
us)
Integration of Handheld Computers
into Distributed Database Systems

by
Alexandre J. Lee

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering
and

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
May 15, 1998

Copyright 1998 Alexandre J. Lee. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Elecfcal Lngineerin-andlComputer Science

May 15, 1998

Certified by

Certified by

Softw

Accepted by
MASSACHUSETTS INSTITUTE

OF T!Fr!
4 NO) Orn'Y

Chairma
JUL 141998

Yj tmnft8,K'ashoek,' ThesisSupervisor
MIT EECS Associate Professor

Quinton Zondervan, Thesis Supervisor
are Architect, Lotus Development Corporation

Arthur C. Sm'*th
n, Department Committee on Graduate Theses

LIBRARIES

Eng

Integration of Handheld Computers
into Distributed Database Systems

by
Alexandre Lee

Submitted to the
Department of Electrical Engineering and Computer Science

Abstract

This thesis investigates the integration of handheld computers in a distributed database
system by examining the issues in the context of a Lotus Notes network. For the purpose
of this thesis, a handheld computer consists of any electronic device small enough to fit in
the palm of a hand and with minimal computing power, data storage capability, and
ability to connect to other computers. This thesis examines the issues in designing a
system which allows existing handheld devices to remotely access and edit data stored in
Lotus Notes databases, without introducing conflicts in the existing database replication
mechanism and without compromising Notes' security model. One of the motivations
for this research comes from the desire to establish a framework which will enable the
various existing handheld devices with different architectures to communicate with
central distributed database systems such as Lotus Notes. In order to evaluate the
framework proposed by this thesis, a prototype was built which allows Lotus Notes users
to access and manipulate their electronic mail with 3Com's PalmPilot. Although only
parts of the proposed framework were implemented in the prototype, feedback from users
support the importance of the synchronization issues addressed by this thesis.

Thesis Supervisor: Frans Kaashoek
Title: Associate Professor, MIT Department of Electrical Engineering and Computer
Science

Thesis Supervisor: Quinton Zondervan
Title: Software Architect, Lotus Development Corporation

Acknowledgments

This thesis has been the result of not only my work, but also the help of a number of
people who have supported me in various ways throughout the process.

I want to thank both of my thesis supervisors, Professor Frans Kaashoek and Quinton
Zondervan. I thank Professor Kaashoek for agreeing to supervise this thesis despite the
late notice, and for helping me in making sure that this thesis had all the required
elements. I thank Quinton Zondervan for the countless hours he spent while helping me
in the design, implementation and thesis revision process. His patience, guidance and
support have contributed greatly to this thesis.

Most of the work in this thesis was done with the Workgroup Technologies and the
Organizer Trident teams at Lotus. I thank everyone in both teams for the truly enjoyable
work experience I had, even during the long hours before project deadlines. My special
thanks goes to Candy Sidner for taking care of all the VI-A administrative details, to
Daniel Gruen for getting me involved with the project in the beginning, to Steve Wells
for being a major driving force behind the commercialization of this thesis' prototype,
and to Rodolfo Fernandez for carrying on the work with EasySync.

I thank all my dear friends for helping me keep my sanity while working on this thesis.
Finally, I cannot find words capable of expressing my gratitude to God, my parents and
siblings, whose continuous love, support and understanding have given me the courage
and strength to endure even the hardest of times.

Contents
1. INTRODUCTION ... 6

1.1. THE RISING POPULARITY OF HANDHELD DEVICES ... 6

1.2. PROBLEM STATEMENT AND THESIS SOLUTION 8

2. RELATED W ORK 11

3. DEVELOPMENT ENVIRONMENT ... 14

3.1. HANDHELD DEVICE: 3COM'S PALMPILOT 14

3.2. DISTRIBUTED DATABASE SYSTEM: LOTUS NOTES ... 17

4. DATA SYNCHRONIZATION FRAMEWORK ... 19

4.1. SELECTION OF SYNCHRONIZATION DATA SET 20

4.2. D ATA C ONVERSION ... 22

4.3. PRESERVING DATA COHERENCE BETWEEN PALMPILOT AND NOTES DURING SYNCHRONIZATION WITH

M ULTIPLE REPLICAS 24

4.3.1 Synchronization with a Single Database............................... 24
4.3.1.1 Mapping PalmPilot Records to Notes Documents with an Id Mapping Table (IMT) 25
4.3.1.2 Storing the IM T ... 26
4.3.1.3 Algorithm for Single Database Synchronization... 27

4.3.2 Synchronization with Multiple Database Replicas 30

4.3.2.1 Synchronizing with multiple identical replicas with updated IMTs .. 31
4.3.2.2 Using the Delta Table (dT) to relax replication requirement 34
4.3.2.3 Using the Replica ID Table (RIT) together with the dT to prune the dT 35
4.3.2.4 Algorithm for Synchronization with Multiple Database Replicas .. 37
4.3.2.5 Sample Scenario for synchronization with multiple replicas 40

4.4. CONFLICT RESOLUTION ... 45

4.4.1 Update/Update Conflicts... 45

4.4.2 Update/Update Conflicts with Multiple Replica Synchronization 47

4.4.3 Remove/Update Conflicts ... 49

5. AUTHENTICATION OF PALMPILOT DURING SYNCHRONIZATION 51

5.1. LOTUS NOTES SECURITY.. 52

5.2. PROVIDING REMOTE HANDHELD ACCESS WITHOUT COMPROMISING NOTES SECURITY........................ 52

6. CASE STUDY: LOTUS NOTES MAIL SYNCHRONIZATION CONDUIT................... 55

6.1. DESIGN GOALS................ 56

6.2. EARLY PROTOTYPE................. 58

6.3. TRANSITIONING FROM RESEARCH PROTOTYPE TO COMMERCIAL PRODUCT 61

6.4. ADDITIONAL FEATURES FOR FUTURE VERSIONS OF MAIL CONDUIT... 63

7. EVALUATION .. 66

7.1. NOTES MAIL CONDUIT USABILITY TEST RESULTS 66

7.2. ASSESSMENT OF THE OVERALL SYNCHRONIZATION FRAMEWORK AND FUTURE WORK........................ 69

8. CONCLUSION .. 72

APPENDIX A - SOURCE CODE FOR NOTES MAIL CONDUIT PROTOTYPE 74

APPENDIX B - SOURCE CODE FOR PALMPILOT APPLICATION FOR NOTES PASSWORD

ENTRY .. 96

APPENDIX C - NOTES MAIL CONDUIT USER SURVEY 112

List of Tables and Figures

FIGURE 1.1 HANDHELD M ARKET7

FIGURE 3.1 OVERVIEW OF THE PALMPILOT SYNCHRONIZATION MECHANISM 16

TABLE 3.1 LIST OF POSSIBLE HANDHELD DEVICES FOR THE PROPOSED FRAMEWORK 17
FIGURE 4.1 SAMPLE SCENARIO ILLUSTRATING SINGLE REPLICA SYNCHRONIZATION 29
FIGURE 4.2 PSEUDOCODE FOR SINGLE REPLICA SYNCHRONIZATION 30
FIGURE 4.3 INITIAL STATE FOR MULTIPLE SYNCHRONIZATION SCENARIO 31
FIGURE 4.4 SCENARIO ILLUSTRATING THE POTENTIAL PROBLEMS OF MULTIPLE REPLICA

SYNCHRONIZATION. NOTE THE CREATION OF DUPLICATES AT STAGE (E). 33
FIGURE 4.5 COMPONENTS OF THE COMPLETE FRAMEWORK SUPPORTING MULTIPLE REPLICA

SYNCHRONIZATION ... 35
FIGURE 4.6 PSEUDOCODE FOR MULTIPLE REPLICA SYNCHRONIZATION (CONTINUED IN

FOLLOWING PAGE) .. 38

FIGURE 4.7 INITIAL STATE OF MULTIPLE REPLICA SYNCHRONIZATION SAMPLE SCENARIO..41

FIGURE 4.8 STATE OF TABLES AFTER SYNCHRONIZING WITH SERVER REPLICA 42
FIGURE 4.9 STATE OF TABLES AFTER SYNCHRONIZING WITH LOCAL REPLICA 43
FIGURE 4.10 STATE OF TABLES AFTER SYNCHRONIZING WITH SERVER REPLICA AGAIN.....44

FIGURE 4.11 FINAL STATE OF ALL TABLES 44
FIGURE 6.1 MAIN CONFIGURATION SETUP WINDOW FOR NOTES MAIL CONDUIT. 59

FIGURE 6.2 PALMPILOT APPLICATION USED TO ENTER NOTES PASSWORD 61

FIGURE 6.3 EASYSYNC 2.0 MAIL CONDUIT OPTIONS .. 63
FIGURE 7.1 AVERAGE SIZE OF MESSAGES IN PALMPILOT...67

FIGURE 7.2 AVERAGE NUMBER OF MESSAGES TRANSFERRED TO AND SENT FROM THE

PA LM PILO T ... 67

TABLE 7.1 PERCENTAGE OF USERS WHO USED EACH OF THE SYNCHRONIZATION OPTIONS. 68

TABLE 7.2 PREFERRED INBOX SELECTION METHOD FOR USERS WHO SYNCHRONIZED THEIR

N OTES INBOX ... 68

1. Introduction

Since the introduction of the very first computers, such as the ENIAC which occupied the

space of an entire room in the 1940's', technology has continuously brought us smaller

and faster computers over the years. From the ENIAC, to the mainframes of the 1960's,

to the microcomputers of the 1970's, to the personal computers of the 1980's, to the

notebook computers of the 1990's, we have reached a stage where popular devices with

respectable computing power can now fit in the palm of our hands. There are many

interpretations for the definition for such handheld devices, and we will choose to define

them as follows: a handheld device is a machine with enough computing power to run

different applications and process information using a form factor which must be small

enough to fit in users' hands and versatile enough to allow users to view and enter data.

Currently, many devices fall under this category, including PDAs (Personal Digital

Assistants), HPCs (Handheld Personal Computers), two-way pagers, and smart cellular

phones.

1.1. The rising popularity of handheld devices

Since the first handheld devices were introduced in the 1980's, such as Apple's Newton,

the demand for them remained relatively stagnant and small until the past few years. The

market for handheld devices is expected to grow tremendously over the next several

years. A recent study by International Data Corporation estimates that the number of

handheld devices sold will grow by over sixty percent in the next year, from 5.1 million

units in 1997 to 8.2 million in 19982 (Figure 1.1). Such growth comes partly from

significant improvement in the technology, which has brought smaller electronic devices

with increasing amounts of memory, faster processing power, better connectivity, and

better means of entering and viewing data. These improvements have greatly expanded

the functionality of handheld devices, enabling users to accomplish from simple tasks

such as calendar management to more involved tasks such as manipulating corporate

inventory databases.

Figure 1.1 Handheld Market

Furthermore, the handheld market has been shifting away from the traditional vertical

application paradigm, where each device type was designed for a specific function, be it

medical patient tracking or simple personal organization. Recent devices have been built

on platforms which are open to the development of any type of applications. Apple's

Newton pioneered this approach in the 1980's, and Microsoft's Windows CE and

3Com's PalmPilot Palm OS have since followed. This trend towards open systems has

fueled the development of a wide variety of handheld applications, and with the recent

addition of network support in these platforms, handheld devices have become an

effective tool for sharing and manipulating data which may reside in the network or in

other handheld devices.

These improvements in handheld technology have generated an increasing demand for

access to corporate information from these devices. Many companies are beginning to

exploit such portable connectivity by allowing their mobile workers to directly

manipulate data in central databases while they are out on the road. For example,

Noblestar Systems Corporation, in Falls Church, Va., has custom developed solutions for

companies such as Wal-Mart Stores Inc. and Levi Strauss & Co. which will allow the

employees at these companies to dial in to corporate servers and access information using

their 3Com PalmPilots 3. Furthermore, a growing number of Lotus Notes users have

indicated their need to integrate their handheld devices with the existing network of

information residing in Lotus Notes servers, including PIM, email, inventory and project

management data.

1.2. Problem Statement and Thesis Solution

The improvements in handheld technology and the increase in demand have created a

new challenge of enabling heterogeneous handheld devices to access and manipulate

information residing in central servers. Currently, the technology to be constantly

connected to the network from handheld devices, such as 3Com's PalmPilot, still remains

limited and costly. Wireless technologies such as CDPD modems and radio packet

networks provide constant connection, but not without reliability problems and high cost.

In the meantime, while wireless technologies mature, one potentially low cost solution

available today for manipulating central server data from handheld devices is to

download portions of the actual data set directly into the handheld. The latter then

becomes a small portable cache of data that mobile workers can manipulate from

anywhere while temporarily disconnected from the network.

The model of allowing handheld devices to obtain and manipulate a local cache of data

has the advantages of increasing data availability and reliability for the user. However,

such advantages come with the complexities of synchronizing data between a handheld

device and a central server, both of which will most likely have completely different

operating systems and data storage models. Some of the critical synchronization issues

which must be addressed include:

* Selecting the appropriate data set to be transferred to the handheld from the server

* Converting the data between the handheld and server data formats

* Maintaining an updated mapping between the records in the handheld and their

corresponding documents in the server

* Preventing data loss from simultaneous updates to the same document on the

handheld and server

* Providing secure access to the server from handheld device

The goal of this project was to develop a framework which addresses the synchronization

issues mentioned above while allowing any handheld application to securely access and

manipulate data in a distributed database system, despite handheld memory limitations,

intermittent connectivity and platform differences. Furthermore, such a framework

should work without the need to rewrite the applications residing in the handheld device.

Avoiding the redesigning of existing handheld applications becomes important as an

increasing number of heterogeneous handheld devices enter the market. Part of our goal

is to provide a framework that supports the synchronization of a wide range of handheld

devices with a distributed database system. It is more efficient to utilize a general

synchronization framework that easily extends to support existing applications in many

new handheld devices than it is to rewrite every application in these different devices.

While the framework presented in this thesis has not been entirely implemented, parts of

it were used to build a prototype which allows Lotus Notes users to manipulate their

electronic mail from a PalmPilot. This prototype also became the foundation for a

commercial version which is currently in the market.

The rest of this thesis is structured as follows. Chapter 2 presents some previous related

work. Chapter 3 describes the development environment used for prototyping and design

purposes in this project. Chapter 4 describes the requirements for a synchronization

framework between a handheld and a distributed database system in the context of

synchronizing a 3Com PalmPilot with Lotus Notes. Chapter 5 addresses some of the

security issues of accessing a secure system like Lotus Notes from a handheld device.

Note that this thesis project only aims to explain the need for improving the security of

handheld access to secure databases. While a simple and more secure authentication

mechanism was implemented for the prototype, the rigorous analysis of the validity of

better authentication and encryption mechanisms goes beyond the scope of this project.

Chapter 6 shows the application of the concepts explained in prior chapters by describing

the implementation of a system that allows Lotus Notes users to access and manipulate

their email from a PalmPilot. Chapter 7 presents some of the results and lessons learned

from the prototypes, and possible future directions. Chapter 8 concludes with an

assessment of the project.

2. Related Work

The problem of accessing and manipulating data in a distributed system from a mobile

environment has been extensively explored in the research community. The Coda4

project was one of the earlier works which addressed the issue of manipulating

distributed data from disconnected clients. One of the design requirements of the Coda

project consisted of providing the highest possible availability of data to disconnected

clients. This requirement led them to choose an optimistic concurrency control approach,

which provides higher data availability by allowing reads and writes everywhere while

dealing with the potential conflicts by detecting and resolving them after their

occurrence. Furthermore, Coda also improves data availability by pre-caching data while

the mobile client is connected to the network. The challenge consists of caching a set of

data that the user will actually find useful while disconnected, and Coda accomplishes

this via implicit information such as recent reference history, and explicit information

such as files containing a list of useful objects that the user identified.

Like Coda, this thesis' approach to handheld data synchronization adopts an optimistic

concurrency control for disconnected data manipulation, while relying on user assistance

for cache management during disconnected operation. This approach works well since

the user will probably always be the best judge for what objects are needed while

disconnected. However, Coda is designed to allow disconnected operation between

mobile clients and permanent servers that share the same type of objects, mainly files.

Such files are stored and manipulated in the same manner in both client and server, and

therefore there is no need for data conversion. The nature of the problem addressed by

this thesis is different, since the stated goal consists of enabling data sharing between

mobile clients and distributed database systems with completely heterogeneous data

storage models. Therefore, the proposed synchronization framework presented in this

thesis must solve additional problems such as data conversion and data correspondence

between heterogeneous systems.

The Ficus 5 project, conducted at UCLA, is also very similar to Coda, since both aim to

provide data availability to disconnected clients in a replicated file system. Both systems

adopt an optimistic concurrency control to provide the highest availability possible, and

Ficus deals with potential conflicts through conflict resolver programs, which are

triggered according to the type of the conflicting file. These resolver programs give the

user total control over how conflicts are resolved. Like Coda, Ficus does not address data

conversion issues, since both assume that the clients and servers are all using a

homogeneous file system.

The Bayou 6 project conducted at Xerox Palo Alto Research Center, is closely related to

the work presented in this thesis since it also focuses on providing data availability for

mobile clients with expensive connection time and frequent disconnection time. Unlike

previous projects like Coda and Ficus which provided transparent replicated data support

for disconnected clients, Bayou takes a mobile-aware approach, where applications

running on the mobile clients take an active role in detecting and resolving potential

conflicts. In order to support application-specific conflict detection and resolution, each

Bayou application includes a custom dependency check and merge procedure for every

write operation, and such write operations are eventually propagated to every server via

pair-wise replication. Another related work, the Rover Toolkit7 done at MIT, also aims

to provide a more general mobile-aware application programming interface, which

addresses the issues of mobile communication and concurrency through relocatable

dynamic objects and queued remote procedure call logs.

Much like Bayou, the proposed framework in this thesis also aims to provide application-

specific conflict detection and resolution, since the wide range of different applications

warrant different ways to handle conflicts. However, Bayou's mobile-aware approach

requires the client application to be modified to support a new form of write operation

that includes dependency checks and merge procedures. Also, the server replication

mechanism must be modified to support the anti-entropy sessions used to propagate and

commit write operations. This thesis' approach for designing a mobile synchronization

framework differs from Bayou's because it is particularly concerned with allowing the

applications in the handheld to remain unmodified. Ideally, the framework should allow

any existing handheld application to integrate into an existing distributed database

system.

Unlike these previous systems, the proposed framework does not attempt to solve the

general problem of mobile computing. Instead, this thesis project focuses mainly on

mobile data synchronization with the following specific constraints:

* The mobile clients involved are small handheld devices with limited network

connectivity, memory and processing power

* The mobile clients only connect to the network to exchange data, instead of

working directly with the data residing in servers

* The mobile clients have a different and typically more limited storage model than

the network servers

* The native applications in the clients should not have to be modified

3. Development Environment

This chapter describes the development platforms and tools chosen for this thesis project.

In order to better understand the practical issues of accomplishing such a task, the system

was implemented for a particular device and database system. However, care has been

taken to avoid design decisions which are based on features that are unique to the chosen

systems, so that the lessons drawn from this research could be applicable to any handheld

device and database systems with certain general features.

For the handheld device, these features include:

* relatively low cost ($1000 or less), allowing for deployment to a large user base

* presence of an open operating system with available tools to develop new

applications for the handheld device

* connectivity to desktop computers via serial connection or LAN connection

* support for storing and organizing databases and corresponding records

* presence of a mechanism to uniquely identify each of the records in a database

with some form of an unique id number

On the database system side, some of the desired features include:

* ability to replicate databases between servers

* availability of tools to access the database content directly from other applications

* reliable security options for user authentication.

3.1. Handheld Device: 3Com's PalmPilot

The handheld of choice for this project was 3Com's PalmPilot, first released in 1996.

Note that the PalmPilot was originally developed by Palm Computing, which in 1995 was

acquired by U.S. Robotics, which in turn was acquired by 3Com in 1997. The PalmPilot

has a fairly extensible architecture and it connects well to desktop computers. The

PalmPilot measures 4.7 x 3.2 x .7 inches with a 160 x 160 pixel backlit pressure sensitive

LCD screen. At the heart of the PalmPilot is a Motorola 68328 "DragonBall" CPU,

running at 16 Mhz, with 2Mb, 1Mb, or 512Kb of RAM, and 512Kb of ROM, depending

on the model. The model used in this project, the PalmPilot Professional, ran with 1 Mb

of RAM. The PalmPilot's operating system consists of a proprietary system called

PalmOS, whose functions include handling pen input and preserving information as the

user switches between applications. The file system used by the PalmOS organizes both

data and applications in a database structure consisting of a collection of records. The

PalmPilot comes with some basic applications, such as Calendar, ToDo, Memo and

Address Book applications, and the Professional model also comes with a basic email

reader. New PalmPilot applications can be developed in either Microsoft Windows,

Macintosh OS or UNIX systems using tools and libraries provided by 3Com, GNU, and

Metrowerks. Such new applications are compiled into .prc files, which are then

downloaded onto the PalmPilot.

