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ABSTRACT

The work covers transformation superplasticity of metals, alloys and metal matrix
composites. Fundamental studies of transformation superplasticity in unreinforced metals,
which either deform plastically or by creep, form the basis of further investigations in metal
matrix composites. Experiments and analytical modeling are complemented by numerical
analysis. The transformation superplastic behavior is related to microstructure and chemical
composition. Based on an existing linear theory, a non-linear model is developed and
applied to the experimental data. Numerical methods are used to model the stress-, strain-
and temperature evolution during the phase transformation. The results are in good
agreement with the experiment and analytical predictions.

First, transformation superplasticity of iron and iron-TiC composites is demonstrated with
strains of 450% and 230% respectively. The reduction of the transformation superplasticity
in the composites is attributed to the dissolution of TiC in iron and effect which is shown
for iron-carbon alloys. Effects of transient primary creep, ratchetting and partial
transformation through the ferrite-austenite phase field are examined. Second,
transformation superplasticity of zirconium is demonstrated for the first time with a strain of
270% without fracture. Partial transformation resulting from high cycle frequencies is
analyzed and related to material properties and cycle characteristics. Finally, nickel
aluminide with unstabilized zirconia particulates shows significant higher strain rates upon
thermal cycling as compared to the unreinforced matrix. Although, the fracture strain of
23% is below the superplastic limit, the composite shows a high strain rate sensitivity of m
= 0.71, which is a necessary characteristic of transformation superplasticity.

Thesis Supervisor: David C. Dunand
Title: AMAX Associate Professor of Materials Engineering
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Introduction

Transformation superplasticity is a deformation mechanism independent of grain size,

where large strains are accumulated by superimposing an external stress to internal

mismatch stresses that are reproduced by thermal cycling of a polycrystalline allotropic

material about its phase transformation temperature. The internal stresses are biased

by the external stress and accommodated in the weaker phase by a time-dependent or -

independent plastic mechanism.

The above modem definition of transformation superplasticity (for comprehensive

reviews, see Refs. [25,60,68]) has evolved from its original discovery, usually credited to

Lee [51] and Sauveur [82] who reported in 1923-24 "critical plasticity" when iron or steel

undergoes a phase transformation. In 1919, Tiemann [91] had mentioned a related

phenomenon but did not perform a systematic study or give a scientific explanation for the

phenomenon.

Later, transformation superplasticity research extended to iron-nickel alloys [83,98,99]

and iron-carbon alloys [17,19,20]. Driven mainly by research on uranium, additional

deformation mechanisms based on internal stress phenomena were recognized: first,

irradiation swelling caused by neutron irradiation of a-uranium [77]; second, ratchetting

where macroscopic thermal gradients cause plastic deformation [86]; and third, coefficient

of thermal expansion mismatch plasticity caused by anisotropic coefficients of thermal

expansion in a-uranium [47,103]. Based on the models developed in these fields,

Greenwood and Johnson [39] proposed for phase transformation plasticity a theory (which

is now well accepted) based on experimental data of U, Co, Ti, Fe and Zr [39]. Subsequent

research focused mostly on steels [34,35,44,45,61,63-65,69,102] and, to a lesser extent,

on titanium [9,14,26,32,88] and titanium based alloys [28,59]. Parallel to the research on



phase transformation superplasticity in steels another similar field emerged termed

transformation induced plasticity (TRIP) were anisotropic strains due to the formation of

martensite are a source of the mismatch and also directly contribute to macroscopic

deformation [22,66,74,83,87].

In the last decade, internal stress superplasticity has been demonstrated in metal matrix

composites. Using coefficient of thermal expansion mismatch between a matrix and a

reinforcement, Gonzilez-Doncel et. al. [38], Pickard and Derby [70,71] and Chen et. al.

[15] investigated Al/SiC composites. In a similar mechanism, Huang and Daehn [42]

deformed Al/SiC composites using the compressibility mismatch plasticity between matrix

and reinforcement. Recently, Dunand and Bedell [9,26] studied phase transformation

superplasticity in Ti-TiC composites.

Beside metals, transformation superplasticity has also been of interest in geophysical

research (olivine [73]) and ceramic research (bismuth oxides [46] and zirconia [40]).

Modeling within each field of internal stress (super)plasticity is mutually applicable as the

common source of the internal stress is always an internal mismatch. Table 2.1 gives

examples specific to each type of mismatch (U [54], Zn [72]; Fe [17,20,39,69], Zr [39],

ZrO2 [40]; A1/SiC [15,71]; Ti/TiC [26]). Some materials show an overlap of mechanisms

e.g. U and Zr are allotropic and show coefficient of thermal expansion anisotropy.

Source of Mismatch

Coefficient of Phase
Thermal Expansion Transformation

rA
.= 5 AnisotropyGrains Fe, Zr, ZrO2_ _U, Zn

me Ti/TiC0 Phases Al/SiC Ti/TiC
_ _ NiAI/ZrO 2

Table 1: Overview of the internal stress superplastic systems.



Analytical models of phase transformation plasticity of single constituent materials are

based either on continuum mechanics, using a yield criteria [39,69] or a creep law [39], or

on dislocation theories [35,50,73]. Continuum mechanics is also used in the modeling of

single phase and composite CTE-mismatch superplasticity, as reviewed in Ref. [27]. The

modeling of phase transformation superplasticity of composites is based on (i) models of

transformation superplasticity of the transforming constituent, (ii) models of coefficient of

thermal expansion mismatch and the volumetric mismatch between the constituents and (iii)

models of the volume fraction effect. For example, Dunand and Bedell [26] used the model

by Greenwood and Johnson [39] to describe a transforming titanium matrix, together with a

general model for internal stress plasticity by Sato and Kuribayashi [81], which also

includes the volume fraction dependence, to incorporate the mismatch between the titanium

matrix and TiC particulates.

Numerical modeling has been used mostly to describe Al/SiC composites during

expansion mismatch superplasticity [105,106] and to describe transformation induced

plasticity in steels [21,33,35,52,76]. However, transformation superplasticity caused by a

homogeneous volumetric mismatch in either single phase or composite systems has not been

numerically modeled.

Beside the scientific interest of understanding transformation superplasticity as a

deformation mechanism, there is a strong technological incentive for using this phenomenon

to shape metal matrix composites where traditional forming techniques, such as stamping or

forging, are limited or even impossible due to the brittleness of the reinforcement or of the

matrix. Furthermore, the grain-size insensitivity is also of interest for pure metals and some

alloys which cannot be deformed by fine-grain superplasticity because, at the deformation

temperature, their grains cannot be stabilized to the very small sizes necessary for grain-

boundary sliding. However, as an emerging technology, little is known about the factors



which control transformation superplasticity in composites and even in pure metals, unlike

the much better explored fine grain superplasticity.

This thesis is divided in modular chapters designed as independent studies and structured

to cover a specific material or theoretical topic. While this approach results in some

repetitions (in particular in the respective introductions and in some of the equations), it has

the advantage of giving a focused and self-contained description.

Chapter 1 presents and experimental study of transformation superplasticity of iron and

Fe/TiC composites. Iron, because of its stronger high temperature phase (austenite), shows

accommodation by yield of the weaker low temperature phase (ferrite). The effect of partial

transformation through the a/y-phase field, primary creep, ratchetting and the presence of

carbon are investigated and transformation superplasticity of iron and iron with 10 vol.%

TiC is demonstrated.

In Chapter 2, the model of Greenwood and Johnson [39] is extended to high stresses

where the stress-strain behavior becomes non-linear. The new model is applied to literature

data for pure iron [17,39] and, after incorporating a strain hardening criteria, it is also

applied to iron with traces of carbon investigated in Chapter 1. In addition, the non-linear

theory is used to model two mechanisms of thermal expansion mismatch superplasticity

found in pure metals and composites.

A numerical method is used in Chapter 3 to model transformation superplasticity of pure

iron. By linking the mechanical to the thermal problem, the strain-, stress-, and temperature

history of the phase transformation is obtained. Model-specific quantities are introduced

which allow a quantitative comparison to the analytical predictions of Chapter 2 and

literature results for pure iron.

The correlation between the thermal- and mechanical problem is used in Chapter 4 to

investigate transformation superplasticity of pure zirconium. In contrast to iron,



accommodation of the internal phase transformation stresses is by creep of the high

temperature P-zirconium phase. The average internal stress during the phase transformation

is related to the time for transformation and the creep law of the weaker phase. For the first

time, transformation superplasticity is demonstrated for zirconium for which a strain in

excess of 270% is measured.

Chapter 5 explores the novel case of transformation superplasticity in a composite where

the particles (ZrO2) transform in an inert, non-allotropic matrix (NiAl). The strain rates due

to thermal cycling are compared to that of unreinforced NiAl. The internal stress during the

phase transformation is calculated and compared to experimental results.

In Chapter 6, transformation superplastic behavior of the NiAl/ZrO2 composites

described in Chapter 5 is analyzed numerically using a transient temperature-displacement

model. The thermal problem defines the time scale of the transformation over which the

internal strains and stresses develop as the particle deforms. Temperature- and strain

histories as well as the spatial stress distributions are computed and compared to analytical

predictions.

In the final conclusions, the major results are summarized and a synthetic overview of the

connection between the different chapters is given.

In summary, this thesis is a systematic study of transformation superplasticity of metals

and metal matrix composites, where both scientific and technological issues are addressed.

The measurement of mechanical characteristics (such as total strains, strain to fracture, and

strain rates) form the basis for predictive models based on both analytical and numerical

techniques. Furthermore, the experimental results are correlated to the microstructure and

composition.



Chapter 1

Transformation Superplasticity of Iron and
Fe/TiC Metal Matrix Composites

Abstract

Unreinforced iron was thermally cycled around the Wy-phase field under an

externally-applied uniaxial tensile stress, resulting in strain increments which could be

accumulated upon repeated cycling to a total strain of 450% without failure. In

agreement with existing theory attributing transformation superplasticity to the biasing

of the internal allotropic strains by the external stress, the measured strain increments

were proportional to the applied stress at small stresses. However, for applied stresses

higher than the nominal yield stress, strain increments increased non-linearly with

stress, as a result of strain hardening due to dissolved carbon and iron oxide

dispersoids. Also, the effects of transient primary creep and ratchetting on the

superplastic strain increment values were examined. Finally, partial cycling within the

Wly-phase field indicated an asymmetry in the superplastic strain behavior with respect

to the temperature cycling range, which is attributed to the different strengths of ferrite

and austenite.

Transformation superplasticity was demonstrated in iron-matrix composites

containing 10 vol.% and 20 vol.% TiC particles: strain increments proportional to the

applied stress were measured and a fracture strain of 230% was reached for Fe/10TiC.

However, the strain increments decreased with increasing TiC content, a result

attributed to the slight dissolution of TiC particles within the matrix which raised the

matrix yield stress by solid solution strengthening and by reducing the transformation

temperature range.



1.1 Introduction

The addition to iron or steel of reinforcing ceramic particulates leads to composites with

improved strength, stiffness and abrasion resistance. Titanium carbide (TiC) is particularly

attractive, because of its high hardness and stiffness, its low density and its chemical

stability with iron-based matrices [24,75]. However, the low ductility, low toughness and

high hardness of Fe/TiC composites severely limit traditional forming techniques such as

bending, stamping, rolling, forging or machining. Superplastic forming is thus an attractive

method to fabricate objects with intricate shapes from simple composite sheets or tubes

which can be produced for Fe/TiC by a near-net shape technique such as casting [49,90] or

powder metallurgy [48,79]. Microstructural superplasticity is however very difficult to

achieve in Fe/TiC composites, because these materials are too brittle for the

thermomechanical treatment necessary to generate a fine grain size, and because ceramic

reinforcement can inhibit grain boundary sliding. An alternative superplastic deformation

mechanism not necessitating a fine-grain structure is transformation superplasticity which

relies on internal stresses produced by repeated allotropic transformations [29,68].

Plasticity induced by a phase transformation has been extensively studied in unreinforced

iron and steels, and can result from two distinct mechanisms: (i) preferential selection by the

applied stress of martensite variants with a non-zero shear [22,66,74,83,87], or (ii) biasing

by the applied stress of isotropic internal stresses due to the volumetric mismatch between

allotropic phases during the transformation [29,39,68]. For the latter mechanism, these

internal mismatch stresses are generated at each crossing of the allotropic range, so that

strain increments can be accumulated after each cycle, eventually resulting in superplastic

elongations (>100%) [44,64,65]. Depending on the material properties and the phase

transformation homologous temperature, the internal transformation mismatch stresses can

be relaxed by time-independent plastic deformation or by creep [39]. For the former case,

Greenwood and Johnson [39] developed an equation for the uniaxial strain increment A



accumulated after a full allotropic transformation occurring with a superimposed uniaxial

biasing tensile stress o:

5AVa
As = -- ] - (1.1)

where IAV/VI is the volume mismatch between the allotropic phases and ay is the yield stress

of the weaker allotropic phase. Eq. 1.1 is valid for small strains only (As << IAVNI) and

for an ideally plastic material without strain-hardening.

While transformation superplasticity has been studied in iron and steels (and many other

allotropic metals [29,39,68]), little is known about this phenomenon in metal matrix

composites. Transformation superplasticity was recently demonstrated in allotropic

titanium-based composites [26,28] where accommodation of internal stresses is by creep,

but has never been studied in composites, such as Fe/TiC, where accommodation is by

time-independent yield.

In the present chapter, we investigate transformation superplasticity of unreinforced iron

and Fe/TiC composites upon thermal cycling about the a/y-iron phase field, and examine the

effect of TiC volume fraction, applied stress, as well as the temperature cycling amplitude

and frequency. The superplastic behavior is demonstrated by experiments conducted up to

large strains and special emphasis is put on the link between transformation superplasticity

and the thermal and microstructural characteristics of the materials.

1.2 Materials and Experimental Procedures

Iron powders with a particle size of 6-10 micron and a purity of 99.5% (from Alfa Aesar,

Ward Hill, MA) were mixed for 12 hours in a V-Blender with 10 vol.% and 20 vol.% of

99.5% pure TiC powders (from CERAC, Milwaukee, WI). Before blending, the as-

received -325 mesh TiC had been suspended in deionized water and filtered through a



Buchner filtering funnel with a porosity of 10-20 gtm to eliminate the fine particles, ensuring

a final TiC size distribution between 20 lm and 45 gm. Both unblended iron powders and

blended Fe/TiC powder mixtures were cold-pressed into low-carbon steel pipes (ASM

5050J steel with 25.4 mm outside diameter, 3.2 mm wall thickness and 228 mm height,

welded at both ends with 1018 steel plugs), degassed under vacuum at elevated temperature,

and compacted by hot isostatic pressing (HIP) for 4 hours at 1121 C under a pressure of

103 MPa (at UltraClad Andover MA).

Small samples were tested by differential thermal analysis (DTA, Perkin Elmer, Series 7)

at a rate T = 10 K-min-' under flowing nitrogen with alumina as reference material.

Parallelepiped samples (approximately 12 mm x 3 mm x 3 mm) were studied by dilatometry

(Netzsch 402 ES) with T = 10 K-min' under flowing argon. Dogbone samples with a

gauge length of 35 mm and a gauge diameter of 6 mm were tested in tension in a custom

designed creep apparatus allowing the application of small tensile stresses with a

simultaneous rapid temperature cycling by radiant heating in an argon atmosphere. Before

thermal cycling, the samples were crept isothermally until a steady-state strain-rate was

reached. The deformation was measured by a linear voltage displacement transducer placed

at the cold end of the lower pullrod. Under cycling conditions, the measured deformation

included the thermal dilatation of the pullrods and samples and therefore did not represent

the sample plastic strain. However, the strain measured under isothermal conditions or after

a full temperature cycle was only due to the sample plastic deformation. The total plastic

strain increment per cycle, Aeot, was calculated as the average of 4 to 6 cycles strain values

after the strain increments had reached steady-state to avoid any primary creep strain

contribution. The sample stress was adjusted manually by periodically applying or

removing weights. Standard deviations for stress and strain were below 5%. The

temperature of the sample was controlled within ±+2C by a thermocouple (K-type or R-type)

positioned at the surface of the gauge section or the pullhead and independently measured by



a second thermocouple located at the sample surface. The latter temperature varied +15'C

among different experiments due to slight variations in sample and/or thermocouple position

with respect to the radiant heaters.

Densities were determined by the Archimedes method with distilled water.

Metallographic preparation of undeformed and deformed samples was performed by

grinding with SiC papers with 120, 500, 1200, 2400 mesh, polishing on cloths with 0.3

gtm and 0.05 gtm alumina and etching by swabbing for 20 seconds with a 2% Nital solution.

1.3 Results

1.3.1 Materials

Table 1.2 gives the chemical analysis of the as-received powders and the HIPed iron

sample. The measured carbon content of the as-received TiC powders is close to the

theoretical concentration for TiC with the highest possible carbon content (19.3 wt.% C or

48.8 at.% C)[6], indicating that the as-received TiC powder was as close to stoichiometry as

thermodynamically possible. Slight carbon contamination of the iron billet (and thus most

probably the composite billets) occurred during HIPing by diffusion of carbon and other

alloying elements from the steel can.

Assuming that the oxygen present in the iron matrix exists in the form of iron oxides

(Fe30 4 or Fe20 3) and using density values given in Ref. [53], the theoretical density of the

unreinforced matrix is determined as Pmatrix = 7.83 g-cm-3, indicating that the iron sample is

99.8% dense (Table 1.3). With the theoretical density of TiC as PTic = 4.92 g-cm-3 [92],

similarly low porosities are calculated for the composites after HIPing and after deformation

(Table 1.3).

Figures 1.1a-c and Figs. 1.1d-f show micrographs of the HIPed samples in unetched

and etched conditions, respectively. The iron sample exhibits both oxides and pores (Fig.



1.1a). The unetched micrographs of the composites (Figs. 1.1b,c) show that the TiC

particles are well distributed within a dense matrix. However, etching reveals other

precipitates at the grain boundaries (Figs. 1.1e,f). The grain size of the iron samples, as

determined by the linear intercept method, increased from 34 ± 4 im after hot isostatic

pressing (Fig. 1.1 d) to 62 + 8 gm at the pullhead and 340 + 70 Lm (Fig. 1.1 g) at the gauge

section after thermal cycling under stress. On the other hand, the grain size of the Fe/10TiC

composite remained stable with values of 30 + 3 Lm after hot isostatic pressing (Fig. 1.1e)

and 23 ± 4 lm after thermal cycling (Fig. 1.1h). Similar grain sizes were obtained for the

Fe/20TiC composite (Fig. 1.1f,i). Furthermore, the same grain sizes were found in the

sample heads and gauge section of the deformed composites.

The DTA curve (Fig. 1.2) and dilatometric curve (Fig. 1.3) exhibit multiple peaks

corresponding to phase transformation and precipitation labeled in both figures with the

same symbols.

1.3.2 Thermal Cycling of Iron

Figure 1.4 shows the total strain increment rAto as a function of the applied stress a for

complete square-wave cycles between TI = 700C and Tu = 900*C, with heating and cooling

rates in the range T = 100 - 200 K-min' and for cycling frequencies in the range v = 6 - 15

hr-'. The data is insensitive to the cycle frequency within the experimental range used, as

seen from the continuity of the results in Fig. 1.4. The strain increment increases linearly

with the applied stress up to a -6 MPa and becomes non-linear for higher stresses. Within

the linear range, a slope (dAot0 )/da = 1.7 GPa-' and an intercept Atot = -0.05% for zero

applied stress are found. Isothermal creep measurements were performed at the upper and

lower cycling temperature before and after thermal cycling, giving stress exponents between

1 and 2. For all experiments, it was found that the isothermal strain rates caused by creep

were negligible compared to the cycling strain rates. For example, at the upper cycling



temperature, the iron sample crept at s = 3.3.10 7 S-1 for a stress a = 4.2 MPa, much more

slowly than under cycling conditions with v = 6 hr-' where the average strain rate was

d(AEot )/ dt = 1.3.10 -5 s1 for a = 4.6 MPa. For a higher applied stress a = 10.3 MPa, the

isothermal creep strain rate s = 2.10-6 S-1 was still much smaller than the average cycle

strain rate d(Aeot ) / dt = 8.8-10 -5 s-' (for frequency v = 15 hr-'). In several instances the

isothermal creep rates dropped after thermal cycling by factors between 2 and 5. Creep rates

at the lower cycling temperature were not detectable.

Figure 1.5 shows two examples of the displacement measured over a full cycle for

applied stresses of 5.2 MPa and 10.1 MPa. For these cycling conditions and sample

geometry, the total strain increment per cycle is composed of equal contributions on heating

and on cooling. Also visible in Fig. 1.5 are discontinuities on heating and cooling,

corresponding to the phase transformations. During heating the sample superplastic strain

and the thermal expansion of the load-train give contributions in the same direction, causing

a discontinuity at the phase transformation temperature, whereas during cooling, the thermal

contraction of the load-train opposes the sample elongation due to the superplastic strain

increment, leading to a distinct phase transformation peak.

The effect of upper and lower temperature cycle amplitude on the stress-normalized strain

increment AEtot/a is shown in Fig. 1.6 for two stress levels. While keeping the lower

temperature constant at TI = 710C, the upper cycle temperature was gradually increased up

to T. = 9300C; the symmetric experiments (constant upper temperature Tu = 9300C and

variable lower temperature TI) were also performed.

Finally, Fig. 1.7a shows an unfractured iron sample deformed to an engineering strain of

e3 = 454% after 242 cycles (T, = 700C, Tu = 900C, v = 15 hr') under an applied stress a

= 7.2 ± 0.2 MPa for the first 140 cycles and a stress a = 4.9 ± 0.3 MPa for the last 102

cycles. Figure 1.8 shows for that sample the stress normalized strain increment per cycle

Aeot/o as a function of the number of cycles i. The discontinuities are due to adjustments of



the load to maintain an approximately constant stress. Before cycling, the sample was not

crept isothermally, but was thermally cycled under a small stress of 0.4 MPa which resulted

in very small negative strain increments Atot = -0.04%. As shown in Fig. 1.8, the large

superplastic strain increments AEtt/a = 2.2 GPa-' observed initially upon application of the

stress a = 7 MPa decrease steadily and stabilize after about 35 cycles to a value AsEt/ =

1.15 GPa-'. After 140 cycles, the stress was decreased to a = 1.0 MPa and 1.5 MPa and

negative strain increments AEot = -0.05% and AFot = -0.02%, respectively, were measured

(these strain increments are not shown in Fig. 1.8). After cooling to room temperature, an

optical inspection of the sample showed no signs of necking. The sample was heated again

and subjected to low stresses a = 1.1 MPa and a = 1.8 MPa resulting in strain increments

Aetor = -0.07% and +0.03%, respectively (not shown in Fig. 1.8). Upon re-application of a

high stress a = 4.9 MPa, the same value Aetot/ = 1.13 GPa-' was obtained as before the

interruption. After about 220 cycles, Aetot/a increased again, probably because the onset of

necking visible in Fig. 1.8 leads to locally higher stresses. Low stress experiments at the

end of the experiment again gave negative strain increments Ato,, = -0.2% to AEtt = -0.37%

for stresses of a = 0 - 0.2 MPa.

