
Optimizing a Reed-Solomon Decoder for the Texas Instruments TMS320C62x DSP

by

Kamal Swamidoss

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 8, 1998 '--

Copyright 1998 Kamal Swamidoss. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

May 1, 1998

Certified by
V. Michael Iove, Jr. ' V
-TheS i Supervisor

Accepted by
Chur C. Smit i

Chairman, Department Committee on Graduate Theses

Optimizing a Reed-Solomon Decoder for the Texas Instruments TMS320C62x DSP
by

Kamal Swamidoss

Submitted to the
Department of Electrical Engineering and Computer Science

May 8, 1998

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Reed-Solomon is a family of block forward-error-correction codes used to facilitate robust digital
communications. Reed-Solomon codes are used in many communications and storage/retrieval systems
today, including the compact disc, satellites, space probes, cellular digital, asymmetric digital subscriber
loops, and digital television. Reed-Solomon decoding is a computationally intense process which is
generally implemented on application-specific integrated circuits (ASIC's). ASIC's provide high
performance, but they are difficult and expensive to design. Digital signal processors (DSP's) provide a
friendlier and more economical development platform, but they are generally slower than ASIC's. Texas
Instruments recently introduced the fastest digital signal processors to date: the TMS320C62x (C62x)
line. The C62x was designed for high-performance telecommunications applications. It offers an
advanced instruction set architecture and powerful, user-friendly development tools. The C62x can
potentially implement high-throughput Reed-Solomon decoding. This project is a series of C62x-specific
optimizations of an existing C-language Reed-Solomon decoder. The goal was to improve the decoder
throughput. Various difficulties were encountered and overcome while modifying the original decoder.
The final modified decoder is twice as fast as the original.

Thesis Supervisor: V. Michael Bove, Jr.
Title: Principal Research Scientist, M.I.T. Media Laboratory

Table of Figures
Figure 1: Basic Communication System 4
Figure 2: Tables of GF(2) Arithmetic 7
Figure 3: Tables of Addition and Subtraction in GF(22) 7
Figure 4: Tables of Multiplication for Two Galois Fields of Size 23 8
Figure 5: Various Representations of (Non-Zero)

Elements of a GF(23) 9
Figure 6: Communication System in Detail 10
Figure 7: Reed-Solomon Encoding 11
Figure 8: Reed-Solomon Decoding 13
Figure 9: Euclid Example Using Clark 16
Figure 10: Euclid Example Using Wicker 17
Figure 11: C62x ADD Examples 18
Figure 12: Some C62x Assembly Instructions 19
Figure 13: Hand-Written C62x Regular Assembly Code 24
Figure 14: Hand-Written C62x Straight-Assembly Code 25
Figure 15: C62x Assembly-Optimizer Output 27
Figure 16: AddExample Cycle Counts 29
Figure 17: Excerpt from RSDecodeTest Program 30
Figure 18: RSDecodeTest Program Flow 34
Figure 19: Example myrsusr.h File 35
Figure 20: Example myrssnd.h File 36
Figure 21: Example myrsrcv.h File 36
Figure 22: Example myrsend.h File 36
Figure 23: Example genrs Parameter File 37
Figure 24: Original Description of GFFourierO Function 40
Figure 25: Definition of GFFourierParameters Structure 40
Figure 26: Inner Loop of GFFourier() Function 41
Figure 27: Some C62x Assembly Instructions 41
Figure 28: GFFourier() Inner Loop Dependency Graph, 32-Bit Data 42
Figure 29: Hand-Written Software-Pipelined Regular-Assembly

GFFourier() Inner Loop, 32-Bit Data 43
Figure 30: RSDiscrepancy() Function 44
Figure 31: Some C62x Assembly Instructions 45
Figure 32: RSDiscrepancy() Loop Dependency Graph 46
Figure 33: Hand-Written Softare-Pipelined Regular-Assembly

RSDiscrepancy() Loop 47
Figure 34: GFFourier() Inner Loop Dependency Graph, 16-Bit Data 50
Figure 35: Hand-Written Softare-Pipelined Regular-Assembly

GFFourier() Inner Loop, 16-Bit Data 51
Figure 36: workingStorage Array 53
Figure 37: A New Data Storage Format 54
Figure 38: Reed-Solomon Code Parameters 56
Figure 39: Description of Terms 57
Figure 40: Average Cycle Counts Obtained 58
Figure 41: Rough Estimates of Throughput 59

Background

Communications
Reed-Solomon error correction is used to facilitate robust communication of digital data in radio and

storage/retrieval systems. The following figure depicts the basic communication system. The basic

storage/retrieval system is similar.

CONVERSION PROCESSING

COMMUNICATION CHANNEL

R I DIGITAL D/A
RECEPTION PROCESSING CONVERSION

Figure 1: Basic Communication System

The sender and the receiver are connected by the communication channel. In the more general case, the

user data begins as an analog signal; the digital communication system is actually the subsystem between

the A/D block and the D/A block above. The analog input signal is first converted to a digital sequence

by an analog-to-digital converter (A/D). The digital sequence can then be processed, e.g., compressed

and/or error-correction encoded. The processed sequence is transmitted. In radio communications, this

involves converting the sequence into an analog signal, modulating that signal, and transmitting it. The

transmitted signal travels through the communication channel. The signal is received by the receiver. In

radio communications, reception involves demodulating the received signal and converting the result into

a digital sequence. The digital data can be processed, e.g., decoded and/or decompressed. If necessary,

the processed sequence can be converted into an analog signal by a digital-to-analog converter (D/A).

The digital data can be corrupted in any stage of communications, both in the analog and digital domains.

Reed-Solomon error-correction coding is used to overcome the effect of corruption in the transmission,

communication, and reception blocks, above.

In radio communications channels, corruption includes channel noise and interference from other

transmissions. In storage/retrieval systems, this includes physical damage to, or deterioration of, the

storage medium. Communication hardware corrupts data as well, during digital-to-analog conversion,

modulation, demodulation, and analog-to-digital conversion. There are at least three ways to overcome

signal corruption:

1. Raise Signal Power

Raising signal power reduces the effect of channel noise. However, there are disadvantages. For

example, in radio communications, if every broadcaster in a band raises the power of his/her signal,

then the noise floor in the band increases from interference. The noise floor in adjacent bands can

also go up, since real band-pass filters are non-ideal. In addition, the hardware required to transmit a

more powerful signal is necessarily more expensive.

2. Backward-Error-Correction

At the sender, an encoder computes a parity for the user data. The sequence of user data bits and

parity bits is converted to an analog signal and transmitted. At the receiver, the signal is converted

back to bits. A decoder uses the received parity and user bits to determine if the data was corrupted

in transit. If an error is detected, the receiver requests that the data be retransmitted. Note that error

detection is performed at the receiver, and that error correction is actually retransmission by the

sender. The next block of bits is transmitted only when the current block is transmitted without error.

Calculating the parity is relatively simple. A small number of parity bits is required for error

detection, so user data throughput can be high. The downside is that backward-error-correction may

not always work; if the system (transmitter-channel-receiver) is consistently noisy, then perfect

transmission is impossible. In that case, the receiver continually requests retransmission, and

communication fails.

3. Forward-Error-Correction (FEC)

Forward-error-correction is more robust. The receiver performs the error detection and correction. At

the sender, an encoder computes a different kind of parity on the user data. The bits are converted

and transmitted. At the receiver, the signal is converted back to bits. A decoder processes the

received bits to determine if they were corrupted, and if so, the decoder attempts to remove the

corruption. If the corruption is too severe, the decoder declares failure and the receiver requests

retransmission. The difference between backward-error-correction and forward-error-correction is in

the kind of parity information computed. FEC encoding and decoding are more computationally

intense, and generally more parity bits are computed, so immediate throughput is lower. However,

perfect transmission is not a requirement of FEC, so overall throughput can be acceptable in

consistently noisy channels. In summary, if the right FEC scheme is chosen for a given system,

robust communications can be achieved, providing high overall throughput at a moderate computing

cost

Reed-Solomon is actually a family of FEC codes. Several parameters make each RS code unique. One

such parameter is the Galois field on which the code is based.

Galois Fields
In Reed-Solomon encoding and decoding, at an abstract level, data are not treated as collections of bits;

they are treated as Galoisfield elements. Wicker states the definition of a field [27]. In practical terms, a

field is a set of objects on which addition and multiplication are specially defined. Galois fields are fields

with a finite number of elements. They are also called finite fields. Rowlands provides a clear description

of the properties of Galois Fields.

The Galois fields most commonly used in RS are extensions of a base field. This field is denoted GF(2).

It contains two elements, which can be represented as 0 and 1. Addition and subtraction of the elements

of GF(2) correspond to binary XOR. Multiplication corresponds to binary AND. The non-zero element

(one) has a multiplicative inverse (itself), and division is defined as multiplication by the inverse. The

following tables summarize arithmetic in GF(2):

+ 0 1 - 0 1 x 0 1 +
0 0 1 0 0 1 0 0 0 0+0 -
1 1 0 1 1 0 1 0 1 0-1 0

1+0 -
1+1 1

Figure 2: Tables of GF(2) Arithmetic

One parameter of an extension field of GF(2) is m. Extension fields of GF(2) are denoted GF(2m). For a

given m, there are many different extension fields. Each one has 2 m elements. Each of the 2m elements

of a GF(2m) can be thought of as an (m-1)-degree binary polynomial in some dummy variable x. Each

coefficient of the polynomial is one bit, which represents an element of GF(2). Thus, m-bit numbers can

be thought of as elements of a GF(2m). The following example of polynomial and binary representations

are from a GF(2 4):

1011 € x3 +0x 2 +x+l (1)

In order to generate a field, one must specify not only elements, but also arithmetic on those elements.

For a given m, an extension field is uniquely defined by its arithmetic. For all extension fields, addition

or subtraction is performed on elements in polynomial form; the respective coefficients are added or

subtracted. This is simply addition or subtraction of elements of GF(2). Note that addition and subtraction

of GF elements are closed.

The following tables depict addition and subtraction in GF(2). Note that the tables are identical.

+ 00 01 10 11 - 00 01 10 11
00 00 01 10 11 00 00 01 10 11
01 01 00 11 10 01 01 00 11 10
10 10 11 00 01 10 10 11 00 01
11 11 10 01 00 11 11 10 01 00

Figure 3: Tables of Addition and Subtraction in GF(2)

Multiplication and division can be thought of as polynomial multiplication and division modulo an

irreducible (in GF(2)) polynomial of degree m. An irreducible polynomial is a polynomial which cannot

be factored into smaller polynomials. The following is an example of multiplication in GF(23).

101x 011* (x 2 +Ox+1)x(0x 2 +X+1)%(x 3 +0x 2 +x+1) (2)

The last term is an irreducible polynomial of degree 3. For a given m, there can be several irreducible

polynomials, and each one generates a unique Galois field. Thus, the second and final parameter of an

extension field is its irreducible polynomial (the first is m). Multiplication and division of GF elements,

modulo an irreducible polynomial, are closed (except when dividing by zero). As the table to the left

below shows, the product of the above multiplication is 100.

X 000 001 010 011 100 101 110 111

000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010

100 000 100 011 111 110 010 101 001

101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 010 100
111 000 111 101 010 001 110 100 011

X 000 001 010 011 100 101 110 111

000 000 000 000 000 000 000 000 000

001 000 001 010 011 100 101 110 111
010 000 010 100 110 101 111 001 011
011 000 011 110 101 001 010 111 100

100 000 100 101 001 111 011 010 110
101 000 101 111 010 011 110 100 001

110 000 110 001 111 010 100 011 101
111 000 111 011 100 110 001 101 010

Figure 4: Tables of Multiplication for Two Galois Fields of Size 23

The table on the left was generated using the irreducible polynomial x3 + Ox2 + x +1 , which is

represented as 1011. The table on the right was generated using the irreducible polynomial

x + x2 +Ox +1 , which is represented as 1 101. Note that several multiplications result in different

products in the two tables. The multiplicative inverse of an element can be found by identifying the

multiplication which produces the identity element, 001. Tables of division can then be readily obtained.

Another useful representation of elements of GF(2m) is the power representation. Elements can be

represented by integers corresponding to powers of a primitive element of the field. The defining property

of a primitive element a of GF(2m) is that 2m -1 consecutive powers of a make up all non-zero

elements of the field. Every extension field has at least one primitive element, so every element of any

extension field has a log. An extension field can have more than one primitive element, but one primitive

element should be used consistently when taking logs and antilogs.

The following is a list of power representations of elements of GF(2m), using the irreducible polynomial

3 + Ox2 + x + 1. The primitive element used here (as shown) is 010.

Power Value Binary Polynomial
Representation Representation Representation

0 o0 001 1

1 a'1 010 x

2 a 2 100 x2

3 a 3 011 x+1

4 a(4 110 x2 +x

5 a 5 111 x2 +x+l

6 a 6 101 x 2 +1

Figure 5: Various Representations of (Non-Zero) Elements of a GF(23)

In summary:

1. Bits can be used to represent elements of GF(2
m).

2. RS encoding and decoding are performed on elements of GF(2m).

3. RS encoding and decoding can be peformed on computers.

4. The error-correction capabilities of Reed-Solomon can be used in digital communication.

Reed-Solomon
Reed-Solomon is a family of block FEC codes. In block forward-error-correction, user data is processed

as symbol-blocks; the user data bitstream is first broken into consecutive blocks of symbols, and each

block is processed independently by the encoder. User data blocks are encoded into codewords at the

sender, and codewords are decoded back into blocks at the receiver. Rowlands provides a clear

description of Reed-Solomon.

USER AID CCE RS

---------- -- --------- ---- ----------------

I Idecoding proceII g I

Figure 6: Communication System in Detail

Note the locations of the Reed-Solomon encoding and decoding blocks in relation to other blocks in

Figure 6. Error-correction-encoding is the final stage of digital processing at the sender. For this reason,

error-correction decoding is the first stage of digital processing at the receiver. In choosing a digital error-

correction scheme, the goal is to minimize the effect of corruption in the stages between encoding and

decoding (this includes corruption during transmission, communication, and reception), without

sacrificing too much user data throughput.

The following parameters completely specify an RS code:

* m - The number of bits per symbol. Each symbol can be thought of as an element of a GF(2m).

* t - The maximum number of correctable symbol errors.

Note that in Reed-Solomon, corruption is modelled as symbol errors; a single bit error is

considered a full symbol error, and several bit errors in the same symbol are considered one

symbol error. This is because of the way RS processes symbols. At the receiver, if the

number of detected symbol errors is greater than t, then the codeword cannot be correctly

decoded, and the data must be retransmitted.

* K - The number of symbols per user data block. K + 2t must be less than 2m.

* g - The irreducible polynomial.

This polynomial is used to generate the extension Galois field on which the RS code is based.

" 10

* a - A primitive element of the Galois field.

This parameter is used as the base for the GF log operations in the RS code.

* mo - The log of the first root of the generator polynomial G(x).

The significance of this value is explained below.

* N - The number of symbols in the RS codeword. This number is2 m - 1.

Reed-Solomon is a popular FEC choice because it is easy to implement, and because it is effective in

many real-world systems. RS is used in satellites, space probes, the Compact Disc, cellular digital,

ADSL, and digital television.

RS Encoding
Before encoding, the user data bitstream is broken into blocks of symbols. Each block contains K

symbols, and each symbol consists of m bits. Each symbol can be considered an element of GF(2
m). At

the sender, the encoder computes a sequence of 2t parity symbols for each block of user data symbols.

The parity symbols and user data symbols together are called a codeword. Figure 7 depicts blocking and

Reed-Solomon encoding. Each K-symbol user data block is encoded into a (K+2t)-symbol codeword.

User Data User Data
Stream Blocks RS I RS Codewords

> ... E 1 1 1 1 ... 1 1 rE nu... EN ODE
0...K-1 0...K-1 0...K-1+2t 0...K-1+2t

Figure 7: Reed-Solomon Encoding

As described above, it is sometimes useful to treat elements of an extension Galois field as binary

polynomials. At a higher level, the user data block itself can be considered a polynomial, of degree K-1,

whose coefficients are the symbols. The user data polynomial is denoted D(x). The transmitted codeword,

received codeword, and decoded user data block can similarly be considered polynomials.

In RS encoding, D(x) is multiplied by the generator polynomial G(x) to obtain the codeword polynomial

C(x). G(x) is a parameter of the RS code. It can be written as follows:

G(x) = (x-a"O)(x-a m +1)...(x-a'n+2t-2)(x-a+ 2t-l) (3)

The roots of G(x) are 2t consecutive powers of ca. a" is the first root of G(x). m0 is also a parameter of

the RS code (as described above).

Thus, the encoder only generates polynomials which are multiples of G(x). These are termed "correct

codewords." The sender only transmits correct codewords. If the receiver receives a codeword

polynomial which is not a multiple of G(x), the decoder can be sure that the polynomial was corrupted

during communication, and it can begin error correction. Although it is possible for one correct codeword

to be corrupted into another correct codeword during communication, the event is highly unlikely,

because correct codewords are so "distant." In fact, if the RS code is chosen properly, a corrupt codeword

is hardly ever even corrected into a correct codeword that is different from the transmitted codeword.

The simplest way to satisfy the encoding criterion is to multiply D(x) by G(x). Because D(x) has degree

K-1 and G(x) has degree 2t, this will result in a polynomial of correct degree. However, a different

formula is often implemented.

C(x) = D(x). xz - [D(x) -x2t mod G(x)] (4)

In this format, the first K coefficients of C(x) are the coefficients of D(x), and the last 2t coeffcients are

the parity symbols. This is useful at the receiver, because it allows the user data to be obtained quite

easily from the corrected codeword. RS codes which use this format are called systematic RS codes.

.12

RS Decoding
At the receiver, the decoder tries to determine the transmitted codeword by correcting the received

codeword. Depending on the severity of the corruption, the decoder can successfully reconstruct the

transmitted codeword. Overall, this results in a reduction in (costly) retransmission. The user data is

obtained from the corrected codeword.

RECEIVED CORRECTED
RS Codewords RS User Data

.. 1 1 I ... DECODE '" D '
0...K-1+2t 0...K-1+2t D...K-1 0...K-1

Figure 8: Reed-Solomon Decoding

The received RS codeword can be treated as a polynomial, denoted R(x). The relationship between the

transmitted codeword, the effective digital corruption, and the received codeword is as follows:

R(x) = C(x) + E(x) (5)

E(x) is the error polynomial. E summarizes the effect of all the noise on the transmitted codeword. In

order for RS decoding to work, E can have at most t non-zero coefficients. (That is the nature of RS error

correction.)

In practice, R(x) is used to obtain a syndrome polynomial S(x), and the syndrome polynomial is used to

determine E(x). The following is a brief summary of the Petersen-Gorenstein-Zierler algorithm, the most

common method of RS decoding, and the one implemented in the RS decoder modified in this project.

a) Treat the received codeword as a sequence of symbols, elements of the GF(2m) on

which the RS code is based. The syndrome is a 2t-point Galois-field discrete

Fourier transform of this sequence. The symbols in the syndrome sequence are also

elements of the extension field. The Galois-field discrete Fourier transform is'

similar to the complex discrete Fourier transform, except that a is used instead of e.

b) Treat the syndrome as a polynomial of degree 2t-1, denoted S(x). The zeroth-order

coefficient of the polynomial is the first syndrome value, the first-order coefficient

is the second value, and so on. The syndrome polynomial can thus be written

S(x) = S1 +S2x+S 3x2 ...+S2,x'-', where the coefficients are the symbols in the

syndrome sequence.' Calculate an error locator polynomial A(x) using S(x). The

error locator polynomial can be obtained using the Berlekamp-Massey algorithm or

Euclid's polynomial greatest-common-divisor (GCD) algorithm.

c) Find the roots of A(x).

The roots identify the locations of the symbol errors in the received codeword. The

inverse Galois-field discrete Fourier transform can be used to find the roots of A.

d) Calculate an error evaluator polynomial, denoted K(x), using S(x) and A(x). The

error evaluator polynomial can be obtained using Euclid's algorithm.

e) Use Q and A to determine the magnitudes of the symbol errors.

These are the non-zero coefficients of E. This is the Forney algorithm.

f) Subtract E(x) from R(x) to obtain C(x).

In systematic RS codes, the user data block can be readily obtained from C.

[Rowlands, 18]

Decoding fails if there are more than t symbol errors. In that event the codeword must be retransmitted.

Reed-Solomon decoding is generally much more computationally intense than encoding.

One of the most efficient ways to find the error locator polynomial is the Berlekamp-Massey algorithm.

Another way is Euclid's algorithm, which finds not only the error locator polynomial, but also the error

evaluator polynomial.

' Clark uses this representation of the syndrome sequence in his interpretation of Euclid's algorithm
[Clark, 198]. Wicker uses a different representation: S(x) = SIx+ S2x2 + S3x3...+S2,x 2t [Wicker, 225).

- 14

Euclid's Algorithm
Euclid's greatest-common-divisor algorithm can be applied to polynomials whose coefficients are

elements of GF(2'). Implementations of Euclid's algorithm for RS decoding are generally less efficient

than implementations of the Berlekamp-Massey algorithm, but the mechanics of Euclid are much easier

to understand [Wicker, 225].

This description is based on Clark's interpretation of Euclid's algorithm, found on page 198. To obtain A

and 2, the algorithm is started on x2 t and S(x). The GCD of the two polynomials is not needed in RS

decoding; the algorithm is only iterated until a special stopping condition is reached. At that point, two

"intermediate values" provide A and T.

1. Set the following initial conditions:

rl =X
2 t

ro = S(x)

t_1 =0

to =1

i=l

2. Divide r-2 by I_ . The quotient is qi. The remainder is ;.

3. Obtain ti using the following relation:

t i = t i- 2 -qiti-_l

4. If deg[r] < t go to step 5. Otherwise increment i and go to step 2.

5. STOP.

A(x) = ti(x)

Q(x) = ri (x)

The notation may be confusing; the t in step 4 is the maximum number of correctable errors, and the ti in

the other steps are temporary polynomials. When the algorithm stops iterating, A(x) = ti (x) and

(x) = ri (x)..

Another interpretation of Euclid's algorithm is given by Wicker, on page 225. It starts with two

polynomials different from those in Clark's interpretation, and it specifies a different stopping condition.

Both methods were implemented, and their results were compared with A and 2 obtained from the

unmodified RS decoder. It was determined that both methods provide A. However, Wicker's

implementation does not provide QZ in the form that the RS decoder expects, and it was not obvious how

to transform Q accordingly. It was decided that Clark's method would be used in implementing Euclid's

algorithm for this project.

The following tables show a simple example of how A and Q are obtained using the two interpretations.

The example comes from Wicker, 225. The parameters to Euclid's algorithm are the two starting

polynomials and the Galois field. In this example, the Galois field is a GF(2 3) generated with the

irreducible polynomial x3 + x +1. Symbols are shown in exponential form. The primitive element a is

010. The syndrome sequence is a6,a3 ,a 4 ,a .

Clark
i r q t

-1 X 2 t X4 - 0

0 S(x) = a 6
+a 3x+a

4
x

2 + 1 3x 3 1

1 0
4
+x+a 6X2 a5 + 4

X a05 +a
4
X

2 a6 +x a 4 x l+a 2 x+ax2

Figure 9: Euclid Example Using Clark

In this case:

1. The starting polynomials are x2t and S(x) = a6 +a ox+a x2 +Xa 3

.16

2. The stopping condition is deg[ri (x)] < t (= 2).

3. A(x)= 1+a2X+a X 2

Wicker
i r q t

-1 2t + l - X5 - 0
0 1+ S(x) = 1

1+a l6X+a'x 3 X 2 +a14 X3 +a 3 4

1 a5 + 2 + 6 x 3 a 5 +a 4x a 5 +a 4X

2 1+x+a 3x2 a 4X 1+a 2X+a 2

Figure 10: Euclid Example Using Wicker

In this case:

1. The starting polynomials are x2t + 1 and 1+S(x)= 1+a 6 x+a 3x 2 +a 4 x3 +a 3x4 . Note that

Wicker's polynomial representation of the syndrome sequence is different from Clark's.

2. The stopping condition is deg[r (x)] 5 t.

3. A(x)= l+a 2x+ax 2

Qf(x)= l+x+ 3x 2

A is the same in both cases. The Q polynomials are different, and it was determined through several trials

that there appears to be no simple relationship between them. It must be noted that by definition, the

zeroth-degree term of A must be 1, so it is sometimes necessary to scale the final ti (it was not necessary

in this example).

Texas Instruments TMS320C62x

TMS320C62x is a family of general-purpose digital signal processors made by Texas instruments. They

have a common instruction set and CPU architecture. "C62x" serves to identify any CPU in the family.

CPU
The C62x was introduced in early 1997. It is designed for use in high-throughput digital communications

systems, such as cable modems, wireless base stations, and digital subscriber loops [TI_WWW]. The

C62x features 1600 MIPS performance, eight independent functional units, a 32-bit address space, and

powerful conditional execution. A word is 32 bits, a half-word is 16 bits, and a byte is 8 bits on the C62x.

The C62x has 32 general-purpose 32-bit registers. They are equally divided into an A side and a B side,

and are labelled from 0 to 15 [TI_CIS, 2-2]. When writing C62x assembly, it is important to know that

different instructions can access registers in different side combinations [TI_CIS, 2-5]. The following are

some examples using the ADD instruction. The first two registers are the source registers and the third is

the destination register. The semicolons begin comments, which the assembler ignores.

