0.25
assign	(resid	41	and	name	ŏ	{	(resid	12	and	name		1.05	0.25	0.25
assign	(resid	90		name	×	{	(resid	43	and	name	N)	1.75	0.25	0.25
assign	(resid	90	and	name	Š.	?	(resid	43	and	name	N)	2.93	0.25	0.25
assign	(resid	43	and	name	v v	2	(resid	90	and	name	HN)	1.95	0.25	0.25
assign	(resid	43	and	name	õ)	(resid	90	and	name	N)	2.95	0.25	0.25
assign	(resid	88	and	name	Ō)	(resid	45	and	name	HN)	1.95	0.25	0.25
assign	(resid	88	and	name	0)	(resid	45	and	name	N)	2.95	0.25	0.25
assign	(resid	66	and	name	0)	(resid	42	and	name	HN)	1.95	0.25	0.25
assign	(resid	66	and	name	0)	(resid	42	and	name	N)	2.95	0.25	0.25
assign	(resid	42	and	name	0)	(resid	68	and	name	HN)	1.95	0.25	0.25
assign	(resid	42	and	name	0)	(resid	68	and	name	N)	2.95	0.25	0.25
assign	resid	68	and	name	0)	(resid	44	and	name	HN)	1.95	0.25	0.25
assign	(resid	68	and	name	0	ý.	resid	44	and	name	N)	2.95	0.25	0.25
assign	(resid	44	and	name	0	í.	resid	70	and	name	HN)	1.95	0.25	0.25
assion	resid	44	and	name	õ	Ś	resid	70	and	name	N)	2.95	0.25	0.25
	(••			•	,	(10010				•••)			
'a-Hellix	hydrogen	bonds rest	traints											
assign	(resid	10	and	name	0)	(resid	14	and	name	HN)	1 95	0.25	0.25
accion	resid	10	and	name	ŏ	ί.	(resid	14	and	name	N	2.95	0.25	0.25
assign	(recid	11	and	name	ŏ	{	(resid	15	and	name	HN	1 95	0.25	0.25
assign	(resid	11	and	name	ŏ	{	(resid	15	and	name	N)	2.05	0.25	0.25
assign	(resid	12	and	name	Ň	{	(resid	16	and	name		1.95	0.25	0.25
assign	(resid	12		name	X	2	(Iesiu	16		name	M)	1.55	0.25	0.25
assign	(resid	12	and	name	No.	2	(resid	10	and	name	N J	2.95	0.25	0.25
assign	(resid	13	and	name	0 0	2	(resid	17	and	name	HIN)	1.95	0.25	0.25
assign	(resid	13	and	name	0 0	2	(resid	17	and	name	N)	2.95	0.25	0.25
assign	(resid	14	and	name	0)	(resid	18	and	name	HN)	1.95	0.25	0.25
assign	(resid	14	and	name	0)	(resid	18	and	name	<u>N)</u>	2.95	0.25	0.25
assign	(resid	29	and	name	0)	(resid	33	and	name	HN)	1.95	0.25	0.25
assign	(resid	29	and	name	0)	(resid	33	and	name	N)	2.95	0.25	0.25
assign	(resid	30	and	name	0)	(resid	34	and	name	HN)	1.95	0.25	0.25
assign	(resid	30	and	name	0)	(resid	34	and	name	N)	2.95	0.25	0.25
assign	(resid	31	and	name	0)	(resid	35	and	name	HN)	1.95	0.25	0.25
assign	resid	31	and	name	0)	(resid	35	and	name	N)	2.95	0.25	0.25
assign	(resid	34	and	name	0)	resid	37	and	name	HN)	1.95	0.25	0.25
assign	resid	34	and	name	0	í.	resid	37	and	name	N)	2.95	0.25	0.25
assign	resid	51	and	name	0	Ś	resid	55	and	name	HN)	1.95	0.25	0.25
assign	resid	51	and	name	ο	Ś	resid	55	and	name	N)	2.95	0.25	0.25
assign	(resid	52	and	name	Ó	í í	resid	56	and	name	HN)	1.95	0.25	0.25
assign	(resid	52	and	name	Ō	í í	resid	56	and	name	N)	2.95	0.25	0.25
assion	resid	53	and	name	õ	ί	resid	57	and	name	HN)	1.95	0.25	0.25
assion	(resid	53	and	name	ŏ	ί.	(resid	57	and	name	N)	2.95	0.25	0.25
assign	(resid	54	and	name	ŏ	{	(resid	58	and	name	HN	1.95	0.25	0.25
assign	(recid	54	and	name	ŏ	{	(resid	58	and	name	N)	2.95	0.25	0.25
assign	(resid	55	and	name	ŏ	{	(resid	50	and	name	HN	1 95	0.25	0.25
assign	(Testu (resid	55	and	name	ŏ	{	(resid	50	and	name	N)	2.05	0.25	0.25
assign	(resid	55	and	name	×	{	(resid	59	and	name		1.05	0.25	0.25
assign	(resid	50	anu	name	2	{		60	and			2.25	0.25	0.25
assign	(resid	30	ano	name	v v	2	resid	00	anu	name		2.73	0.23	0.25
assign	(resid	57	and	name	U U)	(resid	01	ano	name	nin)	1.93	0.23	0.25
assign	(resid	57	and	name	U O)	(resid	01	and	name	N)	2.95	0.25	0.25
assign	(resid	58	and	name	0)	(resid	62	and	name	HN)	1.95	0.25	0.25
assign	(resid	58	and	name	0)	(resid	62	and	name	N)	2.95	0.25	0.25

set echo = on end set message = on end !RNA intra- and inter- residue restraints, L30N_noe.tbl,7/10/98 set echo = off end set message = off end !hyrogen bond restraints !G6-U28

assign	(resid	206	and	name	H1)	(resid	228	and	name	(02)	1 95	0.25	0.25
assion	(resid	206	and	name	NIÍ	recid	228	and	name	õ	2.05	0.25	0.25
anian	(resid	200	and	Taine		(I costd	220		Indille	02)	2.95	0.25	0.25
assign	(resid	200	and	name	06)	(resid	228	and	name	H3)	1.95	0.25	0.25
assign	(resid	206	and	name	06)	(resid	228	and	name	N3)	2.95	0.25	0.25
!G7-G24	4												
assign	(resid	207	and	name	H1)	(resid	224	and	name	N7)	1 95	0.25	0.25
assion	resid	207	and	name	NIŃ	resid	224	and	name	N7	2 05	0.25	0.25
ansign	(resid	207	and	manie	Han	(resid	224	and	name		2.75	0.25	0.25
assign	(resid	207	and	name	H22)	(resid	224	and	name	(06)	1.95	0.25	0.25
assign	(resid	207	and	name	N2)	(resid	224	and	name	06)	2.95	0.25	0.25
!tetraloo	p G14-A	17											
assign	(resid	214	and	name	H21)	(resid	217	and	name	N7)	1 95	0.25	0.25
assign	regid	214	and	name	N2 V	(recid	217	and		NT	2.05	0.25	0.25
assign	(read	214	and	mano	N2)	(resid	217	and	name		2.75	0.25	0.25
assign	(resid	214	and	name		(resid	217	and	name	HOI)	1.95	0.25	0.25
assign	(resid	214	and	name	N3)	(resid	217	and	name	N6)	2.95	0.25	0.25
!tetraloo	P												
assign	(resid	214	and	name	HO2')	(resid	216	and	name	N7)	1.95	0.25	0.25
assion	resid	214	and	name	02')	recid	216	and	name	NT S	2.05	0.25	0.25
assign	(resid	015	and	name	HOOL)	(resid	210	and	manne		2.95	0.25	0.25
assign	(resid	215	and	name	п02)	(resid	210	and	name	04)	1.95	0.25	0.25
assign	(resid	215	and	name	02')	(resid	216	and	name	04')	2.95	0.25	0.25
assign	(resid	214	and	name	H22)	(resid	217	and	name	O2P)	1.95	0.25	0.25
assign	resid	214	and	name	N2)	(resid	217	and	name	02PS	2.95	0.25	0.25
ILLIO-GO	71					(1			12-4110	021)	2.75	0.20	0.20
.010-01	(210			112 \	6	001			0()	1.05		
assign	(resid	210	and	name	H3)	(resid	221	and	name	O_6)	1.95	0.25	0.25
assign	(resid	210	and	name	N3)	(resid	221	and	name	06)	2.95	0.25	0.25
assign	(resid	210	and	name	02)	(resid	221	and	name	H1)	1.95	0.25	0.25
assign	(resid	210	and	name	$\dot{\alpha}$	(resid	221	and	name	NIÍ	2.95	0.25	0.25
161 022	(10010	210	uno	mane	02)	(10510	221	410	Inditto	NI)	2.95	0.25	0.25
.01-033	1	001			04 N	,				TT 45 1			
assign	(resid	201	and	name	06)	(resid	233	and	name	H42)	1.95	0.25	0.25
assign	(resid	201	and	name	06)	(resid	233	and	name	N4)	2.95	0.25	0.25
assign	(resid	201	and	name	H1)	resid	233	and	name	N3)	1.95	0.25	0.25
assion	resid	201	and	name	NIS	recid	233	and	name	N3 1	2.05	0.25	0.25
andian	(manid	201	and	1101110	1100	(resid	022	and	Indillo		1.05	0.25	0.25
assign	(resid	201	and	name	$\Pi 22$	(resid	233	and	name	02)	1.95	0.25	0.25
assign	(resid	201	and	name	N2)	(resid	233	and	name	02)	2.95	0.25	0.25
!G2-C32	2												
assign	(resid	202	and	name	O6)	(resid	232	and	name	H42)	1.95	0 25	0.25
assion	resid	202	and	name	06 1	Tresid	232	and	name	NA	2.95	0.25	0.25
assign	(real d	202		name		(resid	232		name	194)	2.35	0.25	0.25
assign	(resid	202	and	name	HI)	(resid	232	and	name	N3)	1.95	0.25	0.25
assign	(resid	202	and	name	N1)	(resid	232	and	name	N3)	2.95	0.25	0.25
assign	(resid	202	and	name	H22)	(resid	232	and	name	02)	1.95	0.25	0.25
assign	resid	202	and	name	N2)	resid	232	and	name	025	2.95	0.25	0.25
143-1131	C)	(. ,		0.20	0.20
	(:4	000				(001	1		~ ~ ~	1.00		
assign	(resid	203	and	name	H62)	(resid	231	and	name	04)	1.95	0.25	0.25
assign	(resid	203	and	name	N6)	(resid	231	and	name	04)	2.95	0.25	0.25
assign	(resid	203	and	name	N1)	(resid	231	and	name	H3)	1.95	0.25	0.25
assign	resid	203	and	name	NIÌ	(resid	231	and	name	N3Í	2.95	0.25	0.25
assign	resid	203	and	name	H2 \	(recid	231	and	22220		2.05	0.25	0.25
	(Testu	205	anu	name	112)	(Testa	231	anu	Itallie	02)	2.95	0.25	0.25
.C4-G30	·												
assign	(resid	204	and	name	H42)	(resid	230	and	name	06)	1.95	0.25	0.25
assign	(resid	204	and	name	N4)	(resid	230	and	name	06)	2.95	0.25	0.25
assign	(resid	204	and	name	N3)	(resid	230	and	name	H1	1.95	0.25	0.25
assign	resid	204	and	name	N3)	(resid	230	and	name	NIŚ	2.95	0.25	0.25
assion	resid	204	and	name	^m i	(recid	230	and	name	H22)	1 05	0.25	0.25
assign	(resid	204	and	marrie		(resid	230	and	mame	M_{2}	2.05	0.25	0.25
assign	(resid	204	and	name	02)	(resid	250	and	name	NZ)	2.95	0.25	0.25
:03-629										.		. .	
assign	(resid	205	and	name	H42)	(resid	229	and	name	06)	1.95	0.25	0.25
assign	(resid	205	and	name	N4)	(resid	229	and	name	06)	2.95	0.25	0.25
assign	resid	205	and	name	N3 1	resid	229	and	name	HIÍ	1 95	0.25	0.25
assion	(resid	205	and	name	N3	Terid	220	and	name	NI	2 05	0.25	0.25
assign	(resid	205	and	name		(resid	222		name		1.05	0.45	0.25
assign	(resid	205	and	name	02)	(resid	229	and	name	H22)	1.95	0.25	0.25
assign	(resid	205	and	name	02)	(resid	229	and	name	N2)	2.95	0.25	0.25
!G9-C22													
assign	(resid	209	and	name	06)	(resid	222	and	name	H42)	1.95	0.25	0.25
assign	resid	209	and	name	06 1	Tesid	222	and	name	N4	2 95	0.25	0.25
acai	(maried	200			Ξĩ ((marial	222			Na	1.05	0.25	0.25
assign	(Lesia	207	and	name	<u> </u>	(I colu	222	and .	name		1.90	0.23	0.23
assign	(resid	209	and	name	NI)	(resid	222	and	name	N3)	2.95	0.25	0.25
assign	(resid	209	and	name	H22)	(resid	222	and	name	O2)	1.95	0.25	0.25
assign	resid	209	and	name	N2 Ú	resid	222	and	name	02 S	2.95	0.25	0.25
IGI1_C2	0	/			/	()			
.011-02	(man: 1	211	د مه		α	(mar! 1	220	د مه		TT 40 \	1.04	0.05	0.05
assign	resid	211	and	name	00)	(resid	220	and	name	H42)	1.95	0.25	0.25
assign	(resid	211	and	name	U6)	(resid	220	and	name	N4)	2.95	0.25	0.25
assign	(resid	211	and	name	H1)	(resid	220	and	name	N3)	1.95	0.25	0.25
assign	(resid	211	and	name	N1)	(resid	220	and	name	N3 \	2.95	0.25	0.25
3-	,				/	N				/			

assign assign !U12-A1	(resid (resid 9	211 211	and and	name name	H22) N2)	(resid (resid	220 220	and and	name name	O2) O2)	1.95 2.95	0.25 0.25	0.25 0.25
assign	(resid	212	and	name	H3)	(resid	219	and	name	N1)	1.95	0.25	0.25
assign	(resid	212	and	name	N3)	(resid	219	and	name	N1)	2.95	0.25	0.25
assign	(resid	212	and	name	04)	(resid	219	and	name	H62)	1.95	0.25	0.25
assign	(resid	212	and	name	04)	(resid	219	and	name	N6)	2.95	0.25	0.25
assign !C13-G1	(resid 8	212	and	name	02)	(resid	219	and	name	H2)	2.95	0.25	0.25
assign	(resid	213	and	name	H42)	(resid	218	and	name	06)	1.95	0.25	0.25
assign	(resid	213	and	name	N4)	(resid	218	and	name	06)	2.95	0.25	0.25
assign	(resid	213	and	name	NO)	(resid	218	and	name		1.95	0.25	0.25
assign	(resid	213	and	name	(α)	(resid	218	and	name	H22)	1.95	0.25	0.25
assign	(resid	213	and	name	$\vec{0}$	(resid	218	and	name	N2)	2.95	0.25	0.25
!imino ar	d aminos	to others			,	(0.20	0.20
!G1													
assign	(resid	201	and	name	H1)	(resid	202	and	name	Hl)	2.9	1.1	1.1
assign	(resid	201	and	name	Hl)	(resid	233	and	name	H41)	2.9	1.1	1.1
assign	(resid	201	and	name	H1)	(resid	233	and	name	H42)	2.4	0.6	0.6
assign	(resid	201	and	name	H1)	(resid	232	and	name	H5)	3.4	1.6	1.6
assign	(resid	201	and	name	HI)	(resid	232	and	name	H42)	3.4	1.6	1.6
assign	(resid	201	ano	name	H21)	(resid	202	and	name	HI')	2.9	1.1	1.1
assion	(resid	202	and	name	H1)	(recid	231	and	name	H3 \	31	16	16
assign	(resid	202	and	name	HI)	(resid	232	and	name	H_{41}	2.9	1.0	1.0
assign	(resid	202	and	name	HI S	resid	232	and	name	H42)	2.4	0.6	0.6
assign	(resid	202	and	name	HI j	(resid	232	and	name	H5)	3.4	1.6	1.6
assign	resid	202	and	name	HI Ĵ	resid	203	and	name	H2)	3.4	1.6	1.6
assign	(resid	202	and	name	H21)	(resid	203	and	name	H1')	2.9	1.1	1.1
assign	(resid	202	and	name	H22)	(resid	233	and	name	H1')	2.9	1.1	1.1
!G7								_					
assign	(resid	207	and	name	HI)	(resid	207	and	name	HI')	3.9	2.1	2.1
assign	(resid	207	and	name		(resid	208	and	name	HI')	3.9	2.1	2.1
assign	(resid	207	and	name		(resid	208	and	name		3.4	1.0	1.0
assign	(resid	207	and	name		(resid	208	and	name	H2)	2.2	2.1	2.1
assign	(resid	207	and	name	H_{21}	(resid	207	and	name		2.9	1.1	1.1
!G9	(10010	201	ullo	1002110		(10510	207			,	2./	•••	
assign	(resid	209	and	name	H1)	(resid	210	and	name	H3)	2.9	1.1	1.1
assign	(resid	209	and	name	H1)	resid	221	and	name	Hlý	2.9	1.1	1.1
assign	(resid	209	and	name	H1)	(resid	222	and	name	H41)	2.9	1.1	1.1
assign	(resid	209	and	name	H1)	(resid	222	and	name	H42)	2.4	0.6	0.6
assign	(resid	209	and	name	HI)	(resid	222	and	name	H5)	3.4	1.6	1.6
assign	(resid	209	and	name	HI)	(resid	223	and	name	H2)	2.9	1.1	1.1
assign	(resid	209	and	name	H21)	(resid	209	and	name	(12°)	3.4	1.0	1.0
assign	(resid	209	and	name	H_{21}	(resid	210	and	name		29	1.0	1.0
assign	(resid	209	and	name	H21)	(resid	227	and	name		2.9	1.1	1.1
assign	(resid	209	and	name	H22)	(resid	222	and	name	H2')	2.9	1.1	1.1
!U10	•					•				,			
assign	(resid	210	and	name	H3)	(resid	211	and	name	H1)	3.4	1.6	1.6
assign	(resid	210	and	name	H3)	(resid	211	and	name	H8)	3.4	1.6	1.6
assign	(resid	210	and	name	H3)	(resid	211	and	name	HI')	3.9	2.1	2.1
assign	(resid	210	and	name		(resid	221	and	name	H22)	2.4	11	11
assign	(resid	210	and	name	H3	(resid	222	and	name	HILL	3.9	2.1	2.1
!G11	()	(10020				/	0.12		
assign	(resid	211	and	name	H1)	(resid	211	and	name	H2')	3.9	2.1	2.1
assign	(resid	211	and	name	H1)	(resid	212	and	name	H3)	2.9	1.1	1.1
assign	(resid	211	and	name	H1)	(resid	212	and	name	H1')	3.9	2.1	2.1
assign	(resid	211	and	name	HI)	(resid	219	and	name	H2)	3.4	1.6	1.6
assign	(resid	211	and	name	HI)	(resid	220	and	name	H4I)	2.9	1.1	1.1
assign	(resid	211	and	name		(resid	220	and	name	1142)	2.4	0.6	0.0
assign	(resid	211	and	name		(resid	220	and	name		3.9	2.1	2.1
assign	(resid	211	and	name		(resid	221	and	name	H8)	3.4	1.6	1.6
assign	(resid	211	and	name	HI S	(resid	221	and	name	H2')	3.9	2.1	2.1
assign	(resid	211	and	name	H21)	(resid	221	and	name	HI'	3.4	1.6	1.6
assign	resid	211	and	name	H21)	(resid	212	and	name	ні ў	3.4	1.6	1.6
!U12					,					,			
assign	(resid	212	and	name	H3)	(resid	212	and	name	Hl')	3.4	1.6	1.6
assign	(resid	212	and	name	H3)	(resid	213	and	name	H5)	3.9	2.1	2.1
assign	(resid	212	and	name	H3)	(resid	213	and	name	H42)	2.9	1.1	1.1
assign	(resid	212	and	name	пэ) цз\	(resid	213	and	name	H4I)	3.4 3.1	1.6 1.6	1.0
assign	(resid	212	and	name	H3)	(resid	210	and	name	H2 \	3.4 7 A	0.6	0.6
	(1 0010				, was	(10010	<i></i>	414	man	, wer	4.7	0.0	0.0

assign assign assign assign assign assign !imino !G1 assign assign assign assign assign assign !G2 assign assign assign assign assign assign assign !G7 assign assign assign assign assign assign !G9 assign !U10 assign assign assign assign assign assign !G11 assign !U12

