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A SHOCK LAYER ARISING AS THE SOURCE TERM
COLLAPSES IN THE P(X)-LAPLACIAN EQUATION

Abstract. We study the Cauchy–Dirichlet problem for the
p(x)-Laplacian equation with a regular finite nonlinear minor term.
The minor term depends on a small parameter ε > 0 and, as ε→ 0,
converges weakly? to the expression incorporating the Dirac delta
function, which models a shock (impulsive) loading. We establish
that the shock layer, associated with the Dirac delta function, is
formed as ε → 0, and that the family of weak solutions of the
original problem converges to a solution of a two-scale microscopic-
macroscopic model. This model consists of two equations and the
set of initial and boundary conditions, so that the ‘outer’ macro-
scopic solution beyond the shock layer is governed by the usual
homogeneous p(x)-Laplacian equation, while the shock layer so-
lution is defined on the microscopic level and obeys the ordinary
differential equation derived from the microstructure of the shock
layer profile.
Key words: parabolic equation, nonstandard growth, variable non-
linearity, non-instantaneous impulse, energy solution, shock layer
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1. Introduction. In this article, we study the Cauchy–Dirichlet
problem for the isotropic p(x)-parabolic equation with a nonlinear minor
(source) term:{

∂tuε = divx
(
|∇xuε|p(x)−2∇xuε

)
+Kτ

ε (t)β(x, uε), (x, t) ∈ QT ,

uε = 0 on ΓT , uε(x, 0) = u0(x) in Ω.
(1)

In the formulation of problem (1), Ω ⊂ Rd is a bounded simple-
connected domain with a C1-boundary ∂Ω, T ∈ (0,+∞) is an arbitrarily
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fixed time. We denote QT := Ω × (0, T ) and ΓT := ∂Ω × (0, T ), which
are the space-time cylinder and its lateral boundary, respectively. By τ
we denote the fixed time strictly between 0 and T , i. e., τ ∈ (0, T ).

The function uε = uε(x, t) is a sought one. The exponent p = p(x) is
given. The kernel Kτ

ε = Kτ
ε (t) is supported on [τ − ε, τ ] and defined by

the formula

Kτ
ε (t) =

2

ε
K
(t− τ

ε

)
θ(τ − t), t ∈ (0, T ), (2)

where K = K(ϑ) is an even nonnegative smooth function supported on
the segment {−1 6 ϑ 6 1}, with the mean value equal to unity, i. e.,
1∫
−1

K(ϑ) dϑ = 1; θ(ϑ) = 1(ϑ>0) is the Heaviside step function, and ε > 0

is a small parameter. The source function β = β(x, z) is smooth and
satisfies the growth condition

|β(x, z)| 6 β0|z|λ−1 + β1(x), where

λ ∈ (1, 2], β0 = const > 0, β1 ∈ Lλ
′
(Ω),

1

λ
+

1

λ′
= 1,

(3)

and the finiteness condition

β(x, z) = 0 for (x, z) ∈ ∂Ω× R. (4)

The structure of function Kτ
ε yields that it approximates the left-sided

Dirac delta function in the sense that

Kτ
ε (t) −→

ε→0+
δ(t=τ−0) weakly? inM(0, T ).

Furthermore, εKτ
ε (τ + εϑ) =

{
2K(ϑ) if ϑ 6 0,

0 if ϑ > 0,
and

t∫
0

Kτ
ε (s) ds 6 1,

T∫
0

Kτ
ε (s) ds = 1. (5)

Note that K may have the form of the classical Friedrichs mollifier.
With respect to the exponent p, we assume that it takes values in the

interval (p−, p+) ⊂ (1,+∞) and is log-continuous, i. e.,

|p(x2)− p(x1)| 6 ω(|x2 − x1|) (for small |x2 − x1|),
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with the modulus of continuity satisfying the condition

lim sup
s→0+

ω(s) ln
1

s
= C <∞, C = const.

Initial function u0 is given.
We are interested in the energy solutions of problem (1). Let

W(QT ) =
{
u : QT 7→ R : u|ΓT = 0, u ∈ L2(QT ), |∇xu|p(x) ∈ L1(QT )

}
,

Z =
{
ζ = ζ(x, t) : ζ ∈W(QT ), ∂tζ ∈W′(QT )

}
,

W′(QT ) be the dual of W(QT ), and
〈
· , ·
〉
W′(QT ),W(QT )

be the duality
bracket between W(QT ) and W′(QT ). Both W(QT ) and Z are Banach
spaces; their basic properties can be found in [5, Ch. 1].

Now we are in a position to formulate the following notion.

Definition 1. (Energy solution.) A function uε: QT 7→ R is called a
weak (energy) solution of problem (1) if

1) uε ∈W(QT ), ∂tuε ∈W′(QT );
2) the integral equality〈

∂tuε, ζ
〉
W′(QT ),W(QT )

+

+

∫
QT

(
|∇xuε|p(x)−2∇xuε · ∇xζ −Kτ

ε (t)β(x, uε) ζ
)
dxdt = 0 (6)

holds for every test function ζ ∈ Z;

3) the limiting relation
∫
Ω

(
uε(x, t) − u0(x)

)
η(x) dx → 0, as t → 0+,

holds for every test function η ∈ C∞0 (Ω).

Remark 1. According to the well-known embedding theorem [16, Ch. 3,
Lemma 1.2], if uε is an energy solution of the problem (1) and ζ belongs
to Z, then uε and ζ belong to C([0, T ];L2(Ω)).