The PalmPilot has a standard RS-232 serial connector, used either to connect to a desktop

computer directly, or to attach a modem which can then be used to connect to a desktop

computer. This serial connection can be used to download new applications into the

PalmPilot from the desktop, or to exchange and synchronize data between PalmPilot

applications and their equivalent desktop applications. The PalmPilot is capable of

connecting to Microsoft Windows, Macintosh OS and Unix based desktop computers.

For this thesis, the desktop computer used consisted of a Pentium based computer

running Microsoft Windows NT.

The process of synchronizing data is handled via conduits. For synchronization with

Microsoft Windows systems, such conduits consist of dynamic linked libraries on the

desktop computer that take care of converting and organizing the data from PalmPilot to

desktop and vice-versa. The synchronization process is controlled by the Hotsync

Manager, a program which sits in the desktop computer and which runs whenever the

PalmPilot initiates a synchronization session. When the PalmPilot "hotsyncs" with a

computer, the Hotsync Manager executes the registered conduits. Generally, there is a

conduit for each of the PalmPilot applications whose data need to be synchronized with

its desktop equivalent. Figure 3.1 illustrates the PalmPilot synchronization mechanism.

3Com has also provided the APIs necessary to develop new conduits. For this project,

the conduit and PalmPilot application development were done under Microsoft Windows

NT 4.0 with Microsoft Visual C++ 4.0, Metrowerks' CodeWarrior, and 3Com's

PalmPilot Conduit SDK.

PalmPilot Desktop Computer

Calendar DB Hotsync Manager Lotus Notes

Calendar Conduit "
MS ExcelInventory Inventory Conduit M

Email DB Email Conduit Eudora Pro

Figure 3.1 Overview of the PalmPilot synchronization mechanism.

In its current implementation, the PalmPilot's data synchronization model was primarily

designed to connect the PalmPilot to the user's desktop machine. However, the model

can also be extended to support synchronization with another desktop machine or a

central server, which may hold data for multiple PalmPilot users. Through Network

Hotsync, 3Com has provided the mechanism necessary to allow the PalmPilot to find a

particular computer in a TCP/IP network. By connecting to any computer in the LAN,

either directly through a serial connection or remotely with a modem, PalmPilot users can

specify the name or the IP address of another computer to synchronize with. Note that

each desktop computer can only synchronize with one PalmPilot at a time, and this may

become a serious limitation if many PalmPilot users are expected to synchronize with one

central server.

Currently, authentication between a PalmPilot and a target computer during remote

synchronization relies solely on the verification of the PalmPilot user name stored in the

handheld device. This simple authentication mechanism raises serious security issues as

PalmPilots are used to access sensitive information residing in Lotus Notes servers.

Therefore, there needs to be a better and secure user authentication mechanism in the

PalmPilot. Chapter 5 of this thesis describes one simple alternative to increase the

security in the PalmPilot's current authentication mechanism.

There are other handheld devices which share many of the PalmPilot features described

above, and these include HP's 620LX Palmtop PC, based on Microsoft's Windows CE

2.0, and Psion's Series 5 Handheld Computer. Even though the PalmPilot does not have

some of the features in these handhelds, such as color screens and keyboards, it does have

the advantages of being extremely portable as well as popular, providing a larger user

base to obtain feedback from. Regardless, the design considerations presented in this

thesis can be easily adapted to a wide variety of handheld devices which share the basic

features described earlier. Table 3.1 lists some of the popular current handheld devices,

which could have been used for this project.

Table 3.1 List of possible handheld devices for the proposed framework.

3.2. Distributed Database System: Lotus Notes

The distributed database system used for this project was Lotus Notes, the leading

groupware system on the market. Lotus Notes is a client-server database system, where

each database is a collection of documents containing plain text, graphics, World Wide

Web pages, or other multimedia content such as video and sound files. The documents

themselves can be organized under different views, which offer the users the ability to

organize their data in different ways according to arbitrary queries. For example, views

may sort the documents according to a particular field, according to the documents'

creation date, or according to the last time the documents were modified. Aside from

views, documents may also be organized by placing them in different folders, which are

simple containers of documents. Views and folder are different since whereas a

document may exist in multiple views, a document may only exist in one folder.

Lotus Notes also supports a database replication mechanism which allows the creation of

multiple replicas of a single database in different machines. Such replicas may reside on

different servers or desktop computers. At any time, two replicas can be synchronized to

maintain consistency between them. Replication can be initiated by the user or system

administrator, and it can also be scheduled to occur automatically at regular intervals.

Lotus Notes' replication mechanism is utilized by mobile users to do useful work while

disconnected from the server, as well as by database administrators to distribute the load

on frequently accessed databases, and to keep back-up copies of databases for fault

tolerance . For each document, Notes also maintains modification timestamps used to

detect conflicts when replicas of the same document have been modified in between

replication sessions. Note that the current Notes replication scheme is limited to Notes

installations only. Part of the goal of this thesis , in the context of Notes, is to extend the

replication mechanism to handheld devices, such as the PalmPilot, that could not support

Notes replication.

Lotus has provided the Notes C and C++ APIs, which allow other programs to access and

manipulate Notes databases. All interaction between the PalmPilot conduits and Notes

was implemented via the Notes C and C++ APIs.

4. Data Synchronization Framework

As described earlier, the core of the synchronization process between a PalmPilot and

Lotus Notes resides in the conduit executed by the Hotsync Manger during

synchronization. The conduit handles all the complexity of manipulating, converting and

updating data between the handheld device and the Lotus Notes database. Usually, each

pair of handheld application and Notes database will have its own conduit, given the

different synchronization needs depending on the type of data and application. The

PalmPilot conduit performs much like a data conversion program, and other handheld

platforms, such as Windows CE, also use such conversion programs to synchronize data

between the handheld and desktop computer. The data synchronization framework

described in this chapter was designed to serve as the basis for conversion programs like

the PalmPilot conduit. A complete implementation of the framework should abstract

away all the complexities of synchronizing a handheld device with a distributed database

system by including a generic synchronization engine that takes care of tasks like data

conversion and conflict resolution.

In general, when synchronizing between a PalmPilot and Lotus Notes, there are four

important issues related to the transfer of data between the two platforms which need to

be addressed:

* how will the user select the data set which will be synchronized

* how will the conduit convert the rich content of Notes documents to the limited

format of a PalmPilot record

* how will the conduit keep track of the correspondence between PalmPilot records

and Notes documents

* how will the conduit resolve conflicts when the same document has been

modified in both Notes and PalmPilot.

The following sections describes how the proposed synchronization framework addresses

the issues above.

4.1. Selection of synchronization data set

A Lotus Notes database can potentially be quite large, sometimes ranging anywhere from

150K to over 300Mb in size. Given that a PalmPilot Professional's total RAM is 1Mb,

the issue of selecting a small subset of data to be synchronized becomes important. The

PalmPilot should be viewed as a small temporary local cache of data stored on the

desktop computer. Since the desired data on the PalmPilot will vary from database to

database, it only makes sense for each conduit to implement its own mechanism for

selecting the appropriate data set. Thus, when synchronizing a mail database, the conduit

may just work with today's emails, or when synchronizing a discussion database, the

conduit may just select those documents that have been recently added to the database.

However, a conduit with a predetermined algorithm for choosing a particular data set

may prove to be too limiting for the user. A better solution is to provide a conduit

configuration option, set at the desktop, which allows the user to input a formula for

selecting the appropriate data set in the database. For example, in the case of Notes, if

the formula is written in the Lotus Notes macro format, the conduit will be able to simply

query Notes using the following formula to select all the documents older than 21 days:

SELECT (@Created > @Adjust(@Now; 0; 0; -21; 0; 0; 0))

Aside from accepting a formula, the conduit could also accept a particular view name, in

which case the conduit would synchronize all the documents under a particular view in

the database. This option is more powerful than the use of macro formulas because the

user may specify much more complex algorithms for document selection in a Notes view

using LotusScript, a proprietary scripting language used within Lotus Notes. Another

possible mechanism for selecting documents consists of making the conduit always

synchronize the documents that reside in a particular view or folder named "PalmPilot",

or whichever other name that may be appropriate. This way, when user Ben Bitdiddle is

working with a particular database from a Notes client, and he wishes to synchronize a

particular document with his PalmPilot, all he needs to do is place that document in a

folder named "PalmPilot", and synchronize. This mechanism creates the interesting

analogy where placing a document in the "PalmPilot" folder becomes equivalent to

placing the document in the actual PalmPilot. Microsoft Windows 95 also has a similar

mechanism where users can place files in a "Suitcase" folder, whose contents are

transferred to the user's notebook computer when the latter is connected to the desktop

computer.

The possible data selection mechanisms described above assume that the user is

physically in front of the desktop computer during synchronization, with access to the

Notes client and the conduit configuration menu options. This is not the case when the

user decides to synchronize remotely using a modem which connects directly to the

desktop computer. For some of the mechanisms described above to work, there also

needs to be a way for the user to enter the macro selection formula or the view name from

the PalmPilot itself, and propagate that information to the conduit so that it can fetch the

appropriate set of data. This can be done by providing the user with an equivalent

conduit configuration program in the PalmPilot, which stores the user's preferences in a

special configuration database in the PalmPilot. During synchronization, the conduit first

fetches the information from the configuration database in the PalmPilot, and then

proceeds with the rest of the data exchange.

The choice of data selection mechanism will depend heavily on the nature of the database

being synchronized. In some cases, a combination of the above mechanisms may

actually work best, and such was the approach taken for the Lotus Notes Mail conduit

described in Chapter 6. For that conduit, the user has the option of selecting messages

based on common selection algorithms, such as all messages modified since the last

synchronization session, or all messages received since a particular date. For those users

with more specific needs, the conduit also offers the option to select messages that reside

in a particular view or folder. In many other database applications aside from Notes

Mail, there are also certain selection algorithms which are commonly used. For example,

for discussion databases, users will often want all the new discussion threads added since

the last synchronization session, and for project management databases, users often want

all the documents associated with a particular project. Whenever possible, a conduit

should always provide users with such database-specific common selection algorithms,

while still providing other more flexible algorithms for the power users.

4.2. Data Conversion

As mentioned earlier, a Notes document is a rich repository of data which may contain

text, World Wide Web pages, graphics, attachments, document links and other

multimedia data types. On the other hand, records in the PalmPilot are limited to simple

text and graphics. Therefore, when converting a Notes document to a PalmPilot record,

attachments, document links, and other multimedia types must be handled in a special

way, while the remaining text and graphics content is converted.

The conversion of graphic images from Notes to PalmPilot actually goes beyond simply

translating image pixels. Images in Notes can be of any size in high resolution with up to

24 bits of color. First of all, such Notes image must be converted to a 2-bit image, which

is the only format supported by the PalmPilot. Then, the image must be scaled in such

way that it remains proportional to the overall layout of the page while still fitting inside

the 2.5"x2.5" LCD screen of the PalmPilot. In many cases, this process will reduce the

original Notes image to a barely recognizable thumbnail sketch in the PalmPilot. Ideally,

the PalmPilot users should be given the option to tap such thumbnail sketches and inform

the system to show an enlarged and more detailed image of the sketch in full screen. A

very good implementation of such mechanism of handling image conversion can be

found in Top Gun WingMan developed at U.C. Berkeley 9, which is a web browser

application for the PalmPilot. WingMan fetches web pages via a web proxy, which pre-

processes the requested pages by taking care of the document conversion and image

processing. Images are converted to 2 bit grayscale thumbnail sketches, and when the

PalmPilot user taps on a sketch, WingMan sends a request to the proxy requesting a

larger and more detailed version of the picture.

Even though attachments and documents links do not mean much inside the PalmPilot,

they contain information which may prove to be useful for the user when reading the

document from the PalmPilot. The filename of attachments and the server, database, and

document id of document links are examples of such information that could be included

in the converted PalmPilot record. In certain cases, it may be just enough to include a

message in the converted PalmPilot record indicating that the original Notes document

contains attachments or document links.

When dealing with large Notes documents, there will be times when even the text content

of the document by itself will exceed the memory limits of the PalmPilot. Sometimes, a

few large converted records may be enough to fill the memory. Therefore, when

synchronizing documents that may contain a lot of text, such as mail messages and

discussion database documents, there should be an option to truncate the original text

during conversion. Each conduit should allow the user to enable or disable the option to

truncate a document if it contains more than a specified number of bytes. However, care

must be taken to prevent a truncated PalmPilot record from overwriting its Notes

document equivalent during subsequent synchronization session. Aside from truncation,

large Notes documents can also be compressed to fit the memory requirements of the

PalmPilot. The compression algorithm could be as simple as vowel removal or some

other word abbreviation filtering process. In some cases, it may also be useful to include

a mechanism that allows the user to tell the synchronization process to download the

complete copy of a particular document into the PalmPilot. This feature would be helpful

if the user receives a truncated or compressed document in the PalmPilot, and realizes

that he/she needs to have the rest of the information.

Another critical issue regarding data conversion consists of mapping the fields in a Notes

document to their appropriate equivalent fields in a PalmPilot record. Each PalmPilot

record keeps its information in an unformatted data buffer, which may contain practically

anything. Each PalmPilot application organizes this data buffer in a different way. For

example, the Memo application in the PalmPilot places the title of each memo in the

beginning of the data buffer, followed by a null character, then followed by the text of the

memo. The Mail application places date information in the first four bytes of the data

buffer, followed by recipient, sender, subject, CC, and BCC information, each separated

by a null character. Because of the arbitrary nature of the PalmPilot record's data buffer,

each conduit handles the field mapping in different ways.

4.3. Preserving data coherence between PalmPilot and Notes during synchronization
with multiple replicas

When synchronizing a Notes database with its PalmPilot equivalent, each PalmPilot

record must be mapped to its corresponding Notes document. During synchronization, if

a modified document is found in Notes, the conduit must first check if there is a

corresponding record in the PalmPilot. If so, the conduit must have some way of

accessing that record in order to propagate the document changes to it. Otherwise, the

conduit must create a new record corresponding to the modified Notes document. The

same scheme applies when a modified PalmPilot record is found. If the record-document

mapping information becomes corrupted, duplicate copies of records and documents may

arise, and modifications may be propagated to the wrong places during synchronization.

This illustrates the importance of keeping an accurate record-document mapping after

every synchronization session.

The rest of this section is organized as follows. Section 4.3.1 describes some of the trade

offs in terms of choosing the best method for maintaining the mapping information

described above. The chosen method will determine the overall data synchronization

algorithm, which is also described in detail in Section 4.3.1. Section 4.3.2 expands on the

framework from the previous section by detailing the additional requirements needed to

address the potential conflicts that arise when the same PalmPilot synchronizes with

multiple replicas of the same database.

4.3.1 Synchronization with a Single Database

A common user configuration in Notes consists of a database which resides on a Notes

server, along with a replica of the same database residing on the user's notebook

computer. The former will be hereafter referred as the server replica, while the notebook

copy will be referred to as the local replica. The user, Ben Bitdiddle, regularly makes

additions, modifications and deletions to documents in this database. When he has a high

speed connection available to the Notes server (i.e. corporate LAN), Ben modifies the

server replica directly through his Notes client. When he is disconnected (e.g. on the

airplane), he works on his local replica, and replicates the two replicas when he gets back

to the office. Now, let's suppose that Ben acquires a PalmPilot, which allows him more

flexibility while traveling. He then decides to synchronize his PalmPilot Memo

application database with the server replica of his Notes discussion database, allowing

him to make changes to the database on the road with just his PalmPilot.

4.3.1.1 Mapping PalmPilot Records to Notes Documents with an Id Mapping Table
(IMT)

When Ben synchronizes the PalmPilot with the server replica, each record in the

PalmPilot's version of the database will correspond to a document in Notes, excluding

new records which were added since the last synchronization session. Synchronization

consists of finding the corresponding document and record pairs (or creating the one that

doesn't exist yet), and updating the text content of both so that they match. In order to

correctly determine the correspondence of a document and record pair, it is necessary to

maintain the mapping between PalmPilot record id's and Notes document id's. The

PalmPilot uniquely identifies each database record with a record ID consisting of 4 bytes,

while Notes does the same for each document with a Universal Note Identification

(UNID) consisting of 16 bytes. The UNID also identifies a document uniquely across

any replica of the database.

One option for maintaining the document-record mapping consists of storing the

corresponding UNID in each PalmPilot record. However, modifying the information

stored in each PalmPilot record violates one of the original goals of this project, stated

earlier, which was to allow handheld synchronization with Notes without modifying the

existing handheld applications. Storing the corresponding PalmPilot record id in the

Notes document also poses a problem, since if a Notes documents gets deleted, the record

id information will also be deleted, making it impossible for the conduit to delete the

appropriate record in the PalmPilot.

The alternative option consists of keeping a mapping table which indicates how each of

the records in the PalmPilot corresponds to a particular document in Notes. This table

will be referred to as the Id Mapping Table (IMT). Given that the UNID consists of 16

bytes of data, each entry in the mapping table would consist of at least 20 bytes (16 bytes

for the UNID and 4 bytes for the PalmPilot record id).

4.3.1.2 Storing the IMT

Given the need for an IMT, the question becomes where to store such a table. One option

is to store the IMT in the PalmPilot itself. However, since the size of the mapping table

may grow substantially, this could be a significant strain on the already limited resources

of the device. Consider the case if Ben decides to synchronize both his company's Notes

Address Book and his personal Notes Calendar databases with the corresponding

applications in the PalmPilot. Suppose that Ben, being a busy businessman, has about 20

scheduled events per week, giving him roughly 1000 scheduled events per year, and

therefore about 1000 entries in his PalmPilot DateBook after one year. Furthermore,

suppose that his company has about 5000 people, giving him a PalmPilot Address Book

with about 5000 entries. On average, each calendar and address book entry takes up

about 50 and 100 bytes respectively. Therefore, given that each id mapping needs at least

20 bytes, the overhead in storing such mappings would be anywhere from 20 to 40

percent in additional storage space. With the above example, the id mapping for all those

entries in Ben's PalmPilot would occupy at least 120K bytes, over 10% of the total

storage space in a current PalmPilot Profession model. The high relative cost of storing

the mapping table in the PalmPilot becomes less of an issue when dealing with databases

with larger documents, such as an email database, where a typical message size (text

only) can easily exceed 1K bytes. An extra overhead of 20 bytes per message would be

less significant in that case. However, databases with many small documents, such as the

ones described above, are prevalent enough to consider better alternatives for storing the

mapping table.

To conserve space on the device, we propose to store the IMT as a special document in

the Notes database being synchronized. During synchronization, the appropriate conduit

reads the IMT into memory from this document, and once all the updates have been

propagated to both handheld and desktop, the conduit will store the updated IMT back

into Notes. Note that we could have conserved space in the PalmPilot by storing the IMT

as a file residing anywhere in the desktop computer. For single replica synchronization,

the choice of storing the IMT in Notes or in the file system does not make a difference.

However, in order to support synchronization with multiple replicas, the most updated

IMT must be available in the machine where each replica resides. In this case, storing the

IMT as a document in the Notes database being synchronized allows us to take advantage

of the native Notes replication mechanism, which can propagate new updates to the IMT

in a particular replica to all the other existing replicas. Section 3.3.2 describes the details

of the algorithm for synchronizing against multiple replicas of the same database.

4.3.1.3 Algorithm for Single Database Synchronization

With the use of an IMT to keep the id mapping information, the general algorithm for

single database synchronization would consist of the following steps:

1. Find the IMT in Notes, and load it into memory

2. For all new Notes documents since last synchronization session, create new

corresponding records in PalmPilot, and update IMT accordingly

3. Propagate all document modifications and deletions from Notes to PalmPilot, and

update IMT accordingly

4. For all new PalmPilot records since last synchronization session, create new

corresponding documents in Notes, and update IMT accordingly

5. Propagate all record modifications and deletions from PalmPilot to Notes, and

update IMT accordingly

6. Update the IMT document in Notes

In steps 3 and 5, the propagation of modifications between the two platforms may

encounter the case when the same document and record has been modified in both Notes

and PalmPilot. Another possible conflicting case could occur when the document has

been modified in Notes but it has also been deleted in the PalmPilot, or vice-versa.

Section 4.4 will discuss at length the conflict resolution mechanisms needed to address

these cases of conflicting modifications.

Suppose that Ben synchronizes his PalmPilot with the server replica for the first time, and

that documents x and y have been recently created and selected for transfer to the Pilot

database, which has no records prior to synchronization (Figure 4. la). Figure 4.2 shows

the pseudocode for the algorithm being used during synchronization. The first step for

the conduit will be to look for the IMT in the server replica. Since this is the first time

Ben synchronizes his PalmPilot with the server replica, there will be no IMT, and the

conduit will therefore create a new IMT. Then, the conduit will look through the server

replica, looking for any new documents, updates or deletions that need to be propagated

to the PalmPilot (Figure 4.2 lines 10-120). Here the conduit finds documents x and y,

and it looks into the IMT to check if these documents exist in the PalmPilot. Since the

IMT is empty, the conduit concludes that these documents do not exist in the PalmPilot,

it creates the corresponding records X and Y in the PalmPilot database, and it adds the

appropriate id mappings in the IMT for the newly created records. Next, the conduit

looks through the PalmPilot database, looking for any new records, modifications or

deletions which need to be propagated to the server replica (Figure 4.2 lines 130-240).