Appendix C Restraints

¢

												App	endix C	Restraints
assign	(resid	212	and	name	H3)	(resid	220	and	name	H42)	2.9	1.1	1.1	
assign !G14	(resid	212	and	name	H3)	(resid	220	and	name	H41)	3.4	1.6	1.6	
assign	(resid	214	and	name	H1)	(resid	217	and	name	H8)	3.4	1.6	1.6	
assign !G18	(resia	214	and	name	ні)	(resid	216	and	name	H8)	3.9	2.1	2.1	
assign	(resid	218	and	name	H1)	(resid	213	and	name	H41)	2.9	1.1	1.1	
assign	(resid	218	and	name		(resid	213	and	name	H42)	2.4	0.6	0.6	
assign	(resid	218	and	name		(resid	213	and	name	H_2	3.4 3.4	1.0	1.0	
assign	(resid	218	and	name	H21)	(resid	218	and	name	H2')	3.4	1.6	1.6	
assign	(resid	218	and	name	H21)	(resid	219	and	name	HI')	2.9	1.1	1.1	
assign !G21	(resid	218	and	name	H21)	(resid	214	and	name	H1')	2.9	1.1	1.1	
assign	(resid	221	and	name	H1)	(resid	211	and	name	H8)	2.9	1.1	1.1	
assign	(resid	221	and	name	H1)	(resid	221	and	name	H2*´)	2.4	0.6	0.6	
assign	(resid	221	and	name	H21)	(resid	211	and	name	H1')	2.4	0.6	0.6	
assign !G24	(resid	221	and	name	H21)	(resid	222	and	name	H1')	2.9	1.1	1.1	
assign	(resid	224	and	name	H1)	(resid	223	and	name	H2)	3.4	1.6	1.6	
assign	(resid	224	and	name	H1)	(resid	208	and	name	H2)	2.9	1.1	1.1	
assign !G29	(resid	224	and	name	H21)	(resid	223	and	name	H2')	2.9	1.1	1.1	
assign	(resid	229	and	name	Hl)	(resid	205	and	name	H41)	2.9	1.1	1.1	
assign	(resid	229	and	name	H1)	(resid	205	and	name	H42)	2.4	0.6	0.6	
assign	(resid	229	and	name	HI)	(resid	205	and	name	H5)	3.4	1.6	1.6	
assign	(resid	229	and	name		(resid	229	and	name	H2')	3.9	2.1	2.1	
assign	(resid	229	and	name		(resid	200	and	name	H2)	3.4	1.0	1.6	
assign	(resid	229	and	name	H_{21}	(resid	230	and	name		2.9	1.1	1.1	
assign	(resid	229	and	name	HI	(resid	230	and	name	HI)	2.9	1.1	1.1	
!G30	(220			<i>,</i>	(:4	020				2.0			
assign	(resid	230	and	name		(resid	230	and	name	H_{41}	3.9 7 9	2.1	2.1	
assign	(resid	230	and	name	HI	(resid	204	and	name	H42)	2.4	0.6	0.6	
assign	(resid	230	and	name	HI S	(resid	205	and	name	H41)	3.4	1.6	1.6	
assign	resid	230	and	name	HI Ś	resid	205	and	name	H42)	3.4	1.6	1.6	
assign	(resid	230	and	name	H1)	(resid	204	and	name	H5)	3.4	1.6	1.6	
assign	(resid	230	and	name	H1)	(resid	203	and	name	H2)	3.4	1.6	1.6	
assign	(resid	230	and	name	HI)	(resid	204	and	name	H2')	3.4	1.6	1.6	
assign	(resid	230	and	name	H_{21}	(resid	205	and	name	HI')	2.9	1.1	1.1	
assign	(resid	230	and	name	H21)	(resid	231	and	name		2.9	1.1	1.1	
assign	(resid	230	and	name	H22)	(resid	204	and	name	H2)	3.4	1.0	1.6	
assign	(resid	230	and	name	HI	(resid	.231	and	name	H_{3}	2.9	1.0	1.1	
!U31					,					/				
assign	(resid	231	and	name	H3)	(resid	231	and	name	HI')	3.4	1.6	1.6	
assign	(resid	231	and	name	H3)	(resid	231	and	name	$H2^{\circ})$	3.4	1.6	1.6	
assign	(resid	231	and	name	H3)	(resid	203	and	name	H5)	2.4	21	0.0	
assign	(resid	231	and	name	H3 1	(resid	204	and	name	H42)	2.9	11	11	
assign	(resid	231	and	name	H3 j	(resid	204	and	name	H41)	3.9	2.1	2.1	
assign	(resid	231	and	name	ΗЗ)́	(resid	232	and	name	H42)	2.9	1.1	1.1	
assign	(resid	231	and	name	H3)	(resid	232	and	name	H41)	2.9	1.1	1.1	
2C4 assign	(resid	204	and	name	H41)	(resid	204	and	name	H5)	2.4	0.6	0.6	
!C5 assign	(resid	205	and	name	H41)	(resid	205	and	name	H5)	2.4	0.6	0.6	
PC13 assign	(resid	213	and	name	H41)	(resid	213	and	name	H5)	2.4	0.6	0.6	
!C20	(resid	220	and	name	H41)	(resid	220	and	name	H5)	24	0.6	0.6	
IC22	(Iesia	220	anu	name	1141) TIAN \	(16310	220		Indile	115)	2.4	0.0	0.0	
assign !C32	(resid	222	and	name	H4I)	(resid	222	and	name	нэ)	2.4	0.6	0.6	
assign !C33	(resid	232	and	name	H41)	(resid	232	and	name	H5)	2.4	0.6	0.6	
assign	(resid	233	and	name	H41)	(resid	233	and	name	H5)	2.4	0.6	0.6	
!first set i !second s	nclude int et include	inter-nucleo	tide restrai leotide rest	nts traints										
!G1	(: +	201			TT11 \	(201				~ ~		0.0	
assign	(resid	201	and	name		(resid	201	and	name	H2')	2.4	U.6 1 ∉	U.6	
assign	(resid	201	and	name		(resid	201	and	name	HA')	5.4 20	1.0	1.0	
assign	(resid	201	and	name	HI'	(resid	201	and	name	H5'*)	3.4	1.6	1.6	
assign	(resid	201	and	name	ні ў	(resid	201	and	name	H8)	3.4	1.6	1.6	

1

assign assign assign assign assign assign assign assign	(resid (resid (resid (resid (resid (resid (resid (resid	201 201 201 201 201 201 201 201	and and and and and and and and	name name name name name name name	H2') H2') H2') H2') H3') H3') H4') H4')	(resid (resid (resid (resid (resid (resid (resid (resid	201 201 201 201 201 201 201 201	and and and and and and and and	name name name name name name	H3') H4') H5'*) H8) H4') H8) H5'*)	2.9 3.4 3.4 2.9 2.4 3.4 3.9 2.9 2.9	1.1 1.6 1.6 1.1 0.6 1.6 2.1 1.1	1.1 1.6 1.6 1.1 0.6 1.6 2.1 1.1
assign assign assign assign assign assign	(resid (resid (resid (resid (resid (resid	201 201 201 201 201 201 201	and and and and and and	name name name name name name	H1') H1') H2') H2') H3') H8)	(resid (resid (resid (resid (resid (resid	201 202 202 202 202 202 202 202	and and and and and and	name name name name name name	H1') H8) H5'*) H8) H8) H8)	3.9 2.9 3.4 2.4 3.4 3.4	2.1 1.1 1.6 0.6 1.6 1.6	2.1 1.1 1.6 0.6 1.6 1.6
IG2 assign assign assign assign assign assign assign assign assign	(resid (resid (resid (resid (resid (resid (resid (resid (resid	202 202 202 202 202 202 202 202 202 202	and and and and and and and and and	name name name name name name name name	H1') H1') H1') H1') H1') H2') H2') H2') H3') H3')	(resid (resid (resid (resid (resid (resid (resid (resid (resid	202 202 202 202 202 202 202 202 202 202	and and and and and and and and and and	name name name name name name name name	H2') H3') H4') H5'*) H8) H3') H4') H8) H8) H8) H8) H8)	2.4 2.9 2.9 3.4 2.9 2.9 2.9 3.4 2.9 3.4	0.6 1.1 1.6 1.1 1.1 1.1 1.6 1.1 1.6	0.6 1.1 1.1 1.6 1.1 1.1 1.1 1.6 1.1 1.6 1.1
assign assign assign assign assign assign assign assign !A3	(resid (resid (resid (resid (resid (resid (resid (resid	202 202 202 202 202 202 202 202 202 202	and and and and and and and and	name name name name name name name	H3') H1') H2') H3') H4') H5'*) H8)	(resid (resid (resid (resid (resid (resid (resid (resid	202 203 203 203 203 203 201 203	and and and and and and and and	name name name name name name name	H1') H8) H8) H8) H8) H8) H2') H8)	3.9 3.4 2.4 3.9 3.9 3.9 3.4 3.9	2.1 1.6 0.6 2.1 2.1 1.6 2.1	1.1 2.1 1.6 0.6 2.1 2.1 1.6 2.1
assign assign assign assign assign assign assign assign assign assign	(resid (resid (resid (resid (resid (resid (resid (resid (resid	203 203 203 203 203 203 203 203 203 203	and and and and and and and and and	name name name name name name name name	HI') HI') HI') HI') HI') H2') H2') H2') H3') H4')	(resid (resid (resid (resid (resid (resid (resid (resid (resid	203 203 203 203 203 203 203 203 203 203	and and and and and and and and and	name name name name name name name name	H2') H3') H4') H5'*) H8) H3') H4') H8) H8) H8) H8)	2.4 2.9 3.4 2.9 2.9 2.9 2.9 3.4 2.9 3.4	0.6 1.1 1.6 1.1 1.1 1.1 1.6 1.1 1.6 1.1 1.6	0.6 1.1 1.6 1.1 1.1 1.1 1.1 1.6 1.1 1.6
assign assign assign assign assign assign assign assign assign assign	(resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	203 203 203 203 203 203 203 203 203 203	and and and and and and and and and and	name name name name name name name name	H5'*) H1') H1') H2') H2') H2') H3') H3') H2) H2) H2	(resid (resid (resid (resid (resid (resid (resid (resid (resid (resid	203 204 204 204 204 204 204 204 204 204 204	and and and and and and and and and and	name name name name name name name name	H8) H1') H5) H6) H1') H5) H6) H5) H6) H1') H1')	2.9 3.9 3.9 3.9 2.9 2.4 3.9 3.4 2.9 3.4 2.9	1.1 2.1 2.1 2.1 1.1 0.6 2.1 1.6 1.1 1.1	1.1 2.1 2.1 2.1 2.1 1.1 0.6 2.1 1.6 1.1 1.1
ICA assign assign assign assign assign assign assign assign assign assign assign assign assign	(resid (r	204 204 204 204 204 204 204 204 204 204	and and and and and and and and and and	name name name name name name name name	H1') H1') H1') H1') H1') H1') H2') H2') H2') H3') H3') H3') H3') H3') H3')	(resid (r	204 204 204 204 204 204 204 204 204 204	and and and and and and and and and and	name name name name name name name name	H2') H3') H4') H5'*) H6') H4') H6') H4') H5'*) H6') H6') H6')	2.4 2.9 2.9 3.4 2.9 3.4 2.9 2.9 3.4 2.9 2.4 3.4 2.4 2.4 3.4 2.9	0.6 1.1 1.1 1.6 1.1 1.1 1.6 1.1 0.6 1.6 0.6 0.6 1.6 1.1	0.6 1.1 1.1 1.6 1.1 1.1 1.6 1.1 0.6 1.6 0.6 0.6 1.6 1.1
assign	(resid	204	and	name	H1')	(resid	205	and	name	H1')	39	21	21
--	--------------------	------------	------------	----------	------------------	-------------------	-----	------	------------	---------------	------------	------------	------------
assign	Íresid	204	and	name	HUS	Tesid	205	and	name	IIS (2.0	21	2.1
aceign	(rooid	204	and	manne	- Hi ((resid	205	a10	Hame	115)	3.7	2.1	2.1
assign	(resid	204	and	name	пі)	(resid	205	and	name	но)	3.4	1.6	1.6
assign	(resid	204	and	name	H2')	(resid	205	and	name	H1')	3.4	1.6	1.6
assign	(resid	204	and	name	H2')	(resid	205	and	name	H5 \	34	16	16
accion	Tresid	204	and	nama	Hari	(ranid	205	and		TTC \	5.4	1.0	1.0
assign	(resid	204		name	112)	(Testa	205	and	name	по)	2.4	0.6	0.6
assign	(resid	204	and	name	H3')	(resid	205	and	name	H6)	3.4	1.6	1.6
assign	(resid	204	and	name	H6)	(resid	205	and	name	H5 \	34	16	16
accion	recid	204	and	nome	HE	(rooid	205	and		TIC \	2.4	1.0	1.0
assign	(Testa	204	and	name	по	(Testa	205	and	name	H6)	3.4	1.6	1.6
!C5													
assign	(resid	205	and	name	H1')	(resid	205	and	name	H2')	24	06	06
accion	regid	205	and	20000	TTI ((manid	205	and	The second	TION	2.4	0.0	0.0
assign	(Testu	205	anu	name		(Tesia	205	and	name	нз)	2.9	1.1	1.1
assign	(resid	205	and	name	HI')	(resid	205	and	name	H4')	2.9	1.1	1.1
assign	(resid	205	and	name	HI')	resid	205	and	name	H5**)	34	16	16
accion	racid	205	and	20000	TTU S	(read	205	and			0.4	1.0	1.0
assign	(Testu	205	and	name	<u></u>)	(resid	203	and	name	Ho)	2.9	1.1	1.1
assign	(resid	205	and	name	H2')	(resid	205	and	name	H3')	2.9	1.1	1.1
assign	(resid	205	and	name	H2')	resid	205	and	name	H6 \	34	16	16
accion	regid	205	and		1121 S	(marid	205	and		TTAL	3.4	1.0	1.0
assign	(Tesia	205	and	name	ns)	(resia	205	and	name	H4')	2.9	1.1	1.1
assign	(resid	205	and	name	H3')	(resid	205	and	name	H5'*)	2.9	1.1	1.1
assign	(resid	205	and	name	H3')	resid	205	and	name	H6 \	24	0.6	0.6
anion	(manid	205	and		TTAL	(205	- 1	Interio		2.4	0.0	0.0
assign	(resid	205	and	name	<u>14</u>)	(resid	205	and	name	но)	3.9	2.1	2.1
assign	(resid	205	and	name	H5'*)	(resid	205	and	name	H6)	2.9	1.1	1.1
assign	resid	205	and	name	H6)	Íresid	205	and	name	H5 \	24	06	0.6
	(10010			1100110	,	(10010	200	4110	manie	115)	2.7	0.0	0.0
assign	(resid	205	and	name	H1')	(resid	206	and	name	H1')	3.9	2.1	2.1
assign	resid	205	and	name	- H1' \	Tesid	206	and	name	HSÍ	20	11	1 1
anion	(nonid	205	and a	114110		(10010	200	and	name		2.7	1.1	1.1
assign	(resid	205	and	name	HZ)	(resia	206	and	name	н8)	2.9	1.1	1.1
assign	(resid	205	and	name	H3')	(resid	206	and	name	H8)	3.4	1.6	1.6
assign	Íresid	205	and	name	H6 \	resid	206	and	name	ня́	34	16	1.6
104	(10010	200		1100110	, ,	(10010	200	ano	manie	110)	5.4	1.0	1.0
:00			_										
assign	(resid	206	and	name	H1')	(resid	206	and	name	H2')	2.4	0.6	0.6
assign	(resid	206	and	name	HĽŃ	Íresid	206	hne	name	H 3' โ	34	16	16
	(200	and a			(I COIC	200	4114	Indillo	11.5)	5.4	1.0	1.0
assign	(resid	200	and	name	п)	(resid	206	and	name	H4')	2.9	1.1	1.1
assign	(resid	206	and	name	H1')	(resid	206	and	name	H5'*)	3.9	2.1	2.1
assion	(resid	206	and	name	ษย่ง	(resid	206	and	name	HQÍ	31	16	1.6
and	(resid	200		mame		(resid	200	410	manie	110)	5.4	1.0	1.0
assign	(resid	206	and	name	HZ)	(resid	206	and	name	H3')	2.4	0.6	0.6
assign	(resid	206	and	name	H2')	(resid	206	and	name	H4')	3.4	1.6	1.6
assign	resid	206	and	name	H2' \	Tresid	206	and	name	115:*)	3.0	2.1	2.1
	(nonid	200	- and	11441110	TTO	(Testa	200		manie	115)	5.9	2.1	2.1
assign	(resid	206	and	name	H ₂)	(resia	206	and	name	H8)	3.9	2.1	2.1
assign	(resid	206	and	name	H3')	(resid	206	and	name	H4')	2.9	1.1	1.1
assion	(resid	206	and	name	H3' \	Tesid	206	and	name	11514)	31	16	16
	(resid	200		manno	TTOL	(I cold	200	4110	liame	115 1	5.4	1.0	1.0
assign	(resid	206	and	name	H3)	(resid	206	and	name	H8)	2.9	1.1	1.1
assign	(resid	206	and	name	H4')	(resid	206	and	name	H5'*)	2.9	1.1	1.1
assion	(resid	206	and	name	H4' \	resid	206	and	name	HRÍ	30	2.1	21
assign	(I Cold	200	410	manie		(resid	200	anu	name	110)	3.5	2.1	2.1
assign	(resid	206	and	name	H5'*)	(resid	206	and	name	H8)	3.4	1.6	1.6
										-			
accion	(recid	206	and	name	H!! \	(resid	207	and		LIQ \	20	21	2.1
assign	(I Cold	200	410	manic		(Testu	207	and	name	<u>по</u>)	3.9	2.1	2.1
assign	(resid	206	and	name	H2')	(resid	207	and	name	H2')	3.9	2.1	2.1
assign	(resid	206	and	name	H2')	(resid	207	and	name	H3')	3.4	1.6	1.6
assion	resid	206	and	name	H21	resid	207	and	nama	TTO S	2.4	16	1.6
assign	(10310	200	and	manie	112 /	(i cold	207	anu	manne	110)	3.4	1.0	1.0
assign	(resid	206	and	name	H3)	(resid	207	and	name	HI')	3.9	2.1	2.1
assign	(resid	206	and	name	H3')	(resid	207	and	name	H2')	3.4	1.6	1.6
acción	Tresid	206	and	name	Hari	Tracid	207	and		121	2.4	16	1.6
assign	(real d	200	and and	name		(resid	207	anu	name	ID)	3.4	1.0	1.0
assign	(resia	206	and	name	нз)	(resid	207	and	name	H8)	3.4	1.6	1.6
assign	(resid	206	and	name	H8)	(resid	207	and	name	H8)	3.9	2.1	2.1
1G7	•				,	•							
	(marine)	207	د مم		LT11 \	(207	I		TTOUS	<u> </u>	0.1	0.1
assign	(resid	407	and	name	<u>пг)</u>	(resia	207	and	name	H2')	2.4	0.6	0.6
assign	(resid	207	and	name	H1')	(resid	207	and	name	H3')	3.4	1.6	1.6
assign	resid	207	and	name	HIL	(resid	207	and	name	HAYS	20	11	1 1
anim	(nearly	207	and	11001110	111	(resid	207	and	manie	114)	2.2	1.1	1.1
assign	(Testa	207	anu	name	<u></u>)	(resid	207	and	name	нэ-)	3.9	2.1	2.1
assign	(resid	207	and	name	Hl')	(resid	207	and	name	H8)	2.9	1.1	1.1
assign	(resid	207	and	name	H2' \	(resid	207	and	name	Н3' Ύ	3.4	1.6	1.6
2001	(manial	207	and		11-2-X	(mani J	207			TTAI.	2.0	0.1	2.0
assign	(1 csia	207	anu	name	<u>114</u>)	(10510	20/	and	name	п4)	5.9	4.1	2.1
assign	(resid	207	and	name	H2')	(resid	207	and	name	H5'*)	3.4	1.6	1.6
assign	(resid	207	and	name	H2' \	(resid	207	and	name	H8 Ń	2.4	0.6	0.6
20010	(recid	207	and	nomo	121	(ranid	207	and		THAN S	24	04	0.0
assign	(resid	207	anu	name	<u>пэ</u>)	(Lesia	207	anu	name	<u>п</u> 4)	4.4	0.0	0.0
assign	(resid	207	and	name	H3')	(resid	207	and	name	H5'*)	2.9	1.1	1.1
assign	resid	207	and	name	H3' \	(resid	207	and	name	H8 \	29	1.1	11
	(nonid	207		Indito		(10010	207		main		2.7	1.1	1.1
assign	(resia	207	and	name	<u>п4</u>)	(resia	207	and	name	нэ.₊)	2.9	1.1	1.1
assign	(resid	207	and	name	H4')	(resid	207	and	name	H8)	3.9	2.1	2.1
	`				,	•				/			_/-
	(207	1		***	(000				• •		
assign	(resid	207	and	name	нг)	(resid	208	and	name	на)	2.9	1.1	1.1
assign	(resid	207	and	name	H4')	(resid	208	and	name	H8)	3.4	1.6	1.6
assion					TTO	innia	208			TTO			0.1
and the second	Trecid	207	and	name	- HX 1	1 1 1 1 1 1 1 1 1		300	name	HX V	-4 0	21	
1 4 9	(resid	207	and	name	H8)	(resia	200	and	name	на)	3.9	2.1	2.1
!A8	(resid	207	and	name	H8)	(resid	208	and	name	H8)	3.9	2.1	2.1
!A8 assign	(resid) (resid)	207 208	and	name	H8)	(resid	208	and	name	H8)	3.9 3.4	2.1 1.6	2.1 1.6