In line with a widely accepted terminology [1], [18], equation (1)1 can
be referred to as a non-instantaneous impulsive differential equation due to
the presence of the term Kτ

ε (t)β(x,uε) that approximates the Dirac delta-
type source δ(t=τ)β(x,u). Also, equations of the type (1)1 fall into the class
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of equations with nonstandard growth, or variable nonlinearity. Equation
(1)1 degenerates or becomes singular at the points where |∇xu|p(x)−2 van-
ishes or becomes infinite; in this work, both degenerate and singular cases
are allowed. There already exists a wide literature on the issues of exis-
tence and uniqueness of energy solutions of the problem (1) understood
in the sense of Definition 1 for a fixed ε > 0. For further information on
this topic, see [2–5], [7] and references therein.

In this article, the statement of existence of an energy solution to
problem (1) for every fixed ε ∈ (0,ε0] (with ε0 small enough) is due to the
already established theory, and we focus on constructing the estimates,
uniform in ε. After this, we pass to limit in the problem (1) as ε → 0.
Before turning directly to formulation of the main results and to their
proofs, let us pay attention to one subtle point in the study, which can be
misleading if one neglects the mathematical rigor.

Notice that the straightforward substitution of δ(t=τ−0) = w?- lim
ε→0

Kτ
ε

for Kτ
ε into (1) yields the impulsive p(x)-Laplacian equation

∂tu = divx
(
|∇xu|p(x)−2∇xu

)
+ δ(t=τ−0)(t)β(x, u), (x, t) ∈ QT , (7)

which is equivalent in the sense of distributions to the system consisting
of the homogeneous p(x)-Laplacian equation (see (14a)) and the standard
impulsive condition

u(x, τ + 0) = u(x, τ − 0) + β(x, u(x, τ − 0)). (8)

At first glance, (7) looks like the proper limiting equation for (1)1 and,
consequently, the system (14a), (8), and (1)2 looks like the proper limiting
system for (1), as ε → 0+. On the other hand, numerous observations
in the theory of impulsive ordinary differential equations signal that the
situation with the limit may turn to be drastically more sophisticated
[6], [8], [11]. For example [6], consider the first-order ordinary differential
equation

dfε(x)

dx
= αfε(x)δε(x), x ∈ R, (9)

with

α = const, δε(x) =


1

2ε
if x ∈ (−ε,ε),

0 if |x| > ε,

ε > 0.

It is easy to deduce that the function δε weakly? approximates the Dirac
delta function δ(x=0) concentrated at the origin (x = 0) and to calculate
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explicitly the solution of (9) for every fixed ε > 0:

fε(x) = C exp
(
α

x∫
0

δε(y) dy
)

=


C exp

(
−α

2

)
if x 6 −ε,

C exp
(αx

2ε

)
if −ε < x < ε,

C exp
(α

2

)
if x > ε.

It is easy to establish that the limiting (as ε → 0+) function f = lim
ε→0

fε

meets the jump condition

f(0+)− f(0−) = tanh
(α

2

) [
f(0+) + f(0−)

]
. (10)

At the same time, the solution of equation
df(x)

dx
= αf(x)δ(x=0) meets the

standard impulsive condition

f(0+)− f(0−) =
α

2

[
f(0+) + f(0−)

]
, (11)

and we immediately notice the discrepancy between (10) and (11), since
these two conditions coincide only for α = 0, i.e., in the trivial case.

Looking ahead, we note that in our article we encounter a somewhat
similar situation, as in the above example. As a matter of fact, the guess
that the system (14a), (8), and (1)2 is the limiting form of the system (1) is
wrong. In order to derive the correct limiting formulation, we thoroughly
treat the system (1) as ε→ 0+ on the rigorous mathematical level further
in Section 4. This study eventually brings us to the notion of a shock layer
arising due to the collapsing term Kτ

ε (t)β(x,uε).
Now let us turn to exposition of the main results and their proofs.
2. The main results. The following theorem states the existence of

solutions and provides the uniform estimates in ε, which is the first main
result of the article.

Theorem 1. Assume that u0 ∈ L2(Ω) and functions p, Kτ
ε , and β satisfy

the requirements stated in Introduction.
Then, for every ε > 0 the problem (1) has at least one weak (energy)

solution u ∈W(QT ) satisfying the energy estimate

‖uε‖2
L∞(0,T ;L2(Ω)) +

∫
QT

|∇xuε|p(x) dxdt 6

6 C
(
‖u0‖2

L2(Ω) + ‖β1‖λ
′

Lλ′ (Ω)
+ 1
)
,

(12)
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with a constant C independent of uε and ε.
Moreover, if u0 ∈ L∞(Ω) then uε ∈ L∞(QT ) and the maximum princi-

ple holds:

sup
t∈[0,T ]

‖uε(· , t)‖L∞(Ω) 6 eβ0‖u0‖L∞(Ω)+

+
(
eβ0 − 1

)(
1 +
‖β1‖L∞(Ω)

β0

)
=: M(13),

(13)

where constant M(13) does not depend on ε.

The second main result of the article deals with the limiting transition
in the problem (1) as ε tends to zero. It reads as follows:

Theorem 2. Assume that u0 ∈ L∞(Ω), functions p, Kτ
ε , and β satisfy

the requirements stated in Introduction, and {uε}ε>0 is the family of weak
(energy) solutions of problem (1) in the sense of Definition 1.

The following assertions hold true.

1) The family {uε}ε>0 is relatively compact in Lq(QT ) for every fixed
q ∈ [1,+∞). More precisely, there exists a subsequence from {uε}ε>0

(still labelled by ε) and a limit function u ∈ L∞(QT )∩W(Ω×(0,τ))∩
W(Ω× (τ, T )), such that uε −→

ε→0+
u strongly in Lq(QT ).