Since the PalmPilot database started out empty, the conduit does nothing during this step.

Finally, the conduit writes the IMT from memory into a document in the server replica

(Figure 4.lb).

Suppose that after the first synchronization, Ben takes his PalmPilot home, and in the

train, he modifies record X and adds a new record Z in the PalmPilot. The next day, at

work, he deletes document y from the server replica, and then he decides to synchronize

with the server replica (Figure 4. ic). This time, the conduit will find and load the IMT

that was created during the last synchronization session. The conduit then examines the

modifications done in the Notes database. It finds that document y was deleted, it looks

up in the IMT to find that document y corresponds to record Y, it deletes record Y, and

finally it deletes the appropriate entry from the IMT. Next, as the conduit searches the

PalmPilot for new, modified and deleted records, it finds the new record Z, creates the

corresponding Notes document z, and adds the appropriate entries in the IMT. Then, the

conduit detects that record X was modified, it looks up in the IMT for the UNID of the

corresponding document x, and it uses the UNID to open the document and apply the

appropriate changes that were made in the PalmPilot (Figure 4. id).

Figure 4.1 Sample scenario illustrating single replica synchronization.

Note that, for the actual implementation of this algorithm in Figure 4.2, the calls to

UpdatePilotRecord and UpdateNotesDocument are responsible for determining and

propagating modifications and deletions appropriately, while resolving any conflicting

modifications as described in Section 4.4.

Synchronize()
{

10 WHILE (notesDoc = next Notes document to be synched) DO
20 Pilotld = LookuplMT(notesDoc.UNID)
30 IF (Pilotld) THEN
40 pilotDoc = GetPilotDocument(Pilotld)
50 IF (pilotDoc is valid) THEN
60 UpdatePilotRecord (notesDoc, pilotDoc)
70 END
80 ELSE
90 pilotDoc = CreateNewPilotRecord(notesDoc)
100 AddlMTEntry (pilotDoc.Id, notesDoc.UNID)
110 END
120 END
130 WHILE (pilotDoc = next PalmPilot record to be synched) DO
140 NotesUNID = LookuplMT(pilotDoc.Id)
150 IF (NotesUNID)
160 notesDoc = GetNotesDocument(NotesUNID)
170 IF (notesDoc) THEN
180 UpdateNotesDocument (pilotDoc, notesDoc)
190 END
200 ELSE
210 notesDoc = CreateNewDocument(pilotDoc)
220 AddlMTEntry (notesDoc.UNID, pilotDoc.ID)
230 END
240 END

Figure 4.2 Pseudocode for single replica synchronization.

4.3.2 Synchronization with Multiple Database Replicas

Continuing with the previous scenario, suppose that after synchronizing his PalmPilot

with the server replica, Ben brings his notebook local replica up to date by replicating

with the server replica. At this point, both replicas will have the same documents as well

as the most updated IMT available, as illustrated in Figure 4.3.

Figure 4.3 Initial state for multiple synchronization scenario.

4.3.2.1 Synchronizing with multiple identical replicas with updated IMTs

Ben then leaves work, and on the train ride home, he makes some changes to the

PalmPilot version of the database by modifying record X. Once at home, Ben decides

that he wants to have those changes in the local replica on his notebook so that he can

take advantage of the richer editing environment available on his notebook computer. He

therefore synchronizes the PalmPilot with his local replica. In this case, the simple

algorithm presented in the previous section will work, even though Ben is synchronizing

his Pilot with a different replica. The crucial part is the fact that the local replica has the

most recent IMT, which allows the conduit to figure out which document the modified

record X corresponds to so that it can propagate the changes appropriately.

However, if Ben tries to synchronize with a replica which does not have the most recent

IMT, duplicate copies of the same document may be created. The following scenario and

Figure 4.4 illustrates this problem. Suppose that Ben creates a new documents k in the

local replica in his notebook computer (Figure 4.4a). Before going back to work, Ben

synchronizes his PalmPilot with the local replica, and in the process the conduit will

propagate the new additions in the local replica by creating record K in the PalmPilot

(Figure 4.4b). On his way to work, Ben makes some modifications to record K (Figure

4.4c). Once at work, Ben wants those changes in his server replica, so he synchronizes

his PalmPilot with the server replica, which at this point contains an outdated IMT.

During the synchronization process, the conduit will find the modified record K, and it

will try to find a corresponding Notes document in the IMT. Since the IMT in the server

PamPilot Server Replica Local Repica

DB Records IIMT IMT
X PilotlD NotesID PilotlD NotesID
Z X.RecID x.UNID X.ReclD xUNID

Z.ReclD z.UNID Z.RecID z.UNID

'Documents Documents

..X .X

replica is outdated, it does not have any entries with record K's id, and it will therefore

assume that it needs to create a new corresponding document k* for record K (4.4d).

After synchronizing, Ben decides to replicate his server and local replicas, causing

problems. First, documents k and k* will be created in both replicas, even though they

are identical. Furthermore, since both IMTs were modified since the last replication, they

will cause a replication conflict, and there needs to be some mechanism to combine the

changes made to both IMTs into one single IMT.

Figure 4.4 Scenario illustrating the potential problems of multiple replica
synchronization. Note the creation of duplicates at stage (e).

The scenario described above indicates that synchronization with multiple database

replicas with the algorithm presented in Figure 4.2 can be supported only when the user

always synchronizes with an updated replica which contains the most recent changes to

the database as well as the most recent modified IMT. Therefore, before synchronization,

the user always has to replicate in order to prevent the duplicate problems described

above.

33

4.3.2.2 Using the Delta Table (dT) to relax replication requirement

There will be times when users will not be able to replicate before performing successive

synchronization with different replicas. If Ben goes home with his notebook without first

replicating the server and local replicas, and he finds out that he cannot connect to the

company network from home because his network service is down, then he may not be

able to synchronize his PalmPilot with the local replica without causing the kind of

problems described above. In cases like this, we would still like to allow the user to

synchronize without the potential conflicts created by using an outdated IMT.

The underlying problem with synchronization with multiple replicas is that the user may

sometimes synchronize using an outdated IMT. To address this problem, the

synchronization algorithm described above is extended with the addition of a Delta Table

(dT), which is stored in the PalmPilot version of the database (Figure 4.5). Each entry in

this dT consists of a PalmPilot record id to Notes document id mapping, along with an

action flag reflecting the type of update to the IMT that this entry corresponds to

(addition or deletion). During a synchronization session, whenever an id mapping needs

to be added or deleted, an entry is first added to the dT with the appropriate mapping and

action flag. The dT essentially keeps a log of all the mapping changes that have been

made during the synchronization with multiple replicas. When synchronizing with a

replica which does not contain the most recent IMT, the combination of the log

information from the dT and the available outdated IMT is enough to construct the

equivalent of an updated IMT.

The dT version will
always be one plus the

RIT version

These are the new changes
that were applied to the
IMT version number 2.

The RIT version always
corresponds to the .

highest number in the
"IMT ver." column

PalmPilot

DB Records
ZK

dT - Versi 3
Ver PilotiD NoteAct

2 X.RecID x.UNID AS2 W.RecID w.UNID D
1 W.RecD w.UNID A
0 K.ReclD kUNID _

RIT - Version
Replic ver. Time

::d 2 5:0
ReplicaB.id 1 2:00
ReplicaC.id 1 :30

Replica A

IMT - Version: 2
PilotID NoteslD
X.RecID x.UNID
Z.RecID z.UNID
K.ReclD kUNID

Documents
x zk

S"A" indicates added entries, and "D"
indicates deleted entries

1 Actual time stamps will also include
the date of synchronization

Figure 4.5 Components of the complete framework supporting multiple replica
synchronization

4.3.2.3 Using the Replica ID Table (RIT) together with the dT to prune the dT

While the dT eliminates the need to always synchronize with an updated IMT, it

potentially violates the size constraints of the device, as the dT may grow arbitrarily large

over time. To avoid this problem, there needs to be a mechanism to permanently commit

the recorded changes in the dT to an IMT while pruning entries in the dT that are no

longer needed. To implement such mechanism, additional components aside from the dT

must be added to the framework presented in the previous section.

First, each replica's IMT must have an IMT version number, which increases whenever

new changes from the dT are committed to a particular IMT. To keep track of which

IMT version each of the replicas have, a Replica ID Table (RIT) must be stored in the

PalmPilot database. The RIT contains an entry for each replica that the PalmPilot has

synchronized with so far, and each entry has the replica's ID, the replica's most recent

IMT version number found by the system, as well as the date and time indicating when

the last synchronization session with the replica occurred. The RIT version number

consists of the highest IMT version found in the RIT.

The dT itself also needs to have a version number, which can be interpreted as the current

version number of the global IMT, consisting of all the information in the most up to date

local IMT plus any additional changes in the dT. The dT version will always be one plus

the version of the latest local IMT, indicating that any new additions to the IMT recorded

in the dT will belong to a newer version of the global IMT. When the changes in the dT

are committed to a local IMT, the latter's version number is updated to match the dT's

version number, which then increments by one. The entries in the dT are categorized by

the dT version number at the time they were added. Therefore, from the dT and the RIT,

one can determine exactly which entries are missing in any given outdated local IMT.

Furthermore, one can also determine which entries in the dT are already present in all of

the local IMTs.

During synchronization, whenever the IMT needs to be modified, an entry is first added

to the dT, indicating whether a particular mapping needs to be added or deleted. This

entry is added under the category corresponding to the current dT version number.

Therefore, as in Figure 4.5, if the dT version number is 3, then any new future entries to

the dT will be added under version 3.

The basic algorithm for committing the dT changes consists of only committing changes

to the most recent version of an IMT. The assumption is that the Notes replication

mechanism will eventually update all of the other older versions of the IMT in various

replicas. The conduit can determine whether an IMT is the most recent or not by

checking the RIT version number. During synchronization, if the RIT and IMT version

numbers match, then the conduit should commit any new changes in the dT to the IMT

upon completion. By only modifying the most recent version of the IMT, one avoids the

potential conflicts that could occur if two replicas with modified IMTs were to replicate

with each other.

The system does not need to keep those dT entries that have already been propagated to

all the replicas. Therefore, the dT can be pruned by eliminating all the entries

categorized by an IMT version number that is lower than the lowest IMT version

indicated in the RIT. For example, in the scenario illustrated by Figure 4.5, the RIT

indicates that all the replicas have an IMT of version 1 or later. Therefore, any changes

made in version 0 can be discarded in the dT, which means that the last entry in the dT

can be deleted.

However, if the user were to stop synchronizing with a particular replica which has an

entry in the RIT, the dT could again grow arbitrarily large, as the IMT version number of

that replica's IMT would never increase in the RIT, preventing the dT from being pruned.

This problem can be addressed by using the timestamps in each of the RIT entries.

During each synchronization session, if there is an RIT entry which has not changed for a

long period of time, that entry is removed from the RIT, allowing the dT to be pruned of

entries which were maintained only because of this outdated replica. The length of time

for which to maintain an RIT entry could be set by the user, but should probably be

constrained to less than 1 year.

4.3.2.4 Algorithm for Synchronization with Multiple Database Replicas

The pseudocode in Figure 4.6 describes the algorithm for synchronization with multiple

database replicas by adding the steps necessary to maintain the dT, RIT and IMT version

numbers. In the case where a replica does not contain an IMT yet, and the RIT indicates

that there are other replicas that do have a version of the IMT, then the user is requested

to first replicate with the other replicas in order to obtain a reasonably current version of

the IMT. Also, new changes in the id mappings are registered in the dT first, and

eventually they are committed to the IMT.

Synchronize(Replicald)
{
10 IF (IMT does not exist) AND (RIT does not exist) THEN
20 IMT = New IMT
30 IMT.Version = 0
40 RIT = New RIT
50 RIT.Add(Replicald, CurrentDateTime, IMT.Version)
60 RIT.Version = IMT.Version
70 dT = New dT
80 dT.Version = IMT.Version + 1
90 END
100 IF (IMT does not exist) AND (RIT is not empty) THEN
110 DialogBox "Please replicate this database prior to first synchronization."
120 RETURN
130 END
140 RIT.UpdateEntry(ReplicalD, CurrentTime, IMT.Version)
150 WHILE (notesDoc = next document to be synched) DO
160 Pilotld = dT.Lookup(notesDoc.UNID) ;; checking the dT
170 IF (Pilotld is NOT valid) THEN
180 Pilotld = IMT.Lookup(notesDoc.UNID) ;; checking the IMT
190 END
200 IF (Pilotld) THEN
210 pilotDoc = GetPilotDocument(Pilotld)
220 IF (pilotDoc is valid) THEN
230 UpdatePilotRecord (notesDoc, pilotDoc)
240 END
250 ELSE
260 pilotDoc = CreateNewRecord(notesDoc)
270 dT.Add(pilotDoc.Id, notesDoc.UNID)
300 END
320 END
330 WHILE (pilotDoc = next record to be synched) DO
340 NotesUNID = dT.Lookup(pilotDoc.id)
350 IF (NotesUNID is NOT valid) THEN
360 NotesUNID = IMT.Lookup(pilotDoc.Id)
370 END
380 IF (NotesUNID) THEN
390 notesDoc = database.GetDocument(notesDocUNID)
400 IF (notesDoc is valid) THEN
410 UpdateNotesDocument (notesDoc, pilotDoc)
420 ELSE
430 // Do nothing. Document doesn't exist yet in this replica!
440 END
450 ELSE
460 notesDoc = CreateNewDocument(pilotDoc)
500 dT.Add(pilotDoc.Id, notesDoc.UNID)
510 END
520 END

Figure 4.6 Pseudocode for multiple replica synchronization (continued in following page)

530 IF (IMT.Version = RIT.Version) AND (dT.Modified?) THEN
540 dT.Flush(IMT)
545 IMT.Version = dT.Version
550 RIT.Version = IMT.Version
560 dT.Version = dT.Version + 1
570 END
580 RIT.UpdateEntry(ReplicalD, CurrentTime, IMT.Version)
590 RIT.RemoveOldEntries()
600 dT.RemoveOldEntries()
}

Figure 4.6 (continued from previous page)

The code in lines 10 through 90 takes care of the boundary condition of a first time ever

synchronization between this database and the device. New IMT, dT and RIT tables are

created and initialized. These steps should be implemented atomically to ensure a

consistent state. Lines 100 to 130 address the case of a first time ever synchronization

between this replica of the database and the device, where the database has not recently

been replicated with other replicas, and thus has no IMT document stored for this device.

This is an unlikely case, and the algorithm cannot make progress, since it cannot

construct a complete IMT from the dT alone. Thus, the algorithm has to abort, with a

request to the user that they replicate the database first before attempting to synchronize.

In line 140, the algorithm retrieves the IMT from the database, and updates the RIT entry

for this replica, since the replica may now contain a more up to date version of the IMT

due to having replicated with other replicas in the system.

Lines 150 through 320 take care of synchronizing any new or modified Notes documents

to the Pilot. This is very similar to the code in figure 1, except for the presence of the dT.

In line 160, the algorithm looks for the mapping first in the dT, and consults the IMT

only if the entry is not found in the dT. Lines 330 through 520 synchronize any new or

modified Pilot records to Notes. The only notable difference is in the ELSE clause in line

420, which handles the case where a document that was present in a different replica of

the database, is not yet present in this replica. In this case, the algorithm does not create a

new version of the document, but rather keeps the version in the Pilot. During

subsequent synchronization, the algorithm will again try to save the changes to Notes,

until it finds the document in one of the replicas. The fact that the document occurs in

the dT/IMT indicates that it should exist in at least one replica of the database.

Lines 530 through 600 bring all the version numbers up to date, and remove any old data

from the dT and RIT. Line 530 checks whether the IMT in the current replica is in fact

the same as the most up to date IMT anywhere in the system, by comparing the IMT

version number to the RIT version number. If the IMT is in fact older, then no further

action is required. All the modifications are kept in the dT until an up to date replica is

found. If the IMT is up to date, and the dT has been modified since the last flushing, any

new additions to the dT are flushed to the IMT, and the IMT and RIT version numbers

are incremented to match the current dT version. Finally, the dT version itself is

incremented, indicating that any new future additions to the dT will belong to a new IMT

version. Lines 530 through 570 should be implemented atomically, to ensure a consistent

state. Line 580 updates the RIT entry for this replica, by time stamping it with the

current time, and by updating the version number (which may have been incremented in

line 550). Line 590 invokes a routine that iterates over the RIT, and removes any entries

who's time stamps are older than the limit for how long to maintain information about a

replica. Line 600 invokes a similar routine which scans the dT for any entries that pertain

to versions of the IMT that no longer occur in the RIT, and removes them.

This algorithm does not describe how to deal with failure conditions. In general, it is a

good idea for any implementation to maintain backup copies of the dT and RIT in case

the device suffers a memory reset. This includes backing up data that was not written to

Notes because the document to which it pertains does not yet exist in the current replica.

4.3.2.5 Sample Scenario for synchronization with multiple replicas

Returning to the example with Ben, suppose that he has not synchronized his PalmPilot

with neither his server or local replicas, both of which are currently in sync. Figure 4.7

shows the initial state of the PalmPilot and the replicas.

40

Figure 4.7 Initial state of multiple replica synchronization sample scenario.

Ben first synchronizes his PalmPilot with the server replica. Figure 4.8 illustrates the

state of the PalmPilot and server replica after this synchronization. Since the server

replica does not have an IMT yet, and the PalmPilot does not have a RIT either, the

system will initialize all the necessary tables. A new IMT with version 0 will be created

in the server replica, and a new RIT and dT (initialized to versions 0 and 1 respectively)

will be added to the PalmPilot. The conduit will also add an entry to the new RIT,

indicating that the server replica currently has the IMT version 0. After these

initialization steps, the conduit will go through the new and modified documents in the

server replica, and for each of those documents, it will try to find a corresponding record

in the dT and IMT. Since both are currently empty, the conduit will assume that the

documents do not exist in the PalmPilot, it will create the corresponding records, and it

will add the appropriate id mappings in the dT. Next, the conduit will go through the

new and modified records in the PalmPilot, but since the latter was initially empty,

nothing is done in this step. Finally, since the RIT and IMT versions are equal and the dT

has been modified since the last time it was committed to an IMT, the conduit will

conclude that it is dealing with an up to date IMT, and it will therefore flush all the

changes in the dT to the IMT, increase both the IMT and RIT versions to 1, bump the dT

version to 2, and update the RIT entries accordingly. Note that we can determine if a dT

has changed since the last time it was committed to an IMT by checking whether there

are any entries in the dT categorized under the dT version number.

PalmPilot

DB Records
x Y

dT - Version: 2

1 X.RecID x.UNID A
1 Y.RecID y.UNID A

RIT - Version: 1

ServerRp.id 1 1:00

Server Replica

IMT - Version: 1
PilotID NoteslD
X.RecD x.UNID
Y.RecD y.UNID

Documents

.x Y

Figure 4.8 State of tables after synchronizing with server replica

Ben then goes home and tries to synchronize his PalmPilot with his local replica. Note

that he has not replicated the server and local replicas at this point following his last

synchronization. The conduit will notice that the local replica does not have an IMT, but

since it knows that there is an IMT for this database from the RIT, it tells the user to

replicate with a replica that contains an IMT. Ben therefore replicates his server and

local replicas, he modifies document x, and he adds document w. He then tries to

synchronize with his local replica. Figure 4.9 shows the state of the tables after this

synchronization. When the conduit goes through the Notes documents, it will first try to

propagate the changes made to document x. It looks up in the dT, it finds the record that

corresponds to document x in the PalmPilot, and it applies the appropriate changes.

Then, for the new document w, the conduit will fail to find a mapping in both the dT and

IMT, indicating that a new record must be created in the PalmPilot and a new mapping

added to the dT under version 2. Finally, since the IMT and RIT versions are both the

same (1) at this point and the dT has been changed since it was last committed to an IMT,

the conduit will flush the new dT changes to the local replica's IMT, and it will set both

IMT and RIT versions to 2, and increase the dT version to 3.

P81rilPJlOt' c { '" •.... ,1,,':.
~ ~ 'r '. ,t ,.,> :l.~:\,.

DB Records
XYW

dT - Version: 3
Ver PiIotID NotesID Ad

2 W.RecID w.UNID A
1 X.RecID lLUNID A
1 Y.RecID v.UNID A

if;

. RIT - Version: 2
RepIicaID IMTver. Time

ServerRD.id 1 1:00
LocaIRp.id 2 2:00

1'-

LOCaJ'll,eplka r~/fk;;~:~ '~.,10'
I:;:~ ~ :~C}l" go

~ IMT - Version: 2
PilotID NotesID
X.RecID lLUNID
Y.RecID y.UNID
W.RecID w.UNID

,',

I:
[1;;j Documents r,
1x yw t,~

Figure 4.9 State of tables after synchronizing with local replica.