accion	(recid	208	and		U 1! \	(manid	200	and		LI2! \	24	17	10
asign	(i colu	208	210	name	111 /	(Testu	208	anu	name	ns)	5.4	1.0	1.0
assign	(resid	208	and	name	HI')	(resid	208	and	name	H8)	3.9	2.1	2.1
assign	(resid	208	and	name	H2')	(resid	208	and	name	H3')	29	11	11
accion	Tracid	208	and	nomo	HOV	Gooid	208	and		HAN	2.0	1 1	1 1
assign	liesia	200	and	name	<u>n</u> 2)	(resid	208	and	name	П 4)	2.9	1.1	1.1
assign	(resid	208	and	name	H2')	(resid	208	and	name	H8)	3.9	2.1	2.1
assign	resid	208	and	name	H3' \	Óresid	208	and	name	H4'S	29	11	11
anim	(real d	200	and		1121	(resid	200	and a	Indillo		2.7	1.1	1.1
assign	(resid	208	and	name	H3 ⁽)	(resid	208	and	name	H8)	3.4	1.6	1.6
assign	(resid	208	and	name	HI)	(resid	209	and	name	HI')	29	11	11
	(mania)	200			1111	(needed	200	and a	1100110	110 \	2.4	1.1	1.1
assign	(resid	208	and	name	nr)	(resia	209	and	name	на)	3.4	1.6	1.6
assign	(resid	208	and	name	H1')	(resid	227	and	name	H2)	3.4	1.6	1.6
assign	Tracid	208	and	name	H2 \	(recid	222	and	name	112	20	1 1	1 1
4351511	(icsid	200	414	manie	112)	(icaid	223	anu	name	112)	2.9	1.1	1.1
assign	(resid	208	and	name	H2)	(resid	209	and	name	HL)	2.9	1.1	1.1
assign	(resid	208	and	name	H2)	(resid	223	and	name	H1')	2.9	1.1	1.1
accion	(recid	208	and	nome	U 2 \	(regid	227	and		U II	2.4	16	1 4
assign	(resid	208	and	name	<u>n</u> 2)	(resid	221	and	name	n i)	5.4	1.0	1.0
assign	(resid	208	and	name	H8)	(resid	209	and	name	H8)	3.9	2.1	2.1
!G9						•							
accion	(recid	200	and	nama	ע יי ע	(recid	200	and		LI21	20	1 1	1 1
assign	(Tesid	209	anu	name		(Tesia	209	anu	name	<u>112</u>)	4.3	1.1	1.1
assign	(resid	209	and	name	HI')	(resid	209	and	name	H3')	3.4	1.6	1.6
assign	(resid	209	and	name	H1')	(resid	209	and	name	H4')	29	11	11
accier	ranid	200	and		TTI S	(manid	200	and		TISTAN	2.0	2.1	21
assign	(Testu	209	anu	name	<u> </u>	(Testa	209	and	name	пэ-)	3.9	2.1	2.1
assign	(resid	209	and	name	H1')	(resid	209 ·	and	name	H8)	2.9	1.1	1.1
assign	resid	209	and	name	H2' \	Óresid	209	and	name	HRÍ	29	11	11
		200		1104110	TTOL	(I COIG	200		Incarro		2.0	1.1	
assign	(resia	209	and	name	H3)	(resid	209	and	name	H8)	2.9	1.1	1.1
assign	(resid	209	and	name	H4')	(resid	209	and	name	H2')	3.9	2.1	2.1
accian	Tresid	200	and	name	HAY	recid	200	and	name	4315	30	21	21
assign	(resid	209	and	name	114 /	(Tesiu	209	anu	name	115)	3.7	2.1	2.1
assign	(resid	209	and	name	H4')	(resid	209	and	name	H5' *)	3.4	1.6	1.6
assign	(resid	209	and	name	H4')	(resid	209	and	name	H8)	3.9	2.1	2.1
0000	(manid	200	and		TISIN	(manid	200	and		110	2.0	1 1	1 1
assign	(resid	209	and	name	пэ•)	(resid	209	and	name	по)	2.9	1.1	1.1
assign	(resid	209	and	name	H1')	(resid	210	and	name	H1')	3.4	1.6	1.6
	(manid	200	and		TTI ((magid	210	and		IIS S	2.4	16	1 4
assign	(resid	209	and	name	<u> </u>	(resid	210	anu	name	п)	5.4	1.0	1.0
assign	(resid	209	and	name	HI')	(resid	210	and	name	H6)	3.4	1.6	1.6
assign	(resid	209	and	name	H1')	(resid	227	and	name	HI')	3.4	1.6	1.6
	(manid	200	and		THE S	(manid	227	and		H2 \	2.4	16	1 4
assign	(resid	209	and	name		(Testa	227	and	name	<u>n</u> ₂)	5.4	1.0	1.0
assign	(resid	209	and	name	HI')	(resid	223	and	name	H2)	3.4	1.6	1.6
assion	resid	209	and	name	H2' \	resid	210	and	name	HS S	29	11	11
anim	(and d	200	and		TTO: \	(and d	210	and		IIC	24	0.6	n c
assign	(resid	209	and	name	nz)	(resid	210	and	name	по	2.4	0.6	0.0
assign	(resid	209	and	name	H3')	(resid	210	and	name	H5)	3.4	1.6	1.6
accion	Tresid	209	and	name	ม ว่า โ	resid	210	and	name	H6 \	29	11	11
assign	(I cold	207		manie	115)	(I Cold	210		manie	110)	2.7	1.1	1.1
assign	(resia	209	and	name	на)	(resia	210	and	name	H6)	3.4	1.6	1.6
assign	(resid	209	and	name	H8)	(resid	210	and	name	H5)	3.4	1.6	1.6
assign	Tesid	209	and	name	HRÍ	resid	223	and	name	H2Ś	34	16	16
assign	(resid	209	attu	manne	110)	(restu	443	anu	manne	112)	5.4	1.0	1.0
1010													
assign	(resid	210	and	name	H1')	(resid	·210	and	name	H2')	2.4	0.6	0.6
accion	resid	210	and	name	HUS	Tracid	210	and	name	H 3' โ	29	11	1.1
assign	(resid	210	410	name		(Tuble	210		name		2.7	1.1	1.1
assign	(resid	210	and	name	Hr)	(resid	210	and	name	Нэ'≁)	3.4	1.6	1.6
assign	(resid	210	and	name	H1')	(resid	210	and	name	H5)	3.4	1.6	1.6
assign	(recid	210	and	nama	THIL	racid	210	and	name	HG	29	1 1	1.1
assign	(resid	210	410	manie		(Testa	210	1	name		2.9	1.1	1.1
assign	(resid	210	and	name	H2)	(resia	210	and	name	нэ)	3.4	1.6	1.6
assign	(resid	210	and	name	H2')	(resid	210	and	name	H6)	3.4	1.6	1.6
assign	racid	210	and	name	ม่าว่	irecid	210	and	name	нсí	20	11	1.1
assign	(resid	210	anu	name		(i csiu	210	and	name		2.)	1.1	1.1
assign	(resid	210	and	name	нэ.+)	(resid	210	and	name	H6)	2.9	1.1	1.1
assign	(resid	210	and	name	H5)	(resid	210	and	name	H2')	3.4	1.6	1.6
assion	resid	210	and	name	ны	resid	210	and	name	HSÍ	24	0.6	0.6
	()	(,			5.5
	,				****	,				****	• •	<u> </u>	~
assign	(resid	210	and	name	нг)	(resid	211	and	name	нг)	3.9	2.1	2.1
assign	(resid	210	and	name	H1')	(resid	211	and	name	H8)	3.4	1.6	1.6
255100	(ronid	210	and	nama	42	(rooid	211	and	n ama	ни	3 1	1 4	1 4
assign	(iesiu	210	and	name	112)	(Testa	211	anu	name	111)	3.4	1.0	1.0
assign	(resid	210	and	name	H2')	(resid	211	and	name	H8)	3.4	1.6	1.6
assign	(resid	210	and	name	H6)	(resid	211	and	name	H8)	3.4	1.6	1.6
IGII	\				/	·				/			
:GII			-										
assign	(resid	211	and	name	Hl')	(resid	211	and	name	H2')	2.4	0.6	0.6
assign	(resid	211	and	name	HI)	(resid	211	and	name	H3')	2.9	1.1	1.1
20010	(mani d	211	and		H1	(rooid	211	and		LIAN	24	Λ¢	ñ ć
assign	(resta	411	anu	name		uesia	211	טונה	name	114)	2.4	0.0	0.0
assign	(resid	211	and	name	HI')	(resid	211	and	name	H5'*)	3.4	1.6	1.6
assign	(resid	211	and	name	ל 'HH	(resid	211	and	name	H8 \	2.9	1.1	11
2001	(mani d	211	and		Un ((manial	211	and		цо (2 4	1 6	1 4
assign	(resid	211	and	name	<u>n</u> 2)	(resid	211	and	name	<u>по</u>)	5.4	1.0	1.0
assign	(resid	211	and	name	H3')	(resid	211	and	name	H8)	2.4	0.6	0.6
assion	resid	211	and	name	H4' \	resid	211	and	name	HRÍ	34	16	16
	(211	and			(211				2.7	1 1	1.0
assign	(Tesia	211	and	name	<u>п</u> 4)	(resid	211	and	name	<u>пэт)</u>	2.9	1.1	1.1
assign	(resid	211	and	name	H5'*)	(resid	211	and	name	H8)	2.9	1.1	1.1
-					•								
assion	(recid	211	and	name	H1' \	(recid	212	and	nama	HUY	3 /	16	14
assign	(10310	211	and	manic	#	(I COIL	212		manne		3.4	1.0	1.0
assign	(resid	211	and	name	ні,)	(resid	212	and	name	нэ)	3.4	1.6	1.6
assign	(resid	211	and	name	H1')	(resid	212	and	name	H6)	3.4	1.6	1.6
accion	recid	211	and	name	H21	Tracid	212	and	name	н. (3 1	16	1 6
assign	(resta	411	auu	name	114)	(restu	<u> 4 1 4</u>	JULA	name	112)	5.4	1.0	0.1

assign	(resid	211	and	name	H2')	(resid	212	and	name	H6)	24	06	06
ancian	(ranid	211	and		Hor S	(resid	212	and a	indillo		2.4	0.0	0.0
assign	(resid	211		name	115)	(resid	212	and	name	п.)	3.4	1.6	1.6
assign	(resid	211	and	name	H3')	(resid	212	and	name	H6)	2.9	1.1	1.1
assign	(resid	211	and	name	H8)	(resid	212	and	name	H6 \	39	2.1	21
assion	(resid	211	and	name	HRÍ	regid	212	and	name	HSS	2.0	2.1	21
ITII2	(10010	211	una	1104110	, in the second	(10510	414	and	name	m ³)	3.9	2.1	2.1
1012													
assign	(resid	212	and	name	Hl')	(resid	212	and	name	H2')	2.4	0.6	0.6
assign	(resid	212	and	name	H1' \	resid	212	and	name	H31	34	16	16
assign	racid	212	and	n ama	Tir ((read	212	and	mame		2.4	1.0	1.0
assign	(Tesid	212	anu	name		(Testu	212	and	name	П4)	2.9	1.1	1.1
assign	(resid	212	and	name	HI')	(resid	212	and	name	H5'*)	3.4	1.6	1.6
assign	(resid	212	and	name	H1')	(resid	212	and	name	H6 \	29	11	11
accion	Tresid	212	and	name	H2')	Torid	212	and	nama	1121	24	0.4	04
assign	(I Cold	212	and 1	name		(I cold	212		name	113)	2.4	0.0	0.0
assign	(resid	212	and	name	H2)	(resid	212	and	name	HS)	3.9	2.1	2.1
assign	(resid	212	and	name	H2')	(resid	212	and	name	H6)	3.4	1.6	1.6
assion	resid	212	and	name	Haij	Tesid	212	and	name	HG	24	0.6	0.6
assign	(resid	010		Interne		(I cold	212	410	name		2.4	0.0	0.0
assign	(resid	212	and	name	H4')	(resid	212	and	name	H6)	3.4	1.6	1.6
assign	(resid	212	and	name	H5'*)	(resid	212	and	name	H6)	2.9	1.1	1.1
assion	(resid	212	and	name	H6 \	resid	212	and	name	मडर्	24	0.6	0.6
assign	(10510	212	416	indine	110)	(10310	212	ana	manne	115)	2.4	0.0	0.0
			_										
assign	(resid	212	and	name	Hl')	(resid	213	and	name	H1')	3.9	2.1	2.1
assion	resid	212	and	name	HĽŃ	resid	213	and	name	HSS	31	16	16
assign	(nonid	212	and	manne	Hi ((resid	213	and	name		3.4	1.0	1.0
assign	(resid	212	and	name	<u>п</u> і)	(resia	215	and	name	H6)	3.4	1.6	1.6
assign	(resid	212	and	name	H2')	(resid	213	and	name	H1')	3.4	1.6	1.6
assign	(resid	212	and	name	H2' \	resid	213	and	name	H6 \	24	0.6	0.6
anniam	(marid	212	and		Hor S	(marid	212	and	Title in the		2.4	1.0	1.0
assign	(Tesiu	212	and	name	<u>п</u> ₂)	(resid	215	and	name	пз)	3.4	1.0	1.6
assign	(resid	212	and	name	H3')	(resid	213	and	name	H6)	2.9	1.1	1.1
assign	(resid	212	and	name	H6)	(resid	213	and	name	H6 \	34	16	16
accion	Tereid	212	and	name	HG	racid	213	and		LLS \	2.0	2.1	2.1
assign	(i cald	212		name	110 /	(Testa	215	and	name	115)	3.9	2.1	2.1
assign	(resid	212	and	name	HS)	(resid	213	and	name	H6)	3.9	2.1	2.1
!C13													
assion	(resid	213	and	name	H1')	(resid	213	and	name	H2')	24	06	06
anion	(manid	212	and		HII!	(read	212	and	111110		2.7	1 1	1 1
assign	(resia	215	and	name	<u>н</u> ()	(resid	215	and	name	H3 ⁽)	2.9	1.1	1.1
assign	(resid	213	and	name	H1')	(resid	213	and	name	H4')	2.9	1.1	1.1
assign	resid	213	and	name	ל יוא	(resid	213	and	name	H5**)	30	21	21
assign	(ICSIG	012		Interne		(I Cold	010	4110	mane		5.2	2.1	2.1
assign	(resid	215	and	name	nr)	(resid	215	and	name	но)	2.9	1.1	1.1
assign	(resid	213	and	name	H2')	(resid	213	and	name	H6)	3.4	1.6	1.6
assign	resid	213	and	name	H3' \	Ìresid	213	and	name	H6 \	29	11	11
ancian	ranid	212	and		Har	(manid	212	and		TIS (#)	20	1 1	1 1
assign	(resid	215	and	name	ns)	(resid	215	and	name	нэт)	2.9	1.1	1.1
assign	(resid	213	and	name	H4')	(resid	213	and	name	H6)	3.4	1.6	1.6
assign	(resid	213	and	name	H4')	resid	213	and	name	H5**)	29	11	11
anim	(manid	212	and		1151#	(maried	212	and		TIC)	20	1 1	1.1
assign	(Tesia	215	and	name	пу-)	(resid	215	and	name	по)	2.9	1.1	1.1
assign	(resid	213	and	name	H5)	(resid	213	and	name	H6)	2.4	0.6	0.6
accion	(resid	213	and	name	H1 ! \	(resid	214	and	nama	U !!)	20	21	2.1
assign	(I cold	215		name	#	(resid	214	4110	name	111)	3.3	2.1	2.1
assign	(resia	213	and	name	HI)	(resia	214	and	name	нх)	2.9	1.1	1.1
assign	(resid	213	and	name	Hl')	(resid	219	and	name	H2)	3.4	1.6	1.6
assion	(resid	213	and	name	H2' \	Tresid	214	and	name	няí	24	0.6	0.6
anim	(nonid	012	and			(reold	214		Inditio	110)	2.4		1.1
assign	(resid	215	and	name	пэ)	(resid	214	and	name	на)	2.9	1.1	1.1
!G14													
assign	(resid	214	and	name	H1')	(resid	214	and	name	H2')	2.4	0.6	0.6
accion	rocid	214	and	name	HUS	recid	214	and	nama	Har.	20	1 1	1 1
ussign	(icalu	217	and	Halle	#1.2	restu	217	4110	Hame	11.5)	2.7	1.1	1.1
assign	(resid	214	and	name	HI')	(resid	214	and	name	H4')	2.4	0.6	0.6
assign	(resid	214	and	name	H1')	(resid	214	and	name	H8)	2.9	1.1	1.1
assion	Iresid	214	and	name	H2' \	recid	214	and	name	H 3' โ	20	11	11
accian	(ranid	214	and		1121	(read of	214		name	100	2.7	1.1	1.1
assign	(Testu	217	anu	name	112)	resid	214	anu	name	<u>no)</u>	3.4	1.0	1.0
assign	(resid	214	and	name	H3')	(resid	214	and	name	H4')	2.4	0.6	0.6
assign	(resid	214	and	name	H3')	(resid	214	and	name	H5**)	2.9	1.1	1.1
accion	Trenid	214	and	name	Hari	Terrid	214	and	name	HR	20	1 1	1 1
assign	(resid	214	1	matric		(i cald	214	4110	name	110)	2.9	1.1	1.1
assign	(resid	214	and	name	H4')	(resid	214	and	name	на)	3.4	1.6	1.6
assign	(resid	214	and	name	H5'*)	(resid	214	and	name	H8)	3.4	1.6	1.6
-	•					•				,			
accion	(resid	214	and	name	H11 \	(recid	215	and	name	H5 \	30	21	21
montal	(icalu	217	and	Haute	#1.((Testu	213	and	manie		3.7	2.1	4.1
assign	(resid	214	and	name	нг.)	(resid	216	and	name	на)	3.4	1.6	1.6
assign	(resid	214	and	name	H2')	(resid	216	and	name	H8)	2.9	1.1	1.1
assion	resid	214	and	name	H2' \	(resid	215	and	name	н <u>5</u> у	34	16	1.6
1015	1.0010					1.0010				,	5.1	1.0	1.0
:013	<i>,</i>	<u></u>			****			-			. .		• -
assign	(resid	215	and	name	Hl')	(resid	215	and	name	H2')	2.4	0.6	0.6
assion	(resid	215	and	name	HIL	resid	215	and	name	H3'1	3.4	1.6	1.6
and	(70014	215	and				215	and		TT AL	2.4	1 1	1 1
assign	(resid	215	and	name	нг)	(resid	215	and	name	H4 ⁻)	2.9	1.1	1.1
assign	(resid	215	and	name	H1')	(resid	215	and	name	H5'*)	3.9	2.1	2.1
assion	(resid	215	and	name	HIN	resid	215	and	name	H6 \	3.4	1.6	1.6
200100	(ranid	215	and	nama	H21	(manint	215	and		HAN	20	1 1	1 1
assign	(I CSIU	213		name	114)	(ICSIG	415	ano	name	<u>14</u>)	4.7	1.1	1.1
assign	(resid	215	and	name	H2')	(resid	215	and	name	H3')	2.4	0.6	0.6
assign	(resid	215	and	name	H2')	(resid	215	and	name	H5**)	3.4	1.6	1.6
20010	(resid	215	and	nomo	Hari	(rooid	215	and		He i	20	1 1	1 1
assign	(resid	215		name	114)	Treate	215	4110	name	10)	4.7	1.1	1.1
assign	(resid	215	and	name	H3')	(resid	215	and	name	нэ*)	2.9	1.1	1.1
assign	(resid	215	and	name	H3')	(resid	215	and	name	H6)	3.4	1.6	1.6
	•				,	•				,			

								_					
assign	(resid	215	and	name	H4')	(resid	215	and	name	H6)	3.9	2.1	2.1
assign	(resid	215	and	name	H4')	(resid	215	and	name	H5**)	2.4	0.6	0.6
acciam	(monid	215	and		1151*	and	215	and		He i	2.0	1 1	1 1
assign	(Testu	215	and	name	пэ.)	(Testu	215	and	name	no)	2.9	1.1	1.1
assign	(resid	215	and	name	H6)	(resid	215	and	name	H5)	2.4	0.6	0.6
-						•							
anairm	(manid	215	and		THU Y	(married	216	and		TIO)	20	1 1	1 1
assign	(Tesiu	215	and	manne	111)	(Testu	210	and	name	110)	2.9	1.1	1.1
assign	(resid	215	and	name	H6)	(resid	216	and	name	H8)	2.4	0.6	0.6
assim	Tresid	215	and	name	H2' \	Tresid	216	and	name	HRÍ	20	11	1 1
assign	(Testu	215	and	manie	112)	(Testu	210	and	name	110 /	2.7	1.1	1.1
assign	(resid	215	and	name	H3')	(resid	216	and	name	H8)	2.9	1.1	1.1
assign	(resid	215	and	name	H4')	(resid	216	and	name	H8)	34	16	16
	(I COLO	015	- date		TTEIN	(nonline	210			TTO	2.4	1.0	1.0
assign	(resia	215	and	name	HST)	(resia	210	and	name	на)	3.4	1.6	1.6
assign	(resid	215	and	name	H6)	(resid	216	and	name	H8)	2.9	1.1	1.1
1 1 1 6	()	()			
AIU													
assign	(resid	216	and	name	HI')	(resid	216	and	name	H2')	2.4	0.6	0.6
assion	resid	216	and	name	HUÍ	Tresid	216	and	name	H3'	34	16	16
	(resid	016				(10010	210			TTAIL	2.1	1.0	1 1
assign	(resia	216	and	name	HI)	(resia	210	and	name	H4')	2.9	1.1	1.1
assign	(resid	216	and	name	H1')	(resid	216	and	name	H5'*)	3.4	1.6	1.6
accion	resid	216	and	name	- нı' \́	resid	216	and	name	H2 \	30	21	21
ussign	(ICSIG	210		Inditio		(Testa	210	und 1	mano	110 /	3.5	2.1	
assign	(resid	216	and	name	нг)	(resid	216	and	name	H8)	2.9	1.1	1.1
assign	(resid	216	and	name	H2')	(resid	216	and	name	H3')	2.4	0.6	0.6
accion	(racid	216	and		1215	racid	216	and	name	HQÍ	20	1 1	1 1
assign	(Teslu	210	and	name	112)	(resid	210	and	name	110)	2.9	1.1	1.1
assign	(resid	216	and	name	H3')	(resid	216	and	name	H4')	2.4	0.6	0.6
assign	(resid	216	and	name	H3')	(resid	216	and	name	H5'*)	3.4	1.6	1.6
		010			TTOL	(and a	216			TIO	2.0	1 1	1 1
assign	(resid	216	and	name	пэ)	(resid	210	and	name	по)	2.9	1.1	1.1
assign	(resid	216	and	name	H4')	(resid	216	and	name	H5'*)	2.4	0.6	0.6
accian	Tresid	216	and	name	H4' \	Tresid	216	and	name	HSÍ	34	16	16
assign	(resid	210	anu	mame		(Testu	210	and	name	110)	J. 4	1.0	1.0
assign	(resid	216	and	name	H5'*)	(resid	216	and	name	H8)	3.9	2.1	2.1
-	•												
•	1	014			****	1 1	217			TTO \	2.4	16	11
assign	(resid	216	and	name	Hr)	(resia	217	and	name	на)	3.4	1.0	1.6
assign	(resid	216	and	name	H1')	(resid	217	and	name	H1')	3.9	2.1	2.1
anniam	(married	216	and		1121 N	Tracid	217	and	nama	TUN	31	16	16
assign	Uesia	210	and	manne	112)	(resid	217	anu	name	111)	5.4	1.0	1.0
assign	(resid	216	and	name	H2')	(resid	217	and	name	H8)	2.9	1.1	1.1
assion	resid	216	and	name	H3')	(resid	217	and	name	H8)	2.9	1.1	1.1
	(reold	210			110	(manial	017			TTO S	2.4	1.6	1 6
assign	(resia	216	and	name	п2)	(resia	217	and	name	<u>n</u> 2)	5.4	1.0	1.0
assign	(resid	216	and	name	H8)	(resid	217	and	name	H8)	3.4	1.6	1.6
1417						`							
										TTOUN	~ .	~ <	~ ~
assign	(resid	217	and	name	HI')	(resid	217	and	name	H2')	2.4	0.6	0.6
assign	(resid	217	and	name	H1')	(resid	217	and	name	H3')	3.4	1.6	1.6
and ign	(nonid	217	and		TTU ((manid	217	and		TIAN	2.0	1 1	1 1
assign	(resid	217	and	name	п)	(resid	217	anu	name	<u>114</u>)	2.9	1.1	1.1
assign	(resid	217	and	name	H1')	(resid	217	and	name	H2)	3.9	2.1	2.1
accion	(rocid	217	and	name	HUÍ	regid	217	and	name	HRÍ	29	11	11
assign	(i esiu	217	410	name	111)	(Tesia	217	and	name	110)	2.7	1.1	1.1
assign	(resid	217	and	name	H2')	(resid	217	and	name	нз)	2.9	1.1	1.1
assion	Tresid	217	and	name	H2' \	resid	217	and	name	H4')	29	11	11
assign	(I Cold	217	uno 1	manie		(resid	217			TTO	24	1.6	1 6
assign	(resia	21/	and	name	n2)	(resid	217	and	name	по)	5.4	1.0	1.0
assign	(resid	217	and	name	H3')	(resid	217	and	name	H4')	2.9	1.1	1.1
0001000	(rouid	217	and	nama	ษาว่	iracid	217	and	name	ม ช ว์	34	16	16
assign	(Testu	217	anu	manne	115)	(Tesid	217	and	name		3.4	1.0	1.0
assign	(resid	217	and	name	H4')	(resid	217	and	name	нэ••)	2.4	0.6	0.6
assign	resid	217	and	name	H4')	(resid	217	and	name	H8)	3.9	2.1	2.1
and a set of the set o	(real d	017	and a		TICH	(mani d	217	and		TTO \	24	14	16
assign	(resid	217	ano	name	115)	(resid	217	and	name	110)	5.4	1.0	1.0
assign	(resid	217	and	name	H1')	(resid	216	and	name	H2)	3.4	1.6	1.6
	Granid	217	and		U 11 \	rooid	218	and	nama	HQÍ	30	21	21
assign	(resid	217	anu	name	<u> </u>	(Testa	210	and	manne	110)	5.5	2.1	2.1
assign	(resid	217	and	name	H2')	(resid	218	and	name	н8)	3.4	1.6	1.6
assign	(resid	217	and	name	H3')	(resid	218	and	name	H8)	3.4	1.6	1.6
assign	resid	217	and	name	HS	recid	218	and	name	нsí	34	16	16
LC10	(1 card	<i>4</i> , 1 /	and	mane	, in the second	(10310	<i></i>	and a	matte		7.7	1.0	1.0
1018													. .
assign	(resid	218	and	name	Hl')	(resid	218	and	name	H2')	2.4	0.6	0.6
assion	Tresid	218	and	name	HĽŃ	(resid	218	and	name	H3' \	2.9	1.1	1.1
andight	(10510	010		indite		(10010	210			TIAN	2 4	1 4	1 4
assign	(resid	218	and	name	нг)	(resid	218	and	name	<u>n4</u>)	5.4	1.0	1.0
assign	(resid	218	and	name	Hl')	(resid	218	and	name	H8)	3.4	1.6	1.6
	(manid	210	and		HOI S	(marid	210	and	nama	uγí	31	16	16
assign	(resid	210	anu	name	114)	(resid	410	anu .	name	110 /	5.7	1.0	1.0
assign	(resid	218	and	name	H3')	(resid	218	and	name	H8)	2.9	1.1	1.1
assion	Tecid	218	and	name	H4' ነ	(resid	218	and	name	H8 \	3.4	1.6	1.6
maight	(1 cond	210		manic	11514 \	(10010	210			100	2.1	1 1	1 1
assign	(resid	218	and	name	нэт)	(resid	218	and	name	по)	2.9	1.1	1.1
-													
accion	(racid	218	and	name	H1' \	(recid	219	and	name	H1')	30	2.1	21
assign	(resid	410	and	Haile		(Lesia	010			110	~~~	1 /	1 1
assign	(resid	218	and	name	HI')	(resid	219	and	name	на)	3.4	1.0	1.6
assion	resid	218	and	name	H2')	(resid	219	and	name	H8)	2.4	0.6	0.6
assign	(1 cond	210		110110	1021	(210			LIO (20	1 1	1 1
assign	(resid	218	and	name	нэ.)	(resid	219	and	name	пδ)	2.9	1.1	1.1
!A19													
accion	(recid	210	and	name	H1' \	(recid	219	and	name	H2')	24	06	0.6
assign	(resid	417	autu	name	#	(realu	21/		man	1121	0.0	1 1	1.1
assign	(resid	219	and	name	нг)	(resid	219	and	name	пз)	2.9	1.1	1.1
assion	(resid	219	and	name	H1')	(resid	219	and	name	H4')	2.4	0.6	0.6
	(mani J	210	d		H 11	(rooid	210	and	name	H4141	3 /	16	1.6
assign	(resia	219	and	name	<u>п</u>	(resid	417	anu	name	115.7	5.4	1.0	1.0
assign	(resid	219	and	name	HI')	(resid	219	and	name	H8)	2.9	1.1	1.1
assion	resid	219	and	name	H2'	(resid	219	and	name	H3')	2.4	0.6	0.6
moight	(210				(read	210	and	nama	HAY	3 /	1.6	16
assign	(resid	219	ana	name	II ()	(16210	417	مالله	name	11 1 J	J.4	1.0	1.0