2) The family of rescaled solutions {ūε : Ω × [−1, 0] 7→ R} defined by
the formula ūε(x, t̄)

def
= uε(x, τ + εt̄), t̄ ∈ [−1, 0], ε > 0, is relatively

compact in Lq(Ω × (−1, 0)) for every fixed q ∈ [1,+∞). More pre-
cisely, there exists a subsequence from {ūε}ε>0 (still labelled by ε)
and a limiting function ū ∈ L∞(Ω × (−1, 0)), such that ūε −→

ε→0+
ū

strongly in Lq(Ω× (−1, 0)).
3) The pair of functions {u, ū}, defined in assertions 1 and 2 of this

theorem, is a generalized solution of the following impulsive-initial-
boundary-value problem:

∂tu = divx
(
|∇xu|p(x)−2∇xu

)
, (x, t) ∈ QT\{t = τ}, (14a)

∂t̄ ū = 2K(t̄)β(x, ū), (x, t̄) ∈ Ω× (−1,0), (14b)
u = 0 on ΓT , (14c)
u(x,0) = u0(x) in Ω, (14d)
u(x, τ − 0) = ū(x,− 1 + 0), u(x, τ + 0) = ū(x, 0−) in Ω. (14e)
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4) The problem (14) has at most one generalized solution. In other
words, the generalized solution {u, ū}, defined in assertions 1) and
2) of this theorem, is unique.

In the formulation of problem (14), equation (14a) is understood in the
weak sense, equation (14b) holds a. e. in Ω × (−1, 0), the homogeneous
boundary condition (14c), the initial condition (14d), and the matching
conditions (14e) are understood in the sense of strong traces in L1.

We call the set Ω×{−1 < t̄ < 0} the shock layer following the classical
terminology accepted in fluid dynamics, see, e. g., [15, § 57]. Notice that
(14b) is an ordinary differential equation for the sought function ū on
Ω × {−1 < t̄ < 0}, where t̄ is ‘the fast’ (microscopic) time variable and
the spatial coordinate x plays the role of a parameter, while (14a) is the
homogeneous p(x)-Laplacian equation for the sought ‘outer’ solution u
beyond the shock layer.

Theorems 1 and 2 are proved further in Sections 3 and 4, respectively.

3. Proof of Theorem 1.
3.1. Existence of weak (energy) solutions. Existence of an energy

solution uε to the problem (1) for every fixed ε > 0 directly follows from
the results [5, Section 4.2, Theorem 4.2; Section 4.9, Remark on p. 172].
In the singular case p(x) 6 p+ < 2 we can also refer to [4, Theorems
1.1 and 1.3], where existence of more regular, namely, strong solutions is
established.

3.2. Maximum principle uniform in ε. Let us introduce
Y2k(t) := ‖uε(· , t)‖L2k(Ω). For every k the function |uε|2k−2uε can be
taken as a test function in (6). Using (2) and the formula of integration
by parts [5, Section 1.5, Lemma 1.20], we arrive at the energy relation

1

2k

dY 2k
2k (t)

dt
+ (2k − 1)

∫
Ω

|uε(x, t)|2k−2|∇xuε(x, t)|p(x) dx = I(t), t < T,

(15)
where we denote

I(t) := Kτ
ε (t)

∫
Ω

|uε|2k−2uεβ(x, uε) dx.

Using the growth condition (3) and further applying the Hölder inequality,
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we get the estimate

|I(t)| 6 Kτ
ε (t)

∫
Ω

|uε|2k−1
(
β0|uε|λ−1 + β1(x)

)
dx 6

6 Kτ
ε (t)

(
β0Y

2k−2+λ
2k (t) |Ω|

2−λ
2k + Y 2k−1

2k (t) ‖β1‖L2k(Ω)

)
.

By combining this estimate with (15) followed by discarding the second
term in the left-hand side, we get

Y 2k−1
2k

dY2k

dt
(t) 6 |I(t)| 6

6 Kτ
ε (t)

(
β0Y

2k−2+λ
2k (t) |Ω|

2−λ
2k + Y 2k−1

2k (t) ‖β1‖L2k(Ω)

)
.

Dividing both parts by Y 2k−1
2k , we arrive at the differential inequality

dY2k

dt
(t) 6 Kτ

ε (t)
(
β0 |Ω|

2−λ
2k Y λ−1

2k (t) + ‖β1‖L2k(Ω)

)
6

λ∈(1,2]

6 Kτ
ε (t)

(
β0 |Ω|

2−λ
2k (Y2k(t) + 1) + ‖β1‖L2k(Ω)

)
.

(16)

Applying Grönwall’s lemma and the bound (5), we arrive at the inequality

Y2k(t) 6 eβ0|Ω|
2−λ
2k Y2k(0) +

(
eβ0|Ω|

2−λ
2k − 1

)(
1 +
‖β1‖L2k(Ω)

β0 |Ω|
2−λ
2k

)
. (17)

Passing to the limit as k →∞ and taking into account that |Ω| <∞ and
lim
k→∞
|Ω|

2−λ
2k = 1 for λ ∈ (1, 2], we obtain the desired bound (13).

3.3. Energy estimate for ∇xuε. Joining (15) and (17) with k = 1,
we arrive at the inequality

1

2

d

dt
Y 2

2 (t) +

∫
Ω

|∇xuε(x,t)|p(x) dx 6

6 Kτ
ε (t)

((
β0 +

1

λ

)
|Ω|

2−λ
2

(
Y 2

2 (t) + 1
)

+
1

λ′
‖β1‖λ

′

Lλ′ (Ω)

)
.