1.3.3 Thermal Cycling of Fe/TiC Composites

Figure 1.9 shows for the composites the total strain increment as a function of the applied

stress for cycles with Ti = 7000C, Tu = 9000C, t = 100-200 K-min- and v = 6 - 10 hr'.

The strain increments for the Fe/lOTiC composite d(Astot)/da = 0.37 GPa-' and for the

Fe/20TiC composite d(Atot)/da = 0.20 GPa-1 ) are much smaller than for unreinforced iron

(d(Aet 0t)/da = 1.7 GPa-'). As for unreinforced iron, the isothermal deformation was

negligible: for a stress a = 4.5 MPa at the upper cycling temperature, Fe/10TiC crept at a

rate i = 1.8-10 -7 S- much lower than the corresponding average cycling strain rate

d(Aetot)/dt = 3.2-10-6 s-l for a = 4.6 MPa and v = 6 hr'. Under a stress a = 4.2 MPa,



the Fe/20TiC composite crept isothermally at a rate e = 1.0-10-7 s-' which was negligible

as compared to the average cycling strain rate d(Aeto,)/dt = 1.6-10-6 S-1 for v = 6 hr'.

Figure 1.10 shows the stress-normalized strain increment Aerto/ as a function of the

upper cycle temperature T, for the Fe/lOTiC composite. This figure indicates that the

maximum strain increment is obtained at Tu = 840C and that the contribution of isothermal

creep become significant above 900C.

As shown in Fig. 1.11, the Fe/lOTiC sample thermally cycled (TI = 700C, T. = 880*C)

under a constant load provided strain data at increasing stress as the sample cross-section

diminished; the linear part of Fig. 1.11 was obtained with v = 6 - 10 hr-' and the non linear

part at a higher cycling frequency v = 30 hr-'. The fracture strain of this Fe/lOTiC sample,

shown in Fig. 1.11, was ef = 231%.

1.4 Discussion

1.4.1 Thermal Analysis

The DTA curves for unreinforced iron in Fig. 1.2 show peaks at 905C on heating

(symbol E) and 8850C on cooling (symbol U) caused by the aWy and y/a-transformations

which are also visible in dilatometric curves (Fig. 1.3) as contraction (AL/L = -0.52%) upon

heating from 840C to 890C and expansion (AL/L = +0.37%) upon cooling from 8700C to

845"C. These values are comparable to the linear transformation dilatation reported for pure

iron AL/L = 0.35% - 0.38% [8,94] and to the allotropic aWy-range for Fe - 0.012 wt.% C

(814-908"C) [6]. The DTA of iron also reveals peaks 15C to 200C below the at-y

temperatures (symbols V,Y) which may be attributed to a martensitic transformation, or to

the allotropic transformation occurring over the a/y-range with a recalescence peak (symbol

V) on cooling. Finally, the DTA curve of iron shows the magnetic transition between



755C and 765C on heating (symbol A) and cooling (symbol A), in good agreement with

the Curie temperature of 770'C [2].

Except for the magnetic transition, the composites exhibit DTA- and dilatometry curves

different from those of iron. Upon heating, Wy peaks (symbols O Fig. 1.2) appear around

845"C and 830C for the 10 vol.% and 20 vol.% composite, respectively. These reactions

are preceded by large endothermic peaks (symbol O) at 735C within the ferrite region

which correspond to the initial contraction around 7000C found by dilatometry (symbols O

Fig. 1.3). Equivalent peaks (symbols *,*) appear upon cooling at significant lower

temperatures (Figs. 1.2 and 1.3). Figure 1.3 also shows that the length changes of the

composites (which have the same magnitude as those of the iron sample) develop over

broad temperature intervals, i.e. between 715°C and 820"C on heating (symbols 0) and

between 680"C and 805C on cooling (symbols 0). The temperatures determined by

dilatometry are 15C - 20"C below those obtained by DTA, probably because the heating

rates of T = 10 K-min I induced a larger temperature lag in the 1 gram dilatometry sample

than in the 0.02 gram DTA samples.

Austenite and ferrite can dissolve 660 ppm and 360 ppm equiatomic TiC at 912C,

respectively [89]. The 300 ppm difference is expected to precipitate and dissolve upon

cycling, but corresponds to a volume fraction of 0.05 vol.%, too low to induce significant

dilatometric or thermal peaks. Rather, the composite peaks are attributed to a pearlitic

invariant reaction a+Fe3C+TiC -4 a+y+TiC (symbols O,*) followed by an allotropic

transformation a + TiC - 7 + TiC (symbols O,0). This interpretation is consistent with

the metastable ternary C-Fe-Ti phase diagrams [97] showing the above invariant reaction

occurring at 740C, above which a solid solution of carbon and titanium in ferrite

transforms continuously to a solid solution of austenite. The higher content of cementite

found for the Fe/20TiC composite (Fig. 1.1f,i) is also expected from the higher volume

fraction of TiC. The dilatometry results of the composites (Fig. 1.3) are furthermore



consistent with temperature-strain curves for Fe-0.2C samples exhibiting a pearlitic reaction

given by Ref. [20]. Thus, we conclude that the precipitates in Figs. 1. 1e,f,h,i are cementite

(with possibly very small quantities of TiC), as confirmed by their lack of contrast prior to

etching, unlike TiC which is visible without etching.

1.4.2 Transformation Superplasticity of Iron

The linear relation given by Eq. 1.1, can be generalized for the case of a continuous

phase transformation:

d = -d( Av (1.2)

where (T,t) is the volume fraction of the new allotropic phase dependent on temperature T

and time t, and where the yield stress ay[T, c(T,t)] is a function of the temperature T and the

carbon concentration c(T,t). Even if assuming that the phase transformation is limited by

heat transfer, rather than transformation kinetics or diffusion, the right-hand side of Eq. 2

depends on the ratio (T)/oy(T), which cannot be evaluated without detailed knowledge of

these variables. Instead Eq. 1.2 can be approximated by using effective values for the yield

stress o ,eff and the volume fraction eff:

5 AV oA A= e V a (1.3)
6 V oYeff

The effective quantities also depend on undercooling, which is itself coupled to cycle

characteristics, e.g. temperature amplitudes, heating rates and heat flux conditions. Since

isothermal creep outside the transformation range was negligible, the measured strain

increment Arot accumulated after a full cycle can be directly compared to the superplastic

strain increment As predicted by Eq. 1.3. Because the measured strain increments were

identical on heating and on cooling (Fig. 1.5), the stress-normalized superplastic strain



increment is d(Ae)/d = d(Aeot)/(2do ) = 0.85 GPa -l . With this experimental value for

d(Ae)/da and the aly-volume mismatch AVN = 3(AL/L) = 1.1% [8,94], an effective yield

stress oy,eff = 10.8 MPa is obtained from Eq. 1.3. While this value fits the low-stress data

in Fig. 1.4, the ideal plastic model predicts infinite strain increments when the applied stress

reaches the yield value of 10.8 MPa, much below the stresses of about 16 MPa where finite

strain increments are still observed in Fig. 1.4. This can be explained if the yield stress

increases from a value of 10.8 MPa at low applied stresses to a value of about 16 MPa at

large applied stresses due to strain-hardening when large strain increments are produced.

This hypothesis is supported by the high oxygen content of 0.3 wt.% (originating from the

fabrication of the iron powders), which corresponds to a volume fraction of 1.5 vol.% of

Fe30 4 (or 1.6 vol.% of Fe20 3), sufficient for significant dispersion strain-hardening.

Both the smaller creep rates observed after cycling, during which the grain size increased

by one order of magnitude, and the low stress exponents measured in isothermal

experiments indicate that iron deforms by diffusional creep outside the allotropic range.

While pure iron is expected to deform by low-temperature power-law creep with a stress

exponent of 6.9 within the stress range of interest [31], the observed diffusional creep is

attributed to the strengthening effect of carbon and oxide dispersoids which can lower or,

respectively, fully inhibit dislocation creep [5], but have little effect on diffusional creep.

Also, the change of grain size did not affect the superplastic behavior, which confirms that

transformation superplasticity occurs by plastic yield and not by diffusional creep (as for

microstructural superplasticity).

The dependence of the transformation superplastic strain As from the temperature cycle

amplitudes within the non-linear regions (Fig. 1.6) can only be described qualitatively based

on results obtained from the DTA and dilatometry measurements, since the temperature

dependence of the ratio (T)/oy(T) is unknown. Dilatometry (Fig. 1.3) indicates that the

heating and cooling kinetics of the phase transformation are different, as the a---y



transformation occurs over a temperature interval ranging from 8400C to 8900C whereas the

y-+ transformation takes place between 870*C and 8450C. This 20 0C undercooling for the

onset of the y->~ transformation is consistent with the 20"C shift in the y<-+a DTA peaks

(Fig. 1.2). Upon partial cyclic transformation from the ferrite to austenite, i.e. variation of

the upper cycling temperature, strain increments are expected to appear as soon as the upper

cycling temperature exceeds 8400C and to increase until 8900C where eff = 1 (Fig. 1.6); the

increase is probably near linear with temperature, based on the near linear dilatometric

expansion and contraction (Fig. 1.3). On cycling from, and to, the austenitic state a critical

temperature amplitude is necessary to induce transformation superplastic strains (Fig. 1.6),

similar to observations made in CTE-mismatch superplasticity of AI/SiC [71]. This

temperature threshold can be explained by two phenomena. First, the y--- transformation

is undercooled by 20 0C, as discussed above. Second, because of the high strength of

austenite, the initial transformation mismatch can be accommodated elastically, so that ferrite

has to form a continuous network before plastic strain can be observed. However, once the

temperature threshold (estimated as AT = 40 K in Fig. 1.6) is exceeded, a steep increase of

the partial transformation strains is expected according to the y--a transformation shown

from dilatometry and DTA (Fig. 1.3).

The ratio d(Ae~0 )/d( = 1.7 GPa-' measured for iron is significantly smaller than the

values of 2.5 - 2.6 GPa-' reported by Refs. [17,20,39] but comparable to the value of 1.5 -

1.7 GPa-' given in Ref. [69] (Table 1.4). As shown in Fig. 1.12, there is a strong decrease

of Aot/a (or d(Aeot)/da) with increasing carbon concentration, and our data fall within the

region where the ratio Aeot/a is very sensitive to the presence of carbon. This is due to the

strengthening effect of carbon, which increases the yield stress of the ferrite and thus

decreases the value of the superplastic strain increment A (Eq. 1.3). Also, we find the

same strain increments on heating and on cooling (Fig. 1.5), whereas unequal strain

increments have been reported in the literature (Table 1.4). This may be due to unequal



creep contributions outside the transformation range (ferrite creeps faster than austenite for

pure iron), to differences in heating and cooling transformation temperatures (affecting the

yield stress), or to different heating and cooling rates (leading to variable ratchetting). The

latter mechanism is discussed in more detail in the following.

Figures 1.13a and 1.13b show the evolution with increasing cycle number of the stress-

normalized superplastic strain increment with and without isothermal creep prior to thermal

cycling. In the former case, the sample is first loaded until a steady-state creep rate is

reached, and then thermally cycled. Steady-state strain increments are obtained quickly after

about 4 complete cycles (Fig. 1.13a). Since the strain is determined from the total load train

displacement undergoing thermal expansion and contraction during cycling, the convergence

behavior in Fig. 1.13a reflects the establishment of the dynamic thermal steady-state in the

sample and the pullrods due to thermal cycling. When the stress was changed during

thermal cycling, steady-state increments were obtained after completion of a single cycle.

Thus, the establishment of an equilibrium dislocation structure after a changes in stress,

which is responsible for primary creep, is very rapid upon phase transformation cycling

conditions, and primary creep does not contribute significantly to the measured strain,

provided the sample was prestrained.

On the other hand, if a sample is first thermally cycled at a small stress to establish

thermal equilibrium, and then loaded to a high stress without prestraining, steady-state strain

increments are obtained only after 35 cycles (Fig. 1.13b). This long initial transient is

attributed to primary creep which decreases over time. At steady-state, the stress normalized

strain increment (1.15 GPa-') is however lower than that obtained from Fig. 1.13a (1.67

GPa'). This result is attributed to ratchetting which induces plastic deformation under no or

little applied stress as a result of a macroscopic strain gradient traveling through the sample,

due to a sharp phase front produced by a steep temperature gradient [86]. In the case of iron

where the stronger phase (y-Fe) is denser than the weaker phase (oa-Fe), ratchetting causes a



contraction perpendicular to the propagation direction of the phase front [86], i.e. in the

axial direction of the radially heated samples.

The presence of ratchetting was confirmed by the following experiments. When a thin,

1.6 mm in diameter, grounded K-type thermocouple with a fast response was used to

control the sample surface temperature, no ratchetting was observed since the stress

normalized strain increment A~Etot/ = 1.67 GPa- ' (Fig. 1.13a) was identical to the

differential slope (dAs~ot)/do = 1.7 GPa-' (Fig. 1.4). In this case, the macroscopic phase

front is diffuse as the surface temperature measured by the thermocouple accurately reflects

the sample temperature. However, when a thick, 3.2 mm in diameter, ungrounded R-type

thermocouple was used to control the surface temperature, a much higher heat flux was

delivered by the furnaces due to the slow response of the thermocouple, leading to a sharper

transformation front. As expected, ratchetting was then observed as a decrease of the

stress-normalized strain increments Aetot/a = 1.2 GPa-' (Fig. 1.13b) after 35 cycles.

The average ratchetting strain Aetot,o can be estimated, from the difference between the

slope in Fig. 1.4 ((dAetot)/do = 1.7 GPa-') and the above stress-normalized strain

increments AE~ot/:

Aeoto =( d (AE tot t Io Y (1.4)

With a = 7.2 MPa (Fig. 1.13b), Eq. (1.4) gives Aetot,o = 0.40% and with Ato/a = 1.13 at a

= 4.9 MPa (Fig. 1.8, A~tot,o = 0.28% is obtained. Considering the case of a phase

transformation front traveling radially in a cylindrical specimen consisting of a rigid phase

and a perfectly plastic phase with low yield stress, an estimate for the ratchetting strain is

AEot,o = (2/3)IAV/VI = 0.70% for a full cycle encompassing two allotropic transformations.

This estimate is reasonably close to the values obtained from Eq. 1.4 and the low-stress

measurements giving Aeot= -0.2% to -0.37%.



Finally, ratchetting is not constant in the long-term experiment (Fig. 1.8), where the

magnitude of the measured negative ratchetting strains was significantly larger at the end of

the experiment. A possible explanation is that the decreased cross-sectional area increased

the net energy flux from the furnace and thus sharpened the transformation front. As for the

decreasing primary creep contribution, this effect results in a continuously decreasing value

of AEtot/a.

1.4.3 Transformation Superplasticity of Fe/TiC Composites

In contrast to titanium containing 10 vol.% TiC particles which exhibited a significantly

higher value of d(Ae 0t)/do as compared to unreinforced titanium [26], the iron-based

composites in the present investigation display values of d(Aeto)/do substantially lower than

the unreinforced matrix. This discrepancy can be explained by two major differences

existing between these systems. First, the titanium composites relaxed internal allotropic

stresses by power-law creep. Unlike time-independent plasticity by yield for the present

iron-based composites, the creep strain-rate of the titanium system is very stress-sensitive,

so that stress concentration due to mismatch between the elastic reinforcement and the

transforming matrix induce large strains. Second, it is apparent from the metallographic

sections (Figs. 1.1d-i) and the thermal analysis (Figs. 1.2 and 1.3) that the matrices of the

composites are different from the unreinforced iron sample and from each other, due to the

slight solubility of TiC in iron, increasing both substitutional (Ti) and interstitial (C) content

in the matrix, and leading to cementite precipitation below 7400C, as discussed earlier. As

shown in Fig. 1.12, both substitutional alloying elements and carbon result in lowered

superplastic strains. The slight dissolution of TiC into iron thus leads to a matrix with a

substantially higher intrinsic strength and lower transformation temperatures, so that the

compositional differences between the three types of samples overwhelm any effects due to

reinforcement volume fraction.



In allotropic composites, two additional sources of mismatch between matrix and

reinforcement exist if the interface between the reinforcement and the matrix is well bonded,

as in Fe/TiC where the reinforcement shows some solubility in the matrix (but unlike an

insoluble, weakly-bonded systems such as Fe/A120 3, where interface fracture occurs upon

phase transformation [10]). First, if the two phases have different coefficients of thermal

expansion (CTE), thermal mismatch stresses occur during a thermal excursion AT, which

can lead to superplastic strain increments as observed in Al/SiC composites upon repeated

thermal cycling [27]. Second, if the matrix is allotropic, its transformation in the presence

of non-transforming particulates also induces mismatch stresses and a corresponding

superplastic strain increment, as recently observed in the Ti/TiC system [26]. Assuming

that these contribution occur independently, an effective mismatch (VN)eff can be defined

with the rule of mixture:

S (1- f)- +f +3AaAT (1.5)
V eff I V I V

where f is the volume fraction of reinforcement and Aa is the difference between the

reinforcement CTE and the average matrix CTE (all CTE are assumed isotropic) over the

temperature interval AT. In Eq. 1.5, the first term, (1-f)lAV/VI, is the transformation

mismatch within the matrix and the second term, flAV/V+3AuATI, is the composite

mismatch between the matrix and the reinforcement, consisting of both transformation and

thermal expansion.

In the Fe/TiC system, the thermal and allotropic mismatch strains have opposite signs,

i.e. on heating the thermal expansion mismatch between iron and TiC partially offsets the

contraction due to the W/y-phase transformation of iron. Neglecting the small thermal

expansion mismatch outside the transformation range (which is assumed to be elastically

accommodated), we consider only the mismatch within the interval AT = + 130 K where the

phase transformation (including the pearlitic reaction) occurs for the composites (Fig. 1.3).



We take for TiC a CTE value a = 8.0.10-6 K-' [92] and for the matrix an average of the

CTE for ferrite a = 16.6.10-6 K-' [94] and for austenite a = 23.3.10 -6 K-' [94]. With a

maximum thermal mismatch 3AaAT = +0.47% and an allotropic mismatch AVN = -1.1%

[8,94], the effective mismatch given by Eq. 1.5, which reduces for the present case to

IAV/V+3fAaATI = 1.05% for Fe/lOTiC and IAVN+3fAaATI = 1.01 for Fe/20TiC.

Effective yield stresses of 47 MPa and 84 MPa, respectively, are then calculated from Eq.

1.3 for the ferritic matrices of the composites. While these values are much higher than for

the unreinforced iron specimen, they are within a physically plausible range. They cannot

however be directly compared to a yield stress experimentally determined by tensile testing,

as they correspond to an average over the transformation range of the yield stress, as

discussed earlier. Introducing the above effective yield stress values and the allotropic

matrix mismatch IAV/V I = 1.1% in Eq. 1.3, we get d(2Ae)/da = 0.39 GPa-' and 0.22 GPa-'

for the unreinforced matrices, which is within the range of values observed in Fig. 1.12 for

carbon-containing alloyed steel.

Finally, the Fe/10OTiC fracture experiment demonstrates that superplastic strains (ef =

231%, Fig. 1.11) can be reached in tension in these composites, despite their room-

temperature brittleness and hardness. The experiment also illustrates that rapid strain rates

can be obtained: for a strain increment of 2.4% per cycle (applied stress of 35 MPa, Fig.

1.11) and a cycling frequency of 30 hr-', the measured average strain rate of d(AEot,,) / dt =

2- 104 S-1 is well within the range used for commercial superplastic forming.

1.5 Conclusions

Transformation superplasticity was studied in iron samples subjected to temperature

cycling through the aly-phase field with a superimposed external uniaxial stress.



1. Within the stress range of interest, deformation by steady-state creep is insignificant as

compared to transformation superplastic deformation. If the materials is not crept prior

to cycling, primary creep can however contribute to the measured transformation

superplastic strains, but this contribution diminishes with time. Also, thermal

ratchetting is observed under high heat flux conditions where a sharp transformation

front is created; the observed contraction of 0.3% is in agreement with existing

ratchetting models.

2. When ratchetting and primary creep are eliminated, equal strain contributions result from

the aoy and y/a transformations. The strain per cycle is linearly proportional to the

applied stress (Aetot/o = 1.7 GPa') for stresses up to 6 MPa, but increases non-linearly

for higher stresses.

3. By considering effective quantities for the yield stress and the volume mismatch, the

yield model of Greenwood and Johnson [39] can be adapted to describe the present case

of a phase transformation through a two-phase field were the above properties are

temperature and/or concentration dependent. The effective yield stress determined

within the linear range (10.8 MPa) is significantly smaller than the effective yield stress

deduced from the non-linear divergence (16 MPa). This is attributed to strain hardening

caused by dissolved carbon and iron-oxide dispersoids.

4. When partially cycling from the austenite field, superplastic strains are initially smaller

than when partially cycling from the ferrite field. This behavior is explained by

undercooling of the transformation and by elastic accommodation of mismatch stresses

in the strong austenite.

Transformation superplasticity was investigated in iron-matrix composites containing 10

vol.% and 20 vol.% TiC particulates.



1. Superplastic behavior was demonstrated for the Fe/lOTiC composite which showed a

total tensile fracture strain of 231%, which was however smaller than the strain of 454%

achieved without failure in unreinforced iron. Average strain rates of 2.10-4 S-1 can be

achieved in that composite, comparable to those used in commercial superplastic

operations.

2. Composites show transformation superplastic strain increments (A~oty/h = 0.37 GPa- '

for Fe/lOTiC and Acyo = 0.20 GPa-' for Fe/20TiC) which are lower than for

unreinforced iron. This is attributed to the slight dissolution of TiC in the matrix, which

increases its yield strength by solid solution strengthening and by reducing the

transformation temperature range (as also observed by dilatometry and calorimetry).

3. The yield model of Greenwood and Johnson [39] predicts effective matrix yield stresses

of 47 MPa for Fe/lOTiC and 84 MPa for Fe/20TiC. The composite superplastic strains

are comparable to literature data for unreinforced steels which also show decreasing

transformation superplastic strains with increasing carbon content.

4. Calorimetry and dilatometry show that the ot/y allotropic transformation followed by

cementite precipitation occurs over a broad temperature interval of 130'C. Strains

produced by partial transformation through this phase field increase linearly with the

temperature excursion, in agreement with the expected mismatch evolution determined

by dilatometry.
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Figure 1.1: Micrographs of iron, Fe/lOTiC and Fe/20TiC samples before thermal

cycling (unetched), before thermal cycling (etched) and after thermal cycling

(etched).



800

T [oC]

9
900 1000

Figure 1.2: Differential thermal analysis of iron and Fe/TiC composites with T = 10

K-min - '; axy transformation l,E; martensite reactions or a <- y

recalescence peak V,V; magnetic transition A,A; c~+TiC -> y+TiC

transformation O,; Fe3C+TiC+oa <- +y+TiC reaction K,*.