												App	oendix C	Restraints
assign	(resid	219	and	name	H2')	(resid	219	and	name	H8)	3.4	1.6	1.6	
assign	(resid	219	and	name	H3')	(resid	219	and	name	H8)	2.9	1.1	1.1	
assign	(resid	219	and	name	H3')	(resid	219	and	name	H5'*)	3.4	1.6	1.6	
assign	(resid	219	and	name	H4')	(resid	219	and	name	H5'*)	2.9	1.1	1.1	
assign	(resid	219	and	name	/ H5'*)	(resid	219	and	name	на) На)	3.4 2 Q	1.6	1.6	
assign	(Testa	217	410	Harrie	115)	(resid	217	anu	Hame	116)	2.7	1.1	1.1	
assign	(resid	219	and	name	H1')	(resid	220	and	name	HI')	3.9	2.1	2.1	
assign	(resid	219	and	name		(resid	220	and	name	H)	3.4	1.6	1.6	
assign	(resid	219	and	name	H2')	(resid	220	and	name	H6)	5.4 2.4	1.0	1.0	
assign	(resid	219	and	name	H2')	(resid	220	and	name	HS	3.4	1.6	16	
assign	(resid	219	and	name	H3')	(resid	220	and	name	H6)	2.9	1.1	1.1	
assign	(resid	219	and	name	H3')	(resid	220	and	name	H5)	3.4	1.6	1.6	
assign	(resid	219	and	name	H2)	(resid	220	and	name	H1')	2.9	1.1	1.1	
assign	(resid	219	and	name	H8)	(resid	220	and	name	H6)	3.4	1.6	1.6	
2C20	(married	220	and		U 11 \	(manid	220			TTO()	~ 4		0.0	
assign	(resid	220	and	name		(resid	220	and	name	п2) На)	2.4	0.6	0.6	
assign	(resid	220	and	name	Hirs	(resid	220	and	name	H4')	2.9	1.1	1.1	
assign	(resid	220	and	name	HI'S	(resid	220	and	name	H5'*)	3.4	1.6	1.6	
assign	resid	220	and	name	H1')	(resid	220	and	name	H6)	3.4	1.6	1.6	
assign	(resid	220	and	name	H2')	(resid	220	and	name	H3')	2.9	1.1	1.1	
assign	(resid	220	and	name	H2')	(resid	220	and	name	H6)	3.4	1.6	1.6	
assign	(resid	220	and	name	H2')	(resid	220	and	name	H5)	3.4	1.6	1.6	
assign	(resid	220	and	name	H3')	(resid	220	and	name	H6)	2.4	0.6	0.6	
assign	(resid	220	and	name		(resid	220	and	name	H)	3.9	2.1	2.1	
assign	(resid	220	and	name	H4')	(resid	220	and	name	H6)	2.4	0.0	1.6	
assign	(resid	220	and	name	H4')	(resid	220	and	name	H5	3.9	2.1	2.1	
assign	(resid	220	and	name	H5'*)	(resid	220	and	name	H6)	2.9	1.1	1.1	
assign	(resid	220	and	name	H5'*)	(resid	220	and	name	H5)	3.4	1.6	1.6	
assign	(resid	220	and	name	H6)	(resid	220	and	name	H5)	2.4	0.6	0.6	
assign	(resid	220	and	name	H1')	(resid	221	and	name	Hl')	3.9	2.1	2.1	
assign	(resid	220	and	name	H1')	(resid	221	and	name	H8)	3.4	1.6	1.6	
assign	(resid	220	and	name	H2')	(resid	221	and	name	H8)	2.4	0.6	0.6	
assign	(resid	220	and	name	H2')	(resid	221	and	name	HI')	3.4	1.6	1.6	
assign	(resid	220	and	name	H ₃)	(resid	221	and	name	H8)	2.9	1.1	1.1	
IG21	(resid	220	and	name	по)	(resid	221	and	name	по)	3.9	2.1	2.1	
assign	(resid	221	and	name	H1')	(resid	221	and	name	H2')	2.4	0.6	0.6	
assign	(resid	221	and	name	HI')	(resid	221	and	name	H3')	3.4	1.6	1.6	
assign	(resid	221	and	name		(resid	221	and	name	H4')	2.4	0.6	0.6	
assign	(resid	221	and	name		(resid	221	and	name	H8)	2.4	1.0	1.0	
assign	(resid	221	and	name	H2'	(resid	221	and	name	H3')	2.4	0.6	0.6	
assign	(resid	221	and	name	H2')	(resid	221	and	name	H8)	3.4	1.6	1.6	
assign	(resid	221	and	name	H3')	(resid	221	and	name	H8)	2.4	0.6	0.6	
assign	(resid	221	and	name	H4')	(resid	221	and	name	H8)	3.4	1.6	1.6	
assign	(resid	221	and	name	H4')	(resid	221	and	name	H5'*)	2.4	0.6	0.6	
assign	(resid	221	and	name	H5**)	(resid	221	and	name	H8)	2.9	1.1	1.1	
assign	(resid	221	and	name	H1')	(resid	222	and	name	H1')	3.9	2.1	2.1	
assign	(resid	221	and	name		(resid	222	and	name	HS)	3.4	1.6	1.6	
assign	(resid	221	and	name	H2')	(resid	222	and	name		3.4	21	21	
assign	(resid	221	and	name	H2')	(resid	222	and	name	H6	2.4	0.6	0.6	
assign	(resid	221	and	name	H2')	(resid	222	and	name	H5)	3.4	1.6	1.6	
assign	(resid	221	and	name	H3')	(resid	222	and	name	H6)	2.9	1.1	1.1	
assign !C22	(resid	221	and	name	H3')	(resid	222	and	name	H5)	3.4	1.6	1.6	
assign	(resid	222	and	name	Hl')	(resid	222	and	name	H2')	2.4	0.6	0.6	
assign	(resid	222	and	name	Hl')	(resid	222	and	name	H3')	2.9	1.1	1.1	
assign	(resid	222	and	name	H1')	(resid	222	and	name	H4')	2.9	1.1	1.1	
assign	(resid	222	and	name	HI')	(resid	222	and	name	H5*)	3.4	1.6	1.6	
assign	(resid	222	and	name	<u>пг)</u> ни)	(resid	222	and	name	ПО) Н5)	5.4 3.0	1.0	1.0 2.1	
assign	(resid	222	and	name	H2'	(resid	222	and	name	He	3.4	1.6	1.6	
assign	(resid	222	and	name	H3'	(resid	222	and	name	H5'*)	2.9	1.1	1.1	
assign	(resid	222	and	name	H3')	(resid	222	and	name	H6)	2.4	0.6	0.6	
assign	(resid	222	and	name	H3')́	resid	222	and	name	H5 ý	3.9	2.1	2.1	
assign	(resid	222	and	name	H4')	(resid	222	and	name	H6)	2.9	1.1	1.1	
assign	(resid	222	and	name	H4')	(resid	222	and	name	H5'*)	2.4	0.6	0.6	
assign	(resid	222	and	name	H)' [∓]) U≤'±`	(resid	222	and	name	H6)	2.9	1.1	1.1	
assign	(resid	222	and	name	нот) Нб \	(resid	222	and	name	н <u>с</u>) Н5)	5.4 24	0.6	0.6	
asign	(10010		410	1100110	····)	(10010			I IMALIN	····)	4T	0.0	2.0	

assign	(resid	222	and	name	HI')	(resid	223	and	name	H8)	3.4	1.6	1.6
assion	resid	222	and	name	H2' \	resid	223	and	name	HRÍ	24	0.6	06
assign		222		manie		(resid	223	and a	1111110	110	2.4	1.0	1.0
assign	(resid	222	and	name	H3 [•])	(resid	223	and	name	H8)	3.4	1.6	1.6
assign	(resid	222	and	name	H6)	(resid	223	and	name	H8)	3.4	1.6	1.6
assion	resid	222	and	name	H5 \	resid	223	and	name	HRÍ	39	21	21
1402	(10010	222		mante	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(10510	225		1104110		5.7	2.1	2.1
!A25													
assign	(resid	223	and	name	HI')	(resid	223	and	name	H2')	2.4	0.6	0.6
accion	recid	223	and	name	ਸਾਨ	regid	222	and	name	ม ว่า โ	29	11	11
assign	(I cold	225	410	name		(itesite	223	410	manie		2.7	1.1	1.1
assign	(resid	223	and	name	HL)	(resid	223	and	name	H4')	2.9	1.1	1.1
assign	(resid	223	and	name	Hl')	(resid	223	and	name	H2)	3.4	1.6	1.6
accign	recid	223	and	name	HILL	recid	223	and	name	HQ	34	1.6	16
assign	(Tesiu	225	and	Harne	111 /	(I cald	225	and	Hame	110)	5.4	1.0	1.0
assign	(resid	223	and	name	H2')	(resid	223	and	name	H3')	2.9	1.1	1.1
assign	(resid	223	and	name	H2')	(resid	223	and	name	H2)	3.9	2.1	2.1
annian	(manid	222	and		1121	ranid	222	and		UQ \	20	1.1	1 1
assign	(resid	425	and	name	<u>112</u>)	(Testu	223	anu	name	110)	2.9	1.1	1.1
assign	(resid	223	and	name	H2')	(resid	223	and	name	H8)	2.9	1.1	1.1
assign	resid	223	and	name	H3')	(resid	223	and	name	H8)	2.4	0.6	0.6
B	()	(/			
					**** \		007			****	• •		
assign	(resid	223	and	name	Hr)	(resid	227	and	name	нг)	2.9	1.1	1.1
assign	(resid	223	and	name	H1')	(resid	227	and	name	H8)	3.9	2.1	2.1
ancian	(recid	223	and	nama	H2' \	recid	227	and	name	HILL	34	16	16
assign	(Tesia	225	and	name	112)	(resid	227	410	manne		5.4	1.0	1.0
assign	(resid	223	and	name	H2')	(resid	224	and	name	H2')	2.9	1.1	1.1
assign	(resid	223	and	name	H2)	(resid	227	and	name	H1')	3.4	1.6	1.6
1624	(/								
.024					****	1	004	4		TTOL	24	10	10
assign	(resid	224	and	name	нг)	(resid	224	and	name	H2')	5.4	1.0	1.6
assign	(resid	224	and	name	H1')	(resid	224	and	name	H3')	3.4	1.6	1.6
assign	resid	224	and	name	HUS	recid	224	and	name	HAIS	30	21	21
assigli	(Lesia	224	and .	Hallie	#	(Line 1	201		manie	117 /	2.2	2.1	2.1
assign	(resid	224	and	name	Hr)	(resid	224	and	name	H3'*)	3.9	2.1	2.1
assign	(resid	224	and	name	H1')	(resid	224	and	name	H8)	2.4	0.6	0.6
assign	read	224	and	name	มวาว์	recid	224	and	name	H31)	29	11	11
assign	(resid	224		name	112)	(i colu	224	and	name	11.5)	2./	1.1	1.1
assign	(resid	224	and	name	H2)	(resia	224	and	name	H4)	3.4	1.0	0.1
assign	(resid	224	and	name	H2')	(resid	224	and	name	H5'*)	3.4	1.6	1.6
accian	racid	224	and	nama	4215	recid	224	and	name	нsí	34	16	16
assign	(i cald	224	410	mane	112)	(resid	224		IIIII		0.4	1.0	1.0
assign	(resia	224	and	name	ns)	(resid	224	and	name	<u>114</u>)	2.9	1.1	1.1
assign	(resid	224	and	name	H3')	(resid	224	and	name	H5'*)	3.4	1.6	1.6
accion	resid	224	and	name	H3' \	(resid	224	and	name	H8 \	39	2.1	2.1
assign	(resid	224		manne	TTAL	(reald	224	and	name	US'*)	2 4	1.6	1.6
assign	(resia	224	and	name	п4)	(resid	224	and	name	<u>п</u> 5-у	3.4	1.0	. 1.0
assign	(resid	224	and	name	H4')	(resid	224	and	name	H8)	3.9	2.1	2.1
-													
accion	(recid	224	and	name	H2' \	(resid	225	and	name	H8)	39	21	21
assign	(Testa	224	anu	name	112)	(Testu	225	410	name	110)	3.2	2.1	2.1
assign	(resid	224	and	name	нз)	(resia	225	and	name	HF)	3.9	2.1	2.1
assign	(resid	224	and	name	H3')	(resid	225	and	name	H8)	3.4	1.6	1.6
accion	recid	224	and	name	H4' \	(resid	225	and	name	H2'\	34	16	16
assign	(Tesid	224	410	name		(I cald	225	and	Hame	112)	2.4	1.0	1.0
assign	(resid	224	and	name	H4')	(resid	225	and	name	H3)	2.9	1.1	1.1
assign	(resid	224	and	name	H4')	(resid	225	and	name	H4')	2.9	1.1	1.1
accion	recid	224	and	name	H4' \	resid	225	and	name	ня โ	39	21	21
assign	(resid	227	and	name	114)	(resid	225	and	inalle		2.0	2.1	2.1
assign	(resid	224	and	name	H4')	(resia	226	and	name	HI)	3.9	2.1	2.1
assign	(resid	224	and	name	H4')	(resid	226	and	name	H2')	3.4	1.6	1.6
accian	(recid	224	and	name	H4')	resid	226	and	name	ม ่ง (34	16	16
assign	(Tesiu	224	410	name		(resid	220	and	manne	TTAL	2.0	2.1	2.1
assign	(resia	224	and	name	H4)	(resia	220	and	name	<u>n4</u>)	3.9	2.1	2.1
assign	(resid	224	and	name	H4')	(resid	226	and	name	H8)	3.4	1.6	1.6
1A25	•												
	(225			ע יו ע	(manid	225	and	nomo	U21	24	06	06
assign	(resid	225	and	name		liesiu	225	410	name	112)	2.7	0.0	0.0
assign	(resid	225	and	name	HI')	(resid	225	and	name	H3 ⁽)	3.4	1.6	1.6
assign	(resid	225	and	name	H1')	(resid	225	and	name	H4')	2.9	1.1	1.1
accion	(recid	225	and	name	HUS	recid	225	and	name	H5'*)	34	16	16
assign	(Tesiu	225	and	manie	111 /	(i colu	225	1	manie	115 /	3.4	1.0	1.0
assign	(resid	225	and	name	нг)	(resid	225	and	name	H2)	3.4	1.6	1.6
assign	(resid	225	and	name	H1')	(resid	225	and	name	H8)	2.9	1.1	1.1
assim	recid	225	and	name	H2' \	resid	225	and	name	H3' \	29	1.1	11
assign	(resid	225	and a	manie	TION	(resid	225	and		TTAIL	2 4	1 4	1 4
assign	(resia	225	and	name	n2)	(resid	223	ano	name	<u> 14</u>)	5.4	1.0	1.0
assign	(resid	225	and	name	H2')	(resid	225	and	name	H8)	2.4	0.6	0.6
accion	Tresid	225	and	name	H2' \	(resid	225	and	name	H5**)	34	16	16
assign	(resid	225			1121		225	and		TIO (2.0	21	2.1
assign	(resia	225	and	name	пз)	(resid	225	and	name	<u>п</u> о)	3.9	2.1	2.1
assign	(resid	225	and	name	H4')	(resid	225	and	name	H5' ∓)	2.9	1.1	1.1
assion	(resid	225	and	name	H4' \	(resid	225	and	name	H8)	3.4	1.6	1.6
	(manid	225	and		H4.	(rooid	225	and	name	He	30	21	21
assign	(resid	223	and	name	пэт)	(16510	443	DILL	name	110)	3.7	4.1	2.1
assign	(resid	225	and	name	H1')	(resid	226	and	name	H8)	3.9	2.1	2.1
000100	(read	225	and	nomo	H21	Torid	226	and	name	HOY	3 4	1.6	1.4
assign	(1:0510	223	and	name	114)	(Leola	220	4110	maine	114)	5.4	1.0	1.0
assign	(resid	225	and	name	H2')	(resid	226	and	name	нз')	5.4	1.6	1.6
assign	(resid	225	and	name	H2')	(resid	226	and	name	H8)	3.4	1.6	1.6
assim	(recid	225	and	name	Hari	resid	226	and	name	HR	34	16	16
สาวาริน	(Lesia	223	and .	Indille	11.5	(I with	220	and	manie	110	J. T	1.0	1.0
assign	(resid	225	and	name	H4')	(resid	226	and	name	H8)	2.9	1.1	1.1
assign	(resid	225	and	name	H8)	(resid	226	and	name	H8)	3.9	2.1	2.1
IG26	、						-			/	-	-	. 3
.020	(001	1		TT11 \	1	224	L		LIO! \	24	01	~ ~
assign	(resid	226	and	name	нг)	(resid	226	and	name	H2)	2.4	0.6	0.6
assign	(resid	226	and	name	H1')	(resid	226	and	name	H3')	3.4	1.6	1.6
-	,									-			