(18)

Arguing the same way as for (16), from (18) we obtain the inequalities

Y 2
2 (t) 6 e2(β0+ 1

λ)|Ω|
2−λ
2
Y 2

2 (0)+

+

(
e2(β0+ 1

λ)|Ω|
2−λ
2 − 1

)(
1 +

2 ‖β1‖λ
′

Lλ′ (Ω)

λ′
(
β0 + 1

λ

)
|Ω|

2−λ
2

)
,
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t∫
0

∫
Ω

|∇xuε(x,s)|p(x) dxds 6

6
1

2
Y 2

2 (0) +

(
β0 +

1

λ

)
|Ω|

2−λ
2

(
sup
s∈[0,t]

Y 2
2 (s) + 1

)
+

1

λ′
‖β1‖λ

′

Lλ′ (Ω)
;

this completes the proof of Theorem 1.

4. Proof of Theorem 2.
4.1. Relative compactness of {uε}ε>0. We start proving the theo-

rem by finding the equi-continuity property of the family {uε}ε>0. Namely,
we establish the following lemma:

Lemma 1. For any ε > 0, for every pair (%, h) of rather small positive
parameters (i. e., %i > 0, h > 0), and for every q > max{2, p−}, the weak
(energy) solution of the problem (1) satisfies the estimate

T−h∫
0

∫
Ω%

∣∣uε(x+ %, s+ h)− uε(x, s)
∣∣q dxds 6 C(19)

(
|%|p− + h

1
p+

)
, (19)

with a constant C(19) > 0 independent of % = (%1, . . . ,%d) and h.
In (19) and further, we denote Ω% := {x ∈ Ω : dist(x,∂Ω) > |%|}.

Proof.
Continuity with respect to s.

Set ζ(x,t) = ζk(x,t; s) =
(
uε(x, s+ h)− uε(x, s)

)
Γk(t; s), where

Γk(t; s) =


0 for t 6 s,
k(t− s) for s 6 t 6 s+ 1

k
,

1 for s+ 1
k
6 t 6 s+ h− 1

k
,

k(s+ h− t) for s+ h− 1
k
6 t 6 s+ h,

0 for t > s+ h,

k ∈ N is rather large and s plays the role of a parameter.
We substitute ζk for ζ into (6), which is a legal choice of a test function.
After this, we apply the formula of integration by parts [5, Section 1.5,

Lemma 1.20], pass to the limit as k → +∞, and then integrate in s over
(0,T − h). Thus, we get
T−h∫
0

∫
Ω

|uε(x, s+ h)− uε(x, s)|2 dxds =
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=

T−h∫
0

s+h∫
s

∫
Ω

(uε(x, s+ h)− uε(x,s))∂tuε(x, t) dxdtds 6

6

T−h∫
0

s+h∫
s

∫
Ω

|∇xuε(x,t)|p(x)−1|∇x(uε(x, s+ h)− uε(x, s))| dxdtds+

+

T−h∫
0

s+h∫
s

∫
Ω

Kτ
ε (t)|β(x,uε(x,t))| |uε(x,s+ h)− uε(x,s)| dxdtds =:

=: I1 + I2. (20)

Applying the inequality

T−h∫
0

 s+h∫
s

Kτ
ε (t) dt

 ds =

h∫
0

Kτ
ε (t)t dt+

T−h∫
h

Kτ
ε (t)h dt+

+

T∫
T−h

Kτ
ε (t)(T − t) dt 6 h

T∫
0

Kτ
ε (t) dt = h,

for 0 < τ < T , ε� 1, we obtain

|I2| 6 2M(13) sup
(x,z)∈Ω×(−M(13),M(13))

|β(x, z)| |Ω|h =: M(21)h. (21)

Using the Young inequality ab 6 (m − 1)/m (δa)m/(m−1) + 1/m (b/δ)m,
where 1 < m <∞, a, b > 0, δ ∈ (0, 1), we estimate |I1| as follows:

|I1| 6
T−h∫
0

s+h∫
s

∫
Ω

(
δ

p(x)
p(x)−1

p(x)− 1

p(x)
|∇xuε(x, t)|p(x)+

+
δ−p(x)

p(x)
|∇x(uε(x, s+ h)− uε(x, s))|p(x)

)
dxdtds 6

6 δ
p+

p+−1
p+ − 1

p+
h

∫
QT

|∇xuε(x, t)|p(x) dxdt+

+
h

δp+

T−h∫
0

∫
Ω

|∇x(uε(x, s+ h)− uε(x, s))|p(x) dxds.
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Choosing δ = h(p+−1)/(p+)2 and taking into account (12), we get

|I1| 6 h
1
p+M(22)(T,M(13)). (22)

Therefore, (20), (21), and (22) give

T−h∫
0

∫
Ω

(uε(x,s+ h)− uε(x,s))2 dxds 6 h
1
p+M(23). (23)

Continuity with respect to x. Using (12), we write

T∫
0

∫
Ω%

|uε(x+ %,s)− uε(x,s)|p
−
dxds 6 |%|p−C(24) ‖∇xuε‖p

−

Lp− (QT )
6

6 |%|p−M(24). (24)

Combining (23) and (24) and taking into account (13), we finally arrive
at the inequality (19), which completes the proof of Lemma 1. �

Now, from [9] we recall the following version of the Kolmogorov–Riesz
theorem.
The Kolmogorov–Riesz theorem [9, Theorem 5]. Let q ∈ [1,+∞).
A subset F of Lq(Rn) is relatively compact if, and only if,

(i) F is bounded in Lq(Rn),
(ii) for every ε > 0, there is some R > 0, such that∫

|y|>R

|f(y)|q dy < εq, ∀ f ∈ F ,

(iii) for every ε > 0, there is some δ > 0, such that∫
Rn

|f(y + ȳ)− f(y)|q dy < εq, ∀ f ∈ F , ∀ ȳ ∈ Rn with |ȳ| < δ.