C.)

Fe

.,. Fe/0OTiC

0.. ... ..:, Fe/20TiC

C.I .~- -

ao
0.

.. ...... Fe

Fe/10TiC

.......... .... ........' ..........- Fe/20TiC

T

800

T [oC]

900 1000

Figure 1.3: Dilatometry of Iron and Fe/TiC composites with T = 10 K-min -' (same

symbols as in Figure 1.2).
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Figure 1.11: Total strain increment per cycle as a function of the applied stress for Fe/10TiC

deformed until fracture at constant load (TI = 730°C, Tu = 880'C, v = 30 hr- );

the line for T < 21 MPa is taken from Fig. 1.9; in inset are pictures of the

sample before and after deformation.
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Tables of Chapter 1

Table 1.2: Chemical compositions.

Material Carbon Other Elements Analysis
[wt.%] [wt.%]

Fe (as received) 0.009 0.003 N Alfa Aesar, MA
0.28 O

Fe (HIPed) 0.012 0.018 Si Luvak, MA
0.019 Mn

TiC (as-received) 19.6+0.1 Massachusetts Materials
Research, MA

Table 1.3: Porosity (v) and density (p) for iron and Fe/TiC MMCs after cold-pressing,
HIPing and deformation to strain e3.

Material After cold- After HIPing After deformation
pressing

VI P2 V2  p 3  V3 e3
[vol.%] [g.cm -3 ]  [vol.%] [g.cm -3]  [vol.%] [%]

Fe 48.0 7.81 0.2 7.82 0.2 172
Fe/10TiC 44.9 7.54 0.0 7.54 0.0 51
Fe/20TiC 41.4 7.24 0.1 7.25 0.0 2



Table 1.4: Composition, stress-normalized strain increment and elongation to fracture

found in literature for transformation superplasticity of iron and steel.

Material* Carbon Other AEtot/G or (dAStot)/do Elong. Ref.
Elements heating cooling total

wt.%] [wt.%] [GPa - ] [%]

AISI 1095
AISI 1045
AISI 1018
AISI 52100

SS41
S20C
SI5CK

SK5
SS41

(0.008 N)

0.49
(0.15)

(traces)
(0.03)
0.58
0.97
0.84
2.17
1.13

0.49
0.46
0.58
1.06
0.30
0.77
0.53

(0.04)
0.28 O

2.5
0.7
2.5
1.2

0.70
1.6 1.0 2.6

1.5
1.7

0.13 0.11 0.24
0.13 0.11 0.24
0.13 0.11 0.24
0.12 0.09 0.21

0.15
0.41

0.19 0.13 0.32
0.19 0.09 0.28
0.17 0.17 0.34

heat > cool 0.45
0.16 0.26 0.42

Iron
Iron
Iron
Iron
Steel
Iron
Iron
Iron
Steel
Steel
Steel
Steel
Steel
Iron
Steel
Steel
Steel
Steel
Steel
Steel
Steel
Iron

0.39

0.2
0.23
0.02
0.01

0.011
0.98
0.40
0.18
1.07
0.82
0.2

0.03
0.15
0.21
0.16

0.012
0.90
0.15

0.01.2

580
500
515
720

[39]

[20]

[17]
[69]

[65]

[34]
[102]

92 [44]
[45]

> 500 [64]
[61]

1.7 > 454 present
study

0.85

0.08
0.10
0.85

* labeled "Iron", if no significant alloying elements other than carbon are present,
"Steel" otherwise.



Chapter 2

A Non-Linear Model for
Internal Stress Superplasticity

Abstract

Current theoretical models of internal-stress superplasticity predict a linear

relationship between the applied stress and the plastic strain per cycle, and are only

valid at low applied stresses. In the present chapter, we extend the original linear

theory of phase transformation superplasticity by Greenwood and Johnson [39] and

derive a non-linear closed-form solution valid over the whole range of stresses, from

the low-stress regime (where a linear relationship between strain and stress is predicted

in agreement with the model by Greenwood and Johnson [39], to the high-stress

regime (where the strain increases non-linearly as the applied stress approaches the

yield stress of the weakest phase). The model is found to be in agreement with

literature data on transformation superplasticity of iron spanning both stress regimes.

Furthermore, the model is adapted to the case where internal stresses are produced by

thermal expansion mismatch: it is compared to experimental literature data for metals

with anisotropic thermal expansion (Zn and U) and for metal matrix composites with

inhomogeneous thermal expansion (Al/SiC).



2.1 Introduction

Internal stress superplasticity in polycrystalline materials can be induced upon biasing of

internal mismatch stresses or strains, that are produced during a thermal excursion, by an

externally applied stress. This thermal mismatch can occur (i) between grains with

anisotropic coefficients of thermal expansion (CTE), e.g., in zinc [72,101] and uranium

[54,101]; (ii) between phases with different CTE, e.g., in Al/SiC [15,27,71]; or (iii)

between grains during a phase transformation exhibiting two allotropes with different

densities, e.g., in iron [17,20,39,108] and titanium [14,26,39]. Upon repeated thermal

cycling, plastic increments can be accumulated to give large total strains 100 without failure,

a mechanism called CTE-mismatch superplasticity or transformation mismatch

superplasticity, respectively. Depending on the homologous temperature and the nature of

the material, internal stresses are relaxed either by a time-dependent mechanism at high

homologous temperatures, i.e., creep, or by a time-independent mechanism at low

homologous temperatures, i.e., yield. Assuming an ideally plastic material undergoing a

phase transformation, Greenwood and Johnson [39] derived an approximate analytical

solution for the strain per transformation (e.g., either a-Fe to y-Fe or y-Fe to a-Fe) as a

function of the volume mismatch AVN between the two allotropic phases, the externally

applied uniaxial stress a and the yield stress ay of the weaker phase:

5 AV (2.1)
E 8 -- (2.1)

6V ay

Petsche and Stangler [69] extended the model by Greenwood and Johnson [39] qualitatively

to include temperature cycle characteristics, e.g., cycle amplitude and frequency. Diani et.

al. [22] and Sato and Kuribayashi [81] developed complex theoretical models based on

continuum micromechanics for transformation induced plasticity and internal stress

superplasticity, respectively. Applying these models to a phase transformation with a

volume mismatch under a uniaxial external stress gives linear relations between the plastic



strain and the applied stress similar to Eq. 2.1. Kot and Weiss [50] developed a dislocation

based model and derived an equation similar to Eq. 2.1 except that the yield stress is

replaced by the internal stress due to the transformation. Poirier [73] also derived a

dislocation based model and showed that the result can be reduced to Eq. 2.1. That model

was extended by Gautier et. al. [35] to include the kinetics of the phase transformation, also

showing a linear relationship between plastic strain and applied stress. Other authors have

treated the case of CTE-mismatch superplasticity in a similar manner, as reviewed in Ref.

[27].

In summary, all existing models for low-temperature phase transformation plasticity

predict a linear relationship between AE and a as shown in Eq. 2.1. However, the

derivation by Greenwood and Johnson [39] (summarized in App. A) uses assumptions

which limit the validity of Eq. 2.1 to small strains, i.e., E << AVN or, equivalently, to

small applied stresses, i.e., a << ay. Greenwood and Johnson's model was tested

experimentally by many investigators for allotropic metals such as iron [17,20,39,69,108],

cobalt [39,104], uranium [39], titanium [14,26,39], and zirconium [39]. The first three of

these metals are most appropriate for comparison to Eq. 2.1, as creep is slow at their

transformation temperatures and the assumption of ideal plasticity is thus accurate. Figure

2.1 shows literature results reported by Greenwood and Johnson [39], Clinard and Sherby

[17], de Jong and Rathenau [20] and Zwigl and Dunand [108] for transformation

superplasticity of iron containing little or no alloying elements. In that figure, Aetot is

defined as the strain per full thermal cycle, i.e., a-y-a. As discussed later, the scatter

between the experimental curves in Fig. 2.1 can be attributed to varying impurity and carbon

contents in the samples investigated. In general, linear relationships are observed at small

strains or stresses, in qualitative agreement with the predictions of Eq. 2.1. However, at

higher strains or stresses a considerable deviation from linearity occurs. This effect could

be attributed either to the transition from time-independent to time-dependent material



behavior (i.e., creep) or to the breakdown of Eq. 2.1 at high stresses. Since creep is

insignificant in the above experiments [17,20,39,108], the non-linear behavior in Fig. 2.1 is

an intrinsic behavior which cannot be modeled with the existing linear theories.

In the present chapter, we model internal stress superplasticity of an ideal plastic material

exhibiting high strains per transformation by extending Greenwood and Johnson's theory to

applied stresses up to the yield stress. We then compare the model predictions to literature

values that show non-linear transformation superplastic behavior, e.g., iron. Furthermore,

we apply our model to superplasticity induced by other internal stress mechanisms, i.e.,

anisotropic thermal expansion mismatch and composite thermal expansion mismatch.

2.2 Analytical Model

As summarized in Appendix A, Eq. 2.1 was derived under the assumption that the plastic

strain increment E is much smaller than the transformation volumetric mismatch AV/V, i.e.,

for small applied stresses. But if the plastic strain becomes comparable to, or even larger

than the volumetric mismatch, the non-linear terms ignored by Greenwood and Johnson

[39] in their derivation (see App. A) cannot be neglected and Eq. 2.1 is invalid.

We first define dimensionless stresses and strains:

AV/V (2.2)

S= azz (2.3)

AV/V

6 - (2.5)
ay



where o z and (AV/V)zz are defined in Appendix A. With these definitions, Eq. A15 is

written as:

3 =(o 9 a2 _ + - -1/2 (2.6)4 2

Rather than expanding terms and linearizing the resulting expression as done by Greenwood

and Johnson (see App. A), we determine the volume average over both sides of Eq. 2.5 and

use Eqs. 2.3, 2.4 and A17 to get:

S 92 -1/2d
2 f 

(2.7)
2 fdM

where Q is a spherical volume element. With (AV/V)zz given by Eqs. A7-A10 the right

hand side of Eq. 2.6is solved analytically, giving:

1 1 1 3a 1 1 in3.32.8
= - + - + I( I I)In (3 x++2 (2.8)

4 6a 2 -,4 6 9o 92 - 6a + 4

Eq. 2.8 is obtained without the assumption of small strain ( e << AV/V) and is thus valid for

all applied stresses below the yield stress, unlike Greenwood and Johnson's original

solution (Eq. 2.1), expressed in dimensionless form as:

6
6 ~ - (2.9)

5

Fig. 2.2 shows the solution derived by Greenwood and Johnson (Eq. 2.9) together with the

exact solution given by Eq. 2.8.

From this figure it is observed that:



* Despite its complexity, the exact solution (Eq. 2.8) is almost linear for 0 < 8 < 0.5

and follows closely the approximate linear solution by Greenwood and Johnson (Eq.

2.9). Surprisingly, Greenwood and Johnsons's solution (Eq. 2.9) coincides much

beyond its nominal range of validity (i.e. a << 1) with the exact solution (Eq. 2.8).

This fortuitous agreement results from the quasi-linear nature of Eq. 2.8 up to a =

0.4.

* The value of 8 given by Eq. 2.8 and its slope at the origin are respectively:

lim 8=0 (2.10)
a-)O

limd8 6 (2.11)
a-o da 5

as determined by series expansion. As expected, these values correspond to those

predicted by Greenwood and Johnson (Eq. 2.9).

* The strains predicted by Eq. 2.8 diverge towards values larger than those

extrapolated from Eq. 2.9 when the applied stress approaches the yield stress. As

expected for a perfectly plastic material, the strain becomes infinite when the applied

stress tends to the yield stress:

lim =1 (2.12)
a -->-

This equation was proven by using L'Hospital rule.

2.3 Discussion

While the above solution (Eq. 2.8) is the same as that found by Fischer [30], it is based

only on the original assumptions made by Greenwood and Johnson and does not necessitate

any further hypothesis. Thus, the radial strain components introduced by Mitter [58] and

Fischer [30], do not affect the final result.



2.3. 1 Transformation Superplasticity

Fig. 2.3 shows the total strain per cycle as a function of the applied stress for

experimental literature data of iron, together with predictions by Eq. 2.8. Fitting was done

by keeping the volumetric mismatch constant at AV/V = 1.05% [8], while changing the

yield stress systematically until the sum of the squared differences between applied and

calculated stress was minimum:

j[oi - " 8i ]2 = min (2.13)
i=l

where n is the number of points measured. In Fig. 2.3, we assume that the strain of a full

a-y-a transformation cycle is the sum of two equal half-cycle contributions (a-y and y-a

respectively):

Atot = 2 e (2.14)

As shown in Fig. 2.3, there is good agreement between experiment and model for the data

by Greenwood and Johnson [39] with a yield stress ay = 7.4 MPa and the data by Clinard

and Sherby [17] with ay = 7.8 MPa. However, the data of de Jong and Rathenau [20] and

Zwigl and Dunand [108] cannot be fitted with the single parameter ~y (Eq. 2.13). This is

because in Eq. 2.8 the yield stress affects not only the non-linear behavior of the E- curve

but also the value of the slope in the linear region. Fitting only the data in the linear range

gives yield stresses of 16 MPa and 11 MPa for the data by de Jong and Rathenau [20] and

Zwigl and Dunand [108], respectively. In Fig. 2.3, the predicted curves however diverge at

stress values which are too low; this behavior is attributed to strain hardening, as discussed

in the following.

Table 2.1 summarizes the chemical composition of samples used by the different

investigators and shows that the yield stress, ay, as determined from fitting of the

experimental data, tends to increase with decreasing overall purity. Furthermore, the



impurity content also affects the post-yield behavior. The higher purity data by Greenwood

and Johnson [39] and by Clinard and Sherby [17] can accurately be described as ideally

plastic (Fig. 2.3), a central assumption of the models. However, samples used by de Jong

and Rathenau [20] and Zwigl and Dunand [108] contained 0.2% carbon and 0.3% oxygen,

respectively. These impurity levels are much higher than the solubility limit, so that the

resulting iron carbides and oxides, respectively, are likely to affect the plastic behavior of

the matrix by increasing both the yield stress and the post-yield strain hardening rate.

Strain-hardening results in yield stresses YC* after plastic deformation which are higher than

the initial yield stress ry. This behavior can be modeled with a simple stress criterion:

ry for <at
cY = r + k-(C - at) for c, (2.15)

where at is a threshold stress and k is a parameter controlling the hardening rate. Table 2. 1

shows these optimized parameters with the threshold stress, cr, set as half the initial yield

stress, cy, determined from Eq. 2.13 and shown in Fig. 2.3. Eq. 2.15 thus only contains

two fitting parameters, i.e., cy and k. With cy given by the fitting in the linear range, k is

obtained by fulfilling the condition:

n

Iu i-C' ji = min (2.16)
i=1

Optimal values for k are given in Table 2.1. The validity of the analytical model (Eq. 2.8)

with and without strain hardening is tested by plotting the normalized stress 8 (with oy

given by Eq. 2.15 and parameters taken from Table 2.1) vs. the normalized strain a (with F

given by Eq. 2.14). The result is shown in Fig. 2.4 together with the prediction of Eq. 2.8.

Given the uncertainties of the purities of the materials and differences in the cycling

parameters, i.e., frequencies and temperature amplitudes, the model is in good agreement

with the experimental observations.



2.3.2 CTE-Mismatch Superplasticity

Eq. 2.8 can be adapted to describe superplasticity resulting from other mismatch

mechanisms, e.g., martensitic phase transformations [34,74], irradiation swelling [77],

compressibility mismatch [43] and CTE-mismatch [27]. The latter mechanism is discussed

in the following, first for pure metals with anisotropic CTE, and second for metal matrix

composites with inhomogeneous CTE. The treatment developed by Greenwood and

Johnson [39] can be generalized to describe mismatch superplasticity by replacing the phase

transformation strain tensor E- (Eq. A6) with a general mismatch strain tensor Fe. The

internal strains (Eq. A4) then become:

Eij+= EP + E M  (2.17)

From the strain invariants, defined by the principal axes of the EijM tensor [23], it follows:

+2 2+ 2M + 2 M y)2 +(M)2 - 2 (M = -2. (2.18)

where (AV/V)eq is the equivalent mismatch strain producing the internal stresses. Once the

equivalent mismatch strain is specified, the derivation follows that of phase transformation

plasticity presented in Appendix A, using Eq. 2.17 instead of Eq. A4. The final result is

again Eq. 2.8 where a is now defined /(AV/V)eq.

The equivalent mismatch produced by CTE-mismatch mechanisms is of the general form:

S = G(f) - At -dT (2.19)
eq ATp

where G(f) describes the dependence of the volume fraction for the case of composite CTE-

mismatch (G = 1 for a single phase anisotropic material), Ao is the thermal expansion

mismatch between the composite phases (respectively, between crystallographic directions)

and ATp is the temperature interval which causes plasticity beyond the elastic regime. ATp1,



which is smaller than the total temperature amplitude AT, is a function of the CTE

mismatch, the elastic modulus and the yield stress of the weaker phase. Because these

properties are temperature dependent, different values for AT1 and thus (AV/V)eq are

expected for heating and cooling half-cycles, resulting in different values of half cycle

plastic strains e. While it is possible to use Eq. 2.8 separately for heating and cooling half-

cycles, the model can also be used with cycle-averaged values for the yield stress and ATpI,

thus assuming equal contributions for the plastic strains caused by heating and cooling.

This approximate approach must be followed when analyzing strain data reported only for

complete temperature cycles. In this case, Eq. 2.19 can be simplified:

(V) =K G(f).Ao .ATp, (2.20)

where K is a parameter correcting for the errors introduced by taking cycle-average values

for the thermal mismatch Act ATp. Thus, the closer K is to unity the better the

assumptions made for Aw AT, are.

2.3.3 Anisotropic CTE-Mismatch Superplasticity in Pure Metals

Internal stress superplasticity can be induced upon thermal cycling of a polycrystalline

material with anisotropic CTE, as reported for a-uranium [54,101] and zinc [72,101].

Following the derivation of Young et. al. [103], the strain deviators of an anisotropic

material in a cartesian coordinate system, my,z are:

EM = Kl ATpl .(au - Oav) (2.21)

FM = K, .ATpl .(X 2 - av) (2.22)

em = K, .AT .(c 3 - tav) (2.23)



where al, a2, a3 are the CTE's along the crystallographic directions (which are in general

temperature dependent), a,, = (1/3) (a( + a2 + a 3) is the average CTE of an aggregate of

randomly oriented grains, and K, is the correction parameter. Equations 2.21-2.23 are

equivalent to Eqs. A7-A9, given by Greenwood and Johnson [39] for transformation

superplasticity. For the special cases of a-uranium and zinc, al a2 = a2 3 [94], so that

Eqs. 2.21 to 2.23 become:

E = (1/3). K, Aam -AT (2.24)

EM = (1/3). K, AOm, ATp, (2.25)

EM = (-2 / 3). K - Aa m -AT,, (2.26)

where Aam is the temperature-averaged difference between a, and a 3. When comparing

Eqs. 2.24-2.26 to A7-A9, the equivalent mismatch for the case of anisotropic CTE-

mismatch plasticity is:

S= KI, .A m ATpl (2.27)
V eq

The parameter K, can be found from Eq. 2.27 from the experimental values for AT,, the

average CTE Aam and the equivalent mismatch (AV/V)eq determined by fitting Eq. 2.8 to

the data with the algorithm given in Eq. 2.13. The squared residuals are minimized

iteratively by keeping ar constant while locating the minimum for Aa, through changes of

(AVIV)eq and vice versa until convergence. If AT,, is unknown, the total cycle amplitude

AT can be used as an upper bound ATp,, thereby neglecting elastic strains. Figure 2.5

shows literature data for a-uranium [54] and zinc [72] together with model predictions by

Eq. 2.8 fitted with the parameters given in Table 2.2. Our model (Eq. 2.8) successfully

describes both the linear and the non-linear region of experimental data and gives two fitted

parameters, Ty and (AV/V)eq, that are discussed in the following.



Lobb et. al. [54] showed that the strain rates of a-uranium cycled between 400'C and

600°C (T/Tm = 0.48-0.62) are significantly higher compared to the rates of isothermal creep

at 600'C. Thus, plastic accommodation is by time-independent yield rather than by creep

and the present model is applicable.

With an average CTE-mismatch of A m = 55.2-10-6 K-' between 400'C and 6000 C [94]

and a temperature amplitude AT = 200 K (an upper bound for ATp, ) a maximum mismatch

of A(m AT = 1.1% is calculated, giving a reasonable value of 0.24 for the parameter K1.

The value obtained for the yield stress (Yy = 36 MPa) is also reasonable in view of the yield

stresses reported at 4000C (oy = 120 MPa) and at 600'C (oy = 20 MPa) [85].

The zinc data shown in Fig. 2.5 was measured by Pickard and Derby [72] on high purity

wrought zinc and the same material after annealing at 350 0 C. Temperature cycles were

between 60'C and 150 0C (T/Tm = 0.48 - 0.61) and at all temperatures, the strain rates

caused by thermal cycling are significantly higher than the isothermal creep rates calculated

from Ref. [31]. The fitted average yield stress of the wrought material is 26.5 MPa, below

the room temperature value of 33 MPa measured by Pickard and Derby [72], as expected

from the negative temperature dependence of the yield stress. The annealed zinc is best

fitted with a yield stress of 9.5 MPa. This value is much lower than that for the wrought

material (26.5 MPa), as expected from recovery and recrystallization after annealing at a

very high homologous temperature (T/Tm = 0.90). With AOm= 46.8-10 -6 K-' [94] the

maximum available mismatch AOm "AT = 0.42%, leading to values for K, of 0.21 and 0.17,

which are similar to that of a-uranium K, = 0.24). The similarity in the values of K,, while

possibly fortuitous, is encouraging.

2.3.4 Composite CTE-Mismatch Superplasticity

Composites containing phases with different CTE's also exhibit mismatch superplasticity

[27]. At low homologous temperatures where yield is the controlling deformation



mechanism, the present model (Eq. 2.8) can be used by fitting the yield stress and the

equivalent volumetric mismatch. For CTE-mismatch superplasticity in composites, the

strain deviators are:

EM = K2 -G(f) A(-ATp (2.28)

EM = K 2 G(f) -Ao-AT, (2.29)

CM = -2 -K2 *G(f) A ATp (2.30)

where Acx is the temperature-averaged linear mismatch between the CTE's of reinforcement

and matrix, ATp the temperature difference causing plastic deformation, G(f) a function of

the reinforcement volume fraction f and K2 the correction parameter incorporating the non-

ideality of the assumptions made above. Comparing Eqs. 2.28-2.30 to Eqs. A7-A9, the

equivalent mismatch for composite CTE-mismatch superplasticity becomes:

SVi =3.G(f).K 2 pA. ATpl (2.31)

Fig. 2.6 shows the data and fits for Al/SiC metal matrix composites from Chen et. al. [15]

and Pickard and Derby [71]. Chen et. al. [15] cycled a 2124 Al composite containing 20

vol.% SiC whiskers between 100°C and 350 0C (T/Tm = 0.400.67) and showed that the

strain rates caused by thermal cycling are more than an order of magnitude higher than

isothermal creep at a homologous temperature of 0.69. Pickard and Derby [71] used

composites containing 20 vol.% and 30 vol.% 2.3 gm SiC particulates with a matrix of

commercially pure aluminum, for which plasticity by creep was also insignificant over the

cycling temperature range between 130'C and 350'C (T/Tm = 0.43-0.67). Thus the

composite behavior upon thermal cycling is controlled by time-independent yield and can be

described by Eq. 2.8 with (AV/V)eq given by Eq. 2.31. The fitted values for oy and

(AV/V)eq are given in Table 2.2.