1 ADD AO,A1,A2 ; valid, sources and destination from same side
2 ADD AO,Al,B2 ; ERROR, destination from different side
3 ADD AO,Bl,B2 ; valid, second source and destination from same side
4 ADD AO,B1,A2 ; valid, first source and destination from same side

Figure 11: C62x ADD Examples

The C62x accesses bytes using a 32-bit address. Memory can also be accessed as half-words and words.

Data can be addressed indirectly, with or without an offset, from any of the 32 registers, and the address

can be pre- or post-incremented or -decremented. Data can be addressed as bytes, half-words, or words.

In the case of half-words, a 31-bit address is used, and in the case of words, a 30-bit address is used.

[TI_CIS, 3-60]

Each C62x instruction is a 32-bit word. The CPU accesses instructions using a 30-bit address. Eight

instructions are fetched from program memory at a time. Each group of fetched instructions is called a

fetch packet. The instructions in each fetch packet are divided into execute packets. All the instructions

in an execute packet are executed in parallel, by the different CPU functional units, and execute packets

are executed in series. When all eight instructions in a fetch packet belong to the same execute packet,

they are all executed in parallel [TI_CIS, 3-10]. If this is sustained, it corresponds to 1600 MIPS at a CPU

- 18

frequency of 200 MHz. However, it is difficult to keep all eight functional units executing useful

instructions at the same time, so it is often the case that during every cycle some functional units are

executing NOP ("no-op," no operation).

Different instructions are executed on different functional units of the CPU. Some instructions can be

executed on any of several units, allowing some programming flexibility. The programmer can either

assign functional units to instructions when writing assembly, or he/she can let the C62x assembler make

the assignments at assemble-time. The functional units are called .L1, .L2, .S1, 2, .M1, .M2, .D1, and

.D2. The four letters essentially correspond to different function sets, and the numbers serve to make each

member of a pair uniquely identifiable. The following table (from TI_CIS, 3-5) lists some of the

instructions which were used when hand-writing assembly for this project. The table also lists the

functional units which can execute each instruction.

Mnemonic Function Functional Units
LDW/LDH Load word/half-word from memory .D1,.D2
MV Move value from register to register .Ll, .L2,1, , .2, .D, .D2
MVK Move constant to register 1,.S2
ADD Add .L1, .L2, .S 1, .S2, .D1, .D2
ADDK Add constant .SI, .S2
B Branch .S1, .S2
CMPEQ Compare equal .L1, .L2
CMPGT Compare greater than .L1, .L2
CMPLT Compare less than .L, .L2
SHL/SHR Shift left/right .S l, .S2
STW/STH Store word/half-word to memory .D1, .D2
XOR Bitwise XOR .Ll, .L2,.S, .S2
AND Bitwise AND .L1, .L2, .Sl, .S2

Figure 12: Some C62x Assembly Instructions

Any instruction can be executed at every CPU cycle, but some instructions have latencies. Notable

examples are the load and branch instructions (LDB, LDH, LDW, and B). The load instructions have

four-cycle latencies, meaning data will be available in the destination register four CPU cycles after the

load instruction completes. This latency is separate from the stalls that may be associated with accessing

- 19

memory; these four cycles are a CPU pipeline latency. The branch instruction has a five-cycle latency,

meaning program execution branches five CPU cycles after the instruction completes. [TI_CIS, 3-9]

One way to circumvent the cost of branching is to use the conditional execution feature of the C62x. Any

instruction can be executed conditionally based on the value in one of five registers: BO, B 1, B2, Al, and

A2. Conditional instructions can be placed inside branch delay slots. In some cases, conditional

instructions can replace branches altogether. [TI_CIS, 3-13]

The effect of load and branch latencies can be diminished somewhat by efficiently using delay slots.

Software-pipelining is a way of making the absolute most of delay slots. It is a method of scheduling

instructions to use CPU resources optimally during every cycle in a loop. The goals of software-

pipelining are to minimize load and branch latencies, and to minimize the size of the loop. To this end,

instructions are placed in the execution pipeline in the most efficient order, and several instructions are

executed in parallel during every CPU cycle.

Development Tools
Texas Instruments emphasizes that the C62x allows the applications engineer to focus development

resources on software rather than hardware, thereby facilitating development and shortening time-to-

market [TI_WWW]. To support this development style, software development tools are available for the

C62x, including an ANSI C compiler-optimizer and a unique assembly optimizer.

C Compiler-Optimizer
Several C source code optimizations can be made by the C62x C compiler-optimizer. The compiler

generates efficient object code, and in some simple cases, it generates optimal code. Intrinsic functions

provide direct access to assembly instructions. Special preprocessor directives allow the developer to

provide additional information about the source code to the compiler.

20

The C source code for the RS decoder in this project was compiled with the -o2 and -pm command-line

options. According to the TMS320C62x Optimizing C Compiler guide, the following optimizations are

made when the -o2 flag is used:

* Performs control-flow-graph simplification

* Allocates variables to registers

* Performs loop rotation

* Eliminates unused code

* Simplifies expressions and statements

* Expands calls to functions declared inline

* Performs local copy/constant propagation

* Removes unused assignments

* Eliminates local common expressions

* Performs software pipelining

* Performs loop optimizations

* Eliminates global common subexpressions

* Eliminates global unused assignments

* Converts array references in loops to incremented pointer form

* Performs loop unrolling

[TI_OCC, 3-2]

The major performance advantage comes from software-pipelining and other loop optimizations.

The -pm flag indicates that program-level optimization should be performed. When this flag is used, the

compiler considers all the source files listed on the command-line at once [TI_OCC, 3-13].

Further optimizations can be made by the compiler, using the -o3 flag (which was not used in this

project):

* Remove all functions that are never called

* Simplify functions with return values that are never used

* Inline calls to small functions

* Reorder function declarations so that the attributes of called functions are known when the

caller is optimized

* Propagate arguments into function bodies when all calls pass the same value in the same

argument position

* Identify file-level variable characteristics

[TI_OCC, 3-3]

Most of these optimizations either would not have improved cycle count, or were not applicable. One

exception is the inlining of small functions. In this project, small functions (such as the GF arithmetic

functions) were inlined using the C62x C inline keyword.

C62x C is a superset of ANSI C. Several special functions, called intrinsics, are recognized. Intrinsics

correspond to C62x assembly instructions. They allow the C programmer to express certain operations

efficiently and concisely. They operate on simple data. For example, to get the effect of the C62x

assembly instruction ADD2, the function int _add2 (int srcl, int src2) can be used. ADD2

adds the upper half-words and lower half-words of two words (a C int is represented in 32 bits, while a

C short is represented in 16 bits); any overflow in the lower addition does not affect the upper addition.

When _add2 is encountered in the C code, the compiler generates a corresponding ADD2 instruction in

the output assembly. Using intrinsics in critical loops can improve the performance of code. A list of

C62x intrinsics can be found in TI_OCC, 8-23.

22

Intrinsic functions were not used in this project. The 38 intrinsic functions were inspected and it was

decided that none were readily applicable to Galois-field arithmetic, which is the processing performed in

Reed-Solomon encoding and decoding.

In order to execute a software-pipelined loop, the trip count of the loop must be large enough to support

the prolog. When making loop optimizations, the compiler and assembler usually generate object code

for both a software-pipelined loop and a non-software-pipelined loop. The former is executed only when

the trip count is large enough. A way to reduce object-code size in both C source and assembly source is

to provide minimum trip count information to the compiler or assembler. The programmer writes the

minimum trip count at the beginning of the loop. If this minimum is large enough to guarantee that the

redundant loop will not be needed, the compiler/assembler suppresses generation of the redundant loop.

[TI_OCC, 3-9]

Minimum trip count information could not be provided to the compiler/assembler in this project. Because

these RS functions were designed to process virtually any practical RS code, it was not possible to

guarantee that any critical loop would iterate a minimum number of times. In addition, the goal of the

project was to reduce the CPU cycle count of the RS decoder; object-code size was not a consideration.

Assembly Optimizer
The assenibly optimizer is an innovative, useful tool. Normally when writing assembly, the programmer

must manually schedule instructions and allocate CPU resources. This process is especially difficult when

programming for machines such as the C62x, which consists of several parallel functional units.

However, in addition to a regular assembler, the C62x comes with an assembly optimizer which can

assume this responsibility. The assembly optimizer accepts a unique assembly format, called straight-

assembly. This is assembly without scheduling or resource allocation. Functional units need not be

assigned to instructions, and latencies should be ignored. Also, names can be given to register variables.

The assembly optimizer parses the straight-assembly and outputs regular assembly source, with

scheduling, register allocation, and (optionally) an assembly interface to a C environment. The assembly

optimizer can thus be used to generate C-callable assembly routines. The advantage to using the

assembly optimizer over the C compiler-optimizer is that it can output faster object code. Also, for small

routines, straight-assembly is as easy to write as C.

This section illustrates the use of the assembly optimizer. The assembly optimizer is described in detail in

TI_OCC, Ch. 4. This is a hand-written (unoptimized) regular assembly routine for vector addition.

Comments begin with a semicolon.

I ; Assembly routine to add two vectors of size elements.

2 ; i and j are the input vectors.

3 ; k is the output vector.
4 ; Call this function from C.

5 C; function call: AddExample(size,i,j,k)

6
7 ; The following lines are assembler directives.

8 ; They "assign" variable names to registers during assemble-time.
9

10 i .set AO ; AO contains a pointer to i
11 j .set BO ; BO contains a pointer to j
12 k .set A2 ; A2 contains a pointer to k
13 tl .set Al ; temporary values

14 t2 .set B1

15 t3 .set A3

16 counter .set B2 ; counter
17
18 ; The program starts here.
19 .text

20 .def _AddExample ; let C code see the routine
21
22 _AddExample: ; _AddExample function label
23 ; c calling convention!
24 ; upon entering function:
25 MV A4,counter ; A4 contains argl,
26 MV B4,i ; B4 contains arg2,
27 MV A6,j ; A6 contains arg3,

28 MV B6,k ; B6 contains arg4
29
30 AddLoop:
31 LDH *i++,tl ; two load-half-word's

32 11 LDH *j++,t2 ; in parallel

33
34 [counter] ADDK -l,counter ; conditional ADDK

35 [counter] B AddLoop ; conditional branch

36 NOP 2 ; for load latency

'24

37
38
39
40
41
42 AddDone:

43
44

ADD

STH

NOP

tl, t2, t3

t3, *k++
; for branch latency

NOP 5

Figure 13: Hand-Written C62x Regular Assembly Code

This routine can be called from C by calling AddExample (size, sourcel, source2, dest). The

C calling convention specifies that the four arguments be placed in registers A4, B4, A6, and B6. Lines

25-28 move the arguments into different registers. The add loop is lines 30-40. Two load-half-word's

(LDH) are performed in parallel to obtain the inputs (one LDH is performed by the .D1 unit and the other

is performed by the .D2 unit). Note that the input pointers are post-incremented within the load

instructions. The counter decrement and conditional branch are placed in two of the load instructions'

four delay slots. Once the values are available in registers, they are added (ADD) and stored (STH) at the

next output address. The output pointer is incremented within the store instruction. The branch instruction

in line 43 tells the CPU to return from the function call. The calling convention indicates that the return

address is in register B3. The ADD and STH are placed in two of the branch instruction's five delay slots.

This ordering makes some use of the load and branch latencies.

The assembly optimizer reorders instructions even more efficiently, as the following straight-assembly

listing shows. Note that the straight-assembly is generally much easier to write (and to read) than regular

assembly.

_AddExample:

AddLoop:

.def

.cproc

.reg

.trip

LDH

LDH

ADD

STH

_AddExample

counter,i,j,k

tl,t2,t3

40

*i++,tl

*j++,t2

tl,t2,t3

t3,*k++

; C arguments

; automatic variables

; minimum trip count

12
13 [counter] ADDK -1,counter

14 [counter] B AddLoop

15
16 . return ; return from routine

17 .endproc

Figure 14: Hand-Written C62x Straight-Assembly Code

Line 6 tells the assembly optimizer the minimum trip count of the loop. The programmer supplies this

information. The trip count of AddLoop will always be greater than 40. This lets the assembly optimizer

make an object-code size optimization. If the listed trip count is less than the minimum trip count for

software-pipelining, or if no trip count information is provided, then a redundant, non-software-pipelined

loop is generated.

The . cproc directive tells the assembly optimizer that the _AddExample routine is to be C-callable (the

name of the C function is then AddExample). When . cproc is used, the assembly optimizer outputs

assembly code which can interface with a C environment [TI_OCC, 4-15, 4-20]. The arguments to

. cproc are the parameters of the C function. Line 4 defines the other variables used in the routine. The

. return directive at the end of the listing instructs the assembly optimizer to insert code at that point to

return from the C function. The . endproc directive indicates the end of the function. Note how this

listing differs from the regular assembly listing:

1 Variable names are used instead of CPU register names. This facilitates assembly

programming, and allows the assembly optimizer to efficiently allocate registers to

variables.

2 The load instructions in the straight-assembly are not placed in parallel (there is no | |

before the second load instruction). The assembly optimizer will automatically place

the loads in parallel in the regular assembly output.

3 The straight-assembly ignores the load and branch latencies. The assembly optimizer

will schedule the regular assembly instructions properly.

26

The assembly optimizer determines the data dependencies and resource requirements in the straight-

assembly listing, performs the instruction scheduling and resource allocation, and outputs the regular

assembly. The following is an excerpt from the assembly optimizer output given the above straight-

assembly.

G FL PRMTS**********************************

;* GLOBAL FILE PARAMETERS *

;* *

Architecture

Endian

Memory Model

Redundant Loops

Pipelining

Debug Info

: TMS320C6200

: Little

: Small

: Enabled

: Enabled

: Debug

FP .set A15

DP .set B14

SP .set B15

.file "adxmplsa.sa"

.def _AddExample

.sect ".text"

.align 32

.sym _AddExample, _AddExample,36,2,0

.func 3

******************************** *

;* FUNCTION NAME: _AddExample *

;* Regs Modified : AO,A1,A3,A4,A5,B4,B5,B6 *

;* Regs Used : AO,A1,A3,A4,A,,A6,B34,B4,B,B6
************************ **

AddExample:
*** ---

.cproc

.reg

counter,1,4,4,4,

i,20,4,4,32

j,3,4,4,32

k,22,4,4,32

counter,i,j,k

tl,t2,t3

A4,A1

A6,A3

.sym tl,0,4,4,32

; _AddExample:

Ssym

.sym

Ssym

.sym

.line

45 .sym t2,0,4,4,32

46 .sym t3,0,4,4,32

47
48 MVC .S2 CSR,B6

49 iI MV .LIX B6,A4
50
51 AND .L2 -2,B6,B5

52
53 MVC .S2 B5,CSR

54 II SUB .Ll Al,3,A1
55
56 ** --
57 L2: ; PIPED LOOP PROLOG

58 ; AddLoop: .trip 40

59 LDH .Dl *A3++,AO
60
61 LDH .D2 *B4++,B5

62 II [All ADDK .S1 Oxffffffff,Al ;

63
64 [Al] B .52 L3

65 11 LDH .Dl *A3++,AO ;C

66
67 LDH .D2 *B4++,B5 ;@

68 [11 Al] ADDK .Sl Oxffffffff,Al ;@

69
70 [All B .S2 L3 ;@

71 Ii LDH .Dl *A3++,AO ;@@
72
73 LDH .D2 *B4++,B5 ;@@

74 11 All ADDK .S1 Oxffffffff,Al ;SS
75
76 --
77 L3: ; PIPED LOOP KERNEL

78
79 ADD .LlX B5,AO,A5

80 [All B .S2 L3 ;@@

81 I LDH .Dl *A3++,AO ;@@8

82
83 STH .D1 A5,*A4++

84 II LDH .D2 *B4++,B5 ;C@@

85 I [Al] ADDK .S1 Oxffffffff,Al ;888
86
87 --
88 L4: ; PIPED LOOP EPILOG

89 ADD .LlX B5,AO,A5 ;@

90 STH .Dl A5,*A4++ ;@

91 ADD .L1X B5,AO,A5 ;@@

92 STH .Dl A5,*A4++ ;@@

93 ADD .LlX B5,AO,A5 ;@@@

94 STH .Dl A5,*A4++ ;@@@

95 ;**---------------------------------
96 MVC .S2 B6,CSR

97 .line 14

98 B .S1 L7

99 NOP 5

100 ; BRANCH OCCURS

101 ;**---

28

102 ; ** --
103 L7:
104 .line 15

105 B .S2 B3

106 NOP 5

107 BRANCH OCCURS
108 .endfunc 17, 000000000h, O
109
110 ; .endproc

Figure 15: C62x Assembly-Optimizer Output

The straight-assembly output has more instructions than the hand-written regular assembly. As described

above, only the software-pipelined loop is generated, because the listed minimum trip count was large

enough to guarantee software-pipelined execution.

The loop prolog (starting at line 57) primes the software pipeline. The loop epilog (starting at line 88)

executes the remaining ADD and STH operations. The loop itself is only two cycles (starting at line 77).

When we compare the loop to the eight-cycle loop of the hand-written regular assembly, we see that the

assembly optimizer performed well in this example.

The following table lists some cycle counts of calls to the different implementations of the AddExample

function. The important numbers are the coefficients of the n term in the complexity expressions. The

assembly optimizer and compiler-optimizer were both able to bring that down to two. In this simple

example, the compiler-optimized C function performed better than the straight-assembly routine. In

general, the assembly optimizer will produce better results than the C compiler-optimizer.

Cycle Counts
Number Handwritten Straight- Unoptimized C Compiler-

of Elements Assembly Assembly Optimized C
40 376 109 1374 95
80 736 189 2734 176

Complexity 16+9n 29+2n 14+34n -16+2n

Figure 16: AddExample Cycle Counts

Software-pipelining can also be done by hand. Data dependency graphs must be drawn, and registers

must be allocated to variables. The process is difficult, but it can sometimes produce better assembly than

the assembly optimizer. Software-pipelining by hand was performed at various stages of this project.

Generic C Reed-Solomon Encoder/Decoder
In 1994 Jon Rowlands of Texas Instruments DSP Research and Development wrote a C library of

functions for Reed-Solomon encoding and decoding. That source code is not publicly available.

However, it was used as the basis for the work done in this project. This section describes the original

source code. There are three basic programs: the encoder/decoder, an RS code generator, and a test

program.

Reed-Solomon Test Program
The test program is used to test the validity of the RS encoding/decoding functions. It simulates

communication of digital data through a noisy channel. It generates a user data block, encodes it, corrupts

the codeword, decodes the corrupt codeword, and compares the final block to the original user data

block.

Originally, the program randomly generated user data and randomly corrupted RS codewords; each

symbol in a user data block was randomly generated, and the locations and magnitudes of the symbol

errors in the received codeword were randomly determined. The errors were added to symbols in the

transmitted codeword, and the result was the received codeword. Thus, the input to the RS decoder was

essentially random data.

Decoding random data would have made debugging difficult. If the RS decoder (essentially) received a

random codeword every time it was run, program errors could have been difficult to reproduce. The test

program was modified. The following is an excerpt from the new RSDecodeTest program:

1 void

2 ReadData(

3 RSCode * code,

30

4 int iteration

5){
6 int i;
7
8 for (i=O;i<code->numberOfUserDataSymbolsInCodeword;+-i)

9 userDatai] = myRSUsr[iteration][i];

10
11 for (i=0;i<code->numberOfSymbolsInCodeword;++i) {

12 transmittedMessage[i] = myRSSnd[iteration][i];

13 receivedMessage[i] = myRSRcv[iteration][i];

14
15
16
17 int main(void) {

18 int numberOfUncorrectedCodewords = 0;

19 int numberOfErrorsCorrected;

20 int numberOfErrorsUncorrected;

21 int wasSuccessful;
22 long i;
23
24 for (i = 0; i < numberOfCodewordsToTest; i++)

25 #if defined(ReadIncludeFiles)

26 ReadData(

27 &StandardRSCode,

28 i);
29
30 #else

31 GenerateUserData(

32 &StandardRSCode,

33 userData);

34
35 RSEncode(

36 &StandardRSCode,

37 userData,

38 transmittedMessage);

39
40 CorruptMessage(

41 &StandardRSCode,

42 transmittedMessage,

43 receivedMessage);

44
45 #endif /* #if defined(ReadIncludeFiles) */

46
47 RSDecode(

48 &StandardRSCode,

49 receivedMessage,

50 correctedUserData,

51 &numberOfErrorsCorrected,

52 &numberOfErrorsUncorrected);

53
54 #if defined(WriteIncludeFiles)

55 WriteData(

56 &StandardRSCode,

57 i,
58 numberOfCodewordsToTest);

59 #endif /* #if defined(WriteIncludeFiles) */

60

61 CompareData(

62 &StandardRSCode,

63 userData,

64 transmittedMessage,

65 receivedMessage,

66 correctedUserData,

67 numberOfErrorsCorrected,

68 numberOfErrorsUncorrected,

69 &wasSuccessful);

70
71 if (!wasSuccessful)

72 numberOfUncorrectedCodewords++;

73 1

74
75
76 return 0;
77

Figure 17: Excerpt from RSDecodeTest Program

1 StandardRSCode is a structure containing various parameters of the RS code used

(the RS encoder and decoder can be built to use any of several RS codes).

2 GenerateUserData () randomly generates a K-symbol user data block.

3 CorruptMessage () randomly corrupts the transmitted codeword into the received

codeword. The locations and magnitudes of symbol errors are randomly determined.

4 ReadData () accesses the arrays myRSUsr, myRSSnd, and myRSRcv, which contain

user data blocks, transmitted codewords, and received codewords, respectively.

5 CompareData () compares the decoded data to the original user data.

6 WriteData () writes the original user data block, the transmitted codeword, the

received codeword, and the final data block to files. These files can be used in

subsequent builds of the test program.

The test program has two basic modes of operation:

1 Randomly generate user data, encode it, randomly corrupt the codeword, and decode

the corrupt codeword.

. 32

2 Decode a codeword that was read into memory from a file at compile-time. Compare

the corrected user data to a user data block that was also read into memory from a file

at compile-time.

In Mode 2, the generating, encoding, and corrupting operations are not performed. The user data,

transmitted codeword, and received codeword are placed in static arrays at compile-time. The data which

RSDecode () and CompareData () use were generated during a previous run of a different build of

the program. The data was saved to files during the previous run, and the files are included in the

program by the compiler when the program is rebuilt to run in Mode 2. The following block diagram

describes one iteration of the modified RSDecodeTest.

START

Figure 18: RSDecodeTest Program Flow

Two preprocessor values are used: ReadIncludeFiles and WriteIncludeFiles. They answer

the questions in the block diagram. The term "ReadIncludeFiles" is misleading; the include files are not

actually read at run-time; they are included at compile-time. At run-time, sections of the included data

arrays are copied into userData, transmittedMessage, and receivedMessage, which

- 34

correspond to the user data block, the transmitted codeword, and the received codeword. There are four

include files, called myrsusr.h, myrssnd.h, myrsrcv.h, and myrsend.h. Examples of these files can be

found at the end of this section. They contain user data blocks, transmitted RS codewords, (corrupt)

received RS codewords, and final data blocks, respectively. These files are generated by the program

when the preprocessor value WriteIncludeFiles is defined. Thus, one build of the program can be

used to generate reference data (the user data block, the transmitted codeword, and the received

codeword), and another build can be used to perform only RS decoding on that reference data. The

former mode was used on the Sun workstation and the latter was used to debug RS decoder modifications

for the C62x.

Here are examples of include files generated by the test program. These arrays are presented for

illustrative purposes only; they were not actually generated by the test program.

I RSSymbol myRSUsr[2] [4] =
2 { { Ox01, 0x02,
3 0x03, 0x04 1,

4 { 0x05, 0x06,

5 0x07, Ox08) };
6
7 #define numberOflncludedCodewords 2;

Figure 19: Example myrsusr.h File

RSSymbol is a typedef in the Reed-Solomon function library. It is usually int or short. It is the

data type of a Reed-Solomon symbol. myRSUsr is the name of the array of user data blocks. This

example file contains two user data blocks, for an RS code in which K equals 4. The preprocessor

variable numberOf IncludedCodewords is written at the end of the file myrsusr.h by the test

program. It lets the compiler know that numberOfIncludedCodewords sets of data were

successfully saved to the include files. Another preprocessor variable, numberOfCodewordsToTest,

is defined in RSDecodeTest.c. This value specifies the number of iterations of the test program. If

ReadIncludeFiles is defined, and numberOfCodewordsToTest is greater than

numberOf IncludedCodewords, the compiler exits, since there is not enough data in the include

files on which to run the test.

I RSSynmbol myRSSnd[2] [6] =
2 { O Ox01, 0x02,

3 0x03, 0x04,

4 ox09, OxOa),

5 i 0x05, 0x06,

6 0x07, 0x08,

7 OxOb, OxOc } };

Figure 20: Example myrssnd.h File

This file contains data for two RS codewords. The first codeword in myRSSnd corresponds to the first

user data block in myRSUsr. Note that this (fictional) code contains two parity symbols per codeword, so

t equals one.

1 RSSymbol myRSRcv[2 [6] =
2 {(Ox01, 0x02,
3 3x04, 0x04,

4 ox09, OxOa 1,

5 : ox05, 0x06,
6 ox07, OxO8,
7 OxOb, OxOd });

Figure 21: Example myrsrcv.h File

This file contains codewords which correspond to corruptions of the codewords in myrssnd.h. There is

one symbol error in each codeword in this file.