Theorem 1, Lemma 1, and the Kolmogorov–Riesz theorem imply:

{uε}ε>0 is relatively compact in Lq(QT ) for every q ∈ [1,+∞). (25)
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Indeed, according to (13) and (19), the sequence {uε}ε>0 is uniformly
bounded and equi-continuous. Therefore, according to the Kolmogorov–
Riesz theorem, this sequence is relatively compact in Lq(QT ), where
q > max{2, p−}. Since the sequence {uε}ε>0 is uniformly bounded in
L∞(QT ), it is relatively compact in Lq(QT ) for any q ∈ [1,+∞).

Remark 2. The relative compactness property (25) and Theorem 1
yield that assertion 1 of Theorem 2 holds true.

4.2. Rescaling and shift. Let us fulfill some preliminary considera-
tions before we pass to limit as ε→ 0+. We write out equality (6) in the
unfolded form:

〈
∂tuε, ζ

〉
W′(Ω×(0,τ−ε)),W(Ω×(0,τ−ε)) +

τ−ε∫
0

∫
Ω

|∇xuε|p(x)−2∇xuε · ∇xζ dxdt+

+
〈
∂tuε,ζ

〉
W′(Ω×(τ−ε,τ)),W(Ω×(τ−ε,τ))

+

+

τ∫
τ−ε

∫
Ω

(
|∇xuε|p(x)−2∇xuε · ∇xζ −

2

ε
K

(
t− τ
ε

)
β(x, uε)ζ

)
dxdt+

+
〈
∂tuε,ζ

〉
W′(Ω×(τ,T )),W(Ω×(τ,T ))

+

+

T∫
τ

∫
Ω

|∇xuε|p(x)−2∇xuε · ∇xζ dxdt = 0. (26)

We change the independent variable t and the sought variable uε on
the segments {0 < t < τ − ε} and {τ − ε 6 t 6 τ} as follows:

For t ∈ (0, τ − ε), we take t̃ := t+ ε, ũε(x, t̃) := uε(x, t) ≡ uε(x, t̃− ε).
Note that t̃ ∈ (ε, τ), dt = dt̃, ∂t = ∂t̃, and t = t̃− ε.

Following the idea of rescaling from [17], we take t̄ := t−τ
ε
,

ūε(x, t̄) := uε(x, t) ≡ uε(x, τ + εt̄) for t ∈ [τ − ε,τ ]. Note that t̃ ∈ [−1, 0],
dt = εdt̄, ∂t = 1

ε
∂t̄, and t = τ + εt̄.

Thus, (26) takes the form〈
∂t̃ũε(x, t̃), ζ(x, t̃− ε)

〉
W′(Ω×(ε,τ)),W(Ω×(ε,τ))

+

+

τ∫
ε

∫
Ω

|∇xũε(x, t̃)|p(x)−2∇xũε(x, t̃) · ∇xζ(x, t̃− ε) dxdt̃+
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+
〈
∂t̄ ūε(x,t̄),ζ(x, τ + εt̄)

〉
W′(Ω×(−1,0)),W(Ω×(−1,0))

+

+

0∫
−1

∫
Ω

(
ε|∇xūε(x, t̄)|p(x)−2∇xūε(x,t̄) · ∇xζ(x, τ + εt̄)−

− 2K(t̄)β(x, ūε(x, t̄)) ζ(x, τ + εt̄)
)
dxdt̄+

+
〈
∂tuε(x, t), ζ(x, t)

〉
W′(Ω×(τ,T )),W(Ω×(τ,T ))

+

+

T∫
τ

∫
Ω

|∇xuε(x, t)|p(x)−2∇xuε(x, t) · ∇xζ(x, t) dxdt = 0. (27)

We apply the formula of integration by parts [5, Section 1.5, Lemma
1.20] in t̃, t̄ and t in the respective integrals and rewrite (27) in the equiv-
alent form:∫

Ω

(
ũε(x, τ − 0) ζ(x, τ − ε)− u0(x) ζ(x, 0)

)
dx+

+

τ∫
ε

∫
Ω

(
−ũε(x, t̃) ∂t̃ ζ(x, t̃− ε)+

+ |∇xũε(x, t̃)|p(x)−2∇xũε(x, t̃) · ∇xζ(x, t̃− ε)
)
dxdt̃+

+

∫
Ω

(
ūε(x, 0−) ζ(x,τ)− ūε(x,−1 + 0) ζ(x, τ − ε)

)
dx+

+

0∫
−1

∫
Ω

(
−ūε(x, t̄)∂t̄ζ(x, τ + εt̄)− 2K(t̄)β(x, ūε(x, t̄))ζ(x,τ + εt̄)+

+ ε|∇xūε(x, t̄)|p(x)−2∇xūε(x, t̄) · ∇xζ(x, τ + εt̄)
)
dxdt̄+

+

∫
Ω

(
uε(x, T )ζ(x, T )− uε(x, τ + 0)ζ(x,τ)

)
dx+

+

T∫
τ

∫
Ω

(
−uε(x, t)∂tζ(x, t)+

+ |∇xuε(x, t)|p(x)−2∇xuε(x, t) · ∇xζ(x, t)
)
dxdt = 0. (28)
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In (28) we notice that ũε(x, ε) = uε(x, 0)
(1)2
= u0(x) (x ∈ Ω).