Table 2.2 shows that the yield stress is significantly higher for the composite with an

alloyed 2124 matrix than for the pure aluminum composite. This effect is expected both

because the alloy is stronger than the pure metal and because whiskers typically strain

harden a metallic matrix more effectively than particulates. Also, Pickard and Derby [71]

measured the yield stress of the commercially pure aluminum matrix as a function of the

temperature, giving a cycle-averaged yield stress of 20.5 MPa, in reasonable agreement with

our fitted values of 26 MPa for the 20 vol.% SiCp composite and 26.5 MPa for the 30

vol.% SiC,.

The dependence of the volume fraction was modeled by Pickard and Derby [71 ] as G(f)

= (lf)f. Furthermore, they independently measured the temperature amplitude ATel for the

onset of plasticity. By taking Aocm = 22.7-10-6 K-' [94] and an average value for heating

and cooling ATel= 137 K (i.e., ATp = AT - ATel = 83 K, the mismatch strains are

3 G(f) A m * AT,, = 0.030% and 0.040% for the 20 vol.% and 30 vol.% SiCp composite,

respectively. Using the fitted values for (AV/V)eq given in Table 2.2, K2 values of 2.7 and

1.6 are obtained respectively from Eq. 2.31. Assuming the same value for ATIe =137 K,

the mismatch strain of the 2124 Al composite becomes 0.041% and K2 = 0.46. While K2

values are similar for the two pure aluminum composites, the value for K2 for the alloyed

composite is significantly lower, possibly because (i) the yield stress of the 2124 alloy is

much higher than for pure aluminum, thus increasing ATei, (ii) whiskers produce a

mismatch stress field different from that of equiaxed particulates. In general, the values for

the correcting parameters K, and K2 determined for anisotropic CTE-mismatch and

composite mismatch superplasticity are, respectively within factors 6 and 3, of the predicted

ideal value of unity. We believe that this error can be explained by the assumptions and

approximations made for the equivalent mismatch (Eq. 2.20).



2.4 Conclusions

Allotropic materials deforming by transformation superplasticity exhibit at low applied

stresses a linear relationship between plastic strain per transformation and the applied stress,

as predicted by the linear relationship of Greenwood and Johnson [39]. However, at

intermediate and high applied stresses, where their theory becomes invalid, experimental

data show that the strain increases non-linearly with the applied stress. We generalize the

original theory of Greenwood and Johnson [39] to include these stress regimes and derive a

closed-form solution valid for all applied stresses (from zero up to the yield stress of the

weaker phase) for an ideally plastic material. As expected, the strains predicted by the

complete solution converge to the linear expression by Greenwood and Johnson [39] at low

stresses and diverge to infinity for stresses tending towards the yield stress. The complete

solution accurately describes data for high-purity iron in both these linear and non-linear

regions. The model is then extended to the case of a strain-hardening material and applied

successfully to literature data for iron with high impurity content. Finally, the model is

adapted to the more complex case of CTE-mismatch superplasticity exhibited by metals with

anisotropic CTE and by composites with inhomogeneous CTE. Experimental literature data

on a-uranium, zinc and A1/SiC composites are successfully described with two fitting

parameters (yield stress and thermal mismatch) which take values that are physically

reasonable.



Appendix A

Summary of the Derivation by Greenwood and Johnson [39]

Phase transformation superplasticity is attributed to the presence of deviatoric stresses ij

= ij - (1/3)8ij(Gkk where oij are the stress tensor components, Ukk its hydrostatic components

and 6ij the Kronecker symbol. The kinetics of strain production is modeled as

6ij = G'ijI (Al)

where ij are the internal strain rate components and k is the viscosity of the weaker phase

once the yield stress is reached. Assuming that the rate of production of the internal stress is

fast compared to any possible relaxation mechanism, Eq. Al can be integrated over the time

of transformation At to give:

=ij= oij'l (A2)

where 1, = ,At is a constant. The internal strain components eij are only a function of the

deviatoric stress components. Substituting Eq. A2 into the Levy-Von Mises yield criterion

(which relates the deviatoric stress components to the yield stress, Ty, as measured in

uniaxial tension) gives:

E2 +E +E2 +2. 2 +2.2 +2-Ez =(2 / 3) . 2 (A3)

The internal strains are obtained by superimposing the strains due to plastic deformation of

the weaker phase, c!P and the strains associated with the phase transformation, ~:

ij = P + E T  (A4)

with



1
---e 0 0

2

0- - 0-8 (A5)
1 2

(AV/V)xx (AV/V)xy (AV/V)xz

S(AV / V)xy (AV/V)yy (AV / V) (A6)
(AV/V)xz (AV/V)zy (AV/V)zz

where e is the plastic strain increment in the direction of the uniaxial applied stress and

(AV/V)i the components of the phase transformation strain tensor. The negative sign in Eq.

A6 indicates that a volume reduction occurs during the phase transformation. Greenwood

and Johnson [39] followed Anderson and Bishop [4] by assuming that the strain (AV/V)x,y,z

in principal coordinates are:

(AV/V)x = (1/3) (AV/V) (A7)

(AV/V)y = (1/3)(AV/V) (A8)

(AV/V)z = (-2/3)(AV/V) (A9)

The components of the transformation strain tensor (Eq. A6) are related to the principal

strain deviators (Eqs. A7-A9) by a coordinate transformation, e.g.:

(AV/V)zz = (AV/V)x cos(W) 2-sin( )2 +
(A10)

(AV/V)y sin((p) 2.sin(3) 2 + (AV/V)zcos(1) 2

Using Eqs. A7-A9 and Eq. A10, the second invariant of the transformation tensor (Eq. A6)

is:



(AV/V)2 + (AV/V)2, + (AV/V) +

x [Y zzV/V ( ) ( / ] 2
2 -[(AV /V)2y + (AV /V)2z + (AV /V)2z =(2

(All)

Further, the first invariant of the phase transformation strain tensor requires that:

(AV/V),,xx + (AVV)yy + (AVV),,zz = 0 (A12)

Introducing Eq. A4 into Eq. A3 and using Eqs. All and A12 gives:

(3/2). 2 - 3.- (AV / V)zz + (2/3). (AV/V)2 = (2/3). -V2, (A13)

Compatibility of strains in the z-direction (i.e., the direction of the uniaxial applied stress)

requires that:

Ezz = e-(AV/V)zz  (A14)

After introducing Eqs. A2 and A14 into Eq. A13, eliminating X1 and rearranging terms, the

deviatoric stress component in the z-direction is given by:

(A15)Gzz
Se -4.( AVV/V 2 V)z)Z

(V /V)IV1+ [9.2 - .- (AV/V)zz

- 4 -(AV/V) 2 .(AV /V)2

This is equation (7) of Greenwood and Johnson's article [39]. Under the assumption that E

<< AV/V these authors make three approximations by

* neglecting the 82 term in the denominator of Eq. A15,

* expanding (1 - x) - 1/2 = 1 + x/2, where x = [9-a.(AV/V)zz]/[2.(AV/V) 2]

* neglecting again the 82 term to obtain:

/3) A 2



9.(AV/V) 2

f )Y(A16)

S'zzd 2
S - - y (A17)

f d 3

dAV 2 4 dV2
(A1.8)

f d 45 V

zV =0 (A19)
fd

where a is the applied stress in the z-direction. Introducing Eqs. A17 to into Eq. A19 leads

to the concise result found by Greenwood and Johnson [39]:

5 AV o
E = -- (A20)

6 V oy
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Tables of Chapter 2

Table 2.1: Chemical composition and material parameters for the yield stress

given by Eq. 2.15 for iron.

purity main Cy k (t Reference
impurity

[wt.%] [wt.%] [MPa] [MPa]

-100 - 0 7.4 0 0 [39]
99.7 0.02 C 7.8 0 0 [17]
99.7 0.30 11 0.51 5.5 [20]

-99.8 0.2 C 16 0.41 8 [108]

Table 2.2: Summary of material parameters used in CTE-mismatch

superplasticity models.

Material oy (AV/V)eq K K2  Reference

[MPa] [%] Eq. 2.27 Eq. 2.31

a-U 36.0 0.27 0.24 - [54]

Zn-wrought 26.5 0.090 0.21 - [72]
Zn-annealed 9.5 0.070 0.17 - [72]

2124 47.5 0.019 - 0.46 [15]
A1/20SiCw
pure 26.0 0.082 2.7 [71]
Al/20SiCp
pure 26.5 0.063 1.6 [71]
Al/30SiCp



Chapter 3

A Numerical Model of
Transformation-Superplasticity for Iron

Abstract

A numerical model of transformation superplasticity for an elastic, ideally plastic

material is presented using a plane-strain formulation considering both temperature and

displacement. The evolution of temperature, stresses and strains during the ferrite-

austenite phase transformation of iron is computed for different values of the applied

stress. For low stresses, the numerical model predicts a linear relationship between the

applied stress and the plastic strain increment accumulated after crossing the phase

transformation range. For high stresses, the relationship becomes non-linear: the

strain increments tend to infinity as the applied stress approaches the yield stress. Both

these trends are in qualitative agreement with analytical solutions for transformation

superplasticity. Furthermore, upon introducing plane-strain specific equivalent

quantities for the transformation mismatch and the yield stress, the numerical model is

in good quantitative agreement with both analytical predictions and experimental data

for pure iron.



3.1 Introduction

Transformation superplasticity is a deformation mechanism relying on the biasing by an

externally applied stress of isotropic internal mismatch stresses or strains induced during the

phase transformation of allotropic polycrystalline materials. Plastic deformation of the

weaker phase due to the internal and external stresses controls the macroscopic strain

increment developed during the allotropic transformation. As internal stresses are

regenerated each time the material transforms, large superplastic strains can result by

accumulation of the individual strain increments produced during cycling about the allotropic

temperature, as reviewed in e.g. Refs. [25,29,60,68].

For elastic, ideally-plastic materials, Greenwood and Johnson [39] derived an

approximate analytical solution for the uniaxial strain increment Ac accumulated during a full

temperature cycle (where the allotropic temperature is crossed twice), as a function of the

absolute value of the volume mismatch between the two allotropic phases AVN, the

externally applied uniaxial stress a and the uniaxial yield stress ay of the weaker phase:

5 AV Y
As (3.1)

3V oa

However, Eq. 3.1 is valid only for applied stresses which are small compared to the yield

stress. Based on Greenwood and Johnson's derivation, Refs. [30,107] extended the model

for all applied stresses below the yield stress:

1 1 1 3a 1 1 n (3a+_ (3.2)
4 6a 2 - 4 6 9aJ 9 2 - 6a + 4

where the dimensionless parameters 6 and a are defined as o/ay and (Ae/2)/(AVN),

respectively. Equation 3.2 was found to be in good agreement with experimental data for

pure iron undergoing the al/ transformation without strain-hardening [107,109]. As



expected, Eq. 3.2 tends toward the limit for small stresses (Eq. (3.1)) expressed in

dimensionless manner for half a temperature cycle as:

X -5. (3.3)

6

While the closed-form solution Eq. 3.2 is compact and predictive, it does not give any

information on the time-evolution of internal stresses, internal strains, or macroscopic strain

during the allotropic transformation. Such information can however be generated by finite-

element models, which can also take into account the temperature-dependence of the thermo-

mechanical properties during thermal cycling and the coupling between thermal and

mechanical behavior of the material. Finite-element modeling has been used to study the

related problems of thermal mismatch superplasticity in Al/SiC composites during thermal

cycling [105,106], and transformation plasticity in steel due to the formation of pearlite [33]

or martensite [21,35,52,76].

In the present chapter, we introduce a plane-strain finite-element model with thermal-

mechanical coupling describing an elastic, ideally-plastic material undergoing an allotropic

phase transformation under an externally applied stress. Numerical results for the

transformation superplasticity of iron are compared to the predictions of the analytical model

given by Eq. 3.2 and experimental results by Refs. [17,39]. Further, the consistency of the

numerical model with respect to changes of the yield stress and the volume mismatch is

tested and the time-dependence of stresses and strains are discussed.

3.2 Model

The numerical model consists of 16 plane-strain, temperature-displacement elements [41]

regularly arranged in a square 4x4 mesh with a length Lo = 100 gm as shown in Fig. 3.1.

The boundary- and symmetry conditions are defined such that the mesh remains rectangular

throughout the analysis. The initial temperature of the stress-free domain was set to T =



9090C. Defining the 3-direction as being constrained by plane-strain (i.e. 633 = 0), an

external uniaxial stress a 22 (referred to as a in the following) is applied along the a-a edge in

the first step of the analysis. In the following steps, a square temperature profile (Fig. 3.1)

is repeatedly applied along the b-b edge where the temperature is cycled between TI = 909C

and T, = 915C about the ferrite-austenite a-y allotropic range of iron, taken as 911.5 -

912.5"C. The time-incrementation during the transient temperature-displacement analysis

(performed with ABAQUS version 5.5 [41]) is set so that the element strain is below 5-10 -4

and the temperature difference is below 0.2 K during each increment. Heat transport is

assumed to occur by convection with a heat transfer coefficient h = 50 W m-2K -'.

Consistent with the analytical model, isotropic macroscopic material properties are used to

model the a-y transformation of iron, as summarized in Table 3.1.

As shown in Fig. 3.2 for the thermal strain, the density change is modeled by varying the

technical coefficient of thermal expansion a2oC linearly over the allotropic temperature range

between the values given in Table 1. The technical coefficient of thermal expansion includes

the contraction due to the ferrite-austenite transformation with respect to room-temperature

and thus has a smaller value for the austenite than for the ferrite. However, the

instantaneous thermal expansion, defined as the slope of the extension/temperature curve, is

higher for austenite than for ferrite. Using technical coefficients of thermal expansion, the

allotropic length change is:

A = (20C,a -_X 2 0 oC,y). AT (3.4)-L-

With (a20C,a, C20C,y taken from Table 3.1, AT = 912C - 20*C, Eq. 3.4 gives AL =

0.348%, corresponding to a volume change (AV/V) = 3(AL/L) = 1.04%, in agreement with

the value reported in Ref. [8] for iron.

The yield stress of the weaker low-temperature ferrite is taken as oy = 7.5 MPa, as

determined from experimental transformation superplasticity data [107,109]. The yield



stress of the stronger austenite is assumed to be ten times higher than that of ferrite.

Furthermore, it is assumed that the yield stress of the material is equal to that of ferrite

throughout the transformation (i.e. over AT = 1K), and that it increases rapidly to that of

austenite immediately after the end of the phase transformation over a small temperature

interval AT = 0.1K, as shown in Fig. 3.2.

3.3 Results

Figure 3.3a shows the time-dependence of the strain e22 (referred to as e in the following)

and the domain temperature during the first three thermal cycles for an applied stress a = 4.0

MPa. The cycle period is At = 240 s, with equal intervals Atl/2 = 120 s for heating and

cooling. The temperature was determined at the upper right hand corner of the domain and

thermal gradients within the material were below AT = 0.1 K at all times. During the heating

stage of the cycles, the temperature increases rapidly from T = 909C to the onset of the

phase transformation, modeled at T = 911.5C. Because of the heat absorbed or released

during the phase transformation, the heating and cooling rates are reduced when the material

transforms (Fig. 3.3a).

A small thermal expansion is observed upon initial heating (Fig. 3.3b) before the domain

shrinks over the phase transformation interval AT = 1K. This large allotropic contraction is

followed by a small thermal expansion (Fig. 3.3c) upon heating to the upper cycling

temperature T = 915C. On cooling, thermal contractions occur outside the phase

transformation interval over which the material expands (Figs. 3.3c,d). An overall plastic

strain increment in the 2-direction (referred to as AE in the following) is observed after each

full cycle. The magnitude of the strain increment, which was taken as the difference of

plastic strains between the start and the end of a cycle, changes slightly between the first and

the succeeding cycles, because of different residual stresses: at the onset of the first heating

ramp, the material is free of residual stresses, but at the onset of the second and all



subsequent heating ramps, residual stresses exist in the material. The value of As remains

unchanged after the first cycle.

Figure 3.4a shows the evolution of the Von Mises equivalent stress oeq and the plastic

strain Epl in the 2-direction during the third temperature cycle of Fig. 3.3a. The Von Mises

stress is calculated at the center of the upper right element of the mesh. The stress-field

showed no gradients within the 16 elements so that the stress history of this element is

representative of that of the whole domain. The plastic strain ep, as determined from the

deformation of the whole domain along the 2-direction, is obtained by subtraction of the

total strains in the 2-direction with and without applied stress:

e, = e(t, a) - e(t, a = 0) . (3.5)

The initial thermal expansion (Fig. 3.3b) induces a stress increase (point (1) in Fig. 3.4b).

The subsequent contraction (Fig. 3.3b) of the domain due to the a/y transformation relaxes

the thermal mismatch, causing first a reduction of the equivalent stress (point (2) in Fig.

3.4b) and then an increase to the yield stress (point (3) in Fig. 3.4b). The sharp drop of the

equivalent stress between points (1) and (3) in Fig. 3.4b is due to the change of the T33-

stress component from a compressive to a tensile state of stress. Up to that point, no plastic

strains are produced. Point (3) in Fig. 3.4b marks the onset of plasticity, and yielding

occurs until the end of the y transformation (point (4) in Fig. 3.4a), causing an overall

plastic strain increment AEs/ = 0.153%. Finally, upon heating to the upper cycle

temperature, the equivalent stress is reduced to ceq = 5.0 MPa (because the thermal and

allotropic strains are of opposite signs) with no associated plastic strain (point (5) in Fig.

3.4a). Because the yield stress of the austenite is never reached (except very briefly at point

(4) and (6) in Fig. 3.4a), its exact value (taken arbitrarily as 10 times that of the ferrite) is

unimportant. The cooling portion of the cycle shows qualitatively the same stress and strain

behavior, giving a residual equivalent stress Yeq = 5.5 MPa (point (7) in Fig. 3.4a) and Acy/a



= 0.146%, so that the total uniaxial strain accumulated at the end of the cycle is Ae = Aera +

Avya = 0.299%.

Figure 3.5 shows the steady-state strain increment in the 2-direction (i.e. As for the third

temperature cycle) as a function of the applied stress. A linear relationship between the strain

increment and the applied stress exists at low stresses, while progressively increasing strain

increments are developed at high stress levels. Also, finite strain increments are obtained

above the uniaxial yield stress ay because of the plane-strain condition, as discussed later.

When higher values are taken for the yield stress limits (y = 11 MPa for ferrite and ay =

110 MPa for austenite), smaller strain increments are observed at low stresses and the

divergence occurs at a higher stress.

To examine the sensitivity of the model to the value of the allotropic volume mismatch

AVN, the technical coefficient of thermal expansion of the austenite was further varied, i.e.

a20"c,T = (20-c,a - (AV/V)/(3 AT). Figure 3.6 shows the effect of the volume mismatch on the

strain increment per cycle for applied stresses of a = 4.0 MPa and a = 8.0 MPa using a

uniaxial yield stress of ay = 7.5 MPa. The strain increment is proportional to the volume

mismatch, with slopes d(A)/d(AV/V) = 0.30 and d(A)/d(AV/V) = 1.35 at the lower and

higher applied stress, respectively.

3.4 Discussion

3.4. 1 Temperature-, Strain- and Stress Evolution

The numerical results showed that thermal gradients were insignificant (AT < 0.1 K) with

the standard 16-element mesh (or with meshes containing 64 and 256 elements). This is

consistent with the value much smaller than unity for the Biot number:

Bi - h L  (3.6)
k



where k is the thermal conductivity and Lo is the domain length (Fig. 3.1): with values h =

50 Wm-2K-', k = 0.3 Wcm-'K-', L0 = 100 gm, the Biot number is Bi = 1.7-10 -4 . Under

these thermal conditions, the time for transformation is:

At = L AH (3.7)
h -ITs - TP'

where Ts is the surface temperature (Ts = 915C on heating and Ts = 909C on cooling) and

Tp is the phase transformation temperature. Since the phase transformation is modeled over

a temperature interval AT = 1K, Eq. 3.7 is integrated between Tpl = 911.5 0C (912.50 C) and

Tp2 = 912.5C (911.5 0C) for heating (cooling):

At = L -- AH In T (3.8)

Taking an average density of p = 7.73 gcm3, the expected time for transformation from Eq.

3.8 is At = 97.8, close to the value found numerically (At = 102.4 s for Fig. 3.3a).

Based on the elastic responses eel of the domain upon initial application of a series of

externally applied uniaxial stresses (e.g. Fig. 3.3b for a = 4.0 MPa), the numerical elastic

modulus for the ferrite at T = 9090C is E* = 71.6 GPa, in good agreement with the expected

value of the elastic modulus in plane-strain E* = E/(1- v2) = 71.5 GPa (where v is the

Poisson's ratio), using elastic constants given in Table 3.1.

The magnitudes of the thermal strains outside the phase transformation range (Fig.

3.3c,d) are small compared to transformation strains (Fig. 3.3a) so that thermal expansion

mismatch plasticity can be excluded as a deformation mechanism. Furthermore, because the

thermal and allotropic strains have opposite signs, the small thermal mismatch outside the

transformation range reduces the allotropic mismatch produced during transformation.

As shown in Fig. 3.3a for an applied stress a = 4.0 MPa, the sample shrinks in the 2-

direction during heating through the transformation by ACh = - 0.370% and expands on



cooling by Aec = 0.669%, giving a strain increment over a whole cycle of AC = Ash + Acc =

0.299%. The magnitude of Ah and Acc are different because on cooling the allotropic strain

AL/L has the same sign as the plastic strain due to the applied stress, while on heating the

strains have opposite signs. When no stress is applied, the uniaxial allotropic strains

developed on heating and cooling in the 2-direction are equal and of opposite sign: Ieol =

0.516%. This strain translates into a volume change AV/V = 2E0 = 1.032% for plane-strain

conditions, close to the allotropic volume mismatch (AV/V = 1.048%). Using Eq. 3.5 to

determine the plastic strain, Fig. 3.4a shows that nearly equal plastic strain increments are

developed during the transformation on heating (AsEo- = Ash + EO = 0.146%) and on cooling

(AEy/a = Ac - Fo = 0.153%). The small difference is probably due to the slight asymmetry of

the temperature-dependence of the yield stress (Fig. 3.2). In the case of the al/

transformation, the initial stress drop at the onset of the phase transformation (Fig. 3.4b)

takes place while the material is in the weaker a-phase. For the y/a transformation however,

the stress drop coincides with the linear decrease of the yield stress from oy = 75 MPa to oy

= 7.5 MPa.