1 RSSymbol myRSUsr[2] [4] =
2 {{ 0x01, 0x02,
3 0x03, 0x04 1,
4 (0x05, 0x06,
5 Ox07, Ox08 I };

Figure 22: Example myrsend.h File

The file myrsend.h can be used to manually verify that each received codeword was indeed successfully

decoded (though the compare function in RSDecodeTest also does this at each iteration).

Galois-Field Arithmetic Functions
These functions are used by the RS encoder and decoder to manipulate GF elements. Operations include

addition, subtraction, multiplication, and division. In GF(2'), addition and subtraction of elements can

36

be performed by the bitwise XOR operation. In this implementation, multiplication and division are

performed in the log domain. The logTable array contains GF logs and the antilogTable array

contains GF antilogs. The base of the logarithm is a, a primitive element of the Galois field and one of

the parameters of the RS code.

Reed-Solomon Encoder and Decoder
These functions implement the encoding and decoding processes. The RS decoder is an implementation

of the Petersen-Gorenstein-Zierler algorithm, described above. Different functions implement the

different steps of the algorithm.

Reed-Solomon Code Generator
Only a part of the source code for Reed-Solomon is provided; the rest must be generated for a particular

RS code. The RS code generator, gentrs, generates files containing RS-code-specific source code. The

input to genrs is a parameter file which completely specifies the RS code. Its output is a .h file and a .c

file which complete the encoder/decoder source code for a particular RS code.

This is an example of a parameter file. It specifies the name of the RS code used, the number of bits per

symbol, the maximum number of correctable errors, the number of symbols per user data block, the

irreducible polynomial (in binary notation), the primitive element (also in binary notation), the log of the

first root of the generator polynomial, and N.

name = Standard
m =8
t = 8
K = 188
g = 100011101
alpha = 00000010
m0 = 0
N = 255

Figure 23: Example genrs Parameter File

The source code in the output .c file does several things. It defines structures used by the Galois-field

discrete Fourier transform and inverse GFDFT in the RS decoder. It makes the log and antilog tables

using the g and alpha parameters. It defines storage arrays for use in various functions in the RS

decoder. Finally, it defines the RSCode structure. A pointer to this structure is passed to the

RSEncode-() and RSDecode () functions. The RSCode structure contains the parameters of the RS

code used, pointers to the arrays logTable and antilogTable (which are the log and antilog tables),

pointers to the GFDFT and IGFDFT parameter structures, and pointers to the defined storage arrays.

38

Statement of Work
The C62x code profiler was used to identify the critical loops in the RS decoder. The most CPU cycles

(by far) were taken by the function GFFourier (), which performs the Galois-field Discrete Fourier

Transform and the IGFDFT. It was also determined that the discrepancy calculation function

(RSDiscrepancy () in the Berlekamp-Massey algorithm used a large proportion of CPU cycles.

The GFFourier () function is used twice in this implementation, once to compute the syndrome and

once in the Chien search (in actuality, the inverse GFDFT is used in the Chien search, but the

GFFourier () function performs this as well). Thus, it was determined that optimizing GFFourier ()

would significantly improve the cycle count of the decoder.

The first modification was a direct translation of the C function into regular assembly, by hand. The C

calling convention was followed, and the resulting routine could be called from C source. The

modification was transparent to the rest of the program. In order to obtain a performance measurement,

ten randomly-generated user data blocks were encoded using a small (K = 47, m = 6, t = 8) RS code, the

codewords were corrupted, and the corrupt codewords were decoded using the modified decoder. The

assembly routine provided an enormous performance improvement. The modified decoder was then

tested using 1000 codewords. It correctly decoded all codewords.

A similar procedure was performed with RSDiscrepancy () . The hand-written assembly for this

function considerably improved the performance of the decoder, but the improvement was not as

dramatic as that obtained with the first routine. The decoder with both assembly routines was tested using

1000 codewords. It correctly decoded all codewords.

Software-Pipelining
At this point, neither assembly implementation incorporated software-pipelining. The next modification

was an implementation of GFFourier () with a software-pipelined inner loop.

- 39

Jon Rowlands describes the operation of GFFourier () as follows:

1 /*

2 * GFFourier

3 * Calculate a number of consecutive points of the Fourier transform

4 * or inverse Fourier transform of a sequence.

5
6 * code - the description of the RS code

7 - input - the input symbols, stored with element zero first.

8 * output - the transformed output values, stored with the lowest

9 * frequency element first.

10

11 * The DFT equation is

12
13 * output(j) += input(i) * alpha ^ index

14
15 * where index =

16 * startingIndex +

17 * i * startingIndexStep +

18 * j * indexStep +

19 * i * j * indexStepStep
20 */

Figure 24: Original Description of GFFourier() Function

The code argument of GFFourier () points to an RSCode structure, containing pointers to the

logTable and antilogTable arrays, and other data, which are used by functions called by

GFFourier().

As stated above, GFFourier () can be called with different parameters to take different DFT's. The

structure which contains these parameters is GFFourierParameters. This is the definition of the

GFFourierParameters structure:

typedef

struct {

int

RSSymbol

RSLogSymbol

RSLogSymbol

RSLogSymbol

RSLogSymbol

numberOfOutputSymbols;

constantValue;

startingIndex;

startingIndexStep;

indexStep;

indexStepStep;

12 GFFourierParameters;

Figure 25: Definition of GFFourierParameters Structure

The data types RSSymbol and RSLogSymbol are used to represent GF elements and logs, respectively,

in the RS encoder and decoder. The base of the log is a, a primitive element. This is the inner loop of

GFFourier ():

1 for (j = 0; j < numberOfoutputSymbols; j++) {
2 output[j] =
3 GFAdd(

4 code,

5 output[j],
6 GFAntilog(code, index)
7)
8
9 index = GFLogMultiplyLogLog(
10 code,
11 index,

12 indexStep

Figure 26: Inner Loop of GFFourier() Function

The loop can be executed by the following assembly instructions. Branch and load latencies are not

considered here; this is merely a list of useful assembly instructions:

; outputl = output2 = output

innerLoop:

index,indexStep,index

index,N, cond

index,N, index

*+antilogTable[index],

*outputl++, temp2

templ,temp2,temp2

temp2,*output2++

-!,counter

; N is an element of RSCode

B innerLoop

Figure 27: Some C62x Assembly Instructions

41

ADD

CMPLT

SUB
LDW

LDW

XOR

STW

ADDK

cond]

[counter]

[counter]

The following dependency graph was drawn for the inner loop, using the C source and assembly

translation:

ADD
.Sl

indexStep
A5:

*outputl++
B5

antilog
Table
AO

XOR
.L2X

A
STW
.D2

Figure 28: GFFourier() Inner Loop Dependency Graph, 32-Bit Data

The graph shows which instructions were used and how functional units (.L1, .L2, .S , .S2, .D1, .D2)

were allocated to instructions. CPU registers are allocated to variables, and the graph is divided into the

two sides of the CPU. An "X" in a functional unit allocation indicates the use of a data cross-path, from

one side of the CPU to the other. The numbers show how many CPU cycles are required for the effects of

instructions to occur. For example, the sum in an ADD instruction is available in the destination register at

the next CPU cycle. At the top of the graph, adding indexStep and index requires one CPU cycle.

The sum is placed in temp4. The loaded word in a LDW instruction is available in the destination register

four CPU cycles after the instruction completes. Thus, the load-word instruction requires a total of five

CPU cycles, because of the four-cycle latency.

Instructions can be scheduled such that the software-pipelined inner loop takes three cycles. This is done

by placing one part of the loop path in parallel with another, independent part. Essentially, two different

parts of two consecutive iterations of the loop are executed in parallel. This is the software-pipelined

assembly listing of the inner loop of GFFourier () :

1 ASMGFFourierLoop2Init:

2 MV numberofOutputSymbols,temp3

3 SUB temp3,2,temp3 ; for software-pipelining

4 MV A8,outputl ; A8 = output

5 MV A8,output2

6
7 ASMGFFourierLoop2Prolog:

8 ADD index,indexStep,index

9 I) LDW **antilogTableindex],templ
10 ii LDW *outputl++.temp2

11
12 CMPLT index,N,temp4

13 11[temp3] ADDK -1,temp3

14
15 [temp3] B ASMGFFourierLoop2

16 Il[!temp4] SUB index,N,index

17
18 ADD index,indexStep,index

19 I LDW *+antilogTable[index],templ

20 I LDW *outputl++,temp2

21
22 CMPLT index,N,temp4

23 Il[temp3] ADDK -1,temp3

24
25 ASMGFFourierLoop2:

26 XOR temp2,templ,temp2

27 1I temp3l B ASMGFFourierLoop2

28 II[!temp4] SUB index,N,index

29
30 ADD index,indexStep,index

31 II LDW *+antilogTable[index],templ

-43

LDW

CMPLT

II[temp3) ADDK

II STW

ASMGFFourierLoop2Epilog:

XOR

Il[!temp4] SUB

NOP

STW

XOR

NOP

STW

*outputl++,temp2

index,N, temp4

-1,temp3

temp2,*output2++

temp2,templ,temp2

index,N,index

temp2,*output2++

temp2,templ,temp2

temp2,*output2++

Figure 29: Hand-Written Software-Pipelined Regular-Assembly GFFourier() Inner Loop, 32-Bit Data

The software-pipelining procedure was then followed for the discrepancy calculation. This is the original

C RSDiscrepancy () function:

STATIC

RSSymbol

RSDiscrepancy(

RSCode *

int
code,

i,
int errorLocatorDegree,

const RSLogSymbol * iogSyndrome,

const RSLogSymbol * logErrorLocator

RSSymbol discrepancy;

discrepancy = 0;

for (j = 0; j <= errorLocatorDegree; j++) {

discrepancy = GFAdd(

code,

discrepancy,

GFMultiplyLogLog(

code,

logErrorLocator[j],
logSyndrome[i - j]

return(discrepancy);

Figure 30: RSDiscrepancy() Function

The for loop starting at line 14 can be software-pipelined. This is a list of useful assembly instructions.

In the assembly implementation, the logSyndrome pointer is moved forward j elements before the

loop, and decremented at each iteration.

; logSyndrome

; discrepancy

innerLoop:

[counter]

[counter]

= logSyndrome + i
= 0

LDW *logErrorLocator++, templ

LDW *logSyndrome--, temp2

ADD templ, temp2, temp3

LDW *+antilogTable[temp3], temp4

XOR discrepancy, temp4, discrepancy

ADDK -1,counter

B innerLoop

Figure 31: Some C62x Assembly Instructions

The following dependency graph was obtained. Functional units are allocated, and the graph is divided

into the two sides of the CPU:

- 45

*logEfor I *log
Locator++ Syndrome

A8 B6

SI I

templ LDW LDW temp2 ADDK
A7 .D1 .D2 B7 .S2

5 ADD \ 5 1 counter
.L1X B2

temp3
A9 1

\ B oB
I .S2

LDW
.D1 A B loop

antilog temp4
Table A2

XOR

B9

I

Figure 32: RSDiscrepancy() Loop Dependency Graph

The dependency graph shows that two log values are loaded from memory and added. The antilog of the

sum is loaded from memory and XOR'ed with the discrepancy. There are three memory loads in each

iteration, thus the software-pipelined loop requires at least two cycles (at most two memory loads can be

performed during each CPU cycle, one by .D1 and one by .D2). Because of the two stages of memory

loads, the software-pipelined discrepancy has a very large prolog and epilog. In the RS codes used to test

modifications to this decoder, RSDiscrepancy () was rarely called with a trip count large enough to

support software-pipelining, so the regular redundant loop was often used. In this function, the trip count

is related to t. In the RS codes used, t was always less than 8. If t were 12, the software-pipelined loop

would have been used more frequently. However, other issues (including the size of the logTable and

antilogTable arrays, and the complexities of different parts of the decoder) prohibit increasing t.

This is the software-pipelined loop:

ASMRSDiscrepancySPLoopProlog:

LDH

II LDH

*1ogSyndrome--,templ

*logErrorLocator++,temp2

NOP

LDH

LDH

NOP

LDH

LDH

ADD

[counter] ADDK

LDH

LDH

I I counter]

II

ADD
B

LDH

counter] ADDK

LDH

LDH

II counter]

I I

ADD
B

LDH

[counter] ADDK

LDH

LDH

ASMRSDiscrepancySPLoop:

ADD

I [counter]
II

counter]

B

LDH

XOR

ADDK

LDH

LDH

ASMRSDiscrepancySPLoopEpilog:

ADD

*logSyndrome--,templ

*logErrorLocator++,temp2

*logSyndrome--,templ

*1logErrorLocator++,temp2

templ,temp2,temp3

-1,counter

*1ogSyndrome--, templ

*logErrorLocator++,temp2

templ,temp2,temp3

ASMRSDiscrepancySPLoop

*+antilogTable[temp3],temp4

-1,counter

*logSyndrome--, templ

*logErrorLocator++,temp2

templ,temp2,temp3

ASMRSDiscrepancySPLoop

*+antilogTable[temp3],temp4

-1,counter

*logSyndrome--,templ

*logErrorLocator++,temp2

templ,temp2,temp3
ASMRSDiscrepancySPLoop

*+antilogTable[temp3],temp4

discrepancy,temp4,discrepancy

-1,counter

*logSyndrome--, templ

*logErrorLocator++,temp2

templ,temp2,temp3

.47

49 I LDH *+antilogTable[temp3],temp4
50
51 XOR discrepancy,temp4,discrepancy

52
53 ADD templ,temp2,temp3

54 LDH *+antilogTable[temp3],temp4

55
56 XOR discrepancy,temp4,discrepancy

57
58 ADD temp1,temp2,temp3

59 LDH *+antilogTable[temp3],temp4

60
61 XOR discrepancy,temp4,discrepancy

62
63 LDH *+antilogTable[temp3 ,temp4

64
65 XOR discrepancy,temp4,discrepancy

66
67 B B3 ; return from routine

68
69 XOR discrepancy,temp4,discrepancy

70
71 NOP
72
73 XOR discrepancy,temp4,discrepancy

74
75 M discrepancy,A4

76 NOP ; branch occurs after this NOP

Figure 33: Hand-Written Softare-Pipelined Regular-Assembly RSDiscrepancy() Loop

Note the size of the prolog and the epilog. Note also that the loop consists of two CPU cycles.

16-bit RSSymbol and RSLogSymbol
To this point, 32-bit (full-word) representations of symbols had been used. However, most practical RS

codes process symbols which can be represented in 16 bits (a half-word) or less. The C62x data memory

could be used more efficiently by changing the representation of symbols to half-words. The necessary

modifications were made and the memory benefits were seen immediately. Because memory loads have

four-cycle latencies, it would be worthwhile to make the most of each memroy load. Also, because the

load-word instruction takes no longer to execute than the load-half-word instruction, it is possible to

obtain a performance gain by using LDW to load and operate on two half-word symbols during each

iteration of a loop. In order to separate the loaded word into individual half-words, the LDW instruction

should be followed by a 16-bit shift (to get the high half-word) executed in parallel with a 16-bit mask (to

get the low half-word).

Because two different output values are computed at each iteration of the inner loop, essentially two

separate sets of data registers must be maintained, and the program forks in the loop. Two index values

must be updated, the loaded input word must be separated into two input half-words, two GF adds must

be performed, and two output half-words must be stored back to memory. The following dependency

graph was obtained for the inner loop of GFFourier () using double half-word loads.

- 49

A14 Symbols DA3

lowMask 5

.S1 SHR

A11 AND .H B.S2XLx symboll symbo2 antilog

SU 5lloopAll B11 Table2A7

L- antilogl 5 XOR IXOR 5/ antilog2
A9 S1 .S2 B9

LDH

.D 1 symboll symbol2 1 .D2All I B11

index L 1 1 index2

A SUB SUB B5 ADDK
.L1 .L2 S2

Figure 34: 1 GFFourier Inner Loop Dependency Graph, 16-Bit Data

condl assembly implementation of GFFourier (, the inner loop was first
Al .D2X B1

CMPLT N1CN2 MPLT

A13 B13

indexl index2.

SUB AIB SUB B5 loop
.L1 .L2

condl cond2
Al BI

indexl index2
A5 B5

ADD ADD
.L1 .L2

Figure 34: GFFourier() Inner Loop Dependency Graph, 16-Bit Data

Note that the dependency graph of the new inner loop forks, each path being processed by one side of the

CPU. In order to develop the new assembly implementation of GFFourier (), the inner loop was first

written, and the rest of the routine was written around it. Because twice as many inputs are processed at

each iteration, the trip count of the inner loop was halved, but in the RS codes used in this project,

GFFourier () was still always called with enough elements to use the software-pipelined loop.

Nevertheless, a regular redundant loop was written. Thus, with some effort, it became possible to obtain

100% more outputs at each iteration of the inner loop of the new GFFourier (), with only 67% more

cycles. The trade-off is register usage; many more registers must be used in the new implementation.

Two pointers to the antilogTable array and two N's are required (because of the side rules of the

load and compare instructions). Two indexes must be maintained, as well as two input symbols and two

conditional registers. Writing the rest of the routine to fit around this inner loop was more difficult,

because the inner loop used so many registers.

This is the software-pipelined assembly listing of the inner loop of GFFourier () using double-half-

word-loads.

ASMGFFourierLoop2Init:

[!condl]

[condl]

condl]

[condl]

[condl]

to count LDW in

LDW

MV

MV
NOP

CMPGT
B

EXTU

MV
SHRU
ADDK

prolog

NOP

ASMGFFourierLoop2Prolog:

I [counter]

[!condl]

I I [!cond2]

LDW

ADD

ADD

LDH

LDH

CMPLT

CMPLT

ADDK

SUB

SUB

*+parameters (0] ,counter

output, outputl

output, output2

2

counter, 2,condl

ASMGFFourierLoop2NotSP

counter,31,31,cond2

cond2,remainder

counter, l,counter

-1,counter

*outputl++,twoSymbols

indexl,indexStepTwice,index1

index2,indexStepTwice,index2

*+antilogTablel[indexl],antilogl

*+antilogTable2[index2],antilog2

indexl,Nl,condl

index2,N2,cond2

-1,counter

index1,N1,indexl

index2,N2, index2

51

31
32 ASMGFFourierLoop2:

33
34 CMPLT indexl,Ni,condl

35 CMPLT index2,N2,cond2

36
37 [!condl] SUB indexl,N1,index1

38 I [!cond2] SUB index2,N2,index2

39 AND twoSymbols,lowMask,symboll

40 SHRU twoSymbols,16,symbol2

41 LDW *outputl++,twoSymbols

42
43 ADD indexl,indexStepTwice,indexl

44 ADD index2, indexStepTwice,index2

45 XOR symboll,antilogl,symboll

46 I XOR symbol2,antilog2,symbol2

47 LDH *+antilogTablel(indexl),antilogl

48 [| LDH *+antilogTable2[index2),antilog2

49
50 CMPLT indexl,N1,condl

51 CMPLT index2,N2,cond2

52 Il counter] ADDK -1,counter

53 II STH symboll, output2++
54
55 [!condl] SUB indexl,N1,indexl

56 I([!cond2] SUB index2,N2,index2

57 11[counter] B ASMGFFourierLoop2
58 II STH symbol2,*output2++
59
60 ASMGFFourierLoop2Epilog:

61 CMPLT indexl,N1,condl

62 CMPLT index2,N2,cond2

63
64 [!condl] SUB index!,N, index!

65 1[E!cond2) SUB index2,N2,index2

66 j AND twoSymbols,lowMask,symboll

67 1 SHRU twoSymbois,16,symbol2

68
69 XOR symboll,antilogl,symboll

70 XOR symbol2,antilog2,symbol2
71
72 STH symboll,*output2++

73
74 STH symbol2,*output2++

Figure 35: Hand-Written Softare-Pipelined Regular-Assembly GFFourier() Inner Loop, 16-Bit Data

One especially difficult aspect of implementing double half-word loads was the alignment of some data.

The original program defined an array called workingStorage. This array was used by different

functions to temporarily store arrays. One function which used the workingStorage array was

30 11[counter] B ASMGFFourierLoop2

GFFourier () . In both calls to this function in RSDecode (), the output sequences are to be placed in

parts of workingStorage, and in one call, the input sequence is to be found in another part of

workingStorage.

workingStorage

"" syndrome I " I templ temp2

Figure 36: workingStorage Array

On the C62x, it is not possible to load just any two consecutive half-words using the load-word

instruction; the half-words must be located in the same word. That is to say, the 30 most significant bits

of the 31-bit addresses of the two half-words must be the same. Thus, if the arrays are not aligned

properly in workingStorage, a double half-word load at the beginning or end of a sequence located

within workingStorage could possibly load one invalid half-word. The program has no control over

how arrays are aligned within workingStorage.

One solution is to align arrays during linking such that the first double-half-word-load always accesses

two valid half-words, and to install an odd-ness check on the number of half-words to be loaded, treating

a single half-word at the end of the array as a special case. This is the solution implemented for

GFFourier () . The arrays of interest were defined such that they were individually alignable.

Originally, functions were given pointers into workingStorage; these pointers corresponded to the

beginnings of the arrays, but there was no guarantee that a pointer pointed to the beginning of a full-

word. Now, functions are given pointers to the beginnings of independent arrays, which the linker

automatically word-aligns.

^ 53

workingStorage
I syndrome templ temp 2

S syndrome " templ "' temp2 I"

Figure 37: A New Data Storage Format

It would not have been useful to software-pipeline RSDiscrepancy () with double data loads. The

function was hardly ever called with a large enough trip count in the first place. Thus, in the case of

RSDiscrepancy (), the data representations were simply changed from words to half-words. The RS

decoder with the two 16-bit assembly routines was tested with 1000 codewords. All codewords were

decoded correctly. The 16-bit routines actually performed slightly worse than the 32-bit routines. This

was probably due to the overhead introduced in the 16-bit assembly implementation of GFFourier ()

by operating on two inputs at once.

Euclid's Algorithm in C
Euclid's greatest-common-divisor algorithm can be used to find the error locator polynomial and error

evaluator polynomial in the Petersen-Gorenstein-Zierler algorithm. This algorithm was implemented,

replacing the existing implementation of the Berlekamp-Massey algorithm.

First, the basic Galois-field polynomial arithmetic functions were written in C: GFPolyXOR (),

GFPolyMultiply (), and GFPolyDivide (). Both addition and subtraction of elements of GF(2")

correspond to bitwise XOR, so both operations are handled by the function GFPolyXOR (). After writing

these functions, the RSEuclid () function was written. This function consists of some initializations, a

loop with the GF polynomial arithmetic function calls listed in the right order, and a stopping condition.

The Euclid implementation was incorporated into the RS decoder. The program was tested on 1000

codewords. All codewords were correctly decoded.

Assembly GF Polynomial Arithmetic
The C implementation of Euclid's algorithm was significantly slower than the implementation of the

Berlekamp-Massey algorithm, even though the Euclid version computes both A and fl. The functions

were rewritten in regular assembly. Because these functions were always called with a small trip count, it

was decided not to software-pipeline the loops. After much debugging, the assembly implementation of

Euclid's algorithm was verified.

Straight-Assembly
The normal development flow for the C62x is: ANSI C to C62x C to straight-assembly to regular

assembly. When ANSI C functions are too slow, they are optimized with C62x intrinsics and trip count

information. When C62x C functions are too slow, they are rewritten in straight-assembly which is given

to the assembly optimizer. Only when assembly optimizer output is too slow should the developer start

hand-writing regular assembly. The flow (generally) goes from most simple to implement to most

difficult to implement, and from most inefficient code to most efficient code. Sometimes the performance

improvement gained by hand-writing regular assembly is far outweighed by the difficulty of writing

assembly. The assembly optimizer outputs very efficient code, and straight-assembly is relatively simple

to write, so straight-assembly provides a near-ideal solution to writing assembly for the C62x.

Straight-assembly routines were written for GFFourier (), RSDiscrepancy (), GFPolyXOR (),

GFPolyMultiply (), and GFPolyDivide (). (Note that {RSDiscrepancy () } and

{GFPolyXOR () ,GFPolyMultiply (),GFPolyDivide () } are mutually exclusive, because the first

is used in Berlekamp's algorithm and the others are used in Euclid's algorithm.) Sometimes, the

assembly optimizer generated more efficient regular assembly, given the same program flow. In these

cases the output of the assembly optimizer was considered an upper limit on the performance

improvement available from this optimization strategy.

The operation of the RS decoder was verified on two different RS codes. Several parameters are different

among the RS codes. It was decided that the modifications were correct.

- 55

Observations
This sectiod lists the cycle counts of different versions of the RS decoder. The versions are differentiated

by their implementations of different stages. The C source was always compiled with the -o and -pm

compiler flags (see Background). Unless otherwise noted, each version used 16-bit symbols and logs. In

C, the data types RSSymbol and RSLogSymbol could be defined as short's (16 bits) or as int's

(32 bits). The GFFourier assembly routines have software-pipelined inner loops. For the most part, the

same ten sets of data were decoded by each version (see Background), and the cycle counts listed below

are averages. However, ten sets of data could not be loaded into C62x memory to run with the versions

using 32-bit symbols and logs; the data took too much memory. In those cases, the first five sets of test

data were loaded and used. Each corrupt RS codeword had 8 symbol errors, the maximum number of

correctable symbol errors for the RS code used. The locations and magnitudes of the errors were

randomly-determined. These are the parameters for the RS code used:

* m -8
* K - 188
* t -8
* g - 100011101
* a - 00000010
* m- - 0

* N - 255

Figure 38: Reed-Solomon Code Parameters

Note that g and a are listed in the binary polynomial representation, with the highest-degree coefficients

listed first. The rest of the parameters are in decimal notation. The numbers listed below are averages of

the sums of the cycle counts for the following RS decoding operations, over ten (or five) codewords:

1. Calculating S(x).

2. Calculating A(x) and Q(x).

3. Finding the roots of A(x).

4. Calculating the formal derivative of Q(x).

This operation is used in finding the magnitudes of the symbol errors.