Remark 3. Also, rigorously speaking, in (28) we assume that ∂t̃ ζ, ∂t̄ ζ,
and ∂tζ are integrable, which is a more restrictive requirement than ζ ∈ Z,
as in Definition 1. Note that the case when ζ merely belongs to Z is also
admissible, but at the same time we should write〈

∂t̃ζ(x, t̃− ε),−ũε(x, t̃)
〉
W′(Ω×(ε,τ)),W(Ω×(ε,τ))

instead of
τ∫
ε

∫
Ω

(
−ũε(x, t̃) ∂t̃ζ(x, t̃− ε)

)
dxdt̃, and so on.

Keeping in mind the further limiting passage as ε → 0+, in (28) we
take the test function ζ depending of ε in the following form:

ζ = ζε(x, t) =


ζ̃(x, t̃) ≡ ζ̃(x, t+ ε) for t ∈ [0, τ − ε),

i. e., for t̃ ∈ [ε, τ);
ζ̄(x, t̄) ≡ ζ̄

(
x, t−τ

ε

)
for t ∈ [τ − ε, τ ],
i. e., for t̄ ∈ [−1, 0];

ζ(x, t) for t ∈ (τ, T ],

(29)

where ζ̃ = ζ̃(x, t̃) is an arbitrary smooth test function defined on Ω×[0, τ ],
ζ̄ = ζ̄(x, t̄) is an arbitrary smooth test function defined on Ω × [−1, 0],
ζ = ζ(x, t) is an arbitrary smooth test function defined on Ω× [τ, T ], and
the matching conditions

ζ̃(x, τ − 0) = ζ̄(x,−1 + 0), ζ̄(x,0−) = ζ(x, τ + 0)

hold. Inserting the test function (29) into (28), we get∫
Ω

(
ũε(x, τ − 0)ζ̃(x, τ − 0)− u0(x)ζ̃(x, ε)

)
dx+

+

τ∫
ε

∫
Ω

(
−ũε(x, t̃)∂t̃ζ̃(x, t̃)+

+ |∇xũε(x, t̃)|p(x)−2∇xũε(x, t̃) · ∇xζ̃(x, t̃)
)
dxdt̃+

+

∫
Ω

(
ūε(x, 0−)ζ̄(x, 0−)− ūε(x,−1 + 0)ζ̄(x,−1 + 0)

)
dx+
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+

0∫
−1

∫
Ω

(
−ūε(x, t̄) ∂t̄ ζ̄(x, t̄)− 2K(t̄)β(x, ūε(x, t̄)) ζ̄(x,t̄)

+ ε|∇xūε(x, t̄)|p(x)−2∇xūε(x,t̄) · ∇xζ̄(x, t̄)
)
dxdt̄+

+

∫
Ω

(
uε(x, T )ζ(x, T )− uε(x, τ + 0)ζ(x, τ + 0)

)
dx+

+

T∫
τ

∫
Ω

(
−uε(x, t)∂tζ(x, t)+

+ |∇xuε(x, t)|p(x)−2∇xuε(x,t) · ∇xζ(x, t)
)
dxdt = 0. (30)

The rest of the proof of Theorem 2 is based on a systematical study of
this integral equality.

4.3. The equality of traces. At first, note that we have, for every
fixed ε > 0:

ũε ∈W(Ω× (ε, τ)), ūε ∈W(Ω× (−1, 0)), uε ∈W(Ω× (τ, T )),

∂t̃ ũε ∈W′(Ω× (ε, τ)), ∂t̄ ūε ∈W′(Ω× (−1, 0)), ∂tuε ∈W′(Ω× (τ, T ))

since uε ∈W(QT ) and ∂tuε ∈W′(QT ), due to Theorem 1.
Therefore, ũε ∈ C([ε, τ ];L2(Ω)), ūε ∈ C([−1, 0];L2(Ω)), and

uε ∈ C([τ, T ];L2(Ω)) due to the well-known embedding theorem [16, Ch. 3,
Lemma 1.2]. Hence, there exist the strong (in L2(Ω)) traces ũε(·, τ − 0),
ūε(·,−1 + 0), ūε(·, 0−), and uε(·, τ + 0) in Ω. Moreover, the following
matching property holds true for these traces:

Lemma 2. The equalities

ũε(x, τ − 0) = ūε(x,−1 + 0), ūε(x, 0−) = uε(x, τ + 0) (31)

are valid for a. e. x ∈ Ω for every ε > 0.

Proof. Due to Remark 1, we have uε(x, τ−ε−0) = uε(x, τ−ε+0), which
is equivalent to (31)1, and uε(x, τ − 0) = uε(x, τ + 0), which is equivalent
to (31)2. Lemma 2 is proved. �

4.4. Passing to limit in Ω× {τ < t < T}. In (30), let us take
ζ̃ ≡ 0, ζ̄ ≡ 0 and an arbitrary ζ = ζ(x, t), such that ζ is smooth and
supported in (τ, T ). Thus, we get the integral equality
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T∫
τ

∫
Ω

(
−uε(x, t) ∂tζ(x, t)+

+ |∇xuε(x, t)|p(x)−2∇xuε(x, t) · ∇xζ(x, t)
)
dxdt = 0. (32)

Due to Theorem 1 and the relative compactness property (25), we
pass to the limit in (32) as ε → 0+, using monotonicity of the operator
ξ 7→ |ξ|p(x)−2ξ as in [5, Section 4.2, Lemma 4.6] and choosing a proper
subsequence from {uε}ε>0, if necessary; and thus we arrive at the integral
equality

T∫
τ

∫
Ω

(
−u(x, t)∂tζ(x, t) + |∇xu(x, t)|p(x)−2∇xu(x, t) · ∇xζ(x, t)

)
dxdt = 0.