Finally, the residual equivalent stress present after transformation is slightly higher on

cooling (oeq = 5.5 MPa, point (7) in Fig. 3.4a) than on heating (eq = 5.0 MPa, point (5) in

Fig. 3.4a). Two mechanisms explain this effect. First, the physical thermal expansion of

ferrite near the phase transformation is lower than that of austenite [3], so that the internal

allotropic stresses present at the transformation are relaxed less by thermal contraction in the

ferrite than by thermal expansion in the austenite. Second, since the elastic modulus of

ferrite (Ea = 65.1 GPa) is much lower than that of austenite (E. = 117 GPa), the internal

stresses decrease less in the ferrite than in the austenite for the thermal strain relaxation

occurring during the thermal excursion AT = 2.5 K above and below the transformation

range. The thermal stress relaxation along the 3-direction can be estimated using:

AY 3 3 = E -a 20. c AT (3.9)



Eq. 3.9 gives A0 33 = 2.44 MPa on cooling and AU33 = 3.24 MPa on heating, close to the

numerical values A0 33 = 2.41 MPa and AG 33 = 3.09 MPa, respectively.

3.4.2 Model Discussion

The model is sensitive to the assumption made for the temperature-dependence of the

yield stress during the transformation. The present results are for the specific case where

plasticity occurs throughout the transformation range at the lowest yield stress of ferrite

(Fig. 3.2). Physically, this is equivalent to plastic deformation being spatially localized in

the weak ferrite until that phase disappears. The continuum approach taken in the numerical

model approximates this spatially inhomogeneous behavior by assuming that the whole

domain yields at the yield stress of the ferrite. If instead a rule of mixture is used for the

yield stress, much reduced plasticity is found.

The nature of the mismatch needs to be examined, since the numerical model with

coupled thermal-mechanical elements allows for two possible types of mismatch. First,

internal mismatch stresses are produced by the constraining effect in the 3-direction from the

plane strain condition, i.e. transformation mismatch and thermal mismatch plasticity.

Second, since in the present case the material is heated and cooled from one side (Fig. 3.1),

a phase front may form and move in the 1-direction through the material and mismatch

stresses can then arise locally near the phase front, i.e. ratchetting. However, no strain

increment was observed after a full temperature cycle under zero applied stress (Fig. 3.5),

indicating that ratchetting was absent. This is further confirmed by the lack of thermal

gradient discussed earlier, indicating that no phase front is formed.

The numerical results shown in Fig. 3.5 are in qualitative agreement with the prediction

of the analytical solution (Eq. 3.2): a linear strain-stress behavior at low stresses is followed

by a non-linear strain increase at high stresses. Before proceeding to a quantitative

comparison between analytical and numerical results, the stresses and the strain mismatch



must be harmonized between the numerical plane-strain model and the analytical three-

dimensional model, as discussed more fully below.

The fundamental difference between the two models is the origin of the allotropic

mismatch. In the analytical model leading to Eq. 3.2), internal stresses occur because the

transformation is constrained within a plastically deforming material. In the numerical plane-

strain model however, the constraint along the 3-direction is the only source of the internal

stresses. Thus, the internal stress field is caused by the constraint in one single dimension

(the 3-direction), as compared to the constraint in all three dimensions in the analytical

model. To compare these models, an equivalent mismatch in plane-strain (AV/V)* can then

be defined as:

AV = -I A (3.10)

In the present case, (AV/V)* = (AL/L) = 0.348%.

Another important difference between the models is the stress at which plasticity occurs.

While the analytical model is based on yield under uniaxial tension, the current numerical

model considers yield under plane-strain conditions. For plane-strain under an applied stress

a in the 2-direction, the non-zero stress components are: o22 = o, and ( 33 = vac. Thus the

equivalent Von Mises stress is:

Oeq = [ G/1 - + v 2  (3.11)

and the uniaxial stress in the 3-direction to induce plastic yielding o is:

= (3.12)

Taking v = 1/2, Eq. (3.12) gives o v = (2/3) 3y.

For the specific case of Fig. 3.5 with a uniaxial yield stress oy = 7.5 MPa, the plane-

strain yield stress calculated from Eq. 3.12 is then o* = 8.66 MPa. As expected, the strain



increments in Fig. 3.5 are finite above oy but tend to infinity when approaching (7. The

same overall behavior is observed in Fig. 3.5 for the higher yield stress cy = 11 MPa. At

small stresses, the strain increments are proportional to the applied stress, but the

proportionality constant is smaller than for oy = 7.5 MPa, as expected from the larger value

of oy and Eq. 3.1. At high stresses, the curve diverges when the stress approaches the

plane-strain yield stress o = 12.70 MPa.

The plane-strain specific volume mismatch (Eq. 3.10) and yield stress (Eq. 3.12) can be

used to redefine the analytical solutions (Eqs. 3.2 and 3.3) using

= 2.(AV/V)* (3.13a)
2 -(AV/V)*

6* = - (3.13b)

The numerical results (Fig. 3.6) confirm the linearity between the mismatch AV/V and the

strain increment in the 2-direction Ae. The results at the lower stress a = 4.0 MPa can be

compared to Eq. 3.3 using the specific plane-strain quantities (Eqs. 3.13a,b). With 8* =

0.46, Eq. 3.3 predicts c* = 0.38. This is to be compared to the slope of d(Ae)/d(AV/V) =

0.30 in Fig. 3.6, which must be multiplied by a factor 2/3 to account for a half cycle (factor

2, Eq. 3.13a) and for the effective mismatch (factor 3, Eq. 3.10), resulting in a value of

0.45. For a high stress a = 8.0 MPa (8* = 0.92) where the strain increments increase non

linearly with the applied stress, Eq. 3.2 gives a* = 3.0, while (3/2) d(Ae)/d(AV/V) = 2.0 is

obtained from Fig. 3.6. The numerical model thus underestimates the analytical normalized

strain increment, probably as a result of the different assumptions used.

Figure 3.7 shows the numerical values of Fig. 3.5 normalized by the plane-strain

mismatch (AV/V)* and the plane-strain yield stress o* given by Eqs. 3.10 and 3.12. Also

shown in Fig. 3.7 are the predictions from Eqs. 3.2 and 3.3 (using 2-a for a full

temperature cycle encompassing two phase transformations) as well as the experimental data



on pure iron by Refs. [17,39]. In the linear region at low stresses (8 < 0.4), there is good

agreement between the numerical, analytical and experimental results. In the non-linear

region however, the 2-dimensional numerical model gives somewhat higher strain values

than the 3-dimensional analytical solution (Eq. 3.2), but correctly predicts the progressive

departure from the linear behavior observed both in the analytical model and the

experimental data. Also, the experimental point for the highest stress is significantly lower

than predicted by the models, probably because the large strains developed during cycling

give raise to strain hardening, thus increasing the yield stress of the material and decreasing

the total strain increment, as modeled in Ref. [107].

3.5 Conclusions

A finite-element model for transformation superplasticity is presented for an elastic,

ideally-plastic material. The numerical model not only gives the total strain accumulated after

crossing the allotropic range under stress, it also allows the study of the time-evolution of

the plastic strains and stresses during the phase transformation. Numerical results for the

ferrite-austenite transformation iron capture the behavior predicted by closed-form solutions,

i.e. the strain increments after a thermal cycle increase first linearly with the applied stress,

but diverge when the applied stress becomes large. However, the numerical model

approximates the constrained phase transformation in a polycrystalline material with a

simple plane-strain constraint. Thus, while the constrained mismatch for a polycrystalline

material is AV/V, only one third of this volumetric mismatch is available as the mismatch

source in the plane-strain configuration, where only one direction is constrained.

Furthermore, the yield stress in plane-strain is slightly higher than the yield stress under

uniaxial conditions. Taking these two differences into account in the normalization of the

data, the numerical model can be compared to the analytical model as well as experimental



data for iron. Good agreement is found both for small stresses (where strain increments

increase linearly with stress) and for high stresses (where the behavior is non-linear).
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Tables of Chapter 3

Table 3.1: Physical properties of iron near the phase transformation.

Property Temperature Ref.
911.5C 912.5"C
(ferrite) (austenite)

Density p [gcm-3 ] 7.87 7.58 [3]
Transformation
Enthalpy AH [J g-'] 18.8 [7]
Specific Heat C, [Jg-'lK-'] 0.87 0.71 [7]
Coefficient of Thermal
Expansion* a 20-c [K-']-10 6  15.0 11.1 [8]
Thermal Conductivity k [Wcm-'K-'] 0.296 0.286 [93]
Poisson's Ratio v [-] 0.3 0.3 [3]
Young's Modulus E [GPa] 65.1 117 [31]

* technical value, defined as a200c := (L - L200 )/(T - 20 0 C) where L and L20 C

are the sample lengths at the temperatures T (in degrees centigrade) and 200C,

respectively.



Chapter 4

Transformation Superplasticity of Zirconium

Abstract

A tensile strain of 270% was achieved for coarse-grained zirconium subjected to

transformation superplasticity conditions, where strain increments are accumulated

upon repeated thermal cycling around the allotropic transformation temperature under

the biasing effect of a uniaxial tensile stress. The strain increment per cycle was found

to consist of two equal contributions from transformations on heating and cooling, and

to increase linearly with the applied stress. The measured strain increments are in good

quantitative agreement with predictions based on the average internal stress during the

transformation, which was determined independently from experimental

transformation times. As the cycling frequency is raised, the average strain-rate

increases (a maximum value of 1.3 10-4 s- was measured), but the strain increment per

cycle decreases above a critical cycling frequency for which the sample gauge section

undergoes only a partial phase transformation. The resulting reduction in internal

mismatch and increase in internal stress are modeled using the experimental

observation that f3-Zr deforms by a mixture of diffusional and dislocation creep in the

stress range of interest.



4.1 Introduction

Superplastic deformation is characterized phenomenologically by tensile failure strains

above 100% and can be classified into two mechanism types: fine-structure superplasticity

and internal-stress superplasticity [60]. The former type of superplasticity relies on grain-

boundary sliding and is operative in metals with grains smaller than 10 tm which are stable

at the temperature of deformation. This can be achieved through duplex microstructures or

through grain boundary pinning by fine second-phase particles [60]. Since pure metals

display neither duplex structures nor grain boundary pinning, they exhibit rapid grain

growth at elevated temperature and are thus incapable of fine-structure superplasticity.

However, certain pure metals can deform superplastically by the second mechanism

(internal-stress superplasticity), where internal mismatch stresses are biased by an external

stress, resulting in a strain increment. These mismatch stresses and the resulting strain

increments can be repeatedly produced by thermal cycling of pure metals exhibiting

coefficients of thermal expansion anisotropy [27,60] (e.g. Zn [54,72,101], U

[54,101,103]) and/or an allotropic phase transformation [25,60] (e.g. Fe [17,39,108], Co

[39,73], Ti [26,39], Zr [39,55], U [39]). Since the only requirement for internal-stress

superplasticity is the repeated creation of internal mismatch stresses, these pure metals can

be deformed superplastically by this alternate mechanism independently of their grain size.

In transformation superplasticity, internal mismatch stresses are produced by the

volumetric difference between the two allotropic phases IAV/VI (referred to as AV/V in the

following). A net plastic strain increment is produced in the direction of the applied stress

after each phase transformation as a result of the accommodation of these internal mismatch

stresses by the weaker allotropic phase, which can deform either by time-independent plastic

yield, or by a time-dependent creep mechanism such as dislocation creep or diffusional

creep. Transformation superplasticity was first investigated systematically by Greenwood



and Johnson [39], who developed a model predicting a linear relationship between the

applied stress a and the plastic strain increment per transformation Ae:

2 AV o 5-n
Ae = - , (4.1)

3 V o0 (4.n+l)

where o is the average internal stress (averaged over both transformation time and spatial

orientation of the phase transformation) of the plastically deforming weaker phase, and n is

the stress exponent of the creep law describing the plastic accommodation. Greenwood and

Johnson [39] also considered the case of ideal plastic yielding at low homologous

temperatures which can be described with Eq. 4.1 by replacing o0 by the yield stress ay of

the weaker phase and by letting n tend to infinity.

Equation 4.1, which is only valid for small applied stresses, was later extended

analytically by Refs. [30,107] to high applied stresses where a non-linear stress-strain

behavior is predicted for plastically yielding materials (e.g. Fe, Co, U p). Similarly, Mitter

[58] numerically solved the non-linear case of high applied stresses for materials deforming

by yield and by creep (e.g. Ti, Zr, Up/,).

As seen from Eq. 4.1, low values for the yield stress or the internal stress result in large

strain increments. Thus, phase transformations occurring at high homologous temperatures

where the material is weak are most suitable for deformation by transformation

superplasticity. However, high cycling temperatures also promote creep outside the

transformation range, so that experimentally measured plastic strain accumulated after a full

cycle often include appreciable amounts of creep strain unrelated to the superplastic strain

increment. Creep is furthermore undesirable because it promotes cavitation and neck

instability which reduce the total strain to failure. Thus, the observation of transformation

superplasticity (large elongation to fracture and linear dependence between applied stress

and strain increment, Eq. 4.1) depends sensitively on suppressing creep outside the



transformation range, which can be achieved by optimizing the temperature cycle profile and

the sample geometry.

In the present paper, we investigate transformation superplasticity in pure zirconium,

which was chosen for the following three reasons. First, to our knowledge, only two

studies [39,55] exist on the transformation plasticity of zirconium. Second, these studies

did not report values for failure strains, a necessary condition for demonstrating

transformation superplasticity. Third, zirconium shows an allotropic phase transformation

at T p = 8630C (T/Tm = 0.53) [6] where creep is the dominant deformation mechanism

[80]. Thus, zirconium can be used to test the numerical predictions of Mitter [58] for a

creeping material transforming under high applied stresses. As described above, this can

only be achieved if creep outside the phase transformation range is minimized, a condition

we fulfill by modifying the usual geometry for superplastic samples. Furthermore, we use

measured thermal characteristics during the phase transformation to calculate the average

internal stress o, which is compared to predictions from mechanical models.

4.2 Experimental Procedures

The material used was unalloyed zirconium (Zircadyne 702 from Wah Chang, OR) with

extra-low oxygen content (Table 4.1). Flat tensile samples were machined with their gauge

length parallel to the rolling direction. Because the sample heads (length: 28.1 mm, width:

14.0 mm, thickness: 4.44 mm, hole diameter: 5.07 mm) were much larger than the gauge

section (length: 19.85 mm, width: 5.10 mm, thickness: 4.44 mm), only 12% of the total

sample volume was in the gauge section.

Thermal cycling and isothermal creep experiments were conducted under small uniaxial

tensile stresses in a custom-designed apparatus (Fig. 4.1). Rapid heating was achieved by

using four symmetrically-arranged, 2 kW, infrared radiant heaters concentrating radiation at

a focal line. The temperature was controlled at the sample surface (point A in Fig. 4. 1b,c)



and monitored at the head of the sample (point B in Fig. 4.1b,c) with inconel-shielded,

boron-nitride coated, grounded K-type thermocouples with a small diameter of 1.6 mm to

minimize the response time. Both thermocouples were subjected to (i) a radiative heat flux

to, and from, the sample surface, (ii) a conductive heat flux through the sample, and (iii) a

convective heat flux caused by the inert gas. For isothermal conditions, where these heat

fluxes are at steady-state, the temperatures measured corresponded to the internal sample

temperature. However, under transient conditions, i.e. temperature cycling, the

thermocouples measured a combination of surface temperature and surrounding

temperature. The thermocouple B positioned at the sample head was farther from the focal

line of the heaters and thus experienced lower heat flux density as compared to the

controlling thermocouple A located at the sample surface.

Square wave temperature profiles were applied at the sample surface with temperatures

between TA = 810-940C and frequencies between v = 6-30 hr'. A special characteristic of

the experiments was that only the gauge section was fully exposed to the radiative heat flux

whereas the sample heads were largely shielded from the radiation (Fig. 4. lb). By using

alumina pins and spacers (Fig. 4.1c) as well as low-conductivity Inconel pullheads and

pullrods to minimize heat transfer through the sample heads, sample cooling was also

mainly controlled by radiation from the surface of the gauge section. The sample was

surrounded by a quartz tube flushed with purified argon produced by flowing 99.999%

pure argon through a titanium powder bed held at a temperature of 1000C. The sample

stress was adjusted manually by applying weights. The force from the spring bellow

compensated the stress increase due to the sample cross-sectional reduction, so that constant

stress conditions were maintained over a defined deformation range.

The deformation, which was measured by a linear voltage displacement transducer placed

at the cold end of the lower pullrod, included the thermal dilatation of the whole load train

and therefore did not represent the sample deformation under transient temperature



conditions. However, the plastic deformation measured under steady-state conditions and

over full temperature cycle periods was only due to the sample plastic deformation.

The same sample was subjected to both isothermal creep and thermal cycling under stress

in an experiment consisting of five successive parts. In the first part, the sample was heated

to 810"C under a low stress (0.3 MPa) until the deformation rate of the load train due to

thermal expansion was below the detection limit of the apparatus (d(AD)/dt < 4 lm-hr-').

Creep was then measured at 810 0C at different stress levels between 0.6-2.0 MPa, and at

910 0 C at a constant stress of 1.0 MPa, allowing enough time to reach steady-state at each

stress and temperature. In the second part of the experiment, the sample was thermally

cycled with a frequency of 10 hr' between the lower cycling temperature TA = T = 8100 C

and the upper cycling temperature TA = Tu = 910 0C at stresses of 0.3 MPa and 1.0 MPa.

Before and after each cycling segment which consisted of 4 to 8 individual cycles, steady-

state isothermal creep was established. In the third part of the experiment, cycling segments

were conducted where the cycling frequency was varied between 6 hr and 15 hrl  at a

constant stress of 1.0 MPa and with temperature amplitudes of TI = 810"C and T, = 910°C.

These cycling segments were also preceded and succeeded by isothermal creep

measurements at the upper cycling temperature T,. The fourth and fifth parts of the

experiment consisted of a series of stress variations at frequencies of v = 15 hr' and v = 30

hr' , respectively, with TI = 810"C and Tu = 910-9400 C. The stress was changed in discrete

steps during the thermal cycling, with 8 to 20 cycles measured at each stress level. The

experiment was stopped after 25 hr and a total of 212 cycles, because the travel limit of the

apparatus had been reached.



4.3 Results

Figure 4.2 shows the isothermal steady-state creep rate of a-Zr at 810 0C and 1-Zr at

910C, as measured during the first and second part of the experiment. The creep behavior

can be described by a power-law:

. 'exP( RQ ( ,n  
(4.2)

where R is the gas constant, Q is the activation energy, E is the Young's modulus and A is a

constant. This constant is obtained by fitting Eq. 4.10 to the experimental data using

literature values for Qa = 190 kJ-mole-' and the shear modulus [80] (converted to Young's

modulus using a Poisson's ratio of 0.35 [3]), giving Asl0oc = 4.9-1016 K-s -' and nslo81 =

2.4. At 910C, the creep curve shows a gradually increasing stress exponent so that the

data for stresses below 0.6 MPa are best described by a stress exponent n91oc = 2.9

whereas the data for stresses above 0.8 MPa show n91oC = 5.0; the pre-exponential factors

are A910-c = 4.6-1019 K-s' and A910c = 1.1.1030 K-s -1 respectively using QP = 184

kJmole-' [80].

Figure 4.3 shows the strain history upon thermal cycling between TI = 810 0C and T, =

910 0C with a thermal cycling frequency of v = 6 hr' at a stress a = 0.34 MPa, followed by

the isothermal creep history of 1-zirconium for the same stress at the upper cycling

temperature T, = 910C measured immediately after cycling. Despite the lower average

temperature of the cycling experiments, the average strain rate upon thermal cycling tcyc =

3.9-10 -6 s-' is ten times higher than the isothermal creep rate of 1-zirconium t910'C =

4.0-10 -7 s-'.

The strain increment per cycle Aeto = AD/L (where AD = AL is the deformation increment

of the sample gauge for a full cycle and L is the gauge length at the beginning of the cycle) is

shown in Fig. 4.4 as a function of the applied stress for cycles with T, = 810"C, T. = 910-

9400C and v = 6-30 hr'. Cycling data measured when the sample strain was under 56% are



not given in Fig. 4.4 because, before that point, the stress-normalized cyclic strain

increments were slowly but systematically decreasing, most probably as a result of grain

growth in the sample. Figure 4.4 shows that, at frequencies below v = 30 hr-', the strain

increment increases linearly with the applied stress up to a = 1.4 MPa with a slope

d(Aet)/da = 4.4 GPa-'. A linear fit of the data gives an extrapolated strain value of AEo =

0.08% when no stress is applied. At a = 1 MPa several points measured at frequencies of v

= 6-15 hr-' overlap. Upon cycling with a high frequency of v = 30 hr- ', smaller strain

increments are observed, leading to a slope d(AEt,,)/d = 3.0 GPa-1 up to a = 2.9 MPa, after

which a significantly higher strain increment AEtot = 1.6% is obtained for the maximum

stress of 3.4 MPa.

The points shown in Fig. 4.4 are averages of 4 to 6 total cycle strain increments. Over

multiple cycles, the deformation increment AD showed only a very small standard deviation

(the reproducibility of the deformation upon thermal cycling is illustrated in Fig. 4.3a).

However, the length L of the sample was calculated assuming conservation of volume of the

gauge section without sample head deformation or necking. The systematic error due to

these simplifying assumptions increases with the extent of plastic deformation and was

estimated by comparing the final gauge length (calculated as the sum of the deformation

increments and including the deformation of the sample heads) with the measured gauge

length of the deformed sample at the end of the experiment. Accordingly, the uncertainties

are ±5% for the strain and ±8% for the stress.

Figure 4.5 depicts the deformation history, D(t), for two heating segments as measured

with the linear voltage displacement transducer and the corresponding temperature TB(t)

measured at the shoulder of the sample head (Fig. 4. 1b,c) for upper cycling temperatures T,

= TA = 910 0 C and 940C. The controlling gauge section temperature (thermocouple A)

reaches its final value very rapidly (dT/dt = 10-15 K-s-') and is not shown in Fig. 4.5.



Figure 4.6 shows the sample before the experiment and after a total strain e = 270% had

been accumulated without fracture at the end of the experiment. Metallography of the

undeformed sample revealed equiaxed grains typical of a cold-worked, recrystallized

structure with a grain size d = 19±2 ltm. The deformed sample showed large, coarsened

grains (d = 0.2-2 mm), typical of a transformed P-structure. Except for hydrogen, the

concentrations of interstitial elements increased only little during the 25 hr experiment (Table

4.1). Hydrogen probably originated from traces of water in the argon gas, decomposing

over the titanium bed where oxygen was gettered preferentially, thus increasing the

hydrogen concentration in the cover gas, which was then absorbed by the zirconium

sample. This slight contamination did not, however, affect the transformation superplastic

behavior over the course of the experiment; furthermore, hydrogen can easily be removed

from zirconium by a vacuum anneal.

