
THE HUMAN Y CHROMOSOME:
GENE CONTENT AND CHROMOSOMAL ABNORMALITIES

by

Bruce T. Lahn

B.A. Harvard University, 1991

Submitted to the Department of Biology
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

October 1997

diCfl~4Ih VA~Ob or in pQo

Signature of author
Department of Biology

,17

Certified by

Accepted by

David C. Page
Professor, Department of Biology

Z Thesis supervisor

Frank Solomon
Professor, Department of Biology

Chairman, Committee on Graduate Studies

OCT 2 9997
LM"ARPES



THE HUMAN Y CHROMOSOME:
GENE CONTENT AND CHROMOSOMAL ABNORMALITIES

by

Bruce T. Lahn

Submitted to the Department of Biology October 1997 in partial fulfillment of the
requirement for the degree of Doctor of Philosophy

ABSTRACT

This thesis is a two part report on a series of studies aimed at understanding the
function, organization and evolution of the human Y chromosome.

I
The first part (Chapters 2 & 3) reports on a systematic effort to identify genes

within the non-recombining region of the Y (NRY), and where applicable, their X homologs.
By the method of cDNA selection, I cloned 12 novel genes, 10 with full-length cDNA
sequences. These genes, combined with eight previously identified genes, are a good
representation of NRY's gene content, and likely constitute the majority of genes or gene
families in this region of the human genome. They fall into two distinct classes.

Genes in the first class have close homologs on the X, which were either previously
identified, or cloned by us. They are referred to collectively as X/Y homologous genes, and
share the following features: 1) they typically have ubiquitous expression; 2) for each pair
of X/Y homologous genes, expressions from X and Y copies are typically comparable; and
3) X copies escape X-inactivation. These genes likely have housekeeping functions and
meet certain predictions for genes involved in Turner syndrome, a human condition caused
by complete or partial sex chromosome monosomy, or XO. Theorists have long argued that
the Y is a degenerate copy of the X. X/Y homologous genes therefore represent
evolutionary vestiges of the ancestral homology between the two sex chromosomes that has
undergone extensive degeneration on the Y.

The second class of genes lack X-homologs and are referred to as male-specific
genes. They share the following features: 1) they typically exist as multi-copy, closely
related gene families; and 2) their expression is restricted to the testis. These genes are
involved in male-specific biology. Given their testis-limited expression, they likely function
in spermatogenesis and may account for infertility in men with Y deletions. As a
chromosome with male-restricted transmission, the Y may be uniquely suitable to carry such
genes that function exclusively in males.

II
The second part (Chapter 4) reports on a study of a frequently occurring

chromosomal abnormality of the Y - microscopically detectable deletions of the long arm, or
Yq-. Study subjects were ten unrelated Yq- men with widely varying phenotypes ranging
from infertility in some to mental retardation in others. Molecular analyses revealed in three
individuals with the most severe phenotypes - mental retardation and severe developmental
delay - the presence of a small portion of distal Xq on the long arm of their Yq-
chromosome. This arrangement, which resulted in partial X disomy, apparently arose from
an aberrant Xq/Yq exchange in the paternal germline. A representative gene on distal Xq,
G6PD, was present on the Yq- chromosome in all three severely affected individuals. The
enzyme it encoded, glucose-6-phosphate dehydrogenase, displayed twice-normal activity in
patients as compared to their normal parents. We postulate that functional disomy of the
portion of the Xq present on the Yq- chromosome in these three individuals are responsible
for their severe phenotypes. These results underscore the developmental importance of
maintaining functional monosomy of the X chromosome via X-inactivation.

Thesis Advisor: David C. Page
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CHAPTER 1. INTRODUCTION

Section i: Background

Sexual dimorphism is commonly observed in life and is near universal in multi-

cellular eukaryotes. Over much of human history, however, the question of how an

organism acquires one of two sexually distinctive morphologies has only been the subject

of creative speculations.

Around the turn of the century, the bivalent nature of chromosome pairs was

established through a series of microscopic studies of meioses (Paulmier, 1899,

Montgomery, 1901, Wilson, 1906). In some of these studies, investigators noticed the

presence of an unpaired "heterotropic" chromosome in the spermatogonia of a few insect

species. T.H. Montgomery referred to it as "chromosome x" (Montgomery, 1901). Similar

studies of other species at the time also turned up a very small "idiochromosome", seen

alongside the unpaired "chromosome x" in spermatogonia but not in oogonia (Wilson,

1906). This small chromosome would later be known as the Y chromosome. In these

species where the two sexes had different chromosome compositions, a genetic mechanism

was thought to be responsible for sexual dimorphism.

Nearly two decades later, T.S. Painter, while examining mitosis and meiosis in

human testes, observed one poorly matched or heteromorphic pair of chromosomes in

addition to evenly matched autosome pairs. Adopting the convention established by

Montgomery, Painter referred to the larger of the two heteromorphic chromosomes as "X",

and the smaller as "Y".

Since then, the XX:XY system of sex determination - females being homogametic or

XX, and males heterogametic or XY - has been established for a large number of species.

Yet this system is far from being universal. In many species, including C. elegans, no Y

exists, so females have two X's and males have only one X. Birds use a different ZZ:ZW

system of sex determination where the heterogametic sex ZW is the female. Even more



exotic schemes of chromosomal sex determination have been described (Kallman, 1968,

Orzack et al., 1980). In fact, in many species, the sex of an organism is not even genetically

pre-determined. It relies instead on environmental cues. Environmental sex determination

is so widespread in nature that it is perhaps one of the rules rather than an exception. This

topic is reviewed extensively by H. Korpelainen (1990).

In species with the XX:XY system of sex determination, the role of the Y is also not

consistent. In humans as in most other mammals, the Y dominantly triggers male

differentiation. In Drosophila, it is the autosome to X ratio that triggers sex differentiation -

a ratio of one or less results in females, a ratio of two or more results in males. In this

system, the presence or absence of the Y does not affect sex.

Despite the variability of sex-determining mechanisms, X and Y chromosomes are

found in a great number of distantly related species. Apparently, the two heteromorphic sex

chromosomes have evolved into existence in multiple independent occasions (see next

section for further discussion). In each case, the Y has converged upon a set of common

features: 1) its transmission is restricted to males; 2) it pairs, albeit unevenly, with the X

during meiosis; 3) it is much smaller than the X; and 4) it is genetically impoverished, with

far fewer genes compared to autosomal regions of comparable size. Theorists now believe

that due to male-restricted transmission, Y chromosomes in diverse species travel similar

evolutionary paths, converging upon a set of common features. As will become obvious in

Chapters 2 & 3, the theory of Y evolution proves to be a useful framework in which the

biological roles of the chromosome are more readily interpreted.

Section ii: Evolution of the Y as a male-specific chromosome

In species with the XX:XY system of sex determination, the Y is the only

chromosome that is transmitted exclusively through males. Theorists have argued that

consequently, the Y travels a unique and predictable path of evolution.



H.J. Muller is credited for first postulating the idea (1914) that the two

heteromorphic sex chromosomes X and Y, which differ so much in morphology and gene

content, have nevertheless evolved from a once homomorphic pair of chromosomes. This

idea had actually been suggested much earlier by E.B. Wilson (1906) when he first

described the two heteromorphic sex chromosomes. This notion is now widely accepted.

According to current, more sophisticated views, the XX:XY system of sex determination in a

diploid organism is first established when one of a pair of autosomes acquires the sex-

determining locus (SDL), which is sufficient to trigger the male pathway of sexual

differentiation. The chromosome bearing SDL becomes the Y. Its pairing partner becomes

the X. Individuals with two X's develop as females by a default pathway. Individuals with

an X and a Y develop as males, dominantly controlled by SDL on the Y.

At an early stage, regions outside of SDL on the Y is thought to recombine freely

with corresponding, homologous regions of the X. Due to close linkage, however,

sequences immediately adjacent to SDL are rarely exchanged from Y to X. With time, these

sequences diverge from their corresponding homologous regions on the X. Sequence

divergence further inhibits recombination, causing sequences even further away from SDL

to diverge. This process is thought to progress until 1) the Y becomes non-recombining

over much of its length, and 2) sequences on the Y becomes male-specific.

More recently, J. A. Marshall Graves and colleagues proposed a modified view of Y

chromosome evolution (Graves and Watson, 1991, Graves, 1995). This so called

addition/attrition hypothesis states that autosomal regions are continually transposed onto

sex chromosomes. These newly acquired regions initially pair and recombine between X

and Y, but eventually proceed down the path of sequence divergence and suppression of

recombination. Autosome to sex chromosome translocations have been reported for

mammals [Graves, 1991 #2601 and flies ELucchesi, 1978 #2891. Another means by which

the Y could acquire anew homology with the X is through direct X to Y transpositions. One

such event was shown to have taken place within the primate lineage (Schwartz et al., ).



What happens to genes that the Y originally shared with the X? The popular belief

is that these genes have a tendency to "degenerate" (a term used by theorists to mean the

loss of function through either slow means such as reductions in gene expression, or more

dramatic means such as frameshifts and deletions). This belief is largely based on the

observation that Y chromosomes in many species appear to have a severe paucity of genes.

Theories have been put forward to account for Y's degeneration. The first, proposed

by Wilson (1906), and later independently by Muller (1914, 1918), states that since these

genes never cross over to the X, any recessive deleterious mutations they carry would be

perpetually sheltered by their X homologs. Homozygozing of recessive mutations, which is

an effective means for their elimination, is unavailable for these Y-linked genes.

Accumulation of recessive mutations would lead eventually to their degeneration.

This theory was criticized by R.A. Fisher (1935) and B. Charlesworth (1978) on the

following grounds. Genes on the X should acquire recessive deleterious mutations at about

the same rate as their Y homologs. Therefore, Y-linked genes carrying recessive mutations

would be eliminated in the same fashion when they encounter X homologs carrying similar

mutations. Mathematical treatment of this problem by M. Nei (1970) showed that even

though recessive mutations on the Y are fixed at a slightly higher rate compared to their X

homologs, the effect is rather insignificant, unless the effective population size is very small.

Moreover, the assumption that most deleterious mutations are truly recessive with no effect

on fitness in heterozygotes may be too simplistic. The fact that many organisms acquire

dosage compensation for their X chromosomes - a phenomenon where X-linked genes are

differentially regulated in males and females such that they are expressed at comparable

levels despite the two fold difference in copy numbers - argues that perhaps most mutations

leading to defective proteins are not entirely recessive, though their effect on fitness in

heterozygotes may be subtle.

An alternative theory, dubbed Muller's ratchet and first proposed by Muller (1964)

to explain the evolutionary advantage of recombination, was re-engineered by Charlesworth



(1978) to account for the degeneration of Y-homologs of X-linked genes. In essence, the

theory states that with recombination, an intact allele could be regenerated through

crossovers between two mutated alleles each carrying a mutation at a different site within the

locus. Without recombination, back-mutations are the only means to restore function to

deleterious mutations. Yet, back-mutations are considered rare. For this reason, Y-linked

genes would degenerate at a much greater rate compared to genes in the rest of the

recombining genome, a situation that leads eventually to the obliteration of these genes.

W.R. Rice proposed a supplement to Muller's ratchet, called genetic hitchhiking

(Rice, 1987). The term genetic hitchhiking was first used by J. Maynard Smith and J.

Haigh (1974) to mean that a mutation negatively affecting fitness may persist in a

population if it is closely linked to a locus with an allele that positively affects fitness. Rice

argued that genetic hitchhiking could operate on the Y in conjunction with Muller's ratchet.

In essence, when combinations of genes - either in intact allele forms or carrying mutations

- can be shuffled by recombination, the combination with the least mutation load would be

continually regenerated. Less favorable combinations would decrease in frequency as a

result of reduced fitness. Through this process, deleterious mutations can be effectively

weeded out. This process of regenerating gene combinations with the least mutation load is

unavailable to the Y, as the allele of one gene is permanently stuck with the allele of another

gene on the same chromosome. As a consequence, deleterious mutations on the Y are not

weeded out as effectively. The genetic hitchhiking theory is an extension of Muller's ratchet

in that it considers recombination - not only within a genetic locus but between loci -

essential for the regeneration of a contiguous DNA fragment carrying the least mutation

load.

As the degeneration of Y homologs of X-linked genes progresses, there is a need for

the up-regulation of these X-linked genes in males (or down-regulation in females) to

maintain a comparable level of expression between the sexes. A mechanism of dosage

compensation may have evolved concurrently with the Y's degeneration. As genes on the Y



become completely non-functional, their X homologs would need to be expressed at twice

the level from each copy in males as compared to females. In mammals, this is

accomplished by X-inactivation, the silencing of an entire X chromosome in each female

cell. The subject of X-inactivation is reviewed extensively by B.R. Migeon (1994).

Theorists have thus far focused on the degeneration of Y homologs of X-linked

genes, and have given less attention to another class of genes on the Y - those without X-

homologs, namely male-specific genes. In species with genetic, as opposed to

environmental sex determination, males and females can be viewed as two genetic variants of

the same organism. The controlling mechanism of their developmental differences can be

addressed by the classical genetic method of phenotype-genotype correlation. Since males

and females have identical autosomal content, the control of sexual dimorphism must lie in

the difference of their sex chromosome composition. Sexual differentiation can be

controlled either by the number of X chromosomes, as in Drosophila, or by the presence or

absence of the Y, as in most mammals. In humans, it is unlikely that sexual distinctions are

controlled by Y homologs of X-linked genes, since they are thought to complement their X

counterparts, rather than providing novel functions. In contrast, male-specific genes are

unique on the Y. Their presence in males and absence in females are perhaps the crucial

genetic difference between the two sexes that results in distinct sexual phenotypes. Of

course, this does not exclude the involvement of non-Y genes in sexually distinctive

developmental processes.

Unlike X-homologous genes on the Y, the evolution of male-specific genes has not

been rigorously modeled at a theoretical level. One pertinent idea was put forth by R.A.

Fisher (1931). He recognized that there may exist genes or alleles of genes that favor the

fitness of one sex but are inconsequential or even detrimental to the other, a situation he

termed sexual antagonism. For sexually antagonistic genes that benefit males, selective

pressure favors their accumulation in male-specific regions, namely the Y, such that females

would never be exposed to their negative effects.



One apparent hole in this theory, as J.J. Bull pointed out (1983), is that female

antagonistic genes could simply be shut off in female cells where their expression is

unfavorable. Given the ease of gene regulation, which is readily accomplished for every

gene that is differentially regulated during development, either spatially or temporally, the

selective pressure for the accumulation of female antagonistic genes on the Y due a failure to

silence them in females appears rather insignificant. Here I propose an alternative idea,

which I refer to as selective furlough. Assume that a gene benefits males but is of no

consequence to females. If this gene resides on an autosome, there would be no selective

pressure when it is transmitted through females. A female carrying a mutated allele of this

gene would suffer no consequence. This gene is therefore in a "selective furlough" during

female transmission, which is half of its evolutionary history. If however, this gene resides

on the Y, it would be under constant selection as it is transmitted from male to male. This

amounts to elevated selective pressure, either to maintain the gene in its original form or to

push it toward forms that impart greater fitness. A rigorous mathematical treatment may

reveal the extent to which this elevated selective pressure would drive male beneficial genes

either to move from autosomes to the Y, or to evolve de novo more readily on the Y than on

autosomes.

Section iii: Structure and gene content of the human Y chromosome

Theoretical treatments of the evolution and behavior of the Y chromosome apply to a

wide range of species. Experimentally however, the human Y is by far the best studied.

The human Y was first described in 1923 by T.S. Painter (1923). Even though the

association of sex with sex chromosome composition was firmly established by this time, it

was not until 1959 that the dominant role of the human Y in triggering male differentiation

was unveiled by reports of XO females and XXY males (Jacobs and Strong, 1959, Ford et

al., 1959). Subsequent decades would see an explosion of biological techniques, bringing



the knowledge of human chromosomes, including the Y, from visual observations to the

molecular level.

The human Y is one of the smallest among the 24 chromosomes, measuring roughly

60 megabases, or 2% of the haploid genome. Fig. 1 is a schematic drawing of the

chromosome. Table 1 lists all previously identified genes or pseudogenes.

The human Y can be divided into pseudoautosomal regions and the non-

recombining region. The pseudoautosomal regions, or PARs, exist on both X and Y. The

two sex chromosomes pair and freely recombine within PARs. As a result PAR sequences

are identical between X and Y, and follow rules of genetic recombination and linkage like the

autosome, hence the name pseudo-autosomal. G.A. Rappold has reviewed the human

PARs comprehensively (1993). The human X and Y each have two PARs, situated on either

end of each chromosome. A larger 2.5 megabase PAR is at the tip of Xp and Yp (Cooke et

al., 1985, Simmler et al., 1985), and a smaller 0.3 megabase PAR is at the tip of Xq and Yq

(Freije et al., 1992). Genetic markers from PARs showed that the rate of recombination

between PARs is significantly higher in males than in females. This difference is about 10-

fold in the Xp/Yp PAR (Henke et al., 1993), and about 5-fold in the Xq/Yq PAR (Freije et

al., 1992). Perhaps the formation of chiasma during meiosis is required between X and Y to

ensure proper pairing and segregation of the two sex chromosomes (Henke et al., 1993).

The idea of obligatory chiasma between X and Y is consistent with the greatly elevated

recombination rate between PARs in males. Moreover, disruptions in the mouse PAR lead

to spermatogenic failure, consistent with a need for homologous pairing during meiosis

(Burgoyne et al., 1992). As reviewed in the previous section, theories of Y chromosome

evolution suggest that crossover suppression spreads outward from TDF, until the entire

chromosome stops recombining with the X. The presence of two PARs in humans is

therefore an exception. The requirement of homologous pairing and crossover may

preserve the PARs by counteracting crossover suppression. However, this requirement is

far from general and should be taken with caution as an explanation for the persistence of
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Table 1. Previously itentified

Gene name

Genes in 1st PAR
CSF2RA
IL3RA (hlL-3Ra)
ANT3 (T2)
ASMT (HIOMT)
XE7
MIC2
SHOX

Genes in NRY
XGPY: pseudogene
SRY
RPS4Y
ZFY
TSPY
PKY: uncharacterized
AMELY
KALP: pseudogene
STSP: pseudogene
HYA (SMCY)
RBM (YRRM)
DAZ

Gene in 2nd PAR
SYBL1
IL9R

Y genes and pseudogenes

Reference

Gough et al., 1990
Milatovich et al., 1993
Slim et al., 1993
Yi et al., 1993
Ellison et al., 1992
Goodfellow 1986
Rao et al., 1997

Weller et al., 1995
Sinclair et al., 1990
Fisher et al., 1990
Page et al., 1987
Arnemann et al., 1991
Klink et al., 1995
Salido et al., 1992
del Castillo et al., 1992
Yen et al., 1988
Agulnik et al., 1994
Ma et al., 1993
Reijo et al., 1995

D'Esposito et al., 1996
Kermouni et al., 1995

Note: PAR: pseudoautosomal region;
NRY: non-recombining region of the Y



PARs. Marsupial X and Y for example, are thought to lack PARs. They do line up at the

tips during meiosis, but do not appear to undergo recombination (Sharp, 1982).

Even though PARs constitute only 5% of the Y, they contain as many genes thus far

identified as the rest of the chromosome (Table 1). These genes appear as a typical

sampling of the genome, with varying patterns of expression and diverse functions.

In humans, the two PARs flank a central, non-recombining region of the Y, or NRY.

The NRY can be divided about equally into a euchromatic half and a heterochromatic half.

The heterochromatic region, the largest contiguous stretch of repetitive DNA in the genome,

gives the Y its characteristic bright tail during metaphase when stained with quinacrine. No

gene has been found in the heterochromatin.

The euchromatic portion of the NRY has been extensively studied. It was one of the

first large chromosomal regions for which an STS map was constructed based on naturally

occurring Y deletions in people and a complete YAC contig (Vollrath et al., 1992, Foote et

al., 1992). As anticipated, the STS map and the YAC contig have been of tremendous

benefit for subsequent studies. They also provided the basis for dividing the euchromatic

portion of the NRY into three types of regions: Y-specific single copy regions, Y-specific

repeats, and X homologous regions (Foote et al., 1992).

Y-specific single copy regions represent only a minority of NRY sequences, but

contain the majority of genes thus far identified within the NRY.

Y-specific repeats, as the name suggests, are specific to the Y, but are present in

multiple, closely related copies. The prevalence of this type of sequences is unique to the Y.

Theorists have argued that the lack of recombination can result in a unique tendency for

repetitive elements to accumulate on the Y. Since the NRY does not recombine,

rearrangements (i.e., duplication and inversion) within this region, which on autosomes

cause meiotic non-disjunction, are faithfully transmitted through meioses. Consequently,

repetitive sequences in shuffled arrangements can accumulate. Genes found so far in these

repetitive sequences, TSPY, RBM and DAZ are themselves repeated.



X homologous regions share a high degree of homology with the X. The best

studied is the so called DXYS 1 like region. It shares over 99% sequence homology with

the X, and was shown to have transposed from X to Y within the primate lineage (Schwartz

et al., ). No genes have yet been found within X homologous regions. Any genes that may

be present are expected to be highly homologous to their X counterparts. X homologous

regions should not be confused with Y copies of X/Y homologous genes. The former

constitute very large stretches, often over megabases of high homology with the X; the latter

are Y homologs of X-linked genes, residing in regions that are otherwise Y-specific.

Eight genes were previously cloned from the NRY (Table 1), of which SRY is the

long sought TDF, the master switch for male differentiation. In addition, there are four X/Y

homologous genes, namely, genes with close homologs on the X. They are RPS4Y, ZFY,

AMELY and SMCY. There are three male-specific genes (genes with no X homologs):

TSPY and RBM, which do not have close autosomal homologs, and DAZ which has a close

homolog on chromosome 3 (Saxena et al., 1996).

The four Y copies of X/Y homologous genes represent vestiges of the ancient Y

chromosome, and are exceptions to the rule of Y degeneration. Their persistence can be

accounted for in two ways: 1) they may resist degeneration due to the need for double gene

dosage; or 2) they were recent acquisitions on the Y. This question will be addressed in

detail in Chapter 3, where examples of both appear to exist.

The two male-specific genes, TSPY and RBM, are both expressed in the adult testis,

which is consistent with their postulated male-specific functions. DAZ may represent a

recent acquisition within the primate lineage by the Y of an autosomal gene with male-

specific function (Saxena et al., 1996). The testis-limited expression of both DAZ and its

chromosome 3 homolog DAZL is consistent with their male-specific role. Moreover, DAZ

is implicated in male infertility. A substantial fraction of men who suffer spermatogenic

failure are deleted de novo for a region of the Y that contains DAZ, suggesting that DAZ and

perhaps DAZL function in spermatogenesis (Reijo et al., 1995). The role of Y-linked genes



in male fertility will be treated in depth in the next section. Despite the lack of rigorous

theoretical treatments of how genes controlling male-specific biology may emerge and

evolve on the Y, the idea of sexual antagonism proposed by R.A. Fisher and the idea of

selective furlough I proposed in the previous section at least raise the argument that perhaps

male-specific genes are attracted to the Y to take advantage of its male-restricted

transmission. It was recently suggested that TSPY and RBM may also have been acquired

by the Y from autosomes, but evidence is less compelling as these genes have diverged a

great deal from their putative autosomal homologs (Delbridge et al., 1997).

Section iv: The role of the human Y in spermatogenesis

As discussed in Section ii of this chapter, male-specific genes on the Y are

responsible for controlling sexually distinctive features. Like most sexually reproducing

species, human males and females share virtually all developmental processes with some

well-defined exceptions. Gonads and their supporting structures are vastly different

between men and women. The remaining somatic differences are a collection of sexual

features, some obvious (e.g., mammary glands, bone structure, muscle mass, voice and body

hair), and some subtle and perhaps even controversial (e.g., temperament, aggressiveness,

and other psychological traits). These secondary characteristics are modulated by

hormones. In contrast to somatic features, the development of germ cells - spermatogenesis

in men and oogenesis in women - are highly dissimilar.

In mammals, SRY is believed to be responsible for most if not all somatic sexual

distinctions. In humans for example, there are 46,XX males who carry a small fragment of

Y DNA (including SRY) on one of their X's. These men are infertile, but are otherwise

normal (de la Chapelle et al., 1984, Andersson et al., 1986, Page et al., 1987a, Petit et al.,

1987). In fact, many of them first seek medical attention for their infertility. In the mouse,

40,XX animals which carry an SRY transgene develop into somatically normal but infertile

males (Koopman et al., 1991). Apparently SRY alone is sufficient to trigger most if not all



aspects of somatic male differentiation. By the process of elimination, other male-specific

genes on the Y are most likely involved in male-specific processes in the germline.

Experimental evidence for Y's role in spermatogenesis was first uncovered by L.

Tiepolo and O. Zuffardi (1976) when they karyotyped infertile men and saw microscopic

deletions of distal Yq in some It would be nearly two decades later when higher-resolution

molecular evidence defined at least three distinct regions on the Y where deletions resulted

in spermatogenic failure (Ma et al., 1993, Reijo et al., 1995, Vogt et al., 1996, Pryor et al.,

1997). Putative genes responsible for the phenotype were called Azoospermia Factors, or

AZF. This term is somewhat misleading, since azoospermia means "spermless" yet many

men with deletions have reduced but non-zero sperm counts, a condition more correctly

referred to as oligospermia. Two genes, RBM and DAZ, have thus far been proposed as

AZF candidates (Ma et al., 1993, Reijo et al., 1995). RBM exists in multiple copies

dispersed on the Y. It has no close homolog outside of Y. Like RBM, DAZ also exists in

multiple copies, but in a local cluster. It has a close homolog DAZL on chromosome 3, and

as discussed in the previous section, is believed to have transposed onto the Y and

subsequently amplified, perhaps as a result of its important role in spermatogenesis (Saxena

et al., 1996).

Perhaps not coincidentally, the importance of the Y in spermatogenesis is not limited

to humans. Mouse Y is essential for male fertility (Levy and Burgoyne, 1986, Burgoyne et

al., 1992, Conway et al., 1994), as is the Y in Drosophila (Hardy et al., 1981).

Of course, Y genes with X homologs cannot be ruled out as AZF candidates. In fact,

it is even possible that X/Y homologous genes with essential roles in spermatogenesis are

more resistant to degeneration. Perhaps the unique biology of male germ cells requires the

maintenance of two functional copies of some X/Y homologous genes. The germline is

where competition for survival occurs not only among organisms but among germ cells

within a single organism. Upon meiosis I, germ cells each assume a different haplotype.

Even though germ cells form syncytia, with a shared cytoplasm (Braun et al., 1989), cellular



resources in a syncytium may not be evenly distributed, and a germ cell's haplotype may

affect its transmission. In the extreme, germ cells carrying a certain haplotype display

meiotic drive - they out-compete others by a large margin, resulting in distortion of

Mendelian segregation (Lyttle, 1991). A well-studied case of meiotic drive in male germ

cells is the mouse autosomal T locus. Male mice with the so called t allele and a wild type

allele of the T locus (t/+) transmit the t allele to >99% of their offspring (Silver, 1993). If at

least one copy of some X/Y homologous genes is required in the haplo-stage of

spermatogenesis, there would be strong selection against the degeneration of the Y copy.

Section v: The human Y and Turner syndrome

Turner syndrome (TS), described by H.H. Turner (1938), is a congenital condition

confined to females. Classic TS features include very poor in utero viability (estimated at

1%), short stature, ovarian dysgenesis, failure to develop secondary sexual characteristics,

and a number of anatomical abnormalities. Two decades after Turner's description of the

syndrome, cytogenetic studies by C.E. Ford and colleagues (1959), and later by others,

associated TS with complete or partial monosomy of sex chromosomes. Abnormal

karyotypes typically include 45,XO; 46,X,derivative(X); or 46,X,derivative(Y), found either in

all the cells of a patient (nonmosaic), or some fraction of the cells (mosaic). Partial

monosomy of sex chromosomes has since been an integral part of the diagnostic definition

of TS. Occasionally, there are cases that present all or some of TS features, but with an

apparently normal karyotype. The molecular nature of TS has been reviewed by A.R. Zinn

and colleagues (1993).

Despite poor in utero viability, 45,XO is the only human monosomy that

occasionally survives beyond the embryonic stage. This is very likely due to X-inactivation

- the silencing of one of the two X chromosomes in female cells - which leads to dosage

equality of X-linked genes at the level of expression among males, females and 45,XO

individuals. However, the fact that 45,XO individuals are not completely normal, but rather



develop TS features, poses a paradox for X-inactivation. If silencing of one X in females

were complete, 46,XX and 45,XO should be functionally equivalent. Even though one can

argue that disruption of proper meiotic pairing in 45,XO individuals may lead to oogenic

failure, as some experiments had suggested (Burgoyne et al., 1992), it can not account for

somatic features of TS. One has to postulate that X-inactivation is incomplete, and that

genes implicated in TS escape X-inactivation. A caveat is that males, who only have one X,

develop normally. To express an equal dosage in males as in females for the genes that

escape X-inactivation, the Y chromosome has to carry the very same genes. These so called

Turner genes - escaping X-inactivation in females and having functional Y homologs in

males - were proposed by M.A. Ferguson-Smith (1965) long before their presence was

experimentally confirmed. Based on his model, expression from two functional copies of

Turner genes is essential for development. TS is a consequence of haploinsufficiency of

these genes - the half-normal expression from only one functional copy.

All genes residing in PARs are potential Turner genes: they are on both X and Y and

typically escape X-inactivation in females (Goodfellow et al., 1986, Ellison et al., 1992b,

Slim et al., 1993). Recently, a new gene, SHOX was identified on Xp/Yp PAR. Interstitial

deletions of regions encompassing SHOX resulted in short stature. SHOX was postulated

as a Turner gene, responsible at least partially for short stature, which is one of TS features

(Rao et al., 1997). There could still be other Turner genes in PARs.

The NRY is also implicated in TS. There are sex-reversed XY females with point

mutations in SRY that presumably inactivate the protein. They have none of the somatic

features of TS. XY females who have interstitial deletions that delete SRY, however, almost

always show one or more somatic features of TS (Blagowidow et al., 1989, Levilliers et al.,

1989, Page, Unpublished data). Deletions in these individuals apparently include Turner

genes in addition to SRY. In the NRY, there indeed exist a class of genes that fit the criteria

for Turner genes. X/Y homologous genes have close and presumably functionally

comparable homologs on X and Y. X copies, where tested, escape X inactivation



(Schneider-Gidicke et al., 1989, Fisher et al., 1990, Agulnik et al., 1994, Jones et al., 1996).

But none of the X/Y homologous genes are yet definitively correlated with TS.

Section vi: Chromosomal abnormalities of the human Y

Chromosomal abnormalities of the Y are frequently observed in the human

population, perhaps because the Y contains few genes essential for survival, . There are two

major classes: 1) re-arrangements involving the Y and another chromosome; and 2) re-

arrangements involving only the Y.

The most common re-arrangements involving the Y and another chromosome are

translocations between X and Y. Like autosome pairs, X and Y pair and undergo

recombination within PARs. Their close proximity during meiosis, though necessary for

proper segregation, may also facilitate a high frequency of aberrant crossovers between the

two sex chromosomes. A large fraction of sex reversed individuals - XX males and XY

females (Levilliers et al., 1989) - arise from aberrant X/Y crossovers. These aberrant

crossovers typically occur between short stretches of homologous sequences. These short

stretches can be repetitive elements like Alu's (Rouyer et al., 1987), or more unique

sequences (Weil et al., 1994). In the case of XX males, the terminal portion of Xp of one of

the X's is replaced by the terminal portion of Yp which carries SRY, apparently through a Yp

to Xp translocation (de la Chapelle et al., 1984, Andersson et al., 1986, Page et al., 1987a,

Petit et al., 1987). Reciprocal products of this aberrant exchange are frequently found in

XY females. Their terminal Yp, which normally carries SRY, is replaced by a translocated

fragment of terminal Xp (Weil et al., 1994).