Ben then goes back to work, and on the way, he makes modification to record W in the

PalmPilot. Once at his office, Ben also creates a new document z in his server replica,

and he tries to synchronize. Figure 4.10 shows the state of the system after this

synchronization. At this point, he has not replicated his server and local replicas, and

therefore his server replica does not yet contain document w which was created earlier.

When the conduit goes through the PalmPilot records, it will notice that record W was

modified, and it will try to propagate these changes to Notes. It looks up the dT, and it

does fmd the id of the corresponding Notes document, but when it tries to access the

document in the server replica, it will fail since the latter has not been propagated from

the local replica. In this case, the conduit will just leave record W marked modified, so

that the next synchronization session will try propagating those changes again. This

shows how the proposed framework avoids the creation of duplicates that could occur

during synchronization with multiple outdated replicas. Concluding the synchronization

session, the conduit will add a new mapping in the dT for document z, and it will not

flush the changes in the dT to the server replica IMT, since it knows from the RIT that

there is another replica with a more recent IMT.

43

PalmPilot~' , ,,"~, I-

Server Replica
".,'. ",' ? ,'l: -" < ¥, >:. - ,

lIDD Records r IMT - Version: 1
XYWZ PilotID NotesID

" X.RecID x.UNID
, dT - V-ersion: 3 Y.RecID y.UNID

Ver PiIotID NotesID Act

< 3 Z.RecID z.UNID A
2 W.RecID w.UNID A
1 X.RecID x.UNID A IDocuments I1 Y.RecID y.UNID A x y z

" RIT - Version: 2
ReolicaID IMTver. Time

ServerRp.id 1 3:00
LocaIRp.id 2 2:00

Figure 4.10 State of tables after synchronizing with server replica again.

Ben then replicates his server and local replicas, which propagates the newer IMT from

the local replica to the server replica. Immediately afterwards, he tries to synchronize

with the server replica once again. This time, the conduit will realize it is synchronizing

with the most recent version of a local IMT, and since there have been changes to the dT,

it will flush them to the server replica's IMT, updating its version, while incrementing the

dT version to 4. Figure 4.11 shows the fmal state of all the components in our scenario.

PalmPilot ;'~~ ,,: >,(~~":l~ '~~~l Server Replica ~RepHea _Ai'''' .~ '." '~

-~

lDDRecords IMT - Version: 3 IMT - Version: 2
XYWZ PilotID NotesID PilotID NotesID

X.RecID x.UNID X.RecID x.UNID
dT - Version: 4 Y.RecID y.UNID Y.ReclD y.UNID

Ver PilotID NotesID Act W.RecID w.UNID W.RecID w.UNID
I-

3 Z.RecID z.UNID A Z.RecID z.UNID
2 W.ReclD w.UNID A

IDocuments I IDocuments
Ix ywz Ixywz

r~

RIT - Version: 3
ReolicaID IMTver. Time

ServerRp.id 3 3:05
LocaIRp.id 2 2:00

Figure 4.11 Final state of all tables.

44

4.4. Conflict Resolution

The data synchronization model described thus far uses an optimistic concurrency control

strategy, where any PalmPilot is allowed to have a mutable copy of the same Notes

document residing in the server. The idea of using optimistic concurrency control was

fIrst introduced by Eswaran et aCo and Kung et at in the late 70' s and early 80' s. Since

then, a number of systems have adopted such replica control strategy, including Coda and

Bayou as mentioned earlier. Whereas the pessimistic approach avoids potential conflicts,

it creates a much bigger problem when a client with shared control of an object remains

disconnected for a long period of time, causing the other clients to defer any updates to

the object. Under the premise that multiple clients do not often modify the same object

concurrently, the optimistic approach is clearly better in terms of achieving the highest

possible availability of data for all clients. However, with availability comes the price of

potential conflicts, particularly when two clients actually modify the same document at

roughly the same time. With optimistic concurrency control, the basic idea consists of

letting the few potential conflicts occur while resolving them later. There have been a

number of projects addressing the issue of resolving conflicts in a distributed system

using optimistic concurrency control, including Adya et al. 12 and Agrawal et al. 13 The

nature of conflict resolution addressed in this thesis differs from these past projects

because it deals with resolving conflicting changes introduced from heterogeneous

environments such as the PalmPilot and Notes.

4.4.1 UpdatelUpdate Conflicts

When dealing with handheld devices interacting with distributed database systems, the

optimistic approach creates two potential types of conflicts: update/update conflicts and

remove/update conflicts. The first type of conflict occurs when a single user or multiple

users modify different copies of the same document in between replication and

synchronization sessions. Such copies may reside in the handheld device and in any of

the database replicas. Some examples of update/update conflicts include:

45

* Document x exists in both Replica A and in the PalmPilot. Ben modifies

document x in both systems, and then tries to synchronize.

* Document x exists in both Replica A and B. Two different users modify

document x in both replicas. During the usual scheduled time, both replicas

replicate, and different versions of document x will be encountered.

Lotus Notes already provides a mechanism to resolve conflicts like the second example

above, where the same document is modified in different replicas in between replication.

When it detects a modification conflict, Notes will create the different modified

documents in both replicas, thus ensuring that both will have all the versions of the

document. However, out of the possible versions of the same document, Notes will

indicate a preferred version which corresponds to the most recently modified document.

All the other versions will be considered as replication conflict documents. The premise

is that once replication is done, and regardless of which replica is being accessed, the user

will know which version of the document was modified most recently, and this version

will most likely have the changes that the user wants. The user will also see the other

replication conflict documents which were created, and it is up to the user to decide

which version of the document to keep. Notes essentially leaves it up to the user to

resolve modification conflicts by ensuring that the user has all the conflicting versions of

the document in question. This approach works well because the user will most likely be

the best judge on how conflicts should be resolved, but it relies on the assumption that

update/update conflicts do not occur very often. If that assumption was not the case,

every Notes database would be filled with conflict documents which the user must clean

up.

In the first example mentioned above, the same document is modified in both Notes and

the PalmPilot in between synchronization. Such conflicts can also be handled in the

same manner in which conflicts between replicas are handled by Notes. During

synchronization, both versions of the conflicting document are created in the replica and

in the PalmPilot, leaving it up to the user to decide which one should be kept. A more

assertive conflict resolution approach would consist of keeping only the most recently

modified version of the document in both handheld and replica database. However,

determining the most recent version depends on keeping track of when documents were

modified. Notes automatically records the date and time when a particular document

changed. On the other hand, the PalmPilot and other handheld devices do not always

store the modification time in each record. Thus, given a corresponding record and

document pair, it is difficult to determine which one has the most recent modifications.

Even if the handheld device did keep track of modification times, it is likely that the

handheld and replica times will be out of sync. Therefore, any conflict resolution

mechanism dependent on clock synchronization would be unreliable for resolving

conflicts between handheld devices and distributed database systems.

There also exists many other approaches of resolving update conflicts between the

PalmPilot and Notes. For some databases, it may make sense to always ignore the

handheld version when a conflict is detected. Others may resolve the conflict according

to the value of a particular field in the document. The nature of the database will dictate

the update conflict resolution approach. For our synchronization framework and the

prototypes, we have chosen to adopt the above approach of keeping both conflicting

versions in both platforms, mainly because it is a conservative approach that will avoid

loss of data regardless of the type of database being manipulated.

4.4.2 Update/Update Conflicts with Multiple Replica Synchronization

The types of update/update conflicts described above assumed that there was only one

PalmPilot synchronizing with one database. There are actually other potential conflicts

related to race conditions which occur when there is one PalmPilot synchronizing with

multiple replicas of the same database. Suppose that we have one PalmPilot which

synchronizes with replicas A and B, which also replicate between themselves regularly.

The scenarios described below start out with all three locations with the same identical

updated document x.

Scenario 1:

* Modify x in replica B

* Modify x in replica A (document x in replica A is now the most up to date copy)

* Synchronize PalmPilot with replica A

* Synchronize PalmPilot with replica B

Problem: The modified version in replica A is the latest version, and therefore it should

be the one ultimately kept in the PalmPilot. This remains true up to step 3. However, in

step 4, the synchronization process overwrites the original updated document in the

PalmPilot with an older version from replica B. This occurs because both versions of

document x in replica A and B have the same UNID. In the IMT, this UNID is mapped

to one particular record in the PalmPilot which will receive the modifications from both

replicas. Since there is no date/time information indicating which modifications a

particular record contains, any modification, old or new, will be propagated from Notes.

Scenario 2

* Modify x in replica B

* Modify x in PalmPilot

* Synchronize PalmPilot with replica A

* Synchronize PalmPilot with replica B

Problem: Very similar to the problem encountered in Scenario 1, except in this case, the

most updated version of document x originated from the PalmPilot. In the end, the

PalmPilot is again left with an outdated version of document x that came from replica B.

In both scenarios, the source of the problem lies in the fact that there is no mechanism to

determine whether a particular PalmPilot record contains the most current information.

In step 4 of both scenarios, the Notes document in replica B contains old modifications

which overwrite the newer modifications residing in the PalmPilot, since the

synchronization process did not realize that PalmPilot had the newer version. This

situation is actually temporary, since Notes replication will eventually propagate the most

up to date version of document x to all replicas. In the scenarios above, when replicas A

and B replicate, conflict documents will be created since a modification conflict will have

occurred, given that document x was modified in both replicas. Any subsequent

synchronization will bring both versions of document x to the PalmPilot, and the user can

then determine which one to use. However, there is still a small gap of time in which the

PalmPilot user could potentially be dealing with stale data.

The simplest solution to this problem would consist of storing a timestamp in each

PalmPilot record, indicating when they were last modified. Such additional information

would allow the synchronization process to determine when to ignore modifications

when the PalmPilot has a newer version. However, this approach would require

changing the existing PalmPilot application to support this functionality, and such

approach would violate our requirement of preserving the existing handheld device

applications. Another solution consists of extending each entry in the RIT to also include

the time when each replica was last modified. Whenever a document is modified, Notes

updates the replica's last modified date/time. With this extra information during a

synchronization session with a particular replica, the handheld can determine if there are

other replicas that may potentially contain newer updates. If this is the case, then the

synchronization process should warn the user that the PalmPilot may contain stale data.

4.4.3 Remove/Update Conflicts

Remove/update conflicts occur when the user deletes a document in Notes and modifies

the corresponding record in the PalmPilot, or vice-versa. The same could occur between

Notes replicas, where the same document is deleted in one replica and modified in

another one. Once again, there exists a variety of strategies to solve this type of conflict,

ranging from always ignoring any deletions done in the PalmPilot, or always propagating

deletions from Notes to the PalmPilot even if there are modifications to the record in the

PalmPilot.

For remove/update conflicts within Notes replicas, the Notes replication mechanism

always restores the document in the replica in which it was previously deleted. This

approach has the advantage that modifications are never lost. For remove/update

conflicts that occur between Notes and the PalmPilot, we propose to adopt the same

approach that Notes uses for conflicts within replicas. If a PalmPilot record is deleted,

but its corresponding document in Notes was modified, a new PalmPilot record

containing the modifications is created during the next synchronization session. In the

same way, if a Notes document is deleted but its PalmPilot counterpart is modified, a new

Notes document with the PalmPilot modifications is created. For the purposes of a

general synchronization framework, this conservative approach will work for most types

of databases, as long as the conflicts do not occur too often. Developers will always have

the option of extending the framework with additional conflict resolution strategies.

5. Authentication of PalmPilot during synchronization

Allowing handheld devices to synchronize with information residing in Lotus Notes

databases creates a security problem by adding a potentially insecure channel of access

into the Lotus Notes network. More specifically, the desire to support remote handheld

synchronization leaves the Notes system vulnerable to attacks from unauthorized

handheld devices trying to access the system remotely. Part of the problem is that current

handheld devices do not support robust authentication mechanisms that ensure that only

authorized handheld devices synchronize with a particular desktop computer. As

mentioned earlier, for example, PalmPilot's Hotsync Manager authenticates a PalmPilot

prior to synchronization by only checking a user name and id number stored in the

handheld device. Aside from the handheld to desktop computer authentication problem,

there is also the issue of authenticating a handheld user with Lotus Notes. Currently, a

Notes user in a client machine authenticates himself/herself with a password and a

personal ID file residing in the client. If the user tries to remotely access the Notes

network using a handheld device, he/she will need some secure mechanism to present

both a password and personal ID file for authentication with Notes.

The rest of the chapter is organized as follows: Section 5.1 provides some background

information by briefly describing Lotus Notes' security mechanism, and Section 5.2

describes a simple alternative for solving both authentication problems mentioned above.

The prototype described in Chapter 6 includes an implementation of this alternative.

Note that the simple solution presented in this chapter does not aim to be robust enough

to effectively solve the problem of securely accessing Notes from a handheld device. A

detailed discussion on the correctness of robust security mechanisms goes beyond the

scope of this thesis, since the latter only attempts to raise the issue of the need for better

security mechanisms. Therefore, while the solution presented in section 5.2 serves as a

possible starting point towards solving the security problem in question, the development

of more robust authentication and encryption protocols is left for future work.

5.1. Lotus Notes Security

One of the strengths of Lotus Notes lies in its security model. Notes uses a validation and

authentication mechanism to ensure that only authorized users access the information in

the servers. Each user has a personal ID file, which contains the user name, a set of

certificates, and a pair of private and public encryption keys generated using the RSA

Cryptosystem. These keys are used both for authentication and data encryption. When

the user tries to access a Notes server, the latter utilizes the information in the user's

personal ID file to check whether the user has access to its information. More detailed

information on how Notes uses the information in the personal ID file for authentication

and validation can be found in the Lotus Notes Server Administration Guidel 4

The heart of Notes' validation and authentication mechanism lies in the information

present in the user's ID file. To protect such information, Notes adds another layer of

security by allowing users to encrypt the information in the ID file using a secret key

generated from a password chosen by the user. If an ID file is protected, when the user

tries to access a particular server, the Notes client with the user's ID will prompt the user

for the appropriate password. Only with the right password will the client decrypt the

user ID, and use its information to access the server. The Notes client tries to prevent

password spoofing by increasing the delay in between the input of incorrect passwords.

Users are actually not required to encrypt their user ID file with a password, but such

practice is strongly recommended. For the remainder of this discussion, we will assume

that the user has protected the ID file with a password.

5.2. Providing remote handheld access without compromising Notes security

The key parts of Notes' validation and authentication mechanism consist of the user ID

file and its password. When synchronizing a handheld device with Notes, both the ID

file and password must be available. Most of the times, the user will synchronize with a

Notes client residing in the user's own desktop machine. In this case, the user's personal

ID file will already be present in the computer, requiring the synchronization process to

only have to prompt for the user's password to proceed with the validation and

authentication process. If the Notes client is already running during synchronization, the

user also has the option to allow the synchronization process to use the same password

previously entered by the user from the Notes client. This option essentially lets the

Notes client share the user's password with other Notes applications, such as the

synchronization process.

The mechanism described above will work as long as the user always synchronizes

directly with the desktop computer, making it possible to enter the Notes password

directly from the desktop computer when prompted by the Notes client. However,

current handheld technology allows users to also synchronize remotely with a particular

machine in the network. Such remote synchronization model presents a problem if the

Notes client prompts the user for a password during remote synchronization, especially

since current handheld devices do not support a secure method for entering a password in

the device and transmitting it securely to a desktop machine through the network.

Assuming that the user always synchronizes with a machine that has the user's personal

ID file, the basic problem then becomes how to securely transfer a clear text password

entered in the handheld device to the desktop computer through an open unprotected

network.

A simple solution for transmitting a password securely consists of first encrypting the

Notes password in the desktop machine using a newly generated symmetric key. The

encrypted password is then stored in the desktop machine itself, and the key used to

encrypt the password is stored in the handheld device. During remote synchronization,

the stored symmetric key is transmitted from the handheld device to the conduit, which

uses the key to decrypt the password stored in the desktop computer. The decrypted

password is then used to access the Notes network. Our first prototype of the Notes Mail

PalmPilot conduit, described in Chapter 6, uses this approach for secure remote

synchronization. This solution has the advantage that the password itself is never

transmitted over the wire, and it also provides a better authentication mechanism since

only the handheld device with the right key will be able to synchronize and access the

Notes network remotely. However, this approach is also vulnerable to various malicious

attacks. For example, this approach is exposed to replay attacks, since a hacker can

potentially intercept the key stored in the handheld while it is being transmitted from the

handheld device to the desktop computer, and thereafter use it to illegally synchronize

with the Notes network from a handheld device.

While the approach described above provides a better secure solution for remote

synchronization, other alternatives with better protection against security attacks should

be explored in future works.

6. Case Study: Lotus Notes Mail Synchronization
Conduit

In order to better understand the practical issues of implementing a synchronization

framework for the PalmPilot and Lotus Notes, a prototype conduit which allows users to

read and edit their Lotus Notes mail from their PalmPilots was designed and

implemented for this thesis project. At the time of development, there was no

commercial product available that offered such capability, and given that there was a

great demand for such conduit within Lotus, the prototype seemed to be a good starting

point, especially since there was a large group of people within the company available to

test it.

Lotus Notes Mail consists of a regular Notes database with special views and folders

designed to organize incoming and outgoing mail. The Inbox folder contains all the

incoming mail, which are marked unread until first opened by the user. The Trash folder

contains all the mail that the user wishes to purge from the system at a later time. The

Drafts view contains all the memo drafts which will be sent at a later time, while the Sent

view contains a copy of all the outgoing mail that the user chose to save. Users may also

create additional folders or views within the Mail database, and move messages from any

of the default folders or views to the custom created ones. When the user deletes a

particular message, it is first placed in the Trash folder. The message is only cleared

from the system when the user chooses to purge the Trash folder.

While the Notes Mail databases are usually kept in the server machine, users often create

a local replica of their mail database in their own computers. For notebook users, this

allows them to manage their mail on the road while disconnected, and once they come

back to the office, they replicate with the server copy to upload and receive any new

changes. Some notebook users also directly access the server copy of the Notes Mail

database through a modem connection.

On the handheld side, the PalmPilot Professional version comes with a Mail application

built in. This application organizes messages in five different categories: Inbox, Outbox,

Deleted, Filed and Draft. The Inbox, Outbox, Deleted and Draft categories are equivalent

in function to Notes' Inbox, Send, Trash and Drafts views/folders. The Filed category is

used to store those messages from the Inbox that the user wishes to keep for a while.

When the user composes a new message, and chooses to send it, it is automatically

placed in the Outbox category. The Outbox category can also be viewed as a queue of

messages that need to be sent once the PalmPilot is connected to the network.

6.1. Design Goals

In the process of developing the Notes Mail conduit, the primary goal was to allow users

to utilize the existing built in Mail application in the PalmPilot to read, compose, edit,

and send messages in their Lotus Notes Mail database. Furthermore, we assumed that

users could synchronize with either the server or local replicas of their mail database,

depending on the availability of a network connection.

Given the limited viewing capabilities of the PalmPilot, only the plain text of mail

messages was preserved during the conversion from Notes document to Pilot record.

Therefore, graphics, attachments, document links and other possible multimedia content

in Notes mail messages were not transferred to the PalmPilot.

Even though the different default views and folders of the Notes mail database map

directly to corresponding categories in the PalmPilot's Mail application, it did not make

sense to simply apply a two-way synchronization algorithm for the contents of every

view and folder. More specifically, the user probably does not want to have every

message ever saved in the Notes Sent view transferred to the PalmPilot's Outbox

category. Therefore, the conduit only transfers messages from the PalmPilot Outbox

category to Notes' Sent view, and not vice-versa. Also, given that PalmPilot users cannot

edit the messages in the Inbox category, only a one-way synchronization algorithm from

the Notes Inbox to the PalmPilot Inbox needs to be applied. For draft messages, the

direction of synchronization will depend on the user's preference. If the user wants both

the PalmPilot Draft category and Notes Draft folder to always contain the exact same

draft changes, then a two-way synchronization would be required. However, the user

may want to just propagate draft changes from the PalmPilot to Notes, or vice-versa. The

same applies for deletions, since the user may not want to propagate deletions from Notes

to the PalmPilot, or vice-versa.

Given the possible different ways that users may want to handle the synchronization of

outgoing, incoming, draft and deleted messages, the conduit must allow the user to

choose how to handle each of the different types of mail messages. For Inbox messages,

there should be the option to enable or disable downloading inbox messages from Notes

to the PalmPilot. For outbox messages, there should be the option to enable or disable

sending the messages that are in the PalmPilot's Outbox category. For drafts messages,

there should be the options to ignore draft changes or to propagate draft changes from

PalmPilot to Notes and vice-versa. For deletions, similar options should also be

provided, allowing the user to either not propagate deletions between Notes and

PalmPilot, or to propagate deletions from Notes to PalmPilot, vice-versa, or both ways.

When downloading inbox messages from Notes to the PalmPilot, there should also be

options to allow users to select a small subset of inbox messages, given that a Notes Mail

database can be arbitrarily large. Some of the useful options for users include

downloading only new messages since last synchronization sessions, downloading only

new and unread messages since last synchronization sessions, downloading all messages

received since a particular date, and downloading all messages in the Notes Inbox.