4.4 Discussion

4.4. 1 Isothermal Creep

Figure 4.2 shows that isothermal creep of BCC f-zirconium is significantly faster at

910C than for HCP o-zirconium at 810"C, as expected from the more open BCC structure

of n-zirconium and in agreement with the deformation mechanism map of zirconium by

Sargent and Ashby [80]. However, the stress exponent ngiooc = 5.0, measured at high

stresses for O-zirconium, is somewhat higher than the reported value n = 4.3 for power-law

creep [80]. This discrepancy may be due to the fact that the latter stress exponent was not

experimentally measured, but assumed to be equal to that of isomechanical P-titanium. The

calculated transition between diffusional creep and power-law creep (expected for 3-

zirconium at a = 1.0 MPa for a grain size d = 0.2 mm and at a = 0.25 MPa for a grain size



of d = 2 mm [80]) is in agreement with the observed gradual decrease of stress exponent

below about a = 0.8 MPa.

The stress exponent n8lo'c = 2.4 for a-zirconium (measured over the narrow stress range

of interest for the present cycling experiments) is much lower than the experimental literature

value for power-law creep of cold-rolled and annealed a-zirconium (n = 6.6 [80]). As for

[-zirconium, the deformation mechanism of a-zirconium is calculated to change from

power-law (n = 6.6) to diffusion (n = 1) in the stress range a = 1.4-3.2 MPa for d = 0.2-2

mm [80].

4.4.2 Thermal Cycling

4.4.2. 1 Experiment Design

The experimental set-up (Fig. 4.1) was designed to minimize deformation of zirconium

in the [-range where creep is rapid (Fig. 4.2). While the large sample heads were mostly

shielded by the pull heads from the radiative heat flux (Fig. 4.1b), the gauge section was

fully exposed to the radiation, so that heat flow to the sample occurred predominantly

through the surface of the gauge section. Conversely on cooling, little heat was lost by

conduction through the alumina pins and spacers and the low-conductivity superalloy load

train (Fig. 4. c), so that heat transfer occurred mostly by radiation from the gauge surface.

During the allotropic phase change, the heat flux has to provide the transformation

enthalpy. The time for the complete transformation of the sample is thus proportional to the

ratio of the volume to be transformed (full sample volume including gauge section and

sample heads) and the area of the heat-flux surface (gauge section surface area only). Since

heat flows predominantly trough the gauge section, the transformation of the sample heads

occurs by conduction of heat from the sample gauge section. Given that the initial volume-

to-surface-area ratio for the gauge section V/So = 1.2 mm is small compared to the ratio of

the head volume to the gauge area Vh/So = 8.8 mm, the gauge section transforms much more



rapidly than the large sample heads. However, since conduction is not limiting, the

temperature throughout the gauge section remains constant at the phase transformation

temperature until the sample heads are fully transformed. The slowly-transforming heads

thus act as heat sinks (on heating) and heat reservoirs (on cooling) after the gauge section

has fully transformed. By using cycle periods longer than the time interval necessary to

complete the phase transformation in the gauge section but shorter than the time interval to

transform the whole sample, the sample temperature can be maintained at the allotropic

temperature Tap, thus minimizing excessive creep in the J3-range. This heat-buffer

technique is also potentially interesting for commercial superplastic forming, as it allows a

passive control of the temperature and minimizes creep in the weak allotropic phase.

4.4.2.2 Transformation Times

The heat transport analysis is based on the assumption that (i) heat transfer is by radiation

only, (ii) the absorptivity and emissivity of the sample are a' = E' = 0.5 and (iii) thermal

gradients are negligible within the material. The latter assumption is validated by calculating

the dimensionless number M [36], which is equivalent to the Biot number for conductive

heat transport, and is defined as:

B  .a'. T3  .x
M= , (4.3)

k

where gB is the Stefan Boltzmann constant, a' the absorptivity on heating (or the emissivity

on cooling), k the thermal conductivity and x is the characteristic distance, which is half the

sample gauge section width for the transformation of the gauge section, or the head length

for the transformation of the heads. With k(860*C) = 25 W-m-'-K -' [3], a' = 0.5, T =

9400C, x = 2.55 mm for the gauge section and x = 28.1 mm for the sample head, Eq. 4.3

gives values for M smaller than 0.1 (M = 0.005 and M = 0.06 respectively), so that of

thermal gradients within the material are negligible and conduction is not controlling the heat



transport (Newtonian conditions). The absence of macroscopic thermal gradients within the

material also excludes deformation by ratchetting observed during allotropic cycling of e.g.

uranium [86] with a sharply-defined phase front.

In Fig. 4.5 the temperature TB, as measured at the sample head surface, increases until

the onset of the phase transformation where the rate of heating is reduced to near zero due to

the absorption of heat supporting the transformation enthalpy. After the gauge section has

transformed (marked as tmin in Fig. 4.5), the heating rate measured at point B increases

again until the temperature levels off at about 30C below the upper cycling temperature

specified by TA. The above interpretation (i.e., the temperature TB is largely constant during

the transformation of the sample gauge section, but is increasing during the transformation

of the sample heads) can be justified as follows.

Over the short time period corresponding to the gauge transformation, the temperature at

the thermocouple tip TB is controlled by the sample temperature which is constant due to the

phase transformation; however, over the long time period where the sample heads

transform, the heating contribution from the heat flux to the thermocouple mantle and tip

becomes dominant and the thermocouple tip temperature TB rises again, despite the constant

sample temperature. As expected, the value of TB at the transformation plateau increases

with increasing flux, which is proportional to T4 - T4,p (Fig. 4.5). Also, TB is lower than

TA because thermocouple B is further from the focus line of the heaters than thermocouple

A, which is located at the gauge section surface. Thus, the thermocouple temperature

measured at position B (Fig. 4. lb,c) is affected both by the heat flux due to transformation

and the impinging radiation.

Under Newtonian conditions where thermal gradients are not sustainable within the

material, the time At* to transform a volume V by a radiative heat transfer mechanism

through a surface S is:



At*= ,AHp V (4.4)
GB 0"' (Ts4 -Ta S

where AH = + 38.8 J-g-' [84] is the enthalpy of transformation (positive on heating and

negative on cooling), p = 6.49 g-cm-3 [13] is the density, and Ts is the surface temperature

(Ts = T, on heating, T, = Ti on cooling). The volume to surface area ratio in Eq. 4.4 can be

found as a function of the engineering strain e by conservation of volume:

V 1 Vo (4.5)
S l+e S0

where Vo/So = 1.19 mm is the initial ratio of the gauge section. The transformation times

predicted by using Eqs. 4.4 and 4.5 are in good agreement with experimentally determined

transformation times, as seen from Table 4.2 where averages are taken from four

measurements. Although the predicted time for transformation (Eq. 4.4) depends on several

assumptions (e.g. a' = e' = 0.5), the values for At* are reasonable, so that the time tmin in

Fig. 4.5 can indeed be taken as the time needed to transform the gauge section.

This time tmin, depends on the cycle characteristics (TI, T,, v) and is given in Table 4.3 for

Tu = TA = 910 0C and Tu = TA = 940C. The minimum cycling period for a complete

transformation of the gauge length is estimated as 2 "tmin (taking the larger tmin value of

heating and cooling from Table 4.3), so that the maximum cycling frequency is vmax =

(2-tmin)-' = 21 hr-' for cycles with Tu = 910C. At cycle frequencies above this limit, the

superplastic strain is expected to decrease as the gauge does not undergo a complete

transformation. The cycle frequency was varied between v = 6-30 hr-' at Tu = 910C for a

constant stress a = 1.0 MPa (Fig. 4.7). By subtracting the extrapolated strain per cycle

when no external stress is applied, AE0 , from the total strain per cycle, Actot, and

normalizing by the applied stress, i.e. (Actot - Aso)/a, the single stress results can be directly

compared to the slope d(AEtot)/d obtained by varying the stress (Fig. 4.4).
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At TU = 910C, the strain increment per cycle normalized by the stress d(Aseot)/da = 4.4 +

0.3 GPa-' is constant between v = 6-15 hr-' but decreases to 3.0 ± 0.1 GPa-' at v = 30 hr-'.

This is because at frequencies above Vmax = 21 hr- ', only partial transformation occurs in the

gauge section, so that the internal mismatch and thus the superplastic strain increments are

reduced. When the upper cycle temperature is increased to Tu = 940C, the critical

frequency is increased to Vmax = (2 "tmin)-' = 34 hr ~'. In contrast, the experimental data

shows a reduction of d(AEot)/da already at about v = 30 hr-'. This value is lower than

predicted, probably because of the effect of high cycle frequencies on the actual cycle

temperatures: the sample is not given enough time to cool to the lower temperature or to heat

to the upper temperature, thus decreasing the effective temperature amplitude, as discussed

in more detail later.

The deformation histories in Fig. 4.5 show first the thermal expansion of the load train,

followed by a decreasing expansion rate as the sample temperature is stabilized by the phase

transformation of the large sample heads. During that time interval, the gauge section,

which is fully transformed at tmin, is slowly creeping near the phase transformation

temperature, as internal thermal gradients are not sustainable. The onset of accelerated

expansion (marked as tmax in Fig. 4.5) is interpreted as the end of the phase transformation

of the sample heads, where both thermal expansion and sample creep occur since the sample

temperature rises again.

At low cycling frequencies, significant strain will be accumulated due to creep outside the

phase transformation range, causing an increase of the total strain increment Aetot.

According to Fig. 4.7, this occurs at vmin = (2"tmax)-' = 8.0 hr-1 for cycles with Tu = TA =

9400C and vmin = (2"tma)-' = 3.5 hr-' for Tu = TA = 9100 C (dotted lines in Fig. 4.7). The

results for tmax are given in Table 4.3, where the single data point for TA = 910 0C was

obtained during isothermal creep at the end of thermal cycling while the value for TA =

9400C is the average of 4 cycles with a cycle frequency of v = 6 hr-'. Since the
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measurements with a slope of d(Aetot)/da = 4.4 GPa-' in Fig. 4.4 were performed at rates

falling within the window given by vmin and Vmax, the measured superplastic strain

increments correspond to full transformation of a gauge length with an insignificant creep

contribution after transformation plasticity.

A final check is performed by calculating the ratio of the time to transform the whole

sample (tmax - tmin + At*) to the time for gauge transformation (At*). With experimental data

from Table 4.2, this ratio is 14 at 910C and 8 at 940C, reasonably close to the ratio 8.3 of

the total sample volume to the gauge section volume.

4.4.2.3 Cycle Strains

To the best of our knowledge, only two other studies exist on transformation

superplasticity of zirconium. An early investigation was carried out by Lozinsky [55] under

non-uniform temperature conditions, giving only a qualitative description of the effect.

Greenwood and Johnson [39] performed a systematic study for zirconium cycled between

810 0C and 910°C and reported a linear strain increment-stress behavior up to a = 1 MPa

(with a slope d(AEot)/da = 9.0 GPa-' significantly higher than in Fig. 4.4) becoming

progressively non-linear up to a maximum strain increment of AEtot = 1.9% at a = 1.4 MPa.

Although these results are qualitatively consistent with the present data (linear stress-strain

correlation at small stresses followed by a non-linear increase), direct comparison is

impossible since Greenwood and Johnson [39] stated neither cycle frequency nor grain size,

so that the creep contribution outside the phase transformation range at higher stresses is

unknown. Additional possible causes for their higher strain increments in the linear range

are the presence of primary creep (if no creep deformation was performed prior to cycling)

and the contribution of diffusional creep (if the grain size was not stabilized). The latter

effect may also explain the decreasing strain increment (from Ae1ot/a = 8.5 GPa-' to AEtotr/ =

5.0 GPa- ', not shown in Fig. 4.4) observed during the second part of our experiment.
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The theoretical models relate the physical properties of the transforming material (AV/V,

ao, A, Q, n) to the plastic strain As induced by a single phase transformation during a half

cycle. However, the plastic strain increments A,,t measured over a whole cycle (Fig. 4.3)

include plastic strains caused by both phase transformations on heating and cooling, which

are not necessarily equal. We examine this issue in the following.

The load-train displacement measured at the end of each half-cycle on heating ADh and on

cooling AD (Fig. 4.3b) consists of three contributions:

ADh,c = -ADcte + ADcreep + ADtp , (4.6)

where ADcte is the magnitude of the displacement of the load train due to the thermal

expansion on heating or contraction on cooling, ADcreep is the displacement due to sample

creep outside the phase transformation range and ADtp is the displacement caused by

transformation plasticity. While ADcte is fully reversible over a whole thermal cycle,

ADcreep and ADtp give irreversible plastic strains at the end of each half-cycle. At low

stresses were ADcreep is small compared to ADtp (Fig. 4.3a) and ADtp is linearly dependent

on the applied stress, Eq. 4.6 can be approximated by:

d(Ash,c)
ADh,c = -ADcte + L .L. , (4.7)

do

where Ash,c is the strain increment per transformation (h: heating, c: cooling) and L is the

gauge length of the sample. Thus, the slope of ADh or AD, as a function of Lo- gives the

stress-normalized strain increment d(Ash,c)/d for transformation on heating and cooling,

respectively, as shown in Fig. 4.8 where d(AEh)/da = 2.4 GPa-I and d(AcE)/d = 2.0

GPa-'. Although the slightly higher value on heating may be due to creep outside the

transformation range, the difference in the slope and in the intercepts at zero stress are

within experimental error (5% on strain and 8% on stress). Thus, the strain increment per

transformation on heating (a3) and cooling (l/a) are equal for a given stress (Ash = AEc =
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Ae) with d(AE)/d = 2.2 ± 0.2 GPa-', as predicted by the linear theory (Eq. 4.1). It is

assumed that this also holds for the non-linear stress region described in Refs. [30,58,107].

Because of its HCP-structure, a-zirconium exhibits different coefficients of thermal

expansion for the basal plane and for its normal direction, so that the corresponding thermal

strains are also a source of internal mismatch. The models developed for transformation

plasticity can be used for anisotropic thermal expansion mismatch by introducing an

equivalent volumetric mismatch (AVN)eq [107]:

= K, -Aa -ATP , (4.8)

where Aam is the temperature-averaged difference between the coefficients of thermal

expansion in the two directions, ATp, is the effective temperature amplitude causing

plasticity and K, is a correction factor incorporating the non-ideality of the simple form of

Eq. 4.8. For a-uranium and zinc, K, takes a value of 0.2. The thermal mismatch strain

Aa m * AT,, can be estimated directly from the thermal dilatation curve [94]. Neglecting any

elastic accommodation, the difference between the thermal strains (AL/L20) parallel to the

c-axis and parallel to the a-axis is Ec,863.C - Ea,863-C = 0.49% at T(Xp = 863°C and Ec,810oc -

Ea,810*c = 0.43% at T = 810"C, giving Aam -ATp = 0.06%. Thus, the equivalent thermal

expansion mismatch is (AVV)e = 0.012%, which is negligible compared to the phase

transformation mismatch AV/V = 0.41% [94], so that thermal expansion mismatch

superplasticity can be ruled out in the present case.
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4.4.3 Internal Stress

4.4.3.1 Complete Transformation

Greenwood and Johnson [39] developed a model for transformation superplasticity

where internal strain accommodation is by creep. In their derivation, they expressed the von

Mises criterion in terms of strain rates which they integrated over the time of transformation

At* to relate the internal strains with the equivalent internal stress ao. By requiring

compatibility of strains in the z-direction where the external stress a is applied and by using

invariant properties of the AV/V-tensor, they obtained:

o ~ .A A [ - (AV /V )zz] (4.9)
zz (n- 1)

(AV/V) 1+ 9(AE) 2  9AE-(AV/V) 2 -n

4 .(AV/V) 2  2 -(AV/V) J

where (AV/V)zz and 'zz are the zz-components of the mismatch tensor and deviatoric stress

tensor respectively and ao is the average internal stress given by:

1/n

2 AV/V
o = E -V/V (4.10)

3 A QAt A -exp
Ta/ ( R- Ta/p

Dimensionless strains and stresses can be defined:

:= (4.11a)
AV/V

CY.- (4 .1 1b )
Go

(AV/V)zz (4.1 c)
AV / V
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where y = (1/3)-cos(p)2'sin() 2  + (1/3)-sin(p)2.sin(3)2- (2/3)-cos(6)2 is obtained by

relating the volumetric mismatch AV/V to (AVV),,zz, and by averaging over a spherical

volume element within 1 = (p = [0; n/2]:

Sg d2
g = (4.12)

Sdn

where g is the function to be averaged. Equation 4.9 then takes the form:

(1-n)9 9 2-n
=1(l-y)" 1+- -4 .2 . (4.13)

Because of the non-linearity introduced by the stress exponent n, integration of Eq. 4.13 is

only possible by numerical methods (as done by Mitter [58]), except for two special cases.

First, for n = 1 Eq. 4.13 takes the form

3
68= - . (4.14)

2

Second, for n -> oo, (i.e. the ideal plastic limit [30,107]), Eq. 4.13 becomes:

1 1 + 1 3 1 1 (3 +3V +2)

4 6.r 2 r 4 6 9- 9-12-6 r1+4

(4.15)

In Eqs. 4.14 and 4.15, the dimensionless stress 8 is defined as:

y 3-
S- .(4.16)

oY0  2

For the case of small strains where A << AV/V (i.e. 1 << 1), Greenwood and Johnson

[39] expanded the argument of the right-hand side integral of Eq. 4.13 to obtain Eq. 4.1,

expressed in dimensionless manner as:
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3 (4 -n+ 1)=- 4n+1) (4.17)
2 5-n

Thus, the internal stress o can be determined by fitting experimental strain increment data:

(i) to Eq. 4.13 determined by numerical integration;

(ii) to Eq. 4.14 for diffusional accommodation with n = 1;

(iii) to Eq. 4.15 for power-law accommodation with a very high stress exponent

(n > 10) over the whole range of stresses;

(iv) to Eq. 4.17 for power-law accommodation at small stresses (a << Go).

Alternatively, the internal stress 0o can be found:

(v) from Eq. 4.10 if the transformation time At* is known.

Because creep for zirconium in the stress range of interest is by a mixture of dislocation

creep and diffusional creep with effective stress exponents between 2.9 and 5 (Fig. 4.4),

methods (ii) and (iii) cannot be used to calculate the internal stress. Furthermore, most of

the measured strain increments As are on the order of AVN = 0.41% (Fig. 4.4) so that

method (iv) with Eq. 4.1 is strictly not possible. However, Eq. 4.1 has been used to model

transformation superplasticity of creeping materials even at larger stresses and strains

[26,39] where Eq. 4.1 coincides with the numerical solutions (Eq. 4.13). For full

transformation cycles (v < 30 hr' in Fig. 4.4), we compare in Fig. 4.9 the analytical and

numerical solutions with the adjusted strain increments As = (Aetot - AEo)/2ao. These are

found by subtracting from the experimental strain increment AEtot the extrapolated zero-stress

strain value AE = 0.08%, dividing by 2 to obtain transformation strains (as the superplastic

strain is composed of two equal contributions, Fig. 4.8), and normalizing by the internal

stress 0 = 1.6 MPa. The internal stress was determined from three of the above methods,

as described in the following.

First, fitting the data to the numerical solution of Eq. 4.13 (method (i)) using a least

square error technique gives an internal stress o0 = 1.6 MPa for AVIV = 0.41% for both n =
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2.9 and n = 5, since the numerical solutions are not very sensitive to n at intermediate strain

increments (i.e. 0.5 < 1i < 0.7) where most of the data was collected. Second, using

method (iv) with Eq. 4.1 beyond its nominal validity range with d(Ae)/do = 2.2+0.2 GPa - ',

gives o0 = 1.4-1.5±0.1 MPa for stress exponents of n = 2.9 and n = 5 respectively. As

expected, the latter values are close to that obtained from fitting to the numerical solution

(method (i)), as both models coincide up to rl = 0.3. However, the data with normalized

strains between Tj = 0.5-0.7 (Fig. 4.9) is consistently above the predictions by Eq. 4.1,

which is due to the difference of A 0 = 0.15 MPa found between the best fits for the linear

model and the numerical integration. Although this difference is small (=10%), it

demonstrates the limitation of the linear model.

Finally, method (v) gives an internal stress 0 = 1.7-1.5 MPa when Eq. 4.10 is used

with the reported activation energy of f-zirconium Q = 184 kJ-mole-' [80], the elastic

modulus Ep(863"C) = 51.7 GPa [80], n = 5.0 and A = 1.1.1030 K-s- ' as well as the

experimentally-determined time periods for gauge transformation At* = 24-34 s (Table 4.2).

When applying the lower stress exponent creep law at 910C (Eq. 4.10 with A = 4.6-1019

K-s-' and n = 2.9 for a < 0.6 MPa), internal stresses ao = 3.5-3.1 MPa are obtained. While

these values are much higher than those obtained above, they are still reasonable given the

approximations made in determining the time of transformation At* and the assumption that

the plastic strain is evolving only during that time period, i.e. relaxation of the internal

strains occurs quickly.

4.4.3.2 Partial Transformation

Additional considerations must be taken into account to model the partial transformation

data in Fig. 4.4. High frequency cycling causes a change of the internal stress because of

the smaller effective temperature amplitude to which the sample is subjected, since heat

transport to, and from, the sample surface is reduced. The resulting reduction in the thermal

driving force for the phase transformation increases the time period At* (Eq. 4.4, as
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demonstrated for cycles with T, = 910C and T, = 940°C) which would lead to a reduction

of the internal stress according to Eq. 4.10. However, the volume mismatch which

develops over the time At* is also reduced. Without specific information about the

relationship between the kinetics of the internal mismatch decay and the time of

transformation at high cycle frequencies, a quantitative determination of the internal stress

on the basis of Eq. 4.10 is not possible. In an attempt to quantify transformation

superplasticity under rapid cycling conditions, a simple approach is to define, based on Eq.

4.1, an effective mismatch (AV/V)eff and an effective internal stress Go,eff:

SV AV +z AV
eff--2+" z = 2 V (4.18)

V eff 2 V V 2 V

1 ( o 1+z
oeff= = o , (4.19)

where z is the ratio of d(Aev)/da (the superplastic slope for partial transformation at a

frequency v) and d(Ae)/da (the corresponding slope for full transformation). Thus, Eqs.

4.18 and 4.19 are the averages of the extreme cases where the reduction of d(Ae)/d is due

to either only a change in AV/V or only a change in o0 . From Fig. 4.4, z = 3.0 GPa-'/4.4

GPa-' = 0.68, so that (AV/V)eff = 0.34% (for AV/V = 0.41%) and Go,eff = 2.0 MPa (for ao

= 1.6 MPa). Figure 4.10 shows the average effective dimensionless data for partial

transformation together with analytical and numerical predictions. The data points are found

to fit with the curves defined by n = 1.5-2. Although there is appreciable uncertainty

regarding the exact value of the normalized data due to the somewhat arbitrary averaging

procedure defined by Eqs. 4.18 and 4.19, the normalized results are significantly distinct

from the curve defined by n = 5, even when extremes are considered, i.e. either (AVIV)eff =

z-(AVV) with To or Go,eff = o/z with AVN.