- 56

5. Finding the magnitudes of the symbol errors and subtracting the symbol errors from the

received RS codeword.

The following operations are part of the RS decoder implementation, but their cycle counts are not

included in the numbers listed below:

1. Copying the first K symbols of the (corrupt) received RS codeword to the

correctedUserData array. Because a systematic RS code was used, the first K symbols

of the received codeword form the basis of the corrected user data block. This copy

operation is performed once, at the beginning of the RS decoding process.

2. Filling an array with the GF logs of the coefficients of S(x).

These logs are used in certain GF multiplication and division operations. The

logSyndrome array is filled once, after S(x) is computed. This is done by looking up the

GF log of each element in the syndrome array in the logTable array, and writing that

value into the logSyndrome array.

This is a description of the terms used in this section.

C GFFourier Original C GFFourier () function.
ASM GFFourier32 Hand-written, hand-software-pipelined, C-callable C62x assembly routine, using

32-bit symbols and logs. This routine is a functional equivalent of
GFFourier ().

ASM GFFourierl6 Hand-written, hand-software-pipelined, C-callable assembly routine using 16-bit
symbols and logs, performing double half-word loads. This routine is a functional
equivalent of GFFourier () .

SA GFFourier C-callable assembly output of assembly-optimizer, given hand-written straight-
assembly. This routine is a functional equivalent of GFFourier () .

C RSDS C RSDiscrepancy () function.
ASM RSDS32 Hand-written, hand-software-pipelined, C-callable assembly routine using 32-bit

symbols and logs. This routine is a functional equivalent of RSDiscrepancy () .
ASM RSDS 16 Hand-written, hand-software-pipelined, C-callable assembly routine using 16-bit

symbols and logs. This routine is a functional equivalent of RSDiscrepancy () .
SA RSDS C-callable assembly output of assembly-optimizer, given hand-written straight-

assembly. This routine is a functional equivalent of RSDiscrepancy () .
C RSEuclid C RSEuclid () function calling C functions for Galois-field polynomial

arithmetic (XOR, multiply, divide).
ASM RSEuclid C RSEuclid () function calling hand-written assembly routines for GF

polynomial arithmetic.
SA RSEuclid C RSEuclid () function calling C-callable assembly output of assembly-

optimizer, given straight-assembly routines for GF polynomial arithmetic.

Figure 39: Description of Terms

Berlekamp Euclid
C RSDS ASM ASM SA C ASM SA

RSDS32 RSDS16 RSDS RSEuclid RSEuclid RSEuclid

C GFFourier 60132.4 92504.8 59677.6 59905.4 62893.4 64723.4 60474.2
ASM GFFourier32 36993.2 36736.4 - - 40344.4 - -
ASM GFFourierl6 37289.6 - 36841.6 37069.4 40141.0 41970.6 37719.4
SA GFFourier 35663.9 35215.9 36123.0 38515.3 40344.9 36093.7

Figure 40: Average Cycle Counts Obtained

Each cell contains the average cycle count corresponding to a unique version of the RS decoder. Each

version computes the Galois-field discrete Fourier transform using one of the four implementations listed

above. The GFDFT is used twice in the Petersen-Gorenstein-Zierler algorithm, once to compute the

syndrome and once to find the roots of the error locator. In versions of the decoder using the Berlekamp-

Massey algorithm (to find the error locator polynomial), the discrepancy is calculated using one of four

implementations. In versions using Euclid's algorithm, one of three sets of Galois-field polynomial

arithmetic routines is used.

Cells along the row headed by ASM GFFourier32 and down the column headed by ASM RSDS32

contain cycle counts for the decoder using 32-bit representations of symbols and logs. Note the six cells

without cycle counts; it is not possible to build versions of the decoder with certain combinations,

because the assembly routines using 32-bit data are not compatible with the assembly routines using 16-

bit data, and the C environment treats the data as either 16 bits or 32 bits.

The following table lists user data throughputs calculated for each program executing on a C62x running

at 200 MHz. They describe the amount of user data decoded, in megabits per second. The numbers were

obtained assuming that one CPU cycle corresponds to one clock cycle. This is not a valid assumption in

practice, since CPU stalls are inevitable when accessing real memory (in these tests the cycle counts were

obtained using C62x simulation software). The sequence of instructions, the storage of data in memory,

" 58

and the type of memory used all affect the performance of a program. Thus, the following throughputs

are overly optimistic.

Berlekam -Massey Euclid
C RSDS ASM ASM SA C ASM SA

RSDS32 RSDS16 RSDS RSEuclid RSEuclid RSEuclid
C GFFourier 5.00 3.25 5.04 5.02 4.78 4.65 4.97
ASM GFFourier32 8.13 8.19 - - 7.46 - -
ASM GFFourier 16 8.07 - 8.16 8.11 7.49 7.17 7.97
SA GFFourier 8.43 - 8.54 8.33 7.81 7.46 8.33

Figure 41: Rough Estimates of Throughput

Conclusions
The results from the previous section can be used to make certain conclusions about the performance of

the different versions of the RS decoder:

1. Almost every modification made to the existing all-C RS decoder resulted in a reduction in

cycle count. The exceptions are the combination of C GFFourier and ASM RSDS32 and the

combination of C GFFourier and ASM RSEuclid.

2. The highest-performance combination (SA GFFourier and ASMRSDS 16) provides user data

throughput of about 8.5 megabits per second, or about 9.3 Mb/s total throughput. The all-C

compiler-optimized implementation using the Berlekamp-Massey algorithm (C GFFourier

and C RSDS) provides about 5.0 Mb/s user data throughput, or about 5.4 Mb/s total

throughput. The all-C compiler-optimized implementation using Euclid's algorithm (C

GFFourier and RSEuclid) provides about 4.8 Mb/s user data throughput, or about 5.2 Mb/s

total throughput. One set of modifications provide about 70% higher throughput than the

fastest all C compiler-optimized code.

3. Apparently, the C compiler makes object code that handles 32-bit symbols and logs very

inefficiently. The C GFFourier () function with 32-bit symbols and logs is the worst

performer. This could be confirmed by comparing results from more test cases using this RS

code, and by testing cases using larger RS codes.

4. Comparing numbers in any given row, it appears that ASM RSDS 6 is the fastest

discrepancy calculation. It also appears that SA RSEuclid contains the fastest set of GF

' polynomial arithmetic routines.

5. Comparing numbers in any given column, it appears that SA GFFourier is the fastest

implementation of the GFDFT.

6. The version using ASM GFFourierl6 and ASM RSDS16 is about 5% slower than the

version using SA GFFourier and SA RSDS. From this, it seems that the hand-written regular

assembly routines are highly efficient implementations of the GFDFT and discrepancy

calculation. The software-pipelined loop of SA RSDS is two cycles, as is the software-

pipelined loop of ASM RSDS 16. The software-pipelined inner loop of SA GFFourier is

three cycles. The software-pipelined inner loop of ASM GFFourierl6 is five cycles, but it

processes two inputs at each iteration. From this comparison, one would assume ASM

GFFourierl6 is generally faster. The inconsistency may reside elsewhere in the routine.

Note that in ASM GFFourierl6, the software-pipelined loop is inside another, non-software-

pipelined loop.

7. C RSDS is apparently more efficient than SA RSDS. This is probably because

RSDiscrepancy () is such a simple function that the C compiler had no trouble

optimizing it. Note that C RSDS is almost as fast as ASM RSDS16.

8. The fastest version implementing Euclid's algorithm, the combination of SA GFFourier and

SA RSEuclid, is only 2.5% slower than the fastest version implementing the Berlekamp-

Massey algorithm, the version using SA GFFourier and ASM RSDS 16. This is somewhat

surprising. Based on Wicker's information, it was expected that the implementation of

Euclid's algorithm would be much slower. Euclid's algorithm was easy to understand and

straight-forward to implement, and in this test it performed almost as well as the

Berlekamp-Massey algorithm.

9. Unfortunately, ASM RSEuclid did not perform as well as SA RSEuclid. In fact, it seems it

would generally be better to use the C version of RSEuclid than the hand-written assembly

60

version. The version using ASM GFFourierl6 and ASM RSEuclid is 14% slower than the

version using ASM GFFourierl6 and ASM RSDS 16, and 16% slower than the version using

SA GFFourier and SA RSEuclid. The critical loops in ASM RSEuclid were not software-

pipelined, because the trip counts, using most practical RS codes, are often too small to use

a software-pipelined loop. However, the assembly-optimizer and compiler-optimizer always

generate a software-pipelined inner loop, and this is one reason why the versions using SA

RSEuclid are faster than the versions using ASM RSEuclid.

10. The most dramatic differences in cycle count are seen when comparing versions using the C

GFFourier () function and versions using SA GFFourier. The GFDFT can still be

optimized much further, for any particular set of input and output sequence lengths, by

implementing a kind of fast Fourier transform.

11. The cycle-count for ASM GFFourierl6 and ASM RSDS16 is slightly slower than the cycle-

count for its 32-bit counterpart. The reason is probably the overhead involved in computing

for two input values in ASM GFFourier 16.

12. No program combination can sustain the throughput necessary for decoding a digital

television stream, as described by the US HDTV standard. That throughput is approximately

20 Mb/s [Spectrum, 37]. Interestingly, US HDTV does use a Reed Solomon code

[Spectrum, 43].

13. No program combination can sustain the throughput necessary for decoding a DVD-Video

stream. The throughput to the error correction decoder in a DVD-Video player is just over

13 Mb/s, which corresponds to approximately 11 Mb/s user data [DVD, §3-4].

14. Most program combinations provide similar throughputs. For example, analogous

combinations using Euclid vary only slightly in performance, and analogous combinations

using Belekamp-Massey vary only slightly in performance.* The reason is that the compiler,

assembly-optimizer, and human assembly programmer all use similar criteria and

techniques to optimize source code for the C62x. Because all three "systems" were given

similar implementations of the same algorithms (generic Galois-field Fourier transform,

Euclid, elementary-school polynomial multiplication, etc.), they output object code which

vary only slightly in performance. From this, one may conclude that the algorithms used in

the decoder were implemented (about) optimally. Note, however, this is not the same as

saying the decoder is optimal; using more efficient algorithms would have resulted in a

better-performing decoder.

The fact that combinations implementing Euclid and combinations implementing

Berlekamp-Massey performed roughly equivalently evidences that the two algorithms are,

from a CPU perspective, similar.

* The exception is C GFFourier, which consistently performed worse than the other

GFFourier implementations. The reason is that the C compiler-optimizer is not yet able to

make the kinds of optimizations made by the assembly-optimizer and the human

programmer. This has probably already been remedied.

In conclusion, the optimizations made in this project were not sufficient to allow the use of the RS

decoder in high-throughput multimedia applications. However, at 1600 MIPS, the C62x is definitely

capable of performing high-throughput processing, and although several modifications were made, the

final RS decoder is by no means optimal.

Further Work
The modified RS decoder can be improved significantly. As stated above, a kind of fast Fourier transform

can be implemented for use with one particular set of RS code parameters. The trade-off is the versatility

gained by using a generic Fourier transform function. Perhaps the compiler could conditionaly compile

the FFT function when the special RS code is used, and in other cases compile the generic

GFFourier () function. Because the Fourier transform is critical, implementing an FFT would vastly

improve the performance of the decoder. In some program combinations using an FFT, it may be possible

to achieve the user data throughput necessary for DVD-Video.

62

Another area for improvement is the implementation of the GF polynomial arithmetic, in C and in

assembly. Elementary-school multiplication and division were implemented. While simple to understand

and implement, these algorithms are not efficient. Multiplication of two polynomials of N coefficients

each requires about N2 coefficient multiplications and additions. The polynomial division is similarly

complex. Because the Euclid implementation is currently only slightly slower than the Berlekamp-

Massey implementation, more efficient algorithms could make Euclid slightly faster than Berlekamp-

Massey.

Finally, it could be possible to improve the method by which the roots of the error locator are found.

Huber presents one alternative to the Chien search.

References
[Clark] Clark, George C.

Error-correction coding for digital communications
Plenum Press, 1981

[Dillon] Dillon, Thomas J., Jr.
The Use of Software Pipelining in Developing DSP Algorithms for the TMS320C6x
TMS320C62x Applications Engineering Group, Texas Instruments
November 1997

[DVD] Taylor, Jim
DVD FAQ
http://www.videodiscovery.com/vdyweb/dvd/dvdfaq.html
(Accessed March 1998)

[Huber] Huber, Klaus

"Solving Equations in Finite Fields and Some Results Concerning the Structure of GF(pm)"

IEEE Transactions on Information Theory, Vol. 38, No. 3, May 1992

[Rowlands] Rowlands, Jon
Reed-Solomon Error Correcting Codes Tutorial
Integrated Systems Laboratory, DSP Technology Branch, Texas Instruments
8 September 1993

[Spectrum] Basile, C.; Cavallerano, A.P.; Deiss, M.S.; Keeler, R.; Lim, J.S.; Luplow, W.C.; Paik,
W.H.; Petajan, E.; Rast, R.; Reitmeier, G.; Smith, T.R.; Todd, C.
"The US HDTV Standard"
IEEE Spectrum, Vol. 32, No. 4, April 1995

[TICIS] Texas Instruments
TMS320C62xx CPU and Instruction Set Reference Guide
July 1997

[TIOCC] Texas Instruments
TMS320C6x Optimizing C Compiler User's Guide (Preliminary)
July 1997

[TIWWW] Texas Instruments
http://www.ti.com/sc/docs/news/1997/97001a.htm
(Accessed December 1997)

[Wicker] Wicker, Stephen B.
Error Control Systems for Digital Communication and Storage
Prentice Hall, 1995

"64

The appendices contain the source code written for this project; describe modifications made to the
source code for the original RS decoder; and include useful data files. The source code for the original C
RS decoder.is Texas Instruments internal data; it cannot be published with this paper. Throughout these
appendices, modifications to that source code, as they pertain to the optimization of the RS decoder, are
thoroughly described, and excerpts from the modified source code are presented.

Appendix A - C Implementation of Euclid's Algorithm
This section lists the C functions which were written to implement Euclid's algorithm in the RS decoder.
The input is the syndrome and RS code parameters. The outputs are the error locator and the error
evaluator.

GFPolyAdd, GFPolySubtract

1 /*
2 * GF Polynomial Arithmetic Functions
3 * Kamal Swamidoss
4 * November 1997
5 *

6 */
7 #if defined(UseMyRSEuclid)

UseMyRSEuclid is a preprocessor value. It can be defined in the file modef ile. h (see Appendix E -
Modefile). If UseMyRSEuclid is defined, then the C code for Euclid's algorithm is compiled.

8 #if (!defined(UseASMGFPolyXOR) && !defined(UseSAGFPolyXOR))

At most one of UseASMGFPolyXOR and UseSAGFPolyXOR can be defined in modef ile .h. The
former indicates to the compiler that an assembly routine will perform the GF polynomial addition and
subtraction operations. The latter indicates that a straight-assembly routine will perform the operations.
The C functions GFPolyAdd () and GFPolySubtract () are compiled only if neither preprocessor
value is defined.

9 void GFPolyAdd(RSCode *code,
10 const RSSymbol *firstPolynomial,
11 const RSSymbol *secondPolynomial,
12 RSSymbol *sum,
13 int firstPolynomialDegree,
14 int secondPolynomialDegree,
15 int *sumDegree) {
16 int i;
17 RSSymbol *holdPolynomial;
18 int holdDegree;
19
20 if (firstPolynomialDegree < secondPolynomialDegree) {
21 holdPolynomial = (RSSymbol *) firstPolynomial;
22 firstPolynomial = secondPolynomial;
23 secondPolynomial = (const RSSymbol *) holdPolynomial;
24 holdDegree = firstPolynomialDegree;
25 firstPolynomialDegree = secondPolynomialDegree;
26 secondPolynomialDegree = holdDegree;
27 }

If necessary, the input polynomial pointers are swapped.

28 for (i=O;i<=secondPolynomialDegree;++i)
29 *sum++ = GFAdd(code, *"firstPolynomial++,*secondPolynomial++);
30
31 for (i=0; i<firstPolynomialDegree-secondPolynomialDegree;++i)

32 *sum++ = *firstPolynomial++;
33
34 holdPolynomial = --sum;
35 holdDegree = firstPolynomialDegree;
36
37 while ((holdDegree > 0) && (*holdPolynomial-- == 0))
38 --holdDegree;
39
40 *sumDegree = holdDegree;
41)
42
43 INLINE
44 void GFPolySubtract(RSCode *code,
45 const RSSymbol *firstPolynomial,
46 const RSSymbol *secondPolynomial,
47 RSSymbol *difference,
48 int firstPolynomialDegree,
49 int secondPolynomialDegree,
50 int *differenceDegree) {
51 GFPolyAdd(code,
52 firstPolynomial,
53 secondPolynomial,
54 difference,
55 firstPolynomialDegree,
56 secondPolynomialDegree,
57 differenceDegree);
58)
59 #elif defined(UseASMGFPolyXOR)

The following section of C code is compiled if ASMGFPolyXOR, a regular assembly routine, is to be
used to perform the GF polynomial addition and subtraction. The assembly routine can be assembled and
linked into the decoder. Note that the different definitions of GFPolyAdd () and GFPolySubtract ()
are mutually exclusive; that is, exactly one set of functions is defined in any build. RSEuclid () calls
the functions GFPolyAdd (), GFPolySubtract (), GFPolyMultiply (), and
GFPolyDivide ().

60 INLINE
61 void GFPolyAdd(RSCode *code,
62 RSSymbol *firstPolynomial,
63 RSSymbol *secondPolynomial,
64 RSSymbol *sum,
65 int firstPolynomialDegree,
66 int secondPolynomialDegree,
67 int *sumDegree) {
68 ASMGFPolyXOR(firstPolynomial,
69 secondPolynomial,
70 firstPolynomialDegree,
71 secondPolynomialDegree,
72 sum,
73 sumDegree);

INLINE
void GFPolySubtract(RSCode *code,

RSSymbol *firstPolynomial,
RSSymbol *secondPolynomial,
RSSymbol *difference,
int firstPolynomialDegree,
int secondPolynomialDegree,
int *differenceDegree) {

ASMGFPolyXOR(firstPolynomial,
secondPolynomial,
firstPolynomialDegree,
secondPolynomialDegree,

88 difference,
89 differenceDegree);
90
91 #elif defined(UseSAGFPolyXOR)

The following section is compiled when the straight-assembly routine SAGFPolyXOR is to be used.

INLINE
void GFPolyADD(RSCode *code,

RSSymbol *firstPolynomial,
RSSymbol *secondPolynomial,
RSSymbol *sum,
int firstPolynomialDegree,
int secondPolynomialDegree,
int *sumDegree)

SAGFPolyXOR(firstPolynomial,
secondPolynomial,
firstPolynomialDegree,
secondPolynomialDegree,
sum,
sumDegree);

INLINE
void GFPolySubtract(RSCode *code,

RSSymbol *firstPolynomial,
RSSymbol *secondPolynomial,
RSSymbol *difference,
int firstPolynomialDegree,
int secondPolynomialDegree,
int *differenceDegree) {

SAGFPolyXOR(firstPolynomial,
secondPolynomial,
firstPolynomialDegree,
secondPolynomialDegree,
difference,
differenceDegree);

#endif /* #if (!defined(UseASMGFPolyXOR) && !defined(UseSAGFPolyXOR)) */

GFPolyMultiply
The GF polynomial multiply operation is performed as elementary-school polynomial multiplication,
except in this case, it is performed on GF elements. A more efficient polynomial multiplication algorithm
would yield significantly better performance. The regular assembly routine is called
ASMGFPolyMultiply, and the straight-assembly routine is called SAGFPolyMultiply.

1 #if (!defined(UseASMGFPolyMultiply) && !defined(UseSAGFPolyMultiply))
2 void GFPolyMultiply(
3 RSCode *code,
4 const RSSymbol *firstPolynomial,
5 const RSSymbol *secondPolynomial,
6 RSSymbol *product,
7 int firstPolynomialDegree,
8 int secondPolynomialDegree,
9 int *productDegree)
10
11 int i;
12 RSSymbol *holdPolynomial;
13 int holdDegree;
14 const RSSymbol *ptrl,*ptr2;
15 RSSymbol *ptr3;
16 RSSymbol *productProgress;
17 int counterl,counter2;

- 67

if (firstPolynomialDegree < secondPolynomialDegree) {
holdPolynomial = (RSSymbol *) firstPolynomial;
firstPolynomial = secondPolynomial;
secondPolynomial = (const RSSymbol *) holdPolynomial;
holdDegree = firstPolynomialDegree;
firstPolynomialDegree = secondPolynomialDegree;
secondPolynomialDegree = holdDegree;

*productDegree = firstPolynomialDegree + secondPolynomialDegree;

for (i=0;i<=*productDegree;++i)
product[i] = 0;

counter2 = secondPolynomialDegree+l;
ptr2 = secondPolynomial;
productProgress = product;
ptr3 = productProgress++;

while (counter2-- > 0) {
counterl = firstPolynomialDegree+l;
ptrl = firstPolynomial;

while (counterl-- > 0)
*ptr3 = GFAdd(code,

*ptr3,
GFMultiply(code,

*ptrl,
*ptr2));

++ptrl;
++ptr3;

++ptr2;
ptrl = firstPolynomial;
ptr3 = productProgress++;

holdDegree = *productDegree;
holdPolynomial = &(product[holdDegree]);

while ((holdDegree > 0) && (*holdPolynomial-- == 0))
--holdDegree;

*productDegree = holdDegree;

#elif defined(UseASMGFPolyMultiply)
INLINE
void GFPolyMultiply(

RSCode *code,
RSSymbol *firstPolynoml
RSSymbol *secondPolyno
RSSymbol *product,
int firstPolyno
int secondPolyn
int *productDegr

ASMGFPolyMultiply(
firstPolynomial,
secondPolynomial,
firstPolynomialDegree,
secondPolynomialDegree,
product,
productDegree);

ial,
nial,

,mialDegree,
omialDegree,
ee) {

#elif defined(UseSAGFPolyMultiply)

INLINE
void GFPolyMultiply(

RSCode *code,
RSSymbol *firstPolynomial,
RSSymbol *secondPolynomial,
RSSymbol *product,
int firstPolynomialDegree,
int secondPolynomialDegree,
int *productDegree) {

SAGFPolyMultiply(
firstPolynomial,
secondPolynomial,
firstPolynomialDegree,
secondPolynomialDegree,
product,
productDegree);

#endif /* #if (!defined(UseASMGFPolyMultiply) &&
* !defined(UseSAGFPolyMultiply))
*/

GFPolyDivide
The GF polynomial divide operation is similar to elementary-school polynomial division. Again, a better
algorithm would produce better results. The regular assembly routine is called ASMGFPolyDivide, and
the straight-assembly routine is called SAGFPolyDivide. The MyPrint... () functions allow the
developer to see the contents of arrays during run-time (for debugging purposes).