Even with the options provided above, there will probably still be some users who would

want to download a different set of Notes mail messages into their PalmPilots. For such

users, there should be an additional option for downloading messages from an arbitrary

Notes view or folder into one of the PalmPilot mail categories. Ideally, the conduit

should allow the user to specify the name of the Notes view or folder to be synchronized.

This option would work well under the following two scenarios. Suppose Ben Bitdiddle

wants to have all the messages he has received from Alissa P. Hacker in his PalmPilot.

To do so, he can create a view named "Foobar" which only selects those messages from

Alissa, and then tell the mail conduit to download the messages in the "Foobar" view into

the Filed category in the PalmPilot. On the other hand, suppose Ben finds one particular

message which he wants to have in his PalmPilot. To do so, he creates a folder named

"Pilot" in Notes, and he places that message in the new folder. He then configures the

mail conduit to place the contents of the "Pilot" folder into the Inbox category in the

PalmPilot, and synchronizes.

6.2. Early Prototype

The first prototype of the Notes Mail conduit was developed in the beginning of the

summer of 1997. Since it was originally intended as an experiment to explore the general

implementation issues of transferring Lotus Notes data to PalmPilot, this first prototype

did not have many of the features described in the design consideration given above. It

supported transferring outgoing messages from the PalmPilot to Notes, and downloading

Inbox messages from Notes to the PalmPilot's Inbox category. In the conduit's

configuration, the user could choose to download all new messages since the last

synchronization session, all new unread new messages since the last sync session, or all

the messages in the Notes Inbox. The conduit also allowed users to download all

messages in a particular Notes view/folder into the Filed category in the PalmPilot.

Draft synchronization and propagation of deletions were not supported in this prototype,

since there was no mechanism keeping track of how documents in Notes mapped to

records in the PalmPilot. Therefore, with this prototype, the PalmPilot was practically a

cache where users could store messages to be read on the road, and where users could

store new composed messages to be sent at a later time when network connection was

available. With this model, it was not necessary to keep a mapping of Notes document to

PalmPilot record id, since propagation of changes and deletions was not yet supported.

Therefore, many of multiple replica synchronization issues described in this thesis did not

apply for this prototype. The configuration dialog box for the conduit in this first

prototype is shown in Figure 6.1, which summarizes the features that were supported in

this version. The code used to implement this first prototype version is included in

Appendix A.

Figure 6.1 Main configuration setup window for Notes Mail Conduit.

Notes Mail messages sometimes may contain over 1 Mb of text, and synchronizing such

messages would quickly overflow the memory constraints of the PalmPilot. To address

this potential problem, this first prototype truncated any mail message that contained over

20K of text during the conversion of Notes document to PalmPilot record. For those

messages which were truncated, a warning message was appended to the top, indicating

to the user that the contents of the message being read is incomplete.

With this first prototype, different ways to access the Notes network from the PalmPilot

remotely were also explored. As explained earlier, when synchronizing with a client

computer remotely using a modem, there needs to be some mechanism to enter the Notes

password from the PalmPilot and transfer that information securely over the network.

This is not an issue when directly synchronizing with the desktop computer since the user

can authenticate himself by entering the password directly in the desktop computer. For

this prototype, authentication problem was addressed by first encrypting the user's

password, then storing the encrypted password in the desktop computer and the key to

decrypt the password in the PalmPilot. This way, in the beginning of a remote

synchronization session, the conduit would first probe the PalmPilot for a valid key,

which it would then use to decrypt the stored encrypted password in the desktop. If

successful, the conduit will then have the password necessary to access the Notes

network. This method has the added benefit that only a valid PalmPilot, with the right

key, can synchronize with the user's desktop and access his Notes information.

The process of creating a key, encrypting the password, and storing the key in the

PalmPilot was added to the setup of the conduit. Whenever the user changed his

password, he/she would have to run the conduit's setup configuration in order to create a

new key and store a new encrypted password. For the key generation, Microsoft's

Crypto API was used, and it provided all the calls necessary to generate a 40-bit key used

to encrypt and decrypt a string of text. For those users who still did not have a valid

password key stored in the PalmPilot, there is the option to enter the password in the

PalmPilot itself prior to a remote synchronization session. In this case, the password is

stored in the PalmPilot temporarily, and during synchronization, the conduit reads the

password from the PalmPilot. The risk with this approach is that the password is

transferred over the network in plain text, leaving it target for potential hacker attacks.

We left the option under the assumption that the user would only use it within a secure

network link. Also, if the password is entered from the PalmPilot, the user has the option

to permanently store the password in the desktop, in which case the conduit would

encrypt the password before storing it, and store the key to the encrypted password in the

PalmPilot. In future remote synchronization, the user can use such key to log in instead

of entering a password. Figure 6.2 shows the login screen in the PalmPilot which was

developed for password input prior to synchronization. The code used to develop this

PalmPilot application is included in Appendix B.

Figure 6.2 PalmPilot application used to enter Notes password.

This first prototype was distributed to people within Lotus and IBM, and it was also made

available to the public through the Lotus Research web page. Some of the early informal

feedback obtained from users indicated some interesting behavior in terms of managing

Notes mail from a PalmPilot. It seemed that a popular option was the one which allowed

users to download messages in a particular custom Notes view/folder into the PalmPilot's

Inbox. Users utilized this option to download specific messages into the PalmPilot, such

as messages containing meeting schedules or driving directions which the users would

need while on the road. Not many users who synchronized with the desktop seemed to

use any of the options to download Notes Inbox messages into the PalmPilot Inbox.

However, users who synchronized remotely with a modem often took advantage of such

features to read any new messages while on the road. Some even mentioned that they no

longer carried their notebook computers on certain trips since they could just use their

PalmPilots to check for any important messages.

6.3. Transitioning from Research Prototype to Commercial Product

When the prototype was first released in July of 1997, Lotus did not have an official

version of a Notes Mail conduit available for customers, despite the high demand for

such a conduit. Given that this prototype seemed to have many of the basic functionality

needed for a commercial version of the conduit, Lotus decided to use the prototype as the

base code for a commercial version.

Two critical features were missing in the first prototype which needed to be added for the

commercial product: the ability to propagate changes to mail drafts, and the ability to

propagate deletions. In order to implement these features, a table mapping Notes

document id's to PalmPilot record id's was needed, since the conduit needed some way

to find the corresponding Notes document of a modified PalmPilot record, or vice-versa,

in order to apply the changes accordingly. The framework presented earlier in Section

4.3 would had been ideal to solve this id mapping problem. However, there was also the

need to integrate the Notes Mail conduit into a suite of existing conduits known as

EasySync 1.0 for Notes, which synchronized the Notes Address Book, Calendar and To

Do databases with the PalmPilot. Therefore, in an effort to simplify the integration

process, the approach of the other existing conduits to solve the id mapping problem was

used. This approach consisted of keeping the IMT in Notes, but in order to address the

multiple replica synchronization issues discussed earlier, this approach prevents the user

from synchronizing with a different replica until the most updated IMT has propagated to

the replica that the user is currently synchronizing with. Therefore, suppose Ben has his

main server replica of his mail database, along with a local replica in his notebook. If

Ben makes changes directly to his server copy of the mail database, synchronizes with it,

and goes home with his notebook and PalmPilot, he will not be able to synchronize his

PalmPilot with the local replica of his mail database in his notebook until he replicates

that local replica with the server copy.

With the IMT handling approach described above, it was possible to implement the

ability to propagate draft changes and deletions to the Notes Mail conduit. For this

commercial version, the propagation of read/unread marks was also included. Therefore,

when a message is marked unread in Notes, once it is synchronized to the PalmPilot, it is

also marked unread in the handheld. If the user reads the same message from the

PalmPilot and marks it read, then during the next synchronization session, the same

message will be also marked read in Notes. Another additional feature consisted of

detecting when a Notes messages had a file attachment, and indicating in the beginning

of the body of the translated PalmPilot record that the original message in Notes contains

an attachment. The synchronization options of this commercial version are shown in

Figure 6.3, which displays the dialog boxes for configuring the conduit. For the final

release version, shipped in January 1998 as part of the Lotus EasySync 2.0 for Notes, the

Notes Mail conduit supported all the features which were outlined in the design goals

described in Section 6.1.

Figure 6.3 EasySync 2.0 Mail Conduit options

6.4. Additional Features for Future Versions of Mail Conduit

There are a some additional changes which we would like to see implemented in future

versions of the Notes Mail conduit.

1. The algorithm for handling multiple replica synchronization described in Section 4.3

should be integrated into the conduit, eliminating the current constrain which forces

users to replicate whenever they wish to synchronize with a different replica.

2. Currently users can only change their synchronization options from the desktop

through the menus shown in Figure 6.3. There will be times when the user will want

to change such settings for a particular synchronization session initiated remotely.

Therefore, the same configuration options shown above should be made available in

the PalmPilot, allowing users to choose their settings of choice prior to a remote

synchronization session.

3. Note that for the commercial version, the remote log in and password transfer features

which we had experimented with in the prototype version were not included due to

shipping date constraints. In order to ensure the security of the Notes network during

remote synchronization, future versions of the conduit should include a secure

password transfer mechanism.

The remote operation options described above will become critical with the server

synchronization model in which many users have expressed interest. Under this model,

the handheld device synchronizes directly with the Notes server, bypassing the desktop

machine with the Notes client. Handheld users with modems will be able to dial in to

their network, select the Notes server with the information they need, and synchronize

directly with the desired server. With server synchronization, the handheld device

becomes a thin client in a networked environment.

However, providing handheld devices with direct access to server raises certain security

issues. One of these include the issue of where to store the Notes user IDs, which usually

reside on the same machine as the Notes client. Storing the Notes ID in all the servers

the user may access is cumbersome, and storing the Notes ID in the PalmPilot raises the

issue of whether the handheld device should be considered a safe place to keep such

important information, given how easy such small devices can be stolen. Keeping the

Notes ID in the server side can be simplified by setting up a designated synchronization

server, which contains the Notes IDs of all users, and which serves as a proxy through

which handheld users can access other servers. If the Notes ID is kept in the server, then

there also needs to be a secure mechanism to transfer the password, used to decrypt the

information in the Notes ID, from the handheld device to the server. This illustrates the

importance of the remote login mechanisms described earlier. This thesis only touches

upon some of security issues that may arise with remote synchronization. Future

implementation of the server synchronization model will require a more detailed analysis

of the interaction of Notes security and handheld devices.

7. Evaluation

7.1. Notes Mail Conduit Usability Test Results

In order to get a better idea of how users felt about the released version of the Notes Mail

conduit, a limited survey study was conducted with a selected number of users who have

been involved with the project since its beta testing stage. The goals of this study

consisted of learning how the Mail conduit was being used, how users felt about

additional features such as support for multiple replica synchronization and direct server

synchronization, and how well the conduit's features and performance fulfill users'

needs. A copy of the survey sent to the selected users is included in Appendix C.

Fifty surveys were sent out, and the preliminary feedback results presented here reflect

the information in twenty returned surveys. Due to time constraints, a more extensive

user study involving a larger population was not conducted. Furthermore, most of the

returned surveys came from users who worked within Lotus and IBM. A more

representative survey should also include feedback from users with different backgrounds

and work environments.

According to the study, users generally dealt with Mail messages smaller than 10 Kbytes

(Figure 7.1), which meant users rarely had messages truncated by the conduit's 20 Kb

limit imposed for messages transferred to the PalmPilot. Part of the reason why these

messages were relatively small in size is the fact that only the text part of the messages

were extracted during synchronization. Most users felt it was not necessary to convert

the rest of the rich text of the original message, including graphics, attachments, and

editable fields/buttons. Given the small and limited screen of handheld devices, it seems

that users are not too concerned with information beyond the text content of messages.

Average Message Size in Handheld

25%

.5-10K
0 10-20K

13%o

Figure 7.1 Average size of messages in PalmPilot

A majority of surveys seemed to indicate that most people used the PalmPilot as a mail

reader, since very few users regularly sent out messages composed in the PalmPilot itself.

Figure 7.2 illustrates the large number of messages transferred to the PalmPilot from

Notes compared to the small number of messages sent out from the PalmPilot. Users

usually complain that the PalmPilot's input and editing capabilities are still too

cumbersome to compose long messages. This will probably change as handheld

technology advances, and speech and handwriting recognition become more prevalent.

Number of Daily Messages Sent Number of Daily Messages
from PalmPilot Transferred to PalmPilot from Notes

8%

29%

42% BO 130-10

1-3 29% 10-20

0>3 020-30

°1>3 O 0>30

Figure 7.2 Average number of messages transferred to and sent from the PalmPilot

In terms of the data selection/manipulation options, the most popular ones amongst users

were the options to synchronize messages in Notes Inbox and propagate deletions from

Notes to PalmPilot (Table 7.1). This actually proved to be contrary to the earlier

feedback we had obtained with the first prototype of the conduit, where most users had

indicated that they preferred to synchronize messages in a custom view/folder. This

could be partly because the option to only download new and unread messages from the

Notes Inbox did not work properly in the earlier versions of the prototype. This problem

was fixed with the released product version. In general, it seems that the data selection

options provided by the conduit fulfilled the needs of most users.

Table 7.1 Percentage of users who used each of the synchronization options.

In terms of the Inbox synchronization options, it was actually surprising that a fair

number of users chose to synchronize their entire Notes inbox (Table 7.2). We had

originally assumed that users would have hundreds of messages in their Notes inbox, and

therefore they would probably just want to synchronize a small subset of those messages.

However, it seems that many users keep their Inbox fairly small by constantly deleting

and filing messages appropriately. One common request from users was to add another

option to synchronize only those Notes inbox messages which were a certain number of

days old.

All new unread messages since last Hotsync 39
All new messages since last Hotsync 7
All messages since a particular date 15
All messages in Inbox 39

Table 7.2 Preferred Inbox selection method for users who synchronized their Notes Inbox

Regarding the performance of the Notes Mail conduit, most users indicated that

synchronization time usually took less than a couple minutes. For those users who

transferred over 20 messages between PalmPilot and Notes at a time, synchronization did

take longer, but it never went beyond five minutes. During the development of the

conduit, we concluded that the biggest bottleneck for the conduit's performance was in

the network connection between the Notes client and server, and the serial connection

between the PalmPilot and the Notes client. The actual data conversion and

synchronization mechanism did not contribute significantly to the synchronization time.

Likewise, with the server synchronization model, the performance bottleneck will

probably be in the network connection between the PalmPilot and the Notes server.

Currently, the release version of the Notes Mail conduit does not support synchronization

with multiple replicas which may be out of sync with each other. Many users felt this

was a serious limitation, since they often synchronize with replicas of their mail database

residing in both their notebook and desktop computers. This again illustrates the need to

implement the multiple replica synchronization framework outlined in section 4.3 in

future versions. A majority of users also indicated that they would want to have direct

remote server synchronization, but some of them did express concern about how such

synchronization model would affect the security of their Notes system. Therefore, future

work on server synchronization should expand on the security issues that chapter 5 of this

thesis presented.

7.2. Assessment of the overall synchronization framework and future work

Both the prototype and release version of the Notes Mail conduit have allowed us to test

parts of the more general synchronization framework that we have outlined in this thesis.

The data selection and conflict resolutions mechanisms described in Chapter 4 are

currently being used by the Notes Mail conduit, and they seem to be meeting the needs of

most users, as evidenced by the results of our survey. For the Mail conduit, we have

followed the proposed framework's conservative approach for resolving update/update

and update/remove conflicts, where information is never lost through the creation of

duplicates. However, synchronization of certain other types of databases can be made

more efficient through more aggressive conflict resolution strategies, especially if there is

a high rate of conflict occurrence. Both the data selection and conflict resolution

strategies can be heavily dependent on the nature of the database, and therefore our

proposed synchronization framework has only attempted to establish general guidelines,

as opposed to set specific algorithms which would have probably become too application

specific.

In terms of the data conversion process, this thesis project only experimented with

extracting the plain text from Notes documents to PalmPilot records. Possible next steps

include the conversion of graphics and doclinks. In Notes, a doclink consists of an active

link which allows users to jump from one document to another by clicking on the link.

To a certain extent, doclinks in Notes are analogous to hypertext in the World Wide Web.

When synchronizing documents with doclinks to a PalmPilot, it would be useful for the

conduit to also automatically synchronize the documents that the doclinks refer to, and to

add the appropriate links in the PalmPilot version of the original document. However,

one must be careful about trying to convert every single element in a Notes document to

its handheld equivalent, since sometimes, only the plain text information is already

sufficient in the limited environment of a handheld device with a small screen and limited

memory. As evidenced by the user feedback for the Notes Mail conduit, most users felt

that extracting just the plain text from mail messages was enough. Therefore, much like

data selection and conflict resolution, the process of determining a data conversion

strategy should be coupled closely with the type of database being synchronized.

The multiple replica synchronization algorithm presented in section 4.3 has not been

implemented due to time constraints. A good next step for this project would consist of

the development of a general purpose API which would abstract the complexities of

maintaining the different tables during synchronization. Ideally, this API would enable a

software developer to quickly build conduit-like applications that would synchronize any

range of handheld devices with multiple Notes replicas. A good test of the versatility of

such API would be to use it to rewrite the Notes Mail conduit and develop the equivalent

conduit for a Microsoft Windows CE device.

One of the goals of this thesis was to address the issue of providing secure access to the

database system from handheld devices. Chapter 5 described the nature of this security

problem, and it presented a possible simple solution to the problem. As stated earlier, the

development of a more robust security mechanism for remote handheld access went

beyond the scope of this thesis. Nevertheless, future work on this area should follow up

on the issues presented in Chapter 5 by developing better authentication mechanisms to

ensure that only authorized users access the information in the network from their

handheld devices.

Many of the design decisions in this project were directly related to one of the original

requirements of preserving the existing handheld applications. As a matter of fact, much

of the complexity of correctly maintaining an IMT was necessary because we chose to

not modify the existing handheld applications. The virtue of such requirement becomes

apparent as we apply the proposed framework to the wide range of different types of

handheld devices currently available. We have not extended our work beyond the

PalmPilot, but the development of the general synchronization API mentioned above

should be the first steps towards showing that the high cost of re-writing the same

application across different handheld devices overshadows the added complexity of

developing a framework which does not require the re-development of existing

applications.

8. Conclusion

As the demand for handheld-based solutions continues to grow, it is clear that there needs

to be better ways to integrate handheld devices with existing information networks.

Improvements in handheld technology and the growing user base of such devices have

made it possible to develop and test reliable systems where computer networks and

handhelds are capable of working together. This thesis project aims to provide a better

understanding of the issues behind transforming handheld devices such as the PalmPilot

into a seamless extension of existing distributed database system like Lotus Notes. More

specifically, this thesis proposes a general framework that addresses the critical

synchronization issues outlined earlier in this thesis. These issues included appropriate

mechanisms for selection and conversion of data, conflict resolution, multiple replica

synchronization, and secure remote synchronization. The proposed framework was

shaped by the premises that it should not require the re-development of existing

applications residing in the handheld device, and it should work despite handheld

memory limitations, intermittent connectivity and platform differences.

Even though most of the work done in this project has involved the PalmPilot and Lotus

Notes, much effort was taken to avoid design decisions which were specific to either

platform choices. However, our experience has been limited to the implementation of a

synchronization process involving Notes and the PalmPilot, and therefore there could still

be more critical general synchronization issues that arise when allowing others types of

handheld devices to connect with other types of distributed databases systems. Thus, the

work in this project should be complimented by additional experiments with other

systems such as Microsoft Windows CE-based handhelds and Oracle database system.

Over time, the framework presented by this project will become more thorough and

robust as more systems are explored.

The Notes Mail conduit described in Chapter 6 is just one example out of many other

possible applications where synchronization with handheld devices can add versatility

and convenience. Inventory management from the road, field data collection, and remote

project management are some examples of other areas which highlight the potential

markets for the integration of handheld devices into distributed database systems. The

combination of the continuous improvement of handheld technology and the

synchronization framework in this thesis can potentially bring handheld devices one step

closer to being truly useful tools in a networked world.