Since the phase transformation occurs over a stress range coinciding with the transition

between diffusional creep (n = 1) and power-law creep (n = 5.0), the average
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transformation superplastic behavior might indeed by described by intermediate stress

exponent and pre-exponential factor, as suggested by the fit in Fig. 4.10. Also,

intermediate values for n and A conform with the results found for complete transformation

(Fig. 4.9), because the normalized transformation superplastic strain is largely insensitive to

values of the stress exponent for n = 1.5-5 up to 8 = 0.8. This is in contrast to the case of a

yielding material where the strain increments, at an applied stress of 80% of the yield stress

ov are within the non-linear region.

In summary, the partial transformation behavior observed at high cycle frequency can be

characterized only qualitatively with the existing data, although the main factors affecting

transformation superplasticity have been identified. While the strain per cycle for a given

stress is reduced when transformation is incomplete, the average strain rate is increased

because of the high cycling frequency. Also, higher applied stresses can be used before

significant creep occurs, because the sample temperature is fixed at Ta/p. Thus, high

frequency cycling can be used for rapid deformation by transformation superplasticity with

large tensile strains, as confirmed by the total strain in excess of 100% accumulated during

the parts of the experiment were rapid cycling was used.

4.5 Conclusions

1. Transformation superplasticity was demonstrated for polycrystalline zirconium with

an engineering tensile strain of 270% without fracture. Strains per cycle as high as

1.6% and average strain rates of up to 1.3 10-4 s' where achieved with grain sizes as

large as 2 mm.

2. Isothermal creep was measured for a-zirconium at 810"C and for 3-zirconium at

910C between 0.3 and 2 MPa, where deformation occurs by a mixture of

diffusional and dislocation creep. A new technique was developed to minimize creep
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during thermal cycling outside the phase transformation range by using the

transformation enthalpy of over-sized sample heads as a heat buffer.

3. The transformation superplastic slope is d(Ae)/da = 2.2 GPa -' for each /3o- and

Pla-transformation, leading to a total value of 2.d(AE)/do = 4.4 GPa-' for a full

thermal cycle. Good agreement was found for the average internal allotropic stress

as determined by two independent methods: first by using the measured isothermal

creep law and transformation times, second by using the experimentally-determined

transformation superplastic slope.

4. A window of cycle frequencies was found where the superplastic slope is

independent of the cycling frequency, in agreement with predictions based on the

transformation times and the temperature amplitudes.

5. High cycle frequencies reduced the superplasticity linear slope to 2-d(AE)/do = 3.0

GPa-'. This effect is explained by an incomplete gauge transformation resulting in a

decrease of the internal mismatch and increase of the internal stress. The stress- and

strain-normalized data can be fitted to 3-zirconium stress exponents between n = 1.5-

2, corresponding to experimentally-determined creep values.
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Figures of Chapter 4
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Figure 4.1: (a) Schematic of the experimental setup; (b,c) two detailed orthogonal views.
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Isothermal creep rate as a function of the applied stress for a-zirconium at

810"C and O-zirconium at 910C.
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Figure 4.3: (a) Strain as a function of time for cycling between T, = 810'C and T" = 910'C
with v = 6 hr0.5 under constant stress = 0.34 MPa. Isothermal creep at T =

91 0OC followed the cycling segment. (b) Single thermal cycle.
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Figure 4.4: Total strain increment per cycle as a function of the applied stress for cycles

with TI = 810"C , Tu = 910-9400C and v = 6-30 hr'.
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Figure 4.5: Deformation D and temperature TB as a function of time for heating from TI =

810 0C to T, = 910 0C or T, = 940C. The temperature used in index is TA, the

upper cycling temperature applied at the sample gauge section.
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Figure 4.6: Zirconium sample (a) in the undeformed state and (b) at the end of the

experiment, after deformation by both transformation superplasticity and

isothermal creep at various stresses.
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Figure 4.7: Adjusted total strain increment per cycle normalized by the applied stress as a

function of the cycling frequency for cycles with T = 810C, T. = 910-940"C

and stresses a = 0.9-1.6 MPa; The symbols are the same as in Figure 4.4.
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Figure 4.8: Deformation difference of the heating- and cooling part of the temperature

cycle (Fig. 4.3b) as a function of the product of the applied stress with the

instantaneous sample length for cycles with Ti = 810"C, Tu = 9400C, v = 15

hr-',a = 0.3-1.3 MPa.
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Adjusted dimensionless strain increment per transformation as a function of

the dimensionless stress. Experimental results for full transformation are

compared to model predictions (diffusional creep: n = 1 (Eq. 4.14); power-law

creep: n = 5 (full: Eq. 4.13, dotted: Eq. 4.1); ideally plastic: n -- oo (Eq.

4.15)). The symbols are the same as in Figure 4.4.
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Figure 4.10: Effective adjusted dimensionless strain increment per transformation as a

function of the effective dimensionless stress. Experimental results for partial

transformation are compared to model predictions (diffusional creep: n = 1

(Eq. 4.14); power-law creep: n = 1.5, 2, 5 (Eq. 4.13); ideally plastic: n - *

(Eq. 4.15)). The symbols are the same as in Figure 4.4.
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Tables of Chapter 4

Table 4.1: Sample chemical composition [ppm]

C H N O

As-received < 20 4 < 20 340

After thermal cycling 42 150 40 360

Table 4.2: Transformation times as obtained experimentally (illustrated in Fig. 4.5), and

as predicted (Eq. 4.4).

At91ooc [s] At940oc IS]

Fig. 4.5 Eq. 4.4 Fig. 4.5 Eq. 4.4

Heating (Ts = T,) 32.8±3.9 31.3 24.3±3.2 19.5

Cooling (Ts = TI) 34.0±1.2 33.6 34.3±2.6 31.7

Table 4.3: Minimum time tmin as obtained from TB(t) and maximum time tm as obtained

from D(t) as illustrated in Fig. 4.5.

tmin [S] tmax [S]

TA = 9100 C TA = 940°C TA = 9100 C TA = 9400 C

Heating 85.3±5.1 51.5±2.1 510 225 ± 5

Cooling 44.4±0.9 52.7±0.3 n.d. n.d.

n.d.: not detectable
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Chapter 5

Transformation-Mismatch Plasticity
in Intermetallic Matrix Composite

Abstract

A NiAl composite containing 10 vol.% unstabilised zirconia particles was thermally

cycled around the allotropic phase transformation range of zirconia while an external

uniaxial tensile stress was applied. The strain rates due to thermal cycling are

significantly higher than the isothermal creep rates of the composite or the unreinforced

matrix. An established model for transformation plasticity of a transforming, creeping

material can be adapted to model the phenomenon. To the best of our knowledge, this

is the first demonstration of transformation plasticity in an intermetallic system, and the

first attempt to induce transformation superplasticity in a composite through

transformation of the reinforcement.
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5.1 Introduction

Among intermetallics, NiAl stands out as a potential replacement for nickel-based

superalloys, because of its low density, large stoichiometric range, high melting point, good

thermal conductivity, low material cost and outstanding oxidation resistance [18,57,62].

However, NiAl is brittle at low temperature and creeps rapidly at elevated temperature.

Both these problems can be addressed by adding to NiAl a strong ceramic second phase,

which increases toughness by debonding and creep resistance by load transfer. Shaping of

such composites is however very difficult: casting is limited by the high reactivity of liquid

NiAl and its high melting point, while powder-metallurgy techniques usually require a final

machining step, which is difficult because of the extreme hardness of the ceramic

reinforcement. A possible solution to the problem of shaping NiAl-based composites is to

deform these materials superplastically. Microstructural superplasticity requires very fine

grains which are difficult to achieve and maintain in NiAl. Transformation superplasticity

(TSP), on the other hand, occurs independently of the grain size, but relies on the biasing

by an external stress of internal stresses produced during an allotropic phase transformation.

Transformation superplasticity has been reported in metals and alloys, as reviewed in

[25,29,68]. While NiAl does not exhibit any phase transformation, a suitable allotropic

ceramic reinforcement can produce internal stresses in a composite, thus inducing

transformation superplasticity in the composite. Unstabilised zirconia is an attractive choice,

because it is chemically inert with NiAl, its strength is much higher than NiAl and its

allotropic transformation exhibits a large volume mismatch while occurring at temperatures

where NiAl deforms easily by creep. Large internal stresses can thus be created by ZrO2

transforming within a NiAl matrix and these stresses can be relaxed rapidly by creep of NiAl

under a biasing stress. Transformation superplasticity in a composite was recently

demonstrated by Dunand and Bedell [26] in the Ti/TiC system, where the matrix is

allotropic while the reinforcement is inert. The complementary case (i.e., a composite
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where the particles undergo a phase transformation while the matrix is inert) is examined in

the present chapter, using a technologically-relevant composite system (NiAl/ZrO2). To the

best of our knowledge, this is the first demonstration of transformation superplasticity in an

intermetallic system, and the first attempt to induce TSP in a composite through

transformation of the reinforcement.

5.2 Experimental Procedures and Results

NiAl powders with a particle size of -150+325 mesh (44-100 gim) and a purity of 99.5%

(Cerac, Milwaukee, WI) were mixed for 12 hours in a V-Blender with 10 vol.% ZrO2

powders (Ferro, Cleveland, OH), which had been annealed at 1550C for 96 hours and

screened between 230 and 270 mesh (53-63 lm). The processing of both unreinforced

NiAI and the composite was done by cold pressing of the powders into low carbon steel

pipes (ASM 5050J, 25.4 mm outside diameter, 3.2 mm wall thickness, 127 mm height),

closing the pipes by welding 1018 steel, degassing under vacuum at elevated temperature,

and compacting by hot isostatic pressing (UltraClad, Andover MA, 103 MPa, 1163°C, 4

hours). A 100 jim thick molybdenum foil was used between the steel container and the

powder to prevent contamination. Flat specimens, as shown in Fig. 5.1b, were machined

by diamond grinding. Figure 5.1a shows an etched micrograph of the NiAI/10%ZrO 2

composite after processing, ground with 6 jim and 3 jim diamond paste. Etching was done

by using Kallings reagent (5% CuC12.xH 20 } in a 1:1 mixture of HCI (conc.) H20.

The compact relative density after cold pressing was 59 vol.% for NiAl and 57 vol.% for

the composite, as determined by the Archimedes method. The densities after HIPing were

5.92 g-cm-3 for the NiAl and 5.87 g.cm 3 for the composite. The transformation temperature

of the zirconia powder was determined by differential thermal analysis (DTA) (Perkin

Elmer, Series 7) under heating and cooling rates T =10 K-min-' in air with alumina as

reference material (Fig. 5.2a).
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Zirconia transforms between a low-temperature monoclinic (m) phase and a denser, high-

temperature tetragonal (t) phase in a diffusionless, martensitic reaction exhibiting a

significant thermal hysteresis [67,100]. Maiti et. al. [56] reported that the magnitude of

undercooling depends on the crystallite size. To stabilize the transformation temperature,

the zirconia powder was annealed at 1550C for 96 hours. Figure 5.2a shows that annealing

increased both transformation temperatures by 27 K (from 1066"C to 1093°C on heating

and from 925°C to 9520C on cooling), reduced the temperature intervals over which both

transformations take place and increased the heat absorbed and released during the phase

transformations. However, the thermal hysteresis (141 K) was not affected by the

annealing treatment. Dilatometry experiments were performed on a Netzsch 402 ES

dilatometer with T = 10 K-min ~' to determine the transformation temperatures of the

zirconia within the composite. Figure 5.2b shows the m/t transformation at 1076°C with a

contraction of 0.13% and the t/m transformation at 894°C with an expansion of 0.10%. The

zirconia particles show transformation temperatures which are lower in the composite than

as free powders: the m/t and t/m transformations are decreased by 17 K and 58 K,

respectively. Tensile samples were tested in a custom-designed creep apparatus allowing

the application of small tensile stresses with a simultaneous rapid temperature cycling in an

argon atmosphere. Before thermal cycling, the samples were crept isothermally until

steady-state was reached. The deformation was measured by a linear voltage displacement

transducer (LVDT) placed at the cold end of the lower pullrod. Under cycling conditions,

the deformation measured by the LVDT included the thermal dilatations of the pullrods and

samples and therefore did not represent the sample plastic strain. However, the strain

measured under isothermal conditions and over full temperature cycle periods is only due to

the sample plastic deformation. The sample stress was adjusted manually by periodically

applying or removing weights. The plastic strain increment per cycle, ALtot, was calculated
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as the average of 4 to 6 cycles strains once the strain increments reached steady-state, to

avoid the strain contribution due to primary creep.

Figure 5.3 shows the steady-state creep rates as a function of stress for unreinforced

NiAl and the NiAI/10%ZrO 2 composite together with the strain rates obtained by thermal

cycling of the composite. Thermal cycling was performed between T1 = 700'C and Tu =

1150'C with one minute heating and cooling ramps (T = 7.5 K-s-1) and one minute hold

periods at both extreme temperatures, corresponding to a cycle frequency of 15 hr -f . Figure

5.1 c shows the deformed NiAl/10%ZrO 2 sample.

5.3 Discussion

5.3.1 Materials

The measured density of the unreinforced NiAl was 5.92 g-cm-3, close to the values

reported in the literature (5.90 g.cm -3 [62], 5.85 g-cm -3 [57]), indicating full densification.

Because the zirconia particles were somewhat porous, the density of the composite could

not be used to determine its densification. However, the micrograph of the composite (Fig.

5.1a) shows that the material is fully densified. Figure 5.1a also shows that the particles are

well distributed within the NiAl matrix with a grain size of approximately 40 jIm, well

above the typical upper limit of 10 gm for microstructural plasticity to occur.

The observed decrease in transformation temperatures for ZrO2 within NiAl (Fig. 5.2a

vs. Fig. 5.2b) could be due to a constraining effect of the matrix during the phase

transformation. As expected, the effect is more pronounced upon cooling where the t/m

transformation temperature is lower and thus the matrix is stronger and can exert a larger

constraint on the transforming particles. The creep and thermal cycling experiments were

conducted until failure, which occurred at the lower sample head as shown in Fig. 5.1 c for

the composite. The gauge length (originally at 20 mm) increased by 23% while the heads
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deformed by 11.4% (over an original length of 17.5 mm). Thus, head deformation

contributed significantly to the total plastic deformation measured by the LVDT. However,

because the same geometries were used for all specimen, this systematic error affects only

the relative position of the strain rate curves. Unreinforced NiAl fractured after 5% strain in

the gauge section where fracture occurred at the lower sample head.

5.3.2 Isothermal Creep of NiAl

The stress exponents n = 4.06 at 1100 and n = 3.72 at 1200'C are comparable to results

obtained by Vandervoort et. al. [96]. These authors reported stress exponents of 4.4 at

1100°C and 3.8 at 1250°C with an activation energy of 300 kJ-mole - ' for cast NiAl

deformed in compression at stresses between 6.5 MPa and 43 MPa. By taking an average

stress exponent of 3.9, our data can be fitted to a power-law

S= A-yn -exp( T ,' (5.1)

with Q = 318 kJ-mole -' and A = 90 (expressing in units of s- and c in units of MPa).

The predicted strain rates are then within a factor 1.4 of the experimental results.

5.3.3 Isothermal Creep and Thermal Cycling of NiAl/10%ZrO 2

The isothermal strain rate of the composite at 1150 0C and a =11.7 MPa was measured as

= 6.7 10-7 s-1. This value is lower than the creep rate = 2.8 10-6 S-1 obtained by Eq. 5.1

for unreinforced NiAl, as expected from the strengthening effect of non-creeping particles.

The strain rate of the thermally cycled composite as a function of the applied stress (Fig.

5.3) can be fitted to:

Atot= B. n , (5.2)
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where n = 1.41 and B = 2.35-10- ( : in units of s-' and 1 in units of MPa). Strain rates

between isothermal and cycling experiments can be compared by considering an effective

temperature Teff for which the strain rate by power-law creep is the same as the power-law

strain rate averaged over a full temperature cycle during the non-isothermal experiments:

Q
Teff =- K T(t) (5.3)R -In v. exp dt

( R-T(t))

where v is the cycling frequency. For the temperature history T(t) used in the present

cycling experiments, Teff = 1363 K ( = 1090'C), so the cycling data in Fig. 5.3 can be, to a

good approximation, compared to the isothermal data at 1100C. It is evident from Fig. 5.3

that the strain rate of NiAl at the equivalent temperature is significantly lower than the strain

rate of the composite subjected to thermal cycling. The difference between the isothermally

deformed composite and the cycled composite is expected to be even larger, since the

composite isothermal creep is slower than that of unreinforced NiAl (Fig. 5.3). Both, the

large increase in deformation rate upon cycling and the low cycling stress exponent n =

1.41, are indicative of a material deforming by transformation plasticity. Large tensile

elongations, necessary for TSP, can be expected if fracture in the specimen head can be

avoided, e.g. by decreasing the stress concentration at the loading pin.

5.3.4 Modeling of Transformation Mismatch Plasticity of NiAI/10%ZrO 2

Figure 5.4a shows the total plastic strain increment per cycle, Atot, as a function of the

applied stress, o, on a linear scale. The strain per cycle increases linearly with the applied

stress below a = 10 MPa and non-linearly thereafter. Figure 5.4b shows the deformation

histories as measured with the LVDT of two representative cycles, i.e., cycles where the

plastic strain increment is constant over 4 to 6 cycles. As depicted in this figure, plastic

strain accumulates only during the heating part of the cycle (ALhc = ALh), i.e., during the m/t
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transformation at 1076C. Thus, mismatch stresses produced during the t/m transformation

on cooling at 894°C must be accommodate elastically by the NiAl matrix. If no relaxation

occurs upon subsequent heating up to the m/t transformation temperature, these elastic

stresses are expected to be canceled by that transformation, and transformation plasticity is

not expected to be observed. Figure 5. c however demonstrates that deformation occurs

repeatedly upon thermal cycling, and that most of the deformation occurs on heating (Fig.

5.4b). Thus, stored elastic strains produced by the t/m transformation must be released

during the heating period before the m/t transformation temperature is reached, possibly

resulting in an additional plastic strain contribution. Finally, we note that the dilatometry

experiment, performed with much slower cooling rates (factor 45), showed that internal

strains could be relaxed during the t/m transformation (Fig. 5.2b) if the observation time is

long enough. Because of the high homologous temperature of NiAl at the m/t

transformation of ZrO2 (T/Tm = 0.71), at which power-law creep is rapid (Fig. 5.3), we

assume that mismatch accommodation in the composite is by matrix creep. Within the linear

strain-stress range, Greenwood and Johnson [39] modeled transformation plasticity for a

creeping system undergoing a complete allotropic transformation (e.g. titanium):

2 AV o 5-n
A =- , (5.4)

3 V co (4-n+1)

where Ac is the strain per transformation, Go the internal stress, AV/V the volume mismatch

between the two allotropic phases and n the isothermal stress exponent of the weaker phase.

In a composite for which only the reinforcement undergoes a phase transformation with a

volume mismatch AV/V, an equivalent volume mismatch, (AV/V)eq can be defined as:

AV AV
) = K, G(f). , AV(5.5)

V eq V

where G(f) is a function of the reinforcement volume fraction f and K, is a correction

parameter taken as unity. Assuming isotropy, the measured dilatometric length mismatch of
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the composite, G(f)-AL/L =0.13% is one third the volumetric mismatch G(f)-AV/V =

0.39%. Assuming a volume fraction dependence of G(f) = f(1-f), where f = 0.1, the

volume change of the zirconia is calculated as AV/V = 4.3%, in reasonable agreement with

literature data [11,78]. The internal stress is then determined by fitting Eq. 5.4 to the

experimental data within the linear range ( < 10 MPa) substituting (AV/V)eq of Eq. 5.5 for

the volume mismatch AV/V in Eq. 5.4, the result of which is shown in Fig. 5.4a. The fitted

value Go = 24 MPa is also reasonable when compared to the applied stress range.

5.3.5 Estimation of the expansion-mismatch

Composite mismatch plasticity can also result from the difference between the

coefficients of thermal expansion (CTE) of the reinforcement and the matrix [26] The

equivalent composite CTE-mismatch is then:

A) = 3. K2 -G(f) a (T, - T,), (5.6)
V eq, cte

where K2 a correction parameter taken as unity and T, is the transformation temperature.

The CTE of NiAl increases from 16.1.10-6 K-' at 7000C to 17.4.10-6 K-' at 1076 0C [16] and

the CTE of ZrO2 climbs from 7.0-10-6 K-' at 7000C to 12.0-10-6 K-' at the m/t

transformation temperature [95]. Taking a temperature-averaged mismatch CTE of Ac =

7.3-10 -6 K- ', and assuming a volume fraction dependence of G(f) = f (1-f) withf = 0.1, the

equivalent CTE-mismatch is (AV/V)eq,cte = 0.07%. This value is small compared to the

equivalent composite transformation mismatch calculated (i.e. 0.39%). More importantly, it

is comparable to the elastic strain that are likely to accumulate without significant relaxation

[71]. We thus conclude that CTE-mismatch strain can be neglected in the present model.
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5.4 Conclusions

A composite consisting of a NiAl matrix reinforced with 10 vol.% zirconia particles was

thermally cycled about the allotropic transformation temperature range of zirconia and

simultaneously subjected to an uniaxial tensile stress. The strain rates under thermal cycling

conditions were much higher than those under equivalent isothermal conditions for either the

composite or the unreinforced matrix. While the total elongation was limited by fracture

outside the gauge length, the linear relationship between strain per cycle and applied stress

indicates that the composite deforms by transformation superplasticity, whereby internal

mismatch stresses due to the transformation of the zirconia are biased by the external stress.

To the best of our knowledge, this is the first report of transformation superplasticity in an

intermetallic system or in any composite system where the reinforcement is allotropic (as

opposed to the matrix, as in the Ti/TiC system investigated by Dunand and Bedell [26]).