Re-arrangements involving only the Y may occur between two sister Y

chromosomes during cell division. One common class of abnormal Y, the so called

isodicentric Y, are a result of aberrant crossovers between two Y chromosomes. Isodicentric

chromosomes can be viewed as mirror-image chromosome fragments attached at the point

of symmetry. Both isodicentric Yp and Yq chromosomes have been observed. For an



isodicentric Yp chromosome for example, the linear structure is as follows: pter-centromere-

[a portion of Yq]-[point of symmetry]-[a portion of Yq]-centromere-pter. These

chromosomes carry two centromeres, hence the term iso-di-centric. Isodicentric Y is found

most commonly in Turner syndrome (TS) patients. Almost invariably, isodicentric Y cells

exist in mosaicism with XO cells, for which the simplest explanation is that a chromosome

with two centromeres is unstable during cell division and is often lost. Another type of

abnormal Y found in some TS patients is the so called ring Y. They most likely arise from

aberrant crossovers between two points of the same Y chromosome, one on the long arm

and one on the short arm. Like isodicentric Y, ring Y cells frequently exist in mosaicism

with XO cells. The ring structure perhaps inhibits proper segregation during cell division

and results in frequent loss of the chromosome.

Terminal deletions are very common on the Y. Deletions of the long arm (Yq-) are

much more common than deletions of the short arm (Yp-). In fact, 46,XYq- karyotype is

among the most common microscopically detectable chromosome disorders, with a rate of

occurrence estimated at 0.1% (Hamerton et al., 1975). Since most terminal deletions of the

Y are detected with low resolution microscopy, one cannot rule out the possibility that

apparent Yq- or Yp- chromosomes could carry small translocations of other chromosomes.

Moreover, a chromosome suffering from a true terminal deletion lacks a telomere, which is

essential for its stability. This argues that either there is a yet to be characterized mechanism

for telomere regeneration, or that the apparent terminal deletion is in fact 1) a translocation

with another chromosome; or 2) an interstitial deletion with one breakpoint near the end of

the chromosome. These possibilities are thoroughly explored in Chapter 4.

Chromosomal abnormalities of the Y have also played a crucial role in continuous

efforts to build molecular maps of the chromosome, which culminated in the construction of

an STS-based map with 43 intervals across the euchromatic portion of the NRY (Vergnaud

et al., 1986, Affara et al., 1986, Oosthuizen et al., 1990, Nakahori et al., 1991, Kotecki et al.,



1991, Bardoni et al., 1991, Vollrath et al., 1992). Re-arrangements of the Y used in the

studies included isodicentric Y, ring Y, Yq-, autosome/Y translocation, and X/Y translocation.

With the advent of Y maps based on molecular markers (Vollrath et al., 1992, Foote

et al., 1992), large deletions are now routinely detected either by hybridization markers, or

more commonly, STS based PCR markers. These techniques also allow for the detection of

smaller, interstitial deletions of the Y that are undetectable by microscopy. Molecular

detection of small deletions on the Y have uncovered at least three distinct regions essential

for spermatogenesis (Ma et al., 1993, Reijo et al., 1995, Vogt et al., 1996, Pryor et al.,

1997).

In summary, chromosomal abnormalities are essential tools for deciphering

biological functions of the Y, especially in sex determination and spermatogenesis. With

the ongoing discovery of genes and the construction of higher resolution maps,

abnormalities of the Y will continue to be an important tool.
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A systematic search of the non-recombining region of the human Y chromosome (NRY)

has identified 12 novel genes or families, 10 with full-length cDNA sequences. All 12

genes, and six of eight NRY genes or families previously isolated by less systematic

means, fell into two classes. Genes in the first group were expressed in many organs;

these housekeeping genes have X homologs that escape X inactivation. The second group,

consisting of Y-chromosomal gene families expressed specifically in testes, may account

for infertility among men with Y deletions. The coherence of the NRY's gene content

contrasts with the apparently haphazard content of most eukaryotic chromosomes.

Functional or developmental themes have rarely been ascribed to whole chromosomes in

eukaryotes. Instead, individual chromosomes appear to contain motley assortments of genes, with

extremely heterogeneous patterns of developmentally regulated expression. We speculated that the

human Y chromosome might represent a functionally coherent exception, at least in its

nonrecombining portion (the NRY), which comprises 95% of its length (1). It is known to differ

from all other nuclear human chromosomes by the absence of recombination, its presence in males

only, its common ancestry and persistent meiotic relationship with the X chromosome, and the

tendency of its genes to degenerate during evolution (2).

From the 1950's to the present day, many biologists have assumed that the Y chromosome

is a functional wasteland, despite the discovery of several NRY genes during this period. Studies of

human pedigrees had identified many traits exhibiting autosomal or X-linked inheritance, but no

convincing cases of Y-linked inheritance (3). In 1959, reports of XO females and XXY males

established the existence of a sex-determining gene on the human Y chromosome (4), but this was

perceived as a special case on a generally desolate chromosome. The wasteland model has been

revised only during the past decade, when eight NRY transcription units (or families of closely

related transcription units) were identified, mostly during regionally focused, positional cloning

experiments (5-8). Even in recent years, it has been argued that the NRY's gene content is

essentially limited to random, disintegrating vestiges of its common ancestry with the X (9). The Y-



specific repetitive sequences that are so plentiful in the euchromatic regions (10, 11) have often

been assumed to be functionally inert (12). Realizing that these wasteland theories were based on

limited, anecdotal data as to the NRY's gene content, we decided to embark on a broad, systematic

gene hunt that could uncover previously unrecognized functional patterns.

A complete description of the NRY's gene content cannot be obtained using current research

methods, short of sequencing the entire NRY. However, it should be possible to obtain a broad,

representative sampling of NRY genes that could enable us to make comprehensive generalizations.

We searched for this sampling in sequences transcribed in a single, complex tissue, the testis. To

assess the suitability of the testis, and of a "cDNA selection" protocol (13), for this project, we first

sought to crudely measure what fraction of human genes, regardless of developmental regulation,

are detectably transcribed there. We did this by testing whether previously identified

pseudoautosomal genes (1), whose diversity in developmentally regulated expression is like that of

autosomal genes, could be found among testis transcripts. The nine known pseudoautosomal genes

were previously identified using mRNA sources as specialized as liver, pineal gland, and skeletal

muscle. The extent to which we recovered the nine known pseudoautosomal genes from sampling

of testis cDNA would provide a measure of this tissue's adequacy in representing a broad array of

genes.

In fact, we recovered testis cDNAs for all nine known pseudoautosomal genes, suggesting

that the testis as a single source would be sufficient to provide nearly comprehensive access to NRY

genes. From primary, uncloned testis cDNA, we selected and determined the nucleotide sequence

of 2539 fragments that hybridized to Y chromosomal DNA. We anticipated that these sequence

fragments would represent a redundant sampling of a much smaller set of genes. Nucleotide

sequence analysis revealed that 579 fragments corresponded to known Y genes, including all nine

pseudoautosomal genes previously reported, and seven of eight known NRY genes. (The one

previously reported NRY gene that we failed to recover was AMELY, which is expressed only in

developing tooth buds.) After further analysis, both to eliminate human repetitive sequences and to

assemble overlapping fragments into contigs, novel sequences were hybridized to Southern blots of



human genomic DNAs. Sequences that detected at least one prominent male-specific fragment

were judged likely to derive from the NRY, and for each we attempted to isolate cDNA clones from

a human testis library (13). Nucleotide sequencing of cDNA clones, and rescreening of libraries as

necessary, yielded full-length cDNA sequences for ten novel NRY genes or families, and partial

cDNA sequences for two additional ones (Table 1). We localized all 12 novel genes on the Y

chromosome (Fig. 1) (14) and assessed their expression in diverse human tissues by Northern

blotting (Fig. 2). The novel genes encode an assortment of proteins (Table 1) and are dispersed

throughout the euchromatic portions of the NRY (Fig. 1).

Although our gene hunt was systematic, it is likely that some NRY genes in addition to

AMELY escaped detection; this could have resulted from failure to select corresponding cDNAs or

from discarding them during subsequent screening steps. Like AMELY, other NRY genes may not

have been recovered because they are not transcribed at sufficient levels in the testis. Our screening

criteria may have discriminated against NRY genes located in regions of exceptionally high

sequence similarity to the X chromosome. In particular we may have overlooked genes located in a

4-Mb region of the NRY characterized by 99% sequence identity to the X (15). Nonetheless, we

suspect that the gene hunt was sufficiently comprehensive for us to form meaningful

generalizations about the NRY's gene content.

The 12 novel genes readily sort into two discrete classes (Table 1). The first group, five

novel NRY genes, share several features. Each has a homolog on the X chromosome encoding a

very similar but non identical protein isoform; every gene is expressed in a wide range of human

tissues; and each gene appears to exist in a single copy on the NRY. The other seven novel NRY

genes constitute the second group, which share quite different traits. They appear to be expressed

specifically in testes. They also seem to exist in multiple copies on the NRY, as judged by i) the

number and intensity of hybridizing fragments on genomic Southern blots (not shown) or ii)

multiple map locations on the Y. The two classes of genes suggested by our NRY-wide search also

accommodate six of eight NRY genes previously identified by less systematic means (5-8, 16),

confirming the validity of this bipartite classification.
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Fig. 1. Gene map of NRY. The Y chromosome consists of a large non-recombining region (NRY;
euchromatin plus heterochromatin) flanked by pseudoautosomal regions (yellow). Pter, short arm
telomere; qter, long arm telomere. The NRY is shown divided into 43 ordered intervals (1A1A through
7) defined by naturally occurring deletions; deletion intervals previously shown to contain Y-specific
repeats are shaded blue (10, 11) . Listed immediately above chromosome are nine NRY genes with
functional X homologs (red); novel genes are boxed. Immediately below chromosome are 11 testis-
specific genes or families (blue), some with multiple locations. Within deletion intervals, genes have
not been ordered. Some testis-specific families probably have members in additional deletion
intervals; indicated locations are representative but not necessarily exhaustive. At bottom are shown
NRY regions implicated, by deletion mapping, in sex determination, germ cell tumorigenesis
(gonadoblastoma), stature, and spermatogenic failure (7, 8, 28, 31) . For DFFRY, previously thought
to be a pseudogene, these mapping studies confirm published findings (19) .
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Fig. 2. Transcription of 12 novel NRY genes in human tissues. Autoradiograms produced by
hybridizing 32P-labeled cDNA probes to Northern blots of poly(A)+ RNAs (2 gg/lane) from
human tissues (Clontech, Palo Alto, CA). Probes employed were cDNA clones, full-length
(most genes) or partial (DBY, nucleotides 1476-2319 of GenBank AF000985; UTY, nucleotides
861-1768 of GenBank AF000996; DFFRY, nucleotides 8604-9878 of GenBank AF000986).
Hybridization at 650C in 0.5 M NaiPO4 pH7.5, 7% SDS; washing at 650C in 1X SSC, 0.1% SDS.
DBY, TB4Y, EIF1AYand DFFRYprobes cross-hybridize to transcripts derived from their X
homologs. For all five X-homologous genes (DBY, PRY, TB4Y, EIF1AYand DFFRY),
expression was tested and confirmed in three male tissues (brain, prostate and testis) by RT-
PCR using Y-specific primers (not shown). For DFFRY, previously thought to be a transcribed
pseudogene, these expression studies confirm published findings (19).
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Table 1. 12 novel genes and gene families in the NRY

NRY Genes and Gene Families Functional X Homologs

Tissue Multi-copy Gene X-Y amino acid Escape XGene symbol Gene name Comments GenBank # Tissue Multi-copy Gene GenBank # (ref.) sequence
Ipsi identity inactivation

Chromodomain Y

Basic Protein Y 1

Basic Protein Y2

XK Related Y

PTP-BL Related Y

Testis Transcript Y 1

DBY Dead Box Y

TB4Y Thymosin 84, Y isoform

EIF1AY Translation Initiation Factor
1A, Y isoform

AF000985 ubiquitous no I DBX AF000983 91% yes
AF000984

AF000989 ubiquitous

AF000987

AF000996
AF000995
AF000994

ubiquitous

ubiquitous

Novel protein; DEAD box" motif suggests this
may be an RNA helicase (32)

X homolog sequesters actin (17)

X homolog is an essential initiation factor (18)

Mouse Y homolog recently shown to encode
an H-Y antigen; contains 10 tandem "TPRN

motifs implicated in protein-protein interaction
(33); differential splicing may generate

isoforms differing at carboxy termini

X homolog recently described; Y previously
thought to carry a transcribed pseudogene;
homologous to Drosophila deubiquinating
enzyme required for eye development and

oogenesis (19, 34)

Novel protein with "chromodomain" (35) and
putative catalytic domain (36); might modify

DNA or chromosomal proteins during
spermatogenesis

Novel, 125-residue protein rich in S, K, R, P;
calculated isoelectric point (pl) 9.4; Southern
blotting reveals X homolog, but no X-derived

cDNA clones identified to date

Novel, 106-residue protein; calculated pl 10.0

Novel protein with similarity to XK, a putative
membrane transport protein (37)

Novel protein with some similarity to PTP-BL,
a putative protein tyrosine phosphatase (38)

No significant open reading frame identified

AF000981

AF000979

AF000980

AF000997

AF000988

AF000990

testis

testis

testis

testis

testis

testis

no

no

no

no

yes

yes

yes

yes

yes

yes

No significant open reading frame identified AF000991 testis yes

TB4X

EIF1AX

UTX

DFFRX

AF000982

(17)

(18)

AF000992
AF000993

(19)

93%

97%

85%

91%

yes

yes

yes

yesAF000986 ubiquitous

UTY Ubiquitous TPR motif Y

DFFRY Drosophila Fat Facets
Related Y

CDY

BPY1

BPY2

XKRY

PRY

TTY1

TTY2 Testis Transcript Y2



Many of the X-homologous genes appear to be involved in cellular housekeeping, as

suggested by their ubiquitous expression and by the functions of the encoded proteins, which are

well established in three cases. TB4Y encodes a Y isoform of thymosin B4, which functions in actin

sequestration (17) and which we found to be encoded by the X chromosome. EIFIAY encodes a Y

isoform of elF-1A, an essential translation initiation factor (18). RPS4Y encodes a Y isoform of an

essential ribosomal protein (6).

By contrast with these single-copy, X-homologous housekeeping genes, the multi-copy

NRY gene families appear to encode proteins with more specialized functions. All appear to be

expressed specifically in the testis. Our study identified full-length cDNA clones for five of these

gene families, which were all found to encode proteins not previously characterized (Table 1).

Several of the testis-specific gene families may encode DNA or RNA-binding proteins, including

two small, unrelated basic proteins: BPY1 and BPY2 (Table 1); two putative RNA-binding proteins:

RBM and DAZ (7, 8); and CDY, which contains a "chromodomain" (a chromatin binding motif;

Table 1, Fig. 3), and a catalytic domain (Fig. 3 & 4).

We postulate that the NRY's evolution was dominated by two strategies. The first strategy

favored conservation of particular X-Y gene pairs to maintain comparable expression of certain

housekeeping functions in males and females. This strategy is at odds with the general behavior of

X-Y gene pairs during mammalian evolution. The mammalian X and Y chromosomes evolved from

autosomes; most ancestral gene functions were retained on the nascent X chromosome but

deteriorated on the non-recombining portion of the emerging Y chromosome (2). This resulted in

females having two copies but males having only one copy of many genes, an inequality

predominantly addressed in mammals by transcriptional silencing, or inactivation, of one X

chromosome in females. Our findings on X-homologous NRY genes, together with previous

studies, suggest the importance in human evolution of an additional solution: preservation of

homologous genes on both NRY and X, with male and female cells expressing two copies of such

genes. A critical prediction of this model is that the X homologs should escape X inactivation. This

is the case for all widely expressed X-linked genes with known NRY homologs, including the X
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PDD1 (Tetrahymena)
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Fig. 3. Amino acid sequence alignments of human CDY's chromodomain and putative catalytic domain with their
respective homologs (35, 36). The carboxy-terminal half of CDY shows striking amino acid similarity, over a region
of more than 200 residues, to nearly the full length of several prokaryotic and eukaryotic enzymes, all of which act on
substrates linked to coenzyme A. Amino acid identities in three out of six sequences are indicated by black shading.
For each protein, first and last residues shown are numbered (with respect to the initiator methionine), and the protein's
total length is indicated.
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homologs of the five novel NRY genes reported here (6, 19-21). A second prediction is that the X

and Y encoded proteins should be functionally interchangeable despite considerable divergence of

their genes' nucleotide sequences. Indeed, each of the eight known X-NRY gene pairs encode

closely related isoforms, with 85 to 97% amino acid identity throughout their lengths; functional

interchangeability has been demonstrated in the one case tested to date (22).

These dosage compensation strategies may be relevant to Turner syndrome, classically

associated with an XO sex chromosome constitution. The Turner phenotype may be due to

inadequate expression of certain X-Y common genes that escape X inactivation (23). Given that

several X-NRY genes appear to be involved in cellular housekeeping, we speculate that some

features of the XO phenotype (such as poor fetal viability) reflect inadequate expression of

particular housekeeping functions. The X-homologous NRY genes (Fig. 1) should be investigated

as Turner candidates (24).

In addition to the strategy for conserving certain X-Y gene pairs, a second strategy probably

shaped the NRY's evolution. This strategy favored the acquisition of testis-specific families,

perhaps through selectively retaining and amplifying genes that enhance male reproductive fitness.

Animal genomes may contain genes or alleles that enhance male reproductive fitness but are

inconsequential or even detrimental to females, as first appreciated by R.A. Fisher (25). Fisher

recognized that selective pressures would favor the accumulation of such genes in male-specific

regions of genomes. Of course, male reproductive fitness depends critically on sperm production,

the task of the adult testis. As the only male-specific portion of the mammalian genome, the NRY

should have a unique tendency to accumulate male-benefit genes during evolution. Consider the

human NRY's DAZ gene cluster, de novo deletions of which are associated with severe

spermatogenic defects (8). The DAZ cluster on the human Y chromosome arose during primate

evolution by transposition and amplification of an autosomal gene. Similarly, two other testis-

specific NRY gene families - RBM and TSPY- may also be the result of the Y's having acquired

and amplified autosomal genes (26). We speculate that the selective advantage conferred by the

NRY's retaining and amplifying male fertility factors (from throughout the genome) accounts for



the multitude of testis-specific gene families there. These activities may have been preeminent in

shaping the NRY's gene repertoire, since it appears that the great majority of NRY transcription

units are members of testis-specific families (27). We suspect that the majority of the NRY's

transcription units do not date from the Y's common ancestry with the X chromosome, but instead

represent more recent acquisitions.

The importance of the human Y chromosome in fertility has been underscored by recent

genetic studies. Many men with spermatogenic failure, while otherwise healthy, lack portions of the

NRY (7, 8, 28). These findings have suggested the existence of NRY genes that play critical roles

in male germ cell development but are not required elsewhere in the body. Previous deletion

mapping studies have implicated four regions of the NRY in either spermatogenic failure or germ

cell tumorigenesis, and in each of the four regions we now report novel candidate genes expressed

specifically, or most abundantly (29), in testes (Figs. 1,2)

Although X-homologous and testis-specific genes are somewhat intermingled within the

NRY, clustering is evident (Fig. 1). The geographic distribution of the two classes correlates well

with previously identified sequence domains within the euchromatic NRY (10, 11). Ten of the 11

known testis-specific families map to previously identified regions of Y-specific repetitive

sequences (30). Indeed, one or more testis-specific gene families are found in nearly all known

regions of euchromatic Y repeats (Fig. 1). Ironically, it had been widely assumed, partly on

theoretical grounds, that these domains consisted of "junk" DNA (12). To the contrary, our results

argue that these Y-specific repetitive regions are gene-rich, containing most of the NRY's

transcription units (27). We speculate that these were regions of rampant gene amplification during

mammalian evolution. By contrast, none of the eight X-homologous genes map to the Y-repeat

domains; they all map to regions previously identified as consisting largely of single-copy (or in

some cases X-homologous) sequences. We postulate that, earlier in mammalian evolution, these

regions of the NRY shared extensive nucleotide sequence identity with the X chromosome.

Although more genes likely remain to be discovered, the 20 genes and families shown in

Fig. 1 may constitute the majority of NRY genes, and full-length cDNA sequences are available for



18 of them. The stage is now set for systematic evolutionary, biochemical and cell biological

studies of this distinctive segment of the human genome.
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Appendix. Sequences of novel genes on human Y and X

DBX & DBY
short and long transcripts

DBX -856 ctttccccttactccgctcccctcttttccctccctctcctcccct
DBX -810 tccctctgttctctcctcctcttcccctcccctcccccgtccggggcactctatattcaagccaccgtttcctgcttcacaaaatggcca
DBX -720 ccgcacgcgacacctacggtcacgtggcctgccgccctctcagtttcgggaatctgcctagctcccactaaggggaggctacccgcggaa
DBX -630 gagcgagggcagattagaccggagaaatcccaccacatctccaagcccgggaactgagagaggaagaagagtgaaggccagtgttaggaa
DBX -540 aaaaaaaaacaaaaacaaaaaaaacgaaaaacgaaagctgagtgcatagagttggaaaggggagcgaatgcgtaaggttggaaagggggg
DBX -450 cgaagaggcctaggttaacattttcaggcgtcttagccggtggaaagcgggagacgcaagttctcgcgagatctcgagaactccgaggct
DBX -360 gagactagggttttagcggagagcacgggaagtgtagctcgagagaactgggacagcatttcgcaccctaagctccaaggoaggactgct
DBX -270 aggggcgacaggactaagtaggaaatcccttgagcttagacctgagggagcgcgcagtagccgggcagaagtcgccgcgacagggaattg
DBX -180 cggtgtgagagggagggcacacgttgtacgtgctgacgtagccggctttccagcgggtatattagatccgtggccgcgcggtgcgctcca

DBX -90 gagccgcagttctcccgtgag..g.ccttc.cggt.ga.caaaca...g.ttagcagcg.a.gact.... g..c...g.a.........
DBY -71 ccagtgtaagagttccgctattcggtctcacacctacagtggactacccgatttttcgcttctcttcaggg

1. . . . A. E . A L G . . . . F. G . . . . . S D N.
DBX 1 ........ .... CA...G ...... CG.TC.GG............ T..... GGC..A........... TCA..T..T.....

DBY 1 ATGAGTCATGTGGTGGTGAAAAATGACCCTGAACTGGACCAGCAGCTTGCTAATCTGGACCTGAACTCT - -- GAAAAACAGAGTGGAGGA
1M S H V VV K ND P EL D Q Q LAN L DL N S - E K Q S G G

30 . . . . . . . . . R . . T R . Y.
DBX 88 --- .... .C: ......:......... :.T*..'....T .... '..C ..... .TA.. G...T .T C:.......... .G
DBY 88 GCAAGTACAGCGAGCAAAGGGCGCTATATACCTCCTCACAAGGAACAAAGAAGCATCTAAAGGATTCCATGAAAAGCAGTTCAGGT

31A S T A S K G R Y I P P H L R N K E A S K G F H D K D S S G
60 . . S . . S . . S S F . . D

DBX 178....... CT.......... ...... GCT................A .... TAGT.... A.... G... T..A.C.TC... .. T .....
DBY 178 TGGAGTTGCAGCAAAGATAAGGATGCATATAGCAGTTTGGGTCTCGA--- GATTCTAGAGGAAAGCCTGGTTATTTCAGTGAACGTGGA

60 W S C S K D K D A Y S S F G S R - D S R G K P G Y F S E R G

89 . . . . . . S . G D . S . . . K .
DBX 268 ....................... G .T..C.....C....... GC... GGT..C ...AG ........... A...

DBY 265 AGTGGATCAAGGGGAAGATTTGATGATCGTGGACGGAGTGACTATGATGGTATTGGCAATCGT---GAAAGACCTGGCTTTGGCAGATTT
90 S G S R G R F D D R G R S D Y D G I G N R - E R P G F G R F

118 . G N . . D. . . . .
DBX 358 ..... TG.....A.C ... .C...........A .... A .................. .... C .................... A .G...

DBY 352 GAACGGAGTGGACATAGTCGTTGGTGTGACAAGTCAGTTGAAGATGATTGGTCAAAACCACTTCCACCAAGTGAACGCTTGGAGCAAGAA
120 E R S G H S R W C D K S V E D D W S K P L P P S E R L E Q E

148 . . . . .. . . .. . . . .
DBX 448 .. C......... C .... T ......... T............. C..T .... T ....... A .... AC........

DBY 442 CTGTTTTCTGGAGGAAACACGGGGATTAACTTTGAGAAATATGATGATATACCAGTAGAGGCAACCGGCAGTAACTGTCCTCCACATATT
150 L F S G G N T G I N F E K Y D D I P V E A T G S N C P P H I

178 S. . . V E
DBX 538 .. A.G. .C. .. ... G.... G .................... A ...... G .... .T........C..A.. .G...
DBY 532 GAGAATTTTAGCGATATTGACATGGGAGAAATTATATGGGGAACATTGAACTTACTCGCTATACTCGTCCTACTCCAGTGCAAAAACAT

180 E N F S D I D M G E I I M G N I E L T R Y T R P T P V Q K H

208 . . . . . . E . . M . .
DBX 628 .. T..........C..A.AG........... GA .................. G...A ........ ... G. .G. CT..
DBY 622 GCCATTCCTATTATTAAGGGAAAAAGAGACTAGTGGCTTGTGCCCAAACAGGATCTGGGAAAACTGCAGCATTTCTTTTACCCATACTG

210 A I P I I K G K R D L V A C A Q T G S G K T A A F L L P I L

238 . . . . S . . . R . M
DBX 718........ T...T ............. C .. ..... G... CA ..................................... C. ..

DBY 712 AGTCAGATATATACAGATGGTCCAGGAGAAGCTTTGAAGGCTGTGAAGGAAAATGGAAGGTATGGGCGCCGCAAACAATATCCAATATCC
240 S Q I Y T D G P G E A L K A V K E N G R Y G R R K Q Y P I S

268 . .DBX 808 .................................. ................... A. .C.................. ..... G
DBY 802 TTGGTTTTAGCCCCAACAAGAGAATTGGCTGTACAGATCTATGAGGAAGCCAGAAAATTTTCCTACCGATCTAGAGTTCGTCCTTGTGTA

270 L V L A P T R E L A V Q I Y E E A R K F S Y R S R V R P C V

298 .
DBX 898..............C A..........T
DBY 892 GTTTATGGTGGTGCTGATATTGGTCAGCAGATTCGGGACTTAGAAGTGGATGCCACTTGTTAGTACCACTCCAGGACGTTAGTGGAT

300V Y G G A D I G Q Q I R D L E R G C H L L V A T P G R L V D

328 .
DBX 988 .. T A G A.C T...... G.

DBY 982 ATGATGGAAAGAGGAAAGATTGGATTAGACTTCTGCAAGTACTTAGTGTTGGATGAAGCTGATAGGATGCTGGATATGGGATTTGAACCT
330 M M E R G K I G L D F C K Y L V L D E A D R M L D M G F E P

DBX 1078 ..... T...A.A .... C . ............... .T ... G ... T..C .C ... .T ............. ............. ......
DBY 1072 CAGATACGTCGTATAGTTGAACAAGATACTATGCCACCAAAGGGCGTTCGTCACACCATGATGTTTAGTGCTACrTTCCTAAGGAAATA

360 Q I R R I V E Q D T M P P K G V R H T M M F S A T F P K E I

388 ..... .
DBX 1168 .. A ....... ... G.. . T..C C ....... .. . . .. C..A . . ..................
DBY 1162 CAGATGCTTGCTCGTGACTTTTTGGATGAATATATCTTTTTGGCTGTAGGCAGAGTAGGCTCTACCTCTGAGAACATCACACAGAAAGTA

390 Q M L A R D F L D E Y I F L A V G R V G S T S E N I T Q K V

418 . . . . E S . . . . .. . L . N K. . .
DBX 1258 ..................... . C..... ..... G. .T .. C.CC..AA......... C.AG .......... G..C ...............

DBY 1252 GTTTGGGTGGAAGACTTAGATAAACGGTCATTTCTACTGGACATTTTAGGTGCAACAGGGAGTGATTCACTTACTTTAGTGTTTGTGGAG
420 V W V E D L D K R S F L L D I L G A T G S D S L T L V F V E

448 .
DBY 1342 ACCAAAAAGGGAGCAGATTCCCTGGAGGATTTCTTATACCATGAAGGATATGCTTGTACTAGTATTCATGGAGACCGGTCACAGAGAGAT

450 T K K G A D S L E D F L Y H E G Y A C T S I H G D R S Q R D

478 .. .. .. .
DBX 1438 A... .AA.............. C ............... T...A .A .A..G...

DBY 1432 CGAGAGGAGGCCCTTCACCAGTTTCGCTCAGGAAAAAGCCCAATTCTAGTGGCTACAGCTGTGGCAGCACGAGGACTAGACATTTCAAAT
480 R E E A L H Q F R S G K S P I L V A T A V A A R G L D I S N

508 . K
DBX 1528 ... A ............. C ................. ...... .......... G...
DBY 1522 GTGAGACATGTTATCAATTTTGATTTGCCAAGTGATATTGAAGAATATGTGCATCGTATTGGCCGTACAGGACGTGTAGGAAACCTGGGC

510 V R H V I N F D L P S D I E E Y V H R I G R T G R V G N L G

538 . . . . . . . . R . I
DBX 1618 .. G..A. . C..G.GG..C..A ........ T .. T .......... . . ... ..