Appendix A - Source code for Notes Mail Conduit
prototype

/*
File: MailConduitMonitorClass.cpp

*/

#include "stdafx.h"
#include "string.h"
#include "SyncMgr.h"
#include "Condutil.h"
#include "hslog.h"
#include "MailConduitMonitorClass.h"
#include "MailRecordClass.h"
#include "resource.h"

#define YEAR_OFFSET 1904

#define NOTES_YEAR_OFFSET 1900

#define SIZE_OF_PILOT_RECORD 10000

#define SIZE_OFTOTAL_BYTES 10000

#define MAXBUFFER_SIZE 10000

#define INBOXCAT_ID 0

#define OUTBOX_CAT_ID 1

#define DELETEBOX_CAT_ID 2

#define INFORMATION_CAT_ID 10

#define INFO_REC_SIZE 4

#define MAX_VIEWFOLDER_SIZE 100

#define DELETE_BIT 0X80

#define DIRTY_BIT 0X40

CMailConduitMonitor::CMailConduitMonitor (PROGRESSFN pFn,
CSyncProperties& rProps):

CBaseConduitMonitor(pFn, rProps)

logfile.open("mailcond.log", ios::out, 0);

logfile<<"Beginning to log the sync process"<<endl<<endl;

logfile<<"CSyncProperties:
"< < endl;

logfile<<"m_PathName: "<<m_rSyncProperties.m_PathName<< endl;

logfile<<"m_LocalName: "<<m_rSyncProperties.m_LocalName<< endl;

logfile<<"m_UserName: "<<m_rSyncProperties.m_UserName<< endl;

logfile<<"m_RemoteName: "<<m_rSyncProperties.m_RemoteName<< endl;

logfile<<"m_nRemoteCount: "<<m_rSyncProperties.m_nRemoteCount<<

endl << endl;

HKEY software,usrobotics,pilotdesktop;
RegOpenKeyEx(HKEY_CURRENT_USER,"Software",0,KEYALL ACCESS,&softw

are);
RegOpenKeyEx(software,"U.S.

Robotics",0,KEY ALL ACCESS,&usrobotics);

RegOpenKeyEx(usrobotics,"Pilot
Desktop",0,KEYALLACCESS,&pilotdesktop);

RegOpenKeyEx(pilotdesktop,"ApplicationMail",0,KEYALLACCESS,&app
licationmail);
}

CMailConduitMonitor::-CMailConduitMonitor()

{
}

long CMailConduitMonitor::StartSync()

{
long retval;

CONDHANDLE conduitHandle = (CONDHANDLE)0;
Activity syncFinishCode = slSyncFinished;

logfile << "-> Registering the Conduit" << endl;

// Registering the conduit w/ SyncMgr.DLL for communication w/ HH

if (retval = SyncRegisterConduit(conduitHandle))
return(retval);

LogAddEntry("",slSyncStarted,FALSE);

logfile << "-> Obtaining Remote Table" << endl;

retval= ObtainRemoteTable();

if (retval != CONDERR NONE)
return retval;

logfile << "-> Starting Fast Sync process" << endl;

retval = DoMailSync();

if (!IsCommsError(retval))
{

SyncResetSyncFlags(m_RemHandle);
SyncCloseDB(m_RemHandle);

if (retval)
syncFinishCode = slSyncAborted;

LogAddEntry("NotesMail",syncFinishCode,FALSE);

if(!IsCommsError(retval))
SyncUnRegisterConduit(conduitHandle);

return (retval);

void CMailConduitMonitor::LogApplicationName(char* appName, WORD len)

{
// Load string from the resource file.

::LoadString(m_DllInstance, IDS_COND_NAME, appName, len);
I

long CMailConduitMonitor::ObtainRemoteTable(void)
{

long retval = CONDERR_BAD_REMOTE_TABLES;

// Opening the Mail Database on the Pilot side, and putting a
handle

// to the Mail DB into the m_hRemoteDB variable.

retval = SyncOpenDB (m_rSyncProperties.m_RemoteName[0], 0,

m_RemHandle,eDbWriteleDbRead);
if (retval == SYNCERR_NONE)
{

logfile << "--> Successfully opened remote database" <<

endl;
logfile << "--> Error Code Returned: " << retval << endl

<< endl;
}
return (retval);

long CMailConduitMonitor::DoMailSync()
{

long err = SYNCERR_NONE;
long lRet = SYNCERR_NONE;
int temp_result;

CRawRecordInfo pilotRawRec;
CRawRecordInfo InfoRec;
CMailRecord pilotMailRec;

// the sync_date_buffer keeps the current day/time of this sync

session.
// if everything goes succefully, we will update the info rec of

the
// mail database w/ this sync_date_buffer, thus saving the

day/time of
// the last sync session
BYTE *sync_date_buffer = (BYTE *)

malloc(sizeof(BYTE)*INFO_REC_SIZE);
LNSetThrowAllErrors(TRUE);

// In this current Alpha 2.0 version, we are not supporting
deletes,

// so it is ok to just purge all deleted mail in the pilot.
SyncPurgeDeletedRecs(m_RemHandle);

// Finding the information record that is being used to store the

date of the
// last sync session where the Mail was sync'ed.
// For the time being, we distinguish the information record by

assigning it the
// unique category number 10.

try
{

// Opening Notes Session
logfile << "-> Opening Notes Session" << endl;

notesSession.Init();

// the last_sync_date contains the same info contained in

sync_date_buffer,
// except in Notes format, making it easier to compare

later.
// Initializing the last_sync_date like this was sort of
// a temp fix, since I was having problems setting the
// day/time/month/year for a LNDatetime object that was
// initialized w/ no arguments.
LNDatetime last_sync_date("07/05/97 23:00:00");

if (! (GetAndSetDateTime(sync_date_buffer, last_sync_date,

InfoRec)))

notesSession.Term();
return -1;

// Getting and opening the Notes Mail database
logfile << "-> Opening Notes Mail Database" << endl;

notesSession.GetMailDatabase(¬esMailDB);
notesMailDB.Open();

// setting up the raw record that will collect the info
from the

// remote record
memset(&pilotRawRec, 0, sizeof(pilotRawRec));
pilotRawRec.m_FileHandle = m_RemHandle;
pilotRawRec.m_RecId = 0;

pilotRawRec.m_RecIndex = 0;
pilotRawRec.m_pBytes = (BYTE *)new char

[SIZE_OF_PILOT_RECORD];
pilotRawRec.m_TotalBytes = SIZE_OF_TOTAL_BYTES;

// Begin looping over the Pilot records that have been

modified.
// These may include new messages that were composed,

messages that
// were deleted, and the filed messages.

while (err == SYNCERR_NONE)
{

logfile << "-> Getting the next modified record in

the Pilot" << endl;
if ((err = SyncReadNextModifiedRec(pilotRawRec)) !=

SYNCERR_NONE)
{

break;
}
// logging the information about the modified record

being read
logfile << "Reading Modified Remote Records" << endl;

logfile << "Remote Record Prop.: " << endl;
logfile << "RecID: " << pilotRawRec.m_RecId << endl;

logfile << "CatID: " << pilotRawRec.m_CatId << endl;
logfile << "RecSize: " << pilotRawRec.m_RecSize <<

endl;
logfile << "Attrib: " << pilotRawRec.m_Attribs <<

endl;
logfile << "Body: " << pilotRawRec.m_pBytes << endl;

if (pilotRawRec.m_CatId == OUTBOX_CAT_ID)
{

logfile << "-> Coverting the raw Pilot record

into PC format" << endl;
ConvertOutboxRecord (pilotMailRec,

pilotRawRec);
//logfile << "-> To: " <<

pilotMailRec.m_szToField << endl;
//logfile << "-> CC: " <<

pilotMailRec.m_szCCField << endl;
//logfile << "-> Subj: " <<

pilotMailRec.m_szSubjField << endl;
//logfile << "-> Body: " <<

pilotMailRec.m_szBodyField << endl;
logfile << "

-" << endl << endl;

LNMailMessage notesMessage;
LNRichText bodyField;
LNRTCursor bodyCursor;

// creating a new notes mail message, and
populating the fieds using the

// information gathered from the pilot record

notesSession.CreateMailMessage(¬esMessage);

notesMessage.SetRecipients(pilotMailRec.m_szToField);

if (pilotMailRec.m_szCCField[0]!=NULL)

notesMessage.SetCC(pilotMailRec.m_szCCField);

if (pilotMailRec.m_szBCCField[0]!=NULL)

notesMessage.SetBCC(pilotMailRec.m_szBCCField);

if (pilotMailRec.m_szSubjField[0] !=NULL)

notesMessage.SetSubject(pilotMailRec.m_szSubjField);

if (!
(notesMessage.GetItem("Body",&bodyField)))

bodyField.Append(pilotMailRec.m_szBodyField);

notesMessage.Send();

//Obtaining the SentSaveOption from the

Registry, and determining whether

//to save the sent document or not.
LPBYTE SentSaveOption= (LPBYTE)

malloc(sizeof(char) + 1);
LPDWORD buffer_size = (LPDWORD)

malloc(sizeof(DWORD) + 1);
*buffer_size = 2;

RegQueryValueEx(applicationmail,"SentSaveOption",NULL,NULL,SentSa
veOption,buffer_size);

// if the user chooses save every sent message,
then we just tell notes to

// save the message.
if (!memcmp(SentSaveOption,"O",l))

notesMessage.Save();

else if (!memcmp(SentSaveOption,"1",l))
{

// if the user chooses to prompt before
saving each sent message

CString mesg = "Would you like to save
the message to ";

mesg += pilotMailRec.m_szToField;
mesg += " regarding ";
mesg += pilotMailRec.m_szSubjField;
mesg += " in your Notes Mail Database?";

int save_result = MessageBox(NULL,mesg,
"NotesMail Conduit", MB_ICONQUESTION I MB_YESNO);

if (save_result == IDYES)
notesMessage.Save();

}
else if (!memcmp(SentSaveOption,"2",l))

continue;
else

notesMessage.Save();

err = SyncDeleteRec(pilotRawRec);

logfile << "-> Scanning and Transferring Mail from Notes to

Pilot" << endl << endl;

if (err && err != SYNCERR_FILE_NOT_FOUND)
lRet == err;

else
{

// The Code below takes care of downloading messages
from Notes to Pilot

// These are the notes variables needed to query the

messages inside the Notes
// Mail database.

LNViewFolder notesInbox;
LNVFEntry notesCurrentEntry;
LNMailMessage notesCurrentDoc;

// picking up the desired mode of downloading the

inbox from the registry
LPBYTE InboxOption= (LPBYTE) malloc(sizeof(char) +

1);
LPDWORD temp_buffer_size = (LPDWORD)

malloc(sizeof(DWORD) + 1);
*temp_buffer_size = 2;

RegQueryValueEx(applicationmail,"InboxOption",NULL,NULL,InboxOpti
on,

temp_buffer_size);

LPBYTE DownloadOption= (LPBYTE) malloc(sizeof(char)

+ 1);
*temp_buffer_size = 2;

RegQueryValueEx(applicationmail,"DownloadOption",NULL,NULL,Downlo
adoption,

temp_buffer_size);

LPBYTE ClearInboxOption= (LPBYTE)

malloc(sizeof(char) + 1);
*temp_buffer_size = 2;

RegQueryValueEx(applicationmail,"ClearInboxOption",NULL,NULL,Clea
rInboxOption,

temp_buffer_size);

// Clearing the Pilot Inbox if the user chose to do

so.
if (!memcmp(ClearInboxOption,"1",l)
{

WORD record_count=0;
SyncGetDBRecordCount(m_RemHandle,

record_count);
logfile << endl << "--> DELETING INBOX RECORDS:

" << endl;

// clearing the Pilot inbox
for (int index = record_count-l; index >= 0;

index--)

CRawRecordInfo tempRawRec;
memset(&tempRawRec,0,sizeof(tempRawRec));
tempRawRec.m_FileHandle = m_RemHandle;
tempRawRec.m_RecIndex = index;

SyncReadRecordByIndex(tempRawRec);
if (tempRawRec.m_CatId == INBOX_CAT_ID)

SyncDeleteRec(tempRawRec);

if (!memcmp(DownloadOption,"O",l))
{

download messages

($Inbox) view,

// this is the case when the user wants to

// from the NotesMail inbox. We first open the

// and go to its first entry.

notesMailDB.GetViewFolder("($Inbox)",¬esInbox); // getting
the Notes Mail Inbox view

notesInbox.Open(); // opening the
Notes Mail Inbox view

notesInbox.GotoFirst(¬esCurrentEntry);
if (notesCurrentEntry.IsCategory())

notesInbox.GotoNextNonCategory(¬esCurrentEntry);

if ((!memcmp(InboxOption,"0",1))
(!memcmp(InboxOption,"1",1))

{

since last sync session

> [I';

Form = \"Reply\")";

&selected_docs,&search_opts)

selected_docs.GetCount();

selected_docs.GetCount() <<

// Creating the list of mail received

CString formula = "Select (DeliveredDate

formula += (LNString) last_sync_date;
//formula += "]) & (Form = \"Memo\"

formula += "])";
LNDocumentArray selected_docs;
LNSearchOptions search_opts;
search_opts.SetBeginDate(last_sync_date);
LNFormula selectionFormula(formula);
notesMailDB.Search(selectionFormula,

int selectedcount =

logfile << "COUNT!!!! = " <<

endl;

if ((!memcmp(InboxOption,"0",1)))
{

// Creating the list of unread
messages

LNDocumentArray unread_docs;

notesMailDB.GetUnreadList(&unread_docs,0);

for (int z = 0; z <
selected_count;z++)

notesCurrentDoc =
selected_docs[z];

notesCurrentDoc.Open();
if

(unread_docs.Contains(notesCurrentDoc.GetNotelD())){

temp_result =

ConvertInboxRecord(notesCurrentDoc,pilotRawRec);
if (temp_result)

SyncWriteRec(pilotRawRec);

notesCurrentDoc.Close();

else if ((!memcmp(InboxOption,"1",1)))
{

for (int z = 0; z <

selected_count;z++)

notesCurrentDoc =
selected_docs[z];

notesCurrentDoc.Open();
temp_result =

ConvertInboxRecord(notesCurrentDoc,pilotRawRec);
if (temp_result)

SyncWriteRec(pilotRawRec);
notesCurrentDoc.Close();

else if (!memcmp(InboxOption,"2",1))
{

// this is the case when the user want to

download all message
// into the inbox, replacing the old

Pilot inbox.

WORD record_count=0;
SyncGetDBRecordCount(m_RemHandle,

record_count);
logfile << endl << "--> DELETING INBOX

RECORDS: " << recordcount << endl;

// clearing the Pilot inbox
for (int index = record_count-1; index >=

0; index--)

CRawRecordInfo tempRawRec;

memset(&tempRawRec,0,sizeof(tempRawRec));
tempRawRec.m_FileHandle =

m_RemHandle;
tempRawRec.m_RecIndex = index;
SyncReadRecordByIndex(tempRawRec);
if (tempRawRec.m_CatId ==

INBOX_CAT_ID)
SyncDeleteRec(tempRawRec);

do
{

notesCurrentEntry.GetDocument(¬esCurrentDoc);
notesCurrentDoc.Open();
temp_result =

ConvertInboxRecord(notesCurrentDoc, pilotRawRec); // converting the
doc into Pilot format

if (temp_result)
SyncWriteRec(pilotRawRec);

// writing the converted doc into
Pilot

notesCurrentDoc.Close();

while
!(notesInbox.GotoNextNonCategory(¬esCurrentEntry)));

}
}

else if (!memcmp(DownloadOption,"l",l))
// this is the download option where the user

specifies the folder
// from which he/she/it wants to download the

messages from.
{

// obtaining the view/folder name from the
registry

LPDWORD buffer_size2 = (LPDWORD)
malloc(sizeof(DWORD));

*buffersize2 = MAX_VIEWFOLDER_SIZE;
LPBYTE ViewFolderName = (LPBYTE)

malloc(sizeof(char) * MAX_VIEWFOLDER_SIZE);

RegQueryValueEx(applicationmail,"ViewFolderName",NULL,NULL,ViewFo
iderName,buffer_size2);

char *temp = (char *) malloc(sizeof(char) *
(*buffer_size2));

memcpy (temp,ViewFolderName,*buffer_size2);

try
{

notesMailDB.GetViewFolder(temp,¬esInbox);
}
catch (...)
{

CString mesg = "Unable to read from
view/folder ";

mesg += temp;
mesg += ". Please make sure that it is a

valid view/folder.";
MessageBox(NULL,mesg,"NotesMail Conduit

Error!",MB_OKIMB_ICONEXCLAMATION);
LogAddEntry(mesg,slWarning,FALSE);
notesSession.Term();
return -1;

notesInbox.Open();
notesInbox.GotoFirst(¬esCurrentEntry);
do
{

notesCurrentEntry.GetDocument(¬esCurrentDoc);
notesCurrentDoc.Open();
//logfile << "--> Coverting Doc" << endl;
temp_result =

ConvertInboxRecord(notesCurrentDoc, pilotRawRec);
if (temp_result)

SyncWriteRec(pilotRawRec);
notesCurrentDoc.Close();

}
while

!(notesInbox.GotoNext(¬esCurrentEntry)));
}

}
}
catch(LNSTATUS error)

char errorBuf[1000];
LNGetErrorMessage(error, errorBuf);
CString mesg = "!!!! Lotus Notes Error: ";
mesg += errorBuf;
logfile << mesg << endl;
LogAddEntry(mesg,slWarning,FALSE);
notesSession.Term();
return -1;

// Updating the current sync time in the Info Record
InfoRec.m_pBytes = sync_date_buffer;
InfoRec.m_RecSize = INFOREC SIZE;
InfoRec.m_TotalBytes = INFO_REC_SIZE;
InfoRec.m_CatId = 10;
SyncWriteRec(InfoRec);

notesSession.Term(); // Terminating Notes Session
return lRet;

void CMailConduitMonitor::ConvertDeleteRecord(CMailRecord &toRecord,
CRawRecordInfo &fromRecord)

int pos = 0;
int count = 0;
while (count != 9)
{

if (fromRecord.m_pBytes[pos]=='\0')
count++;

pos++;

ReadByteStream(pos, toRecord.docUNID, fromRecord.m_pBytes);
return;

void CMailConduitMonitor::ConvertOutboxRecord (CMailRecord &toRecord,

CRawRecordInfo &fromRecord)

{
toRecord.m RecId = fromRecord.m_RecId;

logfile << "--> Setting the Rec ID: " << toRecord.m_RecId <<

endl;

logfile << "--> Setting the Cat ID" << endl;

toRecord.m_CatId = fromRecord.m_CatId;

logfile << "--> Setting the Status Bits" << endl;

toRecord.SetStatus(fldStatusNONE);
if (fromRecord.m_Attribs & DELETE_BIT)

toRecord.SetStatus(fldStatusDELETE);
else if (fromRecord.m_Attribs & DIRTY_BIT)

toRecord.SetStatus(fldStatusUPDATE);

if (!(fromRecord.m_Attribs&DELETE_BIT))

{
// Setting the delivery type

toRecord.m_DeliveryType = fromRecord.m_pBytes[4];

int pos = 6;

// Setting the Subject field

pos = ReadByteStream (pos, toRecord.m_szSubjField,

frornRecord.m_pBytes);

pos++;

// Setting the To Field
pos = ReadByteStream (pos, toRecord.m_szToField,

fromRecord.m_pBytes);

// Setting the CC Field
pos = ReadByteStream (pos, toRecord.m_szCCField,

fromRecord.m_pBytes);

// Setting the BCC Field
pos = ReadByteStream (pos, toRecord.m_szBCCField,

fromRecord.m_pBytes);

pos= pos+2;

// Setting the Body Field
pos = ReadByteStream (pos, toRecord.m_szBodyField,

fromRecord.m_pBytes);

}

int CMailConduitMonitor::ConvertInboxRecord (LNMailMessage &doc,

CRawRecordInfo &toRecord)
{

int pos=0;
int count,q;
LNText temp_text;
LNString temp_string;
LNString recipients = "";
LNString cc = 'l;

LNSTATUS result;
BYTE *buffer = (BYTE *) calloc(MAXBUFFER_SIZE,sizeof(BYTE));
BYTE *buf_pointer = buffer;
try
{

// filling in the header w/ the date information

LNDatetime notesDeliveredDate;
LNDatetime notesPostedDate;
LNDatetime notesDate;
LNDatetimes temp_field;
doc.GetItem("DeliveredDate",&temp_field);
notesDeliveredDate = temp_field[O];
doc.GetDateSent(¬esPostedDate);

if (notesDeliveredDate.IsNull())
notesDate = notesPostedDate;

else
notesDate = notesDeliveredDate;

int day,month,year,hour,minute;
day = notesDate.GetDay();
month = notesDate.GetMonth();
year = notesDate.GetYear() - YEAR_OFFSET;
hour = notesDate.GetHour();
minute = notesDate.GetMinute();

//Writing the year/month/date
WORD wTemp = 0;
wTemp = (year << 9) I (month << 5) day;
WriteByteStream(buf_pointer,(WORD) wTemp,pos);

//Writing the time
bufpointer += 2;
wTemp = 0;
wTemp = (minute << 8) I hour;
memcpy(buf_pointer,&wTemp, 2);
buf_pointer += 2;

*buf_pointer++=0x54;
*buf_pointer++='\0';

result = doc.GetSubject(&temp_text);
if (!result)
{

temp_string = temp_text[0];
count = strlen(temp_string);
//logfile << "Subject: " << temp_string << endl;
memcpy (buf_pointer,temp_string,count);
buf_pointer += count;

*buf_pointer++ = '\0';

result = doc.GetSender(&temp_string);
if (!result)
{

ConvertName(temp_string);
count = strlen(temp_string);
//logfile << "From: " << temp_string << endl;
memcpy (buf_pointer, temp_string, count);
buf_pointer += count;