The model by Greenwood and Johnson [39], for transformation superplasticity of a single-

phase allotropic material undergoing full transformation under creeping conditions, can be

adapted to model the phenomenon by using an effective transformation mismatch strain

taking into account the volume fraction of transforming second phase.
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(a) Micrograph of the undeformedNiAl/10%ZrO 2 composite showing dark

zirconia particles within an etched NiAl matrix; (b) undeformed geometry of

tensile sample; (c) macrograph of deformed composite.
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Figure 5.2: (a) Differential Thermal Analysis of the ZrO2 as received and annealed at

1550C for 96 hr; (b) Dilatometry of the NiAl/10%ZrO 2 composite.
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Chapter 6

Finite-Element Modeling of
Transformation Superplasticity in Composites with

Allotropic Particles

Abstract

A coupled thermal-mechanical finite-element model was developed to describe

transformation superplasticity resulting from the biased relaxation of mismatch stresses

produced by allotropic particles within a creeping matrix. The case of a NiAl matrix

containing 10 vol.% zirconia allotropic particles was explored for a series of externally

applied stress values. The instantaneous composite strain developed during the

zirconia transformation is found to increase linearly with the applied stress, in

agreement with continuum mechanics closed-form models for transformation

superplasticity. This instantaneous strain is smaller than the total strain accumulated

over a half temperature cycle, indicating that mismatch stresses produced during the

transformation relax by matrix creep long after the particles have transformed. Also,

the total composite strain after a full temperature cycle is in good agreement with

strains determined experimentally on a NiAl/10% ZrO2 composite. Finally, the internal

stress distribution within the transforming composite is determined numerically and

compared to simple analytical averages.
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6.1 Introduction

When an uniaxial stress is applied on a polycrystalline material displaying internal

mismatch stresses caused by an allotropic phase transformation, a strain increment occurs in

the direction of the biasing stress. Strains in excess of 100% are obtained upon repeated

thermal cycling around the allotropic temperature through accumulation of these strain

increments each time a phase change occurs. This phenomenon is called transformation

superplasticity and has been experimentally observed in metals (e.g. iron [69], titanium

[26,39]), alloys (e.g. steel [35], Ti-6A1-4V [5]) and metal-matrix composites (e.g. Ti/TiC

[26], Fe/TiC [108]). The transformation superplastic behavior of materials can be classified

according to the accommodation mechanism of the induced internal strains and stresses. At

a high homologous temperatures where the material deforms by creep, Greenwood and

Johnson [39] derived an analytical expression based on continuum mechanics linking the

transformation superplastic strain increment De caused by a phase transformation to the

applied stress s:

2 AV a 5.n
Ac = - , . - (6.1)

3 V o0 (4.n+l 1)

where IAV/VI is the volume mismatch between the phases, o0 the average internal stress of

the plastically deforming weaker phase and n the stress exponent of the creep law describing

the plastic accommodation. Greenwood and Johnson [39] also modeled the case of ideal

plastic yielding at low homologous temperatures where oo in Eq. 6.1 is replaced by the yield

stress ay of the weaker phase and n tends to infinity.

Finite-element modeling is ideally suited for the study of transformation superplasticity,

since it allows a much more detailed description of the stress- and strain spatial distribution

and time evolution during the phase transformation. Zhang et al. [106] studied the related

phenomenon of thermal mismatch superplasticity in an Al/SiC composite subjected to

thermal cycling. Their plane-strain model assumed an ideally plastic matrix and the
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mismatch was approximated by radially shifting nodes at the particle-matrix interface.

Ganghoffer et al. [33] modeled in three dimensions transformation plasticity of steel

(austenite-pearlite) assuming a yielding, strain-hardening material showing no creep.

Levitas [52] also used finite-element modeling to investigate the related problem of plasticity

induced by martensite formation in austenite.

In the present chapter, we use a coupled thermal-mechanical finite-element approach to

model transformation superplasticity in the NiA1/ZrO 2 system (recently investigated

experimentally by Zwigl and Dunand [110]) for which the intermetallic matrix is creeping

and the ceramic reinforcement is allotropic.

6.2 Model

6.2. 1 Finite Element Model

We used the finite-element code ABAQUS [41] with 4 node, plane-strain, coupled

temperature displacement elements (TYPE = CPE4T) arranged in a domain shown in Fig.

3.1. The lower left corner of the mesh is fixed in space and the boundary conditions at the

perimeter are set so that the domain remains rectangular. The round zirconia particle is

modeled with 45 elements using multiple point constraints for the five elements near the

origin while the NiAl matrix is discretisized with 160 elements. A radiative heat flux

controlled by the applied temperature profile in the form of a square wave (with a lower

temperature T1 and an upper temperature Tu) is entering the domain along the b-b edge while

an external stress is applied at the a-a boundary. The final stress state at the end of each

transformation (heating or cooling) was used as the initial state for the succeeding run using

a user-defined routine to transfer the stresses. To minimize the distortions of the elements

caused by repeated transformations, the original undistorted mesh was used as input

geometry for each run. The composite strain was calculated as the ratio of the upper a-a
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boundary displacement in the y-direction to the length of the domain (arbitrarily set to L0 =

252 gm).

6.3 Physical Properties

The phase transformation of zirconia is assumed to take place at TnVt = 10760C on heating

and at Tmt = 894"C on cooling within a temperature interval of +0.50 C, as observed

experimentally in Ref. [110]. The density changes from Pm = 5.68 g-cm-3 for the low-

temperature monoclinic (m) phase to pt = 6.10 g-cm-3 for the high-temperature tetragonal (t)

phase [ 11]. The corresponding allotropic density change IAV/VI = 7.5% was modeled as a

discrete non-linearity of the thermal expansion IAV/VI = 2.5% at the phase transformation

temperatures, as shown in Fig. 6.2. The coefficient of thermal expansion (CTE) of

monoclinic zirconia increases non-linearly with temperature from a = 6.92-10 -6 K-' at T =

7000C to a = 12.0.10-6 K-' at T = 1150 0C [95]. Since CTE-data of tetragonal zirconia is

scarce and contradictory, the CTE of monoclinic zirconia was also used to model the CTE of

the tetragonal phase. The specific heat of zirconia is C, = 0.63 J-g-'-K -' between T = 700C

and T = 1200*C [11] and the thermal conductivity increases from k = 1.7 W-m-'-K-' at T =

100"C to k = 2.1 W-m-'-K~' at T = 13000C [11]. The elastic modulus of zirconia decreases

linearly with temperature according to E[GPa] = 303.8 - 0.108-T[K] [84] and the Poisson's

ratio is v = 0.27 [1]. The heat of transformation is 48 J-g-'[84].

The density of NiAI is p = 5.90 g-cm-3 [62], the coefficient of thermal expansion is

increasing non-linearly from a = 1.4510 -5 K-' at T = 7000C to a = 1.5510-5 K-' at T =

1200"C [62], the elastic modulus decreases according to E[GPa] = 199.8 - 0.04-T[K] [62]

while the Poisson's ratio increases slightly from v = 0.326 at T = 600"C to v = 0.329 at T =

1300"C [62]. The specific heat increases slightly from Cp = 0.64 J-g-'-K-' at T = 527 0C to

C, = 0.68 J-g-'-K-' at T = 727 0C [57] and was assumed to remain at C, = 0.68 J-g-'-K-' up

to T = 1200 0C. The thermal conductivity decreases non-linearly between T = 600"C and T
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= 1200"C from k = 78.6 W-m-'-K -' to k = 73.2 W-m-'-K-' [18]. The creep of

polycrystalline NiAl is described by a power-law:

=A- exp( - I. an , (6.2)
RT

where A = 90, Q = 318 kJ-mol-', n = 3.9 and a is expressed in MPa [110]. Absorptivity a

and emissivity e are assumed equal a = e = 0.5.

6.3. 1 Thermal Modeling

6.3.1.1 Radiative Heat Transfer

As for the Biot number for conductive heat transport, a dimensionless number can be

defined for radiative heat transfer [37]:

M = , (6.3)
k

where GB is the Stefan Boltzmann constant, a the absorptivity, Tp the phase transformation

temperature and x is the diffusion distance, taken as Lo for NiAl and R for ZrO2 (Fig. 3.1).

Eq. 6.3 gives M values smaller than 0.01 so that no thermal gradients are expected in the

material and ratchetting, i.e. plastic deformation based on macroscopic thermal gradients,

can thus be excluded as a deformation mechanism.

Under these conditions, an analytical expression for the temperature history can be

obtained from the energy:

dT
p -C, V. = -S oa a (T 4 - T4) (6.4)

dt

where V is the volume to be heated and S the surface area for heat transfer. Equation 6.4 is

solved for the initial condition T(t=0) = Ti giving:

At= p.Cp.V 2 C V Tf, (T-Ti) +  (T+Tf).(Ti -Tf) (65)
4. S'a(B - a r c _ Tf-+TT _ (T-Tf).(T i +Tf)
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Equation 6.5 is used to predict the time to heat a material from an initial temperature Ti to a

temperature T given an applied surface temperature Tf.

6.3.1.2 Phase Transformation

Under Newtonian conditions the time period Atp of the transformation is:

Atp = , (6.6)
S.GB • a -(T4 -T4)

where AH the enthalpy of transformation. For the numerical model, Eq. 3.7 is used to

determine the time for completion of the phase transformation.

6.3.2 Creep Modeling

The general expression for the isothermal steady-state creep rate in the direction 2

(labeled y in Fig. 3.1) is given by [12]:

3
82 - -A .K(T) -"-q . (Y2 v) G (6.7)

2

where K(T) describes the temperature-dependence of the constitutive equation, Geq the Mises

equivalent stress and ,v the volume average stress. For the case of plane-strain with an

uniaxially-applied stress in the 2-direction (Fig. 3.1), the equivalent stress is req = 2 '( 1-

v+v 2)1/2 , the average stress is ov = o2-(1+v)/3. By taking v = 0.5, Eq. 7 reduces to:
n+I

2(Plane Strain) = E2 (Uniaxial) ( 2 (6.8)

6.3.3 Numerical Modeling

The numerical model is implemented in three steps: (i) heating from the lower cycle

temperature T, to the phase transformation temperature Tp; (ii) transformation at Tp over a

temperature interval of AT = 1K; and (iii) heating from Tp to the upper cycling temperature

Tu. Equations 6.5 and 3.7 are used to predict the time for the onset and completion of the
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phase transformation, where smaller temperature-, strain-, and time increments are used

during the coupled temperature-displacement analysis (options DELTMX, CETOL and

*CONTROLS, ANALYSIS = DISCONTINUOUS). The same three steps are repeated

during the cooling section of the temperature cycle.

6.4 Results

Figure 6.3 shows the temperature history of the heating (3a, 3c) and cooling portions

(3b, 3d) of the temperature cycle as measured at the upper left comer of the domain (Fig.

3.1). Upon heating, the temperature increases rapidly until the onset of the phase

transformation of the zirconia particle. During the transformation (Fig. 3.c), some of the

incoming heat is used for the transformation enthalpy of the particle, thus reducing the

average rate of heating. After completion of the transformation, the final temperature

increases again rapidly. Conversely, on cooling the heat released by the phase

transformation reduces the rate of cooling until completion of the transformation (Fig. 3.d).

The temperature difference between the center of the particle and the upper left corner of the

matrix is at most AT = 0.1 K during the phase transformation, consistent with low M values

(Eq. 6.3) predicting low thermal gradients.

Figure 6.4 shows the strain histories of the composite for three different applied stress

levels, as determined from the deformation of the upper edge of the domain. The initial

elastic response of the composite is E = 187 GPa at T = 700C, comparing well with E =

161 GPa for NiAl and E = 199 GPa for pure zirconia at that temperature. While the general

shape of the curves follows the CTE elongation and contraction due to heating and cooling,

the non-linearities at T = 1076C and T = 8940C are caused by the m/t and t/m phase

transformation, respectively. While the thermal expansion and contraction cancel over a full

cycle, the strains caused by internal transformation stresses and the externally applied stress

cause irreversible plastic deformation over a cycle.
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The instantaneous composite strain occurring during zirconia transformation is given by

the difference between the maxima and minima of the strain spikes visible in Fig. 6.4.

These strains (as well as their sum) are plotted as a function of the applied stress in Fig. 6.5

for the t/m and m/t transformations. Figure 6.5 shows linear stress-strain relations for both

the m/t-transformation (with slope, d(AEvt)/d = 0.053 GPa-') and the t/m transformation

(with slope d(Atim/)/d = 0.015 GPa- ') with similar intercepts.

Figure 6.6 shows the creep strain rate as a function of applied stress obtained at a

temperature T = 1150*C for NiAl and the NiAl/10O%ZrO 2 composite. For NiAl, plane-strain

creep was simulated at a = 10, 20, 40 MPa by using 4x4 plane-strain square elements with

the same boundary conditions as in Fig. 3.1. The composite creep rate was determined

from the deformation rate at upper cycling temperature T, = 11500C just before cooling

occurred. Slightly smaller creep rates and stress exponent are observed for the composite as

compared to unreinforced NiAl. Figure 6.6 also shows the analytical predictions by Eq. 6.8

which is in excellent agreement with the numerical results for NiA1.

Figure 6.7 shows Mises equivalent matrix stress contour plots before, during, and after

the m/t phase transformation. As the zirconia particle shrinks, the maximum matrix

equivalent stress found at the particle-matrix interface increases from a = 68 MPa at the

beginning of the transformation (Fig. 6.7c) to a = 240 MPa at the end of the phase

transformation (Fig. 6.7e). Upon subsequent creep (Fig. 6.7f), the matrix stresses relax

rapidly and drop to values on the order of the applied stress (a = 10 MPa). Similar stress

distributions are obtained during cooling with higher maximum stresses (up to 800 MPa)

because the matrix is stronger at the lower transformation temperature.

6.5 Discussion

The time interval to heat the domain from the initial temperature Ti = TI = 7000C to the

beginning of the phase transformation (T = 1075.5C), given an applied temperature of Tf =
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TU = 1150 0C is estimated by Eq. 6.5 with the properties of NiAl as Atr, = 7.0 s, which

compares well with the value found numerically Atrl = 7.1 s. Upon cooling from Tu =

11500C to the t/m phase transformation temperature (T = 894.5°C), Eq. 6.5 predicts Atr2 =

5.2 s, again in good agreement with the numerical result Atr2 = 5.3 s. Furthermore, the time

period for the allotropic phase transformation defined by the strain spikes in Fig. 6.4 are

found as Atp,,it = 0.42 s and Atp,tm = 0.39 s, close to the values of Atp,nvt = 0.32 s and Atp,t/

= 0.26 s predicted by Eq. 3.7 using V/S = c-R 2/(4.L 0 ), i.e. heat entering along the b-b

edge of the matrix is supporting the transformation of the particle (Fig. 3.1). The latter

values are expected to be lower than the numerical values because the heat flow through the

matrix is neglected.

The consistency of the model is further verified by comparing in Fig. 6.6 isothermal

creep rates at T = 1150 0C for NiAl obtained analytically (Eq. 6.8) and numerically. First,

the slight reduction in the stress exponent for the composite may be due to the thermal

history: the composite creep rate is determined at the upper cycling temperature after the

phase transformation and may thus include some contribution from the relaxation of the

transformation stresses. Second, as expected from load transfer from a creeping matrix to

an elastic particle, the composite creeps more slowly than the unreinforced matrix.

Figure 6.5 displays the strain accumulated during the time of the transformation upon

heating and upon cooling defined by the spikes in Fig. 6.4 (points c and e in Fig. 6.7a for

heating). As expected, the intercepts for zero applied stresses AEo,nvt and Ao,t/m are the

same within numerical error, i.e. the composite expands and contracts reversibly when no

external stress is applied. The magnitude of this strain Aeo = 0.30% can be compared to the

effective volume mismatch in the composite:

(AV)= f -(1- f) AV , (6.9)
V eft V
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where f is the volume fraction of particles undergoing a phase transformation with volume

mismatch AV/V. With f = 0.1 and IAV/VI = 7.5 %, the effective mismatch in the NiA1/ ZrO2

composites is thus (AV/V)eff = 0.675%. The corresponding uniaxial expansion or

contraction are (AV/V)eff/3 = 0.225 % for an unconstrained material, and (AV/V)eff/2 =

0.338 % for a material fully constrained in one direction. While the strain Ao = 0.30%

determined numerically under plane-strain conditions is close to the constrained value, the

small discrepancy indicates that some elastic strains are stored in the material. In addition,

internal stresses are caused by the CTE-mismatch between the particle and the matrix.

However, the effect of these internal stresses is negligible because the allotropic mismatch

((AV/V)eff = 0.675%) is much lager than the equivalent volumetric CTE-mismatch, given by

(AVN)eq,CTE = 3 -f -(l-f). AO'(Tmit - T1) = 0.08%, where the average CTE-difference is

Aa = 7.7.10 -6 K-' and the temperature difference is Tnvt - Ti = 1076C - 700C = 376 K

[110].

In Fig. 6.5, the slope of the strain on heating d(Aenvt)/d = 0.053 GPa~' is larger than on

cooling d(ASm)/d = 0.015 GPa~'. This is expected, as the transformation temperature is

higher on heating (Tnvt = 1076 "C) than on cooling (Tm = 894 "C) and thus more elastic

strains are stored on cooling, leading to lower plastic strains. Finally, the slope of the total

strain per cycle in Fig. 6.5 d(AE)/do = 0.068 GPa-' can be compared to the total strain

accumulated over a complete cycle d(Ae)/do = 0.13 GPa-' determined experimentally for a

NiAl/10%ZrO 2 composite [110]. Assuming that the plane-strain model accurately describes

the transformation in the composite, the discrepancy of a factor of 2 can again be justified

with the argument that the superplastic strain does not develop fully during the short interval

of time corresponding to the transformation of zirconia, but that stored transformation elastic

strains relax under the biasing effect of the external stress during the rest of the cycle.

To test this hypothesis, the total strain accumulated over a full cycle (Fig. 6.4) AEtot, is

compared in Fig. 6.8 to experimental data for a NiAl/10%ZrO 2 composite cycled between Ti
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= 700'C and To = 1150'C [110]. The match between model and experiment is surprisingly

good, especially since the experimental temperature was raised at a finite rate of ITI = 7.5

K-s - ' between the lower and upper temperatures, so that the experimental temperature

profile was not a square wave as in the numerical calculations. However, the model

predicts not only the correct slope d(Ac,,o)/d but also the non-linear deviation occurring at

high applied stresses, which corresponds to the onset of a significant contribution of creep

during the high-temperature section of the cycle.

Within the linear range in Fig. 6.8 (o < 10 MPa), where high-temperature creep can be

neglected, d(AE)/do-slopes of the heating and cooling portion of the cycle can be evaluated

separately giving d(ACh)/d = 0.127 GPa -' on heating and d(Ac)/do = 0.051 GPa- ' on

cooling. Because Ash and Ac incorporate stress relaxation over a much longer period, the

resulting slopes are higher than those obtained from strain spikes (Fig. 6.5). With these

slopes and the effective mismatch defined by Eq. (6.9), Eq. (6.1) can be used to determine

the average internal stress (o in the NiAl matrix during the transformation, giving values o0,h

= 42 MPa and Go,c = 104 MPa for heating and cooling, respectively.

Alternatively, the average internal stress oo can be calculated using the definition by

Greenwood and Johnson [39]:

2 AV QS= - I- A exp( Q At* (6.10)
3 V ff R-T

where At* is the time scale over which the phase transformation occurs. Assuming that

internal stress relaxation occurs over the time periods of the m/t and t/m transformation

given by the strain spikes (Fig. 6.4) due to the phase transformation, Eq. (11) yields

internal stresses 7o,, = 142 MPa and co,t,, = 458 MPa. The rather broad ranges of internal

stresses given by Eqs. (6.1) and (6.10) (42-142 MPa on heating and 104-458 MPa on

cooling) correspond to averages over the whole matrix volume stress and over the complete

relaxation occurring at a constant temperature. While they are thus not directly comparable
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to the internal stresses determined numerically, Figs. 6.7c-e show that stresses of similar

magnitude are found by finite-element modeling.

6.6 Conclusions

Transformation superplasticity (resulting from the biasing by an external stress of internal

mismatch stresses produced by an allotropic transformation) was modeled by the finite-

element method for a NiA1/10%ZrO 2 composite, where the ceramic reinforcement is

allotropic and the intermetallic matrix deforms by creep. The following conclusions can be

drawn:

1. The coupled thermal-mechanical formulation captures the temperature history

expected for a transforming composite without thermal gradients.

2. Isothermal creep is faster for the unreinforced matrix than for the composite, and is in

good agreement with analytical predictions.

3. The composite strain developed during the short interval over which the zirconia

transforms is found to increase linearly with the applied stress in qualitative

agreement with the analytical expression developed by Greenwood and Johnson [39]

for transformation superplasticity. However, the predicted magnitude of the strain is

too small by a factor of 2 when compared to experimental data, indicating that some

of the elastic mismatch stresses are not relaxed.

4. The total composite strain accumulated over a full cycle increases linearly with stress

for low stress values, as expected for transformation superplasticity, but becomes

non-linear at high stresses because of the contribution of isothermal creep. The

numerical predictions are in excellent agreement with experimental data in both the

linear and non-linear regions.
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5. The internal matrix stress distribution is determined before, during, and after the

phase transformation. Large internal stresses are produced during the phase

transformation, in agreement with average values determined analytically.
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Conclusions

The deformation mechanism of transformation superplasticity was studied experimentally

and theoretically. New methods and materials have been combined to investigate

transformation superplasticity of the pure metals iron and zirconium, and of the metal matrix

composites Fe-TiC and NiAI/ZrO 2. The experimental results are related to composition and

microstructure and compared to predictions of analytical and numerical models.

The following general conclusions are drawn:

* Transformation superplasticity is a non-linear phenomenon with respect to stress but is

independent of grain size. It can be described quantitatively by continuum mechanics

closed-form solutions.

* Transformation superplasticity can be modeled numerically for single phase materials and

composites. The immediate results show all characteristics of phase transformation

superplasticity, thus allowing relative comparison between materials. Furthermore, upon

incorporating model-specific assumptions, the numerical results are in quantitative

agreement with experimental observations and analytical solutions.

* The thermo-mechanical coupling during the phase transformation can be used to control

the time scale and the extend of the phase transformation.

* The magnitude of the strain caused by plastic mechanisms that occur simultaneously with

phase transformation superplasticity (i.e. fine-structure superplasticity, thermal mismatch

superplasticity, ratchetting, dislocation- and diffusional creep) have to be considered in

the evaluation of transformation superplastic experiments.
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The following material specific conclusions are drawn:

* Transformation superplasticity of iron is sensitive to traces of carbon. A correlation is

found between the carbon and alloy concentration and the transformation superplastic

behavior of iron and steels respectively. The superplastic effect within the linear portion

of the applied stress vs. strain increment per cycle plot is 1.7 GPa~' for iron containing

0.012% carbon. A total elongation of 450% without fracture demonstrates

transformation superplasticity.

* The increase of yield strength due to a slight dissolution of TiC in iron reduces the

transformation superplasticity in iron-TiC composites giving 0.37 GPa- ' and 0.20 GPa ~'

for composites containing 10 vol.% and 20 vol.% TiC respectively. Superplastic strain

rates of 2-10 -4 s-' and fracture strains of 230% are obtained for iron with 10 vol.% TiC.

* Zirconium can be deformed to 270% without fracture and can sustain an average cycling

strain rate of 1.3-10 -4 s-1. An increased hydrogen concentration does not effect

transformation superplastic behavior which was measured as 4.4 GPa 1.

* Nickel aluminide (NiAl) containing 10 vol.% unstabilised zirconia particles shows strain

rates upon thermal cycling about the phase transformation hysteresis of zirconia which

are significantly higher than the isothermal creep rates of the composite and unreinforced

NiAl at the upper cycling temperature. The total transformation superplastic effect is

0.13 GPa-'. A fracture strain of 23% is below the superplastic limit, however the strain

rate sensitivity of m = 0.71 shows transformation superplastic capabilities.
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