(33)

4.5. Passing to limit in Ω× {0 < t̃ < τ}. Now take ζ ≡ 0, ζ̄ ≡ 0
and an arbitrary smooth ζ̃ = ζ̃(x, t̃) vanishing on the section {t̃ = τ} in
(30). Thus, we get the integral equality

−
∫
Ω

u0(x)ζ̃(x, ε) dx+

τ∫
0

∫
Ω

1(ε<t̃<τ)

(
−ũε(x, t̃) ∂t̃ ζ̃(x, t̃)+

+ |∇xũε(x, t̃)|p(x)−2∇xũε(x, t̃) · ∇xζ̃(x, t̃)
)
dxdt̃ = 0.

We pass to the limit in this integral equality as ε → 0+, using the
same arguments as in Section 4.4. Thus, we get

−
∫
Ω

u0(x)ζ̃(x, 0) dx+

τ∫
0

∫
Ω

(
−ũ(x, t̃) ∂t̃ ζ̃(x, t̃)+

+ |∇xũ(x, t̃)|p(x)−2∇xũ(x, t̃) · ∇xζ̃(x, t̃)
)
dxdt̃ = 0,

(34)

choosing a proper subsequence from {ũε}ε>0, if necessary.
Furthermore, since ũε(x, t̃) = uε(x, t̃ − ε) (for t ∈ (0, τ − ε)) and the

equi-continuity properties (23) and (19) hold, we deduce that

ũ(x, t̃) = u(x, t̃) for a.e. (x, t̃) ∈ Ω× (0, τ),

where u = u(x, t) is the strong limit of the subsequence {uε}ε→0+, which
exists due to the relative compactness property (25).
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Thus, redenoting additionally t̃ := t, we simply write out (34) in the
form

−
∫
Ω

u0(x) ζ̃(x, 0) dx+

τ∫
0

∫
Ω

(
−u(x, t) ∂tζ̃(x, t)+

+ |∇xu(x, t)|p(x)−2∇xu(x, t) · ∇xζ̃(x, t)
)
dxdt = 0.

(35)

Since u = u(x, t) is the limiting point of {uε}ε>0, we have

u ∈W(Ω× (0,τ)), ∂tu ∈W′(Ω× (0, τ)).

Therefore,
u ∈ C([0, τ ];L2(Ω)). (36)

The latter means, in particular, that there exist strong traces u(·, 0+)
and u(·, τ − 0). By a standard procedure (see, for example, [16, Ch. 3,
Sec. 1.3]) we deduce that u(x, 0) = u0(x).

Besides, since suppKτ
ε ⊂ {τ−ε 6 t 6 τ}, we see that uε(x, t) = u(x, t)

for t 6 τ − ε. From this and (36) it follows that

‖ũε(·, τ − 0)− ũ(·, τ − 0)‖L2(Ω) ≡ ‖u(·, τ − ε)− u(·, τ − 0)‖L2(Ω) −→
ε→0+

0,

which means that

ũε(·, τ − 0) −→
ε→0+

u(·, τ − 0) strongly in L2(Ω). (37)

4.6. Passing to limit in Ω× {−1 < t̄ < 0}. The shock layer
equation. At first, let us make the following note.

Remark 4. Relations (31)1 and (37) imply that

ūε(·,−1 + 0) −→
ε→0+

u(·, τ − 0) strongly in L2(Ω).

Further, take ζ̃ ≡ 0, ζ ≡ 0 and an arbitrary smooth ζ̄ = ζ̄(x, t̄)
supported inside Ω× {−1 < t̄ < 0} in (30). Thus we get

0∫
−1

∫
Ω

(
−ūε(x, t̄) ∂t̄ ζ̄(x, t̄) + ε|∇xūε(x, t̄)|p(x)−2∇xūε(x, t̄) · ∇xζ̄(x, t̄)−

− 2K(t̄)β(x, ūε(x, t̄))ζ̄(x, t̄)
)
dxdt̄ = 0.
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By the standard reasoning, we conclude that this integral equality is
equivalent in the sense of distributions to the equation

∂t̄ ūε − 2K(t̄)β(x, ūε) = ε divx
(
|∇xūε|p(x)−2∇xūε

)
, (x, t̄) ∈ Ω× (−1, 0).

(38)
This equation is supplemented by the initial condition

ūε|t̄=−1 = ũε(·,τ − 0)

(i. e., relation (31)1) and the homogeneous boundary condition ūε|∂Ω = 0.
Due to this condition and the finiteness condition (4), we can extend ūε to
the whole space Rd

x by zero and say that ūε is the solution of the Cauchy
problem (31)1 and (38) in the space-time layer Rd

x × (−1, 0). We identify
this Cauchy problem as the parabolic approximation of the semilinear
transport equation with zero flux term:

∂t̄ū− 2K(t̄)β(x, ū) = 0. (39)

Due to the theory of kinetic formulations of conservation laws, the follow-
ing assertions hold true:

Lemma 3. There exist a subsequence from {ūε}ε>0 (still denoted by
{ūε}ε>0) and a limiting function ū ∈ L∞(Rd

x × (−1, 0)), such that

1) ūε −→
ε→0+

ū strongly in L2(Ω× (−1, 0)),

2) ū vanishes in (Rd
x\Ω)× [−1, 0],

3) ū is an entropy solution of the Cauchy problem for equation (39) in
Ω× (−1, 0) with initial data