DBY 1612 CTTGCCACCTCATTCTTTAATGAAAAAAATATGAATATTACAAAGGATTTGTTGGATCTTCTTGTAGAAGCTAAACAAGAAGTGCCTTCT
540 L A T S F F N E K N M N I T K D L L D L L V E A K Q E V P S

568 . . . . . S . . . . . . . S . .
DBX 1708 ..... A .... C ........................... A ........ .... S R... GC.....TG
DBY 1702 TGGTTGGAAAATATGGCTTATGAACACCACTACAAGGGTGGCAGTCGTGGACGATCTAAAAGTAATAGATTCAGTGGAGGATTTGTGCC

570W L E N M A Y E H H Y KG G S R G R S K S N R F S G G F G A



598 . . . . . . A . . . S . S S . . A . . . . . . . . H
DBX 1798 ........ C...........C.. .G........... A ... CA.CAGC. .C ... C C..... .CC..T
DBY 1792 AGAGACTATCGACAAAGTAGTGGTTCCAGCAGTTCCGGCTTTGGTGCTAGTCGCGGAAGCAGCAGCCGCAGTGGTGGAGGTGGTTACGGC

600R D Y R Q S S G S S S S G F G A S R G S S S R S G G G G Y G
628 S

DBX 1888 AG ......................... T C........
DBY 1882 GACAGCAGAGGATTTGGTGGAGGTGGCTATGGAGGCTTCTACAATAGTGATGGATATGGAGGAAATTATAACTCCCAGGGGGTTGACTGG

630 D S R G F G G G G Y G G F Y N S D G Y G G N Y N S Q G V D W
658 . . . * 660

DBX 1978 .....T......g..... t -. ....... gc .... c ...........t.g-........g ..................... cc....
DBY 1972 TGGGGCAACTGAatctgctttgcagcaaagtcacccttacaaagaagctaatatggaaaccacatgtaacttagccagactata--ttgt

660 W G N * 662

DBX 2067 .... t..........c......................... actg..attttttt..t ............ g.............--
DBY 2060 gtagcttcaagaacttgcagtacattaccagctgtgattctcctgataa-------- ttcaagggagctcaaagtcacaagaagaaaaat

DBX short 2186 rgatcatgctcatctgtggagcaagtgcccccatgaaatgccatattttgtgaagaaagt
DBX long 2155 ........ c.. t...... ... g....... gg........... ct.c ...... g............. ctc.cct...g...a.cc-----

DBY long 2142 gaaaggaaaaaacagcagccctattcagaaattggtttgaagatgtaattgctctagtttggattaaactcttcccctcctgctttagtg

DBX short 2245 gcatgcaggaatattcagggagtccagcatgtagtcatggcagccttaggtatttgagaccgaccaaccctcctgatgaagacaaccata
DBX long 2240 ... t ................................... a................ t........ ct....
DBY long 2232 ccaccccaaactgcatttataattttgtgactgaggatcgtttgtttgttaacgtactgtgactttaactttagacaacttactactttg
DBY short 2239 Laaaaaaaaaa 2248

DBX short 2335 actcatgcagaacttggagcgtgatgcccagaagtgtgtgaactggtctgtgaccacaaagatgagaaccgcatgctgagattggtggaa
DBX long 2330 .......................... a.... t ........ ................. g ....... g.....................c
DBY long 2322 atgtcctgttggctcagtaatgctcacgataccaattgttttgacaaaataaatttactaaacttggcctaaaatcaaaccttggcacag

DBX short 2425 tggagatttcagtgagcctacatgcagatgacatggtgacacccgtgcccagcctgagctgttttcttctggccctcttattacatgaga
DBX long 2420 .... g...........-....... a..... g............... at.t .... a....----c.t.t..g....c...........g..t
DBY long 2412 aggtatgatacaactttaacaggagtcatcaattcatccataaatataaaaagggaaaaaaacttaaggcagtagtctgcattaggactg

DBX short 2515 aaaataaacacctatgcaccttggcctcaaaaaaaaa 2552
DBX long 2505 ..... r .. .... t.g .... aaaac.ac a .. L....g..... att.atggaat...... c.aa.g .... a...tg..t...g....
DBY long 2502 tttgagttttgcagacttggggttgggag--aacatcttaaagcattaaagca----tagttttttgtatggccaaccttactaaattaa

DBX long 2595 a.......t ....................... t.t..a.a.c..g.t.g .............................. --...... g.a
DBY long 2586 -gttctgacttgctcactctatcctggataggcacttgggaacttacactctttaagccattccagtcatgatgaggtggaatgtatcag

DBX long 2683 ..c.----.gc... ca..ca..gc.c.gt...c.aag.t.a.gcaag...a .......... c... t.tc..c...... c..atca..a.
DBY long 2675 tataccaattaatatttttgaaagagttcttttaggttaatt-----taagtacagcaatttctcatgtaatgtttagggag----ttta

DBX long 2769 ..a.g.g.... c.... t.tgg....a.... t...g.g..a........g.c......ct..aaaataggttttta.....a..c...tac
DBY long 2756 ttctaacctaggcaaacg---gcatgctatcacaagaaaggtttaaagctttgataaaatggg------------ggagatttaatc---

DBX long 2859 ttagac.....a.g ....... c..... tg..a....... gg......... t.....ca...a....... c.....t..gg.c.....a..
DBY long 2828 ---agtttttttaatgcctgctataaa--aatttgaaatattagaatggccgaccatggcagtgaccaggcctcactacaggcctggttg

DBX long 2949 at..t...... aa...c............................gag--...a.g ......... a...aaa............. t...
DBY long 2913 gattctggtctt-taatgcatgctagtgttgatgttttttggtcaagaacggtttaaacaggaaggattg--tgcagcaggctttaattt

DBX long 3037 ..a..cc...... c.t.a ....... c....... g.... g........ c........ ---.at...... c.t...aatggctc.ag..a.g
DBY long 3000 aa-tgtagattcatactgctctgttaaagctgcattgaaatgttaaaatggcttacacttgcagactttgcaaa-------tcttaagac

DBX long 3124 ....... ctgaaa..t.... g ......... g... g. ... t.... at............... caa.... gctctaca ............ t
DBY long 3082 taacaaa------tccttgaaatcacacagcttgcaaatacgtactaaactgcacaaggtgtgtgttctatat----gtgcagttttagc

DBX long 3214 cag .......................t.............. gt..a ........ c............aac................. ....
DBY long 3162 gtattttagttgcataggtttccatggtatttatagtct-cttgtgctaaatttggccaaagatg---attgtccaccactaaaaatgcc

DBX long 3303 ...g ...... t......... g..a .............. a...gg..... aaa.cgct.c.tct.... a..g ....... g....ac.g...
DBY long 3248 tctcccacttggaattctgtactgattttgtggccaga-tgcaatgatctttaaaaacaaatctttt-caatggcataagaagttgacaa

DBX long 3393 ....... c ....................... g .................... c...t.t..a.taggt......................
DBY long 3336 aaatttcttaaagtgcaatagattttcaagt-tattgtgccttgttctaaaattttaagtagg-----gcacttgacagtattgaggtca

DBX long 3483 ....... t ................. c......... g.c ........... tg............... ...... cttc.... ..
DBY long 3420 tttgttaaggtgctatttcaattagtgtaggtttagactcttgtacatttctcccataactttttacaaagta----ttttgttgcacat

DBX long 3573 ...................--............ c .. .. ta.a ............ c.. t....................c.....tt..
DBY long 3506 tcagagaattttatatatatatgtcttgtgtgtgggtgtcctcgaccttccaatcttatttcgtctcttggagattgttgaatgcagccagt

DBX long 3661 ct.g.... gg... gggactaga.t ..... a...... t.......... g ... a...... g ................... g....... c
DBY long 3596 g-aagaagtagat---------tcctaaattttattggggaccatgg-aatggtagttgagaagaaaactatttgcacacaacagattt-

DBX long 3751 ................... ct..a..................................... c............. .............
DBY long 3674 tagatactttttgctgctag--ttgtgtaatatttattgaacattttgacaaatatttatttttgtaagcctaaaaatgattctttgaaa

DBX long 3841 ...................................- ................................ gc... .. t ........ ...
DBY long 3762 gtttaaagaaacttgaccaaaagacagtacaaaaaacactggcacttgaatgttgaatgtcaccgtat--gtgaaataatatattttggg

DBX long 3930 .......... .... .. ... t ... a.a ....... ct.a ...................... g...... g .....ca...c..
DBY long 3850 gtagtgtgagcttttaatgtt-aagtc-tgttaaact--tgagtcaaattaagcagacccggcattggcaatgtagctgtaattttctga

DBX long 4020 tgtt.g.a..a ......... g.g ........ t.... tt................ c................ .... c..caa..
DBY long 3936 caaaatttaagacaaaattgtcaacttgaaactaaaacatgccaaggttttgatatacttgtcttaagatattaatgaaacaattttgaa

DBX long 4110 ....... gt.... t..... g..t.t..g.tg..tgt.gtg..ga....... ta..tg.g..t.t.t...t-..........a.......c
DBY long 4026 cactgataggaag-gtccacatccacaaagtttctct---tgagttttgttatgtgttttgctgtgtttgattttcagtgattgtctggt

DBX long 4199 .c...-g..a............ tg..... c.t...tgtattggcataat ......... gt...... a.caatagcatttgagcaag....
DBY long 4112 atatttacagtcctcaaacatg--gttatttctgt-------------cagtgactta-acattcgg-----------------tttt

DBX long 4288 .t.... a.... a....-...... t..... g.tt.ca..aatcatgtaaggatttaaac ............. ag ......... a......
DBY long 4167 accagccagcagtattcttcagtaaataaagaatggaa--------------------ttgctgaatgtaatcattgaacctcgagtcac

DBX long 4377 .... gc--..t .............................a.... t....... g..ca........... attaaa..aaaaaaa
DBY long 4237 tgtaaaagttcagtaattgcttattgtattagttttagatgctggcaccgcatgtgctctgtttattctgattttac-aa-ataaaaagt

DBX long 4464 aaa 4466
DBY long 4327 tcaaaagtcaaaaaaaaaa 4345



TB4X & TB4Y

TB4Y -768 tgggaacagacagatcctttgttctgaggctcactcatctcccgagc
TB4Y -720 cccgagccgtctcccagcctcagacggctctgcgggctgcatctgtgcagcctggcagcggcggcgctgcgctgtgacattttcacagcc
TB4Y -630 cttcttgcagaggcatgtgtgctagggatgccgaaatgccgagagcgccggcaggactagcttccgggccgcgctttgtgtgctgggctg
TB4Y -540 cagtgtggcgcgggcgaagaactggtagggcggttgtcgcaagctccagctgcagcctccgcctacgtgagaagactagaaagcgggcgc
TB4Y -450 aggacaggcctgcgttgtttgcagaaaagccgtggctacaaaatggaagtgcttttgcgacctgggctccattttaggaattcttgcccg
TB4Y -360 attttaaccacttgaacgcggaagtggctttcctattctcttccaagccagcctttaattttaaacgctgtaattaacagttcacagggg
TB4Y -270 tcaaattcctttattccggaacattccactttgagagggatctgtcctctttggtcccctgcgttttcaaatatttgaggaaaggtgtcg
TB4Y -180 cctctttttctgtggaaagaggaagctcatgagcgcgaaacagcaggggacggagggcgagaagggctttctcaggttgcgggtcggagg

TB4X -77 a.aactcggt.gtgg..actgc.ca.a.cagact..g.t.gt...cgt.cgcctcg.t.cgctt..........a..
TB4Y -90 gcagaagcacagttcccagtacagagacccggacaggtggctgtttctcacgctcactttggattgctccctacggcttcctccgcagcc

TB4X 1. . .. .C.A ....... . . . . . A.. .A. . .C..

TB4Y 1 ATGTCTGACAAACCTGGTATGGCTGAGATCGAGAAATTCGATAAGTCGAAACTGAAGAAGACAGAAACGCAAGAGAAGAATCCATTGTCT
1M S D K P G M A E I E K F D K S K L K K T E T Q E K N P L S

31 . ........ K .... . * 44
TB4X 91 ........... G. ........T A........ ....... G... tg.... g..c...g ....... gc........... c ..........

TB4Y 91 TCCAAAGAAACTATCGAACAGGAGAGGCAAGCAGGCGAATCTTAAacaggcatgtgccaccaatatctactgtacattctacaagcattg
31 S K E T I E Q E R Q A G E S * 44

TB4X 181 .c....................gc .......... t..a.........g.g.......c.ag..t..... ...........c...c ..
TB4Y 181 ctttcttattttacttcttttacttgtttaacttggttagatgcaaacacgttggatgagtttgaaaggactatgctgcccttttgacat

TB4X 271 ... a..a.......c.a ..... g...-...c.t ....... tgtctat..a.....................g-.a....c..
TB4Y 71 caaagacctgctgacaatggaggccacgcctgcttctcccatc-----gcctgtctggctggcagggaaggaaaatagcttgaatgttgg

TB4X 356 ....g..aga..t..ggtggaagaagtggg ..... c.a ......... gtaaaaccaagctggcccaagtgtcctgcaggctgta
TB4Y 359 tgaaagacttagcgga--------------gtgggagggcagtgaaatctaga 394

TB4X 446 atgcagtttaatcagagtgcca 467

EIFIAX & EIF1AY

eIF-IAX -207 ggcacgaggcgccatttgctgccgccgagcg

eIF-lAX -130 tggacgcaggcggatctctgaagagctgggtcgccagcctctcccgcgcac... gcctg.cctc.agcaccta.ttgg..ccgc .... t.
elF-lAY -176 agtttatgagagagctctgtagccagcctcttctgcgcac

elF-lAX -86 ..t.g..tc..cc..cg.ag...ca.c.g.cgc.gtcgccgctac..g ....... a..----.a.g.cgcga.tc.c.gc..
elF-IAY -90 ccacctgctgcatcttagttcagtcggctcttagagtagtaaccgccagaaaggagtcggaagaggtctcacgaggctgtcatcaccgcc

1 .
eIF-AX 1 .. . ...... .. . ... G . . . .AC.. .A..C ....

eIF-IAY 1 ATGCCCAAGAATAAAGGTAAAGGAGGTAAAAACAGGCGCAGGGGTAAAAATGAGAATGAATCTGAAAAAAGAGAGTTGGTGTTTAAAGAG
1M P K N K G K G G K N R R R G K N E N E S E K R E L V F K E

31 . .M L
eIF-1AX 91 ".G. .G " " .G.A ..... A....... C ........... :..:.T .C
eIF-lAY 91 GATGGACAAGAGTATGCTCAGGTAATCAAATGTTGGGAAATGGACGATTGGAAGCATTGTGTTTTGATGGTGTAAAGAGGTTATGCCAT

31D G Q E Y A Q V I K M L G N G R L E A L C F D G V K R L C H
61 .

eIF-IAX 181..... ............................ .G .T.......... .A.C.................
eIF-IAY 181 ATCAGAGGGAAATTGAGAAAAAAGGTTTGGATAAATACATCAGACATTATATTGGTTGGTCTACGGGACTATCAGGATAACAAAGCTGAT

61 I R G K L R K K V W I N T S D I I L V G L R D Y Q D N K A D
91 . E

eIF-IAX 271 .A.C..........T.......C. ... .G . .T..
eIF-IAY 271 GTAATTTTAAAGTACAATGCAGATGAAGCTAGAAGCCTGAAGGCATATGGCGGGCTTCCAGAACATGCTAAAATCAATGAAACAGACACA

91V I L K Y N A D E A R S L K A Y G G L P E H A K I N E T D T
121 . . . . . . . . . * 144

eIF-IAX 361 ........ .. .C T.................. tc.aca.
eIF-AY 361 TTTGGTCCTGGAGATGATGATGAAATCCAGTTTGACGATATTGGAGATGATGATGAAGACATTGATGATATCTAAattgaaccaagtgtt

121F G P G D D D E I Q F D D I G D D D E D I D D I * 144

eIF-IAX 451 ..-.... tc..tc..t ..... a...t..c.....a..t ........ at...g.-...ag....tt.a. ...... agcat.aa..c.a.
eIF-lAY 451 tttacatgacaagttctctgaggatggttctacagttgggattttggccactccaaccaagaagagaaattcattta---gtgtgtagt

elF-IAX 539 ..g.t......g......g...ct.aga.a..------.. .gg..t...t...a.... ta.t.atgc.......t.....g.g...
elF-IAY 538 ttctgaaagcaaactgatttattttcattgttttaaagtatttattctttaaaagctgaggaca---ttgaattaccttaatttaaatg

eIF-IAX 623 ....gccc.....g..c.... a ..........g....t..g..g.......gtctac.aa.tac .... .a...aa.ccatga..g.
elF-IAY 625 ttaa---tactttattgttttgatgtaatggaacttaaggataaaagaccataatatttgctgttaaaataaataaacgagtgcctttcc

elF-IAX 713 .g..t.tcct..ca.ttccagt...a..a...g.g ....... g.a..cat.tg.c--. tg..tca.g. .a.ctg.t........ggcct.
elF-lAY 712 tactgtgataacgtc -------aagtaattggatattttgaatacatttctgcctgataatcatgctgagttctaataagccctacttcc

eIF-lAX 801 ------. tga.g..t..ag.ca...-..a..c.....c.....at..c.t.g..a...- .. ggg..g.....g..
elF-lAY 795 acctaatctgtttacagtcttttggtatgtttcagttacttagatggtctcataaggtttctgatacaatttga---agacagaaatctg

elF-IAX 883 ..g..ga.g--.a....a..aagtc.g...g.......ag...c.tg.gc...t ...... a..g.tt... tca.g.tct.ttca.
eIF-IAY 882 catttagaatcagaaaacatggacatatttttcatatttatctagtc-atatgtaattttatgctaacattgatagtttataaatccttt

elF-IAX 971 agtcgta..t....a.c..a.ac.t
elF-lAY 971 tcatcctttgtgcctcggttattaaggaaaaaaaaatgtccaacatacagtttttaaagtgtggcagttttgagtagtaacttagaatgt

elF-IAY 1061 ataagattaagagttaaagaaaccgaacaataagtggcaaccaattatcttaacattggaaatactggggtgccattttgttttcaaaag
elF-lAY 1151 ttattcattgtaatccactgttttggctttcatgaacaagtaaattacagtgtataaatgaaaagcaatttcataataaattctataaac
eIF-IAY 1241 tgaaaaaaaaaa 1252



DFFRX & DFFRY

DFFRY -1664 gaagtgacatgttggcatgggcccaattctgctggtcctttagt
DFFRY -1620 atacaaaaaaaataaaggtttaccagtatgtcactacatgcagatttatggattgtacagaaaattggtgattcccaaatttcactgtgc
DFFRY -1530 atcaaaataatcgatggaactttaaagactaaagatttctagaccccaccccaggcccgatgattgagaatatctagaggggacccaaga
DFFRY -1440 atccatatatttaagtgccccacccacaacaatgacctttaagcaggtagtttgcatttgggaaccactgctacaggttactagtgggac
DFFRY -1350 aaccagttaggagcataagtttgaacattttacagtttgtcacctgtgatagcttatcacctgtgatataaccagaaatccaattaagat
DFFRY -1260 tgctatctctctgtaatctgtttgcaatttaggtgttaatttttttgaaagttcagaaaaaagtagacaaaacagaaaagaaatcaagta
DFFRY -1170 caactacataatgacaaaaaacgtattacacttgtattaaacttcaaaactggagaataaaggtgcaatataacatgaaaataattaaat
DFFRY -1080 gctaagtgaaataatatcaaatgtagttgaccctgaagaaaatgcagtagtgagggatccctaacctgtgggccctccaggaattactgt
DFFRY -990 tgaatggtcttgagaatccactggaaaagaccaagcattgttacctgaataattgaactttgtttatttctccatatttttgcagtggta
DFFRY -900 attccattataaaacctaatgaaacaatgtttttatagatggtgtggaaagacttttctgggctcagaggtgaaactgacccttgtgtat
DFFRY -810 cagcagcatttctgactgactgagagagtgtagtgattaacagagttgtgatgttagttaagaaacttagatttgccattgtagcttttc
DFFRY -720 taccaattagcagattgtttaactcactgaaattgtaaagtggtagacgtggacttagtcattactgggcagcttatgaattgtattcat
DFFRY -630 ttactcatgatgtaaaaatggttagtctccacttttaaggctctagttctagtggctaaataggtacttatttatacagtatgataactg
DFFRY -540 ctgtattaaaatacatgtctcaaatgtggaatagtagaagaggtgaagaaaatcatagtttgaggtagaatactgtttgctggtcttaaa
DFFRY -450 aactgtggtattttggtgattccataaattaggtcagatacttccactggagggaaacagtttaaaggatatatgtgatactattaatag
DFFRY -360 aatgaggaagacacaccagatatttaggagggaattagcgagcttgaaactaagagctggtttgaatgagactgggtcataagtgatttc
DFFRY -270 aagtaccagattaaggcactgagattttatttttaagcactgaagtcagattttttccttttaaaagaaaggattcatgatgaaatctgc
DFFRY -180 tttttgttttgcagagagcttggagataattctggtggctgtgtggagtatgtgttggaggtattaaattttcacagtatatataaggca

DFFRX -59 c.tttct..ag.ca.ctac.t..gc...c.... tt...........cc.......g..
DFFRY -90 gcaattgataggcctttcacagattcttctgataactacataaagagacaaaaaaaagaaaaaagagcaaagatctgtgctgtgtcaagt

1 . . T . R . N . . . A P . . . . L P P L
DFFRX 1............ CG ...G ......... G.. C......... .T...A ........... C..C......A....... T..CC.C.C ........
DFFRY 1 ATGACAGCCATCACTCATGGCTCTCCAGTAGGAGGGAACGACAGCCAGGGCCAGGTTCTTGATGGCCAGTCTCAGCATCTCTTCCAACAG

1M T A I T H G S P V G G N D S Q G Q V L D G Q S Q H L F Q Q

31 . P. . . . - C
DFFRX 91 T. . .......... . . A ... CCG . .... A---..T. .G.....T.... .... .. .. ..

DFFRY 91 AACCAGACTTCATCACCTGATTCTTCCAATGAGAATTCCGTAGCAACTCCTCCTCCAGAGGAACAAGGGCAAGGTGATGCCCCACCACAG
31N Q T S S P D S S N E N S V A T P P P E E Q G Q G D A P P Q

60 L .. ... .... C . . K
DFFRX 178 .T .......... .A .CT.... C.GT.... .......... ........ ... .....
DFFRY 181 CATGAAGATGAAGAGCCTGCATTTCCACATACTGAGCTGGCAAACCTGGATGACATGATCAACAGGCCTCGATGGGTGGTTCCTGTTTTG

61 H E D E E P A F P H T E L A N L D D M I N R P R W V V P V L

DFFRX 268 .. G .. .... .. ........ ......... .... .......................... T..G.A..
DFFRY 271 CCAAAAGGGGAATTAGAAGTGCTTTTAGAAGCTGCTATTGATCTTAGTGTAAAAGGCCTTGATGTTAAAAGTGAAGCATGCCAACGTTTT

91P K G E L E V L L E A A I D L S V K G L D V K S E A C Q R F

120 . . . . T
DFFRX 358 ... T... ..........G ............................................................. -

DFFRY 361 TTTCGAGATGGACTAACAATATCTTTCACTAAAATTCTTATGGATGAGGCTGTGAGTGGCTGGAAGTTTGAAATTCATAGATGTATTATT
121 F R D G L T I S F T K I L M D E A V S G W K F E I H R C I I

143 - - - - -•..
DFFRX 427 ---------------. G ......... . C.. ...... T.........T..........

DFFRY 451 AACAATACTCATCGCCTAGTGGAGCTTTGTGCCAAGTTGTCCCA6ATTiGTTTCCACTTCTAGAACTTCTCGCCATGGCCTTAAA
151 N N T H R L V E L C V A K L S Q D W F P L L E L L A M A L N

173 . S V . .S V
DFFRX 517 .... T...A.C . A................... A ......C.G......... G..T ................. C.C ....
DFFRY 541 CCTCACTGCAAGTTTCATATCTACAATGGTACACGTCCGTGTGAATTAATTTCCTCAAATGCTCAGTTGCCTGAAGATGAATTATTTGCT

181 P H C K F H I Y N G T R P C E L I S S N A Q L P E D E L F A

203 P . . . L .
DFFRX 607 ...... C ... ............... C....... G................ T.. C......... T....... ..........

DFFRY 631 CGTTCTTCAGATCCTCGATCACCAAAAGGTTGGCTAGTGGATCTCATCAATAAATTTGGCACATTAAATGGGTTCCAGATTTTGCATGAT
211R S S D P R S P K G W L V D L I N K F G T L N G F Q I L H D

DFFRX 697 ... ................... CG ............... ...... . .................. C...

DFFRY 721 CGTTTTTAATGGATCAG AAATTTCAAATAATTCAA AGCTCTTATTAAACCATTTGACAATGCTATGAGTTTCTATCAACAT
241 R F F N G S A L N I Q I I A A L I K P F G Q C Y E F L S Q H

263. V. . . . L . I . Q F .
DFFRX 787 ...G.. .......... TC .... A.A ................ G..T..A ............... A............ . .A:......

DFFRY 811 ACACTGAAAAAGTACTTCATTCCAGTTATTTTACTGATGAAGAACTGAAAAAGGAGGCAAAG
271 T L K K Y F I P V I E M V P H L L E N L T D E E L K K E A K

293 V P . . E . . V
DFFRX 877 T ... .......... GG..C .......... A..A...G.T...
DFFRY 901 AATGAAGCCAAAAATGATGCCCTTTCAATGATTATTAAATCTTTGAAGAATTAGCTTCAAGAATTTCAGGACAAGATGAGACTATAAAA

301N E A K N D A L S M I I K S L K N L A S R I S G Q D E T I K

DF 323FX 967 .. C..A ...... A...................:.............T:..:.C .......................... G.T...
DFFRX 967 . C A...........AV. . .. T...

DFFRY 991 AATTTGGAAATTTTTAGGTTAAAGATGATATCAGATTTTCAAATTTCCTCTTTTAATGGAAAGATGAATGCACTGAATGAAATAAAT
331 N L E I F R L K M I L R L L Q I S S F N G K M N A L N E I N

353 . G
DFFRX 1057 ..... G ............... C... .... .A...G. ................ G...C........A.

DFFRY 1081 AAGGTTATATCTAGTGTATCATATTATACTCATCGGCATAGTAATCCTGAGGAGGAAGAATGGCTGACAGCTGAGCGAAGGCAGAATGG
361 K V I S S V S Y Y T H R H S N P E E E E W L T A E R M A E W

383 . R
DFFRX 1147 ........ G. .C................ .G....G.. .T.........G.... G .......... ..... T. .G.

DFFRY 1171 ATACAGCAAAATAATATCTTATCCATAGTCTTGCAAGACAGTCTTCATCAACCACAATATGTAGAAAAGCTAGAAAATTCTTCGTTTT
391 I Q Q N N I L S I V L Q D S L H Q P Q Y V E K L E K I L R F

413 .DFFRX 1237 .... C ........ A .... ........ T. ............................ G............................
DFFRY 1261 GTGATTAAAGAAAAGGCTCTTACATTACAGGACCTTGATAATATCTGGGCAGCACAGGCAGGAAAACATGAAGCCATTGTGAAGAATGTA

421V I K E K A L T L Q D L D N I W A A Q A G K H E A I V K N V

443 . E . . . R
DFFRX 1327 ........ C..G... .A .. .A .... A .............. C ......... T........ C ..C .......... G

DFFRY 1351 CATGATCTGCTAGCAAAGTTGCTGGATT TTTTTCTCCTGGACAACTTGATCATCTTTTTGATTGCTTTAAGGCAAGTTGGACAAATGCA
451 H D L L A K L A W D F S P G Q L D H L F D C F K A S W T N A

FFRX 1417 ............... .. :.. .A ...... C ..:..:.T .. ............ ................ ... .........

DFFRX 1417 .... A . C . T ..
DFFRY 1441 AGTAAAAAGCAACGTGAAAAGCTCCTTGATTGATACGCCGTCTTGCAGAAGATGATAAAGATGGTGTGATGGCACACAAAGTGTTGAAC

481 S K K Q R E K L L E L I R R L A E D D K D G V M A H K V L N

503 H. . . . . .C
DFFRX 1507 ..... G....T........ C ................. G.T ...... G. C .C...

DFFRY 1531 CTTCTTTGGAACCTGGCTCAGAGTGATGATGTGCCTGTATACATCATGGACCTTGCTCTTAGTGCCCACATAAAAATACTAATTA TAGT
511 L L W N L A Q S D D V P V Y I M D L A L S A H I K I L D Y S

533 S . . . . T . . . . . . . R
DFFRX 1597 .. CT .... C..T......A........A............... .......... T...C.A
DFFRY 1621 TGTGCCCAGGATCGAGATGCACAGAAGATCCAGTGGATAGATCACTTTATAGAAGAACTTCGCACAAATGACAAGTGGGTAATTCCTGCT

541C A Q D R D A Q K I Q W I D H F I E E L R T N D K W V I P A



563 .. P V .
DFFRX 1687.......... T.................................

DFFRY 1711 CTGAAACAAATAAGAGAAATTTGTAGTTTGTTTGGTGAAGCATCTCAAAATTTGAGTCAAACTCAGCGAAGTCCCCACATATTTTATCGC
571 L K Q I R E I C S L F G E A S Q N L S Q T Q R S P H I F Y R

593 . . . . . . . . H . V . . . E . M
DFFRX 1777 ........... T. .A........ C ........ CC.... T. . T ...... G.A ..... .C.A

DFFRY 1801 CATGATTTAATCAA TCAAACCACTCAGCTTTAGTTACTTTGGTAGCAGAAAACCTTGCACCTCTGAATAGCATCAGATTG
601 H D L I N Q L Q Q N H A L V T L V A E N L A T Y M N S I R L

623. . R
DFFRX 1867 ...... A .... C..... T... C..... T.....G.................... ..T G..T..

DFFRY 1891 TATGCTGGAGATCATGAAGACTATGATCCACAAACAGTGAGGCTTGGAAGTCGATACAGTCATGTTCAAGAAGTTCAAGAACGACTAAAC
631 Y A G D H E D Y D P Q T V R L G S R Y S H V Q E V Q E R L N

653 ..... L
DFFRX 1957 ............... T..........T..G........A ........ A . . .T. ....

DFFRY 1981 TTCCTTAGATTTTAGTGAAGGATGGCCAACTGTGGCTCTGTGCTCCTCAGGCAAAACAAATATGGAAGTGCTTAGCAGAAAATGCAGTT
661 F L R F L V K D G Q L W L C A P Q A K Q I W K C L A E N A V

683 .DFFRX 2047 ..C..............................................................A .......................

DFFRY 2071 TATCTTTGTGATCGTGAAGCCTGTTTTAAGTGGTATTCCAAGTTAATGGGGGATGAACCAGACTTGGATCCTGATATTAATAAGGACTTC
691 Y L C D R E A C F K W Y S K L M G D E P D L D P D I N K D F

713 .
DFFRX 2137................ .T..G . .T. GC.. .C........ ...

DFFRY 2161 TTTG AAAGTAATGTACTTCAGCTTGATCCTTCCCTTTTAACTGAAAATGGAATGAAATGCTTTGATTTTTCAAAGCTGTCAATTGT
721 F E S N V L Q L D P S L L T E N G M K C F E R F F K A V N C

743 . G . . V . . . . A
DFFRX 2227 ...... A............... .... G ............... C..:.G...A....... T.............C...

DFFRY 2251 CGAGAGAAACTAATAGCAAAAAGAAGATCCTATATGATGGATGATTTCGGAAiAATGACTGATCTACCTITGGAGGGTTGATT
751 R E R K L I A K R R S Y M M D D L E L I G L D Y L W R V V I

773 N . C. . S . ............. Q V .
DFFRX 2317 ....... A.. T..T . ... C. ............. .C..C........ ..... G ....... ..C..C...T..........
DFFRY 2341 CAGAGTAGTGACGACATTGCTAACAGAGCTATAGATCTTCTTAAAGAGATATACACAAACCTTGGCCCAAGATTAAAAGCCAATCAGGTG

781 Q S S D E I A N R A I D L L K E I Y T N L G P R L K A N Q V

803 . L . . . . C .
DFFRX 2407 ..G ....................... T......... C.G..G:.T..C. . .C:..T.......... G ............ .... T

DFFRY 2431 GTTATCCATGAAGACTTCATTCAGTCTTGCTTTGATCGTTTAAAAGCATCATATGATACACTGTGTTTTTTGATGGTGACAAAAACAG
811 V I H E D F I Q S C F D R L K A S Y D T L C V F D G D K N S

DFFRX 2497 G................G ..... TG ........... C................. GG.A..T..A.........