I #if (!defined(UseASMGFPolyDivide) && !defined(UseSAGFPolyDivide))
2 void GFPolyDivide(
3 RSCode *code,
4 const RSSymbol *numerator,
5 const RSSymbol *denominator,
6 RSSymbol *quotient,
7 RSSymbol *remainder,
8 int numeratorDegree,
9 int denominatorDegree,
10 int *quotientDegree,
11 int *remainderDegree) {
12
13 int counterl;
14 const RSSymbol *ptrl;
15 RSSymbol *ptr2;
16 RSSymbol div,prod;
17 int quotientIndex,remainderIndex;
18 int i;
19
20 counterl = numeratorDegree+l;
21 ptr2 = remainder;
22 ptrl = numerator;
23
24 while (counterl-- > 0)
25 *ptr2++ = *ptTl++;
26

27 *remainderDegree = numeratorDegree;
28
29 if (numeratorDegree < denominatorDegree)
30 *quotientDegree = 0;
31 quotient[0] = 0;
32 return;
33
34
35 *quotientDegree = numeratorDegree - denominatorDegree;
36 quotientIndex = *quotientDegree;

69

while (*remainderDegree >= denominatorDegree)
div = GFDivide(code,

remainder[*remainderDegree],
denominator[denominatorDegree]);

quotient[quotientIndex--] = div;
remainderIndex = *remainderDegree;

for (i=denominatorDegree;i>=O;--i)
prod = GFMultiply(code,

div,
denominator[il);

remainder[remainderIndex] = GFSubtract(code,
remainder[remainderIndex],
prod);

--remainderIndex;

--*remainderDegree;

#if defined(EnableConsoleOutput)
/*

MyPrintRSSymbolArray("tmpRemainder: ",remainder,*remainderDegree+l);
*/

#endif /* #if defined(EnableConsoleOutput) */
}

ptr2 = "ient(quotientIndex];

while (quotientIndex-- >= 0)
*ptr2-- = 0;

quotientIndex = *quotientDegree;
ptr2 = "ient[quotientIndex];

while ((quotientIndex > 0) && (*ptr2-- == 0))
--quotientIndex;

*quotientDegree = quotientIndex;

remainderIndex = numeratorDegree;
ptr2 = &remainder[remainderIndex];

while ((remainderIndex > 0) && (*ptr2-- == 0))
--remainderIndex;

*remainderDegree = remainderIndex;
}
#elif defined(UseASMGFPolyDivide)
INLINE
void GFPolyDivide(

RSCode
RSSymbol
RSSymbol
RSSymbol
RSSymbol
int
int
int
int

ASMGFPolyDivide(
numerator,
denominator,
quotient,

*code,
*numerator,
*denominator,
*quotient,
*remainder,
numeratorDegree,
denominatorDegree,
*quotientDegree,
*remainderDegree) {

remainder,
numeratorDegree,
denominatorDegree,
quotientDegree,
remainderDegree,
code);

#elif defined(UseSAGFPolyDivide)
INLINE
void GFPolyDivide(

RSCode *code,
RSSymbol *numerator,
RSSymbol *denominator,
RSSymbol *quotient,
RSSymbol *remainder,
int numeratorDegree,
int denominatorDegree,
Int *quotientDegree,
int *remainderDegree)

SAGFPolyDivide(
numerator,
denominator,
quotient,
remainder,
numeratorDegree,
denominatorDegree,
quotientDegree,
remainderDegree,
code);

132 #endif /* #if (!defined(UseASMGFPolyDivide) && !defined(UseSAGFPolyDivide)) */

Euclid
This function is called to obtain the error locator and error evaluator polynomials. The error evaluator is
given in log form because the rest of the decoder uses it in that form. As stated before, Clark's
interpretation of Euclid's algorithm is implemented here.

void RSEuclid(RSCode *code,
const RSSymbol *syndrome,
RSSymbol *errorLocator,
int "errorLocatorDegree,
RSLogSymbol *logErrorEvaluator,
int *errorEvaluatorDegree) {

int i;
RSSymbol *q;
RSSymbol "r,' pi,*rp;
RSSymbol *t, tp,*tpp;
RSSymbol *im;
RSSymbol *hold,*hold2;
RSLogSymbol *logHold;
RSSymbol temp;
int qDegree;
int rDegree,rpDegree,rppDegree;
int tDegree,tpDegree,tppDegree;
int imDegree;
int holdDegree;
int tCopy;

tCopy = code->numberOfCorrectableErrors;

/* address memory */
q = code->euclid0;
r = code->euclidl;
rp = code->euclid2;

- 71

28 rpp = code->euclid3;
29 t = code->euclid4;
30 tp = code->euclid5;
31 tpp = code->euclid6;
32 im = code->euclid7;

The code->euc lid? pointers point to temporary storage arrays (see Appendix H - Modifications to
RSCode). The next few lines initialize the state polynomials.

33 /* initialize polynomials */
34
35 for (i=0;i<2*tCopy;++i)
36 *rpp++ = 0;
37 *rpp++ = 1;
38 *rpp = 0;
39 rpp = code->euclid3;
40 rppDegree = 2*tCopy;
41
42 hold = (RSSymbol *) syndrome;
43 for (i=0;i<2*tCopy;++i)
44 *rp++ = *hold++;
45
46 *rp++ = 0;
47 *rp = 0;
48
49
50 rp--;
51 rpDegree = 2*tCopy-l;
52
53 while ((*rp == 0) && (rp > code->euclid2))
54 --rp;
55 --rpDegree;
56 }
57
58 rp = code->euclid2;
59
60 for (i=0;i<2*tCopy+2;++i) (
61 *tpp++ = 0;
62 *tp++ = 0;
63 *t++ = 0;
64 *r++ = 0;
65 *q++ = 0;
66 *im++ = 0;
67 }
68
69 tpp = code->euclid6;
70 tp = code->euclid5;
71 t = code->euclid4;
72 r = code->euclidl;
73 q = code->euclid0;
74 im = code->euclid7;
75
76 tp[O] = 1;
77 tpDegree = 0;
78
79 tppDegree = 0;
80
81 rDegree = -1;
82 qDegree = -1;
83 tDegree = -1;
84 imDegree = -1;
85 *errorLocatorDegree = -1;

This is the main loop of Euclid's algorithm. Several calls to MyPrint ... () functions, used during
debugging, have been commented out.

86 do {(
87 /* Get q and r */
88 GFPolyDivide(code,
89 rpp,
90 rp,
91 q,
92 r,
93 rppDegree,
94 rpDegree,
95 &qDegree,
96 &rDegree);
97
98 #if defined(EnableConsoleOutput)
99 /*

100 puts("After Divide (logs):");
101 MyPrintRSSymbolArrayLog(code,"
102 MyPrintRSSymbolArrayLog(code,"
103 MyPrintRSSymbolArrayLog(code,"
104 MyPrintRSSymbolArrayLog(code,

puts("After Divide:");
MyPrintRSSymbolArray("
MyPrintRSSymbolArray("
MyPrintRSSymbolArray("
MyPrintRSSymbolArray("
*1

rpp:
rp:
q:
r:

rpp:
rp:
q:
r:

",rpp,rppDegree+l);
",rp,rpDegree+l);
",q,qDegree+l);
",r,rDegree+l);

",rpp,rppDegree+l);
",rp,rpDegree+l);
",q,qDegree+l);
",r,rDegree+l);

#endif /* #if defined(EnableConsoleOutput) */

/* Get im = q*tp */
GFPolyMultiply(code,

tp,
im, /* im gets product */
qDegree,
tpDegree,
&imDegree);

#if defined(EnableConsoleOutput)
/*

puts("After Multiply (logs):");
MyPrintRSSymbolArrayLog(code,"
MyPrintRSSymbolArrayLog(code,"
MyPrintRSSymbolArrayLog(code,"

puts("After Multiply:");
MyPrintRSSymbolArray(" q:
MyPrintRSSymbolArray(" tp:
MyPrintRSSymbolArray(" im:
*/

",q,qDegree+l);
",tp,tpDegree+l);
",im,imDegree+l);

,q,qDegree+l);
",tp,tpDegree+l);
",im,imDegree+l);

#endif /* #if defined(EnableConsoleOutput) */

/* Subtract im (= q*tp) from tpp */
GFPolySubtract(code,

tpp,
im,

tppDegree,
imDegree,
&tDegree

#if defined(EnableConsoleOutput)

73

148 /*
149 puts("After Subtract (logs):");
150 MyPrintRSSymbolArrayLog(code," tpp:
151 MyPrintRSSymbolArrayLog(code," im:
152 MyPrintRSSymbolArrayLog(code," t:
153
154 puts("After Subtract:");
155 MyPrintRSSymbolArray(" tpp: ",t
156 MyPrintRSSymbolArray(" im: ",i
157 MyPrintRSSymbolArray(" t: ",t
158 */
159 #endif /* #if defined(EnableConsoleOutput) */

",tpp,tppDegree+l);
",im,imDegree+l);
",t,tDegree+l);

pp,tppDegree+l);
m,imDegree+l);
,tDegree+l);

The following lines update the state polynomials as the algorithm iterates. Note that only the pointers are
updated; the array elements are not moved.

160 hold = tpp;
161 holdDegree = tppDegree;
162 tpp = tp;
163 tppDegree = tpDegree;
164 tp = t;
165 tpDegree = tDegree;
166 t = hold;
167 tDegree = holdDegree;
168
169 hold = rpp;
170 holdDegree = rppDegree;
171 rpp = rp;
172 rppDegree = rpDegree;
173 rp = r;
174 rpDegree = rDegree;
175 r = hold;
176 rDegree = holdDegree;
177
178 } while (rpDegree >= tCopy);

The loop is executed until the stopping condition is satisfied. At that point, the error locator is scaled (if
necessary), and the error evaluator is converted to log form.

/* We're copying tp and not t
* because of the shift at the end of the iteration.

* Also note that tp[tpDegree] is never zero, because of the
* construction of the error locator polynomial.
*/

hold = errorLocator;
hold2 = tp;

if (tp[01 != 1) {
temp = tp[O];

for (i=0;i<=tpDegree;++i)
*hold++ = GFDivide(code,*hold2++,temp);

logHold = logErrorEvaluator;
hold2 = rp;

for (i=0;i<=rpDegree;++i)
*logHold++ = GFLog(code,GFDivide(code,*hold2++,temp));

} else {
for (i=0;i<=tpDegree;++i)
*hold++ = *hold2++;

logHold = logErrorEvaluator;

204 hold2 = rp;
205
206 for (i=O;i<=rpDegree;++i)
207 *logHold++ = GFLog(code,*hold2++);
208 }
209
210 *errorLocatorDegree = tpDegree;
211 *errorEvaluatorDegree = rpDegree;
212
213 #if defined(EnableConsoleOutput)
214 /*
215 MyPrintRSSymbolArrayLog(code,
216 "logSyndrome:
217 (RSSymbol *) syndrome,
218 2*code->numberOfCorrectableErrors);
219 MyPrintRSSymbolArrayLog(code,
220 "logErrorLocator:
221 errorLocator,
222 *errorLocatorDegree+l);
223 MyPrintRSLogSymbolArrayLog("logErrorEvaluator:
224 logErrorEvaluator,
225 *errorEvaluatorDegree+l);
226
227 MyPrintRSSymbolArray("syndrome:
228 (RSSymbol *) syndrome,
229 2*code->numberOfCorrectableErrors);
230 MyPrintRSSymbolArray("errorLocator:
231 errorLocator,
232 *errorLocatorDegree+1);
233 MyPrintRSLogSymbolArray(code,
234 "errorEvaluator:
235 logErrorEvaluator,
236 *errorEvaluatorDegree+l);
237 "/
238 #endif /* #if defined(EnableConsoleOutput) */
239
240 return;
241 }
242
243 #endif /* #if defined(UseMyRSEuclid) */

- 75

Appendix B - Regular Assembly Files
This section lists six of the seven regular assembly files. The seventh file, containing the 32-bit
implementation of RSDiscrepancy (), is virtually identical to the 16-bit implementation listed here
(the same algorithm is implemented in the same way; the only difference is that symbols are accessed as
32-bit values). In general, these routines are direct implementations of the corresponding C functions.

ASMGFFourier32 - 32-bit GFFourierO
This routine can be used when symbols and logs are represented in 32 bits. The header describes how this
function can be called from C. As per the C calling convention, upon entering the routine from C, the
first argument to the C function is found in register A4, the second in B4, the third in A6, the fourth in
B6, and the fifth in A8.

1 w***

2 *
3 * ASMGFFourier32 - Galois-field discrete Fourier transform
4 * 32-bit RSSymbol, RSLogSymbol
5 * C-callable

6 * for use with RSDecode

* void ASMGFFourier32()
* RSCode
* GFFourierParameters
* int
* RSSymbol
* RSSymbol

*code,
*parameters,
numberOfInputSymbols,

input [],
output [H

16 *
17 ***

The following assembler directives are useful for printing the assembly file to paper.

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH

. set

. set

. set

. tab

.width

. length

.set

. set

. set

8
78
75

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH

B5
B14
B15

The following lines align the object code (in program memory) on a 32-bit boundary, and define
_logTable, _antilogTable, and _ASMGFFourier32 as global variables. _logTable and
_antilogTable correspond to the C pointers logTable and antilogTable.

ASMGFFourier3 2 is the name of the assembly routine.

31
32
33
34
35 _ASMGFFourier32:
36
37 ASMGFFourierEnter:

.align

.global

.global

32

_logTable,_antilogTable
ASMGFFourier32

.text

- 76

*38 STK_SIZEI .set 8
39 ADDK -4*STK_SIZE1,SP
40 STW AIO,*+SP[1]
41 STW All,*+SP[2]
42 STW A12,*+SP[3]
43 STW Bll,*+SP[4]
44 STW B12,*+SP[5]
45 STW Bl3,*+SP[6]
46
47 ASMGFFourierStart:

The following assembler directives assign registers to assembly variables. While defining variables and
choosing assignments, it was necessary to consider several factors, including the side rules of various
instructions (see Background) and the initial locations of the function's arguments. Some variables were
defined while software-pipelining the inner loop; the remaining variables were defined as the rest of the
assembly code was written around the inner loop.

48 N .set A9
49 logTable .set All
50 antilogTable .set AO
51 numberOfOutputSymbols .set B9
52 numberOf InputSymbols .set B2
53 indexStep .set A5
54 indexStepStep .set B11
55 startingIndex .set B12
56 startingIndexStep .set B13
57 input .set A12
58 outputl .set B5
59 output2 .set B7
60 index .set A3
61 templ .set A10
62 temp2 .set BO
63 temp3 .set A2
64 temp4 .set Al

The following lines load values from the RSCode and GFFourierParameters structures.

65 LDW *A4[1],N
66 LDW *B4[0],numberOfOutputSymbols
67 LDW *B4[2],startingIndex
68 LDW *B4[3],startingIndexStep
69 LDW *B4[4],indexStep
70 LDW *B4[5],indexStepStep

The following lines move the addresses of the log and antilog arrays into the appropriate registers.

71 MVK _logTable,logTable
72 MVKH _logTable,logTable
73 MVK _antilogTable,antilogTable
74 MVKH antilogTable,antilogTable

The following lines move the function's arguments to the appropriate registers.

75 MV A6,numberOf InputSymbols
76 MV B6,input
77 MV A8,outputl
78

The counter test is used to determine if the number of inputs is large enough to use the software-pipelined
loop. Note that this routine returns to the calling function if the number is too small. The 16-bit version
(listed later in this section) contains a redundant, non-software-pipelined loop which is used when the

number of inputs is too small to use the software-pipelined loop. In the RS codes used in this project, the
number of input symbols was always large enough to use the software-pipelined loop.

ASMGFFourierTest:
MV
SUB

numberOfOutputSymbols,temp3

temp3,2,temp3
; for software-pipelining
CMPGT temp3,0,temp4

[!temp4] B ASMGFFourierExit
NOP 5

ASMGFFourierInitOutput:
LDW

; temp3
MV
MV
NOP

ASMGFFourierInitOutputLoop:
[temp4] B
[temp4] STW
[temp4] ADDK

NOP

ASMGFFourierLoopl:

[numberOfInputSymbolsJ LDW
NOP

[!temp3] B
NOP

LDW
NOP
ADD
CMPLT

[!temp3] SUB

ASMGFFourierLoop2Init:
MV
SUB
MV
MV

ASMGFFourierLoop2 Prolog:
ADD

I I LDW
I I LDW

II[temp3]
CMPLT
ADDK

[temp3] B
II[!temp4] SUB

I[temp3]

ADD
LDW

LDW

CMPLT
ADDK

ASMGFFourierLoop2:
XOR

I[temp3] B
II[!temp4] SUB

*B411],temp3
= constantValue

outputl,temp2
numberOfOutputSymbols,temp4

ASMGFFourierInitOutputLoop

temp3,*temp2++
-1,temp4
3

*input++,temp3

4
ASMGFFourierLooplContinue
5

*+logTable[temp3],temp3

4
temp3,startinglndex,index
index,N, temp3
index,N,index

numberOfOutputSymbols,temp3
temp3,2,temp3
A8,outputl
A8,output2

index,indexStep,index
*+antilogTable[index],templ
*outputl++,temp2

index,N,temp4
-1,temp3

ASMGFFourierLoop2
index,N,index

index,indexStep,index
*+antilogTable[index],templ

*outputl++,temp2

index,N, temp4
-1,ternp3

temp2,templ,temp2
ASMGFFourierLoop2
index,N,index

78

I [temp3]

ADD
LDW
LDW

CMPLT
ADDK
STW

ASMGFFourierLoop2Epilog:
XOR

Il[!temp4] SUB

NOP

STW

XOR

NOP

STW

ASMGFFourierLooplContinue:
ADD
ADD
CMPLT
CMPLT

[!temp3] SUB
[!temp4] SUB

[numberOflnputSymbols] ADDK
[numberOfInputSymbols] B

NOP

ASMGFFourierExit:
LDW
LDW
LDW
LDW
LDW
LDW
B
ADDK
NOP

index,indexStep,index
*+antilogTable[index],templ
*outputl++,temp2

index,N, temp4
-1, temp3
temp2,*output2+-

temp2,templ,temp2
index,N,index

temp2,*output2+-

temp2,templ,temp2

temp2,*output2++

startingIndex,startingIndexStep,startinglndex
indexStep,indexStepStep,indexStep
startingIndex,N,temp3
indexStep,N, temp4
startinglndex,N,startingIndex
indexStep,N,indexStep
-l,numberOfInputSymbols
ASMGFFourierLoopl
5

*+SP[6],B13
*+SP[5],B12

*+SP[4],B11
*+SP[3],A12
*+SP[2],A11
*+SP[1],A10

B3
4*STK_SIZE1,SP
4

ASMGFFourier - 16-bit GFFourier
This routine can be used when symbols and logs are represented in 16 bits. The following file contains
the register assignments for this routine. Again, several factors were considered when making these
assignments. In fact, register assignment was one of the more difficult aspects of writing assembly in this
project. Every C62x register was used in this routine. The value in every register must be saved to the
software stack before the register is used, and the values must be restored before the routine returns. As
described previously, this implementation of the software-pipelined inner loop required many variables.

Register Allocation

* Register Allocation
* for ASMGFFourier() in gffrl6.asm
* Kamal Swamidoss
* December 1997

outputl .set
output2 .set
twoSymbols .set

A14
B14
A3

9 indexl .set A5
10 index2 .set B5
11 indexStepTwice .set B12
12 antilogTablel .set A7
13 antilogTable2 .set B7
14 antilogl .set A9
15 antilog2 .set B9
16 counter .set B2
17 condl .set Al
18 cond2 .set B1
19 lowMask .set A12
20 symboll .set All
21 symbol2 .set B11
22 N1 .set A13
23 N2 .set B13
24 remainder .set A2
25 code .set A4
26 parameters .set B4
27 numberOfInputSymbols .set A6
28 input .set B6
29 output .set A8
30 inputCounter .set BO0
31
32 constantValue .set AO
33 1ogTable .set A15
34 startingIndex .set A10
35 indexStep .set B10
36 smartingIndexStep .set B3
37 indexStepStep .set B8

Instructions

1 *********************************
2
3 * ASMGFFourier() in TMS320C6201 Scheduled Assembly
4 * C-callable

5 * 16-bit RSSymbol

6 * 16-bit RSLogSymbol
7

8 * Written by: Kamal Swamidoss
9 * 16 October 1997
10

11 * Based on: C Code from Jon Rowlands
12 *

13 * void
14 * GFFourier(

15 * RSCode *code,
16 * GFFourierParameters *parameters,
17 int numberCfInputSymbols,
18 RSSymbol input[],
19 * RSSymbol output[]
20 *);

21
22 ***

23
24 MYTABSIZE .set 8
25 MYPAGEWIDTH .set 78
26 MYPAGELENGTH .set 75
27
28 ? .set B5
29 DP .set B14
30 s? .set B15
31
32 .tab MYTABSIZE

- 80

33 .width MYPAGEWIDTH
34 .length MYPAGELENGTH
35
36 .align 32
37
38 .global ASMGFFourier
39 .global _antilogTable,_logTable
40
41 .include gffrl6.inc ; include register assignments
42
43 STKSIZE .set 14
44
45 .text
46

47 _ASMGFFourier:
48 ADDK -STK_SIZE*4,SP
49 STW A10-A15,B10-B15
50 STW A10,*+SP[1]
51 STW All,*+SP[2]
52 STW A12,*+SP[3]
53 STW A13,*+SP[4]
54 STW A14,*+SP[5]
55 STW A15,*+SP[6]
56 STW B10,*+SP[7]
57 STW B11,*+SP[8]
58 STW B12,*+SP[9]
59 STW B13,*+SP[10]
60 STW B14,*+SP[11]
61 STW B15,*+SP[12]
62 STW B3,*+SP[131
63
64 ASMGFFourierInit:
65 LDW *+parameters[0],counter
66
67 LDH *+parameters[5],indexStepTwice
68
69 LDW *+code[l],N1
70
71 MVK _antilogTable,antilogTablel
72 MVKH _antilogTable,antilogTablel
73 MVK _antilogTable,antilogTable2
74 MVKH _antilogTable,antilogTable2
75 MVK _logTable,logTable
76 MVKH _logTable,logTable
77
78 MV output,outputl
79 MV output,output2
80
81 SHL indexStepTwice,l,indexStepTwice
82
83 EXTU counter,31,31,cond2
84 MV cond2,remainder
85
86 SHRU counter,l,counter
87
88 MVK Oxffff,lowMask
89 MVKH Ox0000,lowMask
90
91 MV N1,N2
92
93 LDH *+parameters[2],constantValue
94 LDH *+parameters[3],startingIndex
95 LDH *+parameters[4],startingIndexStep
96 LDH *+parameters[5],indexStep
97 LDH *+parameters[6],indexStepStep

ASMGFFourierInitOutputLoop:
[counter] B
[counter] STH
counter] STH

[counter] ADDK
NOP

[remainder] STH

ASMGFFourierInitOutputLoopDone:

ASMGFFourierLooplInit:

ASMGFFourierLoopl:
LDH
NOP

ASMGFFourierInitOutputLoop
constantValue,*outputl++
constantValue,*outputl++
-1,counter
2

constantValue,*outputl++

numberOfInputSymbols,inputCounter

*input++,condl

[!condl] B
[condl] LDH

NOP

ADD
CMPLT

[!condl] SUB

ADD
CMPLT

[!cond2] SUB

ASMGFFourierLoop2Init:
LDW
MV
MV
NOP

[!condl]
[condl]
[condl]
[condl]
[condl]

to count LDW in

CMPGT
B
EXTU
MV
SHRU
ADDK

prolog
NOP

ASMGFFourierLoop2Prolog:
LDW

I[counter]

[!condl]

II [!cond2]
I[counter]

ADD
ADD
LDH

LDH

CMPLT

CMPLT

ADDK

SUB

SUB
B

ASMGFFourierLooplContinue
*+1ogTable[condl],condl

4

condl,startingIndex,indexl
indexl,Nl,condl
indexl,N,indexl

indexl,indexStep,index2
index2,N2,cond2

index2,N2,index2

*+parameters[0],counter

output,outputl
output,output2
2

counter,2,condl
ASMGFFourierLoop2NotSP
counter,31,31,cond2
cond2,remainder
counter,l,counter
-1,counter

*outputl++,twoSymbols

indexl,indexStepTwice,indexl
index2,indexStepTwice,index2
*+antilogTablel[indexi],antilogl
*+antilogTable2[index2],antilog2

indexl,Nl,condl
index2,N2,cond2

-1,counter

indexl,Nl,indexl
index2,N2,index2

ASMGFFourierLoop2

ASMGFFourierLoop2:

82

CMPLT
CMPLT

[!condl] SUB
[!cond2) SUB

AND

SHRU
LDW

ADD
ADD
XOR
XOR
LDH
LDH

I counter]

[!condl]

I [!cond2]
I [counter]I

CMPLT
CMPLT
ADDK
STH

SUB
SUB
B
STH

ASMGFFourierLoop2Epilog:
CMPLT

I CMPLT

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

SUB
SUB
AND
SHRU

XOR
XOR

STH

STH

B
LDH
LDH
B
ADD
CMPLT

[!condl] SUB
XOR
STH

indexl,Nl,condi
index2,N2,cond2

index!,Nl,index!
index2,N2,index2

twoSymbols,lowMask,symboll
twoSymbols,16,symbol2
*outputl++,twoSymbols

indexl,indexStepTwice,indexl
index2,indexStepTwice,index2

symboll,antilogl,symboll
symbol2,antilog2,symbol2
*+antilogTablel[indexi],antilog1
*+antilogTable2[index2],antilog2

indexl,Nl,cond!
index2,N2,cond2

-1,counter

symboll,*output2++

indexl,N1,indexl
index2,N2,index2

ASMGFFourierLoop2

symbol2,*output2++

indexl,Ni,condl
index2,N2,cond2

indexl,Nl,indexl
index2,N2,index2

twoSymbols,lowMask,symboll
twoSymbols,16,symbol2

symboll,antilogl,symboll
symbol2,antilog2,symbol2

symboll,*output2++

symbol2,*output2++

ASMGFFourierLooplContinue
*outputl++,symboll
*+antilogTablel[indexl],antilogi
ASMGFFourierLooplContinue
indexl,indexStep,indexl
indexl,N1,condl

indexl,Nl,indexl

symboll,antilogl,symboll
symboll,*output2++

The non-software-pipelined inner loop begins here. Note that while the software-pipelined loop requires
five cycles, the non-software-pipelined loop requires nine.