}
*buf_pointer++ = '\0';

result = doc.GetRecipients(&temp_text);
if (!result)
{

count = temp_text.GetCount();
for(q=0;q<count;q++)
{

temp_string = temp_text[q];
ConvertName(temp_string);
recipients.Append(temp_string);
if(q!=(count-l))

recipients.Append(", ");

count = strlen(recipients);
//logfile << "To: " << recipients << endl;
memcpy (buf_pointer, recipients, count);
buf_pointer += count;

*buf_pointer++ = '\0';

result = doc.GetCC(&temp_text);
if(!result)
{

count = temp_text.GetCount();
for(q=0;q<count;q++)
{

temp_string = temptext[q];
ConvertName(temp_string);
cc.Append(temp_string);
if(q!=(count-l))

cc.Append(", ");

count = strlen(cc);
//logfile << "CC: "<< temp_string << endl;
memcpy(buf_pointer, cc,count);
buf_pointer += count;

}
*buf_pointer++ = '\0';
*buf_pointer++ = '\0';
*bufpointer++ = '\0';

result = doc.GetRecipients(&temp_text);
if (!result)
{

count = strlen(recipients);
memcpy (buf_pointer, recipients, count);
buf_pointer += count;

}
*buf_pointer++ = '\0';

LNRichText body;
LNString body_LN_text;
result = doc.GetBody(&body);
if (!result)
{

body.GetText(&body_LN_text);
count = strlen(body_LN_text);
if (count > (MAX_BUFFER_SIZE - (buf_pointer -

buffer)))

temp_string = "<This message was
truncated!>\n\n";

count = (MAX_BUFFER_SIZE - (buf_pointer -
buffer) - 40);

memcpy(buf_pointer,temp_string,strlen(tempstring));
buf_pointer += strlen(temp_string);

}

memcpy(buf_pointer,body_LN_text,count);
//logfile << "Body: " << buf_pointer << endl;
buf_pointer += count;

}
else
{

temp_string = "<Unable to get body of message!>";
count = strlen(temp_string);
memcpy(buf_pointer,temp_string,count);
buf_pointer += count;

}
*buf_pointer++ = '\0';

pos = buf_pointer - buffer;
logfile << "Message size: " << pos << endl;
logfile << endl << endl;

toRecord.m_pBytes = (BYTE *) malloc(pos);
toRecord.m_RecSize = pos;
toRecord.m_TotalBytes = pos;
toRecord.m_RecId = 0;

for (int j = 0; j < pos;j++)
toRecord.m_pBytes[j] = buffer[j];

catch(LNSTATUS error)
{

char errorBuf[1000];
LNGetErrorMessage(error, errorBuf);
logfile << "!!!! Lotus Notes Error while Converting Doc:

<< errorBuf << endl;
result = doc.GetSender(&temp_string);

LNString mesg = " -- > Unable to download the message from

if (!result)
{

ConvertName(temp_string);
mesg += temp_string;

}

result = doc.GetSubject(&temp_text);
if (!result)
{

temp_string = temp_text[0];
mesg += " regarding ";
mesg += temp_string;

mesg += ".";
LogAddEntry(mesg,slWarning,FALSE);
return 0;

return 1;

void CMailConduitMonitor::ConvertName(LNString &name)
{

unsigned long *dummy = (unsigned long *) calloc(l,sizeof(unsigned
long));

int total = name.GetCharacterCount();
if (name.Find("CN=",0,dummy))

return;
else
{

name.Delete(0,3);
name.FindChar('/',0,dummy);
name.Delete(*dummy, total-*dummy-3);

return;

void CMailConduitMonitor::GetCurrentSystemDateTime(BYTE *buffer)

CTime sync_date = CTime::GetCurrentTime();
WORD day,month,year,hour,minute;
day = sync_date.GetDay();
month = sync_date.GetMonth();
year = sync_date.GetYear() - NOTES_YEAR_OFFSET;

hour = sync_date.GetHour();
minute = sync_date.GetMinute();

logfile << "Setting today's date" << endl;
logfile << month << "/" << day << "/" << year << " " << hour <<

":" << minute << endl;
//Writing the year/month/date

WORD wTemp = 0;

wTemp = (year << 9) (month << 5) day;
memcpy(buffer,&wTemp,2);

//Writing the time
wTemp = 0;
wTemp = (hour << 8) I minute;
memcpy(buffer+2,&wTemp,2);
return;

int CMailConduitMonitor::GetAndSetDateTime(BYTE *sync_date_buffer,
LNDatetime &last_sync_date, CRawRecordInfo &InfoRec)
{

try
{

LNDatetime current_time =
notesSession.GetCurrentDatetime();

WORD day,month,year,hour,minute;
day = (WORD) current_time.GetDay();
month = (WORD) current_time.GetMonth();
year = (WORD) current_time.GetYear() - NOTES_YEAR_OFFSET;
hour = (WORD) current_time.GetHour();
minute = (WORD) current_time.GetMinute();

logfile << "Setting today's date and time: ";
logfile << month << "/" << day << "/" << year << " " <<

hour << ":" << minute << endl;
//Writing the year/month/date
WORD wTemp = 0;
wTemp = (year << 9) (month << 5) day;
memcpy(sync_date_buffer,&wTemp,2);

//Writing the time
wTemp = 0;
wTemp = (hour << 8) I minute;
memcpy(sync_date_buffer+2,&wTemp,2);

}
catch(LNSTATUS error)
{

// if we can't get the time from Notes, then we'll just get

the time
// from the system
GetCurrentSystemDateTime(sync_date_buffer);
char errorBuf[1000];
LNGetErrorMessage(error, errorBuf);
CString mesg = "!!!! Unable to get current time from Notes.

Using system time. ";
mesg += "Lotus Notes Error: ";
mesg += errorBuf;

logfile << mesg << endl << endl;
}

WORD temp_record_count=0;
SyncGetDBRecordCount(m_RemHandle, temp_record_count);

logfile << "Total Record Count = " << temp_record_count << endl;

for (int temp = 0; temp < temp_record_count; temp++)

{
memset(&InfoRec,0,sizeof(InfoRec));
InfoRec.m_FileHandle = m_RemHandle;

InfoRec.m_pBytes = (BYTE *)new char [INFO_REC_SIZE];

InfoRec.m_TotalBytes = INFO_RECSIZE;

SyncReadRecordByIndex(InfoRec);
if (InfoRec.m_CatId == INFORMATION_CAT_ID)

break;

// if we can't find a record w/ catId = 10, then it means

that we haven't created one yet.
// if this is the case, then we create one.

if (temp == temp_record_count)

{
InfoRec.m_pBytes = sync_date_buffer;
InfoRec.m_RecSize = INFO_REC_SIZE;
InfoRec.m_TotalBytes = INFO_RECSIZE;
InfoRec.m_CatId = 10;

InfoRec.m_RecId = 0;
SyncWriteRec(InfoRec);

// if the info record does exist, then we extract the date/time

info out of it, and
// put the info in the last_sync_date variable.

WORD *year month day,*hour_minute;
year_month_day = (WORD *)calloc(l,sizeof(WORD));

hour_minute = (WORD *)calloc(l,sizeof(WORD));
memcpy(yearmonth_day,InfoRec.m_pBytes,2);
memcpy(hour_minute,InfoRec.m_pBytes+2,2);

try
{

last_sync_date.SetDay((int) (*year_month_day & 0x01F));

last_sync_date.SetMonth((int) (*year month_day >> 5) &

OxOF);
last_sync_date.SetYear((int) ((*yearmonth_day >> 9) &

0x7F) + NOTES_YEAROFFSET) ;
last_sync_date.SetHour ((int) *hour_minute >> 8);

last_sync_date.SetMinute((int) *hour_minute & OxOFF);

}
catch (...)

{
// the code gets here if for some reason, the special

record
// in the pilot became corrupted. In that case, we just

rewrite

// it w/ the last hotsync date set to the current date.

InfoRec.m_pBytes = sync_date_buffer;
InfoRec.m_RecSize = INFOREC_SIZE;

InfoRec.m_TotalBytes = INFO_RECSIZE;

InfoRec.m_CatId = 10;
SyncWriteRec(InfoRec);

WORD *year_month_day,*hour_minute;
yearmonth_day = (WORD *)malloc(sizeof(WORD));
hour_minute = (WORD *)malloc(sizeof(WORD));
memcpy(yearmonth_day,InfoRec.m_pBytes,2);
memcpy(hour_minute,InfoRec.m_pBytes + 2,2);
last_sync_date.SetDay((int) (*year_month_day & 0x01F));
last_sync_date.SetMonth((int) (*year_month_day >> 5) &

OxOF);
last_sync_date.SetYear((int) (*yearmonthday >> 9) +

NOTES_YEAR OFFSET) ;
last_sync_date.SetHour ((int) *hour_minute >> 8);
last_sync_date.SetMinute((int) *hour_minute & OxOFF);

CString warning = "Warning! The special record that keeps
the";

warning += " last mail hotsync date in the pilot was

corrupted! ";
warning += "The problem has been fixed, and next time you

hotsync, ";
warning += "everything should return to normal.";
LogAddEntry(warning,slWarning,FALSE);

}
LNString date = last_sync_date;
const char *test = date;
logfile << "Last Sync Date: " << test << endl;

// doing a sanity check... useful b/c the old way of reading the

date/time
// actually gives 1977 for 1997...
if (last_sync_date.GetYear()<1997)
{

InfoRec.m_pBytes = sync_date_buffer;
InfoRec.mRecSize = INFO_REC_SIZE;
InfoRec.m_TotalBytes = INFO_RECSIZE;
InfoRec.m_CatId = 10;
SyncWriteRec(InfoRec);

CString warning = "Warning! The special record that keeps

the";
warning += " last mail hotsync date in the pilot is

outdated! ";
warning += "The problem has been fixed, and next time you

hotsync, ";
warning += "everything should return to normal.";
LogAddEntry(warning,slWarning,FALSE);
return 0;

}
return 1;

}

ilConduitMonitorClass.h

#include <incppapi.h>
#include "winreg.h"
class CMailRecord;
//
// Error codes for the Conduit DLL's range 0x5000 - Ox5FFF
//

#define CONDERR_NONE
#define CONDERR_FIRST
#define CONDERR_BAD_REMOTE_TABLES
#define CONDERR_BAD_LOCAL_TABLES
#define CONDERR_BAD_LOCAL_BACKUP
#define CONDERR_ADD_LOCAL_RECORD

#define CONDERR_ADD_REMOTE_RECORD
#define CONDERR_CHANGE_REMOTE_RECORD
#define CONDERR_RAWRECORD_ALLOCATE
#define CONDERR_REMOTE_CHANGES_NOT_SENT
#define CONDERR_LOCAL MEMORY_ALLOC_FAILED

//#define CONDERR_BAD_SYNC_TYPE
#define CONDERR_UNSUP_TYPE

0x0000
Ox1000
CONDERR_FIRST + 4
CONDERR_FIRST + 5

CONDERR_FIRST + 6

CONDERR_FIRST + 7

CONDERR FIRST + 8
CONDERR_FIRST + 9

CONDERR_FIRST + OxOA

CONDERR_FIRST + OxOB
CONDERR_FIRST + OxOC

CONDERR_FIRST + OxlD
CONDERR_FIRST + OxlE

extern "C"
{

typedef long (*PROGRESSFN) (char*);

class CMailConduitMonitor : public CBaseConduitMonitor

public:
CMailConduitMonitor (PROGRESSFN pFn, CSyncProperties

&rProps);
-CMailConduitMonitor();
long StartSync();
long ObtainRemoteTable();
long DoMailSync();
void LogApplicationName(char* appName, WORD len);

void ConvertOutboxRecord (CMailRecord &a, CRawRecordInfo &b);

void ConvertDeleteRecord (CMailRecord &a, CRawRecordInfo &b);

int ConvertInboxRecord (LNMailMessage &doc, CRawRecordInfo

&toRecord);
void ConvertName(LNString &name);

void GetCurrentSystemDateTime(BYTE *buffer);

int GetAndSetDateTime(BYTE *sync_date_buffer, LNDatetime

&last_sync_date, CRawRecordInfo &rawRecord);

protected:
fstream logfile;
HKEY applicationmail;

LNNotesSession notesSession; // Create Notes Session

LNDatabase notesMailDB; // Create Notes DB

Object

1;

File: Ma

#include "basemon.h"
#include "fstream.h"

File: MailRecordClass.cpp
*/

#include "stdafx.h"
#include "MailRecordClass.h"

CMailRecord::CMailRecord(int nRecId, WORD wStatus, WORD CatId, WORD

DeliveryType,
const char *szToField, const char *szCCField, const char

*szBCCField,
const char *szSubjField, const char *szBodyField, UNID id)

strcpy(m_szToField, szToField);

strcpy(m_szCCField, szCCField);

strcpy(m_szBCCField, szBCCField);

strcpy(m_szSubjField, szSubjField);

strcpy(m_szBodyField, szBodyField);

m_RecId = nRecId;

m_CatId = CatId;

m_wStatus= wStatus;
m_DeliveryType = DeliveryType;
docUNID = id;

CMailRecord::CMailRecord()

{
m_RecId = 0;

m_CatId = 0;

m_wStatus = fldStatusNONE;
}

CMailRecord::CMailRecord(CMailRecord &rRec)

{
*this = rRec;

CMailRecord &CMailRecord::operator=(CMailRecord &srcRec)

{

strcpy(m_szToField, srcRec.m_szToField);

strcpy(m_szCCField, srcRec.m_szCCField);

strcpy(m_szBCCField, srcRec.m_szBCCField);
strcpy(mszSubjField, srcRec.m_szSubjField);

strcpy(m_szBodyField, srcRec.m_szBodyField);

m_RecId = srcRec.m_RecId;
m_wStatus= srcRec.m_wStatus;

m_CatId = srcRec.m_CatId;
m_DeliveryType = srcRec.m_DeliveryType;

docUNID = srcRec.docUNID;
return *this;

I

File: MailRecordClass.h

*/

#include <iostream.h>
#include <incppapi.h>
#define MAX_TO_LEN 50

#define MAX CC LEN 50
#define MAXBCCLEN 50

#define MAX_SUBJ_LEN 50
#define MAXBODYLEN 4000

#define fldStatusNONE 0
#define fldStatusADD 0x01

#define fldStatusUPDATE 0x02

#define fldStatusDELETE 0x04

class CMailRecord
{
public:

CMailRecord(int nRecId, WORD wStatus, WORD CatId, WORD

DeliveryType,
const char *szToField, const char *szCCField, const char

*szBCCField,
const char *szSubjField, const char *szBodyField,UNID id);

CMailRecord();
CMailRecord(CMailRecord &rRec);
CMailRecord &operator=(CMailRecord &rRec);

// Inline helpers
void SetStatus(WORD wStatus) { m_wStatus = wStatus; }

DWORD m_RecId;
DWORD m_CatId;
WORD mwStatus;
WORD m_DeliveryType;
char *m_szToField;
char *m_szCCField;
char *m_szBCCField;
char *m_szSubjField;
char *m_szBodyField;
UNID docUNID;

};

Appendix B - Source code for PalmPilot application for
Notes password entry

#include <Pilot.h> // all the system toolbox
headers
#include "PasswdDlgRsc.h" // application resource
defines

#define RECORD_SIZE 100
/**
*

* Global variables for this module

**/

static MenuBarPtr CurrentMenu = NULL; // P2. ptr to current
menu
static Word CurrentView; // P3. id
of current form
static LocalID PasswordDbID;
static DmOpenRef PasswordDbRef;
static LocalID HotSyncDbID;
static UInt cardNo;
static VoidHand mailInfoRecordHdl;
static UInt mailInfoRecordIndex;
static UInt ValidMailInfoRec=0; // this
variable is just used to double check that the mail info rec exists
static UInt ValidStoredPassword=0; // this variable
is used to check whether there's a valid stored password.
/**
*

* Prototypes for internal functions

**/

static void StartApplication(void);
static Boolean MainDialogBoxFormHandleEvent(EventPtr event);
static Boolean ConfigDialogBoxFormhandleEvent(EventPtr event);
static Boolean ApplicationHandleEvent (EventPtr event); // P3.
handle form load events
static void EventLoop(void);

static VoidPtr GetObjectPtr (Word objectID)
{

FormPtr frm;

frm = FrmGetActiveForm ();

return (FrmGetObjectPtr (frm, FrmGetObjectIndex (frm,
objectID)));

/**

StartApplication

* DESCRIPTION: This routine sets up the initial state of the
application.

*

* PARAMETERS: None.
*

* RETURNED: Nothing.
*

*******************f*****************

static void StartApplication(void)
{

Err err;
int i;
DmSearchStateType searchState;
ULong
numRecordsP,totalBytesP,dataBytesP;
Ptr recordPtr;
char key = 'm';

static VoidHand tempHdl;
CurrentView = PasswdMainDialogForm;

// Get the card number and database id of the sync application.
err = DmGetNextDatabaseByTypeCreator (true, &searchState,

sysFileTApplication, sysFileCSync, true, &cardNo,
&HotSyncDbID);

// Getting the database id of the Password database
PasswordDbID = DmFindDatabase(cardNo, "NotesInfoDB");

// if the database doesn't exist, then create it, and also create
a mail info record

if (!PasswordDbID)
{

err = DmCreateDatabase(cardNo, "NotesInfoDB", Ox4C525332,
0x01, false);

PasswordDbID = DmFindDatabase(cardNo, "NotesInfoDB");
PasswordDbRef = DmOpenDatabase(cardNo, PasswordDbID,

dmModeReadWrite);
numRecordsP = 0;
mailInfoRecordHdl = DmNewRecord(PasswordDbRef, (unsigned

short *) &numRecordsP, RECORD_SIZE);
mailInfoRecordIndex = (unsigned short) numRecordsP;
recordPtr = MemHandleLock(mailInfoRecordHdl);
DmSet(recordPtr, 0,RECORD_SIZE, '\0');
DmWrite(recordPtr,0, &key, 1);
MemHandleUnlock(mailInfoRecordHdl);
DmReleaseRecord(PasswordDbRef, maillInfoRecordIndex, false);
ValidMailInfoRec = 1;
ValidStoredPassword = 0;
CurrentView = PasswdConfigDialogForm;

else

* FUNCTION:

PasswordDbRef = DmOpenDatabase(cardNo, PasswordDbID,
dmModeReadWrite);

DmDatabaseSize(cardNo, PasswordDbID, &numRecordsP,
&totalBytesP, &dataBytesP);

// Going through the database, and determining if we have a
valid mail info record.

if (numRecordsP)
{

for (i=numRecordsP-l; i >= 0; i--)
{

tempHdl = DmQueryRecord(PasswordDbRef, i);
recordPtr = MemHandleLock(tempHdl);
if (*recordPtr == 'm')

{
mailInfoRecordHdl = tempHdl;
mailInfoRecordIndex = i;
ValidMailInfoRec = 1;
MemHandleUnlock(tempHdl);

if (*recordPtr == 'p')
{

ValidStoredPassword = 1;
MemHandleUnlock(tempHdl);

if (*recordPtr == 'a')
{

MemHandleUnlock(tempHdl);
DmRemoveRecord(PasswordDbRef, i);

else
{

ValidMailInfoRec = 0;
ValidStoredPassword = 0;
CurrentView = PasswdConfigDialogForm;

/**

* FUNCTION: MainFormHandleEvent
*

* DESCRIPTION: Handles processing of events for the OmainO form.
*

* PARAMETERS: event - the most recent event.

True if the event is handled, false otherwise.

W*************************************

static Boolean MainDialogBoxFormHandleEvent(EventPtr event)
{

Boolean handled = false;

//EventType newEvent;
FormPtr frm;

switch (event->eType)
{

case ctlSelectEvent: // A control button was pressed and
released.

// The "Enter password on the Pilot" button was pressed
if (event->data.ctlEnter.controlID

PasswdMainDialogUsePilotPasswordCheckbox)
{

ControlPtr button;
ControlPtr checkbox;
FieldPtr passwdfield;

button =
GetObjectPtr(PasswdMainDialogClearTextButton);

checkbox =
GetObjectPtr(PasswdMainDialogStorePasswordCheckbox);

passwdfield = GetObjectPtr
(PasswdMainDialogPasswordField);

CtlSetEnabled(checkbox,true);
CtlSetEnabled(button, true);
FldSetUsable(passwdfield,true);

// The "Use password stored in Desktop" was checked
else if (event->data.ctlEnter.controlID ==

PasswdMainDialogUseStoredPasswordCheckbox)
{

ControlPtr button;
ControlPtr checkbox;
FieldPtr passwdfield;
button =

GetObjectPtr(PasswdMainDialogClearTextButton);
checkbox =

GetObjectPtr(PasswdMainDialogStorePasswordCheckbox);
passwdfield = GetObjectPtr

(PasswdMainDialogPasswordField);

CtlSetEnabled(checkbox, false);
CtlSetEnabled(button, false);
FldSetUsable(passwdfield,false);

* RETURNED:

// The "Show Password in Clear Text" button was pressed
else if (event->data.ctlEnter.controlID ==

PasswdMainDialogClearTextButton)
{

FieldPtr passwordField;
ControlPtr button;
FontID font;
CharPtr clear = "Show Password";
CharPtr cypher = "Hide Password";

button =
GetObjectPtr(PasswdMainDialogClearTextButton);

passwordField =
GetObjectPtr(PasswdMainDialogPasswordField);

font = FldGetFont(passwordField);
if (font == symbolFont)
{

//FldSetFont(passwordField, stdFont);
passwordField->fontID = stdFont;
FldEraseField(passwordField);
FldDrawField(passwordField);
CtlSetLabel(button, cypher);

}
else if (font == stdFont)

//FldSetFont(passwordField, symbolFont);
passwordField->fontID = symbolFont;
FldEraseField(passwordField);
FldDrawField(passwordField);
CtlSetLabel(button,clear);

handled = true;

// P3. If the new button is pressed, go to the edit form.
else if (event->data.ctlEnter.controlID

PasswdMainDialogLocalsyncButton)
{

Err err;
FieldPtr passwordField;
CharPtr passwordText;
VoidHand RecordHandle;
UInt index = 10;

ControlPtr pilotChkBox,
storeChkBox, localChkBox;

Ptr p;
int password_length;
char a = 'a';

char flag; // this

variable is used to indicate which passwd the user wants to use,

// and also to determine if the user wants to store the password
locally.