DFFRY 2521 ATTAATTGTGCAAGACAGAAGC CATTCGAATGGTTAGAGTATTAACTGTTATAAAAGAGTACAT GAATGTGACAGTGATTATCAC
841 I N C A R Q E A I R M V R V L T V I K E Y I N E C D S D Y H

863 E . . T F V
DFFRX 2587 G ......... CA...C ................ C. .T............T..G...... A ......................

DFFRY 2611 AAG GAAAAAT ACCTAT GAGAGCATTCGTGGCAAACACCTCTCTCTTATAGTTCGGTTTCCAAACCAGGGCAGACAGGTT
871 K E R M I L P M S R A F R G K H L S L I V R F P N Q G R Q V

893 • C E V . . L
DFFRX 2677 ..... C.....GG.............A:..:.T .. A.......... A ........ C.C.................C.....T

DFFRY 2701 GATGAGTTGGATATAT GGTCAGTACGGCGATGTATTGTTAATCGTATTAAAGCCAATGTAGCCCAC
901 D E L D I W S H T N D T I G S V R R C I V N R I K A N V A H

923 T P A .
DFFRX 2767 .C..... .. e.. . ..... C. ....... .C...C ... T ..... T.G ............................ G

DFFRY 2791 AAAAAAATTGAACTTTTTGTGGGTGGTGAGCTGATAGATTCTGAAGAGAAGAAAGTAATTGGACAATTAAACTTAAAAGATAAATCT
931 K K I E L F V G G E L I D S E D D R K L I G Q L N L K D K S

953 . C.. .. . S ... G ...

DFFRY 2881 CTAATTACAGCCAAACTTACACAAATAAATTTCAATATGCCATCAAGTCCTGATAGCTCTTCCGATTCCTCAACTGCATCTCCTGGAAAC
961 L I T A K L T Q I N F N M P S S P D S S S D S S T A S P G N

983 . G . . S . . P .. . . . .L
DFFRX 2947 .. TG ............ G .............C. .. . ............ C ...................C..

DFFRY 2971 CACCGTAATCATTACAATGATGGTCCCAATCTAGAGGTGGAAAGTTGTTTGCCTGGGGTGATAATGTCAGTGCATCCCAGATACATCTCT
991 H R N H Y N D G P N L E V E S C L P G V I M S V H P R Y I S

1013 . S .DFFRX 3037 ..T . ........................... G..A ......... ..................................... G ..

DFFRY 3061 TTCCTTTGGCAAGTTGCAGACTTAGGTAGCAACCTGAATATGCCACCTCTTiAGATGGAGCAAGAGiTACTTATiAAACTTATGCCACCA
1021 F L W Q V A D L G S N L N M P P L R D G A R V L M K L M P P

1043 S. T I . . . . . I S S . . . S
DFFRX 3127 ..... C... A.GA ........... A ..... A ....... A ........ C ............ A .. .GC ......... T.T ........ A...

DFFRY 3151 GATAGAACAGCTGTAGAAAAATTACGAGCTGTTTGTTTGGACCATGCAAAACTTGGAGAAGGCAAACTTAGTCCACCCCTTGACTCTCTT
1051 D R T A V E K L R A V C L D H A K L G E G K L S P P L D S L

1073.. . A . C
DFFRX 3217 ............. A .A...G...T ............. C CA.....GG ...... AT

DFFRY 3241 TTCTTTGGTCCTTCTGCCTCCCAAGTTCTATACCTAACAGAGGTAGTTTATGCCTTGTTAATGCCTGCTGGTG CCTCTAACTGATGGG
1081 F F G P S A S Q V L Y L T E V V Y A L L M P A G V P L T D G

1103 . . . . . F T . . . . . . . A
DFFRX 3307 ..... ..... GT ....................... -. -C ................... CC ............ C.A..G...G..

DFFRY 3331 TCCTCTACTTTCAATTCACTTCTTGAAAAGTGTGGCTTACCTC TACTAGTAT GCCTAATAAGAAATAACTTC CCAAATACA
1111 S S D F Q V H F L K S G G L P L V L S M L I R N N F L P N T

1133 .DFFRX 3397 ....................... ... C ................... ... G..T....:..... . ...........

DFFFRY 3421 GATATGGAAACTCGAAGGGGTGCTTATTAAATGCTCTTAAAATAGCCAAACTGITGTTAAC GCGATGGC'TAT'GGCCATGTTCGAGCT
1141 D M E T R R G A Y L N A L K I A K L L L T A I G Y G H V R A

1163 . G . E . V N . M .
DFFRX 3487 .G . ................ G ...... A . .GTGA.T . .... G ........ C .........................

DFFRY 3511 GTAGCAGAAGCTTGTCAGCCAGTTGTAGATGGTACAGACCCCATAACACAATTAG AACCAAGTTACTCATGATCAAGCAGTGGTGCTACAA
1171 V A E A C Q P V V D G T D P I T Q I N Q V T H D Q A V V L Q

1193 . . M . . . V . V R . . . Q . . C
DFFRX 3577 A A.............. A.T.G.......... C. ..... .AG.T.G..
DFFRY 3601 AGTGCCCTTCAGAGCATTCCTAATCCTCATCCGG AGTTACTTAAAATAGTCCATACTTCTTGCTCAGAAATATCTAATGAGGCT

1201 S A L Q S I P N P S S E C V L R N E S I L L A Q E I S N E A

1223 .. . . . . .. G . . S . Q .
DFFRX 3667 .... A.....A C... . . T.C...CA...A..

DFFRY 3691 TCAAGATATATGCCTGATATTTGTGTAATTAGGCTATACAAAAATTATCT ATCAG GGGGCATTAGGACTAGTTTTAGC
1231 S R Y M P D I C V I R A I Q K I I W A S A C G A L G L V F S

1253 . E K . - . A G . E P C L . .
DFFRX 3757 ............... C ............ G..A ....---.... C.G .... G...CA..CT .. . .. ..G..............

DFFRY 3781 CCAAATGAAGAAATAACTAAAATTTATCAGATGACCACCAATGGAAGCAATAAGCTGGAGGTGGAAGATGAACAAGTTTGCTGTGAAGCA
1261 P N E E I T K I Y Q M T T N G S N K L E V E D E Q V C C E A



1282 . I
DFFRX 3844 T ............. ...... GA. ......... C..A....T. ...... .G..T*......A.

DFFRY 3871 CTGGAAGTGATGACCTTATGTTTTGCTTTACTTCCAACAGCGTTGGATGCACTTAGTAAAGAAAAAGCCTGGCAGACCTTCATCATTGAC
1291 L E V M T L C F A L L P T A L D A L S K E K A W Q T F I I D
1351 . . . . . H . . . . . . V .

DFFRX 3934 .. .C ......... ... AC ........... ..... G ... .. .. ....... C..
DFFRY 3961 TTATTATTGCACTGTCCAAGCAAAACTGTTCGTCAGTTGGCACAGGAGCAGTTCTTTTTAATGTGCACCAGATGTTGCATGGGACAGG

1312 L L L H C P S K T V R Q L A Q E Q F F L M C T R C C M G H R
1381 . . . . . ... . V . . . . . . . R A . H

DFFRX 4024 ..... A ........... . C ....... TG.T.............. GA.C.... C.C.. . C .C..C..T..T..
DFFRY 4051 CCTCTGCTTTTCTTCATTACTTTACTCTTTACCATACTGGGGACAGCAAGAGAGAAGGGTAAATATTCAGGTGATTATTTCACACTT

1321 P L L F F I T L L F T I L G S T A R E K G K Y S G D Y F T L
1342 . . . . . . . . . . S . . . V . . . . . . F N N

DFFRX 4114 .. .. AA.......T ... C........A.T TG ............TG....... T.CAAT.A ..... .. ..T..
DFFRY 4141 TTACGGCACCTTCTCAATTATGCTTACAATGGCAATATTAACATACCCAAGCGAGTTCTTCTTGTCATGAAATTGATTGTCAAA

1372 L R H L L N Y A Y N G N I N I P N A E V L L V S E I D W L K
1402 . . . . C . . . I . . T

DFFRX 4204 ..A.........G ......... GA.....A.....G...A.T ...... A.G.. CT.A .G ...........A..G.... G... ...C.
DFFRY 4231 AGGATTAGGGATAATGTTAAAAACACAGGTGAAACAGGTGTCGAAGAGCCAATACTGGAAGGCCACCTTGGGGTAACAAAAGAGTTATTG

1411 R I R D N V K N T G E T G V E E P I L E G H L G V T K E L L
1432 . . . . . . . . F . I

DFFRX 4294 ...................... A.T... TA ..........A.................
DFFRY 4321 GCCTTTCAAACTTCTGAGAAAAAGTATCACTTTGGTTGTGAAAAAAGGAGGTGCTAATCTCATTAAAGAATTAATTGATGATTTCATCTTT

1441 A F Q T S E K K Y H F G C E K G G A N L I K E L I D D F I F
1462 . . . N . . . . . M . N G . . P .

DFFRX 4384 .. T........ T ........ A .....A.G...A ... ... G..T........A ....... ... .... G....... ACC .. A..T
DFFRY 4411 CCCGCATCCAAAGTTTACCTGCAGTATTTAAGAAGTGGAGAACTACCAGCTGAGCAGGCTATTCCAGTCTGTAGTTCACCCGTTACCATC

1471 P A S K V Y L Q Y L R S G E L P A E Q A I P V C S S P V T I

DFFRX 4474 .......... AT ......... ........... G ................... :.............T.C .......
DFFRY 4501 AATGCCGGTTTTGAGCGGC GAGGA ACAAGTATTGGTGTGTGAGGAATTAA AC GACAG TAAAAC

1501 N A G F E L L V A L A I G C V R N L K Q I V D C L T E M Y Y
1522 I

DFFRX 4564 . .T....... .. . .... .......... .. ... A . ...... .. ... C........C...G
DFFRY 4591 ATGGGCACAGCAATTACTACTTGTGAAGCACTTACTGAGTGGGAATATCTGCCCCCTGTTGGACCCCGCCCACCAAAAGGATTTGTGGGA

1531 M G T A I T T C E A L T E W E Y L P P V G P R P P K G F V G
1552• • G

DFFRX 4654 . .G.. ... C.......T .. ......T ..... T:.... .C.. ... .. . T ...... G ..... ..
DFFRY 4681 CTCAAAAATGCTGGTGCTACGTGTTACATGAACTCTGTGATCCAGCAGCTATACATGATTCCTTCTATCAGGAACAGTATTCTTGCAATT

1561 L K N A G A T C Y M N S V I Q Q L Y M I P S I R N S I L A I
1582 . . . . . . V C . . . S . . . . . . N .

DFFRX 4744 .................. .T................... CT ................. A...... C ..... .... A.G.
DFFRY 4771 GAAGGCACAGGTAGTGATTTACACGATGATATGTTCGGGGATGAGAAGCAGGACAGTGAGAGTAATGTTGATCCCGAGATGATGTATTT

1591 E G T G S D L H D D M F G D E K Q D S E S N V D P R D D V F
1612 . . . Q

DFFRX 4834 ........... A...........T. .A .. A........ A..T ........ A....... C ........
DFFRY 4861 GGATATCCTCATCAATTTGAAGACAAGCCAGCATTAAGTAAGACAGAAGATAGGAAAGAGTATAATATTGGTGTCCTAAGACACCTTCAG

1621 G Y P H Q F E D K P A L S K T E D R K E Y N I G V L R H L Q
1642 . . . . . . . .. R

DFFRX 4924 .T........... G .G ..... ............. ......................... G ......
DFFRY 4951 GTCATCTTTGGTCATTTAGCTGCTTCCCAACTACAATACTATGTACCCAGAGGATTTTGGAAACAGTTCAGGCTTTGGGGTGAACCTGTT

1651 V I F G H L A A S Q L Q Y Y V P R G F W K Q F R L W G E P V
1672 .

OFFRX 5014. ..
DFFRY 5041 AATCTCCGTGAACAACATGATGCCTTAGGGGGAAGATGAAGCTTTAAAAGCTTAGGACACCCGCT

1681 N L R E Q H D A L E F F N S L V D S L D E A L K A L G H P A
1702 M .

DFFRX 5104 ..G.. .......... T ....... 6T ..... C .................... G
DFFRY 5131 ATACTAAGTAAAGTCCTAGGAGGCTCCTTGCTGATCAGAAGATCTGCCAAGGCGCCCAATAGGTATGAATGTGAAGAATCTTTTACA

1711 I L S K V L G G S F A D Q K I C Q G C P H R Y E C E E S F T
1732 . . . . . . . . . . V .. . .

DFFRX 5194 ..CC.A..C..A..C............ ...... ......... T............... G.............. C.A...............
DFFRY 5221 ACTTTGAATGTGGATATTAGAAATCATCAAAATCk CTTGACTCTTTGGAACAGTATATCAAAGGAGATATTGGAAGGTGCAAATGCA

1741 T L N V D I R N H Q N L L D S L E Q Y I K G D L L E G A N A
1762 . . . . . . N . . . . PDFFRX ;J?1 6 ................. CA ....... ............. .......... G ........... A .... CT .......... A ... .A..G

DFFRY 51 TATCATTGTGAAAAATGTGATAAAATATAAAAAGGTTGACACAGTAAAGCGCCTGCTAATTAAAAAATTGCCTCGGGTTCTTGCTATCAACTCAAA
1771 Y H C E K C D K K V D T V K R L L I K K L P R V L A I Q L K

D 5374 ............... ...................................................................
DFFRX 574 . . .C... A

DFFRY 5401 CGATTTGACTATGACTGGGAAAGGAATGTGCAATTAAAAA ATGATTATTTTGAATTTCCTCAGAGCTGGATATGGGACCTTACACA
1801 R F D Y D W E R E C A I K F N D Y F E F P R E L D M G P Y T
1822 . . . . . K . G . . P . S Q . Q .S .E S

DFFRX 5464 ..T ........ C ..... G ...... G ............. C... G.G.C ....... AC...... GT...........A.G. .. G. .A...
DFFRY 5491 GTAGCAGGTGTTGCAAACCTGGAAAGGG GATAATGTAAACTCAA GGAGAACAGAAAGAGCAGTCTGAAATGAAACTGCA

1831V A G V A N L ER D N V N S E N E L I E Q K E Q S D N E T A
1852 . S

DFFRX 554 ... A.......A... . ..... G. .T... C..............G. .T. .G ............... C....
FFRY 1 GGAGGCACAAAGTACAGACTTGTAGGAGTGCTGTACACAGTGGTCAAGCAAGCGGTGGGCATTATTATTCTTACATCATTCAAAGGAAT

1861 G G T K Y R L V G V L V H S G Q A S G G H Y Y S Y I I Q R N
1882 . G . G E R N R

DFFRX 5644 ... GG.....GG. . G. .............. ..... .T .............. T... C........ .... :........C
DFFRY 71 GGTAAAGATGATCAGACAGATCACTGGTATAAATTTGATGATGGAGATGTAACAGAATGCAAAATGGATGATGATGAAGAAATGAAAAAT

1891 G K D D Q T D H W Y K F D D G D V T E C K M D D D E E M K N
1912 .DFFRX 5734 ............. ........... . ....... .................... T ...... ..... C ..... ........ .. .....

DFFRY 5761 CAGTGTTTTGGTGGAGAGTACATGGGAGAAGTATTTGATCACATGATGAAGCGCATGTCATATAGGCGACAGAAGAGGTGGTGGAATGCT
1921 Q C F G G E Y M G E V F D H M M K R M S Y R R Q K R W W N A
1942. . P . . . R . . T . . Q . . . L . . . ..... A . T T

DFFRX 24 .... ..T ........... G...C.CA.....CC...............................................TG....CA.CACC.... T
DFFRY 5851 TACATACTTTTTTATGAACAAATGGATATGATAGATGAAGATGATGAGATGATAAGATACATATCAGAGCTAACTATTGCA ---AGACCC

1951Y I L F Y E Q M D M I D E D D E M I R Y I S E L T I A - R P

1972 . . . . . P S . . . . ... .. . .. Q ......... . .
DFFRX 5914............ C. .T ................... ........ C..AC .. C.............A... .G. .C .. A.G...

DFFRY 5938 CATCAGATCATTATGTCACCAGCCTTGAGAGAAGTGTACGGAAACAAAATGTGAAATTTATGCATAACCGATTGCAATATAGTTTAGAG
1980H Q I I M S P A I E R S V R K Q N V K F M H N R L Q Y S L E
2002 . . . . M . . . . . . . . P H. . . .DFFRX ...42. M..A .. A ............ ............. . .... ...C* . .... .. C..... . .. . H ...... .. .....

DFFRY 028 TATTTTCAGTTTGTGAAAAAACTGCTTACATGTAATGGTGTTTATTTAAACCCTGCTCCAGGGCAGGATTATTTGTTGCCTGAAGCAGAA
2010 Y F Q F V K K L L T C N G V Y L N P A P G Q D Y L L P E A E



2032 . . . V . . . S
DFFRX 6094.... ........... :..:.A.........G..:......T..A. ..........A. .. G. ...C. CT...

DFFRY 6118 GAAATTACTATGATTAGTATTCAGCTTGCTGCTAGATTCCTCTTTACCACTGGATTrCACACCAAGAAAATAGTTCGTGGTCCTGCCAGT
2040 E I T M I S I Q L A A R F L F T T G F H T K K I V R G P A S
2062 . . . . . . . I . . . . . . . . R . . . A

DFFRX 6184 . .T.............T ... .TA.... . ........... G.... C............ G..C..............T.
OFFRY 6208 GACTGGTATGATGCACTGTGCGTTCTTCTCCGTCACAGCAAAAATGTAGGTTTTTGGTTTACTCATAATGTCCTTITTAATGTATCAAAT

2070D W Y D A L C V L L R H S K N V G F W F T H N V L F N V S N
2092

DFFRX 74......C ...........
DFFRY 298 CGCTTCTCTGAATACCTTCTGGAGTGCCCTAGTGCAGAAGTGAGGGGTGCATTTGCAAAACTTATAGTGTTTATTGCACACTTTTCCTTG

2100 R F S E Y L L E C P S A E V R G A F A K L I V F I A H F S L
2122 . . . P . . . . ... ..... Y

DFFRX 6364........... C.A ................ C....C.T ..........T.A. .. .C..A............ T.
DFFRY 88 CAAGATGGGTCTTGTCCTTCTCCTTTTGCATCTCCAGGACCTTCTAGTCAGGCATGTGATAACTTGAGCTTGAGTGACCACTTACTAAGA

2130 Q D G S C P S P F A S P G P S S Q A C D N L S L S D H L L R
2152 V . . . . . . . . . . . . R

DFFRX 2 4 .AGT .................. ..........................
DFFRY 478 GCCACACTAAATCTCTTGAGAA GGGAAGTTTCAGAGCAT

2160A T L N L L R R E V S E H G H H L Q Q Y F N L F V M Y A N L
2182 . . . . .. . .S

DFFRX 6524...........G. .G............... ..........
DFFRY 8 GGTGTGGCAGAAAAAACACAGCTTCTGAAATTGAATGTACCTGCTACCTTTATGCTTGTGTCTTTAGACGAAGGACCAGGTCCTCCAATC

2190 G V A E K T Q L L K L N V P A T F M L V S L D E G P G P P I
2212 . .. . . . R .

DFFRX 4 A... ............ .. .. ..... A.....C. .C...... .C . ... ...........
DFFRY 8 AAATATCAGTATGCTGAATTAGGCAAGTTATATTCAGTAGTGTCTCAGCTGATTCGTTGTTGCAATGTGTCATCAACAATGCAGTCTTCA

2220 K Y Q Y A E L G K L Y S V V S Q L I R C C N V S S T M Q S S
2242 . . .. . . . ' .' . . . . P . . . ... A

DFFRX 2242............ C. ................................................................ ..
DFFRY 748 ATCAATGGTAATCCCCCTCTCCCCAATCCTTTCGGTGACCTTAATTrATCACAGCCTATAATGCAATTCAGCAGAATGTGTTAGACATT

2250 I N G N P P L P N P F G D L N L S Q P I M P I Q Q N V L D I
2272 . . . . . . . . . . . .. . . . . . E . V . . . . . . C

DF ADFFRX 6814 .... ........... T.T........ A...G. G.....T. .GC...DFFRY 63 AGGA AGAAAATTATTGAAGACTGCAGTAACTCAGAGGATACCATCAAATTACTTCGCTrGCTCTTGG
2280 L F V R T S Y V K K I I E D C S N S E D T I K L L R F C S W

DFFR 2302A.....................................................................23RX 604 ... .. C.. .C...........G.C. G.... .DFFRY 28 GAGAATCCTCAGTTCcTCATTACTnGT CCTCAGCGAACTTC CT GCAGTTGcAATTCATAACCAACTTcAT CCTA TAGAT
2310 E N P Q F S S T V L S E L L W Q V A Y S Y T Y E L R P Y L D
2332 . . L

DFFRX 6994 ... G.CA GC......
DFFRY 708 CTATTrCTCAAACrAGCGTCrkkGA A CTGCAACACAGkACAAAi6CATTAAAGATrCCAGAAC AGAGTGG

2340 L L F Q I L L I E D S W Q T H R I H N A L K G I P D D R D G

2FFRY 7084. T . .C.C........T .A. . T T.AC...
OFFRY 7108 CTGTTCGATACAAT~JL~ ~iACAGCGC TCGAATAAAGCAACTCAAAGAGTGCCAACATT

2370 L F D T I Q R S K N H Y Q K R A Y Q C I K C M V A L F S S C
2392232........................... ................ ....................... ..................DFFRX 7174............ .A : G.. .C.. . .T G T.

DFFRY 7198 CCTGTTGCTTACCAGATCTTACAGGGTAACGGAGATCTTAAAAGAAAATGGACCTGGGCAGTGGAATGGCTAGGAGATGAACTTGAAAGA
2400P V A Y Q I L Q G N G D L K R K W T W A V E W L G D E L E R
2422 . . . . . . . . . T . . . . . . . .. . . .

DFFRY 28DFFRY 7 8 AGACCATATACTGGCAATCCTCAGTATAGTTACAACAATTGTCTCAAAACAGACGAAGTATCTGA
2430 R P Y T G N P Q Y S Y N N W S P P V Q S N E T A N G Y F L E

2452
DFFRX 7354 G..................A...T:.....A..

OFFRY 7 AGATCACATAGTCTAGGATGACACTTGCAAAAGCTGGAACTCTGTCCAGAAGAGGAGCCAGATGACCAGGATGCCCCAGATGAGCAT
2460 R S H S A R M T L A K A C E L C P E E E P D D Q D A P D E H

2482 .S P . P ..... . . . . . . . . .G
DFFRX 7444 ... T.GC....... G..C..C..........GA.... C. G..........
DFFRY 768 GAGCCCTCTCCATCAGAAGATGCCCCATTATATCCTCATTCACCTGCCTCTCAGTATCAACAGAATAATCATGTACATGGACAGCCATAT

2490 E P S P S E D A P L Y P H S P A S Q Y Q Q N N H V H G Q P Y
2512 .M . . . . R . . . . A . . . . . . S . . . . P

DFFRX 754 ..... . ..... .....A...............G...T........ ................... G ............ C..
DFFR 758 ACAGGACCAGCAGCACATCACTTGAACAACCCTCAGAAAACAGGCCAACGAACACAAGAAAATATGAAGGCAATGAAGAAGTATCCTCA

2520 T G P A A H H L N N P Q K T G Q R T Q E N Y E G N E E V S S
2542 . T . . . *

DFFRX 7624. A.CC........ A..... t... c..........g. .... a.c.a.... .g. cc.. .c.... ....... C.... t..
DFFRY 7648 CCTCAGATGAAGGATCAGTGAaaagca-atatttaac tgcttcctttatgactatgcactaaggtttatagtccaaactttctctgtgt

2550 P Q M K D Q * 2555

DFFRX 7743p .. .. a .... .t......... a .... at...t. .t............gg... .tt..........tc... .C.a....
DFFRY 77 ctggctagtattgaaaactagataaactgctccaaaccaacatggagtaaagagcatattcctggttatttgcagtaatttgcaattt

DFFRX 7800 ,,,aa,,,,,ccgc, ....t.ga............t........t.....
DFFRY agtcagtgtataagacacatgcagggtgaagtgtacagagttttgtaacaaatgac- gctaat tgtaaatg gaaaggttatata

DFFRX 7890 g...a.. ... cttgatg.gactca............aa.tac.a.agt.a..
DFFRY 7916 ctatgttaatgtctgactgttaattttaagcaaaa aactttttttga tgaaaacaagtcagatctacacagtc---acacaattatttt

DFFRX 7979 c....acacc....g..c.c.ta.cca.tgt.gctgcctca..gcagtggatcagct.c 8037
DFFRY 8003 ttgttgtgttcactacattgtgcaattgatattgcctgctttgagcagtttggtcaacttaccaacttcccccaaaaaagggaacataa

DFFRY8093 aagagcccatctttgtcagtttacaccaatagtttcttgttaatccttctttcctggatatataaggctggtggtaacttttgaattata
DFFRY 8183 tggttgatgtggaaaattggcagtgtaacatttctagatacttttcattacctttttattctggtatataggctaaccactttaaagcta
DFFRY8273 ttcttatgctgtaacagttagcatggcttcacactgtttgtgtagccaagaggacagaattacatgaatgacagtgcccagagtgacag
DFFRY 8363 tgtatattgctcagagcttttatttcttatacctagaataaatataaaatgggggaaaaaaaaaa 8427



UTX
short and long transcripts

-26 aaagcaaaagaattcgctgcgtttcc

1 ATGAAATCCTGCGGAGTGTCGCTCGCTACCGCCGCCGCGCCGCCGCCGCTTTCGGTATGAGGAAAAGAAAATGCGGCGGGAAAAGCG
1 M K S C G V S L A T A A A A A A A F G D E E K K M A A G K A

91 AGCGGCGAGAGCGAGGAGGCGTCCCCCAGCCACAGCCGAGGAGAGGGAGGCGCTCGGCGGACTGGACAGCCGCCTCTTTGGGTTCGT
31 S G E S E E A S P S L T A E E R E A L G G L D S R L F G F V

181 AGATTTCATGAAGATGGCGCCAGGACGAAGGCCCTACTGGGCAAGGCTGTTCGCTCTAGAATCTCTAATCTTAAAAGCTAAGGAAAA
61 R F H E D G A R T K A L L G K A V R C Y E S L I L K A E G K

271 GTGGAGTCGATTTCTTTTGTCAATTAGGTCACCAACCTCTTATGGAAGATTATCCAAAAGCATTATCTGCATACCAGAGGTACTAC
91 V E S D F F C Q L G H F N L L L E D Y P K A L S A Y Q R Y Y

361 A CAGTCTGACTACTGGAAGAATGC CTTTTTATATGTCTTGTTTGGTCTACTTCCATTATAATGCATTTCAGTGGGCAATT
121 SL Q S D Y W K N A A F L Y G L G L V Y F H Y N A F Q W A I

451 AAAGCATTTCAGGAGGTGCTTTATTTGATCCCAGCTTTTCGAGCCAAGGAAATTCATTTACGAGTTGGCTATGTTCAAAGTGAAC
151 K A F Q E V L Y V D P S F C R A K E I H L R V G L M F K V N

541 ACAGACTATGAGTCTAGTTTAAAGCATTTTCAGTTAGCT TTGACTGTAATCCCTGCACTTTGTCCAATCTGAAATTCAATTTCAC
181 T D Y E S S L K H F Q L A L V D C N P C T L S N A E I Q F H

631 ATTCCCACTTATATGAAACCCAGAGGAAATATCATTCTGCAAAAGAAGCTTATGAACAACTTTTCAGACAGAGAATCTTTC7CACAA
211 I A H L Y E T Q R K Y H S A K E A Y E Q L L Q T E N L S A Q

721 GTAAAAGCAACTCTTACAACAGTTAGGTTGGA CACACACTGTAGATCTCCTGGAGATAAAGCCACCAAGGAAAGCTAGCTATT
241 V K A T V L Q Q L G W M H H T V D L L G D K A T K E S Y A I

811 CAGTATCTCCAAAAGTCCTTGGAAGCAGATCCTAATTCGGCCAGTCCTGGTATTTCCTCGGAAGGTGCTATTCAAGTATTGGAAAGTT
271 Q Y L Q K S L E A D P N S G Q S W Y F L G R C Y S S I G K V

901 CAGGATGCCTTTATATCTACAGGCAGTCTATTGATAAATCAGAAGCAAGTCAGATACATGGGTTCAATAGGTGCTATATCAGCAG
301 QD A F I S Y RQS I D K S E A S A D T W C S I G V L Y Q Q

991 CAAAATCAGCCCATGGATGCTTTACAGGCCTATATTTGTCTACAATIGGACCATGGCCATGCTGCAGCCTGGATGGACCTAGGCACT
331 Q N Q P M D A L Q A Y I C A V Q L D H G H A A A W M D L G T

1081 CTCTATGAATCCTGCAACCAGCCTCAGGATGCCATTAAATGCTACTAAACAACTAGAAGCAAAAGTTGTAGTAATACCTCTGCACTT
361 L Y E S C N Q P Q D A I K C Y L N A T R S K S C S N T S A L

1171 GCAGCACGAATTAAGTATTTACAGGCTCAGTTGTAACCTTCCACAAGGTAGTCTACAGAATAAAACTAAATTACTTCCTAGTATTGAG
391 A A R I K Y L Q A Q L C N L P Q G S L Q N K T K L L P S I E

1261 GAGGCGTGGAGCCTACCAATTCCCGCAGAGCTTACCTCCAGGCAGGTGCCATGAACACAGCACAGCAGAATACTTC"ACAATTGAGT
421 E A W S L P I P A E L T S R Q G A M N T A Q Q N T S D N W S

1351 GGTGGACACTGTCACATCCTCCAGTACA CAAGCTCATTCAGGTTTGACACCACAGAAATTACAGCATTTGGAACAGCTC
451 G G H A V S H P P V QQQ A H S W C L T P Q K L Q H L E Q L

1441 CGCGCAAATAGAAATAATTTAAATCCAGCACAGAAACTGATGCTGAACAGCTGGAAAGTCAGTTTGTCTTAATGCAACCACCAAATG
481 R A N R N N L N P A Q K L M L E Q L E S Q F V L M Q Q H Q M

1531 AGACCAACAGGAGTTGCACAGGTACGATCTACGGAATTCCTAATGGGCCAACAGCACTCATCACTGCCTACAAACTCAGTCTCTGGC
511 R P T G V A Q V R S T G I P N G P T A D S S L P T N S V S G

1621 CAGCAGCCACAGCTIGCTCGACCAGAGGCCTAGCGTCTCTC GAGTCCGTCCTGCCTGCCCTGGGCAGCCTTGCCAATGGA
541 Q Q P Q L A L T R V P S V S Q P G V R P A C P G Q P L A N G

1711 CCCTTTTCTGCAGGCCATGTTCCCTGTAGCACATCAAGAACGCGGGGAAGTACAGACACTATTTTGATAGGCAATAATCATATAACAGGA
571 P F S A G H V P C S T S R T R G S T D T I L I G N N H I T G

1801 A AA ATGGAAAGTGCCTTACCGCAGCGAAACGCACTCACTCTACCTCATAACCGCACAAACCACCAGCAGCGCAAAGGAG
601 N G S N G N V P Y L Q R N A L T L P H N R T N L T S S A K E

1891 CCGTGGAAAAACCAACTATCTAACTCCACTCA TTCACAAAGGTCAGTTCACATTCGGCAGGTCCTAATGGAACGACCTCTC
631 P W K N Q L S N S T Q G L H K G Q S S H S A G P N G E R P L

1981 TCTTCCACTGGCCTTCCCAGCATCTCCAGGCAG CTCTTATTCAGAATCAGAACGGACATCCCACCCTGCCTAGCAATTCAGTA
661 S S T G P SQ H L Q A A G S G I Q N Q N G H P T L P S N S V