												Ap	pendix C	Restraints
assign	(resid	226	and	name	H1')	(resid	226	and	name	H4')	2.9	1.1	1.1	
assign	(resid	226	and	name	Hl')	(resid	226	and	name	H8)	2.9	1.1	1.1	
assign	(resid	226	and	name	H2')	(resid	226	and	name	H3')	2.9	1.1	1.1	
assign	(resid	226	and	name	H2')	(resid	226	and	name	H8)	2.4	0.6	0.6	
assign	(resid	226	and	name	H3')	(resid	226	and	name	H4')	3.4	1.6	1.6	
assign	(resid	226	and	name	H3')	(resid	226	and	name	H5'*)	3.4	1.6	1.6	
assign	(resid	226	and	name	H3')	(resid	226	and	name	H8 ý	2.9	1.1	1.1	
assign	(resid	226	and	name	H4')	(resid	226	and	name	H8)	3.9	2.1	2.1	
assign	(resid	226	and	name	H5')	(resid	226	and	name	H8)	3.9	2.1	2.1	
accion	(resid	226	and		1111	(marine	227			TT #1+1			•••	
assign	(resid	226	and	name		(resid	227	and	name	H2)	3.9	2.1	2.1	
assign	(resid	226	and	name	H4'	(resid	227	and	name	H8)	3.4	1.0	1.0	
!A27	(124110	,	(10010	227	410	name	110)	5.4	1.0	1.0	
assign	(resid	227	and	name	H1')	(resid	227	and	name	H2)	3.4	1.6	1.6	
assign	(resid	227	and	name	H1')	resid	227	and	name	H8)	3.4	1.6	1.6	
assign	(resid	227	and	name	H1')	resid	227	and	name	H2')	2.9	1.1	11	
assign	(resid	227	and	name	Hľ Ś	resid	227	and	name	H3')	3.4	1.6	16	
assign	(resid	227	and	name	HI')	resid	227	and	name	H4')	2.9	1.1	1.1	
assign	(resid	227	and	name	H2')	resid	227	and	name	H8)	3.4	1.6	1.6	
assign	(resid	227	and	name	H3')	(resid	227	and	name	H8)	2.9	1.1	1.1	
accion	(resid	227	and		ע יו ע	(marine)	220			TTC >		•		
assign	(resid	227	and	name	H2')	(resid	228	and	name	H6)	4.4	2.6	2.6	
assign	resid	227	and	name	H3' \	(resid	228	and	name	He)	21	1.0	1.6	
assion	(resid	227	and	name	HS)	(resid	220	and	name	HG)	2.0	1.0	1.0	
!U28	(ullo	1000110	110)	(10010	220	and	name	110)	5.7	2.1	2.1	
assign	(resid	228	and	name	H1')	(resid	228	and	name	H2')	3.4	1.6	1.6	
assign	(resid	228	and	name	H1')	resid	228	and	name	H3')	3.4	1.6	1.6	
assign	(resid	228	and	name	H1')	resid	228	and	name	H4')	3.4	1.6	1.6	
assign	(resid	228	and	name	H1')	resid	228	and	name	H6)	3.4	1.6	1.6	
assign	(resid	228	and	name	H2')	resid	228	and	name	H6)	3.9	2.1	2.1	
assign	(resid	228	and	name	H4')	(resid	228	and	name	H6)	3.9	2.1	2.1	
assign	(resid	228	and	name	H5')	(resid	228	and	name	H6)	3.9	2.1	2.1	
assign	(resid	228	and	name	H1')	(resid	229	and	name	H8)	39	21	21	
assign	(resid	228	and	name	H6)	(resid	229	and	name	H	3.4	1.6	1.6	
!G29	•				,	`				,				
assign	(resid	229	and	name	H1')	(resid	229	and	name	H2')	2.4	0.6	0.6	
assign	resid	229	and	name	H1')	resid	229	and	name	H3')	2.9	1.1	1.1	
assign	resid	229	and	name	Hľ Ś	resid	229	and	name	H4')	2.4	0.6	0.6	
assign	resid	229	and	name	H1' Ś	resid	229	and	name	H5**)	3.4	1.6	1.6	
assign	(resid	229	and	name	H1')	(resid	229	and	name	H8)	2.9	1.1	1.1	
assign	resid	229	and	name	H2')	(resid	229	and	name	H3')	2.4	0.6	0.6	
assign	(resid	229	and	name	H2')	(resid	229	and	name	H8)	3.4	1.6	1.6	
assign	resid	229	and	name	H3')	resid	229	and	name	H4')	2.4	0.6	0.6	
assign	resid	229	and	name	H3')	(resid	229	and	name	H5*	34	16	16	
assign	resid	229	and	name	H3')	(resid	229	and	name	HRÍ	2.4	0.6	0.6	
assign	resid	229	and	name	H4')	(resid	229	and	name		3.4	1.6	1.6	
assign	resid	229	and	name	H4' Ś	resid	229	and	name	H5'*)	2.4	0.6	0.6	
assign	(resid	229	and	name	H5'*)	(resid	229	and	name	H8 j	2.9	1.1	1.1	
	(: -1	220	1		**** \					****				
assign	(resid	229	and	name		(resid	230	and	name	HI')	3.9	2.1	2.1	
assign	(resid	229	and	name		(resid	230	and	name		2.9	1.1	1.1	
assign	(resid	220	and	name	H2')	(resid	230	and	name	IIO)	2.4	0.0	0.0	
assign	(resid	229	and	name	HS)	(resid	230	and	name	По) По)	2.9	1.1	1.1	
!G30	(10010	22)	und	114110	110)	(10010	250	and	Hame	110)	5.4	1.0	1.0	
assign	(resid	230	and	name	H1')	(resid	230	and	name	H2')	2.4	0.6	0.6	
assign	(resid	230	and	name	H1')	resid	230	and	name	H3')	2.9	1.1	1.1	
assign	(resid	230	and	name	H1')	resid	230	and	name	H4')	2.4	0.6	0.6	
assign	(resid	230	and	name	H1')	(resid	230	and	name	H5'*)	3.4	1.6	1.6	
assign	(resid	230	and	name	H1')	(resid	230	and	name	H8)	2.9	1.1	1.1	
assign	(resid	230	and	name	H2')	resid	230	and	name	H3')	2.4	0.6	0.6	
assign	(resid	230	and	name	H2')	resid	230	and	name	H4')	3.4	1.6	1.6	
assign	(resid	230	and	name	H2' ý	(resid	230	and	name	H8)	3.4	1.6	1.6	
assign	(resid	230	and	name	H3' Ń	(resid	230	and	name	H4'1	2.4	0.6	0.6	
assign	(resid	230	and	name	Н3' γ́	(resid	230	and	name	H5**)	2.9	1.1	1.1	
assign	(resid	230	and	name	Н3' γ	(resid	230	and	name	H8 1	2.9	1.1	1.1	
assign	(resid	230	and	name	H4' Ś	(resid	230	and	name	H5**)	2.4	0.6	0.6	
assign	resid	230	and	name	H4' ý	(resid	230	and	name	H8 1	2.9	1.1	1.1	
assign	(resid	230	and	name	H5'*´)	(resid	230	and	name	H8 ý	2.9	1.1	1.1	
2001	(recid	220	and	n a r	U 11 \	(marine	221	لاسم		UIIN	2.0	21	2.1	
assign	(resid	230	and	name		(resid	231	and	name		3.9 3.1	2.1 1.6	4.1 1.6	
assign	(resid	230	and	name		(resid	231	and	name	H6)	2.4 2.1	0.6	0.6	
assign	(resid	230	and	name	H2'	(resid	231	and	name	HS	29	11	11	
	N				,)	a. 1		A. A	

												App	pendix C	Restraints
assign	(resid	230	and	name	H3')	(resid	231	and	name	H6)	29	11	11	
assign	(resid	230	and	name	H3')	(resid	231	and	name	H5	3.4	1.6	1.6	
assign !U31	(resid	230	and	name	H8)	(resid	231	and	name	Н6)́	3.4	1.6	1.6	
assign	(resid	231	and	name	H1')	(resid	231	and	name	H2')	2.4	0.6	0.6	
assign	(resid	231	and	name	H1')	(resid	231	and	name	H3')	2.9	1.1	1.1	
assign	(resid	231	and	name	HI')	(resid	231	and	name	H4')	2.9	1.1	1.1	
assign	(resid	231	and	name	HI')	(resid	231	and	name	H5**)	3.4	1.6	1.6	
assign	(resid	231	and	name		(resid	231	and	name		3.4	1.6	1.0	
assign	(resid	231	and	name	H2'	(resid	231	and	name	H31)	2.5	0.6	0.6	
assign	(resid	231	and	name	H2'	(resid	231	and	name	H4')	2.9	1.1	1.1	
assign	(resid	231	and	name	H2')	(resid	231	and	name	H6)	3.4	1.6	1.6	
assign	(resid	231	and	name	H2')	resid	231	and	name	H5)	3.4	1.6	1.6	
assign	(resid	231	and	name	H3')	(resid	231	and	name	H6)	2.4	0.6	0.6	
assign	(resid	231	and	name	H3')	(resid	231	and	name	H5)	3.4	1.6	1.6	
assign	(resid	231	and	name	H4')	(resid	231	and	name	H6)	3.4	1.6	1.6	
assign	(resid	231	and	name	H4')	(resid	231	and	name	H5™)	2.4	0.6	0.6	
assign	(resid	231	and	name	H5*)	(resid	231	and	name	HO)	2.9	1.1	1.1	
assign	(resid	231	and	name	H5)	(resid	231	and	name	нз) Нб)	5.4 2 A	1.0	1.6	
	(16310	251		hame	···· >	(ICSIG	231		name	110)	2.7	0.0	0.0	
assign	(resid	231	and	name	HI')	(resid	232	and	name	HI')	3.9	2.1	2.1	
assign	(resid	231	and	name		(resid	232	and	name	HS)	3.4	1.6	1.6	
assign	(resid	231	and	name	H2')	(resid	232	and	name	по) Н()	2.9	1.1	1.1	
assign	(resid	231	and	name	H2')	(resid	232	and	name	H5)	34	1.6	16	
assign	(resid	231	and	name	H3' \	(resid	232	and	name	H6	2.9	1.1	1.1	
assign	(resid	231	and	name	H3')	(resid	232	and	name	H5)	3.4	1.6	1.6	
assign !C32	(resid	231	and	name	H6)	(resid	232	and	name	H6)	3.9	2.1	2.1	
assign	(resid	232	and	name	Hl')	(resid	232	and	name	H2')	2.4	0.6	0.6	
assign	(resid	232	and	name	H1')	(resid	232	and	name	H3')	2.9	1.1	1.1	
assign	(resid	232	and	name	H1')	(resid	232	and	name	H4')	2.9	1.1	1.1	
assign	(resid	232	and	name	H1')	(resid	232	and	name	H5'*)	3.4	1.6	1.6	
assign	(resid	232	and	name	HI)	(resid	232	and	name	H6)	2.9	1.1	1.1	
assign	(resid	232	and	name	$\Pi_{2'}$	(resid	232	and	name	HO)	3.4 2.0	1.0	1.0	
assign	(resid	232	and	name	H5'*)	(resid	232	and	name	H6)	2.9	1.1	1.1	
assign	(resid	232	and	name	H5'*)	(resid	232	and	name	H5)	34	1.1	1.1	
assign	(resid	232	and	name	H5)	(resid	232	and	name	H6)	2.4	0.6	0.6	
assign	(resid	232	and	name	H1')	(resid	233	and	name	H1')	3.9	2.1	2.1	
assign	(resid	232	and	name	H1')	(resid	233	and	name	H6)	3.4	1.6	1.6	
assign	(resid	232	and	name	$H2^{\prime}$)	(resid	233	and	name	H6)	2.4	0.6	0.6	
assign	(resid	232	and	name	H2')	(resid	233	and	name		3.4 20	1.0	1.0	
assign	(resid	232	and	name	H3')	(resid	233	and	name	H5	3.4	1.1	1.6	
!C33	`					`								
assign	(resid	233	and	name	HI)	(resid	233	and	name	H2')	2.4	0.6	0.6	
assign	(resid	233	and	name		(resid	233	and	name	H_{J}	2.9	1.1	1.1	
assign	(resid	233	and	name		(resid	233	and	name	14) H5'*)	2.9	1.1	1.1	
assign	(resid	233	and	name	HI' S	(resid	233	and	name	H6	2.9	1.1	1.1	
assign	(resid	233	and	name	H2')	(resid	233	and	name	H3')	2.4	0.6	0.6	
assign	(resid	233	and	name	H2')	(resid	233	and	name	H5)	3.9	2.1	2.1	
assign	(resid	233	and	name	H2')	(resid	233	and	name	H6)	2.9	1.1	1.1	
assign	(resid	233	and	name	H3')	(resid	233	and	name	H4')	2.4	0.6	0.6	
assign	(resid	233	and	name	нэ ^с) Насі)	(resid	233	and	name	нэ*) ц5 \	3.4 2.4	1.6 1.4	1.0 1.6	
assign	(resid	233	and	name		(resid	233	and	name		5.4 2 A	1.0	0.6	
assign	(resid	233	and	name	H4')	(resid	233	and	name	H6	2.9	11	11	
assign	(resid	233	and	name	H4'	(resid	233	and	name	H5'*)	2.4	0.6	0.6	
assign	(resid	233	and	name	H5'*)	(resid	233	and	name	H6)	2.9	1.1	1.1	
assign	(resid	233	and	name	H5'*)	(resid	233	and	name	H5)	3.4	1.6	1.6	
assign	(resid	233	and	name	H5)	(resid	233	and	name	H6)	2.4	0.6	0.6	

set echo = on end set message = on end

!RNA to	protein I	NOE				(05				2.0	2.1	2.1
assign	(resid	223	and	name	H_2)	(resid	85	and	name		3.9	2.1	2.1
assign	(resid	223	and	name	$\frac{n_2}{n_2}$	(resid	0 <i>5</i>	and	name		3.4	2.1	2.1
assign	(resid	223	and	name	$\frac{n2}{2}$	(resid	0 <i>5</i>	and	name	H7)	3.9	2.1	2.1
assign	(resid	223	and	name	H2)	(regid	0J 95	and	name	HE*)	3.9	2.1	2.1
assign	(resid	223	and	name	$\frac{\pi 2}{\pi 1}$	(resid	25	and	name	HBI)	2.9	2.1	2.1
assign	(resid	224	and	name		(resid	25	and	name		2.5 3 A	1.1	1.1
assign	(resid	224	and	name		(resid	25	anu	name		3.4	2.1	2.1
assign	(resid	224	and	name		(resid	26	and	name	IID) IIA*)	2.9	2.1	2.1
assign	(resid	224	and	name		(resid	20	anu	name		2.5	1.1	1.1
assign	(resid	224	and	name		(resid	0 <i>5</i>	and	name	HEI)	3.4	1.0	1.0
assign	(resid	224	and	name	112) 1121)	(resid	85	and	name		29	1.0	1.0
assign	(resid	224	and	name	H2)	(recid	85	and	name	HD+)	30	21	21
assign	(resid	224	and	name		(resid	25	and	name		3.1	1.6	1.1
assign	(resid	224	and	name	Ho)	(resid	25	and	name	HBI	29	1.0	1.0
assign	(resid	224	and	name	IIO)	(resid	25	and	name	HB2)	2.7	1.1	1.1
assign	(resid	224	and	name	Ho)	(resid	25	and	name		3.4	1.6	1.0
assign	(resid	224	and	name		(resid	25	and	name		20	1.0	1.0
assign	(resid	224	and	name	По) Цо)	(resid	20	and	name	HA1)	2.2	1.1	1.1
assign	(resid	224	and	name	110) 110)	(resid	20	and	name	HA2)	2.7	21	21
assign	(resid	224	and	name	10)	(resid	05	and	name		3.9	2.1	2.1
assign	(resid	224	and	name		(resid	05	anu	mame		2.9	2.1	2.1
assign	(resid	224	and	name		(resid	07	and	name		3.5	2.1	2.1
assign	(resid	224	and	name		(resid	8/	and	name	$HO(2^{+})$	3.7	2.1	4.1 1 C
assign	(resid	225	and	name	Hr)	(resid	52	and	name	HG ⁺)	3.4	1.0	1.0
assign	(resid	225	and	name	HI.)	(resid	52	and	name	HD^{*})	3.4	1.0	1.0
assign	(resid	225	and	name	HI')	(resid	49	and	name	HD [*])	3.9	2.1	2.1
assign	(resid	225	and	name	H4')	(resid	27	and	name	HB ⁺)	3.4	1.6	1.6
assign	(resid	225	and	name	H4')	(resid	27	and	name	$HD^{+})$	3.4	1.6	1.6
assign	(resid	225	and	name	H4')	(resid	52	and	name	HG ⁺)	3.9	2.1	2.1
assign	(resid	225	and	name	H4')	(resid	52	and	name	HD*)	3.9	2.1	2.1
assign	(resid	225	and	name	H4')	(resid	52	and	name	HE*)	3.4	1.6	1.6
assign	(resid	225	and	name	H5**)	(resid	27	and	name		3.9	2.1	2.1
assign	(resid	225	and	name	H5**)	(resid	27	and	name	HB+)	3.9	2.1	2.1
assign	(resid	225	and	name	H2)	(resid	48	and	name	HA)	3.4	1.6	1.6
assign	(resid	225	and	name	H2)	(resid	48	and	name	$HG2^*$)	3.4	1.6	1.6
assign	(resid	225	and	name	H2)	(resid	49	and	name	HD*)	3.9	2.1	2.1
assign	(resid	225	and	name	H2)	(resid	49	and	name	HG*)	3.9	2.1	2.1
assign	(resid	225	and	name	H2)	(resid	49	and	name	HB*)	3.4	1.6	1.6
assign	(resid	225	and	name	H8)	(resid	52	and	name	HG [*])	3.9	2.1	2.1
assign	(resid	225	and	name	H8)	(resid	52	and	name	HD*)	3.9	2.1	2.1
assign	(resid	225	and	name	H8)	(resid	27	and	name	HD2)	3.9	2.1	2.1
assign	(resid	226	and	name	Hl')	(resid	28	and	name	HG*)	3.4	1.6	1.6
assign	(resid	226	and	name	H1')	(resid	28	and	name	HD [∓])	3.9	2.1	2.1
assign	(resid	226	and	name	Hl')	(resid	28	and	name	HE*)	3.9	2.1	2.1
assign	(resid	226	and	name	H2')	(resid	28	and	name	HG*)	3.9	2.1	2.1
assign	(resid	226	and	name	H2')	(resid	28	and	name	HD*)	3.9	2.1	2.1
assign	(resid	226	and	name	H2')	(resid	28	and	name	HE ₹)	3.9	2.1	2.1
assign	(resid	226	and	name	H8)	(resid	27	and	name	HA)	3.9	2.1	2.1
assign	(resid	226	and	name	H8)	(resid	27	and	name	HB*)	3.9	2.1	2.1
assign	(resid	226	and	name	H8)	(resid	27	and	name	HD2)	3.4	1.6	1.6
assign	(resid	226	and	name	H8)	(resid	27	and	name	HE2)	3.9	2.1	2.1
assign	(resid	226	and	name	H8)	(resid	28	and	name	HA)	3.9	2.1	2.1
assign	(resid	226	and	name	H8)	(resid	28	and	name	HG [≢])	3.4	1.6	1.6
assign	(resid	226	and	name	H8)	(resid	28	and	name	HB*)	3.4	1.6	1.6
assign	(resid	226	and	name	H8)	(resid	52	and	name	HG*)	3.9	2.1	2.1
assign	(resid	207	and	name	HI)	(resid	29	and	name	HN)	3.9	2.1	2.1
assign	(resid	207	and	name	H1)	(resid	29	and	name	HB#)	3.9	2.1	2.1
assign	(resid	207	and	name	H1)	(resid	26	and	name	HN)	3.9	2.1	2.1
assign	(resid	224	and	name	H1)	(resid	85	and	name	HB*)	3.9	2.1	2.1
assign	(resid	224	and	name	H1)	(resid	85	and	name	HZ)	3.9	2.1	2.1
assign	(resid	224	and	name	H1)	(resid	85	and	name	HD2)	3.4	1.6	1.6
assign	(resid	224	and	name	H1)	(resid	85	and	name	HE2)	3.4	1.6	1.6
protein	exchange	able to R	NA restrai	ints							~ ~		
assign	(resid	25	and	name	HN)	(resid	224	and	name	H8)	3.9	2.1	2.1
assign	(resid	26	and	name	HN)	(resid	224	and	name	HI')	2.9	1.1	1.1
assign	(resid	26	and	name	HN)	(resid	224	and	name	H8)	3.4	1.6	1.6
assign	(resid	26	and	name	HN)	(resid	225	and	name	H5'*)	2.9	1.1	1.1
assign	(resid	27	and	name	HN)	(resid	224	and	name	HI')	3.9	2.1	2.1
assign	(resid	27	and	name	HN)	(resid	224	and	name	H8)	3.9	2.1	2.1
assign	(resid	27	and	name	HN)	(resid	225	and	name	H4')	3.4	1.6	1.6
assign	(resid	27	and	name	HN)	(resid	225	and	name	H5'*)	3.4	1.6	1.6
assign	(resid	27	and	name	HN)	(resid	226	and	name	H5' *)	2.9	1.1	1.1
assign	(resid	27	and	name	HN)	(resid	226	and	name	H8)	3.9	2.1	2.1

Appendix C Restraints

assign	(resid	28	and	name	HN)	(resid	225	and	name	H4')	3.9	2.1	2.1
assign	(resid	28	and	name	HN)	(resid	226	and	name	H5'*)	3.4	1.6	1.6
assign	(resid	28	and	name	HN)	(resid	226	and	name	H8)	3.4	1.6	1.6
assign	(resid	29	and	name	HN)	(resid	226	and	name	H4')	2.9	1.1	1.1
assign	(resid	52	and	name	HE)	(resid	225	and	name	H1')	2.9	1.1	1.1
assign	(resid	52	and	name	HE)	(resid	226	and	name	H2')	3.4	1.6	1.6
assign	(resid	88	and	name	HN)	(resid	224	and	name	H3')	3.9	2.1	2.1

set echo = on end set message = on end restraint dihedra reset set echo = off end

set echo = on end set message = off end !protein dihedral restraints L30P_dih.tbl !backbond phi dihedra angles derived from HNHA experiment !! Phi restraints minimum deviation = 30 degrees !1st numbers is energy contants, 2nd is the degree of dihedral angle, 3rd is the rang and 4th the exponential function assign (resid 3 and name C) (resid 4 and name N)

assign	(16210	2	anu	name	<i>C</i> ,	(16310	-	ana	manie	<u>, , ,</u>				
-	resid	4	and	name	CÁ)	(resid	4	and	name	CÍ	1	-73	30	2
accian	(recid	Å	and	name	C)	(recid	5	and	name	ŇŃ	-			-
assign	(resid	7	anu	name		(resid	2	anu 1	IIdille					~
	(resid	5	and	name	CA)	(resid	5	and	name	C)	1	-71	30	2
assign	(resid	5	and	name	C)	(resid	6	and	name	N)				
	Tresid	6	and	name	CÁI	resid	6	and	name	сí	1	-77	30	2
· · · ·	(resid	ž	and			(real d	ă.	and		Ň	-	••	50	~
assign	(resid	0	and	name	U)	(resid	<u>′</u>	and	name	N)				-
	(resid	7	and	name	CA)	(resid	7	and	name	C)	1	-72	30	2
assign	resid	7	and	name	C)	(resid	8	and	name	N)				
	and	ò	and		ČÁ)	(recid	ē	and	nome	C S	1	72	20	2
	(resid	0	anu	name	CA)	(iesia	0	anu	manne		1	-75	30	4
assign	(resid	8	and	name	C)	(resid	9	and	name	N)				
-	(resid	9	and	name	CA)	(resid	9	and	name	C)	1	-73	30	2
anniam	(racid	Ō	and	name	C Y	resid	10	and	name	NÍ				
assign	(Testu	10	and	Indine	20	(icald	10	and	name		1	50	20	~
	(resid	10	and	name	CA)	(resia	10	and	name	0)	1	-33	30	2
assign	(resid	11	and	name	C)	(resid	12	and	name	N)				
-	Íresid	12	and	name	CÁ)	resid	12	and	name	CÌ	1	-59	30	2
assim	(recid	13	and	name	C Y	resid	14	and	name	ŇŃ				
assign	(Tesid	15	anu	name		(Iesiu	14	410	manne			15	20	~
	(resid	14	and	name	CA)	(resid	14	and	name	C)	1	-65	30	2
assign	(resid	14	and	name	C)	(resid	15	and	name	N)				
0	Ìresid	15	and	name	CÁ)	(resid	15	and	name	CÍ	1	-58	30	2
	(resid	15	and			(and a	16	and		Ň	•			-
assign	(resid	15	and	name	C)	(resid	10	and	name	N)			••	-
	(resid	16	and	name	CA)	(resid	16	and	name	C)	1	-60	30	2
assign	resid	16	and	name	CÚ	(resid	17	and	name	N)				
	loopid	17	and	name	- ČÁN	regid	17	and	nama	ē í	1	-60	30	2
	(Tesia	17		name	CA)	(Testu	1/		manne		1	-00	30	4
assign	(resid	17	and	name	C)	(resid	18	and	name	N)				
	(resid	18	and	name	CA)	(resid	18	and	name	C)	1	-59	30	2
accian	recid	12	and	name	<u>c</u>)	Tracid	10	and	name	Νí				
assign	(resid	10	410	manne	2.	(I cold	10		Hallie		1		20	~
	(resid	19	and	name	CA)	(resia	19	and	name	0)	1	-28	30	2
assign	(resid	19	and	name	C)	(resid	20	and	name	N)				
5	Tesid	20	and	name	CÁD	Óresid	20	and	name	сí	1	-125	33	2
	(resid	21	and a			(nonid	22	and		Ň	•	120	00	-
assign	(resid	21	and	name	<u> </u>	(resid	22	anu	name	N				
	(resid	22	and	name	CA)	(resid	22	and	name	C)	1	-120	31	2
assign	resid	22	and	name	C	(resid	23	and	name	N)				
	Tesid	23	and	name	ČÁ)	regid	23	and	name	Cί	1	-119	55	2
	(resid	23	410	name		(resid	23	and	manie	Ň	•	-117	55	-
assign	(resid	23	and	name	C)	(resid	24	and	name	N)				
	(resid	24	and	name	CA)	(resid	24	and	name	C)	1	-120	48	2
assign	(resid	24	and	name	CÚ	(resid	25	and	name	NÌ				
	(manid	25	and		ē.	(ragid	25	and	n ama	C S	1	-110	12	2
	(resid	25	and	name	CA)	(Testu	25	2010	name		T	-115	42	4
assign	(resid	29	and	name	C)	(resid	30	and	name	N)				
	(resid	30	and	name	CA)	(resid	30	and	name	C)	1	-66	30	2
accion	(recid	31	and	name	C Ú	Tresid	32	and	name	NÍ				
assign	(I cold	20	and	manie	~~	(resid	22	and	manie		1	<i>c</i> 1	20	2
	(resia	32	and	name	CA)	(resid	32	and	name	C)	1	-01	30	4
assign	(resid	32	and	name	C)	(resid	33	and	name	N)				
•	Tesid	33	and	name	CÁ)	resid	33	and	name	CÍ	1	-69	30	2
	(nonid	22	and		6.5	(racid	24	and		ŇŃ	-			-
assign	(resid	33	and	name		(iesiu	34	anu	name				~~	•
	(resid	34	and	name	CA)	(resid	34	and	name	C)	1	-67	30	2
assign	resid	34	and	name	C)	(resid	35	and	name	N)				
	resid	35	and	name	CÁI	resid	35	and	name	сí	1	-57	30	2
	(resid	27	and	1100110		(resid	20	and		N	•	• •		-
assign	(resid	31	and	name	C)	(resid	30	and	name	N)			••	
	(resid	38	and	name	CA)	(resid	38	and	name	C)	1	-37	30	2
assign	(resid	38	and	name	C)	(resid	39	and	name	N)				
0	resid	39	and	name	CÁ)	Ìresid	39	and	name	сí	1	-64	30	2
	(nonid	40	and			(marid	41	and		ŇŃ	-			-
assign	(resid	40	and	name		(Testu	41	anu	name			-		~
	(resid	41	and	name	CA)	(resid	41	and	name	C)	1	-67	30	2
assign	(resid	44	and	name	C)	(resid	45	and	name	N)				
0	Tesid	45	and	name	CÁ)	Ìresid	45	and	name	сí	1	-120	46	2
	(resid	45	and	1101110		(and	16	and		N				-
assign	(resid	45	and	name		(resid	40	ano	name	N I		50	465	~
	(resid	46	and	name	CA)	(resid	46	and	name	C)	1	-39	46.5	-2
assign	(resid	47	and	name	C)	(resid	48	and	name	N)				
	racid	18	and	name	CÁN	resid	48	and	name	cí	1	-51	35	2
	(resid	70		manie	Ch,	(10010	21			Ň	•	~ 1		-
assign	(resid	20	and	name	U)	(resid	21	ano	name	IN)			~ -	-
	(resid	51	and	name	CA)	(resid	51	and	name	C)	1	-54	35	2
assion	recid	51	and	name	СŃ	(resid	52	and	name	ΝŃ				
assign	(I USIG	50			~~	(manial	50				1	.60	35	n
	(resid	52	and	name	CA)	(resid	52	anu	manne	52	1	-07	55	4
assign	(resid	52	and	name	C)	(resid	53	and	name	N)		- ·		-
-	(resid	53	and	name	CA)	(resid	53	and	name	C)	1	-54	35	2
accion	(recid	52	and	name	c)´	Tesid	54	and	name	ΝŃ				
assign	(L'USIU	55		114110	~	(10010	54			24	1	57	25	n
	(resid	54	and	name	CA)	(resid	54	and	name		1	-57	55	4
assign	(resid	54	and	name	C)	(resid	55	and	name	N)				
Ũ	resid	55	and	name	CÁ)	(resid	55	and	name	C)	1	-58	35	2
	·				-,	· · · · ·	-							