ASMGFFourierLoop2NotSP:
LDH
LDH

[counter] ADDK
[counter] B

ADD
CMPLT
XOR

*outputl++,symboll
*+antilogTablel[indexl],antilogl
-1,counter
ASMGFFourierLoop2NotSP
indexl,indexStep,indexl
indexl,Nl,condl

symboll,antilogi,symboll

[!condl]
[!cond2]

!remainder]
[remainder]
remainder]

[remainder]
[remainder]
[remainder]

215
216
217
218
219
220
221
222

STH
[!condl] SUB

ASMGFFourierLooplContinue:
ADD
CMPLT

[inputCounter] ADDK
[inputCounter] B

[!condl] SUB

ADD
CMPLT

[!cond2] SUB

SHL

ASMGFFourierExit:
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
B
ADDK
NOP

symboll,*output2++
indexl,Nl,indexl

startingIndex,startingIndexStep,startingIndex
startingIndex,Nl,condl
-1,inputCounter
ASMGFFourierLoopl
startingIndex,Nl,startingIndex

indexStep,indexStepStep,indexStep
indexStep,N2,cond2
indexStep,N2,indexStep

indexStep,l,indexStepTwice

A10-Ai5,B10-Bl5
*+SP(13],B3

*+SP[12],B15
*+SP[11],Bl4
*+SP[10],Bl3
*+SP[9],B12
*+SP[8],B11

*+SP[7],B10
*+SP[6],A15
*+SP[5],A14
*+SP[4],A13
*+SP[3],A12
*+SP[2],All
*+SP[1],A10

B3
STK_SIZE*4,SP

ASMRSDiscrepancy - 16-bit RSDiscrepancy

Register Allocation

* Register Allocation
* for ASMRSDiscrepancy() in rsds.asm
* Kamal Swamidoss
* 29 October 1997

antilogTable
templ
temp2
temp3
temp4
discrepancy
counter

code
i
errorLocatorDegree
logSyndrome
logErrorLocator

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

Instructions

I ******* ** ************ ,~~t*********** ***** ***

84

* ASMRSDiscrepancy()

* Ported/

* Written by:

* from Code by:

* Based on:

* RSSymbol
* ASMRSDiscrepancy(
* RSCode

int
int
RSLogSymbol
RSLogSymbol

MYTABSIZE

MYPAGEWIDTH
MYPAGELENGTH

FP
DP
SP

in TMS320C6201 Scheduled Assembly
C Callable
16-bit RSSymbol
16-bit RSLogSymbol

Kamal Swamidoss
21 October 1997

Kamal Swamidoss
September 1997
(version for 32-bit data)

C Code from Jon Rowlands

*code,
i,
errorLocatorDegree,
*logSyndrome,

*logErrorLocator

.set

. set

.set

. set

. set

. set

. tab

.width

. length

.align

.global

.global

.include

. text
_ASMRSDiscrepancy:
ASMRSDiscrepancyTest:

ADD
CMPGT

[!Al] B
[Al] SUB

MVK
MVKH
MVK
ADDAH

* Software-Pipelined Version
ASMRSDiscrepancySPLoopProlog:

LDH
LDH

NOP

LDH

78
75

B5
B14
B15

MYTABSIZE
MYPAGEWIDTE
MYPAGELENGTH
32

_ASMRSDiscrepancy
_antilogTable

rsds.inc

errorLocatorDegree,l,counter
counter, 6,Al
ASMRSDiscrepancyNotSP
counter,6,counter

_antilogTable,antilogTable
antilogTable,antilogTable
0,discrepancy
logSyndrome,i,logSyndrome

*logSyndrome--,templ
*logErrorLocator+,temp2

*logSyndrome--,templ

*);

LDH

NOP

LDH

LDH

ADD

counter) ADDK
LDH

LDH

counter]
ADD
B

LDH

counter] ADDK
LDH

LDH

[counter]
ADD

B

LDH

counter] ADDK
LDH

LDH

ASMRSDiscrepancySPLoop:
ADD

[counter] B
LDH

[counter]
XOR
ADDK
LDH

LDH

ASMRSDiscrepancySPLoopEpilog:
ADD

II LDH

XOR

ADD

LDH

XOR

ADD

LDH

XOR

LDH

XOR

B

XOR

NOP

*logErrorLocator++,temp2

*logSyndrome--,templ
*logErrorLocator++,temp2

templ,temp2,temp3

-1,counter
*logSyndrome--,templ

*logErrorLocator++,temp2

templ,temp2,temp3
ASMRSDiscrepancySPLoop
*+antilogTable[temp3],temp4

-1,counter
"logSyndrome--,templ
*logErrorLocator++,temp2

templ,temp2,temp3
ASMRSDiscrepancySPLoop
*+antilogTable[temp3],temp4

-1,counter
*logSyndrome--,templ
"logErrorLocator++,temp2

templ,temp2,temp3
ASMRSDiscrepancySPLoop
*+antilogTable[temp3],temp4

discrepancy, temp4,discrepancy
-1,counter
*logSyndrome--,templ
*logErrorLocator++,temp2

templ,temp2,temp3
*+antilogTable(temp3],temp4

discrepancy,temp4,discrepancy

templ,temp2,temp3
*+antilogTable[temp3],temp4

discrepancy,temp4,discrepancy

templ,temp2,temp3
*+antilogTable[temp3],temp4

discrepancy, temp4,discrepancy

*+antilogTable[temp3],temp4

discrepancy,temp4,discrepancy

B3

discrepancy,temp4,discrepancy

-86

ASMRSDiscrepancyNotSP:

XOR

MV
NOP

LDH
LDH
NOP

ASMRSDiscrepancyNotSPLoop:
ADD

LDH

[counter] ADDK

[!counter]

II[counter]

counter]

I [counter]

B
B

LDH
LDH

NOP

XOR

[!counter] MV

discrepancy,temp4,discrepancy

discrepancy,A4

*logErrorLocator++,templ
*logSyndrome--,temp2
4

templ,temp2,temp3

*+antilogTable[temp3],temp4

-l,counter

B3
ASMRSDiscrepancyNotSPLoop

*logErrorLocator++,templ
*logSyndrome--,temp2

discrepancy, temp4,discrepancy

discrepancy,A4

NOP

ASMGFPolyXOR

Register Allocation

.set

.set

.set

.set

.set

.set

counter
condl
k

templ
temp2
i
j

.set BO

.set Al

.set A2

.set A5

.set B5

.set A7

.set B7

Instructions
In C, the first two arguments are pointers to the input polynomials. The next two arguments indicate the
degrees of the input polynomials. The last two arguments are the pointer to the output polynomial and a
pointer to its degree.

1 ******************************

2 *
3 * ASMGFPolyXOR() in TMS320C6201 Scheduled Assembly
4 * C-callable

Written by:

void
ASMGFPolyXOR(

16-bit RSSymbol
16-bit RSLogSymbol

Kamal Swamidoss
November 1997

short *a,
short *b,
int aD,
int bD,
short *x,
int *xD);

**

MYTABSIZE

MYPAGEWIDTH
MYPAGELENGTH

.set

.set

.set

.set

.set

.set

.tab

.width

.length

.align

.def

.ref

.include

STK_SIZE .set

ASMGFPolyXOR:

condl]
condl]
condl
condl]
condl]
condl]

.text

CMPLT

MV

MV
MV

MV

MV

MV

78

75

B5
B14

B15

MYTABSIZE

MYPAGEWIDTH
MYPAGELENGTH

32

_ASMGFPolyXOR
_logTable, _antilogTable

gfplxrl6.inc

0

aD,bD,condl
a, templ

bD, temp2
b,a
aD,bD
templ,b

temp2,aD

ADD

LDH
LDH

[counter] ADDK
[counter] B

NOP

XOR

STH

NOP

SUB

[!counter] B

bD,l,counter

*a++,i
*b++,j

-1,counter
ASMGFPolyXORLoopl
2

i,j,k

k,*x++

aD,bD,counter
ASMGFPolyXORContinuel

ASMGFPolyXORLoop2:

88

ASMGFPolyXORLoopl:

11I

[counter] LDH

counter]
counter]

[!counter]

ADDK
B
ADDK
NOP

counter] STH
NOP

ASMGFPolyXORContinuel:
SUBAH
MV

[!counter] B
[counter] LDH

[!counter] STW
NOP

ASMGFPolyXORLoop3:
CMPEQ
AND

[condl] B

Il[!condl] B

[condl]
condl]

[!condl]

LDH
ADDK
STW
NOP

-1,counter
ASMGFPolyXORLoop2
1,counter

i,*x++

2

x,l,x
aD,counter

B3
*x--,k

counter,*xD
3

k,0,condl
condl,counter,condl

ASMGFPolyXORLoop3
B3

*x--,k
-1,counter
counter, xD
2

ASMGFPolyMultiply

Register Allocation

I a .s
2 b .s
3 aD .s
4 bD .s
5 p .s
6 pD .s
7
8 antilogTable .s
9 logTable .s

10 templ .s
11 temp2 .s
12 temp3 .s
13 temp4 s

et
et
et
et
et
et

et
et
et
et
et
et

ptrl .set
ptr2 .set
ptr3 .set
productProgress .set

condl .set
cond2 .set
counter .set
counterl .set
counter2 .set

A4
B4
A6
B6
A8
B8

B10
AO
B5
A5
A7
B7
A9
B9
A10
All

Al
B1
BO
A2
B2

*a++,i

Instructions
In C, the first two arguments are pointers to the input polynomials. The next two arguments indicate the
degrees of the input polynomials. The last two arguments are the pointer to the product polynomial and a
pointer to its degree.

1 **********************************

2 *
3 * ASMGFPolyMultiply() in TMS320C6201 Scheduled Assembly
4 * C-callable
5 * 16-bit RSSymbol
6 * 16-bit RSLogSymbol
7 *
8 * Written by: Kamal Swamidoss
9 * November 1997
10 *
11 * void
12 * ASMGFPolyMultiply(short *a,
13 * short *b,
14 * int aD,
15 * int bD,
16 * short *p,
17 * int *pD);
18 *
19 **********************************

20
21 MYTABSIZE .set 8
22 MYPAGEWIDTH .set 78
23 MYPAGELENGTH .set 75
24
25 FP .set B5
26 DP .set B14
27 SP .set B15
28
29 .tab MYTABSIZE
30 .width MYPAGEWIDTH
31 .length MYPAGELENGTH
32 .align 32
33
34 .def _ASMGFPolyMultiply
35 .ref _antilogTable,_logTable
36
37 .include gfplmll6.inc
38
39 STK_SIZE .set 3
40
41 .text
42 _ASMGFPolyMultiply:
43 SUBAW SP,STKSIZE,SP
44 STW A10,*+SP[1]
45 STW B10,*+SP[2]
46 STW All,*+SP[3]
47 MVK _antilogTable,antilogTable
48 MVKH _antilogTable,antilogTable
49 MVK jlogTable,logTable
50 MVKH _logTable,logTable
51
52 CMPLT aD,bD,condl
53 [condl] MV a,templ
54 |[condl] MV bD,temp2
55 [condl] MV b,a
56 1f[condl] MV aD,bD
57 [condl] MV templ,b
58 11[condl] MV temp2,aD
59

90

ADD
STW

ADD
ZERO

STH

counter] ADDK

ASMGFPolyMultiplyInitLoop:
[counter] B
[counter) STH
counter] ADDK

NOP

ADD
MV

ADDAH

ASMGFPolyMultiplyLoopl:
ADD
MV

ASMGFPolyMultiplyLooplA:
LDH

I LDH

NOP

LDH
MV
LDH

NOP

ADD
LDH
LDH

NOP

XOR
STH

ADDAH
ADDAH

counterl] ADDK
[counterl] B

NOP

ADDAH
MV
MV
ADDAH

[counter2] ADDK
[counter2] B

LDW

aD,bD, temp3
temp3,*pD

temp3,1,counter
templ
p,temp2

templ,*temp2 -
-1,counter

ASMGFPolyMultiplyInitLoop

templ,*temp2--
-1,counter
3

bD,l,counter2
b,ptr2
p,ptr3
p,1,productProgress

aD,l,counteri
a,ptrl

*ptrl,templ
*ptr2,temp2

4

*+logTable[temp2],temp2

templ,temp2
*+logTable[temp2],templ

4

templ,temp2,temp4
*ptr3,temp3

*+antilogTable[temp4],temp4

4

temp3,temp4,temp3
temp3,*ptr3

ptrl,1,ptr!
ptr3,l1,ptr3

-1, counterl
ASMGFPolyMultiplyLooplA
5

ptr2,l1,ptr2
a,ptrl
productProgress,ptr3
productProgress,l,productProgress

-1,counter2
ASMGFPolyMultiplyLoopl

*pD,temp2

NOP

ADDAH

ASMGFPolyMultiplyLoop2:
LDH

CMPGT
NOP

CMPEQ
AND

[condl] B
condl] ADDK

NOP

STW
LDW
B
LDW
LDW
ADDAW
NOP

p,temp2,ptr3

*ptr3--,temp3

temp2,0,condl
3

temp3,0,cond2
condl,cond2,condl

ASMGFPolyMultiplyLoop2
-1, temp2
4

temp2, *pD
*+SP[1],A10

B3
*+SP[2],B10
*+SP[3],A11

SP,STKSIZE,SP
3

rD
code

logTable
antilogTabl e

dCurrent
qCurrent
rCurrent

pl
p2

templ
temp2

condl

tempSide

.set

.set

.set

.set

.set

.set

.set

.set

.set

A4
B4
A6
B6
A8
B8
A10
B10
A12

.set AO

.set Al

.set A2

.set BO

.set A3

.set B1

.set B5

.set B7

.set A5

.set B2

.set B9

Instructions
1 ***

2 *
3 * ASMGFPolyDivide() in TMS320C6201 Scheduled Assembly
4 * C-callable

5 * 16-bit RSSymbol

6 * 16-bit RSLogSymbol

- 92

ASMGFPolyDivide

Register Allocation

* Written by:

void
ASMGFPolyDivide(

RSSymbol
RSSymbol
RSSymbol
RSSymbol

Kamal Swamidoss
November 1997

*numerator,
*denominator,
*quotient,
*remainder,

int numeratorDegree,
int denominatorDegree,
int *quotientDegree,
int *remainderDegree,
RSCode *code)

23 **************************************

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH

42
43 STK_SIZE

.set

. set

.set

.set

.set

.set

.tab

.width

.length

.align

.def

.ref

.include

.set

.text
ASMGFPolyDivide:

ASMGFPolyDividelnit:
MVK
MVKH
MVK
MVKH

ADD
MV
MV

ASMGFPolyDivideLoopl:
*** BGN OF ASMGFPolyDivideLoopl
*** This loop copies n to r.

LDH

[condl]
[condl]

ADDK
B
NOP

STH
NOP

8
78
75

B5
B14
B15

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH
32

_ASMGFPolyDivide
_logTable, antilogTable

gfpldvl6.inc

0

antilogTable,antilogTable
_antilogTable,antilogTable
_logTable,logTable
_logTable,logTable

nD,l,condl

n,pl
r,p2

*pl++,templ

-1,condl
ASMGFPolyDivideLoopl
2

templ,*p2+
2

*** END OF ASMGFPolyDivideLoopl

nD,*rDSTW

CMPLT
condl] B

condl]
condl]
condl]
condl]

MVK
MVKH
STW
STH
NOP

SUB
STW
MV
ADDAH

LDW

nD,dD,condl
B3

0, templ
0, templ
templ,*qD
templ,*q

nD,dD,templ
templ,*qD
q,tempSide
tempSide,templ,qCurrent

*rD,templ

NOP

ASMGFPolyDivideLoop2:
*** BGN OF ASMGFPolyDivideLoop2

This is the main loop.
CMPLT

[condl B

[!condl]
[!condl]
[!condl]
[!condl]

ADDAH
ADDAH
LDH
LDH

NOP

LDW
LDH
LDH

NOP
SUB

ADD
LDH

NOP

templ,dD,condl

ASMGFPolyDivideLoop2Continue

r,templ,pl
d,dD,p2
*pl,rCurrent
*p2,dCurrent

4

*+code(l],temp2 ; get code->N
*+logTable[dCurrent],dCurrent
*+logTable[rCurrent],rCurrent

3
temp2,dCurrent,dCurrent

rCurrent,dCurrent,rCurrent
*+antilogTable[rCurrent],templ

4

; obtain log(div) in

MV temp
LDH *+1C

the correct interval

l,rCurrent
)gTable[rCurrent],templ

rCurrent,*qCurrent--
dD,1,condl

ASMGFPolyDivideLoop2A:
** BGN OF ASMGFPolyDivideLoop2A
t This loop makes the new remainder.

*p2--,temp2

*+logTable[temp2],temp2

4

templ,temp2,temp2

*+antilogTable[temp2],temp2

" 94

STH
ADD

LDH

NOP

LDH

NOP

ADD

LDH

LDH

[condl] ADDK
[condl] B

NOP

XOR
STH
NOP

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

*** END OF ASMGFPolyDivideLoop3

LDW

NOP
MV

ADDAH

ASMGFPolyDivideLoop4:
** BGN OF ASMGFPolyDivideLoop4
*** This loop reduces the

LDH

NOP
CMPGT

[condl] CMPEQ
[condl] B

condl] ADDK
NOP

*** END OF ASMGFPolyDivideLoop4

LDW

STW

*pl,rCurrent

-1,condl
ASMGFPolyDivideLoop2A
2

rCurrent,temp2,temp2
temp2,*pi- -

*** END OF ASMGFPolyDivideLoop2A

LDW

NOP
B
NOP

ADDK
CMPLT

[!condl] STW

*rD, templ

ASMGFPolyDivideLoop2
2

-1,templ
templ,0,condl
templ,*rD

*** END OF ASMGFPolyDivideLoop2
ASMGFPolyDivideLoop2Continue:

ZERO

ASMGFPolyDivideLoop3:
" BGN OF ASMGFPolyDivideLoop3
*** m~,~, ,, ~

templ

qCurrent,q,condl
ASMGFPolyDivideLoop3

templ,*qCurrent - -

4

*qD,templ

3
q,tempSide

tempSide,templ,qCurrent

degree of q.

*qCurrent--,temp2

3
templ,0,condl
temp2,0,condl
ASMGFPolyDivideLoop4

-l,templ
4

*rD,templ

templ,*qD

CMPLT
[!condl] B

[!condl] STH
NOP

This loop zeros te remaining coeents of q.

NOP

ADDAH

3

r,templ,tempSide
tempSide,rCurrent

ASMGFPolyDivideLoop5:
*** BGN OF ASMGFPolyDivideLoop5
+ This loop reduces the degree of r.

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

*rCurrent--,temp2

3

templ,0,condl
temp2,0,condl
ASMGFPolyDivideLoop5

-1,templ
4

*** END OF ASMGFPolyDivideLoop5

ASMGFPolyDivideExit:

STW
NOP

templ,*rD
4

96

LDH

NOP
CMPGT

[condl] CMPEQ
condl] B

[condl] ADDK
NOP

Appendix C - Straight Assembly Files
This section includes the straight-assembly files that were written for this project. In general, they are
direct implementations of the corresponding C functions. These files were written after the regular
assembly routines were written. This is contrary to the normal C62x development flow, in which regular
assembly is written only after straight-assembly has been written and proven lacking. In this project, the
straight-assembly files were written to obtain an upper limit on the performance of the assembly
implementations, and to measure the performance of the regular assembly routines.

Note that the straight-assembly files are much more readable than their regular assembly counterparts
(they were much easier to write, as well). Note also the similarities in program flow.

SAGFFourier - 16-bit Straight-Assembly GFFourier
I ***

2 *

3 * SAGFFourier() in TMS320C6201 Straight-Assembly
4 * (input for assembly optimizer)
5 * C-callable
6 * 16-bit RSSymbol
7 16-bit RSLogSymbol
8 *

* Written by: Kamal Swamidoss
December 1997

* Based on: C Code from Jon Rowlands

* void
* GFFourier(
* RSCode *code,
* GFFourierParameters *parameters,
* int numberOfInputSymbols,
* RSSymbol input[],
* RSSymbol output[]
*);

*************************************t~***************tt*****

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH

.set

.set

.set

.tab

.width

.length

.text

.align

.def

.ref

_SAGFFourier: .cproc
SAGFFourierInit:

8
78
75

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH

32

SAGFFourier
_antilogTable, logTable

code,parameters,numberOfInputSymbols,input,output

. reg
MVK
MVKH
MVK
MVKH

.reg
LDW

antilogTable,logTable

_antilogTable,antilogTable
_antilogTable,antilogTable
_logTable,logTable
_logTable,logTable

N
*+code[l],N

" 97

.reg

.reg

.reg
LDW
LDH

LDH

LDH

LDH
LDH

.reg

.reg
MV
MV

SAGFFourierOutputInitLoop:
STH

counterl] ADDK
counterl] B

.reg
MV

SAGFFourierLoopl:
LDH
CMPEQ

[condl]) B

.reg

LDH
ADD
CMPLT

[!condl] SUB

MV

MV

SAGFFourierLooplA:
LDH

LDH

XOR
STH

ADD
CMPLT

[!condl] SUB

[counter2] ADDK
counter2] B

*** END OF SAGFFourierLooplA

SAGFFourierLooplContinue:
ADD
CMPLT

[!condl] SUB

ADD
CMPLT

[!condl] SUB

counterl] ADDK
counterl] B

*** END OF SAGFFourierLoopi

numberOfoutputSymbols,constantValue
startingIndexStep,startingIndex
indexStepStep,indexStep
*+parameters[O],numberOfOutputSymbols
*+parameters[2],constantValue

*+parameters[3],startingIndex
*+parameters[4],startingIndexStep
*+parameters[5],indexStep
*+parameters[6],indexStepStep

templ,counterl,counter2
pl

output,pl
numberOfOutputSymbols,counterl

constantValue,*pl++
-1,counterl
SAGFFourierOutputInitLoop

condl
numberOfInputSymbols,counterl

*input++,templ

templ,0,condl
SAGFFourierLooplContinue

index, temp2

*+logTable[templ],templ

templ,startingIndex,index
index,N,condl
index,N,index

numberOfOutputSymbois,counter2
output, p

*pl,templ
*+antilogTable[index], temrp2
templ,temp2,templ
templ,*pl++

index,indexStep,index
index,N,condl
index,N,index

-1,counter2
SAGFFourierLooplA

startingIndex,startingIndexStep,startingIndex
startingIndex,N,cond1
startingIndex,N,startingIndex

indexStep,indexStepStep,indexStep
indexStep,N,condl
indexStep,N,indexStep

-1,counterl
SAGFFourierLoopl

115 .return
116 .endproc

SARSDiscrepancy - 16-bit RSDiscrepancy
** ***********************t************************************ ************

* SARSDiscrepancy() in TMS320C6201 Straight-Assembly
* (input to assembly optimizer)
* C-Callable
* 16-bit RSSymbol

16-bit RSLogSymbol

* Written by: Kamal Swamidoss
* December 1997

* Based on: C Code from Jon Rowlands

* RSSymbol
* SARSDiscrepancy(

RSCode *code,
* int i,
* int errorLocatorDegree,
* RSLogSymbol *logSyndrome,
* RSLogSymbol *logErrorLocator

t*tt********t*t****** **********t*******tt t ********* t t t********

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH

.set

.set

.set

.tab

.width

.length

.align

.def

.ref

78
75

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH
32

_SARSDiscrepancy
_antilogTable

.text
_SARSDiscrepancy: .cproc code,i,errorLocatorDegree,logSyndrome,logErrorLocator

.reg antilogTable
MVK _antilogTable,antilogTable
MVKH _antilogTable,antilogTable

ADDAH
. reg
ADD

.reg

.reg

.reg

ZERO

SARSDiscrepancyLoopl:

[counter]

logSyndrome,i,logSyndrome
counter
errorLocatorDegree,l,counter

templ,temp2,temp3
condl
discrepancy

discrepancy

*logErrorLocator++,templ
*logSyndrome--,temp2
templ,temp2,temp3
*+antilogTable[temp3],temp3
discrepancy,temp3,discrepancy
-1,counter

LDH
LDH
ADD
LDH
XOR
ADDK

" 99

21

[counter] B
. return
.endproc

SARSDiscrepancyLoopl
discrepancy

SAGFPolyXOR - 16-bit GFPolyXOR
1 ************************ **************** ********* *

2 *

3 * SAGFPolyXOR() in TMS320C6201 Straight Assembly
4 * (input to assembly optimizer)

* Written by:

C-callable
16-bit RSSymbol
16-bit RSLogSymbol

Kamal Swamidoss
December 1997

void
SAGFPolyXOR(short *a,

short *b,
int aD,
int bD,
short *x,
int *xD);

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH

_SAGFPolyXOR:

condl]
condl]
condl]
condl]
condl]
condl]

.set

.set

.set

.tab

.width

.length

.align

.def

.text

.cproc

.reg
CMPLT
MV
MV
MV
MV
MV
MV

.reg
ADD

. reg
SAGFPolyXORLoopl:

LDH
LDH
XOR
STH

counter) ADDK
[counter] B

8
78
75

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH
32

_SAGFPolyXOR

a,b,aD,bD,x,xD

condl,templ,temp2
aD,bD,condl
a, templ
b,a
templ,b
bD, temp2
aD,bD
temp2,aD

counter
bD,l,counter

i,j,k

*a++,i
*b++,j
i,j,k
k,*x++

-l,counter
SAGFPolyXORLoopl

100

~*******)***t~*t*******t*t*****~*)**~***

SUB aD,bD,counter

SAGFPolyXORLoop2:
[counter]
[counter]
counter]

[counter]

LDH
STH
ADDK
B

SUBAH
MV

[counter] B

STW
.return

SAGFPolyXORLoop3:
LDH
CMPEQ
AND

[condl] ADDK
[condl] B

STW
.return
.endproc

*a++, i
i,*x++
-1,counter
SAGFPolyXORLoop2

x,l,x
aD,counter

SAGFPolyXORLoop3

counter,*xD

*x--,k
k,0,condl
condl,counter,condl

-1,counter
SAGFPolyXORLoop3

counter,*xD

SAGFPolyMultiply - 16-bit GFPolyMultiply
I **

2 *
3 * SAGFPolyMultiply() in TMS320C6201 Straight-Assembly

(input to assembly-optimizer)
C-callable
16-bit RSSymbol
16-bit RSLogSymbol

* Written by:

* void
* SAGFPolyMultiply(

*

*

Kamal Swamidoss
December 1997

short *a,
short *b,
int aD,
int bD,
short *p,
int *pD);

20 ************************** * *************************************

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH

.set

.set

.set

.tab

.width

.length

.align

.def

.ref

78
75

MYTABSIZE
MYPAGEWIDTH
MYPAGELENGTH
32

_SAGFPolyMultiply

_antilogTable,_logTable

101

_SAGFPolyMultiply:

condl]
condl!
condl]
condl]
condl]
condl]