2071 ACACAGGGGGCCTCTCAATCACCTCTCCTCTCACACTGCTACCTCAGGGACAACAAGGCATTACCTTAACCAAAGAGAGCAAGCCT
691 T Q G A A L N H L S S H T A T S G G Q Q G I T L T K E S K P

2161 TCAGGAAACATATTGACGGTGCCGAA CAGGCACAC ACACCTAACAGCACTGCCAGTTCGAGGGACTTCCTAATCAT
721 SG N I L T V P E T S R H T G E T P N S T A S V E G L P N H

2251 GTCCATCAGATGACGGCAGTCCTAGCCATGAGATCTAAGTCACCAGGTTTACTAAGTTCAGACAATCCTCAGCTC
751 V HQMTADAVCSPSHG DS K S PG LL S S DN P Q L

2341 TCCCTTTGA GAAAAGCCAATAACAATGTCAATAACACCACCCAGCTTCATACAAAG
781 SAL LM G K A N N NV GT GTC D K V N N I H P AV H T K

2431 ACTGATAACTCTTTGCCTCTTCACCATCTTCAGCCATTTCAACAGCAACACCTTCTCCAAAATCCACGAGCAGACAACCACAAACAGT
811 TDNS V A S S P S S A I S T A TPSP KSTEQ TTTNS

2521 GTTACCAGCCTTAACAGCCCTCACAGACACACAATTAAGAGAAGGGAnGAAGAATCTCAGAGCCCCATGAAAACAGATC
841 VTSLNS PHSGL H TINGEGMEESQ S PM K TDL

2611 CTTCTGGTTAACCACAAACCTAGTCCACAGATCATACCATCAATTC7GTCCATATACCCCAGCTCAGCAGAAGTT CAAGGCAC
871 L L V N H K P S P Q I I P S M S V S I Y P S S A E V L K A C

2701 AGGAATCTAGGTAAAA G ATCTAACAGTAGCATTTTGTTGGATAAATGTCCACCTCCAAGACCACCATCTTCACCATACCCTCCC
901 R N L G K N G L S N S S I L L D K C P P P R P P S S P Y P P

2791 TCCAAAGGACAAGTTGAATCCACCTACACCTAGTATTTACTTGGAAAATAAACGTATGCTTTCTTTCCTCCATTACATCAATTTTGT
931 L P K D K L N P P T P S I Y L E N K R D A F F P P L H Q F C

2881 ACAAATCCGAACAACCCTTTACAGTAATACGTGCCTCGAGCTCTTAAGAGACCTGGGACTTTTCTCTACTAAAACTTGGTG
961 T N P N N P V T V I R G L A G A L K L D L G L F S T K T L V

2971 GAAGCTAACAATGAACATATGGTAGAAGTGAGGACACAGTTGTTGCAGCCAGCAGAGAAAACGGATCCCACTGGAACAAAGAAAATC
991 E A N N E H M V E V RT Q L L Q P A D E N W D P T G TK K

3061 TGGCATTGTAAAGTAATAGATCTCATACTACAATTGCTAAATATGCACAGTACCAGGCCTCCTCATTCCAGGAATCATTGAGAGAAGAA
1021 W H C E S N R S H T T I A K Y A Q Y Q A S S F Q E S L R E E

3151 AATGAAAAAAGAAGTCATCATAAAGACCACTCAGATAG3AATCTACATCGTCAGATAATTCTGGGAGGAGGAGGAAAGGACCCTTTAAA
1051 N E K R S H H K D H S DSE S T SSD N S G R R R K G P F K

3241 ACCATAAAGTTTGGACCA AAT GA CAAAAAG AATTGCAGCTACATGAGCTACTAAACTTC CTTTTGTG
1081 T I K F G T N I D L S D D K K W K L Q L H E L T K L P A F V

3331 CGTGTCGTATCAGCAGGAAATCTTCTAAGCCATTTGGTCATACCATATTGGCAAACCACAGTTCAACTATACAAAAGTTCCAGGG
1111 R V V S A G N L L S H V G H T I L G M N T V Q L Y M K V P G

3421 AGCAGAACACCAGGTCATCAGGAAAATAACAACTTCTGTTCAGTTAACATAAATATTGGCCCAGGTGACTGGAATGGTTTGTTGTTCCT
1141 S RT P G HQ E N N N F C S V N I N I G P G D C E W F V V P

3511 GAAGGTTACTGGGGTGTTGAATGACTTCTGTGAAAAAAATAATTTGAATTCCTAATGGGTTCTTGTGGCCCAATCTTGAGAT
1171 E G Y W G V L N D F C E K N N L N F L M G S W W P N L E D L

3601 TATGAAGCAAATGTTCCAGCGACCTGGAGATTTGGTCTGGATAAATGCAGGCACTGTTCATTGGGTTCAGGCT
1201 Y E A N V P V Y R F I Q R P G D L V W I N A G T V H W V Q A

3691 ATTGGCTGGTGCAACAACATTGCTTGGAATGTTGGTCCACTTACAGCCTGCCAGTATAAATTGGCAGTGGAACGGTACAATGGAACAAA
1231 IGW C N N I A W N V G P L T A C Q Y K L A V E R Y E W N K

3781 TTGCAAAGTGTGAAGTCAATAGTACCCATGTTCATCTTTCCTGGAATATGGCACGAAATATCAAGGTCTCAGATCCAAAGCTTTTGAA
1261 L QS V K S I V P M V H L S W N M A R N I K V S D P K L F E

3871 ATGATTAAGTATTGTCTTCTAAGAACTCTGAAGCAATGTCAGACATTGAGGGAAGCTCTCATT CCAGGAAAAGAGATTATATGGCAT
1291 M I K Y C L L R T L K Q C Q T L R E A L I A A G K E I I W H



3961 GGGCGGACAAAAGAAGAACCAGCTCATTACTGTAGCATTTGTGAAGTGGAGGTTTTATCTGC TTGTCACTAATGAGAGTAATTCA
1321 G R T K E E P A H Y C S I C E V E V F D L L F V T N E S N S

4051 CGAAAGACCTACATAGTACATTGCCAAGATTGCACGAAAAACAAGCGGAAACTTGGAAAACTTTGGTGCTAGAACAGTACAAAATG
1351 R K T Y I V H C Q D C A R K T S G N L E N F V V L E Q Y K M

4141 GAGGACCTGAn CAAGTCTATGACCAATTTACATTAGCTCCTCCATTACCATCGCCTCATCTAtattgttccatggacattaaatga
1381 E D L M Q V Y D Q F T L A P P L P S A S S * 1401

4231 gacctttctgctattcaggaaataacccagttctgcaccactggtttttgtagctatctcgtaaggctgctggctgaaaactgtgtcta
4321 tgcaaccttccaagtgcggagtgtcaaccaactggacgggagagagtactgctcctactccaggactctcacaaagctgatgagctgtac
4411 ttcagaaaaaaataataatttccatgttttgtatatatctgacaaaactggcaacatcttacagactactgacttgaagacaacctcttt
4501 tatatttctctatttctgggctgatgaatttgttttcatctgtcttttcccccttcagaattttccttggaaaaaaaatactagcctagc
4591 tggtcatttctttgtaaggtagttagcaattttaagtctttctttggtcaacttttttttaatgtgaaaagttaggtaagacactttttt
4681 actgcttttatgtttttctgtcttgttttgagaccatgatggttacacttttggttcctaaataaaatttaaaaaattaacagccaagtc

short 4771 acaaaggtaatggattgcacatagacaaggataagga acttcagatttgtgaaaaaaaaaa 4831
long Latttttgtttctaatcttgatgtaaatttacactattata
long 4861 atacatatttattgcttgaaaatatttgtgaatggaatgctgttattttttccagatttacctgccattgaaattttaaggagttctgta
long 4951 atttcaaacactactcctattacattttctatgtgtaaataaaactgcttagcattgtacagaaacttttattaaaattgtttaatgttt
long 5041 aaagagtttctattgtttgagtttaaaaaagactttatgtacagtgcccagttttgttcattttgaaatctgataaatatatttatatat
long 5131 acttatgtatgtatataatatatatagaaatctggatatatatgtataaatctttagaacttaaatttttctcgtttagttcacatct
long 5221 atggtagatttttgaggtgtctactgtactgtaaagtattgcttacaaaaagtatgattatttttaaagaaatatatatggtatgtatcctcaag
long 5311 acctaaaatgtcagactggtttattgttcagttgattactgcaatgacagaccaataaacaattgctgccaaaaaaaaaa 5392
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UTY
short, medium and long transcripts

-1005
-990
-900
-810
-720
-630
-540
-450
-360
-270
-180
-90

1
1

181
61

271
91
361
121

451
151
541
181
631
211
721
241

811
271
901
301
991
331

1081
361

1171
391

1261
421

1351
451

1441
481

1531
511

1621
541

1711
571

1801
601

1891
631

1981
661

2071
691

2161
721

2251
751

2341
781

2431
811

2521
841

2611
871

2701
901

2791
931

2881
961

996
Medium 2986
Short 2971

991

Medium 3061
Short 3061

1021

gctcatcgtttgttg
tttagataatatcatgaactgataaatgcagttgccacgttgattccctagggcctggcttaccgactgaggtcataagatattatgcct
tctctttagacttggtcagtggagaggaaatgggcaaagaaccagcctatggaggtgacaaggccttagggccaaaagtcttgagggtga
aggtttagggcctgcgcagcttccctgccatgccccgcaaggtctcgcattcgcaaggcttgtgacagtgggagcctcattacggactct
cctaaagtccatggtgtcctcttttcgcatttgcgccccgtgggtgatgcccgatgccgcccttcccatcgctctcttccccttcaagcg
tatcgcaactgcaaaaacacccagcacagacactccattttctatcttaatgcatttaactagcacaacctacaggttgttccatcccag
agactacccttttctccatagacgtgaccatcaaccaaccagcggtcagaatcagtcagcctctgtcatgttcctaggtccttggcgaac
tggctgggcggggtcccagcagcctaggagtacagtggagcaatgcctgacgtaagtcaacaaagatcacgtgagacgaatcagtcgcct
agattggctacaactaagtggttgggagcggggaggtcgcggcggctgcgtggggttcgcccgtgacacaattacaactttgtgctggtg
ctggcaaagtttgtgattttaagaaattctgctgtgctctccagcactgcgagcttctgccttccctgtagtttcccagatgtgatccag
gtagccgagttccgctgcccgtgcttcggtagcttaagtctttgcctcagcttttttccttgcagccgctgaggaggcgataaaattggc
gtcacagtctcaagcagcgattgaaggcgtcttttcaactactcgattaaggttgggtatcgtcgtgggacttggaaatttgttgtttcc

ATGAAATCCTGCGCAGTGTCGCTCACTACCGCCGCTGTTGCCTTCGGTGATGAGGCAAAGAAAATGGCGGAAGGAAAAGCGAGCCGCGAG
M K S C A V S L T T A A V A F G D E A K K M A E G K A S R E
AGTGAAGAGGAGTCTGTTAGCCTGACAGTCGAGGAAAGGGAGGCGCTTGGTGGCATGGACAGCCGTCTCTTCGGGTTCGTGAGGCTTCAT
S E E E S V S L T V E E R E A L G G M D S R L F G F V R L H
GAAGATGGCGCCAGAACGAAGACCCTACTAGGCAAGGCTGTTCGCTGCTACGAATCTTTAATCTTAAAAGCTGAAGGAAAAGTGGAGTCT
E D G A R T K T L L G K A V R C Y E S L I L K A E G K V E S
GACTTCTTTTGCCAATTAGGTCACTTCAACCTCTTGTTGGAAGATTATTCAAAAGCATTATCTGCATATCAGAGATATTACAGTTTACAG
D F F C Q L G H F N L L L E D Y S K A L S A Y Q R Y Y S L Q
GCTGACTACTGCGTTTTTATATGGCCTTGGTTTGGTCTACTTCTACTACAATGCATTTCATTGGGCAATTAAAGCATTT
A D Y W K N A A F L Y G L G L V Y F Y Y N A F H W A I K A F
CAAGATGTCCTTTATGTTGACCCCAGCTTTTGTCGAGCCAAGGAAATTCATTTACGACTTGGGCTCATGTTCAAAGTGAACACAGACTAC
Q D V L Y V D P S F C R A K E I H L R L G L M F K V N T D Y
AAGTCTAGTTTAAAGCATTTTCAGTTAGCCTTGATTGACTGTAATCCATGTACTTTGTCCAATGCTGAAATTCAATTTCATATTGCCCAT
K S S L K H F Q L A L I D C N P C T L S N A E I Q F H I A H
TTGTATGAAACCCAGAGGAAGTATCATTCTGCAAAGGAGGCATATGAACAACTTTTGCAGACAGAAAACCTTCCTGCACAAGTAAAAGCA
L Y E T Q R K Y H S A K E A Y E Q L L Q T E N L P A Q V K A
ACTGTATTGCAACAGTTAGGTTGGATGCATCATAATATGGATCTAGTAGGAGACAAAGCCACAAAGGAAAGCTATGCTATTCAGTATCTC
T V L Q Q L G W M H H N M D L V G D K A T K E S Y A I Q Y L
CAAAAGTCTTTGGAGGCAGATCCTAATTCTGGCCAATCGTGGTATTTTCTTGGAAGGTGTTATTCAAGTATTGGGAAAGTTCAGGATGCC
Q K S L E A D P N S G Q S W Y F L G R C Y S S I G K V Q D A
TTTATATCTTACAGGCAATCTATTGATAAATCAGAAGCAAGTGCAGATACATGGTGTTCAATAGGTGTGTTGTATCAGCAGCAAAATCAG
F I S Y R Q S I D K S E A S A D T W C S I G V L Y Q Q Q N Q
CCTATGGATGCTTTACAGGCATATATTTGTGCTGTACAATTGGACCATGGGCATGCCGCAGCCTGGATGGACCTAGGTACTCTCTATGAA
P M D A L Q A Y I C A V Q L D H G H A A A W M D L G T L Y E
TCCTGCAATCAACCTCAAGATGCCATTAAATGCTACCTAAATGCAGCTAGAAGCAAACGTTGTAGTAATACCTCTACGCTTGCTGCAAGA
S C N Q P Q D A I K C Y L N A A R S K R C S N T S T L A A R
ATTAAATTTCTACAGAATGGTTCTGATAACTGGAATGGTGGCCAGAGTCTTTCACATCATCCAGTACAGCAAGTTTATTCGGTGTTTG
I K F L Q N G S D N W N G G Q S L S H H P V Q Q V Y S L C L
ACACCACAGAAATTACAGCACTTGGAACAACTGCGAGCAAATAGAGATAATTTAAATCCAGCACAGAAGCATCAGCTGGAACAGTTAGAA
T P Q K L Q H L E Q L R A N R D N L N P A Q K H Q L E Q L E
AGTCAGTTTGTCTTAATGCAGCAAATGAGACACAAAGAAGTTGCTCAGGTACGAACTACTGGAATTCATAACGGGGCCATAACTGATTCA
S Q F V L M Q Q M R H K E V A Q V R T T G I H N G A I T D S
TCACTGCCTACAAACTCTGTCTCTAATCGACAACCACATGGTGCTCTGACCAGAGTATCTAGCGTCTCTCAGCCTGGAGTTCGCCCTGCT
S L P T N S V S N R Q P H G A L T R V S S V S Q P G V R P A
TGTGTTGAAAAACTTTTGTCCAGTGGAGCTTTTTCTGCAGGCTGTATTCCTTGTGGCACATCAAAAATTCTAGGAAGTACAGACACTATC
C V E K L L S S G A F S A G C I P C G T S K I L G S T D T I
TTGCTAGGCAGTAATTGTATAGCAGGAAGTGAAAGTAATGGAAATGTGCCTTACCTGCAGCAAAATACACACACTCTACCTCATAATCAT
L L G S N C I A G S E S N G N V P Y L Q Q N T H T L P H N H
ACAGACCTGAACAGCAGCACAGAAGAGCCATGGAGAAAACAGCTATCTAACTCCGCTCAGGGGCTTCATAAAAGTCAGAGTTCATGTTTG
T D L N S S T E E P W R K Q L S N S A Q G H K S Q S S C L
TCAGGACCTAATGAAGAACAACCTCTGTTTTCCACTGGGTCAGCCCAGTATCACCAGGCAACTAGAGGTATTAAGAAGGCGAATGAA
S G P N E E Q P L F S T G S A Q Y H Q A T S T G I K K A N E
CATCTCACTCTGCCTAGTAATTCAGTACCACAGGGGGATGCTGACAGTCACCTCTCCTGTCATACTGCTACCTCAGGTGGACAACAAGGC
H L T L P S N S V P Q G D A D S H L S C H T A T S G G Q Q G
ATTATGTTTACCAAAGAGAGCAAGCCTTCAAAAAATAGATCCTTGGTGCCTGAAACAAGCAGGCATACTGGAGACACATCTAATGGCTGT
I M F T K E S K P S K N R S L V P E T S R H T G D T S N G C
GC TGAGTCTCAATCATGTTCATCAGTTGATAGCAGATGCTGTTTCCAGTCCTAACCATGGAGATTCACCAAATTTATTA
A D V K G L S N H V H Q L I A D A V S S P N H G D S P N L L
ATTGCAGACAATCCTCAGCTCTCTGCTTTGTTGATTGGAAAAGCCAATGGCAATGTGGGTACTGGAACCTGCGACAAAGTGAATAATATT
I A D N P Q L S A L L I G K A N G N V G T G T C D K V N N I
CACCCAGCTGTTCATACAAAGACTGATCATTCTGTTGCCTCTTCACCCTCTTCAGCCATTTCCACAGCAACACCTTCTCCTAAATCCACT
H P A V H T K T D H S V A S S P S S A I S T A T P S P K S T
GAGCAGAGAAGCATAAACAGTGTTACCAGCCTTAACAGTCCTCACAGTGGATTACACACAGTCAATGGAGAGGGGCTGGGGAAGTCACAG
E Q R S I N S V T S L N S P H S G L H T V N G E G L G K S Q
AGCTCTACAAAAGTAGACCTGGATCTACTTCTCAGATCTTAGCCCGTCTCTTCTCGTCTTCCATCAATGTCAGTGTCTATATGCCCCAGTTCA
S S T K V D L P L A S H R S T S Q I L P S M S V S I C P S S
ACAGAAGTTCTGAAAGCATGCAGGAATCCAGGTAAAAATGGCTTGTCTAATAGCTGCATTTTGTTAGATAAATGTCCACCTCCAAGACCA
T E V L K A C R N P G K N G L S N S C I L L D K C P P P R P
CCAACTTCACCATACCCACCCTTGCCAAAGGACAAGTTGAATCCACCCACACCTAGTATTTACTTGGAAAATAAACGTGATGCTTTCTTT
P T S P Y P P L P K D K L N P P T P S I Y L E N K R D A F F
CCTCCATTACATCAATTTTGTACAAATCCAAAAAACCCTGTTACAGTAATACGTGGCCTTGCTGGAGCTCTTAAATTAGATCTTGGACTT
P P L H Q F C T N P K N P V T V I R G L A G A L K L D L G L
TTCTCTACCAAAACTTTGGTAGAAGCTAACAATGAACATATGGTAGAAGTGAGGACACAGTTGCTGCAACCAGCAGATGAAAACTGGGAT
F S T K T L V E A N N E H M V E V R T Q L L Q P A D E N W D
CCCACTGGAACAAAGAAAATCTGGCGTTGTGAAAGCAATAGATCTCATACTACAATTGCCAAATACGCACAATACCAGGCTTCCTCCTTC
P T G T K K I W R C E S N R S H T T I A K Y A Q Y Q A S S F

E E N E K R T Q H K D H S D N E S T S S E N S G R
GAAGAAAATGAGAAAAGAACACAACACAAAGATCATTCAGATAACGAATCCACATCTTCAGAGAATTCTGGAAGG

CAGGA ATTGAGAGCTGGAATGCAATGGTGTGATCTCAGCTCACTGCAGCCTCCGCCTCCTGGGTTCAAGCGATTCTCCCACCTCAGC
Q E S L R A G M Q W C D L S S L Q P P P P G F K R F S H L S

R R K G P F K T I K F G T N I D L S D N K K W K L Q L H E L
AGAAGGAAAGGACCTTTTAAAACCATAAAATTTGGGACCAACATTGACCTCTCTGATAACAAAAAGTGGAAGTTGCAGTTACATGAACTG
CTCCCGAATAGCTGGAATTACAGGCACCTGCCATCATGCCCAACTAATTTTTGTATTTTTGTAGAGACAGGGTTTCACCATGTTGGCCAG
L P N S W N Y R H L P S C P T N F C I F V E T G F H H V G Q



1051 T K L P A F A R V V S A G N L L T H V G H T I L G M N T V Q
Medium 3151 ACTAAACTTCCTGCTTTTGCGCGTGTGGTGTCAGCAGGAAATCTTCTAACCCATGTTGGGCATACCATTCTGGGCATGAATACAGTACAA
Short 3151 GCTTGTCTTGAACTCCTGACCTCAGGTGGTCTGCTTGCCTCAGCATCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCATGCCCGGTAA

1051 A C L E L L T S G G L L A S A S Q S A G I T G V S H H A R * 1079

1081 L Y M K V P G S R T P G H Q E N N N F C S V N I N I G P G D
Medium 3241 CTGTATATGAAAGTTCCAGGGAGTCGGACACCAGGTCACCAAGAAAATAACAACTTCTGCTCTGTTAACATAAATATTGGTCCAGGAGAT
Short 3241 acttttaaaaatgtaagcaaaattacagtatgtaaaacacacattgctaatggagaaataaagttcctacttttacatctaaaaaaaaaa 3330

1111 C E W F V V P E D Y W G V L N D F C E K N N L N F L M S S W
Medium 3331 TGTGAATGGTTTGTTGTACCTGAAGATTATTGGGGTGTTCTGAATGACTTCTGTGAAAAAAATAATTTGAATTTTTTAATGAGTTCTTGG

1141 W P N L E D L Y E A N V P V Y R F I Q R P G D L V W I N A G
Medium 3421 TGGCCCAACCTTGAAGATCTTTATGAAGCAAATGTCCCTGTGTATAGATTTATTCAGCGACCTGGAGATTTGGTCTGGATAAATGCAGGC

1171 T V H W V Q T V G W C N N I A W N V G P L T A C Q Y K L A V
Medium 3511 ACTGTGCATTGGGTTCAAACTGTTGGCTGGTGCAATAACATTGCCTGGAATGTTGGTCCACTTACAGCCTGCCAGTATAAATTGGCAGTG

1201 E R Y E W N K L K S V K S P V P M V H L S W N M A R N I K V
Medium 3601 GAACGGTATGAATGGAACAAATTGAAAAGTGTGAAGTCACCAGTACCCATGGTGCATCTTTCCTGGAATATGGCACGAAATATCAAAGTC

1231 S D P K L F E M I K * 1240
Medium 3691 TCAGATCCAAAGCTTTTTGAAATGATTAAGTAAgtgccttctgaaactgctgcagtttctctttgggggtattggtagccattcagtatt

Long 3723 TTGTCTTTTGAAAATTCTGAAGCAATATCAGACATTGAGAGAAGCTCTTGTTGCAGCA
1241 Y C L L K I L K Q Y Q T L R E A L V A A

Medium 3781 tttttcaaaagaattctgttgacattaaatgatatcagcagtccagaagtcttggcaaaatgtaataagatgtaaataatcttatatatt
Long 3781 GGAAAAGAGGTTATATGGCATGGGCGGACAAATGATGAACCAGCTCATTACTGTAGCATTTGTGAGGTGGAGGTTTTTAATCTGCTTTTT

1261 G K E V I W H G R T N D E P A H Y C S I C E V E V F N L L F

Medium 3871 cataagtgttataaaatctcataagattaaaatattgccttcccttaaaaaaaaaa 3926
Long 3871 GTCACTAATGAAAGCAATACTCAAA 'CATAGTACATTGCCA T CGAAAAACAAGCAAAAGTTTGGAAAATTTTGTG

1291 V T N E S N T Q K T Y I V H C H D C A R K T S K S L E N F V

Long 3961 GTGCTCGAACAGTACAAAATGGAGGACCTAATCCAAGTTTATGATCAATTTACACTAGCTCTTTCATTATCATCCTCATCTTGAtatagt
1321 V L E Q Y K M E D L I Q V Y D Q F T L A L S L S S S S * 1347

Long 4051 tccatgaatattaaatgagattatttctgctcttcaggaaatttctgcaccactggttttgtagctgtttcataaaactgttgactaaaa
Long 4141 gctatgtctatgcaaccttccaagaatagtatgtcaagcaactggacacagtgctgcctctgcttcaggacttaacatgctgatccagct
Long 4231 gtacttcagaaaaataatattaatcatatgttttgtgtacgtatgacaaactgtcaaagtgacacagaatactgatttgaagatagcctt
Long 4321 ttttatgtttctctatttctgggctgatgaattaatattcatttgtattttaaccctgcagaattttccttagttaaaaacactttccta
Long 4411 gctggtcatttcttcataagatagcaaatttaaatctctcctcgatcagcttttaaaaaatgtgtactattatctgaggaagttttttac
Long 4501 tgctttatgtttttgtgtgttttgaggccatgatgattacatttgtggttccaaaataatttttttaaatattaatagcccatatacaaa
Long 4591 gataatggattgcacatagacaaagaaataaacttcagatttgtgatttttgtttctaaacttgatacagatttacactatttataaata
Long 4681 cgtatttattgcctgaaaatatttgtgaatggaatgttgtttttttccagacgtaactgccattaaatactaaggagttctgtagtttta
Long 4771 aacactactcctattacattttatatgtgtagataaaactgcttagtattatacagaaatttttattaaaattgttaaatgtttaaaggg
Long 4861 tttcccaatgtttgagtttaaaaaagactttctgaaaaaatccactttttgttcattttcaaacctaatgattatatgtattttatatgt
Long 4951 gtgtgtatgtgtacacacatgtataatatatacagaaacctcgatatataattgtatagattttaaaagttttattttttacatctatgg
Long 5041 tagtttttgaggtgcctattataaagtattacggaagtttgctgtttttaaagtaaatgtcttttagtgtgatttattaagttgtagtca
Long 5131 ccatagtgatagcccataaataattgctggaaaattgtattttataacagtagaaaacatatagtcagtgaagtaaatattttaaaggaa
Long 5221 acattatatagatttgataaatgttgtttataattaagagtttcttatggaaaagagattcagaatgataacctcttttagagaacaaat
Long 5311 aagtgacttatttttttaaagctagatgactttgaaatgctatactgtcctgcttgtacaacatggtttggggtgaaggggaggaaagta
Long 5401 ttaaaaaatctatatcgctagtaaattgtaataagttctattaaaacttgtatttcatatgaaaaaaaaaa 5471



CDY

-281 ctgtggattta
-270 gctactctcacctgaggctactgagcaagttgtcatgcaccatgagacaaagcccaagCtgtcccaccaggcagtaagtatggagaggtt
-180 caggcacatggcatagctgctatttcgcacaattttcactacaccagtggtgacaaaatagaagaggttcatccatacacagaacctggt
-90 gaagagctggaggcagaaagaagtgtctatgtggagacgcaactgaaacaaaggtggcacagcaactgttccaatcccgtgtctttcctc

1 ATGGCTTCCCAGGAGTTTGAGGTTGAAGCTATTGTGACAAAAGACAGGATAAAAAGGGAATACACAGTATTTGGTTCGGTGAAAGGT
1 M A S Q E F E V E A I V D K R Q D K N G N T Q Y L V R W K G

91 TATGACAAACAGGATGACACTTGGGAACCAGAGCGCACCTCAAACTGTGAAAA
31 Y D K Q D D T W E P E Q H L M N C E K C V H D F N R R Q T E

181 AAACAGAAAAAACTGACATGGACTACAACCAGTAGAATTTTTTCAAACAATGCCAGAAGAAGAACTTCCAGATCTACAAAAGCAAACTAT
61 K Q K K L T W T T T S R I F S N N A R R R T S R S T K A N Y

271 TCTAAGAACTCTCCTAAAACGCCAGTGACTGATAAACACCACAGGTCCAAAAACCGCAAGTTATTTGCTGCCAGCAAGAACGTTAGGAGA
91 S K N S P K T P V T D K H H R S K N R K L F A A S K N V R R

361 AAGGCAGCTTCAATTCTCTCCGACACAAAGAATATGGAGATAATAAATTCAACTATTAGACCCTTGCACCTGACAGCCCCTTTACCAC
121 K A A S I L S D T K N M E I I N S T I E T L A P D S P F D H

451 AAAACTGTGAGTGCTTTCAGAAACTTGAGAAACTGAACCCTATTGCAGCAGATCAGCAGGACACGGTGGTCTTCAAGGTGACAGAAGGG
151 K T V S G F Q K L E K L N P I A A D Q Q D T V V F K V T E G

541 AAACTCCTCCGGGACCCTTTGTCACGTCCTGGTGCAGAACAGA GAATACAGAACAAGACTCAGATACACCCACTAATTCGCAGAT
181 K L L R D P L S R P G A E Q T G I Q N K T Q I H P L M S Q M

631 TCTGGCTCAGTACTGCTTCTAGGCCACAGGTTCAGCTACCCGAAAGGGTATAGTGTATTAATAGACCCATTAGCAGCCAATGGGACA
211 S G S V T A S M A T G S A T R K G I V V L I D P L A A N G T

721 ACAGACATGCATACCTCAGTTCCAAGAGWAAAGGTrGGCAAAGATATTACTGAACAGCAGAGACCAGCCTTTTATCAAGAAGAT
241 T D MH T S V P R V K G G Q R N I T D D S R D Q P F I K K M

811 CACTTCACCATAAGGCTAACAGAAAGTGCCAGCACATACAGAGACATTTAGTAAGAAAGAGGATGGATTCACCCAGATAGTGCTATCA
271 H F T I R L T E S A S T Y R D I V V K K E D G F T Q I V L S

901 ACTAGATCGACAGAAAAAAATGCACGAATACAGAAGTAATTAAAGAAATAGTTAATCTCTAATAGCGCTGCCAGATGACAGCAAG
301 T R S T E K N A L N T E V I K E I V N A L N S A A A D D S K

991 CTCGTGCGTTCAGTGCAGCTGGAAGTCTTTCTGCGGTCTTGATTTGGTACTTTGTAAGCACTTAAGGAATAACAGAAACACA
331 L V L F S A A G S V F C C G L D F G Y F V K H L R N N R N T

1081 GCAAGCCTTAAAGGTGACACCATCAAGAACTTTGAATACTTTTATTCAATTTAAAAAGCCTATTTGTATCAGTCAATGGCCCT
361 A S L E M V D T I K N F V N T F I Q F K K P I V.V S V N G P

1171 GCGAT 
T AC TA GGT GC AT C CA TC CT GC CT TT GTGA TC TC G

TGGG
CT A A A A AA GGCT T GT TC CA A AC C CC TT AT A CGA CC TT T

391 A I G L G A S I L P L C D L V W A N E K A W F Q T P Y T T F

1261 GGACAGAGTCCAGATGCTG TTCTATTACATTCCCCATAATGATGGGTAAAGCATCTCCAATGAAAGTTAATTGCTGGGCGAAAG
421 G Q S P DG C S S I T F P I M M G K A S A N E M L I A G R K