ū|t̄=−1 = u(·,τ − 0), x ∈ Ω. (40)

The notion of entropy solution to the problem (39), (40) is standard.
Namely, we say that ū = ū(x, t̄) is an entropy solution to the problem
(39), (40) if it belongs to L∞(Ω×(−1, 0)) and satisfies the integral entropy
inequality

0∫
−1

∫
Ω

(
φ(ū) ∂t̄ ζ̄ + 2K(t̄)φ′(ū)β(x, ū)ζ̄

)
dxdt̄+

+

∫
Ω

φ(u(x, τ − 0))ζ̄(x,− 1) dx > 0 (41)



The Shock Layer Arising as the Source Term Collapses 49

for all nonnegative smooth functions ζ̄ = ζ̄(x, t̄) vanishing in the neighbor-
hood of ∂Ω and the section {t̄ = 0} and for all smooth convex functions
φ = φ(w), w ∈ R.

In particular, (41) and inclusion ū ∈ L∞(Ω× (−1, 0)) yield

∂t̄ū ∈ L∞(Ω× (−1, 0)) (42)

and ū is, in fact, the strong generalized solution of the problem (39), (40).

Proof of Lemma 3 is achieved by the method of kinetic equation, fol-
lowing the proof in either [12, Ch. 3] or [13] (or [14], which is the closest
consideration with regard to our present case), with some necessary modi-
fications. These modifications are quite minor and, therefore, we omit the
details. �

4.7. Completion of the proof of Theorem 2. Assertion 1 of
Theorem 2 has already been proved in Section 4.1, see Remark 2.

Due to Lemma 3, we conclude that assertion 2 of Theorem 2 holds true
and that the limiting function ū serves as a strong solution of equation
(14b) in Ω× (−1, 0) and satisfies the matching condition (14e)1.

Integral equalities (33) and (35) imply that the limiting function u
serves as a weak (energy) solution of equation (14a) in Ω×((0, τ)∪(τ, T )).
Also, we have established in Section 4.5 that u satisfies the initial condition
(14d). Inclusion u ∈ W(QT ) implies that the homogeneous condition
(14c) holds.

In order to complete the proof of assertion 3 of Theorem 2, it remains
to deduce (14e)2. Similarly to [13, proof of Lemma 11], we prove that

ūε(·,0−) −→
ε→0+

ū(·,0−) strongly in W−s,2(Ω), (43)

where s > sd =
[
d
2

]
+ 5

2
and ū(·,0−) is the trace of ū on the section {t̄ = 0}.

This trace is understood in the strong sense, since the derivative ∂t̄ū is
bounded due to (42). In turn, relations (31)2 and (43) yield that

uε(·,τ + 0) −→
ε→0+

u(·,τ + 0) = ū(·,0−) strongly in W−s,2(Ω).

Here u(·,τ+0) is the trace of u on the section {t = τ+0}. This trace is
understood in the strong sense as well, since u ∈ C([τ, T ];L2(Ω)). Thus,
the matching condition (14e)2 holds a. e. in Ω; this completes the proof of
assertion 3.
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In order to prove assertion 4, i. e., the uniqueness result, we notice
that problem (14) is, in fact, a sequence of three problems that should be
solved successively. On the first step, the system (14a), (14c), and (14d)
should be solved for the sought function u in Ω × (0, τ). The solution
of this problem exists and is unique due to the well-known theory of the
homogeneous p(x)-Laplacian equation, see [2, Theorems 1 and 2].

On the second step, the system (14b) and (14e)1 provided with the
initial data ū|t̄=−1 = u(x, τ − 0) should be solved for the sought function
t̄ 7→ ū(x, t̄) on [−1, 0]. The variable x ∈ Ω plays the role of a parameter in
this formulation, and the initial function u(·,τ − 0) is defined on the first
step. Due to the classical theory of the first-order ordinary differential
equations [10, Ch. 1, Sec. 1.7, Theorems 1 and 2], this problem has a
unique solution for a.e. x ∈ Ω, since K and β are smooth functions.

On the third (final) step, the system (14a), (14c), and (14e)2 provided
with the initial data u|t=τ = ū(x,0−) should be solved for the sought
function u in Ω × (τ, T ). The initial function ū(·, 0−) is defined on the
second step. The solution of this problem exists and is unique due to the
same arguments, as on the first step.

Thus, the solution of problem (14) is unique. This conclusion com-
pletes justification of Theorem 2.

5. Concluding remarks. Due to the uniqueness assertion of The-
orem 2, i. e., assertion 4, we conclude that the whole family {uε}ε>0

of solutions to problem (1) converges to the generalized solution of the
system (14) as ε→ 0+.

Further, from the system (14) it is clear that its solution u = lim
ε→0+

uε

does not meet the standard impulsive condition (8). Actually, u satisfies
(8) only in the cases when β is independent of u, i. e., β(x, u) ≡ β(x).
In particular, even in the cases when β is linear in u, the problem (1) as
ε→ +0 yields another impulsive condition than (8), which resembles the
simple example exposed in Introduction.

Finally, let us notice that, due to the existing theory of anisotropic
parabolic equations with non-standard growth [5, Ch. 4], all arguments
in this article can be naturally adapted for the study of the anisotropic
p(x)-Laplacian equation with the minor term collapsing as ε→ 0+:

∂tuε =
d∑
i=1

∂xi
(
|∂xiuε|pi(x)−2 ∂xiuε

)
+Kτ

ε (t)β(x, uε), (x, t) ∈ QT .

Correspondingly, the results, similar to Theorems 1 and 2, are valid for
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this equation.
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