.text

.cproc

.reg
MVK
MVKH
MVK
MVKH

.reg

.reg
CMPLT
MV
MV
MV
MV
MV
MV

.reg
ADD
STW

.reg
ADD
ZERO
MV

SAGFPolyMultiplyInitLoop:
STH

[counter] ADDK
counter] B

.reg
ADD
.reg
MV
MV
. reg
ADDAH

SAGFPolyMultiplyLoopl:
ADD

MV

SAGFPolyMultiplyLooplA:
LDH
LDH

LDH
LDH

ADD
LDH

LDH

XOR
STH

ADDAH
ADDAH

counterl] ADDK
[counterl] B

a,b,aD,bD,p,pD

antilogTable, logTable
_antilogTable,antilogTable
_antilogTable,antilogTable
_logTabie,logTable
_logTable,logTable

temp!, temp2
condl
aD,bD,condl
a, templ
b,a
tempi,b

bD, temp2
aD,bD
termp2,aD

temp3,temp4
aD,bD,termn3
temp3,*pD

counter
temp3, , counter

templ
p, temp2

templ,*temp2++
-1,counter
SAGFPolyMultiplyInitLoop

counterl, counter2
bD,, counter2
ptrl,ptr2,ptr3
b,ptr2
p,ptr3
productProgress
p, ,productProgress

aD, 1, counterl
a,ptri

*ptrl,teml
*pzr2, terp2

-logTable templ],templ
*+logTabie[temp2],temp2

templ,temp2,temp4
*+antilogTable[temp4],temp4

*ptr3,temp3

temp3,temp4,temp3
temp3,*ptr3

ptrl,l,ptrl
ptr3, 1,pr3

-i, counteri

SAGFPolyMultiplyLooplA

102

99
100 ADDAH ptr2,1,ptr2
101 MV a,ptrl
102 MV productProgress,ptr3
103 ADDAH productProgress,, productProgress
104
105 [counter2] ADDK -1,counter2
106 [counter2] B SAGFPolyMultiplyLoopl
107
108
109 LDW *pD,temp2
110 ADDAH p,temp2,ptr3
111
112 .reg cond2
113 SAGFPolyMultiplyLoop2:
114 LDH *ptr3--,temp3
115 CMPEQ temp3,0,cond2
116
117 CMPGT temp2,0,condl
118
119 AND condl,cond2,condl
120
121 [condl] ADDK -1,temp2
122 [condl B SAGFPolyMultiplyLoop2
123
124 STW temp2,*pD
125
126 .return
127 .endproc

SAGFPolyDivide - 16-bit GFPolyDivide

2 *

3 * SAGFPolyDivide() in TMS320C6201 Straight-Assembly
4 * (input to assembly optimizer)
5 * C-callable

6 * 16-bit RSSymbol

7 * 16-bit RSLogSymbol
8 *

9 * Written by: Kamal Swamidoss
10 * December 1997

11 *
12 * void

13 * SAGFPolyDivide(
14 * RSSymbol *numerator,
15 * RSSymbol *denominator,
16 * RSSymbol *quotient,
17 * RSSymbol *remainder,
18 * int numeratorDegree,
19 * int denominatorDegree,
20 * int *quotientDegree,
21 * int *remainderDegree,
22 * RSCode *code)

23 *
24 ***

25
26 MYTABSIZE .set 8
27 MYPAGEWIDTH .set 78
28 MYPAGELENGTH .set 75
29
30 .tab MYTABSIZE
31 .width MYPAGEWIDTH

32 .length MYPAGELENGTH
33 .align 32

- 103

_SAGFPolyDivide:

SAGFPolyDivideInit:

.def

.ref

.text

.cproc

.reg
MVK
MVKH
MVK
MVKH

. reg
ADD
.reg
MV
MV

. reg
SAGFPolyDivideLoopl:
*** BGN OF SAGFPolyDivideLoopl

This loop copies n to r.

LDH
STH

condl]
condl]

ADDK
B

*** END OF SAGFPolyDivideLoopl

condl]
condl]
condl]

STW
CMPLT

ZERO
STW
STH

[!condl] B
.return

SAGFPolyDivideContinuel:
SUB
STW
.reg
ADDAH

LDW

.reg
LDW

.reg

SAGFPolyDivideLoop2:
*** BGN OF SAGFPolyDivideLoop2
*** This is the main loop.

CMPLT
condl] B

ADDAH
ADDAH

_SAGFPolyDivide
_logTable,_antilogTable

n,d,q,r,nD,dD,qD,rD,code

antilogTabie,logTable
_antilogTabie,antilogTable
_antilogTable,antilogTable
_logTable,logTable
_logTable,logTable

condl
nD,l,condl
pl,p2
n,pl
r,p2

templ,temp2

*pl++,templ
templ,*p2++

-l,condl
SAGFPolyDivideLoopl

nD,*rD
nD,dD,condl

templ
templ,*qD

templ,*q

SAGFPolyDivideContinuel

nD,dD,templ
templ,*qD
qCurrent
q,templ,qCurrent

*rD,templ

N
*+code[l],N

rCurrent,dCurrent

templ,dD,cond
SAGFPolyDivideLoop2Continue

r,templ,pl
d,dD,p2

104

LDH
LDH

LDH
LDH

SUB
ADD

LDH

*pl,rCurrent
*p2,dCurrent

*+logTable(dCurrent],dCurrent
*+logTable[rCurrent],rCurrent

N,dCurrent,temp2
rCurrent,temp2,templ

*+antilogTable[templ],rCurrent

99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

ADD dD, 1,condl

SAGFPolyDivideLoop2A:
*** BGN OF SAGFPolyDivideLoop2A
*** This loop makes the new remainder.

LDH
LDH

ADD

LDH

LDH

XOR
STH

condl] ADDK
[condl] B

*p2--,temp2
*+logTable[temp2),temp2

templ,temp2,temp2

*+antilogTable[temp2],temp2

*pl,rCurrent

rCurrent,temp2,temp2
temp2,*pl--

-l,condl
SAGFPolyDivideLoop2A

*** END OF SAGFPolyDivideLoop2A

LDW
ADDK
CMPLT

[!condl] STW
B

*** END OF SAGFPolyDivideLoop2
SAGFPolyDivideLoop2Continue:

ZERO

SAGFPolyDivideLoop3:
*** BGN OF SAGFPolyDivideLoop3

This loop zeros the

CMPLT
[!condl] STH
[!condl] B

*** END OF SAGFPolyDivideLoop3

LDW
ADDAH

*rD, templ

-1, templ
templ,0,condl
templ,*rD
SAGFPolyDivideLoop2

templ

remaining coefficients of q.

qCurrent,q,condl
templ,*qCurrent--
SAGFPolyDivideLoop3

*qD, templ
q,templ,qCurrent

SAGFPolyDivideLoop4:
*** BGN OF SAGFPolyDivideLoop4
*** This loop reduces the degree of q.

-105

STH rCurrent,*qCurrent--
LDH *+logTable[rCurrent],templ

; templ contains log(div) in correct interval

164 CMPGT templ,0,condl
165 [condl] LDH *qCurrent--,temp2
166 [condl] CMPEQ temp2,0,condl
167 [condl] ADDK -l,templ
168 [condl] B SAGFPolyDivideLoop4
169
170 *** END OF SAGFPolyDivideLoop4
171
172 STW templ,*qD
173 LDW *rD,templ
174 ADDAH r,templ,rCurrent
175
176 SAGFPolyDivideLoop5:
177 *** BGN OF SAGFPolyDivideLoop5
178 ** This loop reduces the degree of r.
179
180 CMPGT templ,0,cond!
181 [condl] LDH *rCurrent--,temp2
182 [condl] CMPEQ temp2,0,condl
183 [condl] ADDK -l,temp!
184 [condl] B SAGFPolyDivideLoop5
185
186 *** END OF SAGFPolyDivideLoop5
187
188 SAGFPolyDivideExit:
189 STW templ,*rD
190 .return
191 .endproc

106

Appendix D - README File for the Modified RS Decoder
This file was written to explain the modified RS decoder.

1 RSDecodeTest - Reed-Solomon Forward-Error-Correction Decoder Test
2 GFPolyArith - Galois-Field Polynomial Arithmetic Calculator
3 genrs - Reed-Solomon Code Generator
4
5 Kamal Swamidoss
6 December 1997
7
8 This directory contains source code for three programs. Two of the
9 programs are closely-connected. The third is completely independent.
10 genrs is the independent one. RSDecodeTest and GFPolyArith share a lot
11 of files and functions, but they can only be compiled separately.
12 The program which I optimized is RSDecodeTest. The other two programs
13 are useful in their own ways. This file tries to explain all this in
14 detail.
15
16 SECTION ONE: QUICKSTART
17
18 Here's a brief step-by-step guide to using the programs in this directory.
19 All this is discussed in detail in this file:
20 1. Make the two data files for the RS code you want to use.
21 Use the program genrs to make these two files.
22 prompt% cd genrs
23 Copy the appropriate RS Code parameter file to prmrs.prm.
24 prompt% cp prmrs.prm.adsl prmrs.prm
25 prompt% genrs prmrs.prm
26
27 2. Copy the two output files from genrs to the main directory.
28 prompt% cp prmrs.c .
29 prompt% cp prmrs.h ..
30 prompt% cd ..
31
32 3. Set the flags in the file modefile.h.
33 If you're going to compile for the Sun, only set the flags in
34 the Sun section. If you're going to compile for the c6x, only set the
35 flags in the DSP section. Whatever you do, DON'T modify the flags
36 after the line "You shouldn't need to change anything below here."
37 prompt% xemacs modefile.h
38
39 4. Build the program you want.
40 A. If you're building for the c6x, you can only make
41 the RS Decode Test. You can't make the Galois-Field
42 Polynomial Arithmetic Calculator.
43
44 I recommend building c6x programs in the directory DSPVersion.
45
46 prompt% cd DSPVersion
47
48 If you need to assemble some assembly files, do this:
49 prompt% cl6x filel.asm file2.asm ...
50
51 Compile the C files.
52 prompt% cl6x -o -pm -dMakeExecutable=0 ../*.c
53 prompt% Ink6x *.obj dsp.cmd -o dsp.out
54
55 Note that the only command-line flag you have to set is
56 MakeExecutable. Making it equal to zero indicates that you want
57 a c6x program. That's obvious, considering you're using cl6x
58 and not gcc, right? But setting MakeExecutable to zero sets other
59 compiler flags in modefile.h. These flags are used to compile
60 the program in different ways. See modefile.h for details.

- 107

61
62 Note also that this program comes with its own linker command file.
63
64 If you've enabled console output, do this:
65 prompt% load6x dsp.out
66
67 Otherwise, do this:
68 prompt% sim6x dsp.out
69
70 Note that this program also comes with its own simulator
71 configuration files: init.clr, init.cmd, sim6x.cfg, and
72 siminit.cmd.
73
74 B. If you're building for the Sun, you can make either
75 the RS Decode Test or the Galois-Field Polynomial Arithmetic
76 Calculator.
77
78 I recommend building the Sun programs in the directory SunVersion.
79
80 prompt% cd SunVersion
81
82 Compile the C files. Note the gcc flags.
83 prompt% gcc -Wall -Wformat -ansi -pedantic -c ../*.c
84
85 Note that you don't have to set MakeExecutable when compiling
86 for the Sun. That's because modefile.h tells the compiler to
87 compile the Sun version by default.
88
89 If you're making the GFPolyArith, link like this:
90 prompt% gcc *.o -o gfpa
91
92 If you're making the RSDecodeTest, link like this:
93 prompt% gcc *.o -o rsdt
94
95 Run the program.
96
97
98 SECTION TWO: THE DETAILS
99
100 PART A: genrs
101 genrs is used to generate a Reed-Solomon code. What do I mean by this?
102 genrs reads a parameter file which specifies all the parameters of some
103 Reed-Solomon code, and it outputs two files which contain data structures
104 for that RS code. Take a look at the file "genrs/prmrs.prm.adsl" to see
105 what the RS code parameters are. This particular parameter file specifies
106 the RS code for part of ADSL, the Asymmetric Digital Subscriber Loop
107 standard.
108
109 The two output files from genrs are compiled with the other files to
110 make either the RSDecodeTest or the GFPolyArith calculator. genrs provides
111 the flexibility to use one of several RS codes in those programs. You can
112 even make your own RS code parameter file for use with genrs. I did that
113 with the file prmrs.prm.xmpl, which is a code from the book "Error
114 Control Systems for Digital Communication and Storage" by Stephen B. Wicker.
115
116 NOTE 1: In order to maintain compatibility with RSDecodeTest and GFPolyArith,
117 the input parameter file for genrs MUST be called prmrs.prm. The
118 genrs directory contains parameter files for several RS codes. In
119 order to generate files for a particular code, copy the parameter file
120 to prmrs.prm and run genrs. For example, to generate the MPEG RS code
121 do this:
122 prompt% cd genrs
123 prompt% cp prmrs.prm.mpeg prmrs.prm
124 prompt% genrs prmrs.prm
125 prompt% my prmrs.c .

108

126 prompt% my prmrs.h ..
127
128 NOTE 2: In order to maintain compatibility with RSDecodeTest and GFPolyArith,
129 the "name" field in the parameter file MUST be "Standard". genrs
130 names the data structures it creates based on the "name" field, but
131 RSDecodeTest and GFPolyArith expect to use data structres based on
132 the name "Standard". I compromised uniqueness for versatility.
133
134 PART B: Include Files Generated by RSDecodeTest
135 Sometimes the Sun version of RSDecodeTest can write some output files. These
136 files are myrsusr.h, myrssnd.h, myrsrcv.h, and myrsend.h. These files
137 can be used as include files the next time you compile RSDecodeTest
138 for either the Sun or the c6x. The files are the data which the program
139 generates and manipulates. These files can be convenient if you don't
140 want to generate data and RS encode it every time you run the program.
141 Remember that these files are only valid for a particular RS code, so if you
142 change the code, you can't use the old include files.
143
144 To generate the include files, #define WriteIncludeFiles in modefile.h. Then
145 build RSDecodeTest on the Sun, in the SunVersion directory. The four files
146 will be in that directory when the program finishes. Move these files to
147 the main directory. When run, RSDecodeTest generates data, RS-encodes it,
148 corrupts the codeword, and RS-decodes the result. Data at each stage of
149 the process is saved to one of the four output files.
150
151 To use the include files, #define ReadIncludeFiles in modefile.h. Then
152 build RSDecodeTest on either the Sun or the c6x. When run, RSDecodeTest
153 won't generate data, encode it, and corrupt the codeword. At each iteration,
154 RSDecodeTest will read a block from the data in myrsusr.h, read a block from
155 the data in myrssnd.h, and read a block from the data in myrsrcv.h. The data
156 in myrsusr.h is the "user data," the data to be encoded and transmitted.
157 The data in myrssnd.h is the RS codeword. The data in myrsrcv.h is the
158 corrupted codeword. The only operation RSDecodeTest does when ReadIncludeFiles
159 is #define'd is the RS decoding.
160
161 NOTE 3: If you #define ReadIncludeFiles and you've set
162 numberOfCodewordsToTest to a number larger than the number of
163 codewords represented in the include files, then you'll get a
164 compiler error.
165
166 PART C: modefile.h
167 The only other compilicated thing is modefile.h. This file is included
168 in all the main C files. It consists completely of comments and pre-
169 processor flags. These flags are used by the compiler to build different
170 programs. The comments in modefile.h describe what the different flags are for.
171 I'd recommend reading modefile.h, compiling it as is, and then trying
172 one change at a time, until you're comfortable with what it does.
173
174 SECTION THREE: THE RS DECODE ALGORITHM
175
176 That's about it. The optimizations I made are for the c6x version of
177 RSDecodeTest. These optimizations are various assembly routines to replace
178 C functions. These assembly routines are:
179 ASMGFFourier This provides a good performance gain.
180 *ASMGFFourier32 ASMGFFourier with 32-bit RSSymbol, RSLogSymbol.
181 ASMRSDiscrepancy Also a considerable gain.
182 *ASMRSDiscrepancy32 ASMRSDiscrepancy with 32-bit RSSymbol, RSLogSymbol.
183 ASMGFPolyXOR Negligible gain.
184 ASMGFPolyMultiply A LOSS of performance from the corresponding C code!
185 ASMGFPolyDivide A significant loss!
186 SAGFFourier Straight-Assembly
187 SARSDiscrepancy Straight-Assembly
188 SAGFPolyXOR Straight-Assembly
189 SAGFPolyMultiply Straight-Assembly
190 SAGFPolyDivide Straight-Assembly

" 109

192 * The 32-bit routines are incompatible with 16-bit data.
193 The rest of the routines are meant to run on 16-bit data.
194
195 You can set flags to include or exclude each of these routines.
196
197 If you want to understand the RSDecode algorithm, start at the function
198 RSDecode() in rs.c. There are a few different steps in the algorithm,
199 and each step has a corresponding function in RSDecode().
200
201 If you want to learn about RS decoding, the tutorial by TI's own Jon
202 Rowlands is excellent. It also provides references to the authorities.
203
204 Kamal Swamidoss
205 December 1997

110

Appendix E - Modefile
This is the most important control file for the modified RS decoder. This file is included at the beginning
of every C source file comprising the RS decoder. It contains all the preprocessor data needed to control
the compilation of the decoder. It lets the user tell the compiler how to build the decoder.

1 /*
2 * ModeFile
3 * Kamal Swamidoss
4 * November 1997
5 *
6 * This file helps you make executables of the RS Decode Test for either the
7 * Sun or the c6x.
8 *
9 * There are two basic MakeExecutable modes: 0 and 1.
10 * 0 means make for the DSP.
11 * 1 means make for the Sun.
12 * Just define MakeExecutable at the command-line when you compile. This
13 * package was tested by compiling with the following commands.
14 * gcc -Wall -Wformat -ansi -pedantic -c -DMakeExecutable=l *.c
15 * cl6x -g -as -o -dMakeExecutable=0 *.c
16 *
17 * I recommend making the object files in the directories SunVersion
18 * and DSPVersion, respectively. It keeps the main directory clean.
19 *
20 * Link the object files to create your executable. This is how I did it.
21 * gcc *.o -o sun.out
22 * Ink6x *.obj dsp.cmd -o dsp.out
23 *
24 * If you're making a c6x .out file, I recommend using the command file in
25 * the directory DSPVersion. That directory also contains some assembly
26 * files and some c6x simulator initialization/configuration files.
27 *
28 * gffrl6.asm
29 * gffrl6.inc This is the assembly for ASMGFFourier(), a function that
30 * works like GFFourier(), but it's faster. These files must
31 * be assembled if UseASMGFFourier is defined below.
32 *
33 * gffr32.asm Assembly for ASMGFFourier32(). 32-bit RSSymbol and
34 * RSLogSymbol. Incompatible with 16-bit program.
35 *
36 * rsds.asm
37 * rsds.inc This is the assembly for ASMRSDiscrepancy(), a function
38 * that works like RSDiscrepancy(), but it's faster. These
39 * files must be assembled if UseASMRSDiscrepancy is defined
40 * below.
41 *
42 * rsds32.asm Assembly for ASMRSDiscrepancy32(). 32-bit RSSymbol and
43 * RSLogSymbol. Incompatible with 16-bit program.
44 *
45 * init.cmd
46 * init.clr
47 * simint.cmd Simulator initialization/configuration files.
48 *
49 * This is a description of the flags listed in this file.
50 * RunGFPolyArith
51 * There are actually two main() functions in this directory.
52 * The first is at the end of RSDecodeTest.c. That main() is used
53 * to run the RS Decode Test. The second main() is at the end of
54 * GFPolyArith.c, and it's used to run the GF Polynomial Arithmetic
55 * Test. This is a little program which is designed to run only on
56 * the Sun. It allows the user to perform GF arithmetic on two
57 * polynomials at a time.

- 111

58 *
59 * ReadIncludeFiles
60 * Read start data from include files? See RSDecodeTest.c.
61 * The files myrsusr.h, myrssnd.h, and myrsrcv.h
62 * are included during the compile. These files are generated
63 * by this program when the WriteIncludeFiles flag is defined
64 * (see below). They contain data which can be used directly.
65 * This can eliminate the time involved in pseudo-randomly
66 * generating user data, encoding it, and pseudo-randomly
67 * corrupting it. myrsusr.h contains an array of arrays
68 * contain user data symbols. myrssnd.h contains corrsponding
69 * arrays containing RS codewords. myrsrcv.h contains corresponding
70 * arrays of "corrupted" symbols.
71 *

72 * WriteIncludeFiles
73 * Write data to include files when done? See RSDecodeTest.c.
74 * The files myrsusr.h, myrssnd.h, myrsrcv.h, and myrsend.h
75 * are generated by the program. They contain arrays of
76 * symbol arrays.

77 * "usr" stands for user, "snd" stands for send,
78 * "rcv" stands for receive, and "end" stands for end.
79 * myrsend.h contains an array of RS-decoded symbol arrays.
80 *

81 * EnableConsoleOutput
82 * This lets the program write console output.
83 *

84 * UseMyRSEuclid

85 * Use the RSEuclid library of functions? See the GF Polynomial
86 * Arithmetic section, near the end of rs.c.
87 *

88 * UseASMGFPolyXOR
89 * UseASMGFPolyMultiply
90 * UseASMGFPolyDivide
91 * Use hand-coded assembly routines for the different
92 * Galois-Field polynomial arithmetic operations?
93 * Don't define any of these for Sun executables.
94 *

95 * UseSAGFPolyXOR

96 * UseSAGFPolyMultiply

97 * UseSAGFPolyDivide
98 * Use the auto-optimized c6x routines for the different
99 * Galois-Field polynomial arithmetic operations?

100 * Don't define any of these for Sun executables.
101 *

102 * NOTE: UseMyRSEuclid must be defined if any of {UseASMGFPolyXOR,
103 * UseASMGFPolyMultiply,UseASMGFPolyDivide,UseSAGFPolyXOR,
104 * UseSAGFPolyMultiply,UseSAGFPolyDivide) are defined.
105 *

106 * UseASMGFFourier
107 * Use the ASMGFFourier c6x routine? See gffrl6.asm gffrl6.inc.
108 * Don't define this for Sun executables.
109 *

110 * UseASMGFFourier32
111 * Use ASMGFFourier32? See gffr32.asm. Don't define for Sun.
112 *

113 * UseSAGFFourier
114 * Use the auto-optimized GFFourier c6x routine? See gffrl6sa.sa.
115 * Don't define this for Sun executables.
116 *

117 * NOTE: At most one of {UseASMGFFourier,UseSAGFFourier} may be defined
118 * at one time.

119 *

120 * UseASMRSDiscrepancy
121 * Use the ASMRSDiscrepancy c6x routine? See rsds.asm and rsds.inc.
122 * Don't define this for Sun executables.

112

UseASMRSDiscrepancy32
Use ASMRSDiscrepancy32? See rsds32.asm. Don't define for Sun.

UseSARSDiscrepancy
Use the auto-optimized RSDiscrepancy c6x routine? See rsdssa.asm.
Don't define this for Sun executables.

NOTE: At most one of {UseASMRSDiscrepancy,UseSARSDiscrepancy} may be
defined at one time.

NOTE: The RSDiscrepancy assembly routines will only be called if
UseMyRSEuclid is not defined.

* UseInline
* This flag is used in rs.c.

* UseStatic
* This flag is used in rs.c.
*/

/* This tells the compiler to make
#if !defined(MakeExecutable)
#define MakeExecutable 1
#endif

Some small functions can be inlined.