1351 CTGACAGCAAGGGAGGCATGCGCCAAAGGCCTGG TATTTT GAACTTTCACCCAAGAGGTTATGATTCAAATTAAG
451 L T A R E A C A K G L V S Q V F L T G T F T Q E V M I Q I K

1441 GAGCT ICCTCATACAATCCAATTTAGAATGTAAGGCCCTCGTCGCTGTTATATTAA GAGGAACAGGCCAA
AG

481 E L A S Y N P I VL E E C K A L V R C N I K L E L E Q A N E

1531 AGAGAGTGTGAGGTGC
TGA GGA AGA T CT GAGCT CA GC C CGAGGGA TA GA A TC CA T GT TA A AA AT A CC TC T G I  A TA T AA AGC AGC C

511R E C E V L R K I W S S A R G I E S M L K I P L L G Y K A A

1621 TTCCCTCCCAGAAAGACACAGAAGATCAGAGATGGCCCTTActttatagtggcacaaacgcttcagagacacacaattataagaga
541 F P P R K T Q N D Q R W C P * 554

1711 cttatcttttagcataaatacttatggtcaaaatcactgacgatcattctcctaaactgaacacatgactagaattggtgtgagata
1801 tcgcttgattttcttttcctttataaatgtctagttcttaccagttaacaaaagaaaactttatcgctctaaagtaaaacttgttacac
1891 cacaaaaaaaaaa 1903



BPY1

-72 gagaggggtatacacagggaggccaggcagcctggagttagtcgaccgttgcgagacgttgagctgcggcag

1 ATGAGTCCAAAGCCGAGAGCCTCGGGACCTCCGGCCAAGGCCAAGGAGACAGGAAAGAGGAAGTCCTCCTCTCAGCCGAGCCCCAGTGGC
1 M S P K P R A S G P P A K A K E T G K R K S S S Q P S P S G
1 CCGAAGAAGAAGACTACCAAGGTGGCCGAGAAGGGAGAAGCAGTTCGTGGAGGGAGACGCGGGAAGAAAGGGGCTGCGACAAAGATGGCG
1 P K K K T T K V A E K G E A V R G G R R G K K G A A T K M A

181 GCCGTGACGGCACCTGAGGCGGAGAGCGGGCCAGCGGCACCCGGCCCCAGCGACCAGCCCAGCCAGGAGCTCCCTCAGCACGAGCTGCCG
61 A V T A P E A E S G P A A P G P S D Q P S Q E L P Q H E L P
271 CCGGAGGAGCCAGTGAGCGAGGGGACCCAGCACGACCCCCTGAGTCAGGAGAGCGAGCTGGAGGAACCACTGAGTAAGGGGCGCCCATCT
91 P E E P V S E G T Q H D P L S Q E S E L E E P L S K G R P S

361 ACTCCCCTATCTCCCTGAgcagcaactaagtttaggcccagctgccagacctcagagatctcaccagcagggtgcttcccatgttgatga
121 T P L S P * 125
451 caataaaatgaatgtgttgcaaaaaaaaaa 480

94

BPY2

-332 aatatctcaggacccaggaccatgtgatatgggcccaacacctggatgatgttactcttctg
-270 cctaggtcatgcgtaaagagggaattagggcatattgcttggcccagtcccgtaatgatatgactctcctgcttgtgccagagccacaga
-180 agtgtgcttggtgacataatctttgaggctgtcacatcacagattatattgtatcactggaccagcataaagctgacactttgacta
-90 tgcccagccttcaaataatactacactgtataattggctcaacacccaggtgatattgttccatttacctgagaccagataaaaagccta

1 ATGATGACGCTTGTCCCCAGAGCCAGGACACGTGCAGGACAGGATCATTACTCTCATCCCTGCCCCAGATTTTCACAGGTGCTGCTTACA
1 M M T L V P R A R T R A G Q D H Y S H P C P R F S Q V L L T
1 GAGGGCATCATGACATATTGCTTGACAAAGAACCTAAGTGATGTTAATATTCTGCATAGGTTGCTAAAAAATGGGAATGTGAGAAATACC

E G I M T Y C L T K N L S D V N I L H R L L K N G N V R N T
181 TTGCTTCAGTCCAAAGTGGGCTTGCTGACATATTATGTGAAACTGTACCCGGGTGAAGTGACTCTTCTGACTAGGCCCAGCATACAAATG
61 L L Q S K V G L L T Y Y V K L Y P G E V T L L T R P S I Q M

271 AGATTATGCTGTATCACTGGCTCAGTGTCGAAGCCCAGATCACAGAAGTAAttgtgccatatgtggaacaagcagctaagcaatagataa
91 R L C C I T G S V S K P R S Q K * 106
361 catccatcgtggctctgccttcaaagggaaattttacatatgtcactgggaccatcacccagatgatgtcctgcccactaaaagaattgt
451 gacataacgctgactgcaaaaactgggtaatgcaactctcctctttattctggagtctgccaaaacaagggattatcacatattgcggag
541 tccagcacccaggtaaaattttgtcatatacccagcttcagataccatgcaatgatacaactatcatacctggacccaaagaggagagat
631 attttgattctcattgccattcttatggccacaagcaaagtaatggttctcatagtggtataaagttcacacagtattatgacactccca
721 gcgtatcatagaaaatgtgagtagtacaatgagtgttataacagggaacagcaaaccaatgctattgtgattattggattcacacccagc
811 tgacgcgactatcattctctcacaagaacagaacctgcaaataaagtactaaatctcaccaaaaaaaaaa 880

XKRY

-663 attaaaaacttctgataaaattacctaagtaca
-630 cacaaacaaaaacatgcccacacaaatcacttaatttctaaaacttttaatttttctgcttctctagtacttgtattccatcacacagc
-540 aaaatctggcagctccacttccagaatttacttgaactccacagcttatttccgatttcctgttatcaccagagtctaaaacacagttta
-450 tattgcattcacctcctattttacaccgtaatttcctactttacactctaactttatataaaaaagaaactaccttttcaagatctaatt
-360 cacgcaattttatttgttcttaattgagacttctttctaggtgtgtacaccttgtaacgtcagatacaaatgtctctatccaatttca
-270 tgagttccagttattttattttaagggaatgtgtatatacatttataaatttgtgtatgtgtgtattcacttattctttattttatatgt
-180 tttgcatgcatatattcactaaatccctgataatagaaagataacaaatctttttttttctttcttttttgtatgtaaattattttccga
-90 aggaggtgggttgggagaaatatatcttaacttggcaagtttaaaagagaaagtggccattactaatgaaaattattctctagcattttc

1 ATGTTTATCTTTAATAGCATTGCTGATGACATATTCCCTCTTATCAGTTGTGTAGGTGCCATTCACTGCAATATACTGGCCATCCGCACT
1 M F I F N S I A D D I F P L I S C V G A I H C N I L A I R T
1 GGCAACGACTTTGCTGCCATTAAGCTACAGGTGATAAAATTGATCTATCTCATGATATGGCATTCGTTGGTGATTATCTCACCTGTAGTG
1G N D F A A I K L Q V I K L I Y L M I W H S L V I I S P V V

181 ACTCTGGCATTCTTCCCTGCATCTCTGAAACAGGGGAGCTTACACTTTCTATTAATCATATATTTTGTATTATTGTTGACACCATGGCTG
61 T L A F F P A S L K Q G S L H F L L I I Y F V L L L T P W L

271 GAGTTTTCGAAAAGTGGAACTCATCTTCCTAGCAACACAAAAATAATTCCAGCATGGTGGGTAAGTATGGATGCTTATCTTAATCATGCT
91 E F S K S G T H L P S N T K I I P A W W V S M D A Y L N H A

361 AGTATATGCTGCCATCAATTCTCCTGCTTGTCAGCAGTGAAACTGCAGCTGTCAAATGAGGAATTGATAAGAGACACGAGGTGGGACATA
121 S I C C H Q F S C L S A V K L Q L S N E E L I R D T R W D I
451 CAATCCTACACTACAGATTTCAGTTTTTAGaaaatgtgataataatattgatatttagtttcttggagggaacgttttaccgaagtgtt
151 Q S Y T T D F S F * 159
541 gtgactcaataattgccgtgtagttcatcaaaacctacatattagcctttggctttaagctccgcttctgtcagtatttgcaaccaaggt
631 ggtcgggcaaagtattgccaggagatactgaaaatcatccagaagcactgtgatattgtgtaagcatctggagaaaattcagttaaaaga
721 ataaaagtaagcagctgaggaattactatcactcatggagaagggtaggatattttcaataagtgagtatgcaatatccatatatacttt
811 cacagaacaaagagtaaagaggctgagtgtgactttataaagatactcatgaaaaatataaacaacaaaaccttggaagtagtttctaat
901 aaaattgatttttctaaaaaaaaaa 925



p.PRY

-182 aa
-180 gaagaggagcacaccacaccagaaacagacatcttgcagtgtt tcactgtctcaaccttatctgcacagtccgaggtcagtctgagagag
-90 cttctgagagacccaggatgaagggatgcagtgaggtcaagagcccaacct tctttcactgacacccacctctaaggactcagaagagac

1 ATGAATAAAATGGGCCTCAACAATCCCAAGAAGAACCACTCAAGGACAATGGGAGCCACTGGGCTTGGCTTCCTACTTCCCTGGAAACAA
1M N K M G L N N P K K N H S R T M G A T G L G F L L P W K Q

1GACAAT'TTGAATGGCACTGACTGCCAGGGATGCAATAT ITTATAC ITCTCTGAGACTACGGGGAGCATGTGTTCTGAACTTTCCCTGAAC
1 DNL N G T D C Q G C N IL Y F S ET T G S M C S E L S L N

181 AGAGGTCTTGAGGCCAGAAGGAAGAAGGATCTAAAGACTCATTTCTCTGGAGATATGGGAAGGTTGGCTGTATCTCACTTCCACTTCGT
61 R G L E A R R K K D L K D S F L W R Y G K V G C I S L P L R

271 GAGATGACCGCCTGGA'ITAACCCACCCCAAATTTCAGAGATTrTTCCAAGGCTACCACCAGAGGGTGCACGGAGCTGATGCACTGAGCCTG
91 E M T A W I N P P Q I S E I F Q G Y H Q R V H G A D A L S L

361 CAAACCAACTCTCTGAGAAGCAGGTTATCTTCACAGTGCCTCGGACAGAGCTTCCTTCTCAGGACACTCGAGAGAGCCGTGGTTTCAGGG
121 Q T N S L R S R L S S Q C L G Q S F L L R T L E R A V V S G
451 CACTTGGGGACATCTGTGGCCACGTTCATGAAGAAGACTAAGCCTACTTCATCTCAGGACCCGCCCAAGAGTGGCCGCGGCTTTGGGACA
151 H L G T S V A T F M K K T K P T S S Q D P P K S G R G F G T
541 CCTGCGGTCGGGTCCACCATGAGGATAAAACCTCCTTCTCTTCTGGACATGTCCAGGAGTGGCCGTTGCTACAAGTCACCTGGTGCTACG
181 P A V G S T M R I K P P S L L D M S R S G R C Y K S P G A T
631 ACCAGGGTGAGAATAAAGACGTCTCCTCAGGACCCTCCCAGGAGAGTACATGGCATTGAGACATCTGGCGGCCAAGTGAGGAAAAGACAC
211 T R V R I K T S P Q D P P R R V H G I E T S G G Q V R K R H
721 CCTGTCTGCAGCACCCAGAACTGAggaggggcactgccctgggccttacttcccagccctggcctccaattctgaccttacaaaagtgtc
241 P V C S T Q N * 247
811 ccttgagtgaggcagtgaccacgcattgtcacagctaccaaagtgtggtttgcagatgatctgggcttgtttctggcagagattctggta
901 cagagaaaggagaggcgttgagtggaaccacgatgggctgaggccaggggagacatcacaacctccaacaacactttttttcatgcttta
991 ataaatcatttttcttagagaactaaagtagttgaaacaatatagaaacattttttaagtaggcataaaaaaaaaa 1066

TTY1

tgtctgtcagagctgtcagcctgcttaagcagagtaaaatggtacaggcagtgcagcctggtagcgagaaaaaaggctgcctgtgaaatc
ccactgtgggaccataagtggggacctcagggccccttcatggcatctccatggccatgtcatgctggagaaggaggcgtttcaagaatg
tgagctgatcgctggaaactgctcatctgactccagtctcaaaagaggctatgtgcaagaatcgggtgaagttgtgagaccccatccacc
cctcacaagattgtatccccaccctgtctgaccttactgctgctcaaactatctgtccaaggatgaaaaccaggacaaaggaggagtaa
ccctcatgatgtgaagcacgtgttcacctgtgaatataacctgaggatcatgagactatctgtggatttcacagagaagacagacgagaa
gacaccgctgacacttctccacggaggtctccttttccaccaagatgcagatgcttcttgcaaggactatcctgtgaatcccacagagaa
gacaggtgtggttccaatgccggtgcacctccagggaattctccttctctaccaagctccaggccttctgccatgatcatgagactattt
gtggatttcacagagaagataggtgaaggtacagcatggcatccacccctcaccagaggggtatccccacccctatctgaccttattac
ttattgctgttcaaagtctctatcccagactgaaatcccaagacaatggagaagttccccctgatgatgtgaagcaccaactcctctggg
aatcaaattcgaggtaaatttaataggcccggtagagatgaatgatagtgtctctcctggattggcgaaagacaattaaacactggta
tatttctgttaaaaaaaaaa

TTY2

aggcttgccatcaccacagatggcctctgagacactgtttgaaccacatctgcacctgtgagaggccagtttgaggtatgagaacactgt
ttcaatttggacttgcctttgtcttggttcctgcttttcccagatggcacctacccaacccaggatgaatgagtgcagagaggtcaagtg
ccaggccatcttttgctgacacccttttctggtatttcaggtataagtccatcatccaaagactgctcaacatctcaccagaatatattt
caatcctcatggggcatgattctttcacaaaacccctttcaggaatggagtcagaagagtagtttccagagacaacctcacagtcttgga
acggctctgcctcccatgtgatctgaccatggagatggcatataagggccctaagtttgagacttttagggtactgcaatgcgttatcac
aggcagcctttatcctgataccaagccagctctgcctgtaccattttcctctgcttaggcaggctgacagccctgacaccctggtgctcc
agt ttgagtcactatatgtggatgtgctagtcttggggcaatggacctgagctgtgagctgagctagtgcacaatgaatgccagctt
gctagtaacaattccctttggcttggtagagaaggggacctctgtggaggtacaatggtggtgcactgtcacctgtcttctctgtgggat
ccatgggacagttccatgatcc taggagagggtagatgtgagccagcctgaagaaatgtcaagcagagccccaggaatgaagcacaaaat
cactacagatccaaaaggatctgcagaatttgtcaggcctgcctagacattgtaggggttagtcttattgaaatgtgtcccactgtaatt
tccaacttcagcct tcctgtgttcccagcagtttctctccccaggtggggctttctgcagaatgacacagcctcagaagctactgggct
gtgtgttactgtgggagtgttgcgagtgttggatgtcagcatgtgtgtgtggctttgtgtgtgtgtgtaggtgtctgtgtgtgtgtatgt
aaagaattctgtggatcaggaatcagcaatgactagttaagctgtctgtgaccagccgggttccccatcgctgcccctgccaaaaaaa
caggtactcttctacaaagaagaggagagcaccacacccaagaacagacatctcccagtgttgcattataaagcagcaacccacagaca
ctagcactctggtctgcatagcccctttaatttacctagaattcagttcccagccaagtaggtgcttcatgtcctgagggtgcaatcctc
catcatcttgagatttcatgctggtacagagagtgtgacagcaataaggtcagataggggtgagtatacaacctggtgaagggtggatgg
ggtcccgtaccttcaccagcaaaaagggtgaaaatagatgacacagaatgtgcttccaactccatccccacattcccataattgcaaaat
cagtcaacaacatggcctggtgtttaggtgggagtactccaaccgcaggaagaatttggagtgcaaattgtggccaatctggaaaactc
ctggtttgagggttttaatacctgtagtcaaatggaagtggaatagattgatgctgggtgggttgtggcctccacatttgtgtcctcttt
tactgacttccattgtcctcattggtgtagggcttcctggatctggctcaacatcttccacactaaactcttccctgttcacagaagacc
atcataaaaatgcattgtagaggccctgcaaggaccaggatgaagggagacagtgaggtcaagagcccagccatctttcactgacaccca
cttctgggttctcaggctggctgacaggtctgacagcccatcacgaaagcctgcatactcttagacacaaggactgagctatgggctcca
gctagcatcacaatgaaggccaccattgcctagggataagtcccgtgactttgtggataagaactccgtggagccaatccaaggagaga
cactatcattcatctctaccgggcctattaaatttacctcgaatttgattcccagaggagttggtgcttcacatcatcagggggaactc
tccattgtcttgggatttcagtctgggatagagactttgaacagcaataagtttccttggtctggctcaacgtcttctaaactcaacatt
ccccagttcatggaaaatgatcctcatgggattctattgtaaaagctgcatgattcctggagaatgttttattgtcctggagtcaaccca
aaaatcaacactaccagtcatgttgcagagctccttgaattaacct tgaattcagtttccagctgagcagctgcttcacgttgtgagggg
gcaatcctccatcatcctgggatttcattctgggacacagagtttgagcagcaataaggctgggtccacattgcccctcaacagcattag
tggacatgattgtcagacttgcaatttccgcagacaccttctgtgaacatttttcaacatcatctacatgagtgagagacccgttcgaca
tgtaagaatactgcttgactttggacctgcctttgtcgtggttcctgcctttctcatagatcccctgccaggcccaggatgataggaggc
aatgaagtcaagggccgagccccattcattgaaagctgactctggggtctcgggtataattccatcacataaaatcccctcaacaactca
ccagactatattccaatctccatggaaccgattcttgcacacagcctctttaggaatggagtagaagagcagtcttcagagaccacc
tcagtttggaaaagcctcctccttcagtggttcccagccatggagtcatcgtgaaggggctccatggtcaataattttacggtactgcac
ttggttatcacagacagactttttcatgatagcatgccatctctgtctatatcattttcctctgcttaggcaggctgacaactctgacag
ccaggggcccgaatctacctggcaaatgtgcatgctctactctcagtgcaaaaggcctgtttgggagttctgactagtgtcacaataaat
gccgccattgcctagtgaaaaaaaaaa,
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The X and Y sex chromosomes in mammals, highly dissimilar in size and DNA

content, nevertheless share many genes in common. These genes are either X/Y identical,

found in pseudoautosmal regions, or X/Y homologous but non-identical, found in regions

restricted to either sex chromosome. The two heteromorphic sex chromosomes are thought

to have evolved from a pair of autosomes. Due to lack of recombination, however, genes

the Y originally shared with the X have mostly degenerated. Occasionally, the Y can

acquire regions of homology with the X anew through transpositions. But genes within

such regions would similarly degenerate in the absence of recombination. X/Y

homologous genes therefore, are vestiges of much greater homology between ancestral X

and Y. Nine pairs of functional X/Y homologous genes are known in humans. We carried

out a systematic comparison among them, and had the following observations: 1) map

order of Y copies was dissimilar with that of X copies; 2) gene pairs may differ in the

degree of divergence between X and Y copies; 3) where tested, all X copies escaped X-

inactivation; and 4) X and Y copies were typically expressed at comparable levels, but

with clear exceptions. Further synthesis of these observations suggested that the

persistence of Y copies of X/Y homologous genes could be accounted for in two ways.

Either, the gene had an important housekeeping function, and was conserved on the Y to

provide sufficient dosage in males; or it was a recent acquisition on the Y, with

insufficient time to degenerate. These findings extended our understanding of sex

chromosome evolution. They were also relevant to understanding Turner syndrome, a

human condition closely related to X/Y homologous genes.



INTRODUCTION

Mammals have the XX:XY system of sex determination, where the Y chromosome

dominantly triggers male differentiation. X/Y homologous genes found in many mammalian

species are thought to reflect the common ancestry of the two heteromorphic sex chromosomes.

According to prevailing views (Bull, 1983, Charlesworth, 1991, Graves, 1995, Graves, 1996), the

two highly dissimilar sex chromosomes have evolved from a pair of autosomes. Sex chromosomes

initially come about when one of a pair of autosomes acquires the male-determining locus

(popularly referred to in mammals as the Testis Determining Factor, or TDF). The chromosome

carrying TDF becomes the Y. Its original pairing partner becomes the X. Due to tight linkage,

regions close to TDF are rarely exchanged from Y to X. Crossover suppression causes these

regions to gradually diverge from the X. Sequence divergence further inhibits recombination, which

leads to the divergence of regions even further away from TDF. In essence, crossover suppression

around TDF has a tendency to spread outward. Since recombination is essential in weeding out

deleterious mutations, once a region of the Y ceases to recombine with the X, its gene content tends

to degenerate (Muller, 1914, Charlesworth, 1978, Rice, 1987, Rice, 1994). As crossover

suppression approaches completion, the Y becomes a non-recombining chromosome with little

homology to the X. Genes it originally shared with the X have largely degenerated. While the Y

tends to become increasingly male-specific, it can occasionally acquire homology with the X anew

through translocations (Graves, 1995, Schwartz et al., 1997). But due to crossover suppression, the

newly acquired region would again diverge from the X and its gene content would similarly

degenerate. Regardless of when X/Y homologies were acquired during sex chromosome evolution,

X/Y homologous genes are their remaining vestiges.

In humans, X/Y homologous genes have important implications for Turner syndrome (TS),

a condition caused by partial or complete sex chromosome monosomy (i.e., 45,XO karyotype).

Due to X-inactivation, genes on the X are typically expressed from one copy per female cell,

resulting in equal dosage in females, males, and coincidentally, 45,XO individuals. X copies of X/Y

homologous genes appear to be an exception. In the few cases tested, they escape X-inactivation



(Schneider-Gidicke et al., 1989, Fisher et al., 1990, Agulnik et al., 1994, Jones et al., 1996). These

genes are therefore expressed from both X's in females, and from X and Y in males. This poses a

problem for 45,XO individuals as the dosage of their X/Y homologous genes is reduced in

comparison to either females or males. If for some X/Y homologous genes, proper dosage is

essential for development, haploinsufficiency of these genes in 45,XO individuals would lead to

developmental anomalies found in TS. The molecular etiology of TS is reviewed by A.R. Zinn and

colleagues (1993).

Nine pairs of functional X/Y homologous genes are known in humans. They are ZFX/Y,

RPS4X/Y, AMELX/Y, SMCX/Y, DFFRX/Y, DBX/Y, UTX/Y, TB4X/Y and EIFAX/Y (Page et al.,

1987, Fisher et al., 1990, Salido et al., 1992, Agulnik et al., 1994, Jones et al., 1996, Lahn and Page,

1997). These genes have survived, perhaps not coincidentally, the degeneration of the Y. Prior

studies of X/Y homologous genes were focused on the particulars of their biology. Here, we

systematically compared these nine pairs of genes with respect to the following questions: 1) are

relative map orders similar between X and Y? 2) is sequence divergence between X and Y copies

comparable for all pairs? 3) do all X copies escape X-inactivation? and 4) for each pair, how do

levels of expression compare between X and Y copies. With these comparisons, we wish to

uncover coherent themes among these genes that might have allowed them to resist the tendency of

the non-recombining Y to degenerate. Our results may also bear relevance on Turner syndrome.

MATERIALS AND METHODS

Mapping by radiation hybrids. X copies of X/Y homologous genes were mapped by PCR, using

DNA samples from the Genebridge 4 radiation hybrid panel (Walter et al., 1994, Hudson et al.,

1995). For each gene, a series of positive or negative PCR results were obtained, and compared to

reference markers previously mapped using the same method. Genes were localized near reference

markers that shared the greatest concordance of PCR results. Map distances of genes from these

reference markers were calculated (Cox et al., 1990). All PCR assays consisted of 30 cycles of the

following conditions: 1 min denaturing at 94C, 45 sec annealing at 600C, and 45 sec extension at



72 0 C. TB4X primers were designed from unreported intron sequence (unpublished data). RPS4X

primers were also designed from unreported intron sequence (Kawaguchu et al., unpublished data).

All other primers were designed from published sequences. PCR primers were as follows:

Left primer

CTACATGCAGATGACATGGTG

CATGTTCCCTGTAGCACATC

CCCGCCCTTTCATCATCC

CACGAGGCGCCATTTGCTG

CCTCCACCTGAAGATGCC

CAGAACGTTTGTAGAGATATTGG

GAGATACTGCGTCTTCTCC

CTGCTGCTTCTCTGGTTGG

TGAGATGGATTGAATGTGGC

Right primer

GGCCAAGGTGCATAGGTG

CGTTTCCATTACTTCCATTTCCTG

GCTCCCCAAAGTAGCCTTC

CTGGAGGCCAGGCAACGTG

CTGAGATCCAGGTGAATGG

GCATGTTGCCAGTTTTCCCT

GGTTCAGGTCTAGCTTCTCT

ACTGGTGAGAAACAGAGAGG

TTAAAGAGGGTGCCCAGGTA

Electronic sequence comparisons. Each pair of X/Y homologous genes were aligned and their

sequence divergence analyzed using MegAlign (DNASTAR Inc., Madison, WI).

Assay of gene activity by RT-PCR. cDNA was made from tissues or cultured cells using two kits:

MicroScale mRNA Isolation kit (Pharmacia, Uppsala, Sweden), and Marathon cDNA Synthesis kit

(Clontech, Palo Alto, CA). PCR was carried out on cDNA using the same conditions as those used

for mapping. PCR primers for EIFIAX were the same as those used for mapping. PCR primers

for the rest of the genes were as follows:

Gene Left primer Right primer

DBX CTTCCCTCTGTTCTCTCCTC GTGAAGCAGGAAACGGTGG

UTX CTAGCCTAGCTGGTCATTTC CCATCATGGTCTCAAAACAAG

DFFRX CACAATAGACCAAGATGATGAGT TAATCTGATGAGGTCTGGTGG

TB4X GCAGGGAAGGAAAGAACTTGC CTTCCACCCCACTTCTTCC

Gene

DBX

UTX

TB4X

EIFIAX

DFFRX

ZFX

SMCX

AMELX

RPS4X



CAAAGTCTACCCCTTGGTG

Assay for DNA methylation by restriction digest and PCR. To assay the presence/absence of CpG

methylation within a DNA fragment, genomic DNA was digested with methylation-sensitive

restriction enzymes that cut within the fragment only when cut sites were unmethylated. Following

digest, standard PCR was carried out with primers flanking the fragment. The presence/absence of

PCR product was interpreted as the presence/absence of methylation. Primers used for assaying

methylation status for DBX, TB4X and EIFIAX were identical to those used for mapping. Primers

for ALD (Jegalian and Page, unpublished data) and ZFX (Luoh et al., 1995) were previously

developed. They were as follows:

Gene Left primer Right primer

ALD GTGACATGCCGGTGCTCTCCA CGCTGCAGGAATACCCGGTTCAT

ZFX CTACCCTTCCGCATTTTCCT GAGCTCGGAGCTGACAAAAA

Compare relative levels of expression between X and Y copies of X/Y homologous genes. For each

pair of genes, primers were designed within sequences shared identically between X and Y copies,

such that they would amplify from these two copies with the same efficiency. PCR was carried out

on cDNA made from male tissues. PCR conditions were the same as those used for mapping. For

each PCR reaction, two forms of amplification products were made, one from the X copy, and one

from the Y copy. To minimize the amount of DNA heterodimers with one strand from the X

isoform and the other from the Y isoform, PCR products were diluted 20X with fresh PCR mix and

re-amplified 3 more rounds. PCR products were purified by gel-filtration with Sephadex G-50.

DNA was digested with enzymes that would recognize only one form of amplification product,

either X-derived or Y-derived, exploiting sequence differences between the two forms. Following

digest, DNA was separated on agarose gel. The amount of DNA in each band was assayed by

densitometry. Primers used for amplifying the cDNA of each gene pair, and restriction enzymes

GGCACTGTTGACGAAGGTAALD



used to digest either the X-derived (listed as X enzyme) or the Y-derived (listed as Y enzyme)

amplification product were as follows:

Gene

RPS4X/Y

ZFX/Y

SMCX/Y

UTX/Y

DFFRX/Y

DFFRX/Y

DBX/Y

DBX/Y

EIFIAX/Y

EIFIAX/Y

TB4X/Y

TB4X/Y

yme Y enzyme

I Ear I

Afl II

Nla III

Bcl I

Primers X enz

GCTGGATTCATGGATGTCATC BsrG

GGCAAAGCTGTTGCCATTGG

GTTTGCATTGCGACCACAAG Pme I

GAACTGAGAGAATATGGCGAC

GATCTTGGACCTCTACAG Hha I

GAAGGCTGCACAGACTGTC

CAATGTGGGTACTGGAACCTG Ase I

GTGGTCTTGGAGGTGGACAT

CCCTAGTGCAGAAGTGAGG Hind I

CTGCCACACCTAAATTGGC

GGAGAATCCTCAGTTCTCATC

GCCAGGAGTCCTCAATCAG

GTGTTTGTGGAGACCAAAAAGG Nco I

ATTGGGCTTITTCCTGAGCG

GGCTTGTGCCCAAACAGG

CAAGGACGAACTCTAGATCG

CCAAGAATAAAGGTAAAGGAGG Taq I

Bgl II

Hind III

Hha I

Hha I

Taq I

[II

CATCATCATCTCCAGGACC

GCCATGCCCAAGAATAAAGG

CCCAACATITGATACCTGAG

GGCTGAGATCGAGAAATTCG

TTTCCTTCCCTGCCAGCC

GTCGAAACTGAAGAAGACAG

TTTCCTTCCCTGCCAGCC



RESULTS

Map Order of X/Y Homologous Genes Not Conserved Between X and Y

Based on a deletion map of the Y with 43 intervals (Vollrath et al., 1992), Y copies of X/Y

homologous genes were previously mapped, each to a single interval (Lahn and Page, 1997). Three

genes, DFFRY, DBY and UTY fell into the same interval 5C. The construction of a contig across

this region resolved their ordering as follows: centromere-DFFRY-DBY-UTY-qter (Sun et al.,

unpublished data).

Regional localization of X copies was previously carried out for five out of the nine genes,

but each with a different method (Schneider-Giidicke et al., 1989, Fisher et al., 1990, Salido et al.,

1992, Agulnik et al., 1994, Jones et al., 1996). To put them all on a single map defined by the same

set of reference markers, we carried out radiation hybrid mapping using the Genebridge 4 radiation

hybrid panel (Walter et al., 1994, Hudson et al., 1995). Results are shown in Figure 1. Also

shown in the figure are map locations of Y copies of X/Y homologous genes in the non-

recombining region of the Y (Lahn and Page, 1997). With the exception of RPS4X, all X copies are

located on the short arm. In contrast, Y copies are scattered about on both arms. Clearly, map

orders of X/Y homologous genes are poorly conserved between X and Y, with one exception.

DFFRX, DBX and UTX are clustered on the X. Their Y homologs DFFRY, DBY and UTY are also

clustered, and appear to be in the same order.

Sequence Divergence Between X and Y Copies May Reflect Their Evolutionary Distance

For each pair of genes, X and Y copies have apparently evolved from a common ancestor.