· · · ·	/ .,	~ ~			<u> </u>	1								
assign	(resid	22	and	name	C)	(resid	56	and	name	N)			
	(resid	56	and	name	CA)	(resid	56	and	name	C) 1	-65	35	2
assion	Íresid	56	and	name	CÚ	Óresid	57	and	name	N	5			
assign	(resid	57	and	mame	~	(resid	57	and	Hame		<u> </u>	<i>(</i>)	25	•
	(resid	57	and	name	CA)	(resid	27	and	name	C,) 1	-62	30	2
assign	(resid	57	and	name	C)	(resid	58	and	name	N)			
	(resid	58	and	name	CÁ)	resid	58	and	name	C `	1	-54	30	2
anim	(and	50	and			(manid	60	and		N S	<u> </u>	5.		~
assign	(resid	59	and	name	C)	(resid	00	and	name	IN)			-
	(resid	60	and	name	CA)	(resid	60	and	name	C) 1	-54	30	2
assign	resid	60	and	name	CÚ	resid	61	and	name	N)			
	(manid	<i>2</i> 1	and		Č ÁN	(manid	61	and		- A	(1	(2)	20	2
	(resid	01	and	name	CA)	(resid	01	and	name	C () 1	-02	30	2
assign	(resid	61	and	name	C)	(resid	62	and	name	N)			
	resid	62	and	name	CA)	resid	62	and	name	C S	1	-63	30	2
	(manid	62	and			(and	62	and		Ň	<u> </u>	05	50	~
assign	(resid	02	and	name	C)	(resid	03	and	name	IN)			-
	(resid	63	and	name	CA)	(resid	63	and	name	C)) 1	-79	30	2
assign	(resid	65	and	name	C)	(resid	66	and	name	N)			
	(regid	66	and	name	ČÁ)	(recid	66	and	name	C S	1	.119	50	2
	(resid	00	4110	name		(I cold		414	mane	- Nor d	, 1	-110	57	4
assign	(resia	66	and	name	0)	(resid	67	and	name	N,)			
	(resid	67	and	name	CA)	(resid	67	and	name	C)) 1	-120	32	2
assion	Ìresid	67	and	name	CÚ	Íresid	68	and	name	N	`			
assign	(resid	6		manie	~ ~ ~	(resid	20		maine	2		100	20	•
	(resid	68	and	name	CA)	(resid	08	and	name	C,) 1	-120	30	2
assign	(resid	68	and	name	C)	(resid	69	and	name	N)			
_	(resid	69	and	name	CA)	(resid	69	and	name	C	1	-120	45	2
occiam	(rouid	60	and		C Y	(recid	70	and		N	· -			-
assign	(Tesiu	09	anu	name		(Testu	70	anu	name	1	,			-
	(resid	70	and	name	CA)	(resid	70	and	name	C)) 1	-120	57	2
assign	(resid	70	and	name	C)	(resid	71	and	name	N)			
	(racid	71	and	nome	Γ.Λ.	regid	71	and	nama	C i	1	120	51	2
	(Tesia	/1	and	name	CA)	(Tesia	/1	anu	name		1	-120	21	2
assign	(resid	72	and	name	C)	(resid	73	and	name	N)			
	(resid	73	and	name	CA)	(resid	73	and	name	C) 1	-58	30	2
accian	(recid	72	and	nama	<u>c</u>)	racid	74	and	nama	N	· -			-
assign	(resid	75	مالله	name		(Testu	/4	and	name		· .			•
	(resid	74	and	name	CA)	(resid	74	and	name	C)) 1	-65	30	2
assign	(resid	74	and	name	C)	(resid	75	and	name	N)			
	(recid	75	and	name	ČÁ)	resid	75	and	name	C	1	-80	30	2
•	(Testu	75	and	mane		(resid	75		name		1	-80	50	2
assign	(resid	75	and	name	C)	(resid	76	and	name	N)			
	(resid	76	and	name	CA)	(resid	76	and	name	C)) 1	-71	30	2
assion	resid	76	and	name	CΎ	resid	77	and	name	N	`			
asign	(icold	70	and	mame	a.	(resid		and a	mame			64	20	~
	(resid	11	ano	name	CA)	(resia	//	and	name	U,) 1	-04	30	2
assign	(resid	77	and	name	C)	(resid	78	and	name	N)			
•	Óresid	78	and	name	CÁ)	(resid	78	and	name	C i	1	-68	30	2
	(resid	70	and	manne		(resid	00		mame	N		-00	50	-
assign	(resid	/9	and	name	C)	(resid	80	and	name	IN .)			_
	(resid	80	and	name	CA)	(resid	80	and	name	C)) 1	-70	30	2
assign	(resid	80	and	name	CÚ	resid	81	and	name	N)			
	(manid	01	and		- ČÁN	(ragid	01	and		C S	1	70	20	2
	(resid	81	and	name	CA)	(resid	01	and	name		1	-70	30	4
assign	(resid	82	and	name	C)	(resid	83	and	name	N)			
	(resid	83	and	name	CA)	(resid	83	and	name	CÌ	1	-73	30	2
assign	(regid	82	and	nama	C Y	(recid	81	and	name	N	_			
assign	(Tesiu	83	and	name		(Testu	04	anu	manne	1			-	•
	(resid	84	and	name	CA)	(resid	84	and	name	C)) 1	-77	30	2
assign	(resid	84	and	name	C	(resid	85	and	name	N)			
	(rooid	95	and	nama	ČÁ)	resid	85	and	name	C i	1	-66	30	2
	(Testu	85	anu	name	CA)	(Tesiu	20	autu	name			-00	50	-
assign	(resid	85	and	name	C)	(resid	86	and	name	N))			
	(resid	86	and	name	CA)	(resid	86	and	name	C)) 1	-96	30	2
accian	Travid	88	and	name	C)	resid	89	and	name	N	`			
assign	(i calu	00	1	mame	Š.	(I Cold		and	mame	- in i		<i>c</i> 0	20	~
	(resid	89	and	name	CA)	(resid	89	and	name	U,) 1	-60	30	2
assign	(resid	90	and	name	C)	(resid	91	and	name	N)			
-	Óresid	91	and	name	CÁ)	resid	91	and	name	CÍ	1	-120	46	2
	(nonid	01	and			(marid	07	and		N	-			-
assign	(Testa	21	and	name		acsia	72	anu	manne	1	· .		~ .	•
	(resid	92	and	name	CA)	(resid	92	and	name	- C)		-120	34	2
assign	(resid	92	and	name	C)	(resid	93	and	name	N)			
	resid	03	and	name	CÁN	regid	93	and	name	C	1	-120	34	2
	(resid	<i>33</i>		manie		(i cold	22	and	name	- N	1	-120	54	-
assign	(resid	93	and	name	C)	(resid	94	and	name	N,)			
	(resid	94	and	name	CA)	(resid	94	and	name	C)) 1	-72	30	2
accion	Tresid	Q 4	and	name	CÚ	resid	95	and	name	N)			
assign	(itesid	27	4110	mane	~ ~ · ·	(10010	05		Indino		· .	70	20	2
	(resid	95	and	name	CA)	(resia	95	and	name	U)) 1	-70	30	2
assign	(resid	95	and	name	C)	(resid	96	and	name	N)			
0	resid	96	and	name	CÁI	resid	96	and	name	C	1	-59	30	2
	(10310	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1141110		(07	an 1		Ň				~
assign	(resid	90	and	name	U)	(resia	91	and	name	IN)			-
	(resid	97	and	name	CA)	(resid	97	and	name	C) 1	-120	36	2
assion	Tesid	97	and	name	CΎ	resid	98	and	name	N)			
assign	(10310	00			~~	(10510	00	and		\hat{c}	(1	65	20	2
	(resid	98	and	name	CA)	(resid	98	and	name	U)	, 1	-03	50	2
assign	(resid	98	and	name	C)	(resid	99	and	name	N)			
0	Tesid	99	and	name	CÁN	resid	99	and	name	C S	1	-120	42	2
	(10310	100		114110		(10010	101	ar J		Ň	, 1			~
assign	(resid	100	and	name	U)	(resid	101	and	name	IN)			-
	(resid	101	and	name	CA)	(resid	101	and	name	C) 1	-65	30	2
assion	resid	101	and	name	CΎ	resid	102	and	name	N)			
and the second	(10510	102			č.	(manial	102	and		ĉ	(I	120	20	2
	(resia	102	and	name	CA)	resid	102	and	name	5	, 1	-120	37	2
assign	(resid	102	and	name	C)	(resid	103	and	name	N)			
5	resid	103	and	name	CÁI	(resid	103	and	name	\mathbf{C}^{3}) 1	-90	30	2
	(100				(mani d	104	لمسم		N	<u>`</u>		20	-
assign	(resta	103	anu	name	υ,	(resid	104	anu	manic	1.	,			

												App	pendix	: C	Restraints
	(resid	104	and	name	CA)	(resid	104	and	name	C)	1	-76	30	2	
assign	(resid (resid	104 105	and and	name name	C) CA)	(resid (resid	105 105	and and	name name	N) C)	1	-75	30	2	
!chil ang	les from	the stered	-specific a	ssignment		•				,				-	
assign	(resid	4	and	name	N)	(resid	4	and	name	CA)	1	105	20	2	
assion	(resid	4	and	name		(resid	4	and	name	C(GI)	1	185	30	2	
4001511	(resid	5	and	name	CB)	(resid	5	and	name	CG	1	60	30	2	
assign	(resid	7	and	name	N)	resid	7	and	name	CA)	-				
	(resid	7	and	name	CB)	(resid	7	and	name	CG)	1	60	30	2	
assign	(resid	9	and	name	N)	(resid	9	and	name	CA)	1	100	20	2	
assign	(resid	10	and	name	N)	(resid	10	and	name	CA)	1	160	30	2	
	(resid	10	and	name	CB)	(resid	10	and	name	CG1)	1	180	30	2	
assign	(resid	12	and	name	N)	(resid	12	and	name	CA)				-	
antim	(resid	12	and	name	CB)	(resid	12	and	name	CG)	1	180	30	2	
assign	(resid	14	and	name	CB)	(resid	14	and	name	CG)	1	180	30	2	
assign	(resid	16	and	name	N)	(resid	16	and	name	CA)	•	100	50	-	
	(resid	16	and	name	CB)	(resid	16	and	name	CG)	1	180	30	2	
assign	(resid	17	and	name	N)	(resid	17	and	name	CA)		100		~	
accion	(resid	17	and	name	CB)	(resid	17.	and	name		1	180	30	2	
assign	(resid	18	and	name	CB)	(resid	18	and	name	CG1)	1	-60	30	2	
assign	resid	19	and	name	N)	resid	19	and	name	CA) ́				_	
	(resid	19	and	name	CB)	(resid	19	and	name	CG)	1	60	30	2	
assign	(resid	20	and	name	N) CB)	(resid	20	and	name	CA)	1	60	20	2	
assign	(resid	22	and	name	N)	(resid	20	and	name	CA)	1	00	30	2	
	(resid	22	and	name	CB)	(resid	22	and	name	CG)	1	-60	30	2	
assign	(resid	23	and	name	N)	(resid	23	and	name	CA)		~~	••	-	
assion	(resid	23	and	name	CB)	(resid	23	and	name	CG)	1	60	30	2	
assign	(resid	24	and	name	CB)	(resid	24	and	name	OGI)	1	180	20	2	
assign	(resid	25	and	name	N)	(resid	25	and	name	CA)					
•	(resid	25	and	name	CB)	(resid	25	and	name	CG)	1	-60	30	2	
assign	(resid	30	and	name	N) CB)	(resid	30	and	name	CA)	1	180	20	2	
assign	(resid	31	and	name	N)	(resid	31	and	name	CA)	1	100	20	4	
Ū	(resid	31	and	name	CB)	(resid	31	and	name	CG1)	1	185	30	2	
assign	(resid	33	and	name	N)	(resid	33	and	name	CA)		<i>c</i> 0	20	•	
assign	(resid	33 34	and	name	N)	(resid	33 34	and	name	CA)	1	-60	30	2	
	(resid	34	and	name	CB)	(resid	34	and	name	CG)	1	-60	30	2	
assign	(resid	35	and	name	N)	(resid	- 35	and	name	CA)		~~		-	
assion	(resid	35	and	name	CB)	(resid	35	and	name	CG)	1	60	30	2	
assign	(resid	36	and	name	CB)	(resid	36	and	name	CG)	1	-60	30	2	
assign	(resid	39	and	name	N)	(resid	39	and	name	CA)	-			-	
•	(resid	39	and	name	CB)	(resid	39	and	name	OG)	1	60	30	2	
assign	(resid	42 47	and	name	N) CB)	(resid	42	and	name	CA)	1	60	30	2	
assign	(resid	43	and	name	N)	(resid	43	and	name	CA)	1	00	50	2	
	(resid	43	and	name	CB)	(resid	43	and	name	CG1)	1	-60	30	2	
assign	(resid	44	and	name	N)	(resid	44	and	name	CA)	1	60	20	2	
assign	(resid	44	and	name	N)	(resid	47	and	name	COI)	1	00	30	2	
<u>-</u>	(resid	47	and	name	CB)	(resid	47	and	name	CG)	1	180	30	2	
assign	(resid	48	and	name	N)	(resid	48	and	name	CA)		100		•	
assion	(resid	48 50	and	name	N)	(resid	48 50	and	name	CA)	I	180	20	2	
assign	(resid	50	and	name	CB)	(resid	50	and	name	CG1)	1	185	30	2	
assign	(resid	51	and	name	N)	(resid	51	and	name	CA)					
	(resid	51	and	name	CB)	(resid	51	and	name	CG)	1	-60	30	2	
assign	(resid	52 52	and	name	CB)	(resid	52 52	and	name	CG)	1	180	30	2	
assign	(resid	53	and	name	N)	(resid	53	and	name	CA)	-			-	
	(resid	53	and	name	CB)	(resid	53	and	name	CG)	1	60	30	2	
assign	(resid	57 57	and	name	N) CB)	(resid	57 57	and	name	CA)	1	190	30	2	
assign	(resid	58	and	name	N)	(resid	58	and	name	CA)	1	100	50	4	
	(resid	58	and	name	CÉ)	(resid	58	and	name	CG)	1	180	30	2	
assign	(resid	59	and	name	N)	(resid	59	and	name	CA)	1	~~	20	2	
assion	(resid	59 61	and	name	CB)	(resid	59 61	and	name	CG) CA)	1	-60	30	2	
الغادسه	(resid	61	and	name	CB)	(resid	61	and	name	CG)	1	180	30	2	
assign	(resid	62	and	name	N)	(resid	62	and	name	CAĴ					

												App	oendi	x C	Restraints
	(resid	62	and	name	CB)	(resid	62	and	name	CG)	1	- 60	30	2	
assign	(resid	65	and	name	N)	(resid	65	and	name	CA)	1	-00	50	2	
0	(resid	65	and	name	CB)	(resid	65	and	name	OG1)	1	-60	20	2	
assign	(resid	67	and	name	N)	(resid	67	and	name	CA)	-			_	
-	(resid	67	and	name	CB)	resid	67	and	name	CG1)	1	180	30	2	
assign	(resid	68	and	name	N)	resid	68	and	name	CA)					
	(resid	68	and	name	CB)	(resid	68	and	name	CG)	1	180	30	2	
assign	(resid	69	and	name	N)	(resid	69	and	name	CA)					
	(resid	69	and	name	CB)	(resid	69	and	name	CG)	1	-60	30	2	
assign	(resid	70	and	name	N)	(resid	70	and	name	CA)					
	(resid	70	and	name	CB)	(resid	70	and	name	CG)	1	180	30	2	
assign	(resid	71	and	name	N)	(resid	71	and	name	CA)					
	(resid	71	and	name	CB)	(resid	71	and	name	CG)	1	180	30	2	
assign	(resid	74	and	name	N)	(resid	74	and	name	CA)					
	(resid	74	and	name	CB)	(resid	74	and	name	CG)	1	60	30	2	
assign	(resid	75	and	name	N)	(resid	75	and	name	CA)					
	(resid	75	and	name	CB)	(resid	75	and	name	CG)	1	180	30	2	
assign	(resid	76	and	name	N)	(resid	76	and	name	CA)					
	(resid	76	and	name	CB)	(resid	76	and	name	CG)	1	-60	30	2	
assign	(resid	77	and	name	N)	(resid	77	and	name	CA)	-			-	
	(resid	77	and	name	CB)	(resid	77	and	name	CG)	1	-60	30	2	
assign	(resid	79	and	name	N)	(resid	79	and	name	CA)				_	
	(resid	79	and	name	CB)	(resid	79	and	name	OGI)	1	-60	30	2	
assign	(resid	81	and	name	N)	(resid	81	and	name	CA)		~~	• •	_	
•	(resid	81	and	name	CB)	(resid	81	and	name	CGI)	1	-60	30	2	
assign	(resid	85	and	name	N)	(resid	85	and	name	CA)		~	••	~	
	(resid	85	and	name	CB)	(resid	85	and	name	CG)	I	60	30	2	
assign	(resid	87	and	name	N)	(resid	87	and	name	CA)		~~	•••	~	
	(resid	8/	and	name	CB)	(resid	87	and	name	CGI)	1	60	30	2	
assign	(resid	89	and	name	N)	(resid	89	and	name	CA)		<i>c</i> 0	20	~	
	(resid	89	and	name	CB)	(resid	89	and	name	CGI)	1	60	30	2	
assign	(resid	90	and	name		(Itsid	90	and	name	CA)	,	105	20	2	
accion	(resid	01	and	name	ND ND	(Tesid	90	and	name		1	165	30	4	
assign	(resid	01	and	name		(resid	01	and	name		1	190	20	2	
accion	(resid	02	and	name	N)	(resid	02	and	name		1	180	30	2	
assign	(resid	92	and	name	CB	(resid	02	and	name	CAJ	1	60	20	2	
accian	(resid	92	and	name	N)	(resid	92	and	name		1	-00	30	2	
assign	(resid	94	and	name	CB	(resid	94	and	name	CG)	1	60	30	2	
assion	(resid	97	and	name	N)	resid	97	and	name		1	00	50	2	
assign	(resid	97	and	name	CB	(resid	97	and	name	CG)	1	180	30	2	
assion	(resid	99	and	name	N)	(resid	99	and	name			100	50	4	
	(resid	99	and	name	CB)	(resid	99	and	name	CG	1	60	30	2	
assign	(resid	100	and	name	N)	(resid	100	and	name	CA		00	50	4	
	(resid	100	and	name	CB)	resid	100	and	name	CGD	1	60	30	2	
set echo	= on end				,	(- 5010					•			-	

set message = on end

restraint dihedra reset set echo = off end set message = off end !RNA dihedral restraints L30N_dih.tbl !planar restraints to keep amino protons in bases pairs from flipping !lst number is energy constant, 2nd dihedral angle, 3rd range, and 4th exponential function