The functions are made static.

a Sun executable by default. */

* DSP (c6x) Parameters
*/

#if (MakeExecutable == 0)
#define ReadIncludeFiles
#undef WriteIncludeFiles
#define EnableConsoleOutput

#undef UseASMGFFourier /* Use 16-bit ASMGFFourier assembly routine? */
#undef UseSAGFFourier /* Use 16-bit SAGFFourier assembly routine? */

#define UseASMGFFourier32 /* Use 32-bit ASMGFFourier32 assembly routine? */

#undef
#undef
#undef

UseASMRSDiscrepancy /* Use 16-bit ASMRSDiscrepancy assembly routine? */
UseSARSDiscrepancy /* Use 16-bit SARSDiscrepancy assembly routine? */
UseASMRSDiscrepancy32 /* Use 32-bit ASMRSDiscrepancy32 asm routine? */

166 #define UseMyRSEuclid /* Use Euclid's algorithm? */
167 #undef UseASMGFPolyXOR /* Use 16-bit ASMGFPolyXOR assembly routine? */
168 #undef UseSAGFPolyXOR /* Use 16-bit SAGFPolyXOR assembly routine? */
169 #undef UseASMGFPolyMultiply
170 /* Use 16-bit ASMGFPolyMultiply assembly routine? */
171 #undef UseSAGFPolyMultiply /* Use 16-bit SAGFPolyMultiply assembly routine? */
172 #undef UseASMGFPolyDivide /* Use 16-bit ASMGFPolyDivide assembly routine? */
173 #undef UseSAGFPolyDivide /* Use 16-bit SAGFPolyDivide assembly routine? */
174
175 #define UseInline
176 #define UseStatic
177
178 /*
179 * Sun Parameters
180 */

#elif (MakeExecutable ==
#define ReadIncludeFiles
#undef WriteIncludeFiles
#undef UseMyRSEuclid
#undef RunGFPolyArith /* Compile the GF Poly. Arith. package? */

-- 113

188 #else
189 #error Invalid Executable Mode
190 #endif
191
192 /"
193 * You shouldn't need to change anything below here.
194 */
195
196 /"
197 * The 32-bit routines are incompatible with the 16-bit routines.
198 */
199
200 #if (defined(UseASMGFFourier32) I defined(UseASMRSDiscrepancy32))
201 #undef UseASMGFFourier
202 #undef UseSAGFFourier
203 #undef UseASMRSDiscrepancy
204 #undef UseSARSDiscrepancy
205 #undef UseASMPolyXOR
206 #undef UseSAPolyXOR
207 #undef UseASMPolyMultiply
208 #undef UseSAPolyMultiply
209 #undef UseASMPolyDivide
210 #undef UseSAPolyDivide
211 #endif
212
213 #if (defined(UseASMGFFourier) II defined(UseSAGFFourier) II \
214 defined(UseASMRSDiscrepancy) 1I defined(UseSARSDiscrepancy) \
215 defined(UseASMPolyXOR) 11 defined(UseSAPolyXOR) II \
216 defined(UseASMPolyMultiply) II defined(UseSAPolyMultiply) I| \
217 defined(UseASMPolyDivide) II defined(UseSAPolyDivide))
218 #undef UseASMGFFourier32
219 #undef UseASMRSDiscrepancy32
220 #endif
221
222 /*
223 * RSBerlekamp and RSEuclid are mutually exclusive.
224 * ASMGFPolyXOR, ASMGFPolyMultiply, ASMGFPolyDivide,
225 * SAGFPolyXOR, SAGFPolyMultiply, and SAGFPolyDivide
226 * can only be called from RSEuclid; ASMRSDiscrepancy can
227 * only be called from RSBerlekamp.
228 */
229
230 #if defined(UseMyRSEuclid)
231 #undef UseASMRSDiscrepancy
232 #undef UseSARSDiscrepancy
233 #undef UseASMRSDiscrepancy32
234 #else
235 #undef UseASMGFPolyXOR
236 #undef UseASMGFPolyMultiply
237 #undef UseASMGFPolyDivide
238 #undef UseSAGFPolyXOR
239 #undef UseSAGFPolyMultiply
240 #undef UseSAGFPolyDivide
241 #endif
242
243 #if defined(UseASMGFFourier)
244 #undef UseSAGFFourier
245 #endif
246
247 #if defined(UseSAGFFourier)
248 #undef UseASMGFFourier
249 #endif
250
251 #if defined(UseASMRSDiscrepancy)
252 #undef UseSARSDiscrepancy

114

253 #endif
254
255 #if defined(UseSARSDiscrepancy)
256 #uidef UseASMRSDiscrepancy
257 #endif
258
259 #if defined(UseASMGFPolyXOR)
260 #undef UseSAGFPolyXOR
261 #endif
262
263 #if defined(UseSAGFPolyXOR)
264 #undef UseASMGFPolyXOR
265 #endif
266
267 #if defined(UseASMGFPolyMultiply)
268 #undef UseSAGFPolyMultiply
269 #endif
270
271 #if defined(UseSAGFPolyMultiply)
272 #undef UseASMGFPolyMultiply
273 #endif
274
275 #if defined(UseASMGFPolyDivide)
276 #undef UseSAGFPolyDivide
277 #endif
278
279 #if defined(UseSAGFPolyDivide)
280 #undef UseASMGFPolyDivide
281 #endif
282
283 #if (MakeExecutable == 0)
284 #include <time.h> /* For cycle-counting. */
285 #define MakeDSPExecutable
286 #undef MakeSunExecutable
287 #undef RunGFPolyArith
288
289 #elif (MakeExecutable == 1)
290 #undef MakeDSPExecutable
291 #define MakeSunExecutable
292 #define EnableConsoleOutput
293 #undef UseStatic
294 #undef UseInline
295
296 /*
297 * The following flags allow the use of certain c6x assembly routines.
298 * These routines cannot be executed on the Sun.
299 */
300 #undef UseASMGFFourier
301 #undef UseSAGFFourier
302 #undef UseASMGFFourier32
303 #undef UseASMRSDiscrepancy
304 #undef UseSARSDiscrepancy
305 #undef UseASMRSDiscrepany32
306 #undef UseASMGFPolyXOR
307 #undef UseSAGFPolyXOR
308 #undef UseASMGFPolyMultiply
309 #undef UseSAGFPolyMultiply
310 #undef UseASMGFPolyDivide
311 #undef UseSAGFPolyDivide
312 #endif

'" 115

Appendix F - GFPolyArith Sun Program
This is a C frogram written for SunOS 4.1.4. It is a two-polynomial arithmetic calculator. It uses the GF
arithmetic fhnctions and the RSCode structure from the RS library. This program was written to help
debug the implementation of Euclid's algorithm in the RS decoder. The user can input two GF
polynomials, coefficient by coefficient, and specify one of four operations. The program outputs the
result(s), in normal and log form. It can use any RS code that can be used by the RS decoder.

1 #include "modefile.h"
2 static int filler=0;
3 #if defined(RunGFPolyArith)
4 #include <stdio.h>
5 #include <string.h>
6 #include <math.h>
7 #include "prmrs.h"
8
9 void PrintPoly(char *name,RSSymbol *poly) {
10 RSSymbol *hold;
11 printf("%s",name);
12
13 hold = poly;
14
15 while (*poly != -1)
16 printf(" %d ",(int) *poly++);
17
18 puts("");
19 printf("%s , name);
20
21 poly = hold;
22
23 while (*poly != -1)
24 printf ("a%d ", (int) GFLog(&StandardRSCode,*poly.+));
25
26 puts("");
27 }
28
29 void GFPolyArithMultiply (RSSymbol *a,RSSymbol *b,RSSymbol *p) {
30 RSSymbol *pl,*p3,*c;
31 int i;
32 c = p;
33
34 p3 = c;
35
36 for (i=0;i<64;++i)
37 c(i] = 0;
38
39 while (*b != -1) {
40 pl = a;
41 p3 = c;
42
43 while (*pl != -1) {
44 *p3 = GFAdd(&StandardRSCode,
45 *p3,
46 GFMultiply (&StandardRSCode,
47 *pl,
48 *b));
49 ++pl;
50 ++p3;
51 }
52
53 ++b;
54 ++C;
55 }

116

56
57 *p3 = -1;
58
59 p3 = p;
60 while (*p3 !=-1)
61 ++p3;
62 --p3;
63 while ((*p3 == 0) && (p3 > p))
64 *p3 = -1;
65
66 return;
67)
68
69 void GFPolyArithDivide (RSSymbol *n,RSSymbol wd,RSSymbol *q,RSSymbol *r) {
70 RSSymbol *pl,*p2,*p3,*p4;
71 RSSymbol div,prod;
72 int nd,dd,qd,rd;
73
74 if ((*n == -1) II (*d == -1)) {
75 *q = -1;
76 *r = -1;
77 return;
78 1
79
80 nd = -1;
81 pl = n;
82 while (*pl++ != -1)
83 ++nd;
84
85 dd = -1;
86 pl = d;
87 while (*pl++ !=-1)
88 ++dd;
89
90 qd = nd - dd;
91 rd = nd;
92
93 pl = n;
94 p2 = r;
95 while (*pl != -1)
96 *p2++ = *pl++;
97
98 *p2 = -1;
99

100 if (dd > nd) {
101 *q++ = 0;
102 *q = -1;
103 return;
104)
105
106 p3 = &q[qd];
107
108 while (rd >= dd) {
109 div = GFDivide (&StandardRSCode, r [rd], d [dd]);
110 p2 = &d[dd];
11 *p3-- = div;
112 p4 = &r[rd];
113
114 while (p2 >= d) {
115 prod = GFMultiply (&StandardRSCode, *p2, div);
116 *p4 = GFSubtract(&StandardRSCode,*p4,prod);
117 --p2;
118 -- p4;
119)
120

117

121 -- rd;
122)
123
124 while (p3 >= q)
125 *p3-- = 0;
126
127 p3 = &q[qd+l];
128 *p3-- = -1;
129
130 while ((*p3 == 0) && (p3 > q))
131 *p3-- = -1;
132
133 p4 = &r[nd+l];
134 *p4-- = -1;
135
136 while ((*p4 == 0) && (p4 > r))
137 *p4-- = -1;
138
139 return;
140 }
141
142 void GFPolyArithXOR(RSSymbol *a,RSSymbol *b,RSSymbol *x) {
143 RSSymbol *p,*c;
144 c = x;
145 while (*a != -1) {
146 if (*b == -1)
147 break;
148 *c++ = GFAdd(&StandardRSCode,*a++,*b++);
149 }
150
151 if (*b == -1)
152 while (*a != -1)
153 *c++ = *a++;
154 else if (*a == -1)
155 while (*b != -1)
156 *c++ = *b++;
157
158 *c = -1;
159 p = x;
160 while (*p != -1)
161 ++p;
162 -- p;
163 while ((*p == 0) && (p > x))
164 *p-- = -1;
165
166 return;
167)
168
169 RSSymbol upperBound=0;
170
171 int StrToPoly(char *s,RSSymbol *p) {
172 char *token;
173
174 token = strtok(s," ");
175

176 while (token != NULL) {
177 if (*token == 'a') {
178 *p = (RSSymbol) atoi(++token);
179 *p = GFAntilog(&StandardRSCode,(RSLogSymbol) *p);
180 1 else {
181 *p = (RSSymbol) atoi(token);
182 }
183
184 if (*p >= upperBound) {
185 *p = -1;

118

186 printf("Symbols must be less than 2**%d.\n",StandardRSCode.m);
187 return 0;
188 } else
189 ++p;
190 token = strtok(NULL," ");
191
192
193 *p = -1;
194 return 1;
195
196
197 int IntPowIntInt(int b,int p) {
198 int r=l;
199
200 while (p-- > 0)
201 r *= b;
202
203 return r;
204
205
206 int main(int argc,char *argv[) {
207 char commandString[512);
208 RSSymbol polyl[64],poly2[64],poly3[64],poly4[64];
209 int done=0;
210
211 puts("GF Polynomial Arithmetic");
212 puts("Two Polynomials at a Time");
213 puts("Kamal Swamidoss");
214 puts("December 1997");
215
216 puts("Code Parameters:");
217 printf(" m: %d\n",(int) StandardRSCode.m);
218 printf(" t: %d\n",(int) StandardRSCode.numberOfCorrectableErrors);
219 printf(" K: %d\n",
220 (int) StandardRSCode.numberOfUserDataSymbolsInCodeword);
221 printf(" mO: %d\n",(int) StandardRSCode.mO);
222 printf(" N: %d\n",(int) StandardRSCode.numberOfSymbolsInCodeword);
223
224 upperBound = (RSSymbol) IntPowIntInt(2,StandardRSCode.m);
225 puts("\n symbol");
226 printf(" upperBound: %d\n",(int) upperBound);
227
228 puts("");
229 puts("Enter Polynomials In Decimal Form");
230 puts(" From Lowest-Degree-Coefficient");
231 puts(" To Highest-Degree-Coefficient.\n");
232 puts("Type \"/exit\" to Exit.");
233
234 while (!done)
235 printf("Enter First Polynomial: ");
236 fgets(commandString,511,stdin);
237 commandString(strlen(commandString) -] = '\0';
238 if (strcmp(commandString,"/exit") == 0) {
239 done = 1;
240 continue;
241
242
243 if (!StrToPoly(commandString,polyl))
244 continue;
245
246 printf("Enter Second Polynomial: ");
247 fgets(commandString,511,stdin);
248 commandString[strlen(commandString) -1] = '\0';
249 if (strcmp(commandString,"/exit") == 0) {
250 done = 1;

119

251 continue;
252 }
253
254 if (!StrToPoly(commandString,poly2))
255 continue;
256
257 printf("Enter Operation (mdx) :
258 fgets(commandString,511,stdin);
259 commandString(strlen(commandString) -] = '\0';
260 if (strcmp(commandString,"/exit") == 0) {
261 done = 1;
262 continue;
263 } else if (strlen(commandString) != 1) {
264 puts("Invalid Operation.");
265 continue;
266 }
267
268 switch (*conmmandString)
269 case 'm' :
270 GFPolyArithMultiply(polyl,poly2,poly3);
271 PrintPoly(" Product: ",poly3);
272 break;
273 case 'd'
274 GFPolyArithDivide(polyl,poly2,poly3,poly4);
275 PrintPoly(" Quotient: ",poly3);
276 PrintPoly(" Remainder: ",poly4);
277 break;
278 case 'x'
279 GFPolyArithXOR(polyl,poly2,poly3);
280 PrintPoly(" XOR: ",poly3);
281 break;
282 default : puts("Invalid Operation.");
283 break;
284 }
285
286 puts("------------------------");
287 }
288
289 return 0;
290 }
291 #endif

120

Appendix G - Diagnostic Output Functions
These functions can be used by the debugger to display the contents of GF arrays at run-time.

1 #include <stdio.h>
2 #include "prmrs.h"
3 #include "modefile.h"
4
5 static int filler=0;
6
7 #if defined(EnableConsoleOutput)
8 extern RSLogSymbol GFLog(RSCode *code, RSSymbol x);
9 extern RSSymbol GFAntilog(RSCode *code, RSLogSymbol x);
10
11 /*
12 * Diagnostic Output Functions
13 * Kamal Swamidoss
14 * November 1997
15 *
16 */
17
18 void MyPrintRSSymbolArray(char *s,RSSymbol *a,int 1) {
19 int j;
20
21 printf("%s",s);
22
23 if (1 == 1)
24 printf("%04d\n",a[0]);
25 return;
26 }
27
28 j = 0;
29
30 while (j < 1-1)
31 printf("%04d, ",a[j++]);

printf("%04d",a[j]);
puts(");

void MyPrintRSSymbolArrayLog(RSCode *code, char *s,RSSymbol *a,int 1) {
int j;

printf("%s',s);

if (1 == 1) {

printf("%04d\n",GFLog(code,a[0]));
return;

j = 0;

while (j < 1-1)
printf("%04d, ",GFLog(code,a[j++]));

printf('%04d,GFLog(code,a[jl));
puts("");

void MyPrintRSLogSymbolArray(RSCode *code,char *s,RSLogSymbol *a,int 1) {
int j;

printf("%s",s);

" 121

if (1 == 1) {
printf("%04d\n",GFAntilog(code,a[O]));
return;

j = 0;

while (j < 1-1)
printf("%04d, ",GFAntilog(code,a[j++)));

printf("%04d\n",GFAntilog(code,a[j]));
puts ("");

void MyPrintRSLogSymbolArrayLog (char *s,RSLogSymbol *a,int 1) {
int j;

printf("%s",s);

if (1 == 1) {
printf("%04d\n",a[0]);
return;

j = 0;

while (j < 1-1)
printf("%04d, ",a[j++]);

printf("%04d\n",a[jl);
puts("");

#endif /* #if defined(EnableConsoleoutput) */

122

Appendix H - Modifications to RSCode
This section describes the modifications to the RSCode structure. The structure is defined differently
based on whether or not the preprocessor value UseMyRSEuclid is defined (see Appendix E -
Modefile). See Appendix I for a description of how RSCode is initialized.

1 /*
2 * RSCode
3 * a structure containing the information defining an RS code. It also
4 * contains pointers to any tables used by the encoding and decoding
5 * functions.
6 */
7 typedef
8 struct {

* m

*/
the length in bits of a symbol.

int m;

* N

*/

the internal length of the codewords in symbols, and the size
of the multiplicative group of Galois field elements. This is
always equal to 2^m - 1. For shortened codes, some of the symbols
of the codeword are implicitly zero and are not passed through
the I/O interface of the coder.

int N;

/*

* numberOfCorrectableErrors
* the number of errors that can be corrected by the code.
* For an odd minimum distance the minimum distance
* and number of correctable errors are related by t = (d-l)/2,
* which is a t error correcting, t error detecting code.
* For an even minimum distance the relationship is t = (d-2)/2,
* and this is a t error correcting, t+l error detecting code.
*/

int numberOfCorrectableErrors;

/*

* mO

*RSogS

RSLogSy

the power of the first of the consecutive roots of the generator
polynomial of the code.

mbol mO;

* numberOfUserDataSymbolsInCodeword
*/

int numberOfUserDataSymbolsInCodeword;

/*nmberfheckSymbolsIn
* numberOfCheckSymbolsInCodeword
*/

RSLogSymbol numberofCheckSymbolsInCodeword;

* numberOfSymbolsInCodeword
*/

int numberOfSymbolsInCodeword;

- 123

58 /*
59 *log
60 * a table of logarithms for the Galois field used to define
61 * the RS code. The logarithm is a function which maps RSSymbols
62 * to integers such that multiplication of RSSymbols is equivalent
63 * to addition of their logarithms.
64 */
65 RSLogSymbol * log;
66
67 /*
68 * antilog
69 * a table of inverse logarithms for the Galois field used to
70 * define the RS code.
71 */
72 RSSymbol * antilog;
73
74 /*
75 * generatorLogCoefficient
76 * the logarithm of the coefficients of the generator polynomial
77 * used to define the code. The coefficients are stored as logs
78 * to remove some operations from the linear feedback sift
79 * register in the encoding process.
80 */
81 RSLogSymbol * generatorLogCoefficient;
82
83 /*
84 * generatorLogRoot
85 * the logarithm of the roots of the coefficients of the generator
86 * polynomial used to define the code. The roots are stored as
87 * logs to remove some operations from the linear feedback shift
88 * registers in the decoding process.
89 */
90 RSLogSymbol * generatorLogRoot;
91
92 /*
93 * syndromeCalculationParameters
94 * parameters to the GFFourier function to perform the syndrome
95 * calculation in the decoder.
96 */
97 GFFourierParameters * syndromeCalculationParameters;
98
99 /*

100 * chienSearchParameters
101 * parameters to the GFFourier function to perform the Chien search
102 * function in the decoder. The Chien search evaluates the error
103 * locator polynomial at every possible error location.
104 */
105 GFFourierParameters * chienSearchParameters;
106
107 /*
108 * startLogErrorRoot
109 * the error location value of the first codeword coefficient
110 * tested during the Forney algorithm.
111 */
112 RSLogSymbol startLogErrorRoot;
113
114 RSSymbol *syndromePtr;
115 RSSymbol *logSyndromePtr;
116 RSSymbol *logErrorLocatorPtr;
117 RSSymbol *errorLocatorPtr;

If UseMyRSEuclid is not defined, then four pointers are defined. These pointers reference storage
arrays needed by the implementation of Berlekamp's algorithm.

124

118 #if !defined(UseMyRSEuclid)
119 RSSymbol *previousErrorLocatorPtr;
120 RSSymbol *previousLogErrorLocatorPtr;
121 RSSymbol *nextErrorLocatorPtr;
122 RSSymbol *nextLogErrorLocatorPtr;
123 #eridif
124
125 RSSymbol *logErrorEvaluatorPtr;
126 RSSymbol *logErrorLocatorDerivativePtr;
127 RSSymbol *chienSearchResultPtr;

If UseMyRSEuclid is defined, then eight pointers are defined. These pointers reference storage arrays
needed by the implementation of Euclid's algorithm.

128 #if defined(UseMyRSEuclid)
129 RSSymbol *euclidO;
130 RSSymbol *euclidl;
131 RSSymbol *euclid2;
132 RSSymbol *euclid3;
133 RSSymbol *euclid4;
134 RSSymbol *euclid5;
135 RSSymbol *euclid6;
136 RSSymbol *euclid7;
137 RSSymbol *euclid8;
138 #endif
139 } RSCode;

- 125

Appendix I - Modifications to genrs
This sectiod lists the C code added to the program genrs, used to generate the C code for various RS
data str(ctures, including the RSCode structure. The modifications allow various arrays to be
conditionally defined. In addition, the modified genrs program allows the RSCode structure to be
initialized in a manner consistent with its definition (see Appendix H - Modifications to RSCode).

I fprintf(dataFile,

dataFile is a pointer to the . c file that is being generated by genrs.

"\nc
"#include \"modefile.h\"\n"

The file modefile. h is included in the modified . c file. The modefile controls the compilation of the
RS decoder; it contains several important preprocessor values (see Appendix E - Modefile). If the
preprocessor value UseMyRSEuclid is defined in modefile. h, then eight arrays are defined here for
use in the implementation of Euclid's algorithm. These arrays are named euclidIndex0-
euclidIndex7.

5 "#if defined(UseMyRSEuclid)\n"
6 "RSSymbol euclidIndex0 [%ld]; \n"
7 "RSSymbol euclidIndexl[%ld];\n"
8 "RSSymbol euclidIndex2[%ld]; \n"
9 "RSSymbol euclidIndex3[%ld];\n"
10 "RSSymbol euclidIndex4[%ld];\n"
11 "RSSymbol euclidIndex5[%ld]; \n"
12 "RSSymbol euclidIndex6[%ld]; \n"
13 "RSSymbol euclidIndex7[%ld]; \n"
14 "#endif\n"
15 "\n"
16 "RSSymbol mySyndromeArray [%ld]; \n"
17 "RSSymbol myLogSyndromeArray[%ld]; \n"
18 "RSSymbol myLogErrorLocatorArray %ld]; \n"
19 "RSSymbol myErrorLocatorArray [%ld]; \n"
20 "\n"

If UseMyRSEuclid is not defined, then it is implied that Berlekamp's algorithm is to be used. The
implementation of that algorithm requires four additional arrays, which are defined here if
UseMyRSEuclid is not defined.

"#if !defined(UseMyRSEuclid)\n"
"RSSymbol myPreviousErrorLocatorArray[%ld];\n"
"RSSymbol myPreviousLogErrorLocatorArray[%ld];\n"
"RSSymbol myNextErrorLocatorArray[%ld];\n"
"RSSymbol myNextLogErrorLocatorArray(%ld];\n"
"#endif\n"
" \n"
"RSSymbol myLogErrorEvaluatorArray[%ld];\n"
"RSSymbol myLogErrorLocatorDerivativeArray[%ld];\
"RSSymbol myChienSearchResultArray[%ld];\n"

(long)
(long)
(long)
(long)
(long)
(long)

(2*(t.value)+2),
(2*(t.value)+2),
(2* (t.value)+2),
(2*(t.value)+2),
(2*(t.value)+2),
(2*(t.value)+2),

" 126

n"

39 (long) (2*(t.value)+2),
40 (long) (2*(t.value)+2),
41
42 (long) t.value * 2,
43 (long) t.value * 2,
44 (long) t.value + 1,
45 (long) t.vaiue + 1,
46
47 (long) t.value + 1,
48 (long) t.value + 1,
49 (long) t.value + 1,
50 (long) t.value + 1,
51
52 (long) t.value + 1,
53 (long) t.value + ,
54 (long) K.value + 2 * t.value);

The variables t. value, K. value, N. value, m. value, and mO .value are the RS parameters t, K,
N, m, and mo.

The RSCode data structure has been modified accordingly. If Euclid's algorithm is to be used, then the
RSCode structure contains pointers to the eight previously defined storage arrays. Otherwise, it contains
pointers to the four additional arrays needed by the implementation of Berlekamp's algorithm. Each set
of arrays and the corresponding set of pointers are defined based on UseMyRSEuc lid.

55 fprintf(dataFile,
56 "RSCode %sRSCode = {\n"
57 " %ld /* m */,\n"

58 " %ld /* N */,\n"

59 %ld /* numberOfCorrectableErrors */,\n"
60 " %ld /* mO */,\n"
61 " %ld /* numberOfUserDataSymbolsInCodeword */,\n"
62 " %ld /* numberOfCheckSymbolsInCodeword */,\n"
63 %ld /* numberOfSymbolsInCodeword */,\n"
64 "\n"
65 " logTable /* log */,\n"
66 antilogTable /' antilog */,\n"
67 generatorLogCoefficientTable /* generatorLogCoefficient */,\n"
68 generatorLogRootTable /* generatorLogRoot */,\n"
69 " &syndromeParameters /* syndromeCalculationParameters */,\n"
70 &chienSearchParameters /* chienSearchParameters */,\n"
71 " %ld /* startLogErrorRoot */,\n"
72 "\n"
73 " mySyndromeArray[O],\n"
74 &myLogSyndromeArray[0],\n"
75 " &myLogErrorLocatorArray [0],\n"
76 " &myErrorLocatorArray[0],\n"
77 "\n"
78 "#if !defined(UseMyRSEuclid)\n"
79 &myPreviousErrorLocatorArray0) ,\n"
80 " &myPreviousLogErrorLocatorArray[0),\n"
81 " &myNextErrorLocatorArray[0],\n"
82 " &myNextLogErrorLocatorArray[0 ,\n"
83 "#endif\n"
84 "\n"
85 " &myLogErrorEvaluatorArray[O],\n"
86 &myLogErrorLocatorDerivativeArray[0] ,\n
87 &myChienSearchResultArray[0] \n"
88 "\n"
89 "#if defined(UseMyRSEuclid)\n"
90 ,&euclidIndex0[0],\n"
91 " &euclidIndexl[0],\n"
92 &euclidIndex2[0],\n"

127

&euclidIndex3[0],\n"
&euclidIndex4[0],\n"
&euclidIndex5[0],\n"
&euclidIndex6[O],\n"
&euclidIndex7[0]\n"

"#endif\n"
"};\n",

name.valueText,
(long) m.value,
(long) N.value,
(long) t.value,
(long) m0.value,
(long) K.value,
(long) t.value *
(long) K.value +

2,
t.value * 2,

(long) N.value + 1 - K.value - 2 * t.value

-" 128