To assess the relative time points when X and Y copies began to diverge, we carried out sequence

comparisons for each pair of genes at the DNA and protein levels. For DNA comparisons, the

open reading frame (ORF), 5' untranslated region (5' UTR) and 3' untranslated region (3' UTR)

were compared separately. Results are summed up in Table 1. Genes are listed in the order of

descending degree of nucleotide conservation in the ORF. With this arrangement, X/Y homologous
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FIG. 1. Radiation hybrid map of X copies of X/Y homologous genes. Reference markers
are listed above the chromosome; genes are listed below. Markers and genes are drawn to
reflect their distances from each other in units of centiRay (Hudson et al., 1995). The total
length of the X chromosome is 521 centiRays. Also shown are positions of Y copies of X/Y
homologous genes, previously mapped (Lahn and Page, 1997) based on naturally occurring
Y chromosome deletions in people (Vollrath, et a!., 1992).

qter



TABLE 1

Sequence Identity Between X and Y Copies of X/Y Homologous Genes

ZFX/Y
Group I

AMELX/Y

TB4X/Y

EIF1AX/Y

Group II DFFRX/Y

DBX/Y

UTX/Y

SMCX/Y
Group III

RPS4X/Y

ORF

93% in 2403 nt

93% in 576 nt

93% in 132 nt

91% in 432 nt

89% in 7641 nt

88% in 1986 nt

88% in 4041 nt

83% in 4680 nt

82% in 789 nt

Protein

93%

88%

93%

98%

91%

91%

85%

85%

92%

5' UTR

86% in 219 nt

81% in 68 nt

N/H in 77 nt

N/H in 132 nt

N/H in 59 nt

N/H in 72 nt

N/H in 84 nt

N/H in 276 nt

N/H in 12 nt

3'UTR

80% in 262 nt

88% in 155 nt

82% in 279 nt

67% in 526 nt

75% in 393 nt

84% in 2477 nt

81% in 1051 nt

N/H in 581 nt

N/H in 56 nt

Function

Cell growth and proliferation

Tooth enamal formation

Actin sequestering

Translation initiation factor 1A

Unknown

Unknown

Unknown

Unknown

Ribosomal protein S4

Note. Percentages rounded off to the nearest 1%; N/H: no homology detectable.



genes appear to fall into three groups. Group I genes are most conserved in the ORF between X

and Y copies. They are also conserved in both 5' and 3' UTRs. They include ZFX/Y and

AMELX/Y. Group II are not conserved in the 5' UTR, but are conserved in the 3' UTR. They are

somewhat less conserved in the ORF as compared to group I genes, even though distinctions are

subtle in a few cases. They include the next five entries in the table. Group III are not conserved at

either 5' or 3' UTRs and are also least conserved in the ORF among the three groups. They include

SMCX/Y and RPS4X/Y.

In most cases, the degree of conservation in the ORF at the DNA level is comparable to that

at the protein level. There are exceptions: AMELX/Y are much more conserved at the DNA than at

the protein level, whereas EIFIAX/Y and RPS4X/Y are much more conserved at the protein level.

X Copies of X/Y Homologous Genes Escape X-Inactivation

X-inactivation maintains comparable levels of expression of X-linked genes in males and

females. For X/Y homologous genes however, if both X and Y copies are expressed in males, there

is theoretically no need to inactivate one of the two X copies in females. Indeed, escape from X-

inactivation was demonstrated in the four cases previously tested: ZFX, RPS4X, SMCX and DFFRX

(Schneider-Giidicke et al., 1989, Fisher et al., 1990, Agulnik et al., 1994, Jones et al., 1996). We

investigated the X-inactivation status for four additional genes: DBX, UTX, TB4X and EIFIAX by

two assays: 1) the conventional method of RT-PCR on human-rodent hybrids retaining either the

inactive or the active human X chromosomes (Fig. 2); and 2) the less conventional CpG methylation

studies in which male and female genomic DNA digested with methylation sensitive restriction

endonucleases were used as templates for PCR (Fig. 3). The RT-PCR assay clearly demonstrated

that all four genes were transcribed from both hybrid cell lines - the one containing only the active

human X and the one containing only the inactive human X. This is consistent with their escape

from X-inactivation. The methylation assay takes advantage of the fact that the silencing of gene

expression on the inactive X is typically associated with the methylation of the gene's 5' CpG rich

region (Tribioli et al., 1992). Conversely, if an X-linked gene escapes X-inactivation, its 5' region
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FIG. 2. RT-PCR demonstrated that DBX, UTX, TB4X and EIFAXwere expressed from both the active

X and the inactive X. Two genes were included as control: 1) ALD, known to undergo X-inactivation

(Migeon, et al., 1981) , and 2) DFFRX, known to escape X-inactivation (Jones, et al., 1996) . cDNA was

made from tissues or cell lines. PCR was carried out on cDNAs to test for the presence/absence of

transcripts. Human testis, where all these genes should be expressed, was a positive control for the RT-

PCR assay. Hamster and mouse fibroblasts were negative controls where primers based on human

sequences should not cross-amplify any product. The two experimental lanes were the human-hamster

hybrid retaining the active human X (WHT2281) indicated as "Xactive hybrid" (Lahn, et al., 1994) , and

human-mouse hybrid retaining the inactive human X (37-26R-D) indicated as "Xinactive hybrid"

(Mohandas, et al., 1981). Results for ALD and DFFRXwere as expected. ALD could be amplified from

the hybrid containing the active human X, but not the hybrid containing the inactive human X. DFFRX

could be amplified from both hybrids. Like DFFRXwhich escaped X-inactivation, DBX, UTX, TB4X and

EIFIAX all could be amplified from both hybrids, consistent with their escape from X-inactivation.
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if g f Y I I I I
226 bp 105 bp 124 bp

H: Hpa II,
M: Msp I,
S: Sma I,
B: BstU I,
Hh: Hha I,
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cuts "CGCG"
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TB4X EIFfAX

Control BstU I Hha I Control BatU I Hha I
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96 bp

methylation sensitive
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methylation sensitive
methylation sensitive
methylation sensitive

FIG. 3. Methylation status of DBX, TB4X and EIF1AX consistent with their escaping X-inactivation in
females. PCR assays were designed within 5' CpG island regions of each gene. PCR was performed on
female and male DNA samples after they underwent restriction digest. For each gene, samples in control
lanes were digested with an enzyme that lacked sites within the PCR amplified region, while samples in
experimental lanes were digested with enzymes that cut within the PCR amplified region (cut-sites are
shown below gel pictures). Two control genes were included in the assay: 1) X-linked ALD which
undergoes X-inactivation (Migeon, et al., 1981); 2) X-linked ZFX which escapes X-inactivation (Luoh, et
al., 1995) . For ALD, the presence of PCR product in the female lane following digest with Hpa II
(methylation sensitive) indicated that one copy is X-inactivated via methylation (by contrast, digest with the
methylation-insensitive isoschizomer Msp I obliterates PCR product). For ZFX, DBX, TB4X and EIF1AX,
digest with any of two methylation sensitive enzymes obliterated PCR products in females, indicating the
unmethylated, active state of both copies of these genes.



would not be methylated on either the active or the inactive X (Luoh et al., 1995). As expected, the

methylation assay (UTX not tested) showed that the 5' region of each gene is demethylated on both

the active and the inactive X in females, reflecting their escape from X-inactivation.

Eight out of the nine known X-linked genes with functional Y homologs were thus shown to

escape X-inactivation. The one remaining gene for which X-inactivation status is unknown is

AMELX. As previously mentioned, AMELX/Y are expressed exclusively from tooth buds, a place

where X-inactivation status can not be readily assayed.

Comparable Levels of Expression From X and Y Copies

Y copies of X/Y homologous genes are often seen as functional supplements of X copies.

Yet, for most of them, the question of how much activity is contributed by either copy has not been

addressed. Here, we assayed the relative contribution to mRNA from X and Y copies for eight of

the nine pairs (AMELX/Y not assayed).

We employed RT-PCR, using three male tissue sources: brain, prostate and testis. For each

pair, we used primers shared in exact sequence by both X and Y copies. Following RT-PCR, DNA

was cut with an enzyme that recognizes only one form of amplification product, either from the X

copy or the Y copy. DNA fragments were separated on agarose gel, and the amount of DNA was

measured by densitometry (Table 2). Two conclusions can be drawn from this data. First, with the

exception of TB4Y which contributes 5% or less to total TB4X/Y mRNA, the Y isoforms typically

account for between a third to half of the total transcript. This means that most of the Y copies are

active at a comparable level as their X homologs, albeit they contribute somewhat less than half in

several cases. Second, the relative contributions from X and Y copies stay roughly the same, at least

across the three tissues tested. Noticeable exceptions are ZFY and DBY which have elevated

expression in the testis. The significance of this elevation is unclear.

We did not assay the expression of AMELX/Y. It was previously shown that AMELY

accounts for about 10% of total AMELX/Y mRNA in tooth buds (Salido et al., 1992). This ratio is

similar to that of TB4X/Y.



TABLE 2

Contribution From the Y Copy to the Total Expression of
Each X/Y Homologous Gene Pair

Brain Prostate Testis

RPS4Y 32±0% 37±0% 36.5+1.5%

ZFY 32.5±0.5% 48.5±1.5% 70±1%

DFFRY 31±0% 33.5±0.5% 20±0.5%

DBY 28+1% 27.5±0.5% 50±1%

UTY 54±0.5% 55.5±0.5% 54±1%

TB4 Y <<5% <<5% 4.5±0.5%

SMCY 50±1% 48±0% 51.5±0.5%

EIFIA Y 34±3% 45±2% 37.5±2.5%

Note. Percentages are given as
+ their spread.

the average of two experiments,



DISCUSSION

The presence of multiple pairs of X/Y homologous genes reflects the common ancestry of

the two heteromorphic sex chromosomes. Y copies of these genes have managed to stay on while

most other genes the Y originally shared with the X degenerated. Two factors may have contributed

to their persistence: 1) Y copies are functionally required; and 2) X and Y copies began to diverge

relatively recently.

If for some X/Y homologous genes, double dosage is essential for development, their Y

copies would resist degeneration. For these genes, there are four predictions: 1) X and Y copies

should have comparable functions; 2) their functions might be so essential that a reduction in

dosage could conceivably be deleterious; 3) X copies should escape X-inactivation; and 4) X and Y

copies should be expressed at comparable levels.

These predictions are mostly in agreement with observations. First, as inferred from the

high degree of sequence similarity between X and Y copies, protein isoforms they encode likely

have equivalent functions. For RPS4X/Y, the only case tested to date, functional equivalence was

indeed demonstrated (Watanabe et al., 1993). Second, the ubiquitous expression of all but one X/Y

homologous genes (AMELX/Y is expressed in tooth buds) suggests essential housekeeping

function. For the few of them where some functional knowledge is available, housekeeping indeed

appears to be the theme - RPS4X/Y encode ribosome subunit S4 (Fisher et al., 1990); EIFIAX/Y

encode translation initiation factor 1A (Hershey, 1991, Dever et al., 1994, Lahn and Page, 1997).

AMELX/Y which function only in tooth development are a clear exception. Third, in all but one

cases (AMELX has not been tested), escape from X-inactivation was demonstrated. And finally,

with the exception of TB4X/Y and AMELX/Y (for which the Y isoform accounts for 10% or less of

total mRNA from each gene pair) (Salido et al., 1992), X and Y copies are expressed at comparable

levels, typically within a factor of two.

Based on the degree of sequence divergence between X and Y copies, the nine known X/Y

homologous genes can be broken down into three groups (Table 1). Such a breakdown is perhaps

not coincidental, rather it may reflect the different time points at which Y copies of X/Y homologous



genes began to diverge from their X homologs. If this view is correct, Y copies of group I genes are

most recent acquisitions on the Y whereas Y copies of group 111 genes are most ancient. Several

independent lines of evidence are consistent with this view. RPS4X/Y and SMCX/Y were shown to

be ancient X/Y homologous gene pairs in the mammalian lineage, existing on X and Y in both

eutherian (placental) and metatherian (marsupial) mammals (Jegalian & Page, unpublished data;

Graves, personal communication). In contrast, ZFX/Y in group I are apparently a recent member in

the family of X/Y homologous genes in eutherian mammals. In marsupials, instead of being on sex

chromosomes, the ortholog of ZFX/Y exists on an autosome (Graves and Watson, 1991).

Furthermore, three pairs of genes, all in group II, DFFRX/Y, DBX/Y and UTX/Y are closely

clustered on both X and Y, and in the same order, consistent with their Y copies being acquired

through a single transposition event.

The two factors, functional importance and time of acquisition, can both affect the

persistence of Y copies of X/Y homologous genes. AMELY in group I, for example, is present on

the Y likely due to its recent acquisition rather than functional importance. AMELX/Y are involved

in tooth development, apparently not a housekeeping function. The high degree of nucleotide

homology suggests that AMELX and AMELYbegan diverging relatively recently. Yet, they are

much less conserved at the protein level, which indicates relaxed evolutionary constraint. In fact,

AMELY has already partially degenerated, accounting for only 10% of total AMELX/Y mRNA in

tooth buds (Salido et al., 1992). On the other hand, RPS4Y in group III is preserved despite being

one of the most ancient genes on the Y. It is much more conserved with RPS4X at the protein than

at the DNA level. The preservation of RPS4Y is in keeping with its essential housekeeping

function. Among the nine pairs of X/Y homologous genes, EIFIAX/Y in group II are the most

conserved at the protein level. For EIFIAY, both functional importance and a relatively short

history may have contributed to its preservation; EIFA Y encodes an essential translation factor;

and its history on the Y appears to be more recent than that of SMCY and RPS4Y in group II.

J. Graves and colleagues argued that an autosome to sex chromosome translocation

occurred some time after the divergence of placental mammals and marsupials (Graves and Watson,



1991, Graves, 1995). This new addition on sex chromosomes, which was originally

pseudoautosomal (namely it recombined between X and Y), stopped recombining at some point.

Subsequently, Y-linked genes in this region were subject to degeneration. Our data is largely

consistent with this hypothesis. X copies of group I and II genes which were relatively recent

additions to the family of X/Y homologous gene, all mapped to distal Xp, the region postulated by

Graves to have been acquired by sex chromosomes through a translocation. In contrast, the two

group III genes SMCX and RPS4X, which have been on sex chromosomes even before the

divergence of placental mammals and marsupials (Jegalian & Page, unpublished data; Graves,

personal communication), mapped more towards the long arm (Fig. 1). Map order of Y copies is

dissimilar with that of X copies, presumably due to shuffling by repeated inversions. Such re-

arrangements are tolerated on the Y because they do not result in meiotic nondisjunctions as they

might on autosomes. Three pairs of group II genes, DFFRX/Y, DBX/Y and UTX/Y are clustered on

both X and Y, and in the same order. Perhaps the tight linkage of these genes prevented them from

being shuffled apart on the Y. If group I and II genes were indeed acquired by sex chromosomes

from an autosome in a single translocation event, the distinction between the two groups as

presented in Table 2 may not be meaningful.

Even though there are many theories to account for the degeneration of the Y, it is not clear

what steps are involved in this process. Our observations are consistent with a stepwise process

that begins with reduction in expression, followed by disruption of the ORF, and finally, the X

homolog becomes X-inactivated. AMELY and TB4Y are expressed at 10% or less the level of their

X homologs. Yet, both genes have intact ORFs. This suggests that reductions in expression may

proceed disruptions of the ORF. While X-inactivation status of AMELX is not known, TB4X

clearly escapes X-inactivation. This suggests that X copies of X/Y homologous genes may escape

X-inactivation long after Y copies have declined in activity. In fact, escape from X-inactivation of

the X copy can persist even after the ORF of the Y copy is disrupted, as in the case of X-linked

gene STS with a silenced nonfunctional Y homolog containing frameshifts and premature stops

(Yen et al., 1988).



Ferguson-Smith postulated that Turner syndrome (TS) is due to the haploinsufficiency of

the so called Turner genes: those expressed from both X and Y in males and escape X-inactivation

in females (Ferguson-Smith, 1965, Zinn et al., 1993). With the exception of AMELX/Y which only

affect tooth growth, X/Y homologous are all potential Turner candidates. No definitive link has yet

been established between any one pair of X/Y homologous genes and Turner features. For those

genes whose Y copies are expressed at very low levels, their role in Turner syndrome can be called

into question. Of course, one should not absolutely rule out genes as Turner candidates based on

levels of expression, as a minute reduction in dosage for a crucial gene can still result in

developmental anomalies.

In conclusion, our systematic comparison of X/Y homologous genes has provided

additional information on how these genes have evolved and how they might be implicated in

development.
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It is widely accepted that X inactivation occurs in
humans to ensure that X-linked gene expression in
females is equal to rather than twice the level found in
males. It follows, as many have argued, that failure to
dosage-compensate X-linked genes could be the cause
of certain anomalous human phenotypes' -7. If so, one
should be able to demonstrate supernormal X-linked
gene expression in association with these phenotypes.
We have had an opportunity to test this prediction
while exploring the origins of apparent terminal
deletions of the Y chromosome long arm (that is, the
46,XYq- karyotype), which are among the most
common chromosomal disorders in human
populations.

At least one in 1,000 males lacks about half of the Y
chromosome, including the quinacrine-bright,
heterochromatic region'. The 46,XYq- karyotype can
be associated with short stature and azoospermia . ",
but more severe phenotypes have been reported,
including profound mental retardation, hypotonia
and dysmorphic features L, While exploring a possible
genetic basis for the phenotypic variability observed in
XYq- males, we have discovered that a subset of such
males delineate a syndrome, which we refer to as XYxq
syndrome. We show here, at the levels of gene expression
and organismal phenotype, the consequences of failing to
dosage-compensate X-linked genes that are present in
two copies per cell. We have also discovered Xq-Yq
counterparts to the aberrant Xp-Yp exchanges that have
been so thoroughly studied in human XX males and XY
females"-". Finally, we consider the factors that may
predispose Xq and Yq to recombine aberrantly in the
paternal germline.

Nature Genetics volume 8 november 1994

XYq- phenotypes and deletion breakpoints
Our study focused on ten males with 46,XYq- karyotypes.
Samples from these individuals were received from various
medical centers for Y chromosome analysis. All patients
had been ascertained postnatally and karyotyped

.previously because of phenotypic abnormalities.
The phenotypes of these ten males varied dramatically

(Table 1). Three individuals ("Group I") were severely
mentally retarded, microcephalic boys with little or no
ability to speak or comprehend words. They had very
poor muscle tone, were unable to stand without assistance,
and had suffered nonfebrile seizures. The three Group II
individuals were school-age boys with mild to moderate
learning disabilities and delays in speech and motor
development. Both Group I and Group II boys had mild
facial dysmorphism, and four of the six boys had
undescended testes. The four Group III individuals had
no history of delayed cognitive or motor development.
The two youngest Group III males had mild facial
dysmorphism. All ten individuals were short in stature,
and the two adults (both Group III) were infertile
(azoospermic).

All ten individuals lacked the distal long arm of the Y
chromosome, as initially revealed by cytogenetic analyses
conducted at the referring medical centers. Eight of the
ten patients had been tested previously by PCR for the
presence of specific Y-linked loci, resulting in localization
of their Yq breakpoints"'. We extended these studies by
testing all ten individuals for 80 loci distributed across the
euchromatic portion of the Y. The results allowed us to
rule out interstitial deletions within the portions of the Y
retained. The positions of the Yq breakpoints among
these ten individuals are quite heterogeneous, with at least
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eight distinct breakpoints detectable (Fig. 1).
Although the results of Y chromosome DNA analysis

were consistent with simple terminal deletions ofYq in all
ten cases, there were reasons to suspect that the
chromosomal anomalies in at least some of these patients
might be more complex. There was no correlation between
the size of the deletion and the severity of the phenotype
(Fig. i). One of the smallest deletions (WHT2277) was
found in a severely affected (Group I) patient whereas two
of the largest deletions (LGL658 and WHT1157) were
found in the mildly affected (Group III) individuals. This
suggested that much of the phenotype could not be
attributed to loss or disruption of specific Yq genes.
Indeed, deletion of Y chromosomal genes would appear
unlikely to cause severe mental retardation, hypotonia
and microcephaly, as these traits are uncommon in 45,X
individuals, who for purposes of this argument can be

seen as having lost the entire Y chromosome. Also, it is
probable that Yq- chromosomes would be stable only if
the Yq telomere were retained or replaced by another
telomere. Further, distal Yq and Xq form synaptonemal
complexes and recombine during normal male meiosis 2 ,22,
providing a possible opportunity for aberrant Xq-Yq
recombination, perhaps producing what appears to be a
Yq- chromosome. In this respect, the behaviour of distal
Yq and Xq might resemble that of distal Yp and Xp, where
aberrant, grossly misaligned X-Y recombination
occasionally occurs, giving rise to XX males and XY
females"-". Of particular relevance here are the rare
females whose karyotypes were originally described 23-25 as
46,XYp- (with terminal deletions of the short arm), but
whose Y derivatives were subsequently found to be
products of aberrant Xp-Yp interchange (ref. 18; D.C.P.
etal., unpublished results). By analogy, we speculated that

Table 1 Phenotypes of ten unrelated 46,XYq- males

Patients Age at last Cognitive
examination development

WHT1278 8 years Severely retarded;
unable to speak

WHT1373 8 years Severely retarded;
unable to speak

WHT2277 5.5 years Severely retarded,
unable to speak

WHT1829 7.5 years Mild but persistent
speech delay;

marked learning
dlsability

WHT1832 10.5 years Speech delay
corrected by therapy

Motor development

Hypotonia w/ hyper-
extensible joints;
unable to stand

without assistance

Hypotonia; unable
to stand without

assistance

Hypotonia w/ hyper-
extensible elbows;

unable to stand
without assistance

Mild gross and fine
motor clumsiness

Mild fine motor
clumsiness

Seizures

Partial complex
seizures

(confirmed by
EEG)

Height"

119 cm (5-10%)

Repeated seizures 80 cm (<<2%)

One prolonged 100 cm (<5%)
grand mal seizure

None 119 cm (10-25%)

None

Other charactenstics

Microcephaly; prominent ears;
hypoplastic midface; high,
narrow palate; small feet;
prominent keloids from surgery;
undescended testes

Microcephaly; widely spaced
eyes; beaked nose;
high, narrow palate, small jaw;
broad thumbs; undescended left
testis; small nght testis; repeated
unexplained fevers

Microcephaly with flat occiput;
low posterior hairline; small
upturned nose; narrow mouth,
short neck;
small feet; bilateral
camptodactyly of 4th fingers;
livedo reticulans

Prominent ears; unilateral
amblyopia; small atnal
septal defect

125 cm (<5%) Atypical facies with prominent
low-set ears, partial ptosis; mild
pulmonic stenosis; undescended
testes

WHT1876 10 years Moderate speech and Mild hypotonia and
learning disabilities motor clumsiness

None 95 cm at 5 yrs
(<5%) (before

growth hormone
treatment)

Nasal bndge slightly broadened;
widely spaced nipples;
undescended nght testis

WHT1 983 5 7 years

LGL658c 17 years

WHT1157 28 years

WHT2168 32 years

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

None

None

None

None

99 cm (<5%) Microcephalyb; prominent ears,
long eyelashes; bushy eyebrows
w/mid-fusion; thin lips,
small feet; hypospadlias

160 cm (<5%) High-arched palate, small
mandible; small teeth; mild
hypothyroidism

159 cm (<5%) Azoospermia

165 cm (5%) Azoospermia

aHeights are expressed in cm and as age-adjusted percentiles.
bWHT1983's head circumference was proportionately greater than his height; given normal cognitive and motor development, his "microcephaly" may simply
reflect a generalized growth delay.
eLGL658's clinical features are as reported by P. Salo, et al. (ref. 55)
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Fig. 1 Poor correlation of Yq breakpoint with phenotypic severity in ten unrelated

Schematic representation of the Y chromosome, with Yp and Yq pseudoautosom

heterochromatic region labelled. Immediately below are listed 43 deletion interval

as defined20 .The black bars below indicate the portions of the Y chromosome for

the XYq- males by testing for 80 Y-specific STSs. Results for all patients except

WHT2277 were reported previously 20 .

some XYq- males might be the result of grossly misaligned

exchanges between Yq and Xq.

Aberrant Xq-Yq interchange
To test this possibility we typed all ten patients and, if

available, their parents, for two genetic markers mapping
near the Xq telomere. DXS 1108, a strictly X-linked marker,

lies about 60 kilobases (kb) proximal to the long-arm
pseudoautosomal region 222 6. DXYS154 , a long-arm
pseudoautosomal marker, is located about 140 kb from

the Xq/Yq telomere22' 26.

In three patients the results suggested aberrant Xq-Yq

interchange in the paternal germline. WHT1278,
WHT1373 and WHT2277 exhibited two alleles at both

loci, and in each case, comparison with parental genotypes
revealed that one allele was maternally derived and the
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Fig. 2 a, Inheritance of CA-
dinucleotide repeat polymorphisms at
DXS1 108 (left) and DXYS154 (right) in
the family of XYq- male WHT1373.
WHT1373 inherited a paternal

(WHT1 374) and a maternal (WHT1375)
allele at each of the two loci. At
DXS1108, an Xq28-specific locus,
WHT1373 inherited the single paternal
allele and maternal upper allele
(indicated by upper arrow; lower
arrow denotes second allele, not
transmitted to WHT1373). At
DXYS154, an Xq/Yq
pseudoautosomal locus, WHT1 373
inherited the paternal upper allele and
the allele for which mother is
homozygous. b, Transmission to XYq-
males of paternal alleles at DXS1108
and DXYS154 . +/+, XYq- male
inherited a paternal allele and a
maternal allele; -/+, XYq- male
inherited no paternal allele (only a
maternal allele); -/+*, XYq- male
exhibited only one allele (presumably
of maternal origin), but parents were
not available for testing.
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Pseudoautosomal

Heterochromatin other paternally derived (Fig. 2). Thus,
:' these XYq- males inherited not only

one maternal X chromosome but also
the distal long arm of the paternal X
chromosome.

A fourth patient, WHT1829,
inherited a paternal and a maternal
allele for the pseudoautosomal
marker DXYS154 but only a maternal
allele for the more proximal, strictly
X-linked marker DXS1108 (Fig. 2b).

XYq- males. These findings suggest either an

tal regions and interstitial deletion on the Y
s (1A1A through 7), chromosome or an aberrant Xq-Yq
und to be present in interchange with the X breakpoint
NHT1983 and falling between DXYS154 and

DXSI 108.
By contrast, the six remaining

patients showed no evidence of Xq-

Yq exchange. WHT1832 and WHT 1876 exhibited single

maternal alleles for both markers. Single alleles for both

markers were also observed in WHT1983, LGL658,
WHT1157 and WHT2168; these are likely to be of

maternal origin, but in the absence of parental samples,

we cannot exclude the possibility that identical alleles

were transmitted from both parents. (In these four cases,

further evidence against the presence of a second copy of

Xq28 - the most distal band - was obtained by typing

for highly polymorphic markers at the Factor VIII and

GABRA3 loci. In no case were two alleles observed; data

not shown.)
For the three individuals in whom analysis ofXq markers

strongly suggested aberrant Xq-Yq interchange

(WHT1278, WHT1373 and WHT2277), we searched for

more evidence by generating human-hamster somatic
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Fig. 3 Terminal portions of Xq for which the three Group I XYq- males are disomic. For each patient,
somatic cell hybrids retaining the derivative Y but lacking the intact X were tested for presence (+) or
absence (-) of seven X-specific (FRAXA through DXS1108) loci and one Xq-Yq pseudoautosomal
(DXYS154) locus. Based on physical mapping of Xq (ref. 53), we estimate the size of the disomic
regions to be 5-7 Mb in WHT1278 and WHT2277 and 8-10 Mb in WHT1373.

cell hybrids retaining the human Yq- chromosomes but
lacking human X chromosomes. The Xq-Yq interchange
model predicts that such Yq- hybrids would carry
paternally derived alleles for DXYS154 and DXS1108.
This was the case for Yq- hybrids from all three patients
(data not shown). Testing of these hybrids with other Xq
DNA loci (Fig. 3) revealed the presence of variably sized
terminal portions of the chromosome, with breakpoints
in Xq28 (between DXS1113 and GABRA3 in WHT1278
and WHT2277 and between FRAXA and DXS731 in
WHT 1373), again consistent with Xq-Yq interchange in
the paternal germline.

To assess directly whether distal Xq DNA had been
transferred to the truncated long arm of the Yq-
chromosomes in WHT1278, WHT1373 and WHT2277,
we performed fluorescence in situ hybridization (FISH)
to metaphase chromosomes from all three patients. The
FISH probe was derived from human Factor VIII, an
Xq28 gene we had detected in Yq- hybrids prepared from
all three individuals (Fig. 3). In normal males and females,
the Factor VIII probe hybridized in situ only to Xq28 (data
not shown). In each of the three patients, the Factor VIII
probe hybridized both to the distal long arm of the intact
X chromosome and to one end of the Yq- chromosome
(Fig. 4). Thus, all three of these XYq- males have two
copies of the Factor VIII gene, the second copy being
located on the derivative Y. In each case, a second probe,
specific to Yp and labelled with a different fluorescent dye,
hybridized to the opposite end of the Yq- chromosome
(Fig. 4). Thus, it was the truncated long arm of the
derivative Y to which Xq28 DNA had been transferred in
all three individuals.

In conclusion, genetic marker and FISH studies provided
strong evidence that, in three unrelated XYq- males,
aberrant Xq-Yq interchange in the father's germline had
produced "Y x" chromosomes that lost a terminal portion
of Yq in exchange for a terminal portion of Xq (Fig. 5).
There is a striking correlation with phenotype: among ten
XYq- males studied, the most severe phenotypes were
found in the three males with unequivocal evidence of
Xq-Yq interchange. These three patients form a coherent
set that is chromosomally and phenotypically distinct
from the other XYq- males studied. We will refer to these
three individuals as "XYXq males".

Fig. 4 In situ hybridization of Factor VIII probe to derivative
Y chromosome of XYq- male WHT1278. Factor VIlI plasmid
p482.6 (red) and Yp-specific plasmid pDP1335 (green)
localized to opposite ends of derivative Y chromosome.
Factor VIII probe also localized to distal long arm of intact
X. Similar results obtained with XYq- males WHT1373 and
WHT2277 (not shown).

Nature Genetics volume 8 november 1994

IM



Fig. 5 Genesis of YX
chromosome by single
crossover between Xq
and Yq in paternal
germline.

P Pseudoautosomal and
heterochromatic
portions of sex
chromosomes shaded
as in Figs 1-3.

q

p

Y

YXq

Supernormal expression of G6PD
The correlation between chromosomal constitution and
phenotype strongly suggested a cause-and-effect
relationship. As argued earlier, the severe mental
retardation, hypotonia and microcephaly of the XYxq
males are unlikely to be the result of the absence of specific
Yq genes. Neither are the XYxq phenotypes likely to be the
result of truncation, fusion or other rearrangement of
specific Yq genes, since these phenotypically similar males
display widely different Yq breakpoints (Fig. 1).

If the phenotypes are not readily accounted for by Yq
deletion per se, then perhaps they can be explained by the
presence of Xq28 DNA on the Yx chromosomes.
Specifically, the severe phenotypes mig t be the result of
twice-normal expression of Xq28 genes that are normally
X-inactivated when present in two copies (in normal
females) but that fail to be dosage-compensated here. The
X inactivation centre has been mapped to Xq13, and it
must be present in two (or more) copies per cell for X
inactivation to occur27,28.As the duplicated portion of Xq
(that is, the portion of the X present on the YXq
chromosome) does not include Xql 3, the cells ofthe XYXq

males carry only one X inactivation centre and X

inactivation should not occur. Thus, Xq28 genes present
in two copies should not be dosage-compensated and

supernormal expression of these genes might result in the

severe phenotypes observed.
To examine these questions, we studied expression of

the glucose-6-phosphate-dehydrogenase gene (G6PD), a

representative Xq28 gene normally dosage-compensated
via X inactivation", in cells from the XYx males. G6PD is

present on the Yx chromosomes in al three of these

individuals (Fig. 3). We quantitated G6PD enzymatic
activity in lysates of cultured lymphoblastoid cells from

the patients and their parents by spectrophotometry (Fig.