assign	(resid	201	and	name	H22)	(resid	201	and	name	N2)				
_	(resid	201	and	name	C2)	(resid	201	and	name	N1)	1	0	5	2
assign	(resid	202	and	name	H22)	resid	202	and	name	N2)				
	(resid	202	and	name	C2)	(resid	202	and	name	N1)	1	0	5	2
assign	(resid	203	and	name	H62)	(resid	203	and	name	N6)				
	(resid	203	and	name	C6)	(resid	203	and	name	N1)	1	0	5	2
assign	(resid	204	and	name	H42)	(resid	204	and	name	N4)				
	(resid	204	and	name	C4)	(resid	204	and	name	N3)	1	0	5	2
assign	(resid	205	and	name	H42)	(resid	205	and	name	N4)			_	_
	(resid	205	and	name	C4)	(resid	205	and	name	N3)	1	0	5	2
assign	(resid	200	and	name	H_{22})	(resid	206	and	name	N2)		^	-	~
accion	(resid	200	and	name	U2)	(resid	200	and	name		1	0	3	2
assign	(resid	207	and	name	(2^{1122})	(resid	207	and	name	NL)	1	٥	٤	2
assion	(resid	207	and	name	H62)	(resid	207	and	name	NG)	Ţ	0	3	2
unoi Bri	(resid	208	and	name	$C6^{\circ}$	(resid	208	and	name	NI)	1	٥	5	2
assign	(resid	209	and	name	H22)	(resid	209	and	name	N2)	•	Ŭ	2	~
0	resid	209	and	name	C2)	(resid	209	and	name	N1)	1	0	5	2
assign	resid	211	and	name	H22)	resid	211	and	name	N2)				-
	(resid	211	and	name	C2)	(resid	211	and	name	N1)	1	0	5	2
assign	(resid	213	and	name	H42)	(resid	213	and	name	N4)				
	(resid	213	and	name	C4)	(resid	213	and	name	N3)	1	0	5	2
assign	(resid	214	and	name	H22)	(resid	214	and	name	N2)				
	(resid	214	and	name	C2)	(resid	214	and	name	N1)	1	0	5	2
assign	(resid	215	and	name	H42)	(resid	215	and	name	N4)			_	
•	(resid	215	and	name	C4)	(resid	215	and	name	N3)	1	0	5	2
assign	(resid	216	and	name	H62)	(resid	216	and	name	N6)		•	_	-
	(resid	216	and	name		(resid	216	and	name	NI)	1	0	5	2
assign	(resid	217	and	name	(102)	(resid	217	and	name		1	0	F	•
assion	(resid	217	and	name	H22 \	(resid	217	and	name		1	U		2
assign	(resid	218	and	name	C^2	(resid	218	and	name	NI)	1	0	5	2
assign	(resid	219	and	name	H62)	(resid	219	and	name	NG 1	•	v	5	~
	(resid	219	and	name		(resid	219	and	name	NI	1	0	5	2
assign	(resid	220	and	name	H42)	(resid	220	and	name	N4)	-	•	2	-
U	(resid	220	and	name	C4)	(resid	220	and	name	N3)	1	0	5	2
assign	(resid	221	and	name	H22)	resid	221	and	name	N2)				
	(resid	221	and	name	C2)	resid	221	and	name	NI)	1	0	5	2
assign	(resid	222	and	name	H42)	(resid	222	and	name	N4)				
_	(resid	222	and	name	C4)	(resid	222	and	name	N3)	1	0	5	2
assign	(resid	223	and	name	H62)	(resid	223	and	name	N6)				
	(resid	223	and	name	C6)	(resid	223	and	name	N1)	1	0	5	2
assign	(resid	224	and	name	H22)	(resid	224	and	name	N2)		•	-	•
annian	(resid	224	and	name	U_2	(resid	224	and	name	NI)	1	U	2	2
assign	(resid	225	and	name		(resid	225	and	name	NO)	1	0	5	2
assion	(resid	225	and	name	H22)	(resid	225	and	name	N2)	1	U	5	2
assign	(resid	226	and	name	(122)	(resid	226	and	name	NI)	1	0	5	2
assign	(resid	227	and	name	H62)	(resid	227	and	name	N6)	-	Ũ	2	~
-	(resid	227	and	name	C6)	(resid	227	and	name	N1)	1	0	5	2
assign	resid	229	and	name	H22´)	resid	229	and	name	N2)				
	(resid	229	and	name	C2)	(resid	229	and	name	N1)	1	0	5	2
assign	(resid	230	and	name	H22)	(resid	230	and	name	N2)				
	(resid	230	and	name	C2)	(resid	230	and	name	N1)	1	0	5	2
assign	(resid	232	and	name	H42)	(resid	232	and	name	N4)	-		-	
	(resid	232	and	name	(C4)	(resid	232	and	name	N3)	1	0	5	2
assign	(resid	233	and	name	H42)	(resid	233	and	name	N4)		•	-	~
	(resia	255	and	name	(4)	(resia	233	and	name	N3)	1	0	2	2
Glycosi	idic const	rainte												
assion	(resid	201	and	name	04')	(resid	201	and	name	CI')				
	(resid	201	and	name	N9)	(resid	201	and	name		1	190	100	2
assign	(resid	202	and	name	04' 1	(resid	202	and	name	CI'S	-			-
	(resid	202	and	name	N9)	(resid	202	and	name	C4 ý	1	190	100	2
assign	resid	203	and	name	04' Ś	resid	203	and	name	Cľ Ś				
-	(resid	203	and	name	N9)	(resid	203	and	name	C4)	1	190	100	2
assign	(resid	204	and	name	O4')	(resid	204	and	name	C1')				
	(resid	204	and	name	N1)	(resid	204	and	name	C2)	1	190	100	2
assign	(resid	205	and	name	04')	(resid	205	and	name	C1')				
	(resid	205	and	name	N1)	(resid	205	and	name	C2)	1	190	100	2

annian	(marined	204	and		O(1)	(manial	201	- 1		011	`			
assign	(iesid	200	and	name	04)	(resid	200	and	name	Cr)			
	(resid	206	and	name	N9)	(resid	206	and	name	C4)) 1	190	100	2
assign	(resid	207	and	name	O4')	resid	207	and	name	C1')			
	resid	207	and	namo	NO	(recid	207	and		CA S	. .	100	100	2
•	(Tesid	207		name	19	(Tesia	207	and	name	04) 1	190	100	2
assign	(resid	208	and	name	04')	(resid	208	and	name	Cl)			
	(resid	208	and	name	N9)	(resid	208	and	name	C4)) 1	190	100	2
assign	(resid	209	and	name	04' Ú	resid	209	and	name	C11 2	, - ,			-
	(reald	200	and	mame	NO	(resid	200	and a	name			100	100	~
	(resid	209	and	name	(PN	(resia	209	and	name	C4)) 1	190	100	2
assign	(resid	210	and	name	04')	(resid	210	and	name	C1')			
	(resid	210	and	name	N1)	resid	210	and	name	C2 1	í 1	190	100	2
accion	resid	211	and	name	ON S	(recid	211	and		011			100	-
assign	(i coid	211	and	name	04)	(I cold	211	auu	name		, _.			-
	(resid	211	and	name	N9)	(resid	211	and	name	C4)) 1	190	100	2
assign	(resid	212	and	name	O4')	(resid	212	and	name	Cl.)			
-	resid	212	and	name	NIŃ	(resid	212	and	name	C2 1	1	190	100	2
a a a i a a	(manid	212	and		ON S	(nonid	012	and a	manie			170	100	~
assign	liesiu	215	and	name	04)	(resid	215	and	name	CI.)			
	(resid	213	and	name	NI)	(resid	213	and	name	C2)) 1	190	100	2
assign	(resid	214	and	name	04')	(resid	214	and	name	C1')			
•	resid	214	and	name	N9)	(resid	214	and	name	C4	1	190	100	2
assign	(read	215	and			(readid	215	and				170	100	~
assign	(resid	215	and	name	04)	(resid	215	and	name	UT ,)			_
	(resid	215	and	name	NI)	(resid	215	and	name	C2)) 1	190	100	2
assign	(resid	216	and	name	04')	(resid	216	and	name	C1')			
0	Tresid	216	and	name	NOÍ	Tesid	216	and	name	CA S	1	100	100	2
	(Tesid	210	4110	manie		(I cold	210	4110	Indiffe			170	100	4
assign	(resia	217	and	name	04)	(resia	217	and	name	Cr ,)			
	(resid	217	and	name	N9)	(resid	217	and	name	C4)) 1	190	100	2
assign	(resid	218	and	name	O4' \	resid	218	and	name	C1' `)			
	ranid	218	and		NO	(read	210	and		Ci S		100	100	2
	(resid	218	and	name	Ny)	(resid	218	and	name	(4)	1	190	100	2
assign	(resid	219	and	name	04')	(resid	219	and	name	C1')			
	(resid	219	and	name	N9)	resid	219	and	name	C4)	1	190	100	2
assign	racid	220	and	nama	ON'S	resid	220	and		Cir S	、 -			-
assign	trestu	220	and	name	04)	(Tesid	220		name		, .			•
	(resia	220	and	name	NI)	(resid	220	and	name	- C2)	1	190	100	2
assign	(resid	221	and	name	04')	(resid	221	and	name	C1')			
-	resid	221	and	name	N9)	resid	221	and	name	C4)	1	190	100	2
assion	(resid	222	and	nama	04'5	(resid	222	and	nama	CIL	· -			-
assign	(resid	222		name		(resid	222	and	name		'.	100		•
	(resid	222	and	name	NI)	(resid	222	and	name	- C2)		190	100	2
assign	(resid	223	and	name	04')	(resid	223	and	name	C1')			
U	(resid	223	and	name	N9 j	(resid	223	and	name	C4 Ú	1	190	100	2
	(resid	224	and	mamo	ON'S	(resid	224	and	manne			170	100	~
assign	(resid	224	and	name	04)	(resid	224	and	name)			-
	(resid	224	and	name	N9)	(resid	224	and	name	C4)	1	20	100	2
assign	(resid	225	and	name	O4')	(resid	225	and	name	C1')			
•	Tesid	225	and	name	Ngí	resid	225	and	name	C4 5	1	190	100	2
	(resid	226	and	mamo	ON'S	(resid	220	and	maine			170	100	~
assign	(resid	226	and	name	04)	(resid	226	and	name	UL,)			
	(resid	226	and	name	N9)	(resid	226	and	name	C4)	1	190	100	2
assign	resid	227	and	name	O4')	(resid	227	and	name	C1' `)			
	Tracid	227	and	name	NO	regid	227	and	name	CA S	1	100	100	2
•	(resid	227	410	maine		(resid	227		name			170	100	2
assign	(resia	228	and	name	(04°)	(resia	228	and	name	UP))			
	(resid	228	and	name	N1)	(resid	228	and	name	C2)	1	190	100	2
assign	resid	229	and	name	O4')	resid	229	and	name	C1' 1)			
	(recid	229	and	name	NO	(resid	220	and	name		1	190	100	2
	(Testu	222	and	name		(Testu	227		manie		1	170	100	2
assign	(resid	230	and	name	(04°)	(resid	230	and	name	$C\Gamma$)			-
	(resid	230	and	name	N9)	(resid	230	and	name	C4)	1	190	100	2
assign	resid	231	and	name	O4')	resid	231	and	name	C1')			
	(recid	231	and	name	NIN	recid	231	and	name	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	1	190	100	2
•	(i esiu	231		name		(resid	231	and	name		1	170	100	2
assign	(resid	232	and	name	04)	(resid	232	and	name	Cr j)			_
	(resid	232	and	name	N1)	(resid	232	and	name	C2)	1	190	100	2
assign	(resid	233	and	name	04')	(resid	233	and	name	CI)			
	(resid	233	and	name	NIN	resid	233	and	name	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	1	190	100	2
	(Testa	255	anu	name	MI)	(resid	455	and	name	C2)	1	170	100	-
!C3'-endo	o constrai	nts delta	and nu2 o	nly										
				•										
accion	(recid	202	and	name	051)	(recid	202	and	name	CAL Y	`			
assign	(1 colu	202	anu	Hallie		(iesiu	202	anu	name		< .	00	-	~
	(resid	202	and	name	C3')	(resid	202	and	name	03') 1	82	30	2
assign	(resid	202	and	name	Cl')	(resid	202	and	name	C2')			
0	irecid	202	and	name	C21 S	Tresid	202	and	name	C4' 5	1	38	30	2
	(10010	202	and 1	The second		(nonid	202		100110	04	, 1	50	50	~
assign	resid	203	and	name	(10)	(resia	203	and	name	04	2		• •	-
	(resid	203	and	name	C3')	(resid	203	and	name	03') 1	82	30	2
assign	(resid	203	and	name	C1' \	(resid	203	and	name	C2')			
	(rooid	202	and	name	Carl	(rocid	202	and	nama	C/r	<u> </u>	38	30	r
	(I CSIU	203	ل الله	name		(Testu	203		Hallie	04	, 1	50	50	4
assign	(resid	204	and	name	CS')	(resid	204	and	name	C4')			
	(resid	204	and	name	C3')	(resid	204	and	name	03') 1	82	30	2
assion	resid	204	and	name	C1' \	resid	204	and	name	C2')			
	(10014	204	ل مو			(manid	204	and		CAL S	<u>́</u> 1	20	30	2
•	(resid	204	and	name		(Testu	204	alu	Halle	<u> </u>	, 1	20	50	4
assign	(resid	210	and	name	CS')	(resid	210	and	name	C4'))			
	(resid	210	and	name	C3')	(resid	210	and	name	O3' `) 1	82	30	2
assion	resid	210	and	name	CĽŚ	resid	210	and	name	C2'	,			
	(ranid	210	and		Cri ((read	210	and		CA: \$	<u> </u>	20	30	2
	(resid	210	and	name	(3)	resid	210	and	name	U4	, 1	20	20	2
assign	(resid	211	and	name	C5')	(resid	211	and	name	C4')			
-	(resid	211	and	name	C3' \	(resid	211	and	name	O3' ²) 1	82	30	2
	·				/	· · · · · · · · · · · · · · · · · · ·					, -	-		-

Appendix C Restraints

!	1	011	-		011.	(i-d	211	- -		(2)				
assign	(resid	211	and	name		(resid	211	and	name			-	••	•
	(resid	211	and	name	C3)	(resid	211	and	name	$C4^{\prime}$)	1	38	30	- 2
assign	(resid	212	and	name	C5')	(resid	212	and	name	C4')				
	regid	212	and	name	City	resid	212	and	name	03' Ú	1	82	30	2
• • • •	(itesite	212	and	Interio	<u> </u>	(resid	212	and			•		20	-
assign	(resid	212	and	name	(Γ)	(resid	212	and	name					-
	(resid	212	and	name	C3')	(resid	212	and	name	C4')	1	38	30	- 2
assign	resid	213	and	name	C5')	(resid	213	and	name	C4')				
	read	213	and	name	C21 1	Greet	213	and	name	ດຈະໂ	1	82	30	2
	(resid	215		name		(reald	012	and 	Indino		•	02	50	~
assign	(resid	213	and	name	Cr)	(resid	213	and	name	C2)				
	(resid	213	and	name	C3')	(resid	213	and	name	C4')	1	38	30	2
accion	Tresid	214	and	name	C5' \	(resid	214	and	name	C4')				
assign	(resid	214	and	manie	Carl	(read	214	and			1	87	20	2
	(resid	214	and	name	(3)	(resid	214	and	name	03)	T	04	30	2
assign	(resid	214	and	name	Cl')	(resid	214	and	name	C2')				
•	resid	214	and	name	C3' \	resid	214	and	name	C4')	1	38	30	2
anim	(monid	217	and	nama	CS S	recid	217	and	name	CA' S				
assign	(resid	217	and	name		(iesia	217	and	Inautic			00	20	~
	(resid	217	and	name	C3)	(resid	217	and	name	03')	1	82	30	2
assign	(resid	217	and	name	C1')	(resid	217	and	name	C2')				
	resid	217	and	name	C3' \	Ìresid	217	and	name	C4' \	1	38	30	2
•	(Testa	217	and	manie		(resid	210	and		Car S	•			-
assign	(resia	218	and	name	(\mathbf{S})	(resid	218	and	name	(4)	-	~~		
	(resid	218	and	name	C3')	(resid	218	and	name	O3')	1	82	30	2
assign	resid	218	and	name	C1')	(resid	218	and	name	C2')				
	(maid	210	and	n a m a	Cars	recid	218	and	name	C4' S	1	38	30	2
	(Tesia	210	and	name	05)	(Testu	210	and	name		-	50	50	2
assign	(resid	219	and	name	CS')	(resid	219	and	name	C4 ⁻)				
	(resid	219	and	name	C3')	(resid	219	and	name	O3')	1	82	30	2
accion	recid	219	and	name	CĽ Ś	(resid	219	and	name	C2')				
assign	(itesite	217	and	Indiio		(nonid	210	and		Cr S	1	20	20	2
	(resid	219	and	name	(3)	(resid	219	and	name	04	1	30	30	4
assign	(resid	220	and	name	C5')	(resid	220	and	name	C4')				
-	Íresid	220	and	name	C3')	(resid	220	and	name	03')	1	82	30	2
	(read	220	and	nama	CIT S	resid	220	and	name	C2' \				
assign	(resid	220	ano	name		(I CSIU	220	anu	Indille		,	20	20	~
	(resid	220	and	name	C3)	(resid	220	and	name	C4)	1	38	30	2
assign	(resid	221	and	name	C5')	(resid	221	and	name	C4')				
	Tesid	221	and	name	C3' \	resid	221	and	name	O3')	1	82	30	2
•	(ICSIG	221		Inditio	OU S	(manial	221	and		CPI S	-			-
assign	(resid	221	and	name	Ur)	(resid	221	and	name				••	•
	(resid	221	and	name	C3')	(resid	221	and	name	C4')	1	38	30	2
assign	(resid	222	and	name	C5'	(resid	222	and	name	C4')				
acoign	(monid	222	and	nome	Cari	(recid	222	and	name	03' 1	1	82	30	2
	(resid	222	and	Hame		(resid	222	and	hame		•	02	50	~
assign	(resid	222	and	name	Cr)	(resid	222	and	name	C_2				
	(resid	222	and	name	C3')	(resid	222	and	name	C4')	1	38	30	2
assim	resid	229	and	name	C5' 5	resid	229	and	name	C4' \				
assign	(Testu	227		manie		(resid	220	and			1	01	20	2
	(resid	229	and	name	(3°)	(resia	229	and	name	(03)	1	04	30	2
assign	(resid	229	and	name	C1')	(resid	229	and	name	C2')				
Ũ	resid	229	and	name	C3' \	resid	229	and	name	C4')	1	38	30	2
	(resid	220	and		CS)	(recid	220	and	name	CA' S	-			
assign	(resia	230	and	name	(5)	(resid	230	and	name				20	~
	(resid	230	and	name	C3')	(resid	230	and	name	(03°)	1	82	30	2
assign	resid	230	and	name	C1')	(resid	230	and	name	C2')				
unoign	(rooid	220	and	name	Cir S	resid	230	and	name	C4' Ń	1	38	30	2
	(lesid	230	410	mattic		(I Cold	230	and	1100110		•	50		-
assign	(resid	231	and	name	CS ⁽)	(resid	231	and	name	(4)				-
	(resid	231	and	name	C3')	(resid	231	and	name	O3')	1	82	30	2
accion	resid	231	and	name	CI Ú	Ìresid	231	and	name	C2' \				
assign	(Testu	231		name		(I COIG	001	and			1	20	20	2
	(resid	231	and	name	(3)	(resid	251	and	name	04	1	38	30	2
assign	(resid	232	and	name	C5')	(resid	232	and	name	C4')				
•	Íresid	232	and	name	C3')	resid	232	and	name	03')	1	82	30	2
anim	and	222	and	name	CIT S	Tresid	232	and	name	C2' \				
assign	(Testu	252	and	Indille		(icaid	232	and	Inditte		1	20	20	2
	(resid	232	and	name	C3 ^r)	(resid	232	and	name	(4)	1	38	30	2
assign	(resid	233	and	name	C5')	(resid	233	and	name	C4')				
0	Tresid	233	and	name	C3' \	Íresid	233	and	name	O3')	1	82	30	2
!	(resid	000				(manid	222	and	name	C2 S	-			
assign	(resid	233	and	name		(Testu	233	and	name			20	20	~
	(resid	233	and	name	C3')	(resid	233	and	name	C4 ⁻)	1	38	30	2
!C2' -end	do constra	aints delta	only											
assion	(resid	201	and	name	C5')	(resid	201	and	name	C4')				
morett	(10010	201	د. ام م		(2)	(rooid	201	and	name	Or i	1	140	50	2
	(resid	201	ano	name		(resid	201	anu	name		•	140	55	-
assign	(resid	207	and	name	CS [,])	(resid	207	and	name	(4)				~
-	(resid	207	and	name	C3')	(resid	207	and	name	O3')	1	140	30	2
accim	(recid	215	and	name	C5' 5	resid	215	and	name	C4' Ń				
assign	(1 cold	215	au 10	1101110		(mani J	214			<u>n</u> i i	1	140	50	2
	(resid	215	and	name	(3)	(resid	213	ano	name		T	140	50	4
assign	(resid	224	and	name	C5')	(resid	224	and	name	C4')			_	
0	resid	224	and	name	C3' โ	(resid	224	and	name	O3')	1	140	50	2
	(225	or J		CS \	(read	225	and	name	C4' 5	-			
assign	(resid	223	ano	name		liesia	223		name		1	140	50	2
	(resid	225	and	name	C3)	(resid	225	and	name	03)	1	140	50	4
assign	(resid	226	and	name	C5')	(resid	226	and	name	C4')				
-	recid	226	and	name	C3' 1	resid	226	and	name	O3' Ń	1	140	50	2
	(restu .	220	a10	mane	<i>cs</i> ,	(10010				/	-	- ••		-
set echo	= on end													

set message = on end end

References:

- Abragam, A. (1961). The Principles of Nuclear Magnetism, Oxford University Press, Oxford, U. K.
- Allain, F. H. & Varani, G. (1995). Structure of the P1 helix from group I self-splicing introns. J. Mol. Biol. 250, 333-353.
- Altschul, S. F. & Lipman, D. J. (1990). Protein database searches for multiple alignments. *Proc. Natl. Acad. Sci. USA* 87, 5509-5513.
- Arnez, J. G. & Cavarelli, J. (1997). Structures of RNA-binding proteins. Quart. Rev. Biophys. 30, 195-240.
- Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. & Bax, A. (1992). Backbone dynamics of calmodulin studied by ¹⁵N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. *Biochemistry* 31, 5269-5278.
- Batey, R. T., Inada, M., Kujawinski, E., Puglisi, J. D. & Williamson, J. R. (1992). Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA.
 Nucleic Acids Res. 20, 4515-4523.
- Batey, R. T. & Williamson, J. R. (1996). Interaction of the *Bacillus stearothermophilus* ribosomal protein S15 with 16 S rRNA: II. Specificity determinants of RNA-protein recognition. J. Mol. Biol. 261, 550-567.
- Battiste, J. L. (1996). Structure determination of an HIV peptide-RRE RNA complex by NMR spectroscopy. Ph.D. in Biochemistry, Massachusetts Institute of Technology.
- Battiste, J. L., Mao, H., Rao, N. S., Tan, R., Muhandiram, D. R., Kay, L. E., Frankel, A. D. & Williamson, J. R. (1996). Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. *Science* 273, 1547-1551.
- Bax, A. & Davis, D. G. (1985). Practical aspects of two-dimensional transverse NOE spectroscopy. J. Magn. Reson. 63, 207-213.
- Bax, A., Ikura, M., Kay, L. E., Torchia, D. A. & Tschudin, R. (1990). Heteronuclear single quantum correlation. J. Magn. Reson. 86, 304-318.
- Berkhout, B., Silverman, R. H. & Jeang, K. T. (1989). Tat trans-activates the human immunodeficiency virus through a nascent RNA target. *Cell* **59**, 273-282.