100

char null = '\0';
// Setting the entered password in the NotesInfoDb.

// this just double checks that there's indeed a
valid mail info record.

// if for some reason the record got corrupted, warn
the user to try

// configuring it again!

if (!ValidMailInfoRec)
{

// Load the info form, then display it.
frm = FrmInitForm(PasswdErrorDialogForm);
FrmDoDialog(frm);

// Delete the info form.
FrmDeleteForm(frm);
handled = true;
break;

localChkBox =
GetObjectPtr(PasswdMainDialogUseStoredPasswordCheckbox);

pilotChkBox =
GetObjectPtr(PasswdMainDialogUsePilotPasswordCheckbox);

storeChkBox =
GetObjectPtr(PasswdMainDialogStorePasswordCheckbox);

if (CtlGetValue(pilotChkBox))
{

passwordField = GetObjectPtr
(PasswdMainDialogPasswordField);

passwordText = FldGetTextPtr (passwordField);
FldReleaseFocus (passwordField);

// Release any free space in the memo field.
FldCompactText (passwordField);
if (passwordText)

password_length = StrLen(passwordText);
else
{

// Load the info form, then display it.
frm =

FrmInitForm(PasswdError3DialogForm);
FrmDoDialog(frm);

// Delete the info form.
FrmDeleteForm(frm);
handled = true;

break;
}
if (CtlGetValue(storeChkBox))

flag = 's';
else

flag = 'p';

101

else if (CtlGetValue(localChkBox))
flag = '1';

// Creating new record
RecordHandle = DmNewRecord(PasswordDbRef, &index,

RECORD_SIZE);

p = MemHandleLock(RecordHandle);
DmWrite(p,0, &a, 1);
DmWrite(p,l, &flag, 1);
DmWrite(p,2, &null, 1);
if (CtlGetValue(pilotChkBox))
{

DmWrite(p,3,passwordText, password_length);
DmWrite(p,3+password_length, &null, 1);

}
else
{

DmWrite(p, 3, &null, 1);

MemHandleUnlock(RecordHandle);
DmReleaseRecord(PasswordDbRef, index, false);

err = SysUIAppSwitch (cardNo,
HotSyncDbID,sysAppLaunchCmdSyncRequestLocal, NULL);

handled = true;
}
else if (event->data.ctlEnter.controlID ==

PasswdMainDialogModemsyncButton)
{

Err err;
FieldPtr passwordField;
CharPtr passwordText;
VoidHand RecordHandle;
UInt index = 10;

ControlPtr pilotChkBox,
storeChkBox, localChkBox;

Ptr P;
int password_length;
char a = 'a';

char flag; // this
variable is used to indicate which passwd the user wants to use,

// and also to determine if the user wants to store the password

locally.
char null = '\0';

// Setting the entered password in the NotesInfoDb.

// this just double checks that there's indeed a

valid mail info record.
// if for some reason the record got corrupted, warn

the user to try
// configuring it again!

102

if (!ValidMaillnfoRec)
{

// Load the info form, then display it.
frm = FrmInitForm(PasswdErrorDialogForm);
FrmDoDialog(frm);

// Delete the info form.
FrmDeleteForm(frm);
handled = true;
break;

localChkBox =
GetObjectPtr(PasswdMainDialogUseStoredPasswordCheckbox);

pilotChkBox =
GetObjectPtr(PasswdMainDialogUsePilotPasswordCheckbox);

storeChkBox =
GetObjectPtr(PasswdMainDialogStorePasswordCheckbox);

if (CtlGetValue(pilotChkBox))
{

passwordField = GetObjectPtr
(PasswdMainDialogPasswordField);

passwordText = FldGetTextPtr (passwordField);
FldReleaseFocus (passwordField);

// Release any free space in the memo field.
FldCompactText (passwordField);
if (passwordText)

password_length = StrLen(passwordText);
else
{

// Load the info form, then display it.
frm =

FrmInitForm(PasswdError3DialogForm);
FrmDoDialog(frm);

// Delete the info form.
FrmDeleteForm(frm);
handled = true;

break;
}
if (CtlGetValue(storeChkBox))

flag = 's';

else
flag = 'p';

else if (CtlGetValue(localChkBox))
flag = '1';

// Creating new record
RecordHandle = DmNewRecord(PasswordDbRef, &index,

RECORD_SIZE);

103

p = MemHandleLock(RecordHandle);
DmWrite(p,O, &a, 1);
DmWrite(p,l, &flag, 1);
DmWrite(p,2, &null, 1);
if (CtlGetValue(pilotChkBox))
{

DmWrite(p,3,passwordText, password_length);
DmWrite(p,3+password_length, &null, 1);

else
{

DmWrite(p,3,&null,1);

MemHandleUnlock(RecordHandle);
DmReleaseRecord(PasswordDbRef, index, false);

err = SysUIAppSwitch (cardNo,
HotSyncDbID,sysAppLaunchCmdSyncRequestRemote, NULL);

handled = true;

break;

case frmOpenEvent: // P3. The form was told to open.
// It has already been loaded and activated so just

draw it.
{

ControlPtr checkbox;
checkbox =

GetObjectPtr(PasswdMainDialogUseStoredPasswordCheckbox);
if (!ValidStoredPassword)

CtlHideControl(checkbox);
FrmDrawForm (FrmGetActiveForm());
handled = true;
break;

}
case menuEvent: // P2. A menu item was selected.

// The Oget info6 being the only menu item, display
the info form.

switch (event->data.menu.itemID)
{

case (OptionsAbout):
{

// First clear the menu status from the
display.

MenuEraseStatus(CurrentMenu);

// Load the info form, then display it.
frm = FrmInitForm(PasswdAboutDialogForm);
FrmDoDialog(frm);

// Delete the info form.
FrmDeleteForm(frm);
handled = true;

104

break;

case (OptionsConfigureNotesInfo):
{

// Clear Menu
FrmPopupForm (PasswdConfigDialogForm);
handled = true;
break;

}

return(handled);

static Boolean ConfigDialogBoxFormhandleEvent (EventPtr event)
{

Boolean handled = false;
FormPtr frm;

if (event->eType == ctlSelectEvent)

{
switch (event->data.ctlSelect.controlID)

{
case PasswdConfigDialogOKButton:
{

FieldPtr tempField;
CharPtr tempText;
int tempLength, current;
Ptr p;
char null = '\0';

tempField = GetObjectPtr
(PasswdConfigDialogMailServerNameField);

tempText = FldGetTextPtr (tempField);
FldReleaseFocus (tempField);

// Release any free space in the field.
FldCompactText (tempField);
if (tempText)

tempLength = StrLen(tempText);
else

break;

mailInfoRecordHdl = DmGetRecord(PasswordDbRef,
mailInfoRecordIndex);

p = MemHandleLock(mailInfoRecordHdl);

DmWrite(p,l, &null, 1);
DmWrite(p,2, &null, 1);
DmWrite(p,3,tempText, tempLength);
DmWrite(p,3+tempLength, &null, 1);
current = 4 + tempLength;

105

tempField = GetObjectPtr

(PasswdConfigDialogMailFileNameField);
tempText = FldGetTextPtr (tempField);
FldReleaseFocus (tempField);

// Release any free space in the field.
FldCompactText (tempField);
if (tempText)

tempLength = StrLen(tempText);
else

break;

if (!tempLength)
{
// if user didn't type in a mail file name,

warn him/her!

MemHandleUnlock(mailInfoRecordHdl);
DmReleaseRecord(PasswordDbRef,

mailInfoRecordIndex, false);
// Load the info form, then display it.
frm =

FrmInitForm(PasswdErrorlDialogForm);
FrmDoDialog(frm);

// Delete the info form.
FrmDeleteForm(frm);
handled = true;
break;

DmWrite(p,current,tempText, tempLength);
DmWrite(p,current+tempLength, &null, 1);
current = current + tempLength + 1;

tempField = GetObjectPtr

(PasswdConfigDialogNotesIDNameField);
tempText = FldGetTextPtr (tempField);
FldReleaseFocus (tempField);

// Release any free space in the field.
FldCompactText (tempField);
if (tempText)

tempLength = StrLen(tempText);
else

break;
// if user didn't type in an id file name, warn

him/her!

if (!tempLength)
{

MemHandleUnlock(mailInfoRecordHdl);
DmReleaseRecord(PasswordDbRef,

mailInfoRecordIndex, false);
// Load the info form, then display it.
frm =

FrmInitForm(PasswdError2DialogForm);

106

FrmDoDialog(frm);

// Delete the info form.
FrmDeleteForm(frm);
handled = true;
break;

DmWrite(p,current,tempText, tempLength);
DmWrite(p,current+tempLength, &null, 1);

MemHandleUnlock(mailInfoRecordHdl);
DmReleaseRecord(PasswordDbRef,

mailInfoRecordIndex, false);
CurrentView = PasswdMainDialogForm;
FrmGotoForm(CurrentView);
handled = true;
break;

case PasswdConfigDialogCancelButton:

CurrentView = PasswdMainDialogForm;
FrmGotoForm(CurrentView);
handled = true;
break;

}

else if (event->eType == frmOpenEvent)
{

FieldPtr servernameFieldPtr,
mailpathnameFieldPtr, idfilenameFieldPtr;

VoidHand servernameHdl,
mailpathnameHdl, idfilenameHdl;

CharPtr servernamePtr,
mailpathnamePtr, idfilenamePtr;

Ptr recordPtr;
ULong

numRecordsP,totalBytesP,dataBytesP;
int i, temp;
int flag = 0;
char key = 'm';

servernameFieldPtr = GetObjectPtr
(PasswdConfigDialogMailServerNameField);

mailpathnameFieldPtr =
GetObjectPtr(PasswdConfigDialogMailFileNameField);

idfilenameFieldPtr =
GetObjectPtr(PasswdConfigDialogNotesIDNameField);

DmDatabaseSize(cardNo, PasswordDbID, &numRecordsP,
&totalBytesP, &dataBytesP);

if (ValidMailInfoRec)
{

recordPtr = MemHandleLock(maillnfoRecordHdl);

107

recordPtr += 3;

temp = StrLen(recordPtr);
servernameHdl = MemHandleNew(temp+l);
servernamePtr = MemHandleLock(servernameHdl);
MemSet(servernamePtr, temp + 1, '\0');
for (i = 0; i < temp+l;i++)

servernamePtr[i]= recordPtr[i];
MemHandleUnlock(servernameHdl);
FldSetTextHandle(servernameFieldPtr,

servernameHdl);

recordPtr += temp + 1;
temp = StrLen(recordPtr);
mailpathnameHdl = MemHandleNew(temp+l);
mailpathnamePtr =

MemHandleLock(mailpathnameHdl);
MemSet(mailpathnamePtr, temp + 1, '\0');
for (i = 0; i < temp+l;i++)

mailpathnamePtr[i]= recordPtr[i];
MemHandleUnlock(mailpathnameHdl);
FldSetTextHandle(mailpathnameFieldPtr,

mailpathnameHdl);

recordPtr += temp + 1;
temp = StrLen(recordPtr);
idfilenameHdl = MemHandleNew(temp+l);
idfilenamePtr = MemHandleLock(idfilenameHdl);
MemSet(idfilenamePtr, temp + 1, '\0');
for (i = 0; i < temp+l;i++)

idfilenamePtr[i]= recordPtr[i];
MemHandleUnlock(idfilenameHdl);
FldSetTextHandle(idfilenameFieldPtr,

idfilenameHdl);

MemHandleUnlock(mailInfoRecordHdl);
}
else
{

mailInfoRecordHdl = DmNewRecord(PasswordDbRef,
(unsigned short *) &numRecordsP, RECORD_SIZE);

mailInfoRecordIndex = (unsigned short)
numRecordsP;

recordPtr = MemHandleLock(mailInfoRecordHdl);
DmWrite(recordPtr,O, &key, 1);
MemHandleUnlock(mailInfoRecordHdl);
ValidMaillnfoRec = 1;

frm = FrmGetActiveForm ();
FrmDrawForm (frm);
handled = true;

return (handled);

108

/**

* FUNCTION: ApplicationHandleEvent

* DESCRIPTION: P3. This routine loads a form resource and sets the
event handler for the form.

* PARAMETERS: event - a pointer to an EventType structure

* RETURNED: True if the event has been handled and should not be
* passed to a higher level handler.

static Boolean ApplicationHandleEvent (EvenzPtr event)
{

FormPtr frm;
Word formId;
Boolean handled = false;

if (event->eType == frmLoadEvent)

{
// load the form resource specified in the event then

activate the form.
formId = event->data.frmLoad.formID;
frm = FrmInitForm(formId);
FrmSetActiveForm(frm);

// set the event handler for the form. The handler of the
currently

// active form is called by FrmDispatchEvent each time it
receives an event.

switch (formId)
{
case PasswdMainDialogForm:

FrmSetEventHandler(frm,
MainDialogBoxFormHandleEvent);

break;
case PasswdConfigDialogForm:

FrmSetEventHandler(frm,
ConfigDialogBoxFormhandleEvent);

break;
}

handled = true;

return handled;

/FUNCTION: EventLo*************************************

* FUNCTION: EventLoop
*

109

* DESCRIPTION: A simple loop that obtains events from the Event
* Manager and passes them on to

various applications and
* system event handlers before

passing them on to
* FrmDispatchEvent for default

processing.

* PARAMETERS: None.

* RETURNED: Nothing.

static void EventLoop(void)
{

EventType event;
Word error;

do

handle

the ev

defaul

{
// Get the next available event.
EvtGetEvent(&event, evtWaitForever);

// Give the system a chance to handle the event.
if (! SysHandleEvent(&event))

// P2. Give the menu bar a chance to update and
the event.

if (! MenuHandleEvent(CurrentMenu, &event, &error))

// P3. Give the application a chance to handle
rent.

if (! ApplicationHandleEvent(&event))

// P3. Let the form object provide
t handling of the event.

FrmDispatchEvent(&event);
}

while (event.eType != appStopEvent);

)

/***

* FUNCTION: PilotMain

* DESCRIPTION: This function is the equivalent of a main() function
* under standard CO6. It is called

by the Emulator to begin
* execution of this application.

* PARAMETERS: cmd - command specifying how to launch the
application.

110

* cmdPBP - parameter block for the

command.
* launchFlags - flags used to

configure the launch.
*

* RETURNED: Any applicable error codes.
*

** **********

DWord PilotMain(Word cmd, Ptr cmdPBP, Word launchFlags)
{

// Check for a normal launch.
if (cmd == sysAppLaunchCmdNormalLaunch)

{
// Initialize the application's data structures, ...
StartApplication();

// P3. Start the first form
FrmGotoForm(CurrentView);

// Start the event loop.
EventLoop();
}

return 0;
}

111

Appendix C - Notes Mail Conduit User Survey

1) General configuration of system being used:

a) Notes Version used:
b) PalmPilot type used:
c) Operating System:
d) Type of Computer: (Pentium, Mac, etc..)
e) Speed of Processor:
f) Amount of RAM:

2) On average, how many times do you Hotsync each day?

3) Below is a list of the options available in the configuration menu
of the Notes Mail conduit. Please check which options you usually use.

General Synchronization Options:
a) Send Messages in PalmPilot Outbox [1
b) Propagate Draft modifications from Pilot to Notes []
c) Propagate deletions from Pilot to Notes [
d) Synchronize messages from Notes Inbox to Pilot Inbox []
e) Synchronize messages from custom Notes view/folder []
f) Propagate Draft modifications from Notes to Pilot []
g) Propagate deletions from Notes to Pilot [1

Outbox Options - Save Mail sent from Handheld in Notes?

a) Always Save [1
b) Prompt for each message [1
c) Never Save [

Inbox Options - Transfer from Notes Inbox

a) All new unread messages since last Hotsync [1
b) All new messages since last Hotsync [
c) All messages since a particular date [
d) All messages in Inbox [1
e) Clear Handheld Inbox before transferring messages []

Custom Options - Transfer all messages from a Notes view/folder to:

a) Inbox category in handheld [
b) Filed category in handheld [
c) Clear the selected handheld category before hotsyncing []

4) Are there any other options that you would find useful in terms of selecting the Notes messages that you

want transferred to your PalmPilot?

112

5) On average, how many daily email messages do you transfer from Notes to your PalmPilot, and how
many messages do you compose and send from your PalmPilot?

6) What is the average size of messages that you transfer to your PalmPilot?

a) less than 5K []
b) between 5-10K []
c) between 10-20K []
d) more than 20K[]
e) other

7) How long does it usually take for the NotesMail conduit to finish synchronizing?

a) less than 30 seconds []
b) between 30sec-1 min []
c) between 1-2 min []
d) between 2-5 min []
e) sometimes it takes forever and Hotsync manager times out []
f) other

8) Currently, the NotesMail conduit does not convert certain elements of a Notes document to the
PalmPilot. Rank in order of importance which of the following parts of a Notes document you would like
to see supported:

a) Graphics []
b) Doclinks []
c) Attachments []
d) Editable Fields/Buttons [
e) Other

9) Currently, you can only use the Notes Mail conduit by synchronizing with the same machine every time.
How useful would it be if you could use the Notes Mail conduit by synchronizing with any machine that
had a replica of your Mail database?

10) Using Network Hotsync, one can hotsync with a particular machine from any machine connected to the
network. One alternative synchronization model consists of allowing users to directly hotsync with the
Notes Server that contains the data that they with to have in their PalmPilots. Such model allows a Pilot
user on the road to directly access information in a Notes Server by simply connecting the Pilot to the
corporate network using a modem. In your corporate setting, how useful would such server
synchronization model be, and how do you think users would use such feature?

11) Are there any aspects of the current version of the Notes Mail conduit that you think needs to be
improved or modified?

12) What are some additional features that you would like to see supported in future versions of the Notes
Mail conduit?

113

References

1 Neeraja Sankaran, "Looking Back At ENIAC: Computers Hit Half-Century Mark", The
Scientist, Vol:9, #16, August 21, 1995

2 Diana Hwang and Randy Giusto, "Boom or Bust? Worldwide Smart Handheld Devices
Market Review and Forecast Update, 1997-2001", International Data Corporation, 1998

3 Kim Girard, "Apps show PalmPilot's Versatility", ComputerWorld, Jan. 26, 1998

4 James Kistler and M. Satyanarayanan, "Disconnected Operation in the Coda File
System", Carnegie Mellon University

5 Peter Reiher, John Heidemann, David Ratner, Greg Skinner, and Gerald Popek,
"Resoling File Conflicts in the Ficus Files System", UCLA

6 Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.
Spreitzer and Carl Hauser, "Managing Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System", Xerox Palo Alto Research Center, 1995

7 Anthony Joseph, Joshua Tauber and M. Frans Kaashoek, "Mobile Computing with the
Rover Toolkit", MIT

8 Kawell, et al., "Replicated Document Mangement in a Group Communication System,"
Lotus Technical Report 88-01, Lotus Development Corporation, 1988

9 Fox, et al., "Experience With Top Gun Wingman: A Proxy-Based Graphical Web
Browser for the USR PalmPilot," Submitted for publication, U.C. Berkely, 1998

10 K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger. "The Notion of Consistency and
Predicate Locks in a Database System," CACM 19(11):624-633, November 1976.

" H. T. Kung and J. T. Robinson. "On Optimistic Methods for Concurrency Control,"
ACMTODS, 6(2):213-226, June 1981.

12 Atul Adya, Robert Gruber, Barbara Liskov and Umesh Maheshwari, "Efficient
Optimistic Concurrency Control Using Loosely Synchronized Clocks," ACMSIGMOD
InternationalConference on Management of Data, San Jose, CA, May 1995

13 D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta, "Distributed Multi-version
Optimistic Concurrency Control with Reduced Rollback," Distributed Computing, 2(1),
1987.

14 Lotus Notes Server Administration Guide, "About how validation and authentication
work", 1997.

114