6). The G6PD activities in the five parents tested fell

within a narrow range, while each of the three XYx, males

exhibited G6PD activity approximately twice that of his

parent(s).
The spectrophotometric results are consistent with the

presence in the XYxq males of two actively expressed

G6PD genes per cell. To test directly whether G6PD is

expressed from the derivative Y, we assayed human G6PD

activity in human-hamster somatic cell hybrids retaining

Yxq but lacking intact human X chromosomes. Since
human and rodent G6PD proteins have different gel

mobilities, we could detect the human isoform by staining

for enzymatic activity after non-denaturing electrophoresis
of total protein. On non-denaturing gels, G6PD protein

exists as a dimer. As shown in Fig. 7, a control hybrid

containing an inactive human X chromosome expressed

only the rodent isoform, while a control hybrid retaining

an active human X chromosome exhibited three G6PD

bands, corresponding to human homodimer, human-

rodent heterodimer and rodent homodimer. (The

heterodimer reflects the synthesis of human and rodent

isoforms within the same cell.) Hybrids retaining Yx
chromosomes from WHT 1278, WHT1373 or WHT2279

exhibited the three G6PD bands observed in the active-X

hybrid. Since these Yx hybrids contain no human X

chromosome, the Y X chromosomes must be the source of

the human G6PD activity. We conclude that, in each of

the three XYXq males, G6PD is expressed from both the

intact X and YXq chromosomes, resulting in twice-normal

levels of expression.

Discussion
Origin ofXYxq males. The most distal portions of Xp and

Yp are extraordinarily recombinogenic during male

meiosis. As a result, the nucleotide sequences of these

regions are indistinguishable, and their inheritance is
"pseudoautosomal" rather than strictly sex-linked"'3 .

Most human XX males and some human XY females are

10 20 30 40 10 20 30 40 10 20 30 40

Incubation time (minutes)
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Fig. 6 Doubled G6PD activity in XYxq
males compared with their parents.
Conversion of glucose 6-phosphate to

6-phosphogluconolactone by
lymphoblastoid extracts was
measured as an increase in ODs72 (see
Methodology). Substrate was not
limiting, as demonstrated by linearity
of product present after 10, 20, 30
and 40 minutes of incubation.
----- , Patient; -- l----, father;

----- , mother.
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Fig. 7 Human G6PD enzymatic activity in somatic cell hybrids retaining Yx,
chromosomes. Gel stained for G6PD activity after non-denaturing
electrophoresis of total protein from the following cultured cells (left to right):
RJK (hamster fibroblast)Os , WHT1278 (XYx male lymphoblastoid), WHT2656
(human-hamster hybrid retaining Y chromosome but not intact X chromosome
from WHT1278), WHT1373 (XYXq mae lymphoblastoid), WHT2666 (human-
hamster hybrid retaining Yxq from WHT1373), WHT2277 (XYXq male
lymphoblastoid), WHT2667 (human-hamster hybrid retaining YX from
WHT2277), WHT2660 (human-hamster hybrid retaining active X chromosome
from WHT2281), 37-26R-D (human-mouse hybrid retaining inactive human X)54.
Similar results were obtained with other Yx hybrids prepared from WHT1278,
WHT1373 and WHT2277.

the result of aberrant exchanges of terminal portions of
Xp and Yp in the paternal germline' 3- '9. These Xp-Yp
exchanges may represent aberrant byproducts ofthe highly
recombinogenic pairing of distal Xp and Yp during male
meiosis.

During male meiosis, synaptonemal complexes are
formed not only between the distal portions ofXp and Yp
but also between the most distal portions of Xq and Yq
(ref. 21). The nucleotide sequences of the most distal 320
kb of Xq and Yq are indistinguishable 26 , and their
inheritance, like that of distal Xp and Yp, is
"pseudoautosomal"2 2. We speculate that the Xq-Yq
exchanges giving rise to XYXq males (Fig. 5) represent
aberrant byproducts of the recombinogenic pairing of
distal Xq and Yq during male meiosis. (We cannot exclude
the possibility that the aberrant Xq-Yq exchanges giving
rise to XYx males occurred during mitosis rather than
meiosis in tle paternal germline. This is also true for the
aberrant Xp-Yp exchanges giving rise to XX males andXY
females.) In the case ofhuman XX males, Xp-Yp exchange
can be the result of a single crossing-over between grossly
misaligned X and Y chromosomes, with homologous
recombination occurring at sites of local sequence
similarity between Xp and Yp (refs 17,19). If some XY
males result from a single crossing-over between Xq and
Yq, then that crossing-over must also occur between
grossly misaligned X and Y chromosomes (as depicted in
Fig. 5). It will be of interest to learn whether aberrant Xq-
Yq exchanges, like the aberrant Xp-Yp exchanges, occur
at sites of local X-Y sequence similarity.

Thus, the relationship between the long-arm
pseudoautosomal region and XYq males maybe analogous
to that between the short arm pseudoautosomal region and
XX males (and some XY females). The Xp-Yp exchange
products found in such XY females are roughly reciprocal to
those found in XX males13-19' 2.By analogy, we might predict
the existence in human populations of Xq-Yq exchange
products reciprocal to those found in XYx males. Indeed,
three females with 46,X,der(X)t(X;Y)(q;q) aryotypes have
been reported"-3s . Though these cases, to our knowledge,
have not been studied with genetic markers, the available

88

that in males. It is

information is consistent with their X
derivatives having resulted from
aberrant Xq-Yq interchange in the
paternal germline.

It will be of interest to determine
the nature of the derivative Y
chromosomes in the seven XYq-
males in whom we did not
demonstrate Xq-Yq exchange,
especially since these seven males
display considerable phenotypic
diversity (Table 1). Perhaps some of
these males will prove to be the result
of Xp;Yq translocation, as recently
demonstrated by Bardoni and
colleagues7, or of Yq; autosome
translocations

Critical importance of dosage
compensation. It is generally agreed,
in a teleological sense, that the purpose
of X inactivation is to ensure that
expression of X-linked genes in
females is equal to rather than twice
implicitly understood that failure to

inactivate X-linked genes present in two copies per cell
would be harmful to the organism. Indeed, some aberrant
human phenotypes have been interpreted as likely resulting
from supernormal expression ofX-linked genes that would
normallybe dosage-compensatedviaX inactivation. These
phenotypes, all associated with partial X disomy (and
monosomy for the X inactivation centre) include: (i)
gonadal sex reversal in 46,XY individuals with partial Xp
duplications'-', (ii) mental retardation and dysmorphic
features atypical of Turner syndrome in females with
mosaic 45,X/46,X,r(X) karyotypes45 , (iii) severe
phenotypes associated with X;autosome translocations6

and (IV) psychomotor retardation and dysmorphic features
in three males with 46,X,der(Y) t(X;Y) (p21.3 or p22.1;q 11)
karyotypes7. In each of these cases, supernormal X-linked
gene expression is among the most likely explanations for
the abnormal phenotype. However, to our knowledge,
supernormal expression has not been directly
demonstrated in any of these cases. (Three reports have
described single patients with tandem Xq duplications
and twice-normal activity of an X-linked enzyme" 38 , but
in those cases it remains unclear whether supernormal
expression of X-linked genes caused the patients'
phenotypic abnormalities).

We have described three unrelated boys in whom DNA
marker and FISH studies revealed similar
46,X,der(Y)t(X;Y)(q28; ql 1) karyotypes. All three boys
exhibited severe mental retardation, generalized
hypotonia and microcephaly, and these phenotypes are
almost certainly due to overexpression of certain genes in
the portions of Xq28 for which these boys are disomic.
We have demonstrated twice-normal activity of a
representative Xq28 gene product, G6PD, in cells from
each of the three boys, and it is reasonable to suppose that
other Xq28 products would show similar behaviour. The
portions of the X for which these boys are disomic
measure 5 to 10 megabases (Mb) and are likely to contain
more than a hundred genes. The phenotypically critical,
dosage-sensitive genes probably constitute a subset of
these and may or may not include G6PD.
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Turner syndrome (typically 45,X) and Klinefelter
syndrome (47,XXY) are better-known disorders
associated with abnormal sex chromosome dosage. As in
the XYXq syndrome described here, the Turner and
Klinefelter phenotypes are due, at least in part, to
quantitatively abnormal expression of sex chromosomal
genes. However, the dosage-sensitive genes critical to the XYx
syndrome should differ systematically and fundamentally
from the dosage-sensitive genes critical to the Turner or
Klinefelter syndromes. The Turner phenotype probably
results, at least in part, from haploinsufficiency of genes that
are common to the X and Y chromosomes and that escape
X inactivation"9' 40. The Klinefelter phenotype probably
results, at least in part, from overexpression of genes that
escape X inactivation. (These "Klinefelter genes" may or
may not have Y counterparts). By contrast, we predict that
the dosage-sensitive genes critical to the XYx syndrome are
strictly X-linked, have no functional equivalents on the Y
chromosome, and normally are subject to X inactivation.

The perplexing range of XYq- phenotypes. Males with
46,XYq- karyotypes exhibit a wide range of phenotypes,
extending from normal development and normal fertility4'
to short stature and azoospermia 9 0 to severe mental
retardation and dysmorphic features, 1' 2. The
unpredictability of the phenotype creates real dilemmas
for families and those counseling them.

Our studies represent a step toward resolution of this
perplexing situation. Among the ten patients with 46,XYq-
karyotypes studied, we found evidence ofXq-Yq exchange
in the three most severely affected individuals. We note
two previously reported XYq- boys"1,12 whose phenotypes
are quite similar to those of the XYq males described here.
We would not be surprised if these two boys were found
to carry products of aberrant Xq-Yq interchange. One
might predict that XYq- fetuses with evidence of Xq-Yq
exchange (for example, from FISH studies or assay of
G6PD activity) would develop severe phenotypes like
those seen in our three XYXq patients. However, there is
undoubtedly bias toward referral of severely affected
individuals to our laboratory, and this may result in our
set of XYq- patients constituting a skewed sample.

Among XYxq males, one might expect phenotypic
severity to increase with the extent of Xq disomy. Among
our three XYx boys, WHT1373 displayed both the largest

region of Xq disomy (Fig. 3) and the most profound
growth retardation (height 80 cm, weight 35 lbs at 8
years). Conversely, we note that one XYq- male in whom
an Xq;Yq translocation has been detected (cited as
unpublished result in ref. 7) displays a much milder
phenotype than seen in our patients (see description of
case 7 in ref. 7); perhaps he is disomic for a smaller region
of Xq than our patients. Further phenotypic and genotypic
comparisons of these and similar cases will be of value.

Methodology
PCR analysis of DNA markers. Patient DNAs were tested for the
presence of Y-chromosomal sequence-tagged sites; oligonucleotide
primers, agarose gel electrophoresis, and ethidium-bromide detection
were as described 20 .Thermocycling conditions: 3 min at 94 'C followed
by30 cycles of 1 min at 94 OC, 1 min at 58 oC, and 1 min at 72 'C. Similar
methods were used to test human-rodent somatic cell hybrid DNAs
for the presence of the following pseudoautosomal or X-linked loci:

Received 15 August; accepted 21 September 1994.
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Locus Primers Ref.
DXYS154 5'-GGCCTGAATTCATTTATTATTCTAATAG-3' 22

5'-GAACAGGCAAAGATGCCCACTCTC-3'
DXS1108 5'-ACTAGGCGACTAATACAGTGGTGC-3' 22

5'-GTGAATTCATCATATGTGATTTCC-3'
Factor VIII 5'-TGCATCACTGTACATATGTATCTT-3' 42

5'-CCAAATTACATATGAATAAGCC-3'
G6PD 5'-CCTCTATGTGGAGAATGAGAG-3' 43

5'-CACTGCTGGTGGAAGATGTCG-3'
GABRA3 5'-TCCTGAGGGCAGGGTCTCTGATT-3' 44

5'-GGGTTCAGGAGACTGCACAGCAA-3'
DXS1113 5'-ACCTGTGGAGGATAGTAGTCTGACT-3' 45

5'-GGGAGCTTTAGAGATTTTGGTAAAC-3'
DXS731 5'-CTCACCATTGGGTCTTCATACA-3' 46

5'-TATGATAGGCATGAATTGTGTCTG-3'
FRAXAC2 5'-GACTGCTCCGGAAGTTGAATCCTCA-3' 47

5'-CTAGGTGACAGAGTGAGATCCTGTC-3'
Patients and parents were typed for CA-dinucleotide repeat
polymorphisms using radioactively labelled primers (listed above)
and polyacrylamide gel electrophoresis, as described 48 .

Construction of human-hamster somatic cell hybrids. Hybrids
were generated as described"9 by fusing human lymphoblastoid lines
with RJK (thymidine-kinase-deficient) hamster fibroblasts50 in the
presence of polyethylene glycol-4000; subsequent culture in HAT
medium supplemented with glycine. After isolation and propagation
of adherent clones, DNA was extracted and tested for the presence of
human X-specific and Y-specific sequence tagged sites.

Fluorescence in situ hybridization (FISH). Chromosome spreads
were prepared from lymphoblastoid cell lines cultured in the presence
of 0.1 pg ml-' colcemid for 60 min. In situ suppression hybridization
and two-colour fluorescent detection were performed as described".
In brief, plasmid p482.6 (ATCC #57202), whose 9.6-kb insert derives
from intron 22 of the human Factor VIII gene52, was labelled by nick
translation with biotin-14-dATP and visualized using avidin-Texas
Red. Plasmid pDP1335, whose 19-kb insert derives from interval
1A1A on distal Yp (ref. 20) was labelled with digoxygenin-11-dUTP
and visualized using fluorescein-conjugated antibody. Slides were
counterstained with DAPI. FISH images were captured using a CCD
camera and electronically processed.

Quantitation of G6PD activity. Pelleted lymphoblastoid cells were
lysed in 10 volumes of water byvortexing. After microcentifugation,
total protein concentration in the supernatant was measured by
Lowry reaction and adjusted to 0.15 mg ml-'. We then added 10 tp of
adjusted supernatant to 100 l of G6PD staining solution (0.1 M Tris
pH8, 1 mg ml-' Na,-glucose-6-phosphate, 80 pg ml-' NADP', 100 jig
ml-' Methylthiazolium tetrazolium [MTT], 40 jg ml- ' phenazine
methosulfate[PMS]) at room temperature. Reactions were stopped
after 0, 10, 20, 30, or 40 min by adding 10 pl of 10% SDS and 380 pl
water. G6PD catalyzes conversion of glucose-6-phosphate to 6-
phosphogluconolactone and the coupled reduction of NADP to
NADPH. In the presence of PMS, oxidation of NADPH drives
conversion of MTT to formazan, whose increasing concentration
was followed by monitoring optical density at 572 nm.

Electrophoretic detection of G6PD activity. Cultured cells were
pelleted and lysed in an equal volume of 50 mg ml- ' DTT, 5 mg
ml- 1 NADP . After microcentrifugation, 10 l of supernatant from
each sample was subjected to electrophoresis on a non-denaturing
4% polyacrylamide gel. The gel was treated with G6PD staining
solution for 10 min at room temperature and photographed.
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CHAPTER 5 - DISCUSSION AND CONCLUSIONS

This thesis reports on a number of projects aimed at understanding the function,

organization and evolution of the human Y chromosome, and to a lesser extent, the human

X. Emerging from a large body of data generated through these projects are biological

insights that cover a broad range of topics.

i. Two classes of genes in the human NRY: their evolution and organization

Entire chromosomes may have properties that set them apart from the rest of the

genome - unusual gene density, atypical recombination rate, etc.. But a chromosome's gene

content almost always appears to be a random sampling of the genome, with no discernible

theme. The non-recombining region of the human Y (NRY) is a clear exception. Most

NRY genes fall into two distinct classes, each with unique properties.

Class I genes have very similar but non-identical homologs on the X. These genes,

along with their X-homologs, are typically expressed in all tissues. They participate in

biological processes common between males and females. Patterns of expression and

functional knowledge of these genes suggest that a fair fraction of them are housekeeping.

Class II genes do not have X-homologs (they may however have related sequences on

autosomes). They are expressed predominantly in the adult testis (with the exception of the

male-determining gene SRY), suggesting their roles in germline biology. The bipartite

nature of NRY's gene content is a close reflection of the its evolutionary history. The Y has

once been a chromosome with extensive homology with the X. This homology has

diverged over time, and replaced by non-recombining, male-specific sequences (Graves,

1995, Charlesworth, 1996). Y-encoded homologs of X-linked genes have mostly

degenerated in the process. Once a gene on the Y is completely silenced, its X homolog

which originally escaped, would now be subject to X-inactivation. Those that persist on the

Y do so either because they are required to provide double dosage for essential functions in



males, or that they are recent acquisitions by the Y and did not have sufficient time to

degenerate. While genes with X homologs have a tendency to degenerate, a second class of

genes - those that function exclusively in male biology, especially in spermatogenesis - are

often acquired by the NRY to take advantage of its male-restricted transmission. Unlike

degeneration of Class I genes on the Y which has been theorized extensively, the tendency

of class II genes to accumulate in the NRY is a phenomenon that deserves more rigorous

theoretical treatment.

The two classes of genes are different in their copy numbers. Class I X-homologous genes

are all single copy, whereas class II male-specific genes are present in multiple copies on the Y

(SRY is an exception). An extreme case is TSPY which exists in dozens of copies (Manz et al.,

1993). Some multi-copy genes (e.g., TSPY and DAZ, BPY1, BPY2) seem to exist in local clusters,

presumably due to repeated amplifications (Manz et al., 1993, Reijo et al., 1995). Others (e.g.,

RBM and CDY) appear to be present in multiple, interspersed sites (Ma et al., 1993). For these

genes, following their local amplification, repeated inversions may have dispersed them. Each

member of Class II genes are therefore a family of very closely related genes. It is unknown

whether all copies of a given class II gene are active. One can speculate why class II genes exist in

multiple copies: 1) to increase the level of expression; 2) to buffer the effect of deleterious

mutations of any given copy; and 3) to have a greater repertoire of genes from which functional

variants can evolve. Regardless of what force drives class II genes toward greater copy numbers,

the Y chromosome, unrestricted by meiotic recombination, is a fertile ground for chromosomal

rearrangement that can lead to gene amplification.

The origin of class I genes is well understood. The origin of class II genes is still a subject

of speculation. There are several possibilities. Perhaps they were once homologs of X-encoded

genes, but have diverged greatly in sequence and acquired male-specific functions. A possible

example is mouse Zfy (Mardon and Page, 1989). Relative to other genes with X homologs, Zfy is

distinct in several ways: 1) it shows greater than usual divergence from its X homolog Zfx; 2) it is

duplicated, with two near-identical copies; and 3) it is expressed only in the testis, whereas Zfx



expression is ubiquitously. With these features, Zfy is more like a male-specific gene rather than a

X-homologous gene. Perhaps Zfy has evolved away from its function in both somatic and germ

cells toward an exclusive and tailored role in the male germline. Another scenario is that the Y, by

being a male chromosome, attracts genes with male-specific functions from the rest of the genome.

One possible example is DAZ, a human gene on the Y with a putative role in spermatogenesis

(Reijo et al., 1995). DAZ apparently transposed from an autosomal location to the Y, and was

subsequently amplified (Saxena et al., 1996).

The human NRY is genetically impoverished, encoding far fewer genes (each gene family

on the Y counts as one gene) than the genome's average. Given the repetitive nature of class II

genes on the Y, the actual transcriptional units could be significantly higher than the number of

unrelated genes. Nevertheless, NRY's gene density is still severely below average. Similar

situations have been observed on the Y in a number of other species. Again, this may be an

inevitable consequence of male-restricted transmission and lack of recombination of the Y.

ii. Male fertility and the Y: from the azoospermia factor to an entire chromosome

The human Y had long been thought to function solely in sex determination, until studies

associated large deletions of the Y to male infertility (Tiepolo and Zuffardi, 1976). In the ensuing

years, researchers have looked all across the NRY for the so called azoospermia factor (AZF), a

gene or genes whose disruption leads to spermatogenic failure. Yet their efforts have suffered

predicaments typically unseen in conventional positional cloning. Since NRY is the only region in

the genome that does not offer genetic linkage, the hunt for AZF relies heavily on detecting de novo

deletions in infertile men. These deletions, though frequent, tend to be very large. This problem,

combined with the repetitive nature of many genes on the Y, makes detecting the disruption of a

single gene - touchstone for implicating a gene in a phenotype - somewhat untenable.

The growing understanding of the unique biology of the Y suggests a different

approach. Even though the Y could potentially function in any aspect of male-specific

biology, evidence suggests that besides its role in sex determination, germ cell development



is perhaps the only other male-specific biology the Y is involved in. Class II male-specific

genes with testis-limited expression are very likely involved in spermatogenesis, and for

these genes, the correlation of mutations of a single gene to infertility is perhaps not the

absolute requirement for proving their biological roles.

The systematic gene identification reported in Chapter 2 is a major step toward

creating a complete gene catalog for the NRY. Even though the project is not aimed at

cloning genes responsible for specific human diseases, it nevertheless uncovered a number

of AZF candidates. If the majority of NRY genes have been uncovered, as our data indeed

suggest, a fair fraction of presently known NRY genes may prove to be AZF.

iii. Technical feasibility of whole-chromosome gene identification

Never before has a systematic gene search on a whole-chromosome of a mammalian

species been carried out to the same degree of completion as the work reported in Chapter

2. Even though the NRY encodes far fewer genes than the genome's average, the

methodology could still be applied to other chromosomes or large chromosomal regions.

General steps applicable to similar exercises are as follows.

- Obtain clones from the chromosome or region of interest. If clones have already

been ordered, a minimum contig is sufficient. But if clones are unordered, a certain degree

of redundancy is necessary to ensure near complete coverage of the region. For the work

reported in Chapter 2, 3600 unordered Y-specific cosmids representing a 5-fold redundancy

of the Y were used.

- Clones are divided into pools and used to isolate representative fragments of genes,

by either cDNA selection or exon trapping. cDNA selection has the following advantages:

1) not as labor intensive; 2) easy to scale up; and 3) can identify genes with very few

introns. But it suffers one major limitation. If a gene is not expressed in the source tissue

of the cDNA, it can not be identified. To overcome this problem, different source tissues

can be pooled. Exon trapping on the other hand is not dependent on the expression pattern



of genes. But it is laborious, hard to scale up and depends on the presence of at least two

introns for a gene to be recovered. Overall, cDNA selection is perhaps a better approach for

the systematic cloning of genes from very large regions.

- Fragments isolated from either cDNA selection of exon trapping are cloned into

plasmids from each pool. Plasmid clones are randomly picked for sequencing. The

number of sequenced clones should be at least 100X the number of expected genes. This is

again to ensure a near-complete coverage.

- Sequenced fragments are electronically analyzed to 1) eliminate repetitive

sequences, 2) eliminate previously identified genes, and 3) reduce redundancy. After this

step, the number of eligible clones can drop by a factor of 3 or more.

- Eligible clones are mapped back to the region, either by hybridization or PCR.

Again, only a fraction of clones may prove to originate from the right chromosome or

region.

- Phage cDNA libraries are screened with eligible clones.

- To obtain full length sequences of genes, phage clones are analyzed and where

needed, phage cDNA libraries are rescreened.

The last two steps are the most time consuming. They amounted to over half the

total length of the project reported in Chapter 2. Assuming an average gene density of one

in every 30kb, with multiplexing and automation, a few researchers in a few years should be

able to identify most genes in regions of several megabases.

iv. The human Y as a model for studying chromosomal rearrangements

Chromosomal rearrangements involving the Y are frequently observed in the human

population. Microscopically detectable terminal deletions of Yq for example, occur in about

0.1% of newborn males (Hamerton et al., 1975). Interstitial deletions occur at a rate of

greater than one in 10,000 newborn males and account for about 10% of cases of

spermatogenic failure in men (Reijo et al., 1995). Two types of rearrangements less often



observed for other chromosomes are also frequently seen for the Y: isodicentric Y and ring

Y. Cells carrying these derivative Y chromosomes typically exist in mosaicism with XO

cells. Affected patients can have various features of Turner syndrome, presumably due to

sex chromosome monosomy of their XO cells. The abundance and variety of Y

rearrangements make it a good model for understanding chromosomal abnormalities in

general, which are one of the leading causes of genetic defects in humans,

It is now understood that rearrangements are often the result of aberrant crossovers

between two regions of the genome that share some degree of local homology. Yet, little is

known about the circumstances - the particular stages of gametogenesis, the health and age

of the parent, etc. - under which chromosomal rearrangements are most likely to occur.

Another puzzle is terminal deletions. If they are truly terminal, two questions need to be

resolved: 1) unlike most chromosomal rearrangments, they must arise through events that

do not involve aberrant crossovers; and 2) their telomeres need to be repaired de novo by a

yet uncharacterized mechanism.

The study reported in Chapter 4 has produced insight on some of the above

questions. By using molecular markers, three out of ten individuals with Yq deletions (Yq-)

were found to carry a minute region of Xq via aberrant crossovers. This suggests that

perhaps a significant fraction, if not all apparent terminal deletions are in fact chromosomes

that carry microscopically undetectable translocations. In addition, the result of the study is

strongly suggestive that meiotic pairing promotes the occurrence of aberrant crossovers.

v. The importance of proper gene dosage

One fortuitous discovery of the study reported in Chapter 4 was the importance of

X-inactivation to maintain proper gene dosage. For three patients, their Yq- chromosomes

were shown to each carry a minute Xq translocation. These same three patients were

severely retarded. Given that they all had different X and Y breakpoints on their derivative Y

chromosomes, the most likely cause of their developmental retardation was the functional



disomy of genes in the duplicated region of Xq. Indeed, we were able to demonstrate twice-

normal activity of a representative gene in the region, G6PD. Even though the importance

of X-inactivation in equalizing gene dosage in males and females is widely appreciated on a

theoretical level, the work reported in Chapter 4 was the first clear demonstration of the

severe consequences of the failure to X-inactivate even a minute region of the chromosome.

vi. Impact on the field

Works reported in this thesis is a significant addition to our current knowledge of

the human Y chromosome, and to a lesser extent, the human X. Known genes in the NRY

were more then doubled. Several X homologs of NRY genes were also uncovered. A

number of disease candidate genes were identified. Understanding of the Y's evolutionary

history in relation to the X, and its genomic organization was deepened. The exact

molecular nature of apparent terminal deletions of the Y was partially solved. The

developmental importance of dosage equalization by X-inactivation was clearly

demonstrated.

Results from these works could potentially serve as branching points for a number

of promising studies aimed at addressing 1) specific biological processes, especially that of

spermatogenesis, 2) evolution of the biology and organization of sex chromosomes, 3)

disease processes related to genes on the Y and to a less extent on the X, and 4) the clinical

implications of chromosomal abnormalities of the Y.
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CHAPTER 6 - FUTURE DIRECTIONS

The large body of data reported in previous chapters have led to significant

biological insights, but more importantly, they have opened up many possibilities for further

studies. Listed below, are a few projects made immediately obvious by the added

knowledge of the human sex chromosomes.

i. Further molecular characterization of novel genes on X and Y

As with the cloning of any gene, the 12 novel Y genes and 2 novel X genes reported

in Chapter 2 (for which only cDNA sequences are currently available) require further

molecular characterization of their genomic loci. To this end, work is already underway in

the Page lab to characterize the intron/exon structure or even to sequence entire genomic loci

of a subset of the novel genes. For male-specific gene families on the Y, the presence of

multiple loci for each gene poses a number of technical challenges. First, it is difficult to

know the precise copy number. Second, it is difficult to know which copies are functional

and which are not. To address these questions, a combination of techniques are required: 1)

mapping and sequencing of genomic loci, 2) identification of more cDNA clones, and 3) in

situ hybridization to genomic DNA. Answers to these questions are important for studies

that seek to correlate deletions or disruptions of sequences on the Y with phenotypic

anomalies.

ii. Expression studies at the protein level

While functional knowledge is available for two of the novel Y genes, EIFIAY

(encoding a translation factor) and TB4Y (encoding an actin sequester), virtually little is

known about the functions of the rest of novel genes. Of particular interest are CDY

(encoding a protein with a chromatin binding motif and a catalytic motif), BPY1 and BPY2

(both encoding small, highly basic proteins that are potentially involved in nucleic acid



binding). All three genes are expressed exclusively in the testis. With antibodies against

these genes, one can further localize the proteins to specific cell types and even sub-cellular

structures. Expression studies may open doors for further functional analyses, either in

vivo or in vitro.

iii. Functional analyses of gene products

For EIFIAY and TB4Y, whose functions are well understood, it is useful to

demonstrate the functional interchangeability with their X homologs. Since these genes are

essential housekeeping genes, they are most likely required for cell viability. One can

introduce these genes into cultured XO cells, than attempt to disrupt their homologs on the

single X chromosome. Functional interchangeability can be demonstrated by recovering

viable clones that carry either EIFIAY or TB4Y transgene, but are disrupted for their X

homologs. Alternatively, these two human genes can be used to rescue yeast which are

disrupted for their nascent homologs.

For the other novel genes whose functions are poorly understood, introducing

transgenes into cultured cell lines may also provide insights into function. Over-expression

of the transgene, or partial knockout of nascent transcripts by antisense may produce

interpretable cellular phenotypes.

iv. Biochemical analyses of CDY

The protein encoded by CDY, with its chromatin binding motif and catalytic motif, is

suitable for in vitro biochemical studies. CDY may bind directly to DNA, in which case, it

is possible to fish out the binding substrate from either human sequences or synthesized

random sequences. Alternatively, CDY may not bind directly to DNA but instead to

chromosomal protein, in which case, it is possible to isolate the substrate by co-purification

or by the two-hybrid system. The catalytic motif of CDY is homologous to a number of

metabolic enzymes. These enzymes catalyze different reactions that all involve covalent
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modifications through nucleophilic attacks (Fig. 4 in Chapter 2). Cofactor A is apparently

required in all these reactions. CDY can be tested in vitro for its catalytic activity, using

substrates of these well characterized biochemical reactions.

v. Searching for AZF

At least three distinct regions on the Y have been implicated in spermatogenesis.

These are the so called AZF (Azoospermia Factor) regions. Men deleted in these regions

show various degrees of spermatogenic failure. A subset of the 12 novel genes fall within

these regions, and are thus AZF candidates. The definitive way to prove if any of these

genes are responsible for spermatogenic failure in men is to detect either micro-deletions or

point mutations of individual genes. To find micro-deletions, PCR assays can be designed

to cover the entirety of each gene, with some additional 5' and 3' sequences. These PCRs

can be performed on infertile men (at present, there is a collection of over 300 in the Page

lab). The other approach is to detect point mutations by either SSCP or heteroduplex

analysis. The detection of micro-deletions and point mutations may suffer complications

for genes with multiple, closely related copies on the Y.

vi. Searching for homologs in other species and constructing animal models

Many difficulties in studying human subjects can be overcome by the construction

of animal models. If homologs can be found in other species, a series of molecular,

biochemical, cellular and genetic studies would become available. Knockout mice are one of

the most valuable means to decipher biological functions of genes. Once they are made,

human genes can be used to attempt rescues of their phenotypes. Given the difficulty in

correlating phenotypes in humans to multi-copy genes, the construction of animal models is

is of greater value.
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