- Brauschweiler, L. & Ernst, R. R. (1983). Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. *J. Magn. Reson.* **53**, 521-528.
- Brierley, I., Rolley, N. J., Jenner, A. J. & Inglis, S. C. (1991). Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 220, 889-902.
- Brünger, A. T. (1992). X-PLOR Version 3.1. A System for X-ray Crystallography and NMR, Yale University Press, New Haven.
- Burgess, R. R. (1991). Use of polyethyleneimine in purification of DNA-binding proteins. Methods Enzymol. 208, 3-10.
- Bycroft, M., Hubbard, T. J., Proctor, M., Freund, S. M. V. & Murzin, A. G. (1997). The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. *Cell* 88, 235-242.
- Cai, M., Gong, Y. & Krishnamoorthi, R. (1995). Identification of hydrogen-bonded lysine and arginine residues in a protein by means of χ4-torsional-angle determination. J. Magn. Reson. B 106, 297-299.
- Cai, Z., Gorin, A., Frederick, R., Ye, X., Hu, W., Majumdar, A., Kettani, A. & Patel, D. J. (1998). Solution structure of P22 transcriptional antitermination N peptide-boxB RNA complex. *Nat. Struct. Biol.* 5, 203-212.
- Carr, H., Y & Purcell, E. M. (1954). Effects of diffusion on free procession in nuclear magnetic resonance experiments. *Phys. Rev.* 94, 630-638.
- Cate, J. H. & Doudna, J. A. (1996). Crystal structure of a group I ribozyme domain: principles of RNA packing. *Science* 273, 1678-1685.
- Cavanagh, J., Fairbrother, W. J., III, A. G. P. & Skelton, N. J. (1996). Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego.
- Chamorro, M., Parkin, N. & Varmus, H. E. (1992). An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. *Proc. Natl. Acad. Sci. USA* 89, 713-717.
- Chen, Y.-H., Yang, J. T. & Chau, H. H. (1974). Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. *Biochemistry* **13**, 3350-3359.

- Chook, Y. M., Ke, H. & Lipscomb, W. N. (1993). Crystal structures of the monofunctional chorismate mutase from Bacillus subtilis and its complex with a transition state analog. *Proc. Nat. Acad. Sci. USA* **90**, 8600-8603.
- Clore, G. M., Bax, A., Driscoll, P. C., Wingfield, P. T. & Gronenborn, A. M. (1990). Assignment of the side-chain ¹H and ¹³C resonances of interleukin-1 beta using double- and tripleresonance heteronuclear three-dimensional NMR spectroscopy. *Biochemistry* 29, 8172-8184.
- Clore, G. M., Bax, A. & Gronenborn, A. M. (1991). Stereospecific assignment of beta-methylene protons in larger proteins using 3D ¹⁵N -separated Hartmann-Hahn and ¹³C-separated rotating frame Overhauser spectroscopy. J. Biomol. NMR 1, 13-22.
- Clore, G. M. & Gronenborn, A. M. (1991). Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. *Science* **252**, 1390-1399.
- Correll, C. C., Freeborn, B., Moore, P. B. & Steitz, T. A. (1997). Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. *Cell* **91**, 705-712.
- Creighton, T. E. (1984). Proteins: Structures and Molecular Principles, W. H. Freeman and Company, New York.
- Crick, F. H. (1958). On protein synthesis. Symp. Soc. Exp. Biol. 12, 548-555.
- Crippen, G. M. & Havel, T. F. (1988). *Distance geometry and molecular conformation*, Research Studies Press, Taunton (UK).
- Dallas, A., Rycyna, R. & Moore, P. B. (1995). A proposal for the conformation of loop E in Escherichia coli 5S RNA. *Biochem. Cell. Biol.* **73**, 887-897.
- Davies, C., Ramakrishnan, V. & White, S. W. (1996). Structural evidence for specific S8-RNA and S8-protein interaction within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 Å resolution. *Structure* **4**, 1093-1104.
- Dayie, K. T. & Wagner, G. (1994). Relaxation -rate measurements for ¹⁵N -¹H groups with pulsed-field gradients and preservation of coherence pathways. *J. Magn. Reson. A* **111**, 121-126.
- Dabeva, M. D. & Warner, J. R. (1987). The yeast ribosomal protein L32 and its gene. J. Biol. Chem. 262, 16055-16059.

- Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. & Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293.
- de Dios, A. C., Pearson, J. G. & Oldfield, E. (1993). Secondary and tertiary structural effects on protein NMR chemical shifts: an *ab initio* approach. *Science* **260**, 1491-1496.
- Elrod-Erickson, M., Benson, T. E. & Pabo, C. O. (1998). High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. *Structure* **6**, 451-464.
- Eng, F. J. & Warner, J. R. (1991). Structural basis for the regulation of splicing of a yeast messenger RNA. Cell 65, 797-804.
- Farrow, N. A., et al. (1994). Backbone dynamic of a free and phosphopeptide-complexed Src homology 2 domain studied by ¹⁵N NMR relaxation. *Biochemistry* 33, 5984-6003.
- Felber, B. K., Hadzopoulou-Cladaras, M., Cladaras, C., Copeland, T. & Pavlakis, G. N. (1989). rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. *Proc. Natl. Acad. Sci. USA.* 86, 1495-1499.
- Fiala, R., Jiang, F. & Patel, D. J. (1996). Direct correlation of exchangeable and nonexchangeable protons on purine bases in ¹³C/¹⁵N-labeled RNA using a HCCNH-TOCSY experiment. J. Am. Chem. Soc. 11, 689-690.
- Frankel, A. D. (1992). Activation of HIV transcription by Tat. Curr. Opin, Genet. Dev. 2, 293-298.
- Garrett, D. S., Power, R., Gronenborn, A. M. & Clore, G. M. (1991). A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95.
- Gautheret, D., Konings, D. & Gutell, R. R. (1994). A major family of motifs involving GA mismatches in ribosomal RNA. J. Mol. Biol. 242, 1-8.
- Geen, H. & Freeman, R. (1991). Band-selective radiofrequency pulses. J. Magn. Reson. 93, 93-141.
- Greenblatt, J., Nodwell, J. R. & Mason, S. W. (1993). Transcriptional antitermination. *Nature* **364**, 401-406.

- Greenbaum, N. L., Radhakrishnan, I., Hirsh, D. & Patel, D. J. (1995). Determination of the folding topology of the SL1 RNA from Caenorhabditis elegans by multidimensional heteronuclear NMR. J Mol Biol. 252, 314-327.
- Greene, K. L., Wang, Y. & Live, D. (1995). Influence of the glycosidic torsion angle on ¹³C and ¹⁵N shifts in guanosine nucleotides: investigations of G-tetrad models with alternating syn and anti bases. J. Biomol. NMR 5, 333-338.
- Grzesiek, S., Daobeli, H., Gentz, R., Garotta, G., Labhardt, A. M. & Bax, A. (1992). ¹H, ¹³C, and ¹⁵N NMR backbone assignments and secondary structure of human interferon-gamma. *Biochemistry* **31**, 8180-8190.
- Henry, G. D. & Sykes, B. D. (1995). Determination of the rotational dynamics and pH dependence of the hydrogen exchange rates of the arginine guanidino group using NMR spectroscopy. J. Biomol. NMR 5, 49-66.
- Heus, H. A. & Pardi, A. (1991a). Novel ¹H magnetic resonance assignment procedure for RNA duplexes. J. Am. Chem. Soc. **113**, 4360-4361.
- Heus, H. A. & Pardi, A. (1991b). Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. *Science* **253**, 191-194.
- Hiyama, Y., Niu, C., Silverton, J. V., Bavaso, A. & Torchia, D. A. (1988). Determination of ¹⁵N chemical shift tensor via ¹⁵N-²H dipolar coupling in boc-glycyglycyl [¹⁵N] glycine benzyl ester. J. Am. Chem. Soc. 110, 2378-2383.
- Hore, P. J. (1983). Solvent suppression in Fourier transform nuclear magnetic resonance. J. Magn. Reson. 55, 283-300.
- Ikura, M., Kay, L. E. & Bax, A. (1990). A novel approach for sequential assignment of ¹H, ¹³C, and ¹⁵N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. *Biochemistry* 29, 4659-4667.
- Jiang, F., Fiala, R., Live, D., Kumar, R. A. & Patel, D. J. (1996). RNA folding topology and intermolecular contacts in the AMP-RNA aptamer complex. *Biochemistry* 35, 13250-13266.
- Jinks-Robertson, S. & Nomura, M. (1987). Cellular and Molecular Biology (Neidhardt, F. C., Ed.), Am. Soc. Microbiol., Washington DC.

- Karplus, M. (1963). Karplus equation. Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 85, 2870-2871.
- Kay, L. E., Brooks, B., Sparks, S. W., Tochia, D. A. & Bax, A. (1989a). Measurement of NH-CαH coupling constants in staphylococcal nuclease by two-dimensional NMR and comparison with X-ray crystallographic results. J. Am. Chem. Soc. 111, 5488-5490.
- Kay, L. E., Keifer, P. & Sarrinen, T. (1992). Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663-10665.
- Kay, L. E., Torchia, D. A. & Bax, A. (1989b). Backbone dynamics of proteins as studied by ¹⁵N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. *Biochemistry* 28, 8972-8979.
- Kay, L. E., Xu, G.-Y., Singer, A. U., Muhandiram, D. R. & Forman-Kay, J. D. (1993). A gradient-enhanced HCCH-TOCSY experiment for recording side-chain ¹H and ¹³C correlations in H₂O samples of proteins. *J. Magn. Reson. B* 101, 333-337.
- Kim, C. H. & Warner, J. R. (1983). Messenger RNA for ribosomal protein in yeast. J. Mol. Biol. 165, 79-89.
- Kolk, M. H., van der Graaf, M., Wijmenga, S. S., Pleij, C. W., Heus, H. A. & Hilbers, C. W. (1998). NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science 280, 434-438.
- Konrad, M. (1970). Gene expression in bacteriophage lambda. II. Regulation of RNA synthesis in vivo by the N protein. J. Mol. Biol. 53, 389-400.
- Kozak, M. (1983). Comparison of initiation of protein synthesis in prokaryotes, eukaryotes and organelles. *Microbiol. Rev.* 47, 1-45.
- Kuboniwa, H., Grzesiek, S., Delaglio, F. & Bax, A. (1994). Measurement of HN-H alpha J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J Biomol NMR 4, 871-878.
- Kuszewski, J., Qin, J., Gronenborn, A. M. & Clore, G. M. (1995). The impact of direct refinement against ¹³Cα and ¹³Cβ chemical shifts on protein structure determination by NMR. J. Magn. Reson. B 106, 92-96.

- Lake, J. A. (1985). Evolving ribosome structure: domains in archaebacteria, eubacteria, eocytes and eukaryotes. *Annu. Rev. Biochem.* 54, 507-530.
- Li, B., Vilardell, J. & Warner, J. R. (1996). An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness. *Proc. Natl. Acad. Sci. USA* 93, 1596-1600.
- Li, H., Dalal, S., Kohler, J., Vilardell, J. & White, S. A. (1995). Characterization of the premRNA binding site for yeast ribosomal protein L32: the importance of a purine-rich internal loop. J. Mol. Biol. 250, 447-459.
- Li, H. & White, S. A. (1997). RNA aptamers for yeast ribosomal protein L32 have a conserved purine-rich internal loop. *RNA* **3**, 245-254.
- Liljas, A. & al-Karadaghi, S. (1997). Structural aspects of protein synthesis. *Nature Struct. Biol.*4, 767-771.
- Lipari, G. & Szabo, A. (1982). Model -free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546-4558.
- Mager, W. H., Planta, R. J., Ballesta, J.-P. G., Lee, J. C., Mizuta, K., Warner, J. R. & Woolford, J. (1997). A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. *Nucleic Acids Res.* 25, 4872-4875.
- Mandel-Gutfreund Y., Margalit H. (1998). Quantitative parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites. *Nucleic Acids Res.* 26, 2306-2312.
- Marion, D. & Bax, A. (1988). P.COSY, a sensitive alternative for double-quantum-filtered COSY. J. Magn. Reson. 80, 528-533.
- Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M. & G. M, C. (1989). Overcoming the overlap problem in the assignment of ¹H NMR spectra of larger proteins by use of three-dimensional heteronuclear ¹H -¹⁵N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. *Biochemistry* 28, 6150-6156.

- Marion, D. & Wüthrich, K. (1983). Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of ¹H-¹H spin-spin coupling constants in proteins. *Biochem. Biophys. Res. Commun.* 113, 967-974.
- Mattaj, I. W. (1993). RNA recognition: a family matter? Cell 73, 837-840.
- McCoy, M. A. & Mueller, L. (1992). Selective shaped pulse decoupling in NMR: homonuclear [¹³C]Carbonyl decoupling. J. Am. Chem. Soc. 114, 2108-2112.
- Meiboom, S. & Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. *Rev. Sci. Instrum.* 29, 688-691.
- Moore, P. B. (1992). The ribosome returns. Nature 331, 223-227.
- Mori, S., Abeygunawardana, C., Johnson, M. O. & van Zijl, P. C. (1995). Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson. B 108, 94-98.
- Morris, G. A. & Freeman, R. (1979). Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Am. Chem. Soc. 101, 760-762.
- Mueller, L., Legault, P. & Pardi, A. (1995). Improved RNA structure determination by detection of NOE contacts to exchange-broadened amino protons. J. Am. Chem. Soc. 117, 11043-11048.
- Muhandiram, D. R. & Kay, L. E. (1994). Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. B 103, 203-216.
- Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536-540.
- Nagai, K. (1996). RNA-protein complexes. Curr. Opin. Struct. Biol. 6, 53-61.
- Nagai, K., Oubridge, C., Jessen, T. H., Li, J. L. & Evans, P. R. (1990). Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. *Nature* **348**, 515-520.
- Nagai, K., Outbridge, C., Ito, N., Avis, J. & Evans, P. (1995). The RNP domain: a sequencespecific RNA-binding domain involved in a processing and transport of RNA. *Trends. Biochem. Sci.* 20, 235-240.
- Nagai, K. & Thogersen, H. C. (1984). Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. *Nature* **309**, 810-812.

- Nichols, A. J., Sharp, K. & Honig, B. (1991). Protein folding and association: insights from interfacial and thermodynamic properties of hydrocarbons. *Proteins Struct. Func. Genet.* 11, 281-296.
- Nikonowicz, E. P., Stirr, A., Legault, P., Jucker, F. M., Baer, L. M. & Pardi, A. (1992). Preparation of ¹³C and ¹⁵N labelled RNAs for heteronuclear multidimensional NMR studies. *Nucleic Acids. Res.* 20, 4507-4513.
- Nilges, M., Clore, G. M. & Gronenborn, A. M. (1988). Determination of three dimensional structures of proteins from interproton distance data by hybrid distance geometrydynamical simulated annealing calculation. *FEBS Lett.* 229, 317-324.
- Nilges, M., Kuszewski, J. & Brünger, A. T. (1991). Computational Aspects of the Study of Biological Macromolecules by NMR (Hoch, J. C., Ed.), Plenum Press, New York.
- Nomura, M., Gourse, R. & Baughman, G. (1984). Regulation of the synthesis of ribosomes and ribosomal components. *Annu. Rev. Biochem.* **53**.
- Nomura, M., Yates, J. L., Dean, D. & Post, L. E. (1980). Feedback regulation of ribosomal protein gene expression in *Escherichia coli*: structural homology of ribosomal RNA and ribosomal protein mRNA. *Proc. Natl. Acad. Sci. USA* **77**, 7084-7088.
- Pascal, S. M., Muhandiram, D. R., Yamazaki, T., Forman-Kay, J. D. & Kay, L. E. (1994). Simultaneous acquisition of ¹⁵N- and ¹³C-edited NOE spectra of proteins dissolved in H₂O. J. Magn. Reson. B 103, 197-201.
- Pley, H. W., Flaherty, K. M. & Mckay, D. B. (1994). Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. *Science* 372, 111-113.
- Powers, R., Garret, D. S., March, C. J., Frieden, E. A., Gronenborn, A. M. & Clore, G. M. (1993). The high-resolution, three-dimensional solution structure of human interleukin-4 determined by multidimensional heteronuclear magnetic resonance spectroscopy. *Biochemistry* 32, 6744-6762.
- Rance, M., Sorensen, O. W., Bodenhausen, G., Wagner, G., Ernst, R. R. & Wüthrich, K. (1983). Improved spectral resolution in cosy ¹H NMR spectra of proteins via double quantum filtering. *Biochem. Biophys. Res. Commun.* 117, 479-485.

- Rao, S. T. & Rossmann, M. G. (1973). Comparison of super-secondary structures in proteins. J. Mol. Biol. 76, 241-256.
- Rebar, E. J. & Pabo, C. O. (1994). Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. *Science* 263, 671-673.
- Reinisch, K. M., Chen, L., Verdine, G. L. & Lipscomb, W. N. (1995). The crystal structure of HaeIII methyltransferase covalently complexed to DNA: An extrahelical cytosine and rearranged base pairing. *Cell* 82, 143-153.
- Richardson, J. S., et al. (1992). Looking at proteins: representation, folding, packing, and design. Biophys. J. 63, 1186-1209.
- Saenger, W. (1984). Principles of nucleic acid structure, Springer-Verlag, New York.
- Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning, A Laboratory Manual.
 2nd edit, Cold Spring Harbor Laboratory Press.
- Santoro, J. & King, G. C. (1992). A constant-time 2D Overbodenhausen experiment for inverse correlation of isotropically enriched species. J. Magn. Reson. 97, 202-207.
- Seeman, N. C., Rosenberg, J. M. & Rich, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. *Proc. Natl. Acad. Sci. USA* 73, 804-808.
- Shaka, A. J., Barker, P. B. & Freeman, R. (1985). Computer-optimized decoupling scheme for Wideband application and low-level operation. J. Magn. Reson. 64, 547-552.
- Shaka, A. J., Keeler, J., Frenchiel, T. & Freeman, R. (1983). Evaluation of a new broadband decoupling sequence :WALTZ-16. J. Magn. Reson 52, 334-338.
- Shaka, A. J., Lee & Pines, A. (1988). Iterative schemes for bilinear operators: application to spin decoupling. J. Magn. Reson 77, 274-293.
- Simorre, J.-P., Zimmermann, G. R., Pardi, A., II, B. T. F. & Mueller, L. (1995). Triple resonance HNCCCH experiments for correlating exchangeable and nonexchangeable cytidine and uridine base protons in RNA. J. Biomol. NMR 6, 427-432.
- Stalling, W. C. & Kishore, G. M. (1991). Structure and topological symmetry of the glycophosphate target 5-enol-pyruvyishkimate-3-phosphate synthase: A distinctive protein fold. *Pro. Natl. Acad. Sci. USA* 88, 5046-5050.

- Stams, T., Niranjanakumari, S., Fierke, C. A. & Christianson, D. W. (1998). Ribonuclease P protein structure: evolutionary origins in the translational apparatus. *Science* 280, 752-755.
- Szewczak, A. A., Moore, P. B., Chang, Y. L. & Wool, I. G. (1993). The conformation of the sarcin/ricin loop from 28S ribosomal RNA. *Proc. Natl. Acad. Sci. USA* **90**, 9581-9585.
- Tjandra, N. & Bax, A. (1997). Direct measurement of distances and angles in biomolecules by NMR in a diluted liquid crystalline medium. *Science* **278**, 1111-1114.
- Varani, G. (1995). Exceptionally stable nucleic acid hairpins. Annu. Rev. Biophys. Biomol. Struct. 24, 379-404.
- Varani, G., Cheong, C. & Tinoco, I. J. (1991). Structure of an unusually stable RNA Hairpin. Biochemistry 30, 3280-3289.
- Vilardell, J. & Warner, J. R. (1994). Regulation of splicing at an intermediate step in the formation of the spliceosome. *Genes Dev.* **8**, 211-220.
- Vilardell, J. & Warner, J. R. (1997). Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA. *Mol. Cell. Biol.* 17, 1959-1965.
- Vuister, G. W. & Bax, A. (1993). Quantitative J correlation: a new approach for measuring homonuclear three-bond J(H^NH^α) coupling constants in ¹⁵N -enriched proteins. J. Am. Chem. Soc. 115, 7772-7777.
- Wagner, G., Braun, W., Havel, T. F., Schaumann, T., Go, N. & Wüthrich, K. (1987). Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J. Mol. Biol. 196, 611-639.
- Warner, J. R. (1989). Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53, 256-271.
- Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A. & Weiner, A. M. (1987). Molecular biology of the gene. 4th edit (Gillen, J. R., Ed.), The Benjamin/Cummings Publishing Company, Inc, Menlo Park, California.
- Weston, S. A., Lahm, A. & Suck, D. (1992). X-ray structure of the DNase I-d(GGTATACC)₂ complex at 2.3 Å resolution. *J. Mol. Biol.* **226**, 1237-1256.

- White, S. A. & Li, H. (1995). An RNA G:U juxtaposition as a protein recognition element: the binding of yeast L32 RNA to ribosomal protein L32. *RNA* **2**, 226-234.
- White, S. A., Li, H. & Rauch, M. R. (1995). A thermodynamic and mutational analysis of an RNA purine loop as a protein binding site. J. Biomol. Struct. Dyn. 13, 285-299.
- Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S. & Sykes, B. D. (1995). ¹H, ¹³C and ¹⁵N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. *J. Biomol. NMR* 5, 67-81.
- Wishart, D. S. & Sykes, B. D. (1994). Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363-392.
- Wishart, D. S., Sykes, B. D. & Richards, F. M. (1992). The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. *Biochemistry* **31**, 1647-1651.
- Witherell, G. W., Gott, J. M. & Uhlenbeck, O. C. (1991). Specific interaction between RNA phage coat proteins and RNA. *Prog. Nucleic Acid Res. Mol. Biol.* **40**, 185-220.
- Wittmann, H. G. (1982). Components of bacterial ribosomes. Annu. Rev. Biochem. 51, 155-183.

Wüthrich, K. (1986). NMR of proteins and nucleic acids, John Wiley & Sons, Inc.

- Wyatt, J. R., Chastain, M. & Puglisi, J. D. (1991). Synthesis and purification of large amounts of RNA oligonucleotides. *BioTechniques* 11, 764-769.
- Yamazaki, T., Lee, W., Arrowsmith, C. H., Muhandiram, D. R. & Kay, L. E. (1994). A suite of triple resonance NMR experiments for the backbone assignment of ¹⁵N, ¹³C, ²H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655-11666.
- Zhu, G. & Bax, A. (1990). Improved linear prediction for truncated signals of known phase. J. Magn. Reson. 90, 405-410.
- Zuiderweg, E. R., Scheek, R. M. & Kaptein, R. (1985). Two-dimensional ¹H-NMR studies on the lac repressor DNA binding domain: further resonance assignments and identification of nuclear Overhauser enhancements. *Biopolymers* **24**, 2257-2277.